

GEOMETRIC OPTIMISATION OF CONJUGATE HEAT TRANSFER IN COOLING CHANNELS WITH DIFFERENT CROSS-SECTIONAL SHAPES

by

Olabode Thomas OLAKOYEJO

Submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

in the

Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

2012

© University of Pretoria

ABSTRACT

Title	:	Geometric Optimisation of Conjugate Heat Transfer in Cooling
		Channels with Different Cross-sectional Shapes
Author	:	Olabode Thomas Olakoyejo
Supervisors	5:	Prof. Tunde Bello-Ochende and Prof. Josua P. Meyer
Departmen	t:	Mechanical and Aeronautical Engineering
University	:	University of Pretoria
Degree	:	Doctor of Philosophy (Mechanical Engineering)

In modern heat transfer, shape and geometric optimisation are new considerations in the evaluation of thermal performance. In this research, we employed constructal theory and design to present three-dimensional theoretical and numerical solutions of conjugate forced convection heat transfer in heat generating devices with cooling channels of different cross-sectional shapes.

In recent times, geometric configurations of cooling channel have been found to play an important role in thermal performance. Therefore, an efficient ways of optimally designing these cooling channels shapes is required.

Experimentation has been extensively used in the past to understand the behaviour of heat removals from devices. In this research, the shapes of the cooling channels and the configurations of heat-generating devices were analytically and numerically

studied to minimise thermal resistance and thus illustrate cooling performance under various design conditions.

The cooling channels of five different cross-sectional shapes were studied: Circular, square, rectangular, isosceles right triangular and equilateral triangular. They were uniformly packed and arranged to form larger constructs.

The theoretical analysis is presented and developed using the intersection of asymptotes method. This proves the existence of an optimal geometry of parallel channels of different cross-sectional shapes that penetrate and cool a volume with uniformly distributed internal heat generation and heat flux, thus minimising the global thermal resistance.

A three-dimensional finite volume-based numerical model was used to analyse the heat transfer characteristics of the cross-sectional shapes of various cooling channels. The numerical computational fluid dynamics (CFD) package recently provided a more cost-effective and less time-consuming means of achieving the same objective. However, in order to achieve optimal design solutions using CFD, the thermal designers have to be well experienced and carry out a number of trial-and-error simulations. Unfortunately, this can not always guarantee an accurate optimal design solution. In this thesis a mathematical optimisation algorithm (a leapfrog optimisation program and DYNAMIC-Q algorithm) coupled with numerical CFD was employed and incorporated into the finite volume solver, –FLUENT, and grid (geometry and mesh) generation package, – GAMBIT to search and identify the optimal design variables at which the system would perform optimally for greater efficiency and better accuracy. The algorithm was also specifically designed to handle

constraint problems where the objective and constraint functions were expensive to evaluate.

The automated process was applied to different design cases of cooling channels shapes. These cooling channels were embedded in a highly conductive solid and the peak temperature was minimised.

The trend and performance of all the cooling channel shapes cases studied were compared analytically and numerically. It was concluded that an optimal design can be achieved with a combination of CFD and mathematical optimisation.

Furthermore, a geometric optimisation of cooling channels in the forced convection of a vascularised material (with a localised self-cooling property subjected to a heat flux) was also considered. A square configuration was studied with different porosities. Analytical and numerical solutions were provided. This gradient-based optimisation algorithm coupled with CFD was used to determine numerically the optimal geometry that gave the lowest thermal resistance. This optimiser adequately handled the numerical objective function obtained from numerical simulations of the fluid flow and heat transfer.

The numerical results obtained were in good agreement with results obtained in the approximate solutions based on scale analyses at optimal geometry dimensions. The approximate dimensionless global thermal resistance predicted the trend obtained in the numerical results. This shows that there were unique optimal design variables (geometries) for a given applied dimensionless pressure number for fixed porosity.

The results also showed that the material property had a significant influence on the performance of the cooling channel.

Therefore, when designing the cooling structure of vascularised material, the internal and external geometries of the structure, material properties and pump power requirements would be very important parameters to be considered in achieving efficient and optimal designs for the best performance.

Finally, this research investigated a three-dimensional geometric optimisation of conjugate cooling channels in forced convection with an internal heat generation within the solid for an array of cooling channels. Three different flow orientations based on constructal theory were studied numerically- firstly, an array of channels with parallel flow; secondly, an array of channels in which flow of every second row was in a counter direction and finally, an array of channels in which the flow direction in every channel was opposite to that of previous channel. The geometric configurations and flow orientations were optimised in such a way that the peak temperature was minimised subject to the constraint of fixed global volume of solid material. The optimisation algorithm coupled with CFD was also used to determine numerically the optimal geometry that gave the lowest thermal resistance.

The use of the optimisation algorithm coupled with the computational fluid dynamics package; render the numerical results more robust with respect to the selection of

optimal structure geometries, internal configurations of the flow channels and dimensionless pressure difference.

Keywords: Geometric configurations, computational fluid dynamics, mathematical optimisation, thermal conductivity, constraints, laminar flow, forced convection, optimal geometry, peak temperature, constructal theory, thermal resistance, Dynamic-Q, flow orientation

Dedication

DEDICATION

This thesis is dedicated to:

The Almighty God whose mercy triumphs over judgement – James 2:13

and

The memory of my late Mother - Felicia Olakoyejo

ACKNOWLEDGEMENTS

I thank the Almighty God – my creator, Jesus Christ – my Lord and Saviour, and the Holy Spirit – my comforter and source of inspiration.

I wish to express my gratitude to my supervisor, Prof. Tunde Bello-Ochende, for his technical guidance and support throughout the research work.

My deepest thanks go to my co-supervisor and head of the department, Prof Josua P. Meyer, for his technical and financial support, which allowed the successful completion of this study.

My sincere appreciation goes to Prof. Leon Liebenberg, who facilitated my coming to the University of Pretoria for this Ph.D programme. Your support will not be forgotten.

I also wish to thank Prof. Emeritus J. A. Snyman for his assistance and constant attention into the numerical optimisation algorithm used in this thesis.

I sincerely appreciate the efforts made by the Thermofluids Research Group to make this work more fulfilling. Special thanks go to all my post-graduate colleagues in the department. My friends – Lanre, Mr Oke, Oluwaseun, Fervent, Nico, Ntuli, Louw, Stephan, Dirshik, Lloyd, Aye, Ernest, Mehdi, Adewumi, Dr. Adelaja, Noah, Antony,

Aggrey, Jeffery, Logan, Warren, Lelani, Melisa, Ipeleng, Williems, Deddy, Gerard, Jean-Mark, Warren, Charles, Henrriette, Okafor, Adio and Dr Martins.

Special thanks are due to Prof. Slabber, Prof. Theron, Dr. Dirker, and the rest of academic staff of the Department of Mechanical and Aeronautical Engineering, University of Pretoria for their constant advice and guidance.

Also, I wish to thank all our departmental administrative officers – Tersia Evans, Elizabe Pieterse and Ntsindy Mnyamena.

Profs A. Bejan and S. Lorente deserve my highest appreciation for despite their busy schedules they came to the University of Pretoria as extra ordinary professors to teach us constructal theory and design. Also their contributions to this research work are highly appreciated

I also thank my M.Sc supervisor and mentor, Prof. Layi Fagbenle for his regular contact and advice.

To my Father, – Johnson Olakoyejo, and My Siblings - Oluwafunke, Olajide, Oladeji, Oluwayemisi and Oladayo – I thank you dearly for your love and moral support. You have been a source of joy and stability to me.

To my cousins, Prof. Dejo Olowu, Dr. Jerome Elusiyan, Akinseye Olowu Felix Olarewaju, Joseph Adanla and Yinka Ajomale – thanks a lot for your constant support. I want to also thank my Uncle and Aunty – Mr Yinka Akintomide and Mrs Oluwarantimisirere Akinsanya for their moral support.

I also thank my Late Granduncle – Chief (Sir) Israel Olowu for his support and advice while he was alive.

To my friends – Kola, Lord Denis, Mr Soyeju, Washack, Deborah, Oguaka, Oluwo, Oyekeye, Kilanko, Ilori, Onitiri, Vero, John, Ugera, Benson, Shina, Oyin, Helen, Eric, Billy, Dr. Rasidi, Bola, Ebuka, Bayo, Mr. Akinrefon, Mr. Adeoye, Chika, Leboghang, Dr. Adeloye, Mabolaya, Rosina, Mokhogo, Pulelo, Georgina, Sukati, Ben, Dambala, Belete, Yisak, Mujtaba, Charles, Aleka Habtamu, Hlubi, Priscilla, Paul, Theresa, Master Kim, Matser Yang, Mater Park, Patricia, Refiwile, Ismail, Mesay, Ntombi, Bella, Sukati, and Sentle – I thank you all for your consistent encouragement, as well as for your generous social and emotional support.

I would like to acknowledge the financial support of the Advanced Engineering Centre of Excellence at the University of Pretoria, NRF, TESP, NAC, and SOLAR Hub with the Stellenbosch University, EEDSM Hub and the CSIR.

I also want to thank my employer – the University of Lagos, Nigeria – for granting me study leave in order to further my education.

TABLE OF CONTENTS

ABSTRACT	ii
DEDICATIO	Nvii
ACKNOWLE	EDGEMENTS viii
TABLE OF C	CONTENTSxi
LIST OF FIG	URES xviii
LIST OF TAI	BLESxxv
NOMENCLA	TURESxxvi
PUBLICATI	ONS IN JOURNALS, BOOKS AND CONFERENCE
	PROCEEDINGSxxxii
CHAPTER 1	: INTRODUCTION1
1.1.	BACKGROUND1
1.2.	MOTIVATION
1.3.	JUSTIFICATION (THE NEED FOR THIS STUDY)7
1.4.	AIM OF THE PRESENT RESEARCH
1.5.	OBJECTIVES OF THE PRESENT RESEARCH9
1.6.	SCOPE OF THE STUDY9
1.7.	RESEARCH METHODOLOGY10
1.8.	MATERIAL SELECTION11
1.9.	ORGANISATION OF THE THESIS12
CHAPTER 2	: LITERATURE REVIEW15
2.1.	INTRODUCTION
2.2.	CONSTRUCTAL THEORY15
2.3.	HEAT TRANSFER IN COOLING CHANNELS
2.3.1.	Theoretical analysis
2.3.2.	Numerical analysis20
2.4.	VASCULARISED SOLID WITH COOLING CHANNELS26
2.5.	BEJAN NUMBER

2.6.	FLOW ORIENTATION IN CONJUGATE COOLING CHA	NNELS
		29
2.7.	MATHEMATICAL OPTIMISATION ALGORITHM	
2.8.	CONCLUSION	31
CHAPTER	3: NUMERICAL MODELLING	
3.1.	INTRODUCTION	
3.2.	MODELLING PROCEDURE	
3.3.	GEOMETRY AND GRID GENERATION	35
3.4.	CONSERVATION OF MASS	35
3.5.	CONSERVATION OF MOMENTUM	
3.6.	CONSERVATION OF ENERGY	
3.7.	BOUNDARY CONDITIONS	
3.8.	NUMERICAL SOLUTION TECHNIQUE	
3.9.	CONCLUSIONS	40
CHAPTER	4: NUMERICAL OPTIMISATION	41
4.1.	INTRODUCTION	41
4.2.	NUMERICAL OPTIMISATION	41
4.3.	NON-LINEAR CONSTRAINED OPTIMISATION	42
4.4.	OPTIMISATION ALGORITHMS	44
4.4.1.	Leapfrog optimisation program for constrained problems ((LFOPC)
		45
4.4.1.1.	PENALTY FORMULATION: PHASE 0	46
4.4.1.2.	PENALTY FORMULATION: PHASE 1	47
4.4.1.3.	PENALTY FORMULATION: PHASE 2	47
4.4.2.	DYNAMIC-Q optimisation algorithm	48
4.5.	FORWARD DIFFERENCING SCHEME FOR GRADIENT	
	APPROXIMATION	51
4.6.	EFFECT OF THE NOISY FUNCTIONS OF THE FORWAR	RD
	DIFFERENCING SCHEME ON THE OPTIMISATION	
	ALGORITHM	52
4.7.	CONCLUSION	53

CHAPTER 5	: INTERSECTION OF ASYMPTOTES METHOD FOR
	CONJUGATE CHANNELS WITH INTERNAL HEAT
	GENERATION,55
5.1.	INTRODUCTION
5.2.	OVERVIEW OF THE INTERSECTION OF ASYMPTOTES
	METHOD
5.2.1.	Extreme limit 1: small channel60
5.2.2.	Extreme limit 2: large channel63
5.2.3.	Optimal channel diameter and spacing65
5.3.	SUMMARY OF THE THEORETICAL OPTIMISATION FOR ALL
	THE COOLING CHANNEL SHAPES
5.3.1.	Effect of Applied dimensionless pressure difference on the
	minimised dimensionless global thermal resistance70
5.3.2.	Effect of applied dimensionless pressure difference on optimised
	design variables71
5.4.	CONCLUSION74
CHAPTER 6	: NUMERICAL OPTIMISATION OF CONJUGATE HEAT
	TRANSFER IN COOLING CHANNELS WITH DIFFERENT
	CROSS-SECTIONAL SHAPES,76
6.1.	INTRODUCTION
6.2.	CASE STUDY 1: CYLINDRICAL AND SQUARE COOLING
	CHANNEL EMBEDDED IN HIGH-CONDUCTING SOLID77
6.2.1.	Computational model78
6.2.2.	Numerical procedure
6.2.3.	Grid analysis and code validation86
6.2.4.	Numerical results using a traditional method
6.2.5.	Mathematical formulation of the optimisation problem93
6.2.6.	Optimisation problem and design variable constraints96
6.2.7.	Mathematical statement of the optimisation problem97
6.2.8.	Parameterisation of geometry and automation of the optimisation
	process

6.2.9.	Sensitivity analysis of the selection of forward differencing	step size
6.2.9.1.	EFFECT OF APPLIED PRESSURE DIFFERENCE ON OPT	IMISED
	GEOMETRY AND MINIMISED THERMAL RESISTANCE	2 107
6.2.10.	COMPARING THE THEORETICAL METHOD AND NUM	ERICAL
	OPTIMISATION	111
6.2.11.	Optimal temperature contours	115
6.3.	CASE STUDY 2: TRIANGULAR COOLING CHANNEL	
	EMBEDDED IN A HIGH-CONDUCTING SOLID	116
6.3.1.	Computational model	116
6.3.2.	Numerical procedure	121
6.3.3.	Grid analysis and code validation	
6.3.4.	Numerical results	
6.3.5.	Mathematical formulation of the optimisation problem	
6.3.6.	Mathematical statement of the optimisation problem	
6.3.7.	Sensitivity analysis of the selection of forward differencing	step size
6.3.8.	Optimisation results	
6.3.9.	Comparison of the theoretical method and numerical optimation	isation
		134
6.3.10.	Optimal temperature contours	
6.4.	CASE STUDY 3: RECTANGULAR COOLING CHANNEL	
	EMBEDDED IN A HIGH-CONDUCTING SOLID	
6.4.1.	Computational model	139
6.4.2.	Numerical procedure	143
6.4.3.	Grid analysis and code validation	144
6.4.4.	Numerical results	144
6.4.5.	Mathematical formulation of the optimisation problem	147
6.4.6.	Mathematical statement of the optimisation problem	149
6.4.7.	Sensitivity analysis of selecting the forward differencing ste	ep size

618	Optimisation results	152
0.4.0		······152
6.4.9.	Comparison of the theoretical method and numerical optimis	ation
		156
6.4.10.	Comparison and Summarised trends of all the case studies	160
6.5.	CONCLUSION	164
CHAPTER '	7: MATHEMATICAL OPTIMISATION OF LAMINAR-	
	FORCED CONVECTION HEAT TRANSFER THROU	GH A
	VASCULARISED SOLID WITH COOLING CHANNE	L S 167
7.1.	INTRODUCTION	167
7.2.	COMPUTATIONAL MODEL	169
7.2.1.	Numerical procedure	170
7.3.	NUMERICAL PROCEDURE	175
7.4.	GRID ANALYSIS AND CODE VALIDATION	177
7.5.	NUMERICAL RESULTS	178
7.6.	MATHEMATICAL FORMULATION OF THE OPTIMISATI	ON
	PROBLEM	181
7.6.1.	Optimisation problem and design variable constraints	182
7.6.2.	Mathematical statement of the optimisation problem	182
7.6.3.	Parameterisation of geometry and automation of the optimis	ation
	process	183
7.6.4.	Sensitivity analysis of the selection of forward differencing s	step size
7.7.	OPTIMISATION RESULTS	187
7.7.1.	Effect of pressure difference on optimised geometry and mir	imised
	thermal resistance	187
7.7.2.	Effect of material properties on optimised geometry and min	imised
	thermal resistance	
7.8.	METHOD OF INTERSECTION OF ASYMPTOTES	196
7.8.1	Extreme limit 1: small channel	
782	Extreme Limit 2. Large Channel	200
7.0.2.	Ontimal Tube Diameter and Spacing	200 202
7.0.5.	Optimal Fuber Drameter and Spacing	

7.9.	CORRELATIONS OF THE THEORETICAL METHOD A	ND
	NUMERICAL OPTIMISATION	
7.10.	CONCLUSION	210
CHAPTER 8	: CONSTRUCTAL FLOW ORIENTATION IN CONJ	UGATE
	COOLING CHANNELS WITH INTERNAL HEAT	
	GENERATION	211
8.1.	INTRODUCTION	211
8.2.	COMPUTATIONAL MODEL	212
8.2.1.	DESIGN VARIABLES	214
8.3.	NUMERICAL PROCEDURE	219
8.4.	GRID ANALYSIS AND CODE VALIDATION	220
8.5.	NUMERICAL RESULTS	223
8.6.	MATHEMATICAL FORMULATION OF THE OPTIMISA	ATION
	PROBLEM	226
8.6.1.	Optimisation problem and design variable constraints	227
8.6.2.	Mathematical statement of the optimisation problem	227
8.6.3.	Sensitivity analysis of the selection of forward difference	ng step size
		228
8.7.	OPTIMISATION RESULTS	230
8.7.1.	Effect of the applied pressure difference on optimised ge	ometry and
	minimised thermal resistance	230
8.8.	CONCLUSION	234
CHAPTER 9	: CONCLUSIONS AND RECOMMENDATIONS	236
9.1.	INTRODUCTION	236
9.2.	CONCLUSIONS	238
9.3.	RECOMMENDATIONS	241
REFERENC	ES 243	
APPENDIX	X A: DYNAMIC-Q OPTIMISATION	A-1
A.1 DYNQ	9.M A-1	
A.2 FCH.M	I A-12	
A.3 GRAD	FCH.M	A-15

LIST OF FIGURES

Figure 3. 1 : Overview of the segregated solution method [199]
Figure 4.1 : Graphical representation of a maximisation problem [192]44
Figure 4. 2 : Graph depicting the effect of step size on gradient approximation [192]
Figure 5. 1 : Ducts with (a) cylindrical, (b) square (c) triangular (d) rectangular
cooling channels
Figure 5. 2 : The extreme limit of the channel's characteristic dimension is very small
and very slender, i.e. $d_h \rightarrow 0$ and $d_h \square L$
Figure 5. 3 : The extreme limit of the channel's characteristic dimension is
sufficiently large, that is $d_h \rightarrow \infty$
Figure 5. 4 : The optimal limit of the channel's characteristic dimension
Figure 5. 5 : Intersection of asymptotes method: Global thermal resistance67
Figure 5. 6 : Effect of applied dimensionless pressure difference on the dimensionless
global thermal resistance71
Figure 5. 7 : Effect of applied dimensionless pressure difference on the dimensionless
global thermal resistance72
Figure 5. 8 : Effect of dimensionless pressure difference on the dimensionless global
thermal resistance
Figure 5. 9 : Effect of dimensionless pressure difference on the dimensionless global
thermal resistance

Figure 6. 1 : The boundary conditions of the three-dimensional compu	itational
domain of the cooling channel: (a) cylinder (b) square	80
Figure 6. 2 : The discretised 3-D computational domain: (a) cylinder (b) square	e83
Figure 6. 3: Grid independent test for cylindrical configuration at fixed	pressure
difference and porosity	86

Figure 6. 4 : Grid independence test for a square configuration at fixed pressure
difference and porosity
Figure 6. 5 : Thermal resistance curves: present study and that of Ordonez [117]88
Figure 6. 6 : Effect of optimised hydraulic diameter d_h on the peak temperature90
Figure 6. 7: Effect of optimised channel spacing on the peak temperature
Figure 6.8 : Effect of optimised elemental volume v_{el} on the peak temperature92
Figure 6. 9 : Effect of an optimised total number of channels N on the peak
temperature
Figure 6. 10 : Flow chart of the numerical simulation process for cooling channels
embedded in a high conducting solid95
Figure 6. 11 : Plotting of peak temperature for different hydraulic diameter values
with step sizes of 10^{-6} and 10^{-4}
Figure 6. 12 : Plotting temperature for the different channels spacing values with a
step size of 10 ⁻⁴
Figure 6. 13 : Plot of temperature for different hydraulic diameter values with step
sizes of 10 ⁻⁶ and 10 ⁻⁴
Figure 6. 14 : Plotting temperature for different channels spacing values with a step
size of 10 ⁻⁴
Figure 6. 15 : Objective function history for cylindrical configuration
Figure 6. 16 : Comparison of the minimised temperature curves for the traditional
method and the optimised cylindrical configuration106
Figure 6. 17 : Comparison of the optimised design variable curves between the
traditional method and optimised for cylindrical configuration107
Figure 6. 18 : Effect of dimensionless pressure difference on the dimensionless global
thermal resistance
Figure 6. 19 : Effect of dimensionless pressure difference on the dimensionless
elemental volume
Figure 6. 20 : Effect of dimensionless pressure difference on optimised total number
of channels

Figure 6. 21 : Correlation of numerical and analytical solutions for the minimised
global thermal resistance112
Figure 6. 22 : Correlation between numerical and analytical solutions for the
optimised hydraulic diameter113
Figure 6. 23 : Correlation beteen numerical and analytical solutions for the optimised
spacing114
Figure 6. 24 : Temperature distributions on the cooling fluid and inner wall, and unit
structure115
Figure 6. 25 : The boundary conditions of the three-dimensional computational
domain for (a) isosceles right triangular cooling channels and (b) equilateral triangular
cooling channels119
Figure 6. 26 : The discretised 3-D computational domain for triangular cooling
channel
Figure 6. 27 : Effect of the optimised hydraulic diameter d_h on the peak
temperature
Figure 6. 28 : Effect of optimised elemental volume, v_{el} on the peak temperature 126
Figure 6. 29 : Plotting temperature for different structure width values with step sizes
of 10 ⁻⁶ and 10 ⁻⁴
Figure 6. 30 : Plotting temperature for different hydraulic diameter values with a step
size of 10 ⁻⁴
Figure 6. 31 : Effect of dimensionless pressure difference on the minimised global
thermal resistance
Figure 6. 32 : Effect of dimensionless pressure difference on the optimised hydraulic
diameter
Figure 6. 33 : Effect of dimensionless pressure difference on the optimised channel
spacing ratio
Figure 6. 34 : Correlation between the numerical and analytical solutions for the
minimised global thermal resistance
Figure 6. 35 : Correlation between the numerical and analytical solutions for the
optimised hydraulic diameter

Figure 6. 36 : Temperature distributions on the cooling fluid and inner wall, as well
as unit structure
Figure 6. 37 : The boundary conditions of the three-dimensional computational
domain of the cooling channel140
Figure 6. 38 : The discretised 3-D computational rectangualr cooling channels
domain142
Figure 6. 39 : Effect of the optimised dimensionless channel aspect ratio $AR_{\rm c}$ on the
peak temperature
Figure 6. 40 : Effect of the optimised hydraulic diameter d_h , on the peak
temperature
Figure 6. 41 : Plotting temperature for different channel height values with step sizes
of 10 ⁻⁶ and 10 ⁻⁴
Figure 6. 42: Plotting temperature for different channels width values with a step size
of 10 ⁻⁴
Figure 6. 43 : Effect of dimensionless pressure difference on the minimised
dimensionless global thermal resistance
Figure 6. 44 : Effects of dimensionless pressure difference on the optimised aspect
ratio
Figure 6. 45 : Effect of dimensionless pressure difference on the optimised hydraulic
diameter155
Figure 6. 46 : Effect of dimensionless pressure difference on the optimised channel
spacing ratio
Figure 6. 47 : Correlation of the numerical and analytical solutions for the minimised
global thermal resistance
Figure 6. 48 : Correlation of numerical and analytical solutions for the optimised
hydraulic diameter
Figure 6. 49 : Temperature distribution on (a) the unit structure and (b) the cooling
fluid and inner wall
Figure 6. 50 : Comparison of the thermal performance of the cooling channels shapes

Figure 7.1 : Three-dimensional parallel square channels across a slab with heat flux
from one side and forced flow from the opposite side170
Figure 7. 2 : The boundary conditions of the three-dimensional computational
domain of the elemental volume
Figure 7. 3 : A section of the discretised 3-D computational domain of the elemental
solid-fluid volume considered for the simulation174
Figure 7.4: Comparison of the results of the present numerical study with those of
Kim <i>et al.</i> [128] for $\phi = 0.1$ and $k_r = 10$
Figure 7.5 : Effect of the optimised dimensionless hydraulic diameter d_h on the
peak temperature at $Be = 10^8$
Figure 7. 6 : Effect of the optimised elemental volume on the peak temperature at
$Be = 10^8$
Figure 7. 7: Plotting peak temperatures for different channel width values with step
sizes of 10 ⁻⁶ and 10 ⁻⁴
Figure 7.8: Plotting peak temperatures for different channels-spacing values with a
step size of 10^{-4}
Figure 7. 9 : Effect of dimensionless pressure difference on the dimensionless global
thermal resistance
Figure 7. 10 : Effect of dimensionless pressure difference on the optimised hydraulic
diameter
Figure 7.11 : Effect of a thermal conductivity ratio, k_r , on the peak temperature at
a Bejan number of 10^8 and porosity of 0.2
Figure 7. 12 : Effect of a thermal conductivity ratio, k_r on the minimised
dimensionless global thermal resistance at $Be = 10^8$ and porosity of 0.2191
Figure 7. 13 : Effect of thermal conductivity ratio k_r on the optimised hydraudric
diameter at $Be = 10^8$ and porosity of 0.2
Figure 7. 14 : Effect of thermal conductivity ratio k_r , porosity, and dimensionless
pressure difference on the minimised dimensionless global thermal resistance193
Figure 7. 15 : Effect of thermal conductivity ratio k_r , porosity, and dimensionless
pressure difference on the optimised hydraulic diameter

Figure 7.16 : Effect of thermal conductivity ratio k_r , porosity, and dimensionless
pressure difference on the optimised channel-spacing
Figure 7. 17: Temperature distributions on (a) the elemental volume and (b) the
cooling fluid and the inner wall
Figure 7. 18 : The extreme limit of the channel's characteristic dimension is very
small and very slender, that is $d_h \rightarrow 0$ and $d_h \square L$,
Figure 7. 19 : The extreme limit of the channel's characteristic dimension is
sufficiently large, that is $d_h \to \infty$
Figure 7. 20 : The optimal limit of the channel's characteristic dimension
Figure 7. 21 : Intersection of asymptotes Method: Global thermal resistance
Figure 7. 22 : Correlation of the numerical and analytical solutions for the minimised
global thermal resistance
Figure 7. 23 : Correlation of the numerical and analytical solutions for the optimised
hydraulic diameter
Figure 7. 24 : Correlation of numerical and analytical solutions for the optimised
channel spacing

List of figures

Figure	8.	8:	Effect	of	dimensionless	pressure	difference	on	the
minimis	eddim	ensi	onless glo	bal tł	nermal resistance.			•••••	232
Figure 8	8.9:	Effe	ct of dim	ensio	nless pressure dif	ference on	the optimised	l hydr	aulic
diameter	r							•••••	233
Figure 8	3. 10 :	Eff	fect of dir	mensi	onless pressure d	ifference of	n the optimise	ed cha	annel
spacing									234

LIST OF TABLES

Table 6.1 : Grid independence study for the isosceles right triangular configuration
with $v_{el} = 0.4 \text{ mm}^3 \phi = 0.2$ and $\Delta P = 50 \text{ kPa}$
Table 6.2: Grid independence study for the equilateral triangular configuration with
$v_{el} = 0.4 \text{ mm}^3 \phi = 0.2 \text{ and } \Delta P = 50 \text{ kPa}$
Table 6.3 : Grid independence study for rectangular configuration for $w=150 \ \mu m$, h
= 1200 μm , $\phi = 0.2$, AR _C = 8 and $\Delta P = 50 \ kPa$
Table 7. 1: Grid independence study with $d_h = 400 \mu m$ and $\phi = 0.2$ for $Be = 10^8$
Table 8.1: Grid independence study for the PF-1 configuration with $v_{el} = 2.5 \text{ mm}^3$,
$\phi = 0.2$ and $\Delta P = 50 \ kPa$
Table 8.2: Grid independence study for the CF-2 configuration with $v_{el} = 2.5 \text{ mm}^3$,
$\phi = 0.2$ and $\Delta P = 50 \ kPa$
Table 8.3 : Grid independence study for the CF-3 configuration with $v_{el} = 2.5 \text{ mm}^3$
$\phi = 0.2$ and $\Delta P = 50 \ kPa$
Table 8.4 : Minimised global thermal resistance R_{min} of the three configurations,
$R_{\rm min} \times 10^3$

NOMENCLATURES

Α	Area, m^2
A	Hessian matrix of the objective function
A_c	Cross sectional area of the channel, m^2
A_s	Cross sectional area of the structure, m ²
Be	Bejan number
\boldsymbol{B}_i	Hessian matrix of the inequality function
<i>CF</i> – 2	Counter-flow row
<i>CF</i> – 3	Counter-flow channel
C_j	Hessian matrix of the equality function
C_P	Specific heat at constant pressure, J/kg K
Cyl	Cylindrical configuration
a, b, c	Diagonals of Hessian matrices A, B, C
d _h	Hydraulic diameter, m
D	Substantial derivative
E-T	Equilateral triangle
$f(\boldsymbol{x})$	Objective function
$f(\boldsymbol{x})$	Objective approximate function
g	Gravity
$g_i(\boldsymbol{x})$	<i>i</i> -th inequality constraint function
$g_i(\boldsymbol{x})$	<i>i</i> -th inequality constraint approximate function

Nomenclatures

G	Computational domain width
h	Elemental height, m
h	Enthalpy, J.kg ⁻¹
h	Heat transfer coefficient, W.m ⁻² K ⁻¹
h_c	Channel height, m
$h_j(\boldsymbol{x})$	<i>j</i> -th equality constraint function
$h_j(\boldsymbol{x})$	<i>j</i> -th equality constraint approximate function
Н	Structure height, m
i	Mesh iteration index
Ι	Identity matrix
I–T	Isosceles right triangle
k	Thermal conductivity, W/mK
<i>k</i> _r	Conductivity ratio
L	Axial length, m
Ν	Number of channels
n	Normal
Р	Pressure, kPa
P_c	Perimeter of the channel
P_o	Poiseuille number
PF-1	Parallel – flow
Pr	Prandtl number
P[k]	Successive sub-problem

$p(\boldsymbol{x})$	Penalty function
\dot{q}''	heat flux, W/m ²
q_s'''	Internal heat generation density, W/m ³
\dot{q}	Heat transfer rate, W
$ ilde{Q}$	Heat transfer, W
	<i>n</i> -dimensional real space
R	Dimensionless thermal resistance
Re	Reynolds number
R^2	Coefficient of correlation
S	Channel spacing, m
Sqr	Square configuration
Т	Temperature, °C
$ ilde{T}_{ m max}$	Dimensionless maximum temperature, $\left(\tilde{T}_{\max} = \frac{T - T_{in}}{q''' v^{2/3} / k_f}\right)$
ū	Velocity vector, m/s
V	Global structure volume, m ³
V _c	Channel volume, m ³
^v el	Elemental volume, m ³
W	Structure width, m
w	Elemental width, m
x, y, z	Cartesian coordinates, m
<i>x</i> *	Design variables

Design points
Design points

m,n,l,k,r	Positive integer
-----------	------------------

Greek symbols

α	Thermal diffusivity, m^2/s
β	Penalty function parameter for equality constraint
μ	Viscosity, kg/m.s
V	Kinematics viscosity, m ² /s
ρ	Density, kg/m ³
∂	Differential or Derivative
∞	Far extreme end, free stream
ϕ	Porosity
Δ	Difference
∇	Differential operator or gradient function
τ	Shear stress, Pa
γ	Convergence criterion
γ	Penalty function parameter for objective constraint
δ	Kronecker delta function
δ	Move limit
З	Value tolerance
λ	Vexing coefficient
ξ	Characteristic length scale

Nomenclatures

Φ	Dissipation function
ρ	Penalty function parameter
μ	Large positive value
Ω	Dimensionless temperature difference

Subscripts

	Dimensionless
in	Inlet
l	Large
opt	Optimum
S	Solid
sm	Small
r	Ratio
0	Initial
1	Phase 1
1,2,3,4	Design variable number
ave	Average
best	Best
С	Channel
f	Fluid
f	Function
h	Hydraulic

Nomenclatures

inlet	Inlet
L	Length
max	Maximum
min	Minimum
norm	Normalised
i,j,k,l,n	Positive integers
opt	Optimum
solid	Solid
S	Surface
W	Wall
x	Step size
∞	Free stream

Superscripts

Т	Transpose
k	Positive integer

Publications in Journals and conference proceedings

PUBLICATIONS IN JOURNALS, BOOKS AND CONFERENCE PROCEEDINGS

The following articles, book chapter and conference papers were produced during this research.

- O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Mathematical optimisation of laminar forced convection heat transfer through a vascularised solid with square channels", *International Journal of Heat and Mass Transfer*, Vol. 55, pp. 2402-2411, 2012. (Published)
- 2. **O.T. Olakoyejo**, T. Bello-Ochende and J.P Meyer; "Constructal conjugate cooling channels with internal heat generation", *International Journal of Heat and Mass Transfer*, Vol. 55, pp. 4385-4396, 2012. (**Published**)
- T. Bello-Ochende, O.T. Olakoyejo and J.P Meyer, Chapter 11, "Constructal Design of Rectangular Conjugate Channels" Published in the book, *"Constructal Law and the Unifying Principle of Design"*, L.A.O Rocha, S. Lorente and A. Bejan, eds., pp. 177-194, Springer Publishers, New York, 2012. (Published)
- 4. J.P Meyer, **O.T. Olakoyejo**, and T. Bello-Ochende; "Constructal optimisation of conjugate triangular cooling channels with internal heat generation",

Publications in Journals and conference proceedings

International communication of Heat and Mass Transfer, Vol. 39, pp. 1093 - 1100, 2012. (Published).

- T. Bello-Ochende, O.T. Olakoyejo, and J.P Meyer; "Constructal flow orientation in conjugate cooling channels with internal heat generation", *International Journal of Heat and Mass Transfer*, Vol. 57, pp. 241 - 249, 2013. (Published).
- O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Optimisation of circular cooling channels with internal heat generation", *Proceedings of the 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics*, Antalya, Turkey, pp. 1345-1350, 19-21 July 2010. (Presented)
- O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Geometric Optimisation of Forced Convection In Cooling Channels With Internal Heat Generation *Proceedings of the 14th International Heat Transfer Conference*, Washington D.C, USA, pp. 1345-1350, 8 -13 August 2010. (Presented)
- O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Geometric optimisation of forced convection in a vascularised material", *Proceedings of the 8th International Conference on Heat Transfer, Fluid Mechacs and Thermodynamics*, Pointe Aux Piments, Mauritius, pp. 38 - 43, 11-13 July, 2011 (Presented and awarded best paper of the session).

- O.T. Olakoyejo, T. Bello-Ochende and J.P. Meyer, "Constructal optimisation of rectangular conjugate cooling channels for minimum thermal resistance", *Proceedings of the Constructal Law Conference*, 01-02 December, 2011, Porto Alegre, Universidade Federal do Rio Grande do Sul, Brazil. (Presented)
- O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Optimisation of conjugate triangular cooling channels with internal heat generation", 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16 -18 July, 2012. (Presented)
- 11. O.T. Olakoyejo, T. Bello-Ochende and J.P Meyer, "Flow orientation in conjugate cooling channels with internal heat generation", 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, July 16 18, 2012. (Presented).