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Synopsis 

The effect of Laves phase (Fe2Nb) formation on the Charpy impact toughness of the 

ferritic stainless steel type AISI 441 was investigated.  The steel exhibits good 

toughness after solution treatment at 850 °C, but above and below this treatment 

temperature the impact toughness decreases sharply.  With heat treatment below 850 

°C the presence of the Laves phase on grain boundaries and dislocations plays a 

significant role in embrittlement of the steel whereas above that temperature, an 

increase in the grain size from grain growth plays a major role in the impact 

embrittlement of this alloy.  The toughness results agree with the phase equilibrium 

calculations made using Thermo–Calc® whereby it was observed that a decrease in the 

Laves phase volume fraction with increasing temperature corresponds to an increase in 

the impact toughness of the steel.  Annealing above 900 °C where no Laves phase 

exists, grain growth is found which similarly has a very negative influence on the steel’s 

impact properties.  Where both a large grain size as well as Laves phase is present, it 

appears that the grain size may be the dominant embrittlement mechanism.  Both the 

Laves phase and grain growth, therefore, have a significant influence on the impact 

properties of the steel, while the Laves phase’s precipitation behaviour has also been 

investigated with reference to the plant’s manufacturing process, particularly the cooling 

rate after a solution treatment. 

The microstructural analysis of the grain size shows that there is a steady increase in 

grain size up to about 950 °C, but between 950 °C and 1000 °C there is a sudden and 

rapid 60 % increase in the grain size.  The TEM analysis of the sample that was 

annealed at 900 °C shows that the Laves phase had already completely dissolved and 

cannot, therefore, be responsible for “unpinning of grain boundaries” at temperatures of 

900 °C and higher where this “sudden” increase in grain size was found.  The most 
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plausible explanation appears to be one of Nb solute drag that loses its effectiveness 

within this temperature range, but this probably requires some further study to fully prove 

this effect. 

During isothermal annealing within the temperature range of 600 to 850 °C, the time – 

temperature – precipitation (TTP) diagram for the Laves phase as determined from the 

transformation kinetic curves, shows two classical C noses on the transformation curves.  

The first one occurring at the higher temperatures of about 750 to 825 °C and the 

second one at much lower temperatures, estimated to possibly be in the range of about 

650 to 675 °C.  The transmission electron microscopy (TEM) analyses show that there 

are two independent nucleation mechanisms that are occurring within these two 

temperature ranges.  At lower temperatures of about 600 °C, the pertaining nucleation 

mechanism is on dislocations and as the temperature is increased to above 750 °C, 

grain boundary nucleation becomes more dominant.  Also, the morphology of the 

particles and the misorientation with the matrix changes with temperature.  At lower 

temperatures the particles are more needle-like in shape, but as the temperature is 

increased the shape becomes more spheroidal. 

The effect of the steel’s composition on the Laves phase transformation kinetics shows 

that by lowering the Nb content in these type 441 stainless steels, had no significance 

effect on the kinetics on precipitation of the Laves phase.  However, a Mo addition and a 

larger grain size of the steel, retard the formation of the Laves phase, although the 

optimum values of both parameters still need further quantification. 

The calculation made for the transformation kinetics of the Laves phase, using the 

number density of nucleation sites  No  and the interfacial energy  γ  as the  fitting 

parameters in this work, demonstrated a reasonable agreement with experimental 

results. 

Keywords: Laves phase (Fe2Nb), titanium niobium carbonitrides (Ti,Nb)(C,N), impact 

embrittlement, grain size, ductile-to brittle transition temperature (DBTT), Laves phase 

transformation kinetics, Cottrell approach to grain size, Smith model of brittle grain 

boundary phases, Thermo- Calc®.  
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Steel B. 

Figure 7.3.  Optical micrographs of the specimens from steel B in the (a) as received plant hot 
rolled condition and (b) to (d) after being annealed at different temperatures from 850 to 
950°C for 30 minutes followed by water quenching. 

Figure 7.4.  Effect of annealing temperature on the room temperature Charpy impact energy of 
the laboratory hot rolled materials.  The samples were annealed for 30 minutes at 
different temperatures and then water quenched:  Steel C (Nb-Ti alloy); Steel D (Nb-Ti-
Mo alloy) and Steel E  (Type 444 alloy). 

Figure 7.5.  The microstructure of the laboratory hot-rolled experimental steels, showing different 
grain size distributions if compared to those of the commercial Steels A and B: (a) Steel 
C; (c) Steel D; and (d) Steel E. 

Figure  8.1.  The Laves phase volume fraction – temperature/time curves during isothermal 
annealing in the temperature range 600 °C to 850 °C. 

Figure  8.2.  The Laves phase transformation curves according to the Johnson–Mehl–Avrami–
Kolmogorov (JMAK) type of equation. 

Figure  8.3  A time – temperature – precipitation (TTP) diagram for the Laves phase formation in 
Steel A. 

Figure  8.4.  Effect of the grain size on the Laves phase kinetics transformation in Steel A.  The 
specimens were annealed first at 850 and 950°C respectively to set different grain sizes 
and were then annealed both at 750 °C for different annealing periods. 

Figure  8.5.  Effect of the steel’s composition on the Laves phase transformation kinetics.  The 
specimens from these steels were all annealed at 750 °C for different annealing periods. 

Figure  8.6.  TEM micrographs of the specimen of Steel A annealed at 600 °C; (a) a low 
magnification micrograph shows coarse grain boundary Laves phase precipitates, and (b) 
the same area but at a high magnification, showing Laves phase precipitates nucleated 
on subgrain boundaries and dislocations. 

Figure  8.7.  TEM micrographs of the specimen of Steel A annealed at 750 °C; (a) a low 
magnification micrograph showing grain and subgrain boundary Laves phase 
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precipitates, and (b) at a high magnification, showing Laves phase precipitates nucleated 
on the subgrain boundaries. 

Figure  8.8.  TEM micrographs of the specimen annealed at 750 °C; (a) at a low magnification, 
showing grain boundary Laves phase precipitates, and (b) at a higher magnification 
showing Laves phase precipitates nucleated on the subgrain boundaries. 

Figure  8.9.  Transmission electron micrographs and corresponding selected area diffraction 
(SAD) pattern from Steel A annealed at 600 °C. 

Figure  8.10.  Transmission electron micrographs and corresponding selected area diffraction 
(SAD) pattern from Steel A annealed at 750 °C. 

Figure  8.11.  Transmission electron micrographs and corresponding selected area diffraction 
(SAD) pattern from Steel A annealed at 800°C. 

Figure  9.1.  TEM micrograph shows the presence of the M6C or (Fe3Nb3C) type carbide in the 
subgrain structure from Steel A.  Note that the specimen was annealed at 700 °C for 30 
minutes and other fine particles were determined to be Fe2Nb Laves phase particles. 

Figure  9.2.  Comparison between experimental and Thermo-Calc® calculated weight fractions of 
Laves phase in Steel A.  The points and dotted line represent the experimental results 
while the full line is as predicted by Thermo-Calc® for this steel. 

Figure  9.3.  The effect of grain size on the yield strength of Steel A. 

Figure  9.4.  A room temperature tensile test of the specimen of Steel A that was annealed at 850 
°C for 30 minutes and then water quenched. 

Figure  9.5.  High resolution field emission scanning microscope image showing the cracking of 
(Ti,Nb)(C,N) particles after impact testing the specimen at room temperature.  This 
specimen of Steel A was annealed at 850 °C followed by quenching in water. 

Figure  9.6.  The plot of transition temperature versus  {ln d1/2}  of 441 ferritic stainless steel, Steel 
A. 

Figure  9.7.  Effect of annealing temperature above 850 °C on the grain size for the AISI type 441 
stainless steel, Steel A. 

Figure  9.8.  TEM micrographs of the microstructures of the specimens from Steel A that were 
annealed at (a) 850 °C and (b) 900 °C.  Note that with the specimen that was annealed at 
900 °C, there were no grain boundary Laves phase precipitates. 

Figure  10.1.  The relationship between  αβ
Nbxln

 
  and  T-1  for AISI type 441 ferritic stainless steel. 

Figure  10.2.  Comparison between the experimental data and calculated isothermal 
transformation curves for the Laves phase’s precipitation at 700 °C in the AISI type 441 
ferritic stainless, with No = 4.3 x 1014 m-3 and  γ = 0.331 Jm-2. 

Figure  10.3.  Comparison between the experimental data and calculated isothermal 
transformation curves for the Laves phase precipitation at 800 °C in the AISI type 441 
ferritic stainless, with No = 2.9 x 1013 m-3 and  γ = 0.331 Jm-2. 
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NOMENCLATURE  

 

α3 is the three-dimensional parabolic 
rate constant 

β* atomic impingement rate 

δ volume misfit of the precipitate in the 
matrix 

δdisl effective diameter of dislocation 

δgb width of the grain boundary 

γ interfacial surface energy per unit 
area associated with the interface of 
the two phases 

γf  effective surface energy of ferrite 

γs surface energy of the exposed crack 
surface 

γT true surface energy 

σi  friction stress   

σy yield strength   

ν Poisson’s ratio  

να lattice spacing of the  matrix 

νβ lattice spacing of the precipitate 
phase 

νb mobility rate 

τ incubation time 

τe effective shear stress 

τi lattice friction shear stress  

τN shear stress for crack nucleation 

τy yield shear stress  

υβ  molar volume of the phase  β, 

τs shear stress   

Φ extent of the reaction parameter   

θ   contact angle  

a mean atomic lattice distance of the 
matrix phase 

b Burgers vector 

c average concentration of the solute 
in the matrix alone 

cα equilibrium solute composition within 
the matrix 

αβ
r

c  solute concentration in the  α  matrix 

that is in equilibrium with a spherical 
particle of  β  and  r  is the radius of 
curvature 

cαβ equilibrium solute concentration in 
the  α  matrix at which  r→∞   

cβα  corresponding concentration in the  β  
which is in equilibrium with  α; 

ci  mole fraction of species  i  

cj  mole fraction of species  j 

d grain size 

D diffusion coefficient of the rate 
controlling solute atoms in the matrix 

Ddisl diffusion coefficient down a 
dislocation 

Dgb diffusion coefficient along the grain 
boundary 

E Young’s elastic modulus 

fGB fraction of potential grain boundary 
sites filled by solute 

Gm shear modulus of the matrix 

Gr  growth rate 

∆G molar free energy change of the 
precipitate reaction 

∆Gv Gibbs chemical free energy released 
per unit volume of new phase 

∆Gε misfit strain energy per unit volume 

∆G* known as the activation energy 

G° Gibbs energy due to the mechanical 
mixing of the constituents of the 
phase 

idGmix ideal mixing contribution 
xsGmix excess Gibbs energy of mix (the 

non-ideal mixing contribution) 

∆Gε  strain energy   

SER
mm HG − Gibbs energy relative to a standard 

element reference state (SER)  

h Planck constants 

SER
mH  enthalpy of the element in its stable 

state  
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k Boltzman constant 

s
yk  Hall – Petch constant for shear 

Lgb length of grain boundary per unit 
volume 

k
jiL ,  binary interaction parameter 

between species  i  and  j 

M0 intrinsic grain boundary mobility in 
pure material 

MT overall mobility due to intrinsic plus 
solute drag 

MB mobility in the presence of solute 
drag elements 

n number of dislocations in the pileup 

N&  nucleation rate 

N′  number of dislocations that meet 
each particle 

N* concentration of critical – sized 
nuclei 

Nc density of the grain boundary 
corners 

N0  initial number density of nucleation 
sites per unit volume 

pd driving force for the grain boundary 
mobility 

∆pppt retarding force exercised by particles 
on the grain boundary 

Q activation energy for diffusion 

r* critical radius 

r0 initial average particle radius 

R gas constant 

Sgb surface area of grain boundary per 
unit volume 

t time 

T absolute temperature 

V’ instantaneous volume fractions of 
alloy precipitates 

Veq equilibrium volume fractions of alloy 
precipitates 

Vβ instantaneous fraction 

Vβα maximum fraction of a given phase 

Viα maximum volume fraction of the  ith  
phase 

Xs atom fraction of solute in the bulk 
metal 

z coordinate normal to the interface 
with the value  z*  
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