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In modern heat transfer, shape and geometric optimisation are new considerations in
the evaluation of thermal performance. In this research, we employed constructal
theory and design to present three-dimensional theoretical and numerical solutions of
conjugate forced convection heat transfer in heat generating devices with cooling
channels of different cross-sectional shapes.

In recent times, geometric configurations of cooling channel have been found to play
an important role in thermal performance. Therefore, an efficient ways of optimally
designing these cooling channels shapes is required.

Experimentation has been extensively used in the past to understand the behaviour of
heat removals from devices. In this research, the shapes of the cooling channels and

the configurations of heat-generating devices were analytically and numerically
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studied to minimise thermal resistance and thus illustrate cooling performance under
various design conditions.

The cooling channels of five different cross-sectional shapes were studied: Circular,
square, rectangular, isosceles right triangular and equilateral triangular. They were

uniformly packed and arranged to form larger constructs.

The theoretical analysis is presented and developed using the intersection of
asymptotes method. This proves the existence of an optimal geometry of parallel
channels of different cross-sectional shapes that penetrate and cool a volume with
uniformly distributed internal heat generation and heat flux, thus minimising the
global thermal resistance.

A three-dimensional finite volume-based numerical model was used to analyse the
heat transfer characteristics of the cross-sectional shapes of various cooling
channels. The numerical computational fluid dynamics (CFD) package recently
provided a more cost-effective and less time-consuming means of achieving the same
objective. However, in order to achieve optimal design solutions using CFD, the
thermal designers have to be well experienced and carry out a number of trial-and-
error simulations. Unfortunately, this can not always guarantee an accurate optimal
design solution. In this thesis a mathematical optimisation algorithm (a leapfrog
optimisation program and DYNAMIC-Q algorithm) coupled with numerical CFD was
employed and incorporated into the finite volume solver, —-FLUENT, and grid
(geometry and mesh) generation package, — GAMBIT to search and identify the
optimal design variables at which the system would perform optimally for greater
efficiency and better accuracy. The algorithm was also specifically designed to handle
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constraint problems where the objective and constraint functions were expensive to
evaluate.

The automated process was applied to different design cases of cooling channels
shapes. These cooling channels were embedded in a highly conductive solid and the
peak temperature was minimised.

The trend and performance of all the cooling channel shapes cases studied were
compared analytically and numerically. It was concluded that an optimal design can

be achieved with a combination of CFD and mathematical optimisation.

Furthermore, a geometric optimisation of cooling channels in the forced convection
of a vascularised material (with a localised self-cooling property subjected to a heat
flux) was also considered. A square configuration was studied with different
porosities. Analytical and numerical solutions were provided. This gradient-based
optimisation algorithm coupled with CFD was used to determine numerically the
optimal geometry that gave the lowest thermal resistance. This optimiser adequately
handled the numerical objective function obtained from numerical simulations of the

fluid flow and heat transfer.

The numerical results obtained were in good agreement with results obtained in the
approximate solutions based on scale analyses at optimal geometry dimensions. The
approximate dimensionless global thermal resistance predicted the trend obtained in
the numerical results. This shows that there were unique optimal design variables

(geometries) for a given applied dimensionless pressure number for fixed porosity.
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The results also showed that the material property had a significant influence on the

performance of the cooling channel.

Therefore, when designing the cooling structure of vascularised material, the internal
and external geometries of the structure, material properties and pump power
requirements would be very important parameters to be considered in achieving

efficient and optimal designs for the best performance.

Finally, this research investigated a three-dimensional geometric optimisation of
conjugate cooling channels in forced convection with an internal heat generation
within the solid for an array of cooling channels. Three different flow orientations
based on constructal theory were studied numerically- firstly, an array of channels
with parallel flow; secondly, an array of channels in which flow of every second row
was in a counter direction and finally, an array of channels in which the flow
direction in every channel was opposite to that of previous channel. The geometric
configurations and flow orientations were optimised in such a way that the peak
temperature was minimised subject to the constraint of fixed global volume of solid
material. The optimisation algorithm coupled with CFD was also used to determine

numerically the optimal geometry that gave the lowest thermal resistance.

The use of the optimisation algorithm coupled with the computational fluid dynamics

package; render the numerical results more robust with respect to the selection of
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optimal structure geometries, internal configurations of the flow channels and

dimensionless pressure difference.

Keywords:  Geometric configurations, computational fluid dynamics, mathematical
optimisation, thermal conductivity, constraints, laminar flow, forced
convection, optimal geometry, peak temperature, constructal theory,

thermal resistance, Dynamic-Q, flow orientation
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