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Cross-eye jamming is an Electronic Attack (EA) technique that induces an angular error
in the radar being jammed. The main benefit of cross-eye jamming is that it is effective
against monopulse tracking radars, which are largely immune to other forms of jamming.
The objective of this research is to gain a complete understanding of cross-eye jamming
so that systems that might be developed in future can be properly specified.

The main contribution of this work is a comprehensive mathematical and experimen-
tal study of retrodirective cross-eye jamming. The mathematical analysis considers all
aspects of an isolated, single-loop, retrodirective cross-eye jamming engagement, thereby
avoiding the approximations inherent in other cross-eye jamming analyses. Laboratory
experiments that accurately represent reality by using the radar for both transmission
and reception, and simulating a true retrodirective cross-eye jammer were performed
to validate the theoretical analysis. Lastly, the relationship between the angular error
induced in the radar being jammed and the matching required from a cross-eye jammer
system is explored.

The most important conclusion of this work is that the traditional analyses of cross-
eye jamming are inaccurate for the conditions under which cross-eye jammers operate.
These inaccuracies mean that the traditional analyses are overly conservative, partic-
ularly at short ranges and for high cross-eye gains, suggesting that practical cross-eye
jammers can be realised more easily than is generally believed.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING i

 
 
 



ACKNOWLEDGEMENTS

I would like to acknowledge the support of the following organisations:

The Armaments Corporation of South Africa (Armscor): For supporting this
research and granting permission to publish the results.

The Council for Scientific and Industrial Research (CSIR): For supporting my
studies.

I would further like to sincerely thank the following people for their help and support,
without which this thesis would not have been possible:

My beloved wife, Helen: My inspiration and strength. Without your support I could
never have completed anything as substantial and challenging as this thesis.

Wimpie Odendaal and Johan Joubert: For patience during my registration saga
and valuable guidance throughout my studies.

Christo Cloete: For asking me to “take a quick look” at cross-eye jamming three years
ago.

My family: For never giving up on me, no matter what.

My Lord Jesus Christ: Without whom I would not even be alive, let alone able to
complete this work.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING iii

 
 
 



TABLE OF CONTENTS

1 Introduction 1
1.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Electronic Warfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Tracking Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Glint Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Glint Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Limitations of Glint Analyses . . . . . . . . . . . . . . . . . . . . 18

2.5 Cross-Eye Jammer Implementation . . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Non-Retrodirective Implementation . . . . . . . . . . . . . . . . . 20
2.5.2 Retrodirective Implementation . . . . . . . . . . . . . . . . . . . . 22

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Monopulse Model 26
3.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Phase-Comparison Case . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Mathematical Analysis 37
4.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Extended Analysis of Cross-Eye Jamming . . . . . . . . . . . . . 37
4.2.2 Equivalence to Other Results . . . . . . . . . . . . . . . . . . . . 43

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING v

 
 
 



5 Experiments 58
5.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Overall Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Radar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Jammer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Time Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Determining System Parameters . . . . . . . . . . . . . . . . . . . 70
5.3.3 Measurement System Compensation . . . . . . . . . . . . . . . . 74

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Tolerance Analysis 84
6.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Mathematical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Phase-Front Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Extended Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusions and Future Research 96
7.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

References 100

A Terminology 106

B Approximations 109

C Derivatives of Monopulse Pattern 112

vi DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

 
 
 



CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

This chapter provides a brief introduction to the current study. A short introduction
to cross-eye jamming and the motivation for the current study are given in Section 1.2.
The scope and objectives of this study are presented in Section 1.3, and the original
contributions made during the pursuit of these objectives are summarised in Section 1.4.
The chapter concludes with an overview of the layout of the thesis in Section 1.5.

1.2 Background and Motivation

Cross-eye jamming is an Electronic Attack (EA) technique that seeks to deceive a radar
as to the true position of a target. This capability is typically required during the final
stages of a missile engagement when a platform is attempting to protect itself against
incoming radar-guided missiles. While the concept of cross-eye jamming has existed
since the 1950s, it is only recently that practical systems have been developed.

Monopulse tracking radars represent a significant threat to modern military systems
because they are largely immune to traditional jamming techniques. The proliferation of
missiles with monopulse seekers has made the development of countermeasures against
monopulse radars essential. Cross-eye jamming is one of the few jamming techniques
that is effective against monopulse radars.

The main drawback of cross-eye jamming is that it is very difficult to obtain the
amplitude and phase matching required for a cross-eye jammer to work in practice. The
advent of operational Digital Radio-Frequency Memory (DRFM) jammers has meant
that it is now possible to achieve the required matching under operational conditions.

The principle behind cross-eye jamming is extremely simple and was developed based
on early glint research. Glint affects all radars and is a naturally-occurring phenomenon
that only depends on the characteristics of a radar target. However, the analyses of
glint used to motivate cross-eye jamming are based on approximations that are invalid
for the conditions under which cross-eye jammers operate.

No comprehensive, rigorous analysis of cross-eye jamming has ever been published,
so it is likely that the principles behind cross-eye jamming are incompletely understood.
The main reasons for this lack of a comprehensive analysis are the mathematical difficul-
ties associated with analysing glint, the challenges related to implementing a practical
cross-eye jammer, and the fact that glint analyses were believed to give an adequate
representation of cross-eye jamming.

Experimental results considering cross-eye jamming are almost unheard of in the
open literature. This is because such experiments will generally involve military radars,

 
 
 



CHAPTER 1 INTRODUCTION

so the results are classified. The measurements that do exist in the open literature are
not representative of a cross-eye jamming scenario.

There is thus a need for a comprehensive, rigorous mathematical analysis of ret-
rodirective cross-eye jamming supported by measurements that adequately simulate a
cross-eye jamming scenario. This study seeks to address this requirement.

1.3 Scope and Objectives

This work seeks to gain an understanding of cross-eye jamming as a prelude to im-
plementing practical systems.1 This study makes no attempt to address all aspects
of cross-eye jamming, and the scope of this study is outlined in Section 1.3.1. The
objectives of this study are summarised in Section 1.3.2.

1.3.1 Scope

A complete consideration of all aspects of cross-eye jamming will not be undertaken as
this would excessively expand the scope of this study. The following limitations will
thus be imposed on this work:

Retrodirective implementation: A number of possible cross-eye jammer implemen-
tations exist, but the most promising and widely-considered is the retrodirective
implementation.

Isolated case: The current study will be limited to the case where the return from a
cross-eye jammer is isolated and does not compete with any other returns. This
could occur when some kind of pull off is initiated before commencing cross-eye
jamming. Analyses of the case where the jammer return competes with the skin
return of the platform mounting the jammer are extremely rare in the literature,
and either require a number of limiting assumptions or are extremely complex.

Single jammer loop: A single retrodirective cross-eye jammer loop allows one signal
to pass through the jammer in each direction. This implies that there is only one
receiving antenna element and one transmitting antenna element (possibly the
same physical antenna) on each side of the jammer, and that the circuitry com-
prising the jammer can only process two signals, one in each direction through the
jammer. While systems comprising a number of jammer loops have been consid-
ered in the literature, the overwhelming majority of cross-eye jamming literature
only considers the single-loop case.

While each of these restrictions limits the applicability of this work, the limitations
are clearly understood from the outset and follow the majority of the cross-eye litera-
ture. The possibility of removing these restrictions is considered when future work is
contemplated in Section 7.2 .

1Note that the construction of a practical cross-eye jammer will not be undertaken as part of this
work because military secrecy issues would prohibit publication of the results.
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CHAPTER 1 INTRODUCTION

1.3.2 Objectives

As stated previously, the main objective of this study is to gain an understanding of
cross-eye jamming as a prelude to developing practical systems. This overall objective
is broken down into the following detailed objectives:

Mathematical analysis: The current analyses of cross-eye jamming are borrowed
from the analysis of glint and suffer from a number of limitations.

The first important limitation is that the mathematics has been simplified by
ignoring the averaging due to the finite size of the radar antenna aperture. This
leads to inaccurate results when the relative phase shift of the two directions
through a cross-eye jammer approaches 180◦. This is a particularly large problem
as cross-eye jammers are designed for precisely this condition.

The other important limitation of existing cross-eye jammer analyses is that they
ignore the retrodirective implementation of cross-eye jammers. This ommission
is problematic because it is widely acknowledged that the tolerances placed on a
cross-eye jammer system are impossible to achieve in practical systems unless the
retrodirective implementation is used.

This study thus seeks to develop a comprehensive, rigorous mathematical analysis
of retrodirective cross-eye jamming. It is anticipated that such an analysis will
lead to new insights into cross-eye jamming.

Experimental validation: Very few references to experiments involving cross-eye jam-
ming are available in the literature. Those references that do exist are generally
vague because they deal with systems of military importance. The remaining ex-
perimental results do not properly consider the retrodirective implementation of
a cross-eye jammer, and usually use the jammer for transmission and the radar
only as a receiver.

This study aims to perform experiments that properly simulate reality. The main
objectives of these experiments are to use the radar for both transmission and
reception and to consider a retrodirective cross-eye jammer.

1.4 Original Contributions

The original contributions of this work are summarised below.

Generic monopulse antenna model: A generalised phase-comparison monopulse
antenna is an accurate model of any monopulse antenna near boresight. The only
restriction is that the monopulse antenna being modelled should be symmetrical.
The main implication of this result for the current study is that the mathemati-
cal results derived are applicable to any monopulse radar, but this result is likely
to find wider application in the modelling of monopulse antennas in other con-
texts. The only comparable result in the literature uses linear fits to the sum- and
difference-channel antenna patterns on boresight, but this linear model is only
accurate over a very small range of angles.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 3
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Sum-channel error: A retrodirective cross-eye jammer does not induce an angular
error in the sum channel of a monopulse radar. Given that a monopulse radar
uses the sum-channel antenna beam for both transmission and reception, this
result applies to any radar that uses the same antenna beam for both transmission
and reception (e.g. some types of conical-scan radar). This significant result
shows that the assumption that retrodirective cross-eye jamming affects all radars
because glint affects all radars is incorrect.

Phase-front error estimates: The error predicted by the conventional phase-front
analysis of cross-eye jamming is shown to be accurate at long ranges, but to
underestimate the angular error induced in the radar being jammed at shorter
ranges. This result means that retrodirective cross-eye jamming is more effective
than universally assumed based on conventional glint analyses.

Existence of settling angle: The settling angle (the angle where the monopulse error
has a stable zero) does not exist under certain circumstances. This result suggests
that a suitably designed retrodirective cross-eye jammer can be used to break a
monopulse radar’s lock on a target. The widely-held view that a retrodirective
cross-eye jammer is only able to induce an angular error smaller than a radar’s
antenna beamwidth is thus shown to be incorrect.

Sensitivity to tolerances: A retrodirective cross-eye jammer will achieve a specified
minimum angular error with optimum tolerance to system parameter variations
when the two directions through the jammer are designed for a surprisingly large
amplitude mismatch and a relative phase shift of 180◦. While this result has been
known for some time, a full qualitative and quantitative analysis, and a closed-form
solution for the optimum design point are presented here.

Four papers summarising the work described in this thesis have been submitted for
publication [1–4].

1.5 Overview of the Thesis

The content of the chapters in this thesis are outlined below.

Chapter 1: This chapter provides a brief introduction to cross-eye jamming, emphasis-
ing why cross-eye jamming is important and highlighting the limitations of existing
work as motivations for this study.

Chapter 2: A more detailed background study of cross-eye jamming is presented. An
introduction to monopulse radar is given to show why monopulse radars are chal-
lenging to jam. An overview of the analyses of glint that are reused for cross-eye
jamming is presented with the emphasis on the limitations of these analyses when
applied to cross-eye jamming. A number of possible implementations of cross-eye
jamming are critically evaluated to demonstrate the importance of the retrodirec-
tive implementation.
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Chapter 3: The use of a generalised phase-comparison monopulse antenna as an accu-
rate approximation to any monopulse antenna is developed. The use of this result
is demonstrated by modelling the measured patterns of two monopulse antennas.
This chapter forms the basis of a submitted journal paper [1].

Chapter 4: An extended analysis of the effect of an isolated, single-loop, retrodirective
cross-eye jammer on a monopulse radar is described. A number of significant
conclusions that arise from this analysis are considered, and the disagreement
between this extended analysis and the phase-front analysis of cross-eye jamming
is investigated. This chapter forms the basis of a published journal paper [2].

Chapter 5: Experiments conducted to validate the theoretical analysis of cross-eye
jamming are described and results are presented. Comparisons between the mea-
surements and the phase-front and extended analyses are presented. The results
validate the conclusions reached in Chapter 4. This chapter forms the basis of a
submitted journal paper [3].

Chapter 6: The tolerance requirements on retrodirective cross-eye jammer systems are
evaluated. Both the phase-front theory and the theory developed in Chapter 4
are considered, and qualitative and quantitative comparisons are provided. This
chapter forms the basis of a submitted journal paper [4].

Chapter 7: A brief conclusion and some suggestions for future research are given.

Three appendices are provided to summarise important information, and an overview
of their content is given below.

Appendix A: The terminology used in this thesis is summarised. Definitions of new
terms and the specific meanings of common terms like “antenna” are provided.

Appendix B: The accuracy of approximations used in the analysis of cross-eye jam-
ming is evaluated. Approximations to the range and angular separation of the
jammer antenna elements are considered.

Appendix C: The fact that the even-order derivatives of a general monopulse error are
all zero is proved. This result is used in Chapter 3 to derive a general monopulse
antenna model.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 5

 
 
 



CHAPTER 2

BACKGROUND

2.1 Introductory Remarks

The main goal of this chapter is to provide sufficient background information to motivate
the need for this work. The field of Electronic Warfare (EW) is briefly described in
Section 2.2 with the aim of placing cross-eye jamming in context. An introduction
to tracking radars is provided in Section 2.3 to introduce monopulse radars and their
inherent resistance to many types of jamming. Cross-eye jamming is based on artificially
recreating the worst-case glint angular error, so the deterministic analyses of glint are
summarised in Section 2.4, where the limitations of these analyses when applied to cross-
eye jamming are highlighted. The importance of the retrodirective implementation
of cross-eye jamming is motivated in Section 2.5 by comparing a number of possible
implementations of cross-eye jamming. The main points considered in this chapter are
summarised in Section 2.6.

2.2 Electronic Warfare

The Electromagnetic (EM) spectrum has considerable potential for application in mil-
itary environments to the point that there are even proposals for considering the EM
spectrum as a warfighting domain on par with land, sea, air and space [5]. EW is the
term given to the techniques used to ensure that maximum benefit is obtained from the
EM spectrum.

EW is normally divided into three broad categories which are summarised below
[6–11].

Electronic Support (ES): ES is that portion of EW that is devoted to extracting
as much information as possible from the EM spectrum. ES aims to determine
the presence, parameters (including frequency, modulation, position, etc.) and
identity of emitters, and to determine the intent of their users. Signal detection,
emitter identification, Direction-Finding (DF) and geolocation are examples of
technologies that fall under ES. ES was historically known as Electronic warfare
Support Measures (ESM).

Electronic Attack (EA): EA aims to deny, or at least disrupt, an adversary’s use of
the EM spectrum. This can range from simply transmitting high-power signals
that overwhelm all an adversary’s receivers to more complex deception techniques
like cross-eye jamming. EA includes technologies such as jamming and deception
techniques. EA was historically know as Electronic Countermeasures (ECM).
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Electronic Protection (EP): The aim of EP is to protect friendly forces’ use of the
EM spectrum in the presence of intentional (usually jamming by an adversary)
and unintentional (usually electromagnetic compatability issues) interference. Is-
sues like low-sidelobe antennas, wideband systems, and even frequency planning
fall under EP. EP was historically know as Electronic Counter-Countermeasures
(ECCM)

Historically, EA techniques sought to exploit some vulnerability of the implemen-
tation of a system, but this approach has become increasingly difficult with the wide
proliferation of both military and civilian systems that have few inherent vulnerabilities.
Examples of this trend include low-sidelobe antennas and wideband systems including
spread-spectrum communications. The need for advanced EA techniques is thus in-
creasing.

Cross-eye jamming is a technique that aims to deceive a missile’s radar seeker as to
the true position of a target [6–24]. The main application of cross-eye jamming is as
a self-protection technique during the final stages of an engagement when radar-guided
missiles are approaching a platform that must be protected.1 Other possibilities that
can achieve the same effect are briefly considered below.

Offboard decoys: This very general heading includes passive decoys like chaff, and
active systems like towed decoys and expendable decoys. Chaff is a cloud of small
dipoles designed to give a large radar return that, in this context, is used to draw a
radar off its target [6,9–11,22,25]. Chaff is a relatively simple countermeasure, and
modern radar seekers are able to distinguish chaff from the true target. Towed and
expendable decoys are based on the same concept as chaff, but use more advanced
decoys that are much more difficult to distinguish from the true target [18,22].

Despite their current popularity, offboard decoys suffer from a number of disad-
vantages including high life-cycle cost when expendable elements are used, limited
availability when only a finite number of decoys can be carried, significant delay
while the decoy moves away from the host platform, and a limited ability to cater
for multiple targets due to geometric considerations.

Cross-polarisation jamming: This jamming technique returns signals to a radar us-
ing the opposite polarisation to the radar’s intended polarisation, and works on the
principle that an antenna’s cross-polarisation pattern tends to differ significantly
from its co-polarisation pattern [6, 8–11,18,22,25].

This is an example of a jamming technique that takes advantage of deficiencies in
the design and realisation of radar systems, and as such, is becoming less useful as
modern radar antennas are designed to have low cross-polarisation characteristics.
In addition, the depolarising effect of multipath limits the potential applicability
of this technique.

Terrain bounce: This technique attempts to create a strong target on the surface
by transmitting a strong signal towards the surface that is then reflected to the
missile [6, 9–11,22].

1Cross-eye jamming is not considered EP despite the fact that it is used for self protection because
it attacks a missile’s radar seeker.

8 DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
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While this technique is feasible, a very high jammer signal power is required to
ensure that the target created on the surface is strong enough to compete with a
platform’s skin return. The jammer antenna must also have a narrow elevation
antenna beamwidth and low sidelobes to ensure that this technique does not simply
act as a beacon by transmitting a strong signal towards the missile.

Co-operative jamming: A number of platforms that cannot be resolved by a radar co-
operate to deceive a radar as to their true number and positions in this technique
[6, 9–11,22,25]. For example, versions of cross-eye jamming based on transceivers
on multiple platforms [26,27] can be considered co-operative jamming.

The major drawback of co-operative jamming is that the radar being jammed
must not be able to resolve the platforms, but modern radars have high-resolution
capabilities in range, Doppler, azimuth and elevation making this condition diffi-
cult to achieve. Additionally, correctly synchronising transceivers on a number of
platforms is challenging.

Note that techniques that do not cause an angular error are not suitable for self-
protection against radar-guided missiles because, for example, a missile that has been
deceived as to the true range to its target will still hit the target on its way to the
apparent target position.

Cross-eye jamming is able to overcome the disadvantages of the techniques listed
above, and has the following advantages [18]:

• cross-eye jamming is based on glint which affects all radars, so cross-eye jamming
will affect all radars,2

• a cross-eye jammer is always available because it does not utilise expendable ele-
ments,
• the nature of a retrodirective cross-eye jammer means that it will transmit a

jamming signal in the direction of any incoming signal, so multiple threats can be
dealt with simultaneously, and
• a cross-eye jammer can be constructed from two jammer systems that are con-

nected together, so these jammers are available for other applications when cross-
eye jamming is not required.

However, cross-eye jamming does suffer from the following drawbacks [18]:

• a cross-eye jammer’s signals tend to cancel at the radar being jammed so high-gain,
high-power systems are required, and
• achieving the system matching required to implement a successful cross-eye jam-

mer is challenging, particularly under operational conditions.

Despite these drawbacks, a number of authors have recently described the successful
demonstration of cross-eye jammers against tracking radars [18, 19,21,28,29].

2This widely-held belief is refuted later in this thesis where it is shown that retrodirective cross-eye
jammers have no effect on radars that use the same antenna beam for both transmission and reception
including some conical-scan radars. However, radars with this characteristic are unlikely to be employed
as seekers because, as mentioned in Section 2.3, they are relatively simple to jam, so cross-eye jamming
will be effective against all radars likely to be encountered.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 9
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2.3 Tracking Radar

A monopulse radar is a type of tracking radar that is able to determine the direction to a
target with a single measurement (or pulse – hence the name) [13,15,17,22,30,31]. Types
of tracking radar are introduced below as motivation for the development of monopulse
radars. The difficulties associated with jamming monopulse radars are highlighted.

A tracking radar is a radar that is designed to track a target as accurately as possible.
Tracking a target in angle requires some way of determining whether the radar is pointing
towards the target, and determining the direction and magnitude of any angular error
encountered.

Early tracking radars worked by switching between two antenna beams which were
squinted relative to the radar’s axis (boresight). When a target is perfectly on boresight,
the returns from the two antenna beams will have equal amplitude. The difference
between the amplitudes of the signals received by the two beams gives an indication of
the angular tracking error when the target is not on boresight.

A simple extension to this sequential lobing utilises a single squinted antenna beam
which is rotated around the boresight direction giving a configuration known as conical-
scan radar. This means that a target that is exactly on boresight produces no variation
as the beam is rotated, but that there will be a variation when the target is not on
boresight. The magnitude of the tracking error can be found from the amplitude of
the variation of the received signal over time, and the direction to the target can be
determined from the received signal’s phase variation over time [31].

The greatest drawback of sequential-lobing and conical-scan radars is that the mea-
sured angular error will be influenced by any variations in the received signal over time.
These signals can either be due to the natural variations in target amplitude (scintil-
lation) or due to jamming [6–9, 11, 12, 16, 25, 32]. Sequential-lobing and conical-scan
radars are so vulnerable to jamming that alternative techniques that transmit using a
fixed antenna beam and only scan on receive, Lobing on Receive Only (LORO) and
Conical Scan on Receive Only (COSRO), have been developed solely to reduce this
vulnerability [6–9,11,16,25,33].

This led to the development of monopulse radar, where multiple beams are formed
simultaneously, thereby removing errors due to variations of the received signal over
time [6–8,10,11,13,15,17,22,30,31]. Generally four antenna beams are formed to allow
tracking in both azimuth and elevation. These beams are combined into a sum-channel
beam (generated by summing all the beams) and two difference-channel beams, one for
azimuth and the other for elevation (formed by taking the differences of the relevant sets
of beams). The sum channel is used for signal transmission and normalisation of the
received signal, while the normalised difference-channel returns are used to determine
the angular error.

There are two main classes of monopulse radar, namely amplitude- and phase-
comparison monopulse, though phased-array and hybrid implementations are also possi-
ble. Differences relate mainly to the implementation of the squinted beams rather than
to any fundamental difference in approach [30].

The main challenge associated with jamming monopulse radars arises from the fact
that amplitude variations over time have no effect on the tracking accuracy. This is
mainly as a result of the fact that the antenna beams are formed simultaneously rather
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than sequentially.

An additional complication is that a monopulse radar that encounters jamming can
switch to a home-on-jam mode where the radar stops transmitting and only uses its
receivers [6, 8, 9, 11, 16, 22, 25, 32]. The fact that the antenna beams are formed si-
multaneously means that even a noisy signal can be tracked extremely accurately in
home-on-jam mode.

The difficulties associated with jamming monopulse radars have led to the consid-
eration of other jamming techniques including cross-eye jamming [6, 8, 10, 12, 13, 16, 18,
19,21,25,26,34,35], which works by attempting to recreate the worst-case glint angular
error.

2.4 Glint Analysis

Glint is a naturally-occurring phenomenon that causes angular errors in all types of
radar. Glint is caused by the interactions of reflections from a number of points on a
target that cannot be resolved by a radar and is solely dependent on the characteristics
of the target [17, 30, 31, 36]. This section provides a review of the main deterministic
approaches to analysing glint with the emphasis on their relevance to cross-eye jamming.
A number of different analyses of glint are presented in Section 2.4.1 and their limitations
when applied to cross-eye jamming are considered in Section 2.4.2.

2.4.1 Glint Analyses

In 1953, Delano [37] published the first paper in the open literature on glint. Even at
this early stage using relatively simple statistical models, glint’s potential to produce
apparent targets outside the physical extent of the true target was established. Delano
found that, under certain simplifying assumptions, the apparent target is outside the
real target 13.4% of the time [37]. While the exact figure is open to debate, the result
is not, and the importance of understanding and compensating for glint was clearly
demonstrated.

Glint analyses can be loosely classified as statistical and deterministic analyses.
While a number of valuable papers considering statistical analyses of glint have been
published (including Delano’s paper cited above), they will not be considered further
here because they are of limited relevance to cross-eye jamming.

Glint analyses are derived by assuming that the scatterers are all at the same range,
and that the scatterers transmit and that the radar only receives. While this is clearly
not what happens in reality, it does provide an accurate model of glint. The different
ranges to each of the scatterers are accounted for by adjusting the relative phases of
the scatterers. Similarly, differences in the signals the scatterers receive from the radar
due to angular variations in the sum-channel antenna pattern are accommodated by
changing the relative amplitudes and phases of the scatterers. This approach allows
accurate results to be achieved with surprisingly simple mathematical analyses.
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(a) Amplitude-comparison squinted
beams.

(b) Monopulse sum- and difference-
channel antenna patterns.

Figure 2.1: Linear fits to monopulse antenna patterns. The solid and dashed lines
indicate the true patterns and linear fits to the true patterns on boresight respectively.
The horizonal axis the radar rotation and the vertical axis is the antenna pattern.

Linear-Fit Analysis

The first deterministic analysis of glint was published by Meade in 1955 [38] and made
use of linear fits to the antenna patterns of a lobing radar system near boresight as
shown in Figure 2.1(a). The same approach has been applied to amplitude-comparison
monopulse radars by Leonov and Fomichev [13], Vakin and Shustov [12], and Stratakos
et al. [39], though both Leonov and Fomichev [13], and Vakin and Shustov [12] also con-
sider other analyses. Sherman [30,40], and later Schleher [10], used essentially the same
approach, but formed linear approximations to the sum- and difference-channel antenna
patterns of a monopulse antenna on boresight as shown in Figure 2.1(b). This approach
is equivalent to the approach shown in Figure 2.1(a) because the sum- and difference-
channel antenna patterns formed using the linear approximations to the squinted an-
tenna patterns shown in Figure 2.1(a) are identical to the linear approximations shown
in Figure 2.1(b). Sherman’s approach has the benefit that its applicability to any type of
monopulse radar is obvious, while this is not necessarily true when linear fits to squinted
antenna patterns are used. This is clearly demonstrated by the fact that Leonov and
Fomichev [13] only apply the linear-fit analysis to amplitude-comparison monopulse
systems and derive a completely different analysis for phase-comparison monopulse sys-
tems (described below), despite the fact that the linear-fit analysis can be applied to
any monopulse radar.

The use of the linear-fit analysis by Vakin and Shustov [12] is extremely significant
as this is the most widely-referenced analysis of cross-eye jamming (either directly or
via Van Brunt [25] who references this work). For this reason, a brief summary of the
mathematical derivation of the linear-fit analysis of glint is given below. Sherman’s
approach of using a linear fit to the monopulse sum- and difference-channel antenna
patterns is used [30, 40] here because it is simpler, it gives identical results, and its
applicability to all types of monopulse radars is clear.

The relationship between the monopulse error (the ratio of the difference-channel
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return to the sum-channel return) to the monopulse indicated angle is assumed to be

θi = km
d

s
(2.1)

where θi is the monopulse indicated angle, km is a constant, and s and d are the signals
received in the sum and difference channels respectively. From (2.1), the difference-
channel return can be written as

d =
sθi
km

. (2.2)

Assume two sources are present at angles θ1 and θ2 measured from the radar’s boresight
direction, and that the amplitude and phase of the second source relative to the first
source are a and φ respectively. The total sum-channel return is given by

st = 1 + aejφ (2.3)

and the total difference-channel return is given by

dt =
θ1

km
+ aejφ

θ2

km
(2.4)

where (2.2) was used. From (2.1), the indicated angle is given by

θi =
θ1 + aejφθ2

1 + aejφ
(2.5)

which can be simplified by setting

θ1,2 = θr ± θe (2.6)

where θr is the angle from boresight to the point between the two scatterers and θe is
half the angular separation of the scatterers as seen by the radar to give

θi = θr + θe
1− aejφ

1 + aejφ
. (2.7)

Only the real part3 of this complex indicated angle is used to form the final indicated
angle in an exact monopulse processor [15,30] giving

<{θi} = θr + θe
1− a2

1 + a2 + 2a cos (φ)
(2.8)

which can be simplified to

<{θi} = θr + θeGC (2.9)

3Either the real or the imaginary part of the complex indicated angle should be used depending
on which portion of the complex indicated angle contains information about the position of a single
point target. The real part of the indicated angle is used for the linearised monopulse system considered
here, but the imaginary part of the complex indicated angle is used for the phase-comparison monopulse
systems considered in the rest of this document.
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(a) Aligned. (b) Not aligned.

Figure 2.2: Graphical representation of why an antenna will receive maximum power
from an incoming signal when it is aligned with incoming phase fronts. The antenna
aperture and phase fronts are denoted with solid and dotted lines respectively.

when the cross-eye gain is defined as [9]

GC =
1− a2

1 + a2 + 2a cos (φ)
. (2.10)

The largest indicated angle will thus be achieved when a → 1 and φ → 180◦ because
this makes the cross-eye gain large. Equation (B.12) on page 110 shows that the angular
separation of the scatterers can be written as

θe ≈
dc
2r

cos (θc) (2.11)

where dc is the linear separation of the scatterers, r is the range from the radar to
the scatterers, and θc is the angle between the scatterers’ broadside direction and the
direction to the radar. Substituting (2.11) into (2.9) gives

<{θi} = θr +
dc
2r

cos (θc)GC (2.12)

which is the form provided in the literature.
An important observation arising from (2.11) and (2.12) is that a cross-eye jammer

will produce a constant linear offset rather than a constant angular error [9,18,34]. The
importance of this observation is based on the fact that a constant angular error will
not cause a missile to miss its target, while a constant linear offset will [24, 34].

Phase-Front Analysis

Arguably the most important contribution to the understanding of glint was the de-
velopment of the phase-front analysis of glint which was published by Howard [41].4

This analysis is based on the fact that any antenna will receive maximum power from
an incoming signal when it is aligned with the signal’s phase fronts [34, 41, 42]. The
antenna in Figure 2.2(a) is aligned with the phase fronts, so the signals over the entire

4Interestingly, Howard credits B. L. Lewis, listed as co-inventor with Howard on the original cross-eye
jamming patent [14], as the originator of the phase-front analysis of glint.
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(a) Phase fronts. (b) Phase fronts (dotted lines) and signal am-
plitude (solid lines).

Figure 2.3: Fields resulting from two sources of equal amplitude and 180◦ relative phase
shift spaced 2.5 wavelengths apart. The positions of the sources are shown by circles.

antenna aperture will add in phase giving the highest possible received power. However,
the antenna in Figure 2.2(b) is not aligned with the phase fronts, so the signals over the
antenna aperture are not in phase and will thus partially cancel, thereby reducing the
power received compared to the antenna in Figure 2.2(a). The direction an antenna will
point to receive maximum power can thus be determined from the slope of the phase
fronts of the incoming signal.

The phase fronts created by two sources 2.5 wavelengths apart with equal ampli-
tudes and 180◦ relative phase are shown in Figure 2.3. Figure 2.3(a) only shows the
phase fronts, and similar plots can be found in the literature (e.g. [13, 31, 41, 43]). The
amplitude of the signal is plotted with the phase-fronts in Figure 2.3(b), showing that
the amplitude of the signal has its minimum values in the directions where the phase-
front distortion is greatest [34]. This is because phase-front distortions are maximised in
those directions where the phase difference between the two scatterers is 180◦, causing
maximum cancellation of the signals from the scatterers.

Lindsay [42] built on the phase-front analysis of glint by using the derivative of the
phase in space (the normal to the phase front) to determine the direction an antenna will
point. The main benefit of this approach is that it allows the angular error, amplitude
scintillation and Doppler shift due to multiple scatterers to be explained in terms of
phase-front distortion. Dunn and Howard [43] reached a similar conclusion in a paper
published a mere five months after Lindsay’s paper. The main difference between these
results is that Dunn and Howard only consider the derivative of phase with respect to
target aspect angle, while Lindsay finds the normal to the phase front by determining
the vector gradient.

Given the importance of the phase-front analysis, an abbreviated derivation is given
below. The form of this analysis is slightly different to that provided in the literature, but
it follows Lindsay’s approach of using the direction of the phase gradient to determine

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 15

 
 
 



CHAPTER 2 BACKGROUND

Figure 2.4: The configuration of two scatterers used to derive the phase-front analysis
of glint.

the direction a radar will point [42] using

∇Φ = r̂
∂Φ

∂r
+ θ̂c

1

r

∂Φ

∂θc
(2.13)

and

δ = arctan

[
1
r
∂Φ
∂θc

∂Φ
∂r

]
(2.14)

where ∇Φ is the gradient of the phase, r̂ and θ̂c are the unit vectors in the radial
direction and perpendicular to the radial direction respectively, and δ is the angular
error. Consider two scatterers on the y axis as shown in Figure 2.4, where the rays from
the scatterers are assumed to be parallel under the far-field assumption [44, 45]. The
total signal received at a point far from the scatterers is given by

E = ejβr
[
aejφ0ejβ

dc
2

sin(θc) + e−jβ
dc
2

sin(θc)
]

(2.15)

where β is the free-space phase constant, r is the range to the point where the fields are
being determined, a and φ0 are the amplitude and phase of the top scatterer relative
to the bottom scatterer, and the rest of the parameters are defined in Figure 2.4. The
phase of the signal in (2.15) is given by

Φ = arctan

[
={E}
< {E}

]
(2.16)

≈
cos (βr)

(
a sin

[
β dc

2
sin (θc) + φ0

]
− sin

[
β dc

2
sin (θc)

])
+ · · ·

cos (βr)
(
a cos

[
β dc

2
sin (θc) + φ0

]
+ cos

[
β dc

2
sin (θc)

])
− · · ·

sin (βr)
(
a cos

[
β dc

2
sin (θc) + φ0

]
+ cos

[
β dc

2
sin (θc)

])
sin (βr)

(
a sin

[
β dc

2
sin (θc) + φ0

]
− sin

[
β dc

2
sin (θc)

]) (2.17)

where Φ is the phase of the total signal, and the approximation is due to the assumption
that the arctangent function can be approximated by its argument because its argument
is small. This assumption is reasonable because the calculations above can be assumed
to be performed at angles where Φ ≈ 0. The derivatives of the total field phase are
given by

∂Φ

∂r
= 2β

1 + a2 + 2a cos [φ0 + dc sin (θc)]

[<{E}]2
(2.18)
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and
∂Φ

∂θc
= βdc cos (θc)

1− a2

[<{E}]2
. (2.19)

From (2.14), this means that the angular error is given by

δ ≈ dc
2r

cos (θc)
1− a2

1 + a2 + 2a cos [φ0 + dc sin (θc)]
(2.20)

where δ is the angular error, and the approximation was again formed under the as-
sumption that the arctangent can be replaced by its argument. Comparing (2.12) to
(2.20) shows that the arguments of the cosine in the denominator are different, but this
apparent discrepancy is easily resolved by setting

φ = φ0 + dc sin (θc) (2.21)

on the basis that the linear-fit analysis accounts for phase variations due to range offsets
in the value of φ.

Poynting-Vector Analysis

Dunn and Howard [43] analysed glint by determining the direction of the Poynting vector
that arises due to multiple scatterers. This result clearly showed that the direction of
power flow can deviate from the radial direction and is normal to the phase front.
Concerns over the validity of the phase-front analysis based on the assumption that
power flow must be radial were thus addressed.

Phase-Comparison Monopulse Analysis

Leonov and Fomichev [13] give an analysis of glint for phase-comparison monopulse
systems that they also apply to cross-eye jamming. This analysis gives the same results
as the linear-fit analysis showing that cross-eye jamming affects both amplitude- and
phase-comparison monopulse radars.

This analysis is similar to the extended analysis described in Section 4.2.1, but the
results differ, mainly because Leonov and Fomichev do not consider the retrodirective
implementation of cross-eye jamming. Furthermore, Leonov and Fomichev introduce
a number of assumptions that limit the accuracy of their models in order to obtain
agreement with other results. Finally, Leonov and Fomichev also make no attempt to
generalise these results to other types of monopulse radar, instead opting to use the
linear-fit analysis for amplitude-comparison monopulse systems.

Equivalence of Glint Analyses

Yin and Huang [46] have shown that the phase-front and Poynting-vector analyses of
glint are equivalent under the geometric optics approximation (the wavelength is negli-
gibly small). Kajenski [47] extended this result to show that the equivalence also holds
when polarisation is considered.

Vakin and Shustov [12] have shown that the phase-front analysis gives the same
results as the linear-fit analysis. Leonov and Fomichev [13] show that the result for
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their phase-comparison analysis also gives results that are identical to the linear-fit and
phase-front analyses. While neither of these works gives a formal mathematical proof
of the equivalences implied, the fact that the results are identical suggests that such an
equivalence exists.

Graphical Analysis

Falk et al. [19, 21] have published a graphical analysis of cross-eye jamming that can
also be used to understand glint. The analysis compares the signals received by the two
antenna elements of a phase-comparison monopulse radar tracking two scatterers. The
error induced by a cross-eye jammer (and glint) is determined by examining the vector
diagrams of the signals received by each of the antenna elements as the radar antenna
is rotated. The angular error is determined by the direction where the phase difference
between the signals received by the two antenna elements is minimised.

Pattern Analysis

Cross-eye jamming can also be analysed by assuming particular amplitude-comparison
monopulse antenna patterns, and then numerically evaluating the effect of cross-eye
jamming [8, 12, 16, 24, 34]. Vakin and Shustov’s results based on this analysis appear
to be the source of the oft-quoted assertion that even a perfect cross-eye jammer will
only create an error that is 60% of the radar’s 3-dB beamwidth [12, 16, 25], though
Redmill [34], Lothes et al. [8] and Tucker and Vidger [24] have independently reproduced
this result. Furthermore, Vakin and Shustov state that the results in (2.12) and (2.20)
are only valid as long as a ≤ 0.9 or a ≥ 1.1, and the jammer antenna element spacing is
less than 10% of the radar’s 3-dB beamwidth, again based on pattern analysis [12,16].

2.4.2 Limitations of Glint Analyses

All analyses of glint suffer from limitations based on their mathematical formulation,
and when cross-eye jamming is considered, by the fact that they do not consider the
retrodirective implementation of cross-eye jammers.5

The mathematical simplifications for each of the analyses described above are slightly
different. As shown in (2.1), the linear-fit analysis linearises the antenna patterns near
boresight, while both the phase-front and Poynting-vector approaches assume that the
radar antenna is infinitesimally small and only responds to the fields at a point. Further-
more, as seen by comparing (2.14) and (2.20), the highly nonlinear arctangent function
is linearised to simplify the results. This simplification is the reason that infinite errors
are predicted whereas the largest error physically possible is 90◦ [48]. The error due to
these simplifications is generally small near boresight and when the phase-fronts are not
strongly distorted. However, a cross-eye jammer violates these conditions by seeking to
strongly distort the phase-fronts to rotate the radar’s boresight away from the jammer.
Errors caused by these assumptions are the motivation for Vakin and Shustov’s bound
considered above.

5The fact that glint analyses have limited accuracy when applied to cross-eye jamming is one of the
main topics of this thesis and are considered throughout this document from various perspectives.
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(a) Ideal case. (b) Realistic case.

Figure 2.5: Graphical explanation of why the assumption that an antenna is infinites-
imally small leads to errors. The antenna aperture and phase fronts are denoted with
solid and dotted lines respectively.

The effect of the linearisation of antenna patterns is seen in Figure 2.1, where the
error inherent in linearisation is seen to increase as the target moves away from boresight.
Using a linear fit to the monopulse antenna patterns implicitly assumes that the radar
antenna is infinitesimally small (see Sections 3.2.1 and 4.2.2), so all glint analyses thus
assume that the radar antenna responds to the fields at a point.

The assumption of an infinitesimally small antenna is explored in Figure 2.5. The
finite aperture of the antenna is ignored in Figure 2.5(a), and the antenna is assumed to
align itself with the fields at the centre of the antenna. A more realistic representation of
what is likely to happen is shown in Figure 2.5(b) where the entire antenna aperture is
considered [12,34]. The true situation is actually worse than a consideration of only the
phase fronts suggests because, as shown in Figure 2.3(b), the amplitude of the signal is
lowest at the largest phase distortions. This means the signals at edges of the antennas
in Figure 2.5 will be stronger than at the centre of the antenna effectively distorting the
antenna patterns [14,43].

The pattern analysis used as the basis of a number of widely-held assumptions about
cross-eye jamming is limited by the fact that, strictly speaking, the results are only
valid for the exact amplitude-comparison monopulse system simulated [8]. While this
statement is perhaps overly conservative, it is clear that pattern analysis cannot lead
to a completely general understanding of glint or cross-eye jamming because of this
limitation. For example, Vakin and Shustov’s bound considered above is based on
comparisons between the linear-fit and pattern analyses [12], and mathematical and
experimental results in Section 4.3 and 5.4 show that this bound is incomplete.

The practical implementation of cross-eye jammers is considered in Section 2.5, where
it is shown that realising a cross-eye jammer without using the retrodirective imple-
mentation is probably not practically feasible. As mentioned previously, glint analyses
assume that any scenario can be modelled by transmitting from a number of collinear
sources with varying amplitudes and phases, and that the radar is only a receiver. This
approach is clearly demonstrated in the mathematical derivations of the linear-fit and
phase-front analyses above. However, this model does not adequately consider retrodi-
rective cross-eye jammers (or even retrodirective arrays) because the fact that the signal
received at one antenna is transmitted from another antenna is ignored.
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Figure 2.6: The configuration of a transmit-only cross-eye jammer.

2.5 Cross-Eye Jammer Implementation

A cross-eye jammer attempts to artificially recreate the worst-case glint angular error.
This is done by using two antennas to transmit signals that ideally have a phase differ-
ence of 180◦ from the perspective of the radar being jammed. The analyses of glint show
that the resulting error is proportional to the spacing of the scatterers, so antennas used
for cross-eye jamming are widely separated.

Despite the fact that much of the literature only considers the retrodirective imple-
mentation of cross-eye jamming (e.g. [6–11, 14, 16, 18–24, 49–54]), other alternatives do
exist [25]. However, the non-retrodirective implementations of cross-eye jamming place
extreme tolerance requirements on a cross-eye jammer system making them impracti-
cal [6, 10,17,25,34].

A retrodirective system is a system that receives signals on one side of the system
and retransmits those signals on the other side of the system. Only systems that receive
on both sides of the system and retransmit the received signals on the opposite sides of
the system are considered, but multi-loop retrodirective beacons that only allow signals
in each loop to propagate in one direction also exist.

A number of non-retrodirective cross-eye jammer implementations are considered in
Section 2.5.1, and the difficulties associated with practical realisation of these imple-
mentations are outlined. The retrodirective implementation of cross-eye jamming and
its benefits are described in Section 2.5.2.

2.5.1 Non-Retrodirective Implementation

A number of cross-eye jammer implementations that are not retrodirective are possible
[25]. These are outlined below and their practical limitations highlighted.

Transmit Only

The simplest implementation of a cross-eye jammer does not utilise a receiver and is
shown in Figure 2.6. The 180◦ phase shift to the one antenna is inherent in the operation
of a cross-eye jammer, while the variable phase shift to the other antenna allows the
jammer to be steered in the direction of the radar being jammed.

The source in Figure 2.6 is typically a noise source, and the system seeks to exploit
the home-on-jam mode in modern missiles mentioned in Section 2.3. The application of
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Figure 2.7: The configuration of a cross-eye jammer based on a single repeater.

the cross-eye approach means that the jamming signal appears to come from a position
removed from the true jammer position, ensuring that a missile will miss the target.

The biggest drawback of the transmit-only approach to cross-eye jamming is that no
feedback is received from a missile because the missile’s transmitter is not active. This
is a particularly large problem for a cross-eye jammer where the range of angles over
which the jammer is effective is very small. For example, an angular error of 1.5 mrad
is enough to turn an ideal cross-eye jammer into a perfect beacon for a jammer antenna
element spacing of 10 m at 10 GHz.

Single Repeater

The addition of a single receiver leads to the cross-eye implementation shown in Fig-
ure 2.7. The incoming signal is sampled by a single antenna and then retransmitted from
two antennas. The receiver block in Figure 2.7 is assumed to include all the equipment
required to receive, process and retransmit the received radar signal.

The main benefit of this approach is that the missile’s transmitter remains active,
so any variations in the missile’s position or mode can be determined. An additional
benefit of retransmitting the signal received from the missile is that the missile will
hopefully be unaware that it is being jammed and not activate countermeasures.

Limitations

The first problem with the implementations of cross-eye jamming described above is that
the jammer needs to be able to control the relative phase of the signals transmitted from
the two antennas to ensure that the jammer signal is directed towards the radar being
jammed [6, 10]. This problem is greatly complicated by the fact that environmental
effects (including temperature, humidity, pressure, vibration and platform flexing) have
to be compensated for to prevent the jammer becoming a beacon. For example, a change
in antenna position of only 1.5 cm due to the wings of an aircraft flexing during flight
can turn an ideal cross-eye jammer into a perfect beacon, with similar results being
given in the literature [6, 8, 10, 11,17,25,34].

The second problem with the implementations of cross-eye jamming described above
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(a) Retrodirective array. (b) Retrodirective cross-eye jammer.

Figure 2.8: Graphical description of the retrodirective concept.

is that the jammer is only effective over a very narrow range of angles. As mentioned
previously, an angular error of less than 1.5 mrad is enough to turn an ideal cross-eye
jammer into a perfect beacon for a jammer antenna element spacing of 10 m at 10 GHz.
It is extremely unlikely that a DF system will be able to achieve the required angular
accuracy unless it uses a baseline comparable to the jammer antenna element spacing.

One possibility for overcoming these limitations is to sweep the relative phase shift
of the two signals transmitted by the cross-eye jammer. The main drawback of this
approach is that the angular error induced in the radar being jammed will be too small
for the apparent target to be outside the physical extent of the platform the majority
of the time [34]. It might be possible to reduce the dynamic stability of a missile as a
whole causing it to miss its target [55], but this would rely on a detailed knowledge of
the missile’s characteristics.

Combining the functions of the DF system required to determine the direction to
the radar being jammed and the cross-eye jammer system leads to an approach that
overcomes most of the difficulties listed above. This approach is the retrodirective
implementation of cross-eye jamming considered in Section 2.5.2.

2.5.2 Retrodirective Implementation

The retrodirective implementation of cross-eye jamming is based on the retrodirective
array. This section thus starts with a brief description of retrodirective arrays and then
moves on to retrodirective cross-eye jammers.

Retrodirective Arrays

Retrodirective arrays are often called Van Atta arrays after their inventor [56] and have
been extensively considered in the literature (e.g. [22, 57–61]). A retrodirective array
consists of a number of pairs of antennas connected by paths along which signals can
travel, usually in both directions.
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(a) Single antennas used for both trans-
mission and reception.

(b) Separate antennas for transmission
and reception.

Figure 2.9: Two possibilities for implementing a retrodirective cross-eye jammer.

The principle behind a retrodirective array is extremely simple and is illustrated in
Figure 2.8(a). When a plane wave is incident on the array, the signals passing through
the array in the two directions will travel identical distances and emerge in phase in
the direction of the incoming signal. For the direction of the incoming plane wave in
Figure 2.8(a), the path length for the signal received by the top antenna is l1 + l2 + l3 + l4
and the path length for the signal received by the bottom antenna is l4 + l3 + l2 + l1.
While Figure 2.8(a) only considers one pair of antennas, the concept can be extended
to any number of antennas as long as the lengths of the cables connecting each pair of
antennas are identical and the points between all the pairs of antennas are coincident. It
is also possible to build a retrodirective array where signals can only travel between each
pair of antennas in one direction (e.g. if an amplifier is used), with the retrodirective
effect being caused by the interaction between the signals from a number of pairs of
antennas.

Retrodirective Cross-Eye Jammers

The operation of a retrodirective cross-eye jammer is identical to that of a retrodirec-
tive array except that one of the directions through the cross-eye jammer has a phase
shift of 180◦ relative to the other direction through the array. This is illustrated in Fig-
ure 2.8(a) by showing that a phase-front distortion will be retransmitted in the direction
of the incoming signal. The main advantage of the retrodirective cross-eye jammer im-
plementation is thus that the jamming signal is reradiated in the direction of the radar
being jammed without requiring a knowledge of that direction or any control of the
cross-eye jammer phases. Only the matching between the two directions through the
cross-eye jammer needs to be controlled (see Chapter 6). The practical realisation of a
retrodirective cross-eye jammer is considered in Figure 2.9.

Figure 2.9(a) expands Figure 2.8(b) to show how the signals in the two directions
through the cross-eye jammer can be split and the necessary 180◦ phase shift realised.
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Note that circulators are used in Figure 2.9(a) for illustration purposes only and that
other possibilities (e.g. switches) are also possible [25, 50]. The transmission lines be-
tween the antennas and the circulators are short in Figure 2.9 only to save space here
and can be any length. The main benefit of this approach is that only the circuit el-
ements that are not common to both directions through the cross-eye jammer have to
be matched. This is because the common circuit elements (antennas and cables) affect
both directions through the cross-eye jammer identically, so the effects of these common
circuit elements cancel out. The greatest drawback of this retrodirective implementation
is that it is very difficult to obtain high isolation between the two directions through
the cross-eye jammer.

The Radar Cross Section (RCS) of a retrodirective beacon is given by [62]

σb =
[nλGa]

2GR

4π
(2.22)

where σb is the beacon RCS, n is the number of receive-transmit antenna pairs, λ is
the wavelength, Ga is the gain of the beacon/jammer antenna elements and GR is the
gain of the repeaters. A repeater gain of 31.4 dB (GR ≈ 1400) is required to obtain a
10 m2 target (σb = 10 m2) with a single repeater (n = 1) connected to two antennas
each of which has a gain of 10 dBi (Ga ≈ 10) at X-Band (λ = 0.03 m). The only
isolation between the two high-gain repeaters in Figure 2.9(a) is provided by the two
circuit elements denoted by circulators. If the isolation of each of these two circuit
elements is less than the gain of the repeaters plus some safety margin, it is extremely
likely that the system will oscillate. Obtaining isolations of 35 dB or more to avoid
oscillation is possible, but extremely challenging as evidenced by the large number of
patents describing cross-eye jammer implementations [49–54].

The implementation in Figure 2.9(b) overcomes the isolation problem by using sepa-
rate antennas for transmission and reception on each side of the cross-eye jammer. The
biggest drawback of this retrodirective cross-eye jammer implementation is that none
of the circuit elements are common to the two directions through the cross-eye jammer,
dramatically increasing the difficulties associated with matching the cross-eye jammer
system.

Another disadvantage of the configuration shown in Figure 2.9(b) is that the cross-
eye jammer is not reciprocal, while the configuration shown in Figure 2.9(a) is. Falk
et al. [19,21] have shown that reciprocal scattering effects such as multipath reflections
do not influence the performance of a cross-eye jammer as long as the jammer itself is
reciprocal.

As with retrodirective arrays, a number of cross-eye jammer loops of the form shown
in Figure 2.8(b) can be used [20, 63]. The main benefit of using multiple cross-eye
jammer loops is that additional degrees of freedom are introduced, allowing the angular
range over which a cross-eye jammer is effective to be increased and the sensitivity to
system tolerances to be reduced. As mentioned in Section 1.3.1, a detailed investigation
of multi-loop cross-eye jamming falls outside the scope of this study.

Even though the retrodirective implementation of cross-eye jamming greatly sim-
plifies the realisation of a practical system, the challenges remaining are still signif-
icant. This is shown by the large number of proposed cross-eye jammer implementa-
tions [14,27,34,49–54,64,65], and the fact that only recently has the existence of practical
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cross-eye jammers been acknowledged [18,19,21,28,29] and speculated on [66–68].

2.6 Concluding Remarks

Cross-eye jamming is placed within the greater field of EW, and the benefits of cross-eye
jamming over comparable self-protection techniques are highlighted. Tracking radars are
then introduced and the fact that modern monopulse radars are extremely difficult to
jam is highlighted. However, all radars are affected by glint, so cross-eye jamming at-
tempts to recreate the worst-case glint angular error. The analyses of glint are briefly
summarised and their limitations when applied to cross-eye jamming are highlighted.
The importance of the retrodirective implementation of cross-eye jamming is demon-
strated by considering a number of other possible implementations of cross-eye jamming
and noting their drawbacks.

With the background to and motivation for the current study clearly established,
the development now moves to a consideration of the monopulse model that will be used
to analyse cross-eye jamming in Chapter 3.
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CHAPTER 3

MONOPULSE MODEL

3.1 Introductory Remarks

The use of a generalised phase-comparison monopulse antenna as a model for any mono-
pulse antenna is considered in this chapter. This is done as a prelude to analysing a
cross-eye jamming scenario in Chapter 4 to demonstrate the wide validity of that analy-
sis. The work described in this chapter forms the basis of a submitted journal paper [1].1

A monopulse radar uses two antenna beams, the sum- and difference-channel beams.
The sum-channel beam has a peak in the radar’s boresight direction and is used for
transmission, target detection and angle-error normalisation. The difference-channel
beam has a null in the radar’s boresight direction and is used to form an error signal
determined by the angular tracking error [13,15,17,22,30,31]. The sum- and difference-
channel beams can be formed in a number of ways, including:

• amplitude-comparison monopulse systems using the sum and difference of two
squinted beams [13,15,17,22,30,31],
• phase-comparison monopulse systems using the sum and difference of two beams

with offset phase centres [13,15,17,22,30,31],
• phased arrays which form the sum- and difference-channel beams directly [13, 17,

30,69], and
• combinations of these approaches (e.g. the five-horn feed forms the sum-channel

beam directly while forming the difference-channel beams using the amplitude-
comparison approach) [30,31].

Of these, phase-comparison is the most common [26]. While there are significant differ-
ences in the design and practical implementation of each of these monopulse systems,
they all form a sum-channel beam (peak on boresight) and a difference-channel beam
(null on boresight), so all monopulse systems work in the same way.

Sherman [30] has shown the equivalence of the antenna patterns in the amplitude-
and phase-comparison cases, but acknowledges that his analysis considers antenna pat-
terns that “have a peculiar, asymmetrical shape and are not likely to have practical
application” and “are likely to have unusual shapes” [30].

The equivalence of a general monopulse antenna and a generalised phase-comparison
monopulse antenna near boresight is proved in Section 3.2. The use of a generalised
phase-comparison monopulse antenna to approximate measured monopulse antenna pat-
terns is considered in Section 3.3. Concluding remarks are provided in Section 3.4.

1Portions of this chapter are reprinted, with permission, from [1]. c©2009 IEEE.
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3.2 Mathematical Analysis

The use of an antenna array to model any antenna is the basis of the analysis in this
section. The sum- and difference-channel antenna patterns and monopulse errors for
a general monopulse antenna model and a generalised phase-comparison monopulse
antenna are then outlined. Finally, the equivalence of these two cases is demonstrated.

The pattern of an antenna array can be related to its excitation by

AF =

N−1
2∑

n=−N−1
2

ane
jβdn sin(θ) (3.1)

=

N−1
2∑

n=1

ane
jβdn sin(θ) + a0 +

−1∑
n=−N−1

2

ane
jβdn sin(θ) (3.2)

= a0 +

N−1
2∑

n=1

[
ane

jβdn sin(θ) + a−ne
−jβdn sin(θ)

]
(3.3)

=

N−1
2∑

n=0

[
αne

jβdn sin(θ) + α−ne
−jβdn sin(θ)

]
(3.4)

where AF is the antenna pattern, an is the excitation of each antenna element (can be
complex), αn = an except α0 = a0/2, N is the number of antenna elements, β is the
free-space phase constant, d is the antenna element spacing, and θ is the angle measured
from broadside [44, 45, 69]. Adjusting the excitation values an, the element spacing d,
and the number of elements N allows any antenna pattern to be modelled by (3.1).

The form of AF provided in (3.4) will be used extensively below and is obtained from
(3.1) by splitting the summation and substituting n→ −n into the negative portion of
the summation.

Note that (3.1) assumes an odd number of elements and is limited to a single plane
only to simplify the results below. The results are equally applicable to more general
arrays with odd or even numbers of elements in more than one plane.

3.2.1 General Case

The patterns and excitations of the sum- and difference-channel antenna beams are as-
sumed to be symmetric and antisymmetric respectively. This is a reasonable assumption
because any relaxation of this condition will mean that the radar’s tracking performance
will differ depending on which side of boresight the target is on. No assumptions are
made about the relationship between the sum- and difference-channel antenna patterns.

The sum-channel antenna beam can thus be determined from (3.4) by noting that
symmetry requires α−n = αn giving

SG = 2

NS−1

2∑
n=0

bn cos [βd1n sin (θ)] (3.5)
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where SG is the general sum-channel antenna pattern. The difference-channel antenna
beam can be determined from (3.4) by noting that antisymmetry requires α−n = −αn
giving

DG = 2j

ND−1

2∑
n=0

cn sin [βd2n sin (θ)] (3.6)

whereDG is the general difference-channel antenna pattern. The values ofN , αn and d in
(3.4) have been replaced by NS, bn and d1 in (3.5), and ND, cn and d2 in (3.6) to ensure
that the above formulation does not include any assumptions about the relationship
between the sum- and difference-channel antenna patterns.

The monopulse error is now formed by dividing (3.6) by (3.5) and taking the imag-
inary part of the result to give

MG = =
{
DG

SG

}
(3.7)

=

ND−1

2∑
n=0

cn sin [βd2n sin (θ)]

NS−1

2∑
n=0

bn cos [βd1n sin (θ)]

(3.8)

when an exact monopulse processor is used [15,30]. This error is then processed to form
the monopulse indicated angle used for tracking.

As an aside, the sum- and difference-channel antenna patterns in (3.5) and (3.6)
respectively, and the monopulse error in (3.8) become linear when d1 and d2 tend to
zero. This shows that the linear-fit analysis implicitly assumes that the antenna aperture
is infinitesimally small as mentioned in Section 2.4.2.

3.2.2 Phase-Comparison Case

A phase-comparison monopulse radar forms its antenna beams by using two antenna
elements whose phase centres are separated along the axis of the radar. In the analysis
below, a different spacing is used for the sum- and difference-channel antenna elements
to make the result more general, but a practical phase-comparison monopulse antenna
will have a single spacing for both the sum and difference channels.

As before, the sum- and difference-channel antenna patterns will be assumed to be
symmetrical and antisymmetrical around boresight respectively. The implications of
this assumption are that the two antenna elements for each channel are symmetrically
positioned around the centre of the antenna and the two portions of the phased-array
antenna are symmetrical.

The symmetry requirement on the antenna elements means that the two portions
of the phase-comparison antenna have the same form as the general, symmetrical sum-
channel pattern given in (3.5). The generalised phase-comparison sum-channel antenna
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pattern is thus given by

SP =
[
ejβ

ds
2

sin(θ) + e−jβ
ds
2

sin(θ)
]

2

NP−1

2∑
n=0

en cos [βd3n sin (θ)]

= 4 cos

[
β
ds
2

sin (θ)

] NP−1

2∑
n=0

en cos [βd3n sin (θ)] (3.9)

where ds is the spacing of the sum-channel antenna elements. The generalised phase-
comparison difference-channel antenna pattern is given by

DP =
[
ejβ

ds
2

sin(θ) − e−jβ
ds
2

sin(θ)
]

2

NP−1

2∑
n=0

en cos [βd3n sin (θ)]

= 4j sin

[
β
dd
2

sin (θ)

] NP−1

2∑
n=0

en cos [βd3n sin (θ)] (3.10)

where dd is the spacing of the difference-channel antenna elements. The values of Ns,
bn and d1 in (3.5) have been replaced by NP , en and d3 above to emphasise that these
values are unique to the phase-comparison antenna elements.

The monopulse error is calculated by taking the imaginary part of (3.10) divided by
(3.9) giving

MP =
sin
[
β dd

2
sin (θ)

]
cos
[
β ds

2
sin (θ)

] (3.11)

where MP is the monopulse error, and an exact monopulse processor was again as-
sumed [15,30]. In a practical phase-comparison monopulse antenna the antenna-element
spacings for the sum and difference channels are the same, so (3.11) reduces to

MP = tan

[
β
dp
2

sin (θ)

]
(3.12)

where dp = ds = dd.

3.2.3 Equivalence

It can be seen that the sum-channel antenna patterns in (3.5) and (3.9) both have a
sum-of-cosines form by noting that

2 cos (x) cos (y) = cos (x+ y) + cos (x− y) . (3.13)

The odd-order derivatives of the sum-channel antenna patterns on boresight are always
zero for both the general and phase-comparison cases. The differences between the
remaining non-zero derivatives can now be minimised through an appropriate choice of
ds, NP , d3 and en in (3.9) to give good agreement between the two cases near boresight.

Similarly noting that

2 sin (x) cos (y) = sin (x+ y) + sin (x− y) (3.14)
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leads to the conclusion that the difference-channel antenna patterns in (3.6) and (3.10)
both have a sum-of-sines form. As before, an appropriate choice of the parameters in
(3.10) means that the difference-channel patterns for the two cases can be made to agree
very well near boresight.

The same antenna elements are used to form both the sum- and difference-channel
antenna beams in the phase-comparison case, so the parameters NP , d3 and en are
common to both the sum and difference channels. This means that the values of these
parameters must be a compromise between the values required to match the sum- and
difference-channel antenna patterns. While this restriction reduces the accuracy with
which the phase-comparison case approximates the general case somewhat, it does not
change the fact that there will be a range of angles near boresight where the agreement
is good.

The equivalence between the monopulse error in the general and phase-comparison
cases can be established by noting that the monopulse errors in (3.8) and (3.11) both
have the following form

MX =

M∑
m=0

γm sin (εmx)

N∑
n=0

ζn cos (κnx)

(3.15)

where MX is any monopulse error, γm, εm, ζn and κn are real arbitrary constants, and
M and N are arbitrary integer constants.

Appendix C provides proof that all even-order derivatives of (3.15) are equal to
zero when x is equal to zero. This means that all the even-order derivatives of the
monopulse errors for the two cases given in (3.8) and (3.11) are zero on boresight (θ =
0). The antenna element spacings in the phase-comparison case (ds and dd) can now
be used to make the first two odd-order derivatives of the monopulse errors equal on
boresight, meaning that the first four derivatives of the monopulse errors will be equal
on boresight. Under these conditions, the agreement between the general and phase-
comparison monopulse errors will be excellent near boresight (i.e. when θ is small).

The two spacings in the phase-comparison case could also be chosen in other ways
to allow the equivalence between the two cases to be established according to other
definitions. For example, the spacings could be adjusted to produce the least-squares
error between the general and phase-comparison monopulse errors over a given range of
angles near boresight.

It is possible to extend the range of agreement by modifying the phase-comparison
monopulse error in (3.11) to give

MP = K
sin
[
β dd

2
sin (θ)

]
cos
[
β ds

2
sin (θ − θ0)

] (3.16)

where a scaling factor K and a sum-channel angular offset θ0 have been added.

The inclusion of the scaling factor K allows the first six derivatives of (3.8) and
(3.16) to be made equal through the appropriate choice of ds, dd and K. While there
is no physical basis for adding the scaling factor K, including an additional constant is
reasonable in a mathematical model. The addition of a scaling factor to the monopulse
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error means that a scaling factor also has to be added to the difference-channel return
in (3.10).

The angular offset θ0 has been included in the sum channel to account for any squint
of the sum-channel peak relative to the difference-channel zero. This approach was
used under the assumption that boresight (θ = 0) is chosen as the angle where the
difference-channel antenna pattern is zero.

The result in (3.12) can also be generalised by adding a scaling factor to give

MP = K tan

[
β
dp
2

sin (θ)

]
(3.17)

which is less general than (3.16) because it has fewer degrees of freedom. However,
(3.17) is significantly simpler than (3.16), making it easier to use.

3.3 Results and Discussion

The use of a generalised phase-comparison antenna to model any type of monopulse
antenna is demonstrated in this section by approximating the measured patterns of two
monopulse antennas.

The AN/FPQ-6 radar is an C-Band monopulse tracking radar whose antenna consists
of a five-horn Cassegrain feed and a 29-foot reflector dish [30, 31, 70]. The fact that a
five-horn feed is used is ideal for demonstrating the principles described above because
the feed structures for the sum and difference channels are different.

The QCS15.5-17N(D1587) is a monopulse antenna manufactured by Q-par Angus
Ltd and operates from 15.5 to 17 GHz. The antenna has a four-horn Cassegrain feed
and a 1.2-m reflector [71]. The four-horn feed is widely used to construct amplitude-
comparison monopulse antennas making this a useful test case.

Measured and approximated the sum- and difference-channel patterns, and mono-
pulse errors are shown in Figures 3.1 and 3.2 based on plots of the sum- and difference-
channel antenna patterns of an AN/FPQ-6 radar [70] and a Q-par Angus Ltd QCS15.5-
17N(D1587) antenna [71]. The indicated angle cannot be calculated because this would
require a knowledge of how the radar processes its signals, and this information is not
available.

The origins of the curves in Figures 3.1 and 3.2 are described below. In all cases,
the monopulse error on boresight was determined from the measured values at ±0.1◦

for the AN/FPQ-6 radar and at ±0.15◦ for the Q-par Angus Ltd antenna. If additional
parameters were available, the minimax error value in (3.18) was minimised over the
range 0.1◦ ≤ |θ| ≤ 0.5◦ for the AN/FPQ-6 radar and over the range 0.15◦ ≤ |θ| ≤ 1◦ for
the Q-par Angus Ltd antenna.

E = max
θ

[
Mmeas (θ)

Mcalc (θ)
− 1

]
(3.18)

where E is the error, and Mmeas (θ) and Mcalc (θ) are the measured and calculated
monopulse errors respectively. Angles very close to boresight are not considered because
the small difference-channel gain near boresight means that the values near boresight
are inaccurate due to measurement and transcription errors.
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(a) Sum channel. Note that the measured
and offset plots, and the equal spacing and
constant-tan plots are very similar and thus
difficult to distinguish.
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(b) Difference channel. Note that the mea-
sured, constant-tan and offset plots are very
similar and thus difficult to distinguish.
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(c) Monopulse error. Note that the measured and offset plots are very similar
and thus difficult to distinguish.

Figure 3.1: Measured and approximated sum- and difference-channel patterns and
monopulse error for an AN/FPQ-6 radar [70]. (Reprinted, with permission, from [1].
c©2009 IEEE.)
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(a) Sum channel. Note that the measured
and offset plots, and the equal spacing and
constant-tan plots are very similar and thus
difficult to distinguish.
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(b) Difference channel. Note that the mea-
sured, constant-tan and offset plots are very
similar and thus difficult to distinguish.
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(c) Monopulse error. Note that the measured and offset plots are very similar
and thus difficult to distinguish.

Figure 3.2: Measured and approximated sum- and difference-channel patterns and
monopulse error for a monopulse antenna manufactured by Q-par Angus Ltd [71].
(Reprinted, with permission, from [1]. c©2009 IEEE.)
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Measured: The measured sum- and difference-channel antenna patterns read from the
graphs in [70, 71]. The monopulse error was calculated from the quotient of the
magnitudes of the difference- and sum-channel antenna patterns.

Linear fit: A straight-line fit to the monopulse error that matches the monopulse error
gradient on boresight.

Equal spacing: The phase-comparison monopulse approximation in (3.12) with dp
chosen to match the monopulse error gradient on boresight.

Constant-tan: The phase-comparison monopulse approximation with a scaling factor
given in (3.17). The value of dp was determined using a line search to minimise the
error in (3.18). The monopulse error gradient on boresight was set equal to the
measured value for each value of dp by solving the gradient of (3.17) on boresight
for K giving

K =
2

βdp
· dMP

dθ

∣∣∣∣
θ=0

. (3.19)

Offset: The general case shown in (3.16), but with equal antenna element spacings
(dp = ds = dd). The values of dp and θ0 were determined using the Nelder-
Mead optimisation algorithm [72] to minimise the error in (3.18). The value of
K was used to match the measured monopulse error boresight gradient for each
combination of dp and θ0 by solving the gradient of (3.16) on boresight for K
giving

K =
2

βdp
cos

[
β
dp
2

sin (θ0)

]
dMP

dθ

∣∣∣∣
θ=0

. (3.20)

The patterns of the symmetrical antenna elements comprising the phase-comparison
systems were determined from the sum-channel antenna patterns because the difference-
channel patterns are very small near boresight leading to large errors.

The agreement between the measured and approximated sum- and difference-channel
patterns, and monopulse errors in Figures 3.1 and 3.2 is seen be good near boresight
in all cases. The linear approximation rapidly diverges from the strongly nonlinear
measured patterns as the 3 dB edges of the sum-channel antenna beam (approximately
−0.35◦ to 0.25◦ for the AN/FPQ-6 radar and −0.5◦ to 0.7◦ for the Q-par Angus Ltd
antenna) are approached. The equal-spacing phase-comparison approximation displays
the same shape as the measurements, but still exhibits significant errors near the 3 dB
edges of the sum-channel antenna beam. The addition of another degree of freedom by
including a scaling factor improves agreement between the approximate and measured
values to the point that the agreement is good even outside the sum-channel 3 dB
beamwidth. While not shown in Figures 3.1 and 3.2, using different spacings for the
sum- and difference-channel antenna elements gives results that are identical to this
case. Almost perfect agreement over the entire range of angles considered is obtained
when the angular offset of the sum-channel antenna pattern is accounted for. While not
shown, using different spacings for the sum- and difference-channel antenna elements
with a sum-channel angular offset gives results that are essentially identical to this case.

These results show that the use of different spacings for the sum- and difference-
channel antenna elements does not add significantly to the accuracy of the results. The
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use of a phase-comparison monopulse antenna with the same spacings for the sum-
and difference-channel antenna elements with a scaling factor in the difference-channel
return is thus sufficient to model any monopulse antenna.

The measured data used here are particularly challenging for most of the models con-
sidered because the sum-channel peak is offset from boresight as seen in Figures 3.1(a)
and 3.2(a). Only the offset case considers this fact, and the other cases’ inability to ac-
commodate the resulting asymmetry limits the attainable accuracy. This can be seen in
Figures 3.1(c) and 3.2(c) by noting that improving the accuracy of these approximations
on one side of boresight will decrease the accuracy on the other side of boresight.

3.4 Concluding Remarks

A generalised phase-comparison monopulse antenna has been shown to be a good model
for any monopulse antenna near boresight. The only restriction is that the monopulse
antenna patterns must be symmetrical. This means that any analysis of monopulse
radars only needs to consider the generalised phase-comparison case to be applicable to
any monopulse radar.

The measured patterns of an AN/FPQ-6 monopulse radar and a monopulse antenna
manufactured by Q-par Angus Ltd were used to demonstrate the accuracy that can be
achieved using this approach. The agreement between the measured and approximated
results improves as the complexity of the models is increased by adding additional
degrees of freedom.

A phase-comparison monopulse system is used to analyse a cross-eye jamming sce-
nario in Chapter 4. The equivalence proved above shows that the results of that analysis
are applicable to any monopulse radar near boresight.
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CHAPTER 4

MATHEMATICAL ANALYSIS

4.1 Introductory Remarks

This chapter outlines a comprehensive, rigorous mathematical analysis of an isolated,
single-loop, retrodirective cross-eye jammer against a phase-comparison monopulse sys-
tem. As shown in Chapter 3, a phase-comparison monopulse antenna is equivalent to any
monopulse antenna near boresight. This analysis overcomes the limitations of the ex-
isting analyses of cross-eye jamming by minimising the number of assumptions required
and by fully accounting for the retrodirective implementation of cross-eye jammers. The
work described in this chapter forms the basis of a published journal paper [2].1

The analysis of single-loop, retrodirective cross-eye jamming is presented in Sec-
tion 4.2, and the implications of this analysis are considered in Section 4.3 by evaluating
a representative missile engagement. Section 4.4 provides concluding remarks.

4.2 Mathematical Analysis

A comprehensive, rigorous analysis of retrodirective cross-eye jamming of a phase-
comparison monopulse radar is described in Section 4.2.1 and is shown to be equivalent
to a number of results that are known to be accurate (including the phase-front analysis)
in Section 4.2.2.

4.2.1 Extended Analysis of Cross-Eye Jamming

The geometry of an isolated single cross-eye jammer loop against a phase-comparison
monopulse antenna is given in Figure 4.1. The phase centres of the radar and jammer
antenna elements are denoted by circles and crosses respectively, and the position of the
apparent target is shown by a square. The parameters used in Figure 4.1 are defined
below:

dp: The spacing of the phase centres of the phase-comparison monopulse antenna ele-
ments. Only the phase centres of the radar antenna elements are shown in Fig-
ure 4.1, and the radar antenna elements will generally be large enough to meet at
the centre of the radar antenna. The same spacing is used for both the sum and
difference channels because using different spacings leads to extremely complex
results, and as shown in Section 3.3, the accuracy improvement when modelling
other types of monopulse antenna is minimal.

1Portions of this chapter are reprinted, with permission, from [2]. c©2009 IEEE.
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Figure 4.1: The geometry of a cross-eye jamming scenario with a phase-comparison
monopulse radar and an isolated single-loop cross-eye jammer. The phase centres of the
radar and jammer antenna elements are denoted by circles and crosses respectively, and
the position of the apparent target is shown by a square.

dc: The spacing of the phase centres of cross-eye jammer antenna elements. The jammer
antenna elements can be large, but even large jammer antenna elements will have
a substantial space between them.

do: The linear distance from the centre of the jammer to the position of the apparent
target created by the cross-eye jammer. This error definition is motivated by the
fact that the conventional analyses of cross-eye jamming suggest that a cross-eye
jammer produces a fixed linear error as discussed in Section 2.4.1

r: The range from the centre of the radar antenna to the centre of the jammer.

θr: The angle to the centre of the cross-eye jammer measured from the radar’s boresight.

θc: The rotation of the jammer system measured from the jammer’s broadside direction
to the centre of the radar. This rotation will generally be present in engagements
because it is extremely unlikely that the radar being jammed will appear in the
jammer’s broadside direction.2

θe: Half the angular separation of the jammer antenna elements as seen by the radar.
Exact and approximate values of θe and trigonometric functions of θe are consid-
ered in Appendix B.

From (3.9), the gain of the sum channel of the radar in the direction of the bottom
jammer antenna element will be

Sb = cos

[
β
dp
2

sin (θr − θe)
]
Pr (θr − θe) (4.1)

2The radar being jammed can be placed exactly in the jammer’s broadside direction if the jammer
can be rotated. However, cross-eye jamming requires a large spacing between the jammer antenna
elements (typically 10-20 m [19, 21]), and it is unlikely that such a large system will be mounted on a
rotating pedestal. This means that the entire platform carrying the cross-eye jammer will have to be
rotated to position the radar being jammed in the jammer’s broadside direction. While rotating the
platform can, and probably will be done, this will take time, so a sizable proportion of any engagement
will take place with the radar being jammed off the jammer’s broadside direction.
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and the gain of the sum channel of the radar in the direction of the top jammer antenna
element will be

St = cos

[
β
dp
2

sin (θr + θe)

]
Pr (θr + θe) (4.2)

where Pr (θ) is the pattern of the radar antenna elements. The constant factor 4 in (3.9)
has been included in Pr (θ) in (4.1) and (4.2) to simplify the results. The gain of the
difference channel of the radar in the direction of the bottom jammer antenna element
can be found from (3.10) to be

Db = j sin

[
β
dp
2

sin (θr − θe)
]
Pr (θr − θe) (4.3)

and the gain of the difference channel of the radar in the direction of the top jammer
antenna element will be

Dt = j sin

[
β
dp
2

sin (θr + θe)

]
Pr (θr + θe) (4.4)

where the factor 4 in (3.10) has again been included in Pr (θ).
These equations can be simplified by noting that [73]

sin (x± y) = sin (x) cos (y)± cos (x) sin (y) (4.5)

to obtain

β
dp
2

sin (θr ± θe) = β
dp
2

sin (θr) cos (θe)± β
dp
2

cos (θr) sin (θe) (4.6)

= k ± kc (4.7)

where the variables

k = β
dp
2

sin (θr) cos (θe) (4.8)

and

kc = β
dp
2

cos (θr) sin (θe) (4.9)

have been introduced to simplify the notation. The approximations to the sine and
cosine of θe described in Appendix B can be used to simplify the forms of (4.8) to (4.9)
to

k ≈ β
dp
2

sin (θr) (4.10)

kc ≈ β
dp
2

cos (θr) θe (4.11)

under the reasonable assumption that θe is small, or equivalently, that r � dc. Equa-
tion 6.34 on page 89 shows that kc can be accurately approximated by

kc ≈ β
dr
2
θe (4.12)

in the sum-channel main beam as long as the sum-channel antenna beam is narrow
(dp � λ).
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The sum- and difference-channel gains in (4.1) to (4.4) can now be simplified to

Sb = cos (k − kc)Pr (θr − θe) (4.13)

St = cos (k + kc)Pr (θr + θe) (4.14)

Db = j sin (k − kc)Pr (θr − θe) (4.15)

and

Dt = j sin (k + kc)Pr (θr + θe) . (4.16)

As explained in Section 2.5.2, the fact that a retrodirective cross-eye jammer is con-
sidered means that the signals passing through the jammer in the two possible directions
travel along exactly the same physical paths. The attenuation and phase shift due to
range and any common elements are thus identical for the two paths through the jam-
mer due to reciprocity [44, 45, 74]. The difference-channel return is normalised by the
sum-channel return during monopulse processing, so the effects of any common factors
are removed. The effects of range and common circuit elements are thus not explicitly
shown below without loss of generality.

The derivation below assumes that the signal that passes through the cross-eye
jammer from the top antenna element to the bottom antenna element has an amplitude
gain of a and a phase shift of φ relative to the signal that passes from the bottom
antenna element to the top antenna element.

The sum-channel signal received by the radar with thus be

SJ = SbPc (θc − θe)StPc (θc + θe) + aejφStPc (θc + θe)SbPc (θc − θe) (4.17)

=
(
1 + aejφ

)
SbPc (θc − θe)StPc (θc + θe) (4.18)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×(
1 + aejφ

)
cos (k − kc) cos (k + kc) (4.19)

where Pc (θ) is the pattern of the cross-eye jammer antenna elements.

Equation (4.19) can be simplified by using the following trigonometric identities [73]

cos (x± y) = cos (x) cos (y)∓ sin (x) sin (y) (4.20)

and

cos (2x) = 2 cos2 (x)− 1 (4.21)

= 1− 2 sin2 (x) (4.22)
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to simplify

cos (k − kc) cos (k + kc) = [cos (k) cos (kc) + sin (k) sin (kc)]×
[cos (k) cos (kc)− sin (k) sin (kc)] (4.23)

= cos2 (k) cos2 (kc)− sin2 (k) sin2 (kc) (4.24)

=
1

2
[1 + cos (2k)]

1

2
[1 + cos (2kc)]−

1

2
[1− cos (2k)]

1

2
[1− cos (2kc)] (4.25)

=
1

4
[1 + cos (2k) + cos (2kc) + cos (2k) cos (2kc)]−
1

4
[1− cos (2k)− cos (2kc) + cos (2k) cos (2kc)] (4.26)

=
1

2
[cos (2k) + cos (2kc)] (4.27)

which can now be substituted into (4.19) to give

SJ = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1

2

(
1 + aejφ

)
[cos (2k) + cos (2kc)] . (4.28)

The difference-channel signal received by the radar will be

DJ = SbPc (θc − θe)DtPc (θc + θe) + aejφStPc (θc + θe)DbPc (θc − θe) (4.29)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
j
[
cos (k − kc) sin (k + kc) + aejφ cos (k + kc) sin (k − kc)

]
. (4.30)

This can be simplified by using (4.5), (4.20), [73]

sin2 (x) + cos2 (x) = 1 (4.31)

and
sin (2x) = 2 sin (x) cos (x) (4.32)

to simplify

cos (k ∓ kc) sin (k ± kc) = [cos (k) cos (kc)± sin (k) sin (kc)]×
[sin (k) cos (kc)± cos (k) sin (kc)] (4.33)

= sin (k) cos (k) cos2 (kc)± cos2 (k) sin (kc) cos (kc)±
sin2 (k) sin (kc) cos (kc) + sin (k) cos (k) sin2 (kc) (4.34)

= sin (k) cos (k)
[
sin2 (kc) + cos2 (kc)

]
±

sin (kc) cos (kc)
[
sin2 (k) + cos2 (k)

]
(4.35)

= sin (k) cos (k)± sin (kc) cos (kc) (4.36)

=
1

2
[sin (2k)± sin (2k)] (4.37)

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 41

 
 
 



CHAPTER 4 MATHEMATICAL ANALYSIS

which can be substituted into (4.30) give

DJ = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2

{
[sin (2k) + sin (2kc)] + aejφ [sin (2k)− sin (2kc)]

}
(4.38)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2

[(
1 + aejφ

)
sin (2k) +

(
1− aejφ

)
sin (2kc)

]
. (4.39)

An exact monopulse processor forms its error signal by normalising the difference-
channel return in (4.39) by the sum-channel return in (4.28), and taking the imaginary
part of the result [15, 30] giving

MJ = =
{
DJ

SJ

}
(4.40)

= =

{
j
[(

1 + aejφ
)

sin (2k) +
(
1− aejφ

)
sin (2kc)

]
(1 + aejφ) [cos (2k) + cos (2kc)]

}
(4.41)

=
1

cos (2k) + cos (2kc)

[
sin (2k) + sin (2kc)<

{
1− aejφ

1 + aejφ

}]
(4.42)

where MJ is the monopulse error. The antenna patterns in the first lines of (4.28) and
(4.39) are common to both the sum- and difference-channel returns and have thus been
cancelled. The real part of the complex factor in (4.42) can be simplified as follows

<
{

1− aejφ

1 + aejφ

}
= <

{
1− aejφ

1 + aejφ
× 1 + ae−jφ

1 + ae−jφ

}
(4.43)

= <
{

1− aejφ + aejφ − a2

1 + aejφ + ae−jφ + a2

}
(4.44)

=
<{1− a2 − j2a sin (φ)}

1 + a2 + 2a cos (φ)
(4.45)

=
1− a2

1 + a2 + 2a cos (φ)
(4.46)

where the relationships [73]

cos (x) =
ejx + e−jx

2
(4.47)

and

sin (x) =
ejx − e−jx

2j
(4.48)

were used. The result in (4.46) can now be substituted into (4.42) to give

MJ =
1

cos (2k) + cos (2kc)

[
sin (2k) + sin (2kc)

1− a2

1 + a2 + 2a cos (φ)

]
. (4.49)

Using the definition of the cross-eye gain [9]

GC =
1− a2

1 + a2 + 2a cos (φ)
(4.50)
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reduces (4.49) to

MJ =
sin (2k) + sin (2kc)GC

cos (2k) + cos (2kc)
. (4.51)

As noted in Section 3.2.3, it is possible to add a constant scaling factor to (4.51)
as was done in (3.17) on page 32. This adds another degree of freedom, improving the
accuracy of this result when it is used as a model of other types of monopulse radar.

The process of normalising the difference-channel return by the sum-channel return
in (4.40) means that the amplitude and phase of the difference-channel return are nor-
malised to the amplitude and phase of the sum-channel return. Taking the imaginary
part of this result means that only that portion of the difference-channel return that
is in phase quadrature with the sum-channel return is used to compute the monopulse
error. This portion of the difference-channel return can be obtained from the monopulse
error by multiplying the monopulse error in (4.49) by the sum-channel return in (4.28)
giving

DJM = jMJSJ (4.52)

= j
sin (2k) + sin (2kc)GC

cos (2k) + cos (2kc)
×

Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1

2

(
1 + aejφ

)
[cos (2k) + cos (2kc)] (4.53)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2

(
1 + aejφ

)
[sin (2k) + sin (2kc)GC ] (4.54)

where the complex factor j has also been included to account for the fact that the
imaginary part of the quotient is used.

4.2.2 Equivalence to Other Results

The results derived in Section 4.2.1 are validated below by comparing them to other
results that are known to be accurate. Single targets are considered first, followed by an
analysis of a retrodirective beacon, and finally a comparison to the phase-front analysis
of glint and cross-eye jamming is given.

Point Targets

The analysis in Section 4.2.1 should reduce to the results presented in Section 3.2.2
for a single target under suitable conditions. The simplest way to adapt the results
in Section 4.2.1 to the single-target case is to make the spacing between the jammer
antenna elements zero (implying dc → 0, so θe → 0 and kc → 0).

The sum-channel return in (4.28) becomes

S1 = [Pr (θr)Pc (θc)]
2 1

2

(
1 + aejφ

)
[cos (2k) + 1] (4.55)

=
1

2
[Pr (θr) cos (k)]2 [Pc (θc)]

2 (1 + aejφ
)

(4.56)
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where (4.21) was used. The first term in square brackets in (4.56) is equal to the phase-
comparison sum-channel antenna pattern given in (3.9) on page 30 squared because the
sum-channel antenna beam is used for both transmission and reception in this case. The
remainder of (4.56) is related to the RCS of the target.

The difference-channel return in (4.39) becomes

D1 = [Pr (θr)Pc (θc)]
2 j

1

2

(
1 + aejφ

)
sin (2k) (4.57)

=
1

2
[Pr (θr) cos (k)] [jPr (θr) sin (k)] [Pc (θc)]

2 (1 + aejφ
)

(4.58)

where (4.32) was used. The first term in square brackets in (4.58) is equal to the
phase-comparison sum-channel antenna pattern given in (3.9) on page 30 because the
sum-channel antenna beam is used for transmission. The second term in square brackets
in (4.58) is equal to the phase-comparison difference-channel antenna pattern given in
(3.10) on page 30 because the difference-channel antenna beam is used for reception.
The remainder of (4.58) is again related to the RCS of the target, and is seen to be
identical to the portion of 4.56 that determines the RCS of the target.

The monopulse error is now determined from the imaginary part of the quotient of
(4.58) and (4.56) which is given by

M1 = =
{
D1

S1

}
(4.59)

= =

{
[2Pr (θr) cos (k)] [2jPr (θr) sin (k)] [Pc (θc)]

2 (1 + aejφ
)

[2Pr (θr) cos (k)]2 [Pc (θc)]
2 (1 + aejφ)

}
(4.60)

= tan (k) (4.61)

which is seen to be equal to (3.12) on page 30 which was derived for a point target. The
results in Section 4.2.1 thus agree with the results for a phase-comparison monopulse
antenna when a single target is considered.

Another possibility for generating a single target is to let a tend to either zero or
infinity to eliminate one of the paths through the jammer. The main problem with this
approach is that the sum- and difference-channel returns become infinite when a ap-
proaches infinity. Additionally, the relative phase shift of the two directions through the
jammer has no meaning here because allowing a to tend to either zero or infinity means
that signals only propagate through the jammer in one direction. Both these problems
are removed by normalising the sum- and difference-channel returns to

(
1 + aejφ

)
.

The normalised sum- and difference-channel returns from (4.28) and (4.39) are given
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by

S2

1 + aejφ
= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

1

2
[cos (2k) + cos (2kc)] (4.62)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1

2
{cos [βdp sin (θr) cos (θe)] + cos [βdp cos (θr) sin (θe)]} (4.63)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1

2

{
cos

[
β
dp
2

sin (θr + θe) + β
dp
2

sin (θr − θe)
]

+

cos

[
β
dp
2

sin (θr + θe)− β
dp
2

sin (θr − θe)
]}

(4.64)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

cos

[
β
dp
2

sin (θr + θe)

]
cos

[
β
dp
2

sin (θr − θe)
]

(4.65)

and

D2

1 + aejφ
= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2
[sin (2k)± sin (2kc)] (4.66)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2
{sin [βdp sin (θr) cos (θe)]± sin [βdp cos (θr) sin (θe)]} (4.67)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j
1

2

{
sin

[
β
dp
2

sin (θr + θe) + β
dp
2

sin (θr − θe)
]
±

sin

[
β
dp
2

sin (θr + θe)− β
dp
2

sin (θr − θe)
]}

(4.68)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×

j

 sin
[
β dp

2
sin (θr + θe)

]
cos
[
β dp

2
sin (θr − θe)

]
for a→ 0

cos
[
β dp

2
sin (θr + θe)

]
sin
[
β dp

2
sin (θr − θe)

]
for a→∞

(4.69)

where the trigonometric identities (4.5), (4.20) and [73]

2 sin (x) cos (y) = sin (x+ y) + sin (x− y) (4.70)

were used. The positive and negative signs in the difference-channel returns are the
cases where a tends to zero and infinity respectively.

The results in (4.65) and (4.69) are not the same as (3.9) on page 30 and (3.10) on
page 30 because the results above are valid for a retrodirective implementation of the
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system while the results in Section 3.2.2 only consider a point target. This means that
the above results include signals to both the target antenna element that receives the
signal from the radar and the target antenna element that transmits the signal back to
the radar. The results in Section 3.2.2 only give the results in the direction of the single
target.

The monopulse error is now determined from the imaginary part of the quotient of
(4.69) and (4.65) which is given by

M2 = =
{
D2

S2

}
(4.71)

= tan

[
β
dp
2

sin (θr ± θe)
]

(4.72)

which agrees perfectly with (3.12) on page 30 for a target in the relevant direction.
While it might appear surprising that the monopulse errors above and in Section 3.2.2

agree despite the fact that their sum- and difference-channel returns differ, this result
is actually expected. In the above case, the sum-channel gain in the direction of the
jammer antenna element used for reception from the radar is common to both the sum-
and difference-channel returns, so it cancels. The same process happens in Section 3.2.2,
except that the sum-channel gain for the transmitted signal is in the same direction as
the received signal and is thus not explicitly shown. Only the sum- and difference-
channel gains in the direction of the target antenna element that transmits the signal
back to the radar remain in both cases, leading to the same result.

Retrodirective Beacon

The analysis presented in Section 4.2.1 is performed with the objective of analysing
cross-eye jamming, but the result is general enough to be applied to other scenarios. A
retrodirective beacon (Van Atta array) consisting of two antenna elements with signals
that can propagate in both directions is one of the cases that is also covered by the
analysis in Section 4.2.1. A retrodirective beacon appears as a point target between the
its two antenna elements in its far-field region.

For a retrodirective beacon, a = 1 and φ = 0, so the sum- and difference-channel
returns from (4.28) and (4.39) are given by

SB = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
[cos (2k) + cos (2kc)] (4.73)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×[
2 cos2 (k)− 1 + cos (2kc)

]
(4.74)

and

DB = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
j sin (2k) (4.75)

= Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
2j sin (k) cos (k) (4.76)
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where (4.21) and (4.32) were used. These results assume that the radar antenna is not
in the far-field region of the beacon system, but a retrodirective beacon will generally be
used in its far-field region. The far-field assumption means that the range is increased
to the point that θe becomes essentially equal to zero making kc zero, and giving a
sum-channel return of

SB = 2 [Pr (θr) cos (k)]2 [Pc (θc)]
2 (4.77)

and a difference-channel return of

DB = 2 [Pr (θr) cos (k)] [jPr (θr) sin (k)] [Pc (θc)]
2 (4.78)

clearly showing the antenna beams used for transmission and reception. The factor 2
in (4.77) and (4.78) is due to the fact that there are two directions through the beacon
whose returns combine.

Based on (4.73) and (4.75), the monopulse error is given by

MB = =
{
DB

SB

}
(4.79)

=
sin (2k)

cos (2k) + cos (2kc)
(4.80)

which simplifies to

MB =
2 sin (k) cos (k)

2 cos2 (k)
(4.81)

= tan (k) (4.82)

when (4.77) and (4.78) are used. Given that θe is essentially zero, the cos (θe) term in k
becomes 1, and (4.82) reduces to

MB = tan

[
β
dp
2

sin (θr)

]
(4.83)

which is identical to the result for a point target given by (3.12) on page 30. As expected,
the result in (4.83) shows that a retrodirective beacon behaves like a point target in its
far-field region.

Phase-Front Analysis

The analyses of glint have been shown to be accurate through extensive measurements
over many years [31].3 The results derived in Section 4.2.1 should thus give the same
results as the analyses of glint described in Section 2.4.1 under the conditions for which
those analyses are valid.

3This thesis is based on overcoming the limitations of glint analyses when applied to the special
case of retrodirective cross-eye jamming, so the inaccuracies of conventional glint analyses applied to
this special case are highlighted throughout. However, this should not be interpreted as implying that
glint analyses are inaccurate when applied to glint. Retrodirective cross-eye jamming is a special case
that is not representative of glint in general, and approximations inherent in glint analyses that are
inaccurate when applied to retrodirective cross-eye jamming are accurate when applied to glint.
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As shown in Section 2.4.1, the monopulse indicated angle predicted by the conven-
tional glint analyses is given by (2.8) and (2.9) on page 13, which are repeated below
for convenience.

<{θi} = θr + θe
1− a2

1 + a2 + 2a cos (φ)
(4.84)

= θr + θeGC (4.85)

The monopulse error in (4.51) can be converted to a monopulse indicated angle using
(3.11) on page 30 to give

tan

[
β
dp
2

sin (θi)

]
=

sin (2k) + sin (2kc)GC

cos (2k) + cos (2kc)
(4.86)

where θr in (3.11) has been replaced by θi.
The main difference between (4.85) and (4.86) is the trigonometric functions in

(4.86). If it can be assumed that the arguments of all the trigonometric functions in
(4.86) are small, the following simplifications to (4.86) result

β
dp
2

sin (θi) ≈
2k + 2kcGC

1 + 1
(4.87)

β
dp
2

sin (θi) ≈ k + kcGC (4.88)

β
dp
2

sin (θi) ≈ β
dp
2

sin (θr) cos (θe) + β
dp
2

cos (θr) sin (θe)GC (4.89)

sin (θi) ≈ sin (θr) cos (θe) + cos (θr) sin (θe)GC (4.90)

sin (θi) ≈ sin (θr) + θeGC (4.91)

θi ≈ θr + θeGC (4.92)

where approximations in Appendix B have been used, and θi and θr have been assumed
to be small.

Equation (4.85) is thus approximately equal to (4.86) when the arguments of all the
trigonometric functions in (4.86) are small. This implies the following assumptions:
• The right-hand-side of (4.86) is small because otherwise the argument of the tan-

gent on the left-hand side of (4.86) will be large, echoing Ostrovityanov’s result [48]
presented in Section 2.4.2. This means that the product of the cross-eye gain and
jammer antenna element spacing must be small, providing the motivation for Vakin
and Shustov’s bound [12,16] considered in Section 2.4.2. However, a cross-eye jam-
mer seeks to create the largest possible error, and this requires high cross-eye gain
and large jammer antenna element spacing.
• The range is much greater than the jammer antenna element spacing (r � dc).

This assumption is shown to be very accurate in relative terms in Appendix B.4

• The target is not far from the radar’s boresight (θr is small). This assumption
limits the agreement to angles near the radar’s boresight. Again, this requirement
is counter to the objective of cross-eye jamming, which is to cause the largest
possible error to move the jammer as far from the radar’s boresight as possible.

4Appendix B also shows that this assumption is not necessarily accurate in absolute terms, so it
does not imply that the radar being jammed is in the cross-eye jammer’s far-field region – a condition
which would violate the one of the requirements for successful cross-eye jamming [19,21].
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• The indicated angle is small (θi is small). This assumption means that agreement
will be poor in the cross-eye jamming case where large indicated angles are sought.

The agreement between the extended and phase-front analyses will thus be good near
boresight for closely-spaced jammer antenna elements and/or small cross-eye gains. This
is in agreement with Vakin and Shustov’s requirements that a ≥ 0.9 or a ≤ 1.1, and
2θe ≤ 10% of the radar’s 3-dB beamwidth [12]. However, only the second assumption
above is valid in a cross-eye jamming scenario, again confirming the limitations of glint
analyses when applied to cross-eye jamming.

Another way of ensuring that the arguments of all the trigonometric functions in
(4.86) are small enough to make it approximately equal to (4.85) is to make the radar
antenna infinitesimally small by letting dp tend to zero. This provides further confirma-
tion that the linear-fit analysis implicitly assumes an infinitesimally small antenna as
stated in Section 2.4.2.

4.3 Results and Discussion

In this section, the extended analysis of cross-eye jamming derived in Section 4.2 is ex-
amined and compared to the linear-fit analysis for a typical cross-eye jamming scenario.
A number of cases that highlight differences between the results are considered, and the
implications of the results derived in Section 4.2 are highlighted. A far wider range of
parameters is considered in Chapter 5, where both the extended and linear-fit analyses
are compared to laboratory measurements.

The following parameters typical of a missile threat against an aircraft or ship will
be used in this section:

• 10◦ radar antenna beamwidth (dr = 2.54 wavelengths, and each radar antenna
element is a uniformly-excited aperture 2.54 wavelengths long),
• the jammer antenna elements are uniformly-excited apertures 2.54 wavelengths

long,
• 1 km jammer range (r = 1 km),
• 10 m jammer antenna element separation (dc = 10 m),
• 30◦ jammer rotation (θc = 30◦), and
• 0.5 dB jammer amplitude mismatch (a = 0.9441).

The total angular separation of the cross-eye jammer antenna elements as seen by the
radar for the parameters above is 0.4962◦ (θe = 0.2481◦), which is 5.0% of the radar
antenna’s 3-dB beamwidth. The value of the jammer phase match (φ) and the resulting
cross-eye gain (GC) will be specified on the figures below.

Results for a number of phase-match (and consequently cross-eye gain) cases are
shown in Figures 4.2 to 4.4 when the radar antenna is rotated. The case with the best
phase match (highest cross-eye gain) in Figure 4.4 is also considered at a range of 10 km
in Figure 4.5 to show the effect of varying the jammer antenna element spacing. Results
for the case where the jammer system is rotated are in given Figure 4.6 again for the
case in Figure 4.4 to show the effect of rotating the jammer system.

Results are given for both the extended analysis outlined in Section 4.2.1 and Sher-
man’s linear-fit analysis [30, 40] described in Section 2.4.1. The linear-fit analysis is
used here because the other analyses do not explicitly consider the sum- and difference-
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(a) Sum-channel return.
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(c) Indicated angle.

Figure 4.2: Monopulse signals when the radar antenna was rotated for a relative ampli-
tude and phase shift of 0.5 dB and 170◦ respectively giving a cross-eye gain of 3.42, and
a jammer antenna element spacing of 5.0% of the radar antenna beamwidth.

channel returns, apart from stating that the sum-channel return will be maximised when
the antenna aligns itself with the phase fronts or the Poynting-vector direction. Further-
more, the equivalence of the various glint analyses is shown in Section 2.4.1 [12,13,46,47],
so the results are applicable to all glint analyses.

The (a) and (b) portions of each figure show the sum- and difference-channel returns
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(a) Sum-channel return.
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(c) Indicated angle.

Figure 4.3: Monopulse signals when the radar antenna was rotated for a relative ampli-
tude and phase shift of 0.5 dB and 176.2◦ respectively giving a cross-eye gain of 14.94,
and a jammer antenna element spacing of 5.0% of the radar antenna beamwidth.

for each case, normalised to the returns that would have been received from a retrodi-
rective beacon (a = 1 and φ = 0◦) that is being perfectly tracked (θr = 0◦). The (b)
portions of each figure show both the total difference-channel return from (4.39) and the
portion of the difference-channel return used to form the monopulse error from (4.54).
Lastly, the monopulse indicated angle is plotted in the (c) portions of each figure.
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(a) Sum-channel return.
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Figure 4.4: Monopulse signals when the radar antenna was rotated for a relative am-
plitude and phase shift of 0.5 dB and 178◦ respectively giving a cross-eye gain of 25.41,
and a jammer antenna element spacing of 5.0% of the radar antenna beamwidth.

Figure 4.2 shows a case where the cross-eye gain is small, so the differences between
the linear-fit and extended analyses are expected to show good agreement. The dif-
ferences between the sum- and difference-channel returns using the two analyses are
mainly due to the fact that the linear-fit analysis only considers the antenna patterns
near boresight. Despite this, the agreement near boresight is still very good. The agree-
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(a) Sum-channel return.
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Figure 4.5: Monopulse signals when the radar antenna was rotated for a relative am-
plitude and phase shift of 0.5 dB and 178◦ respectively giving a cross-eye gain of 25.41,
at a range of 10 km giving a jammer antenna element spacing of 0.50% of the radar
antenna beamwidth.

ment between the indicated angles for the two analyses are excellent even well outside
the radar’s 3 dB beamwidth (−5◦ to 5◦).

The vertical lines in the indicated-angle plots for the extended analysis are due to
sign changes in the sum-channel return near its first null. This behaviour is obviously
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Figure 4.6: Monopulse signals when the jammer antenna was rotated for a relative
amplitude and phase shift of 0.5 dB and 178◦ respectively giving a cross-eye gain of
25.41, and a jammer antenna element spacing of 5.0% of the radar antenna beamwidth.

not seen in the linear-fit results because the linear-fit analysis only considers the antenna
patterns near boresight.

The extended-analysis indicated-angle plot is zero at more than one radar rotation
angle. However, only the zero nearest boresight is stable because the signs of the in-
dicated angle will drive the radar away from the position of the other indicated-angle
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zero. Combinations of stable and unstable monopulse error zeros have been observed
by other researchers [8, 34].

As in Section 4.2.2, the results in Figure 4.2 thus serve to validate the extended
analysis because they show that the extended analysis agrees well with the linear-fit
analysis under the conditions for which the linear-fit analysis is known to be accurate.

A higher cross-eye gain is used in Figure 4.3, and differences between the linear-
fit and extended analyses start to emerge. As before, the sum- and difference-channel
returns display good agreement near boresight, but differences in the difference-channel
return used to form the monopulse error are apparent. The agreement in the indicated
angle is significantly poorer than for Figure 4.2, but is still reasonable. As explained in
Section 4.2.2, the agreement is expected to be good near boresight, but to diverge as
the target moves away from the radar’s boresight, and this behaviour is clearly seen in
Figure 4.3(c). The most significant difference is that the linear-fit analysis predicts an
angular error that is well within the 3 dB beamwidth of the radar antenna, while the
extended analysis shows that the indicated angle is not zero at any angle.

Figure 4.4 gives the results for a high cross-eye gain. As expected from the discus-
sion in Section 4.2.2, the agreement between the two analyses is poor. Only the sum-
and difference-channel returns show reasonable agreement, and even then, only near
boresight.

The same case considered in Figure 4.4 is shown in Figure 4.5 at a range of 10 km
to reduce the angular separation of the jammer antenna elements to 0.04962◦ (θe =
0.02481◦). The agreement between the linear-fit and extended analyses is again seen to
be excellent because the large cross-eye gain is compensated by the very small jammer
antenna element angular separation as expected from Section 4.2.2. The spacing of the
vertical lines has also decreased to match the reduced spacing of the jammer antenna
elements.

The case considered in Figure 4.4 is again considered in Figure 4.6, but for the case
where the jammer is kept on the radar’s boresight and the jammer system is rotated. The
agreement is generally good because the jammer is always on the radar’s boresight and
the agreement has already been shown to be good in this case. The extended-analysis
plots clearly show variations due to the jammer antenna element patterns which are not
considered in the equivalent linear-fit plots. However, these variations do not appear in
the indicated angle plots in Figure 4.6(c) because, as shown in Section 4.2.1, the jammer
antenna element patterns cancel out when the monopulse error is formed.

The very slight variations with angle for the linear-fit analysis in Figure 4.6(b) and
both analyses in Figure 4.6(c) are due to changes in the projected spacing of the jammer
antenna elements as seen by the radar.

The first important conclusion from these results is that the sum-channel return
decreases as the cross-eye gain increases. This is caused by the fact that the relative
phase shift of the two directions through the jammer is very close to 180◦, so the jammer
returns cancel at the radar. This fact is well-known in the literature and is generally
considered one of the drawbacks of cross-eye jamming [6–11,13,15,17,19–22,25,34,35].
A cross-eye jammer must thus have a very high gain, particularly when the jammer
return has to compete with a platform’s skin return.

The gain of the jammer antenna elements has no effect on the angular error induced
in the radar being jammed. This suggests that constructing a cross-eye jammer using
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low-gain, wide-beamwidth antenna elements would be beneficial by allowing the jammer
to cover wide angular regions. However, the signal received by the radar being jammed
is typically small, so the use of antenna elements with higher gains is beneficial because
it decreases the gain and power required from the jammer system [19,21].

A very significant new result from the extended analysis is that the direction of the
peak of the sum-channel return is not affected by a retrodirective cross-eye jammer. This
means that any radar system that uses the same antenna beam for transmission and
reception (e.g. some types of conical-scan radar) will not be affected by a retrodirective
cross-eye jammer. This disagrees with the widely-held view that cross-eye jamming
affects all types of radar (e.g. [6, 9–11, 14, 18, 20, 22, 25, 34, 64]). However, this result is
not surprising because both directions through a retrodirective cross-eye jammer pass
through both jammer antenna elements and the sum-channel antenna beam is used for
both transmission and reception. This means that the sum-channel gain to each jammer
antenna element appears in the signal received from both directions through the cross-
eye jammer, so the total sum-channel gain for each direction through the jammer is
identical. This is not the case for glint because the sum-channel gain will differ in the
directions to the two scatterers.

The total difference-channel return is seen to vary very little between the cases
considered here with the notable exception of the long-range case. However, the portion
of the difference-channel return used to form the monopulse error varies dramatically,
approaching the total difference-channel return as the cross-eye gain increases. The
portion of the difference-channel return used to form the monopulse error never becomes
zero in the sum-channel main beam when the cross-eye gain and jammer antenna element
spacings are large (Figures 4.3(b) and 4.4(b)). This means that, in the ideal case, the
settling angle will not exist under these conditions, and a monopulse radar will not be
able to track the target generated by the cross-eye jammer.

The behaviour of the indicated angle mirrors that of the difference-channel return,
but with a slightly better agreement between the two analyses. As in the difference-
channel case, the indicated angle never becomes zero in the cases where the cross-eye gain
and jammer antenna element separation are large (Figures 4.3(c) and 4.4(c)), confirming
that, under ideal conditions, a monopulse radar will not be able to track the target
formed by a cross-eye jammer in this case. This is an exceedingly important new result
which suggests that a well-matched retrodirective cross-eye jammer will actually be able
to break a radar’s lock. This result is in stark contrast to the widely-held view that
the largest error a cross-eye jammer can produce is smaller than the 3-dB beamwidth of
the radar being jammed [8, 12, 16, 24, 25, 34]. The conditions under which the indicated
angle never becomes zero are investigated in Chapter 6.

The behaviour of the difference-channel return and the indicated angle can be ex-
plained by noting the form of the difference-channel returns in (4.39) and (4.54), and
the monopulse error in (4.51). All these equations contain a term that is minimised
(the term containing k) and another term that is maximised (the term containing kc)
when the radar is perfectly tracking the cross-eye jammer. The cross-eye gain determines
which of these two terms dominates the overall difference-channel return and monopulse
error, with higher cross-eye gains causing larger errors.

The indicated angle on boresight for the extended analysis is smaller than for the
linear-fit analysis. This result is expected because the phase-front analysis linearises
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an arctangent function [48] as described in Section 2.4.1, and the true value of the
arctangent function is always less than or equal to the linearised value used.

The results presented in Figure 4.2 violate Vakin and Shustov’s bound [12, 16] con-
sidered in Section 2.4.2 because the relative amplitude of the two directions through
the jammer is outside the allowable range, suggesting that the phase-front analysis will
be inaccurate in this case. Despite this, the agreement between the results based on
the phase-front analysis and the extended analysis is excellent, suggesting that Vakin
and Shustov’s bound does not adequately consider all the factors that determine the
accuracy of the phase-front analysis.

4.4 Concluding Remarks

A comprehensive, rigorous analysis of the effect of an isolated, single-loop, retrodirective
cross-eye jammer on a monopulse radar was performed. The equivalence of the new
results and a number of results known to be accurate was demonstrated. Plots comparing
the traditional and extended analyses were provided.

Results which are known in the literature and are supported by the new analysis are
listed below.
• The sum-channel return decreases as the amplitude and phase match approach

the ideal conditions for a cross-eye jammer.
• Higher cross-eye gains lead to larger angular errors.
• Increasing the angular separation of the jammer antenna elements increases the

angular error induced in the radar being jammed.
• The gain of the cross-eye jammer antenna elements does not affect the induced

angular error, but does affect the strength of the signal received by the radar being
jammed.
• The monopulse indicated angle predicted by the traditional analysis on boresight

is optimistic.
A number of new results that arise from a consideration of the extended analysis are

listed below.
• The sum-channel return does not display any angular error against a retrodirective

cross-eye jammer. This result will apply to any radar that uses the same antenna
beam for transmission and reception (e.g. some types of conical-scan radar).
• The portion of the difference-channel return used to form the monopulse error

as a proportion of the total difference-channel return increases with increasing
cross-eye gain.
• The angular error predicted by the conventional analyses is conservative.
• There are cases where the monopulse error never becomes zero inside the radar’s

sum-channel antenna beam.
The theoretical results derived in this chapter are validated by the laboratory exper-

iments described in Chapter 5.
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CHAPTER 5

EXPERIMENTS

5.1 Introductory Remarks

The extended analysis of retrodirective cross-eye jamming given in Chapter 4 leads
to a number of new conclusions about cross-eye jamming. Given the significance of
these conclusions, it is important to have experimental data to validate the theoretical
analysis. This chapter describes experiments conducted for this purpose. The work
described in this chapter forms the basis of a submitted journal paper [3].1

The laboratory setup is described in Section 5.2 and the processing of the measured
data is considered in Section 5.3. Section 5.4 presents results and compares them to both
the conventional phase-front analysis and the extended analysis developed in Chapter 4.
Finally, concluding remarks are given in Section 5.5.

5.2 Experimental Setup

The measurement setup is described in this section. The overall layout of the experi-
ments is considered in Section 5.2.1, and the radar and jammer systems are considered
in detail in Sections 5.2.2 and 5.2.3 respectively.

5.2.1 Overall Layout

The experiments were conducted in an anechoic chamber to minimise the effects of sys-
tems and scatterers that are not part of either the radar or jammer systems. The largest
facility available for this purpose was the University of Pretoria’s compact measurement
range.

The compact range was completely reconfigured to allow it to be used as an anechoic
chamber rather than as a compact range. This was done by placing one set of antennas
at the back of the compact range, and the other set of antennas on the positioner in the
middle of the compact range to allow them to be rotated. Unfortunately, the reflector
normally used for measurements in the compact range is an integral part of the compact
range and cannot be moved from the front of the range, so the reflector is present in the
measurements as an unwanted scatterer.

One of the conclusions of the extended analysis in Chapter 4 is that the patterns of
the antenna elements used to form the radar and jammer have no effect on the resulting
monopulse indicated angle. This conclusion can be confirmed by rotating both the radar
and jammer systems relative to one another. The relative rotation of the radar and
jamming systems was achieved by first rotating the radar system using the positioner

1Portions of this chapter are reprinted, with permission, from [3]. c©2009 IEEE.
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(a) Radar is rotated.

(b) Jammer is rotated.

Figure 5.1: The two configurations used for the experimental validation. The compact
range’s reflector is included to indicate the positions of the systems in the compact
range, but was not used during the measurements (though it was present as an undesired
scatterer).

Table 5.1: Measured system dimensions.

Parameter
Value

Radar rotated Jammer rotated
Radar antenna spacing 70 mm 70 mm
Jammer antenna spacing 552/398 mm 483 mm
Range from radar to jammer 6.3 m 6.3 m

in the anechoic chamber while keeping the jammer system at a fixed orientation, and
subsequently rotating the jammer system using the positioner while keeping the radar
system at a fixed orientation. The two configurations used for the measurements are
shown in Figure 5.1.

The measured dimensions of the system are shown in Table 5.1. Two cases using
different jammer circuitry and jammer antenna spacings were considered when the radar
was rotated to demonstrate the robustness of the analysis. A laser was used to align the
radar and jammer antennas to point at one another’s centres when the rotation angle
was zero. Minor errors in the measured values and alignment are not critical because
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CHAPTER 5 EXPERIMENTS

precise values are calculated during the data processing described in Section 5.3.

5.2.2 Radar System

The phase-comparison monopulse radar system was constructed from two wideband
ridged horn antennas connected to a Hewlett-Packard 8720D network analyser. The
antennas were connected to the network analyser ports and samplers (for transmission
and reception respectively) using four 15 m coaxial cables. Each radar antenna element
was connected to a circulator to isolate the transmitted and received signals, and a Low-
Noise Amplifier (LNA) was used to compensate for the cable loss. The radar antenna
configuration is shown in Figure 5.2(a).

This configuration was used because it provides extremely high isolation between
the signals transmitted and received by the network analyser while maintaining low
measurement noise. High isolation is achieved by inserting the cable loss and circulator
isolation between the network analyser’s sources and samplers, though the LNA does
reduce this isolation somewhat. Low measurement noise is achieved by including LNAs
at the radar antenna elements and by directly accessing the network analyser’s samplers
for the received signals, thereby removing the loss associated with the network analyser’s
couplers during reception.

The network analyser used has a connector for direct access to the source, allowing
the network analyser’s couplers and their loss to be bypassed on transmission. However,
using this direct connection would have required either external circuitry or additional
measurements to switch transmission between the two radar antenna elements. The
additional complexity this would have entailed was not justified because the Signal-to-
Noise Ratio (SNR) of the measurements was already high.

The sum- and difference-channel returns can be computed from the calibrated S
parameters measured with the network analyser by noting that the total signal received
by each of the radar antenna elements is

R1 = S11 + S12 (5.1)

R2 = S21 + S22 (5.2)

where R1 and R2 are the returns received by the two radar antenna elements. The sum-
and difference-channel returns can be calculated using

Sm = R1 +R2 (5.3)

= S11 + S12 + S21 + S22 (5.4)

Dm = R1 −R2 (5.5)

= S11 + S12 − S21 − S22 (5.6)

where Sm and Dm are the measured sum- and difference-channel returns respectively.
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(a) Photo of the radar system showing the antennas, circulators, LNAs
and cables.

(b) Photo of the antennas representing the jammer system. The compact
range’s reflector (not used during these measurements) is visible in the
background.

Figure 5.2: Photographs of the measurement setup. (Reprinted, with permission, from
[3]. c©2009 IEEE.)
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Figure 5.3: The use of superposition allows a high-gain cross-eye jammer to be simulated
without requiring high isolation. (Reprinted, with permission, from [3]. c©2009 IEEE.)

5.2.3 Jammer System

The jammer system is shown in Figure 5.2(b) and consisted of two wideband ridged
horn antennas connected by one 15 m coaxial cable and one 2 m coaxial cable when the
radar system rotated (Figure 5.1(a)) and by two 15 m coaxial cables when the jammer
system was rotated (Figure 5.1(b)). The main benefit of using such long cables was that
the jammer return was delayed so that it appeared to be outside the physical extent of
the anechoic chamber. This allowed the jammer return to be isolated from other stray
returns inside the anechoic chamber using time-domain techniques. Having returns
outside the physical dimensions of the anechoic chamber means that the measurements
only have to compete with weaker multiple reflections. This was particularly important
because it was not possible to remove the compact range’s reflector, so it was present
in the measurements as a large unwanted scatterer.

The main problem with implementing a cross-eye jammer is obtaining a jammer
gain that is high enough to produce a detectable signal in the radar being jammed while
maintaining sufficient isolation between the two directions through the jammer to avoid
oscillation. This problem was avoided here by performing one measurement using high-
gain amplifiers in one direction through the jammer, performing a second measurement
with the jammer amplifiers in the other direction, and then combining the two mea-
surements to obtain the final result as shown in Figure 5.3. This approach produces
good results in a temperature-controlled environment when high-quality measurement
equipment is used because system variations between the measurements are small. The
data processing described in Section 5.3 considers any variations between measurements
to be due to the jammer system, so such variations do not adversely affect the results.

It is extremely difficult to simultaneously obtain relative amplitudes and phase shifts
close to 0 dB and 180◦ respectively over wide bandwidths, and variations from these
desired values were present in the measured results. This is actually beneficial here
because a wide range of jammer parameters were obtained. Two cases with different
jammer circuitry and jammer antenna spacings were measured when the radar was
rotated to obtain an even wider range of jammer parameters.
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CHAPTER 5 EXPERIMENTS

Figure 5.4: A flow chart summarising the data processing procedure.

5.3 Data Processing

The data must be processed to remove the effects of the measurement equipment. The
process used here consists of the following three steps:

1. time gating,
2. determining system parameters, and
3. measurement system compensation.
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(b) S12
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(c) S21
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(d) S22

Figure 5.5: Time-domain plots of the measured S parameters for the configuration
where the radar was rotated as shown in Figure 5.1(a), but with the jammer antennas
terminated by matched loads.

These steps are considered in Sections 5.3.1, 5.3.2 and 5.3.3 respectively. The data
processing procedure is summarised in the flow chart shown in Figure 5.4.

5.3.1 Time Gating

The purpose of the time gating performed on the measured data is to extract the jammer
return from the measured data by suppressing all other returns. Although the anechoic
chamber is lined with absorbing material, a number of stray reflections are still present
in the measured data.

Windowing was applied to the time-domain plots in this section to suppress the
sidelobes of the very high peaks. A Blackman window was used as a compromise between
a narrow passband and low sidelobes [75].

Figure 5.5 shows time-domain plots of the S parameters measured by the network
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Figure 5.6: Time-domain plots of the measured S parameters for one direction through
the jammer for case 1 when the radar was rotated as shown in Figure 5.1(a).

analyser with the jammer antennas terminated in matched loads to minimise their re-
flections. Time-domain plots of the measured data at a rotation of 0◦ when the radar
and jammer systems were rotated are shown in Figures 5.6 and 5.7 respectively (note
the scale change from Figure 5.5).

The sources of some of the reflections are identified in Table 5.2. The background
measurements in Figure 5.5 clearly show the sidelobes due to phase noise in the network
analyser’s synthesisers, particularly around the radar antenna reflections at 126 ns. The
presence of the compact range’s reflector as an undesired scatterer and source of multiple
reflections is clearly shown in all cases. Some of the multiple reflections appear to come
from inside the cable between the network analyser and the radar antenna elements
because the time-domain processing causes ranges to alias to lower values when they
exceed the unambiguous range (320 ns in this case). The multiple reflections are greater
when the radar is rotated because the high-gain jammer system at the back of the
anechoic chamber is pointing towards the compact range’s large reflector at the front of
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(c) S21
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Figure 5.7: Time-domain plots of the measured S parameters for one direction through
the jammer when the jammer system was rotated as shown in Figure 5.1(b).

Table 5.2: Sources of reflections.

Source
Delay (ns)

Figures 5.5 and 5.6 Figure 5.7
Radar antennas 126 126
Jammer pedestal 169 169
Back wall/range reflector 178 222
Jammer system 246 302
First multiple reflection 417/97 none
Second multiple reflection 685/45 none

the compact range as shown in Figure 5.1(a).
Comparing Figure 5.5 to Figures 5.6 and 5.7 shows that the jammer signals are

much stronger than the background reflections at the same time delays. However, the
jammer signal is not strong enough to dominate the total signal when the signals at all
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(a) Envelope.
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(b) Desired attenuation.
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(c) Desired attenuation around zero.
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(d) Symmetrical desired attenuation.
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(e) Filter amplitude response.
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(f) Filter phase response.

Figure 5.8: Steps in the process of designing the FIR filters used for time gating. Note
the change in the time axis from (c) onwards.
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ranges are considered, particularly for the S11 and S22 measurements where the radar
antenna element reflections at 126 ns are large. The need for time gaining to reduce
the strong undesired signals at delays removed from the jammer signals’ delays is thus
clearly demonstrated.

Time-gating filters were used to extract the desired jammer contribution from the
measured data and to eliminate the unwanted reflections. The time-gating filters used
were 101-coefficient Finite Impulse Response (FIR) filters whose attenuations were op-
timised to be highest where the unwanted reflections are strongest. The filter design
procedure is summarised in Figure 5.8 for case 1 when the radar was rotated.

The first step was to find the maximum return at each range by considering all the
S parameters at all rotation angles for both directions through the jammer giving the
envelope shown in Figure 5.8(a). The desired attenuation at each range was determined
by calculating the attenuation necessary to reduce the envelope to a constant level as
shown in Figure 5.8(b). Figure 5.8(b) also shows that the desired attenuation at the
signal’s delay (the passband) is zero. A linear phase shift was added to the desired
attenuation to shift the passband to the origin as shown in Figure 5.8(c) and the de-
sired attenuation was made symmetrical as shown in Figure 5.8(d). The FIR filter was
designed using the approach described below giving the amplitude and phase responses
shown in Figures 5.8(e) and 5.8(f) respectively. The steps in the phase response in Fig-
ure 5.8(f) are due to roots on the unit circle which cause phase inversions. Lastly, the
passband was moved back to the appropriate delay by adding the inverse of the linear
phase shift used to move the passband to the origin, giving results like those shown in
Figure 5.9.

A FIR filter with its passband at the origin will have a linear phase response (constant
group delay) as long as the its impulse response is real and symmetric or antisymmetric
[76]. This places the following requirements on a linear-phase FIR filter’s roots [76]:

• all roots that are on the unit circle must occur in complex conjugate pairs, and
• all roots that are not on the unit circle must occur in groups of two complex

conjugate pairs, where the magnitude of each complex conjugate pair is the inverse
of the magnitude of the other complex conjugate pair.

The second condition reduces to a single pair of roots each of whose magnitude is the
inverse of the other’s when the roots are on the real axis.

The 101-coefficient FIR filters used have 100 roots of which 98 were placed on the
unit circle in complex conjugate pairs, and 2 of which were placed on the positive real
axis to broaden the passband. The positions of the roots were adjusted using the Nelder-
Mead algorithm [72] to minimise the passband variation while ensuring that the highest
sidelobe values were equal to the desired attenuation.

The very high order of the filters meant that each of the filters had to be realised by
cascading two 51-coefficient FIR filters to avoid rounding errors. The roots on the unit
circle were alternately assigned to the 51-coefficient FIR filters in complex conjugate
pairs to ensure that adjacent roots were not in the same filter. Each of the 51-coefficient
FIR filters was assigned one of the two roots that were not on the unit circle.

The result of applying the time-gating filters to the responses in Figures 5.9(a)
and 5.9(b) is shown in Figures 5.9(c) and 5.9(d) respectively. The effect of the filter
design is seen by the fact that the filter responses in Figures 5.9(c) and 5.9(d) have
high attenuations where the signals in Figures 5.9(a) and 5.9(b) have large returns. For
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(a) Raw response when the radar was rotated.
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(b) Raw response when the jammer was ro-
tated.
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(c) Time-gated response when the radar was
rotated.
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(d) Time-gated response when the jammer
was rotated.

Figure 5.9: Time-domain plots of the measured S22 data for one direction through the
jammer before and after time gating.

example, the return from the compact range’s reflector at 222 ns in Figure 5.9(b) is
strongly attenuated by the time-gating filter as shown in Figure 5.9(d). The almost
constant signal level away from the jammer system return in Figures 5.9(c) and 5.9(d)
again reflects the FIR filter design procedure used.

5.3.2 Determining System Parameters

The parameters and positions of the radar and jammer systems must be determined as
a prelude to determining the measurement equipment effects.

The fact that, as shown in Figure 5.3, two measurements were performed for each
setup shown in Figure 5.1 means that a total of eight S parameters were measured at
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Figure 5.10: The paths between the radar and jammer antenna elements for the two sets
of S parameter measurements. (Reprinted, with permission, from [3]. c©2009 IEEE.)

each frequency and aspect angle. The desired parameters are estimated using these
eight measured S parameters.

Considering the model in Figure 5.10, the physical path lengths for S11 of measure-
ment one (paths 1 and 3) and of measurement two (paths 3 and 1) are exactly the same,
though the direction through the jammer is reversed. The same is true for the path
lengths for S22 of measurement one (paths 2 and 4) and of measurement two (paths 4
and 2). This means that the relative amplitude and phase shift through the jammer can
be determined directly from the two sets of S11 and S22 measurements.

This approach assumes that all differences between the S11 and S22 measurements
for the two directions through the jammer are due to the jammer system. As mentioned
in Section 5.2.3, any variations caused by reversing the jammer amplifiers will thus be
considered to be part of the jammer. This means that such variations are not a problem
here because the objective of these experiments is to investigate retrodirective cross-eye
jamming over a wide range of system parameters.

The relative amplitudes and phases obtained using the procedure described above
for the three cases considered here are plotted in Figure 5.11. The fact that case 1 when
the radar was rotated and the case when the jammer was rotated used the same jammer
circuitry is evident from Figures 5.11(a) and 5.11(c). While between Figures 5.11(a) and
5.11(c) are evident, the robustness of the process to determine the jammer parameters
is clearly demonstrated by the fact that the mean amplitude and phase differences are
less than 0.4 dB and less than 4◦ respectively, while the maximum differences are less
than 1.4 dB and less than 7◦ respectively. These differences are acceptable because
phase-stable cables were not used, two connections had to be loosened and fastened
whenever the jammer amplifiers were reversed, and different cables were used in the two
cases highlighted.

The antenna positions were estimated from the two sets of S12 and S21 measurements.
The S12 and S21 measurements have different physical path lengths as a consequence of
the change of direction through the jammer. The S12 measurements travel along paths
2 and 3, and paths 4 and 1 in Figure 5.10 for measurements one and two respectively.
For the S21 measurements, the signals travel along paths 1 and 4, and paths 3 and
2 in Figure 5.10 for measurements one and two respectively. The phase differences
between the S12 measurements for the two directions through the jammer and the phase
differences between the S21 measurements for the two directions through the jammer
can thus be used as error functions that must be minimised to estimate the path lengths
between the antennas in Figure 5.10.

The path phase shifts depend on the positions of the radar and jammer antenna
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(a) Radar rotated, case 1.
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(b) Radar rotated, case 2.
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(c) Jammer rotated.

Figure 5.11: The relative amplitude and phase of the cross-eye jammer systems used
during the measurements.
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Figure 5.12: The model of the antenna positions used for data processing.

Table 5.3: Computed system dimensions.
Value

Parameter Radar rotated Jammer rotated
Case 1 Case 2

x1 35.78 mm 35.67 mm 72.19 mm
y1 35.17 mm 35.16 mm 246.5 mm
x2 35.70 mm 35.50 mm 72.09 mm
y2 −35.23 mm −35.12 mm −242.2 mm
dc 550.8 mm 397.5 mm 70.96 mm
r 6.300 m 6.304 m 6.303 m

Antenna spacing 70.39 mm 70.29 mm 488.7 mm
Antenna rotation −0.06◦ −0.14◦ −0.01◦

elements as a function of both frequency and rotation angle. The model used for the
system is shown in Figure 5.12. The system being rotated (radar or jammer) is placed
at the origin while the other system is placed at some distance from the origin. Four
degrees of freedom are required for the antennas being rotated to allow for angular
offset, down-range offset, cross-range offset and antenna spacing. The fixed antennas
are positioned symmetrically around the x axis because any angular offset is included
in the rotated antenna positions. The fact that the fixed antennas do not rotate means
that only the projected spacing of the fixed antennas can be determined.

The parameters in Figure 5.12 were fitted to the measured data using the Nelder-
Mead local optimisation algorithm [72] because this algorithm does not require gradient
information and good starting values were available in the form of the measured antenna
positions. The jammer phase shift calculated from S11 and S22 as described above, and
the phase shift due to the positions of the antennas shown in Figure 5.12 were removed
from the phases of the S12 and S21 measurements. As explained above, this procedure
should only leave the effect of the measurement equipment, so the remaining phases of
the S12 and S21 measurements should thus be identical for each of the two directions
through the cross-eye jammer. The positions of the antennas were then adjusted by
the optimisation algorithm to minimise the differences between the remaining S12 and
S21 phases for each of the two directions through the cross-eye jammer. The positions
determined using the technique described above are given in Table 5.3.
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Comparisons between the measured values in Table 5.1 and the computed values in
Table 5.3 show excellent agreement. Furthermore, the agreement between the values
of the common parameters for cases 1 and 2 when the radar was rotated demonstrates
the robustness of the position calibration procedure. The down-range positions (x1 and
x2) arise because the antennas’ phase centres were not aligned with the axis of rotation.
However, even here the agreement is good because the antennas are 70 mm long, and
their midpoints and backs were aligned with the axis of rotation when the radar and
jammer systems were rotated respectively.

5.3.3 Measurement System Compensation

Once the relative amplitude and phase shift of the two directions through the jammer
and the accurate positions of the antennas are known, the effects of the measurement
equipment (amplitude and phase variations due to the network analyser, antennas, ca-
bles, amplifiers and circulators) can be determined. These equipment effects are then
removed from the measured data, leaving only the desired jammer and spatial orienta-
tion effects of the radar and jammer systems.

The measurement equipment effects are estimated for each of the transmit and re-
ceive paths as a function of frequency. This is done by removing the jammer system
effects and the phase shifts due to the radar and jammer antenna element positions
calculated previously from the measured data at a rotation of 0◦, leaving only the mea-
surement equipment effects. These measurement equipment effects are then removed
from the measurements at all angles so that only the desired radar and jammer effects
as a function of frequency and angle remain.

5.4 Results and Discussion

Measured and computed results over a wide range of jammer parameters are plotted in
Figures 5.13 and 5.14 when the radar was rotated, and in Figure 5.15 when the jammer
was rotated. Specific cases are then considered in more detail in Figures 5.16 to 5.19.

The magnitude of the monopulse error is plotted on a logarithmic scale in Fig-
ures 5.13 to 5.15 because this format accentuates the differences between the measured
and calculated results. The angular error predicted by the conventional phase-front
theory is plotted in Figures 5.13 and 5.14 as a white line. Figures 5.13 and 5.14 plot
the results as a function of both frequency and angle, while Figure 5.15 only plots the
results as a function of frequency because, as shown in Figures 4.2 to 4.6 on pages 50 to
54, radar rotation has a significant effect on the monopulse error while jammer rotation
only produces a small effect on the monopulse error. The measurement system compen-
sation was performed at a rotation of 0◦, so the results in Figure 5.15 are plotted at a
jammer rotation of 5◦.

The angles of the first monopulse error peaks in Figures 5.13 and 5.14 move closer to
boresight as the frequency increases. This is because the radar antenna element spacing
as a function of wavelength increases with frequency, thereby narrowing radar antenna
patterns.
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(a) Measured.

(b) Calculated.

Figure 5.13: Magnitude of the monopulse error for case 1 when the radar was rotated.
The jammer parameters are given in Figure 5.11(a), and the jammer antenna element
spacing is 5.006◦ as seen by the radar. The white line shows the error predicted by the
phase-front analysis.
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(a) Measured.

(b) Calculated.

Figure 5.14: Magnitude of the monopulse error for case 2 when the radar was rotated.
The jammer parameters are given in Figure 5.11(b), and the jammer antenna element
spacing is 3.612◦ as seen by the radar. The white line shows the error predicted by the
phase-front analysis.
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Figure 5.15: Magnitude of the monopulse error when the jammer was rotated at 5◦

rotation. The jammer parameters are given in Figure 5.11(c), and the jammer antenna
element spacing is 4.440◦ as seen by the radar.

Apart from differences due to jammer circuitry, the most significant difference be-
tween Figures 5.13 and 5.14 is that the first monopulse error peak is nearer boresight in
case 1 shown in Figure 5.13, echoing the results in Figures 4.4 and 4.5 on pages 52 and
53. This effect is caused by the wider spacing of the jammer antenna elements used in
case 1. The first monopulse error peak occurs when the sum-channel antenna beam’s
first null is pointing directly at one of the jammer antenna elements. This causes the
sum-channel returns from both directions through the retrodirective cross-eye jammer
to be minimised because both directions use the jammer antenna element which has a
null pointed towards it. A minimum in the sum-channel return leads to a maximum in
the monopulse error because the sum-channel return appears in the denominator of the
monopulse error.

The agreement between the measured results in Figures 5.13(a) and 5.14(a), and
the calculated results in Figures 5.13(b) and 5.14(b) is remarkably good over the entire
range of parameters considered. The largest differences are seen to occur outside the
angle of the first monopulse error peak, and this is readily explained by the fact that
the antennas used to form the phase-comparison monopulse radar are not matched and
calibration is performed on boresight. The largest differences between the measured and
theoretical results in Figure 5.15 occur when the monopulse error is extremely small and
are again due to the fact that the radar antenna patterns are not matched.

Comparing Figure 5.11 and Figures 5.13 to 5.15 shows that the largest errors induced
in the radar occur at those angles where the relative phase of the two directions through
the cross-eye jammer is closest to 180◦. This is anticipated because a relative phase shift
of 180◦ results in the smallest sum-channel return and the largest cross-eye gain.

The largest differences between the phase-front theory, and the measurements and
the extended analysis in Figures 5.13 and 5.14 are also seen to occur when the relative
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phase of the two directions through the retrodirective cross-eye jammer is close to 180◦

(see Figure 5.11). This supports the assertion that the phase-front analysis is most
inaccurate under precisely the conditions for which cross-eye jammers are designed.

Detailed comparisons between the measured and theoretical results when the radar
antenna is rotated are given for three cases of amplitude and phase matching in Fig-
ures 5.16 to 5.18 which consider similar cases to Figures 4.2 to 4.4 on pages 50 to 52.
Figures 4.2 and 5.16 show cases where the agreement between the phase-front and ex-
tended analyses is good, Figures 4.3 and 5.17 present cases where the settling angle only
just ceases to exist, and Figures 4.4 and 5.18 consider cases where the settling angle does
not exist. A single case where the jammer antenna elements are rotated is considered
in Figure 5.19.

The main difference between the results in Figures 4.2 to 4.4 and 4.6, and Figures 5.16
to 5.19 is that a significantly lower cross-eye gain is required to achieve comparable
errors in the measured results. This is due to the fact that the angular separation for
the measurements (θe = 2.503◦ for Figures 5.16 to 5.18, and θe = 2.220◦ for Figure 5.19)
is significantly larger than for the scenario considered in Section 4.3 (θe = 0.2865◦).

The (a) and (b) portions of Figures 5.16 to 5.19 compare the measured sum- and
difference-channel returns with theoretical results based on the extended analysis. These
results are normalised to the return that would be received if the radar was perfectly
tracking a retrodirective beacon (θr = 0, a = 1 and φ = 0◦). The linear-fit analysis
is not shown here to avoid having too many curves on each plot. As in Figures 4.2 to
4.6 on pages 50 to 54, both the total difference-channel return and the portion of the
difference-channel return used for monopulse processing are shown in the (b) portions
of Figures 5.16 to 5.19. The measured monopulse indicated angles and the theoretical
results for both the phase-front and extended analyses are shown in the (c) portions of
Figures 5.16 to 5.19.

All the theoretical results were calculated assuming that both the radar and jammer
antenna elements were omnidirectional. The effect of this assumption is clearly seen
in the sum- and difference-channel returns in Figures 5.16 to 5.19 where the measured
signals drop below the theoretical signals as the radar system is rotated. As predicted
by the extended analysis, the monopulse indicated angles in Figures 5.16 to 5.18 do
not show this effect because the indicated angle is not affected by the radar antenna
element patterns. However the noise increases at large rotations because the antenna
gain roll off decreases the amplitude of the received signals leading to lower SNR values.
Differences between the measured data and the extended analysis are mainly due to
inevitable measurement noise and to the fact that the antenna element patterns are not
matched. Remarkably, the agreement continues to be good even well outside the sum-
channel 3 dB beamwidth (roughly -5◦ to 5◦) despite the assumption of omnidirectional
antennas.

As predicted by the extended analysis, the cross-eye jammer does not induce any
angular error in the sum-channel signal. This important result means that a cross-
eye jammer will not cause an error in a radar that uses the same antenna beam for
transmission and reception (e.g. some types of conical-scan radar). This behaviour is
not predicted by the phase-front analysis because the phase-front analysis assumes that
any radar antenna will align itself with the distorted phase front leading to the same
angular error in all cases.
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(a) Sum-channel return.
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(b) The total difference-channel return and
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used to form the monopulse indicated angle.
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(c) Indicated angle.

Figure 5.16: Monopulse signals at 9.5 GHz for case 1 when the radar antennas were
rotated. The relative amplitude and phase shift are −0.72 dB and 120.1◦ respectively
giving a cross-eye gain of 0.16, and the jammer antenna element spacing is 45% of the
radar antenna beamwidth. (Reprinted, with permission, from [3]. c©2009 IEEE.)

The agreement between the measured data and the phase-front analysis is good in
Figure 5.16(c) where the jammer phase shift is far from 180◦ making the cross-eye gain
small. However, significant differences between the measured data and the phase-front
analysis are seen in Figures 5.17(c) and 5.18(c) where the jammer phase shift is closer
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(a) Sum-channel return.
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Figure 5.17: Monopulse signals at 8.953 GHz for when case 1 the radar antennas were
rotated. The relative amplitude and phase shift are −1.17 dB and 200.4◦ respectively
giving a cross-eye gain of 1.9, and the jammer antenna element spacing is 39% of the
radar antenna beamwidth. (Reprinted, with permission, from [3]. c©2009 IEEE.)

to 180◦, increasing the cross-eye gain.
The agreement on boresight (0◦) is very good in Figure 5.17(c) as expected based

on the analysis in Section 4.2.2. However, the phase-front analysis predicts an error
that is inside the sum-channel 3 dB beamwidth, while the measurements and extended
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(a) Sum-channel return.
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Figure 5.18: Monopulse signals at 9.0 GHz for case 1 when the radar antennas were
rotated. The relative amplitude and phase shift are −1.34 dB and 192.9◦ respectively
giving a cross-eye gain of 4.2, and the jammer antenna element spacing is 40% of the
radar antenna beamwidth. (Reprinted, with permission, from [3]. c©2009 IEEE.)

analysis show that the monopulse indicated angle never becomes zero anywhere in the
sum-channel main beam. The error inherent in the phase-front analysis is even more
significant in Figure 5.18(c) where jammer phase shift is close to 180◦ giving a high
cross-eye gain.
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(a) Sum-channel return.

-50

-40

-30

-20

-10

0

-15 -10 -5 0 5 10 15

N
or

m
al

is
ed

si
gn

al
(d

B
)

Jammer angle (degrees)

Measured: total
Measured: monopulse
Theory: total
Theory: monopulse

(b) The total difference-channel return and
the portion of the difference-channel return
used to form the monopulse indicated angle.

-15

-10

-5

0

5

10

15

-15 -10 -5 0 5 10 15

In
di

ca
te

d
an

gl
e

(d
eg

re
es

)

Jammer angle (degrees)

Measured
Extended analysis
Phase-front analysis

(c) Indicated angle.

Figure 5.19: Monopulse signals at 9.1219 GHz when the jammer antennas were rotated.
The relative amplitude and phase shift are 0.84 dB and 190.2◦ respectively giving cross-
eye gain of −4.7, and the jammer antenna element spacing is 46% of the radar antenna
beamwidth.

The results when the jammer was rotated are presented in Figure 5.19. The main
objective of these measurements was to validate the extended analysis’ assertion that the
jammer antenna element patterns have no effect on the monopulse indicated angle. The
phase-front analysis implicitly echoes this conclusion because the gain of the jammer
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antenna elements will not affect the phase-fronts created by the jammer as long as the
antennas are identical.

The variations due to the antenna element patterns are again clearly visible in the
sum- and difference-channel returns in Figures 5.19(a) and 5.19(b). However, the vari-
ation due to the jammer antenna element patterns is absent from the monopulse indi-
cated angle in Figure 5.19(c) as expected. The small variations with angle seen in the
difference-channel returns and indicated angle plots in Figure 5.19 are due to the fact
that the projected spacing of the jammer antenna elements from the radar’s perspective
changes as the jammer system rotates.

The relative amplitude and jammer antenna element spacing as a proportion of
the radar antenna’s 3-dB beamwidth in Figure 5.16 are 0.9205 and 45% respectively,
both of which violate Vakin and Shustov’s bound [12, 16] highlighted in Section 2.4.2.
Despite this, the agreement between the measurements and the phase-front analysis
is good, confirming Section 2.4.2’s assertion that Vakin and Shustov’s bound does not
adequately address all the factors that affect the validity of the phase-front analysis.

5.5 Concluding Remarks

Experimental results validating the extended analysis of retrodirective cross-eye jam-
ming developed in Chapter 4 are presented in this chapter. The experiments properly
approximate a retrodirective cross-eye jamming scenario by using the radar system for
both transmission and reception, and by simulating a retrodirective cross-eye jammer.
The experimental layout and data processing procedure used to achieve these objectives
are outlined.

The measured data are compared to the traditional phase-front analysis as well as
to the extended analysis of retrodirective cross-eye jamming. The results confirm the
validity of the extended analysis for a wide range of amplitude and phase mismatch
conditions between the two directions through the cross-eye jammer. The predicted
monopulse indicated angle based on the phase-front analysis differs significantly from
the measured results for relative phase shifts close to 180◦ which give high cross-eye
gains.

Now that the extended analysis developed in Chapter 4 has been validated, Chapter 6
will analyse the amplitude and phase matching required between the two directions
through a cross-eye jammer to achieve a specified angular error.
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CHAPTER 6

TOLERANCE ANALYSIS

6.1 Introductory Remarks

The main objective of the research described in this thesis was to gain a more complete
understanding of cross-eye jamming as a prelude to constructing practical systems.
Chapter 4 presented an extended analysis of cross-eye jamming which was validated
by the experiments described in Chapter 5. This chapter completes the analysis by
considering the relationship between the magnitude of the angular error induced in
the radar being jammed, and the amplitude and phase matching of the two directions
through a retrodirective cross-eye jammer. The work described in this chapter forms
the basis of a submitted journal paper [4].1

Closed-form solutions for the matching required from a retrodirective cross-eye jam-
mer to achieve a specified angular error are derived in Section 6.2 for both the phase-
front and extended analyses. Results are presented and compared in Section 6.3, and
concluding remarks are provided in Section 6.4.

6.2 Mathematical Analysis

The basis of the analysis will be determining the angle where the monopulse indicated
angle is zero. This angle will be referred to as the “settling angle.” The settling angle
is trivial to determine for the phase-front analysis, but as demonstrated in Section 4.3,
might not exist for the extended analysis.

The performance of a cross-eye jammer implementation can be characterised by an
“angle factor” defined as

Gθ =

∣∣∣∣θsθe
∣∣∣∣ (6.1)

where θs is the setting angle. When the angle factor is greater than one, the apparent
target created by a cross-eye jammer will be outside the physical extent of the cross-eye
jammer at all except very short ranges where the angular separation of the jammer
antenna elements becomes large enough for the radar to resolve them.

The angle factor and the magnitude of the cross-eye gain will be shown to be identical
in the phase-front analysis case (part of the motivation for the definition of cross-eye
gain), but not for the extended analysis. To avoid confusion, the term “angle factor” will
be used when the relationship between settling angle and jammer antenna separation is
intended, while the term “cross-eye gain” will be reserved for the relationship in (2.10)
on page 13.

1Portions of this chapter are reprinted, with permission, from [4]. c©2009 IEEE.
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6.2.1 Phase-Front Analysis

The indicated angle for the phase-front analysis is given by (2.9) on page 13 and is
repeated below for reference.

θi = θr + θeGC (6.2)

where the cross-eye gain GC is defined in (2.10) on page 13 as [9]

GC =
1− a2

1 + a2 + 2a cos (φ)
. (6.3)

The relationship between the cross-eye gain and settling angle for phase-front analysis
can be determined by substituting θs for θr in (6.2) and solving for θi = 0 giving

GC = −θs
θe

. (6.4)

The magnitude of the cross-eye gain is thus equal to the angle factor defined in (6.1)
for the phase-front analysis.

The definition of the tangent of θs gives

tan (θs) =
do
r

(6.5)

θs ≈
do
r

(6.6)

where do is the distance from the centre of the jammer to the apparent target shown in
Figure 4.1 on page 38, and θs is assumed to be small (r � GCdc). Using (6.6) and the
accurate approximation to θe given in (B.12) on page 110 allows (6.4) to be rewritten
as

θs = −GCθe (6.7)

do
r
≈ −GC

dc
2r

cos (θc) (6.8)

|do| ≈
∣∣∣∣GC

dc
2

cos (θc)

∣∣∣∣ (6.9)

where the approximation is due to the assumption that θs is small. Equation (6.9)
suggests that a cross-eye jammer induces a linear offset that does not change with
range in the radar being jammed, confirming the widely-held view highlighted in Sec-
tion 2.4.1 [9,18,34]. This property of cross-eye jamming is particularly valuable because,
as mentioned in Section 2.4.1, a fixed angular offset would not cause a missile to miss
its target [24,34].

Relationships between a and φ that give a specified angle factor can now be derived
by solving the cross-eye gain in (6.3) for a as φ as shown below.

GS =
1− a2

1 + a2 + 2a cos (φ)
(6.10)

a2GS + a2GS cos (φ) +GS = 1− a2 (6.11)

a2 (GS + 1) + a [2GS cos (φ)] + (GS − 1) = 0 (6.12)
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where GS is the magnitude of the specified cross-eye gain (which, as shown in (6.4), is
identical to the angle factor for the phase-front analysis). Equation (6.11) can be solved
using the well-known solution to

ax2 + bx+ c = 0 (6.13)

given by [73]

x =
−b±

√
b2 − 4ac

2a
(6.14)

leading to

a =
−2GS cos (φ)±

√
4G2

S cos2 (φ)− 4 (GS + 1) (GS − 1)

2 (GS + 1)
(6.15)

=
−GS cos (φ)±

√
G2
S cos2 (φ) + 1−G2

S

GS + 1
(6.16)

=
−GS cos (φ)±

√
1− [GS sin (φ)]2

1 +GS

(6.17)

where (4.31) on page 41 was used. Solving for φ starts with (6.11) and proceeds as
shown below.

2aGs cos (φ) = 1− a2 −GS

(
1 + a2

)
(6.18)

φ = ± arccos

[
1

2a

(
|1− a2|
GS

− 1− a2

)]
(6.19)

where the relationship [73]

cos (x) = cos (−x) (6.20)

was used. Using the fact that [73]

cos (π ± x) = − cos (x) (6.21)

and substituting φ = π ± φ0 into (6.19) gives

φ0 = ± arccos

[
− 1

2a

(
|1− a2|
GS

− 1− a2

)]
(6.22)

which restates the phase result in terms of how close the relative phase must be to 180◦.
These results can be used to determine the amplitude matching required to obtain a
specified cross-eye gain for a given phase match, and the phase matching required to
obtain a specified cross-eye gain for a given amplitude match.

Equations (6.17), (6.19) and (6.22) give the matching required to achieve exactly the
specified cross-eye gain GS. The cross-eye gain will be larger than GS when a is between
the two solutions to (6.17) and when φ0 is between the two solutions to (6.22). This
can be verified by evaluating the cross-eye gain in (6.3) for a = −GS cos (φ) / (1 +GS)
and φ = 180◦ (φ0 = 0) to confirm that |GC | > GS in these cases.
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Importantly, (6.19) and (6.22) give the same result when a = x and when a = 1/x.
These two cases are equivalent because they both signify that the gain of one direction
through a cross-eye jammer differs from the gain in the other direction by the factor x.

Equation (6.17) only gives values of a with magnitudes less than 1, but the inverse
of these results is clearly also valid. Values of a with magnitudes greater than 1 can be
obtained from (6.17) by using −GS instead of GS.

A very important result that arises from (6.17) is that the range of values of a for a
given φ that gives a cross-eye gain magnitude of greater than GS does not include a =
1 unless φ = 180◦. This means that the cross-eye gain can decrease as the amplitude
match between the two directions through a cross-eye jammer approaches one.

6.2.2 Extended Analysis

The monopulse indicated angle obtained using the extended analysis derived in Sec-
tion 4.2.1 is given in (4.86) on page 48, and is repeated below for reference.

tan

[
β
dr
2

sin (θi)

]
=

sin (2k) + sin (2kc)GC

cos (2k) + cos (2kc)
(6.23)

where k and kc are defined as

k = β
dr
2

sin (θr) cos (θe) (6.24)

and

kc = β
dr
2

cos (θr) sin (θe) (6.25)

in (4.8) and (4.9) on page 39. Clearly the relationship between the settling angle and the
jammer parameters is more complex for the extended analysis than for the phase-front
analysis in the previous section. However, the problem of determining the settling angle
is greatly simplified by noting that only the numerator of the right-hand side (6.23) has
to be considered because the denominator of the right-hand side of (6.23) cannot be
infinite.

Infinite Error

As noted in Section 4.3, there are conditions under which the monopulse indicated
angle will never become zero implying that the settling angle does not always exist.
This occurs when the numerator of the right-hand side of (6.23) is never equal to zero
for all values of θr within the sum-channel’s main beam. Determining whether this
occurs requires a knowledge of how kc varies within the sum-channel’s main beam.

The signal received in the sum channel is given in (4.28) on page 41 and is repeated
below for reference.

SJ = Pr (θr − θe)Pc (θc − θe)Pr (θr + θe)Pc (θc + θe)×
1

2

(
1 + aejφ

)
[cos (2k) + cos (2kc)] . (6.26)
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Comparing (6.23) and (6.26), it can be seen that the only portion of the sum-channel
return that remains after monopulse processing is the trigonometric sum in the square
brackets on the second line of (6.26). The first nulls of the radar’s sum-channel beam
will thus be when the denominator of the right-hand side of (6.23) is equal to zero.

The trigonometric portion of the sum-channel return given in (6.26) (the denomina-
tor of the right-hand side of (6.23)) can be rewritten as

1

2
[cos (2k) + cos (2kc)] = cos (k − kc) cos (k + kc) (6.27)

= cos

[
β
dr
2

sin (θr) cos (θe)− β
dr
2

cos (θr) sin (θe)

]
×

cos

[
β
dr
2

sin (θr) cos (θe) + β
dr
2

cos (θr) sin (θe)

]
(6.28)

= cos

[
β
dr
2

sin (θr − θe)
]

cos

[
β
dr
2

sin (θr + θe)

]
(6.29)

where (4.5) on page 39 was used. Given that the radar must not be able to resolve
the two cross-eye jammer antenna elements, θe must be much smaller than the value
of θr where the sum-channel pattern becomes zero. This value can thus accurately be
approximated by setting (6.29) equal to zero, assuming θe is negligible and solving for
θr as shown below.

cos

[
β
dr
2

sin (θr ± θe)
]

= 0 (6.30)

β
dr
2

sin (θr) ≈ ±
π

2
(6.31)

sin (θr) ≈ ±
π

βdr
(6.32)

θrz ≈ ± arcsin

(
λ

2dr

)
(6.33)

where θrz is angle of the first null of the sum-channel pattern and λ is the wavelength,
and the well-known relationship β = 2π/λ (e.g. [44, 45, 74]) was used to simplify the
result. This result is slightly conservative because a nonzero value of θe will make the
first sum-channel pattern zeros slightly nearer boresight than suggested by (6.33) as
discussed in Section 5.4.

Noting that kc reaches its maximum value when θr = 0 and substituting (6.33) into
(6.25) gives

β
dr
2
θe

√
1−

(
λ

2dr

)2

< kc ≤ β
dr
2
θe (6.34)

in the sum-channel main beam where a modified version of (4.31) on page 41 given by

cos (x) =
√

1− sin2 (x) (6.35)

was used. The square-root factor in (6.34) will be very close to 1 because 2dr is signifi-
cantly larger than a wavelength (i.e. the beamwidth is narrow) in tracking radars, so it
can be assumed that kc does not vary appreciably within the sum-channel main beam.
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As stated above, the settling angle will not exist when the numerator of the right
hand side of (6.23) never becomes zero in the sum-channel main beam, so

sin (2k) + sin (2kc)GC 6= 0 (6.36)

sin (2kc)GC 6= − sin (2k) . (6.37)

Noting that (6.31) applies at the edges of the sum-channel main beam when θe is neg-
ligible leads to

β
dr
2

sin (θr) /
π

2
(6.38)

k /
π

2
(6.39)

2k / π (6.40)

in the sum-channel main beam, which means that

|sin (2k)| ≤ 1 (6.41)

in the sum-channel main beam because the argument of the sine includes the values
±π/2. Using (6.41) in (6.37) gives

|sin (2kc)|GI > 1 (6.42)

GI >

∣∣∣∣ 1

sin (2kc)

∣∣∣∣ (6.43)

where GI is the minimum cross-eye gain magnitude required to ensure that the settling
angle does not exist. Expanding kc using the simplest form in (6.34) and eliminating θe
using (B.12) on page 110 allows (6.43) to be rewritten as

GI &
1

sin (βdrθe)
(6.44)

&
λ

πdr
× r

dc cos (θc)
(6.45)

assuming that the angular separation of the jammer antennas (θe) is much smaller than
the radar beamwidth (determined by the factor βdr). The values of a, φ and φ0 can
now be obtained from (6.17), (6.19) and (6.22) by using the value of GI from (6.45) for
GS.

Finite Error

The settling angle will exist when the above conditions are not satisfied, and is deter-
mined by the angle where the monopulse error is zero.

Solving (6.23) for the cross-eye gain when θi = 0 gives

GC = − sin (2k)

sin (2kc)
. (6.46)
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Expanding k when θe is small and using the largest value of kc from (6.34) modifies
(6.46) to give

GC ≈ −
sin [βdr sin (θs)]

sin (βdrθe)
(6.47)

which slightly underestimates the required cross-eye gain because the largest value of the
denominator was used, though this is partially compensated by a small overestimation
of the numerator.

Equation (6.47) reduces to the same form as the phase-front analysis result in (6.4)
when both the settling angle (θs) and half the angular separation of the jammer antenna
elements (θe) are much smaller than the radar beamwidth (determined by βdr).

Noting that GS = |GC | by definition and that |θs| = Gθθe from (6.1), allows (6.47)
to be rewritten as

GS ≈
sin [βdr sin (Gθθe)]

sin (βdrθe)
(6.48)

allowing the values of a, φ and φ0 for a specified angle factor to be obtained by deter-
mining GS from (6.48) and using (6.17), (6.19) and (6.22) to calculate a, φ and φ0.

The trigonometric functions in (6.48) mean that it is not possible to obtain a simple
relationship between the linear error and either the cross-eye gain or the angle factor for
the extended analysis. However, the trigonometric functions can be approximated by
their arguments when the angular separation of the jammer antenna elements is much
smaller than the radar beamwidth (θe � βdr) and the product of the angle factor and
the jammer antenna element angular separation is small (Gθθe is small) reducing (6.48)
to

GS ≈
βdrGθθe
βdrθe

(6.49)

≈ Gθ (6.50)

again confirming Chapter 4’s assertion that the extended analysis converges to the phase-
front analysis when the arguments of the trigonometric functions are small.

6.3 Results and Comparison

The same parameters typical of a missile threat against an aircraft or ship given in
Section 4.3 will be used to examine the results derived in Section 6.2 and are repeated
below for reference.
• 10◦ radar antenna beamwidth (dr = 2.54 wavelengths, and each radar antenna

element is a uniformly-excited aperture 2.54 wavelengths long),
• the jammer antenna elements are uniformly-excited apertures 2.54 wavelengths

long,
• 1 km jammer range (r = 1 km),
• 10 m jammer antenna element separation (dc = 10 m), and
• 30◦ jammer rotation (θc = 30◦).

The total angular separation of the cross-eye jammer antenna elements as seen by the
radar for the parameters above is 0.4962◦ (θe = 0.2481◦), which is 5.0% of the radar
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Figure 6.1: The angle factor for the scenario described in the text. The relative ampli-
tude and phase shift of the two directions through the cross-eye jammer for each curve
are indicated, and the jammer antenna element spacing is 5.0% of the radar antenna
beamwidth.

antenna’s 3-dB beamwidth. In all cases the relative amplitude and phase shift of the
two directions through the cross-eye jammer are provided on the figures.

The relationship between a and φ is generally represented using a plot of the angle
factor as a function of φ for a number of values of a (e.g. [9, 12, 13,18,20, 25]) as shown
in Figure 6.1. Similar graphs are found in the glint literature (e.g. [17,30,31,38,43,48])
reflecting cross-eye jamming’s origin.

From Figure 6.1, the agreement between the results using the two analyses is seen
to be excellent when the relative phase shift of the two directions through the jammer
is far from 180◦ giving low cross-eye gain. However, significant differences between the
phase-front and extended analyses emerge when the relative phase shift is close to 180◦

because the cross-eye gain becomes large. These conclusions agree well with the results
in Chapters 4 and 5.

The plot of the results using the extended analysis with relative amplitudes of 1 dB
and 0.5 dB end abruptly when the relative phase shifts are 2.95◦ and 3.90◦ away from
180◦ respectively because the settling angle does not exist in these cases.2 These results

2Note that the phase-front results for a relative amplitude of 0.5 dB are defined for all angles and
reach a maximum value of 34.75 at 180◦.
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agree well with the values of 2.97◦ and 3.91◦ obtained by determining φ0 from (6.22)
using the minimum cross-eye gain from (6.45).

While plots of the angle factor like Figure 6.1 are valuable, contour plots based on
(6.17), (6.19), (6.22) and (6.48) as shown in Figure 6.2 are believed to be more useful.
The specified angle factor will be achieved whenever the combination of a and φ is on
a constant angle-factor contour and exceeded whenever the combination of a and φ is
inside the contour. Figure 6.1 is effectively a number of horizontal cuts through the
contour plots in Figure 6.2.

The contours in Figure 6.2 are plotted assuming that |a| ≤ 1, so all the decibel values
are negative. As mentioned in Section 6.2.1, a = x and a = 1/x represent equivalent
cross-eye jammers, so the decibel values in Figure 6.2 can be interpreted as being either
positive or negative.

The fact that improving the amplitude match between the two directions through a
cross-eye jammer can lead to a lower angle factor as discussed in Section 6.2.1 is clearly
demonstrated in Figure 6.2. This leads to the interesting conclusion that designing for
a surprisingly large amplitude mismatch is actually the best way to achieve a specified
angle factor. This characteristic of cross-eye jammers has been known for some time
[16, 34], but the results in Section 6.2 and the contour plots in Figure 6.2 give clear
quantitative and qualitative descriptions of this effect.

The amplitude and phase matching required to achieve a specified cross-eye gain for a
given phase or amplitude match is considered in (6.17), (6.19) and (6.22) in Section 6.2.1.
However, optimum tolerances to both amplitude and phase variations for a specified
cross-eye gain can be achieved by designing the system for the parameters at the centre
of the relevant contour in Figure 6.2. From (6.17), (6.19) and (6.22), this requires a
relative phase shift of 180◦ and a relative amplitude of

a =
GS

GS + 1
(6.51)

where GS is determined either directly or from (6.48) depending on whether the phase-
front or extended analysis is considered. As before, the inverse of the amplitude in (6.51)
represents an equivalent solution.

The main difference between the results in Figures 6.2(a) and 6.2(b) is that the
extended analysis shows that the tolerance requirements for the scenario considered are
less strict than the phase-front analysis suggests. This can be seen by the fact that
the contours in Figure 6.2(b) are larger than the equivalent contours in Figure 6.2(a).
Furthermore, Figure 6.2(b) has a contour that gives an infinite error because the settling
angle does not exist for the cross-eye jammer parameters bounded by this contour. These
conclusions mirror those of Chapters 4 and 5.

Chapter 4 shows that the extended analysis converges to the phase-front analysis at
longer ranges where the angular separation of the jammer antennas is small. This is
explored by plotting constant angle-factor contours for the same scenario as Figure 6.2,
but at a range of 10 km in Figure 6.3. As expected, the agreement between the results for
the extended analysis in Figure 6.3 and those for the phase-front analysis in Figure 6.2(a)
is extremely good because the angular separation of the jammer antenna elements is very
small in Figure 6.3.

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING 93

 
 
 



CHAPTER 6 TOLERANCE ANALYSIS

-3

-2.5

-2

-1.5

-1

-0.5

0

170 175 180 185 190

-10 -5 0 5 10
R

el
at

iv
e

am
pl

it
ud

e
(d

B
)

Relative phase (degrees)

Relative phase (degrees from 180◦)

100

30

20

15

12

10

8

7

6

(a) Phase-front analysis.
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(b) Extended analysis.

Figure 6.2: Contours of constant angle factor for the engagement described in the text.
The relative amplitude and phase shift of the two directions through the cross-eye jam-
mer for each curve are indicated, and the jammer antenna element spacing is 5.0% of
the radar antenna beamwidth. (Reprinted, with permission, from [4]. c©2009 IEEE.)
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Figure 6.3: Contours of constant angle factor according to the extended analysis for
the engagement described in the text, but at range of 10 km. The relative ampli-
tude and phase shift of the two directions through the cross-eye jammer for each curve
are indicated, and the jammer antenna element spacing is 0.50% of the radar antenna
beamwidth. (Reprinted, with permission, from [4]. c©2009 IEEE.)

6.4 Concluding Remarks

Closed-form solutions for the amplitude and phase matching between the two directions
through a retrodirective cross-eye jammer required to achieve a specified angular error
are presented. The results were derived for both the phase-front and extended analyses.
Contour plots that give a clear graphical representation of the relationship between the
matching and angular error are provided. Lastly, the combination of jammer parameters
that achieves a specified angular error with the optimum tolerance to both amplitude
and phase variations is proposed.

The main conclusion from these results is that the tolerance requirements on a cross-
eye jammer system are not as strict as the phase-front analysis suggests. Another
important conclusion is that the angular error induced in the radar being jammed can
decrease as the amplitude matching of the two directions through a cross-eye jammer
improves.

Cross-eye jamming is analysed using a model applicable to any monopulse radar in
Chapter 4, and the results are confirmed through the experiments described in Chap-
ter 5. This chapter addresses the remaining objectives of this study listed in Section 1.3.2
by investigating the tolerances required from a cross-eye jammer system.
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CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 General Conclusions

Cross-eye jamming is an EA technique that seeks to induce an angular error in the
radar being jammed with the aim of protecting platforms against radar-guided missiles.
The main benefit of cross-eye jamming is that it is effective against monopulse radars.
Despite the fact that the concept of cross-eye jamming has existed since the 1950s, only
recently have practical cross-eye jammers been implemented.

The objective of this work was to obtain a comprehensive theoretical understanding
of cross-eye jamming as a prelude to the construction of practical cross-eye jammers.
This is essential to ensure that future cross-eye jammers are correctly specified and that
the main engineering challenges associated with the realisation of practical cross-eye
jammers are understood.

This objective has been addressed by performing a comprehensive, rigorous math-
ematical analysis of a single-loop, isolated, retrodirective cross-eye jammer scenario as
described in Chapter 4. This analysis was validated by the laboratory experiments
outlined in Chapter 5, which are representative of a retrodirective cross-eye jamming
scenario because the radar is used for both transmission and reception, and a retrodirec-
tive cross-eye jammer is correctly simulated. These results were shown to be applicable
to any type of monopulse radar by proving that a generalised phase-comparison mono-
pulse antenna can be used to model any monopulse antenna in Chapter 3. Lastly, the
relationship between the matching required from the two directions through a retrodi-
rective cross-eye jammer and the angular error induced in the radar being jammed was
investigated in Chapter 6.

The main results of this study are summarised below.

Monopulse antenna model: It has been proved that a generalised phase-comparison
monopulse antenna will accurately represent any monopulse antenna near bore-
sight. This phase-comparison monopulse antenna model is accurate over a signif-
icantly wider range of angles than the existing linear-fit model.

Sum-channel effects: No angular error is induced in the sum channel of a monopulse
radar because of the retrodirective implementation of cross-eye jamming consid-
ered. By extension this means that a retrodirective cross-eye jammer will have no
effect on any radar that uses the same antenna beam for both transmission and
reception (e.g. some types of conical-scan radar). This contradicts the current
theory that cross-eye jamming affects all types of radar because glint affects all
types of radar.

Phase-front analysis limitations: The analyses of glint used to motivate cross-eye
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jamming are inaccurate when the relative phase shift of the two directions through
a cross-eye jammer approaches 180◦, particularly when the jammer antenna ele-
ment angular separation as seen by the radar being jammed is large. The angular
error achieved by a retrodirective cross-eye jammer will be larger than predicted
by the conventional analyses.

Settling angle existence: There are conditions under which the monopulse error never
becomes zero within the sum-channel main beam. This suggests that a cross-eye
jammer can be used to break a monopulse radar’s lock. This is in stark contrast
to the view that the error induced by a cross-eye jammer will be smaller than the
sum-channel antenna’s 3-dB beamwidth.

Sensitivity to tolerances: The parameters required to induce a specified angular er-
ror in the radar being jammed are derived. The amplitude and phase mismatches
between the two directions through a retrodirective cross-eye jammer that give
the optimum design are quantified and graphically described. A surprisingly large
amplitude mismatch between the two directions through a cross-eye jammer is
shown to give the lowest sensitivity to system tolerances. While this fact has been
known for some time, this is the first time detailed qualitative and quantitative
analyses have been presented.

Antenna element patterns: The patterns of the antenna elements used to form the
phase-comparison monopulse radar and the cross-eye jammer have no effect on the
induced angular error. The gains of the antenna elements do however affect the
strengths of the signals received in the sum and difference channels of the radar
being jammed. This result agrees with existing cross-eye jammer theory.

The main implications of this work for the construction of a practical retrodirective
cross-eye jammer are outlined below.

Effect on different types of radar: Retrodirective cross-eye jamming does not af-
fect radars that use the same antenna beam for both transmission and reception
(e.g. some types of conical-scan radar). Alternative means of jamming such radars
will thus have to be used, but this is not a significant problem because effective
countermeasures exist for these radars.

Error magnitude: The error induced by a retrodirective cross-eye jammer is larger
than suggested by the conventional phase-front analysis, particularly when the
jammer antenna element separation as seen by the radar being jammed is large.
Under certain conditions, it is even theoretically possible to break a monopulse
radar’s lock on a target using only a retrodirective cross-eye jammer.

Required matching: A retrodirective cross-eye jammer should be designed for a small
amplitude mismatch on the order of 0.5 dB and a relative phase shift between the
two directions through the jammer of 180◦ to achieve optimum tolerance to system
parameter variations.
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7.2 Future Research

From the outset of this work, the scope was limited as discussed in Section 1.3.1. The
limitations in the scope of this study are critically re-evaluated below.

Retrodirective implementation: As shown in Section 2.5, the challenges associated
with implementing a non-retrodirective cross-eye jammer are extreme. It is thus
unlikely that analysing other implementations of cross-eye jamming will be useful.

Isolated case: Difficulties and delays associated with ensuring a successful pull off
mean that it will not always be possible to isolate a cross-eye jammer’s return
from the skin return of the platform mounting the jammer. This suggests that a
consideration of the case where the jammer return competes with platform skin
return will be useful.

Single jammer loop: The case of multiple cross-eye jammer loops has been considered
in the open literature [20,63], and there are indications that this approach reduces
the system tolerance requirements associated with a cross-eye jammer. However,
these analyses are based on the phase-front analysis, so it is possible that the results
obtained have limited accuracy. An analysis of multiple retrodirective cross-eye
jammer loops is thus likely to be valuable.

Analyses of the effect of skin return and multiple retrodirective cross-eye jammer loops
have already been initiated.

Other possible applications of the results of this study are considered below.

Glint analysis: The analyses of glint have been shown to be inaccurate under certain
conditions relevant to cross-eye jamming. The application of the results of this
thesis to glint should be investigated to determine whether similar inaccuracies
exist in the analysis of glint.

Multipath mitigation: Multipath is a major problem that affects the tracking accu-
racy of radar systems. Glint analyses are often used as a basis for investigating
multipath effects (e.g. [15, 17, 30, 31, 40]), so it is possible that the results of this
thesis can be usefully applied to multipath mitigation.

Countermeasures: The possibility of developing countermeasures to cross-eye jam-
ming based on the results presented here should be considered. While there are
suggestions [22, 77] that such countermeasures exist, no details are given due to
military security restrictions.
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APPENDIX A

TERMINOLOGY

While a significant body of literature exists on cross-eye jamming, no complete analysis
of cross-eye jamming has been published. This means that no standard terminology has
been established for a number of important cross-eye jamming concepts. An additional
complication is that the extensive use of antenna array theory in this work could lead
to confusion about the exact meaning of a number of terms. For example, the term
“antenna” could refer to a complete monopulse antenna or the elements of the array
comprising the complete monopulse antenna.

To rectify this deficiency, the meanings of a number of terms used throughout this
thesis are summarised below.

antenna: A complete antenna. This term will usually be used in the context of a
complete monopulse antenna or cross-eye jammer system that utilises a number
of antenna elements.

antenna beam: A portion of a complete antenna. This term will usually be used to
refer to the sum- and difference-channel beams of a monopulse antenna and the
squinted antenna beams of an amplitude-comparison monopulse antenna.

antenna element: An antenna that forms part of a larger antenna system.

antenna pattern: The variation in the gain of an antenna with angle.

angle factor: The magnitude of the ratio of the settling angle to half the jammer
antenna element spacing from the perspective of the radar being jammed.

boresight: The direction where the angular error of a tracking radar is zero for a single
point target (the difference-channel return is zero for a monopulse radar).

broadside: The spacings of the elements of an array of antennas will be greatest when
the array is viewed from the broadside direction.

cross-eye gain: The factor that determines the performance of a cross-eye jammer
given in (2.10) on page 13.

jammer: The complete system used to implement jamming. This includes all antennas,
cables and circuitry for all the jammer subsystems that are employed together.

indicated angle: The output of a monopulse processor given in the form of the angle
from boresight to the target being tracked. The indicated angle is formed from
the monopulse error.
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jammer loop: The connection of two antenna elements, cables and circuitry necessary
to create the simplest retrodirective cross-eye jammer.

monopulse error: The real or imaginary part of the ratio of the difference-channel
return to the sum-channel return (the output of an exact monopulse processor
[15,30]). Whether the real or imaginary part of the ratio is used depends on which
portion of the ratio describes the position of a single point target. The monopulse
literature more regularly considers the indicated angle, but the algorithm used to
calculate the indicated angle from the monopulse error is not always known.

phase-front analysis: Any analysis of cross-eye jamming that gives the same result
as the phase-front analysis (linear-fit, phase-front, Poynting-vector and phase-
comparison monopulse analyses). This convention is used because cross-eye jam-
ming is almost exclusively considered in terms of phase-front distortion in the
literature.

platform: The craft or system mounting a cross-eye jammer. A platform will typically
be an aircraft or a ship that needs to be protected against radar-guided missiles.

retrodirective: A system configuration that retransmits signals received on each side
of a system from the opposite sides of the system.

settling angle: The angle where the monopulse error (and thus the indicated angle)
becomes zero at a stable zero crossing (see Section 4.3).

108 DEPARTMENT OF ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING

 
 
 



APPENDIX B

APPROXIMATIONS

The far-field approximation that is widely used to calculate the patterns of array an-
tennas relies on an approximation to the distance from each element to a target in a
given direction [45]. This approximation is generally very accurate when the antenna is
very small compared to the target distance. While this assumption is true for the radar
antenna, it is unfortunately invalid for a cross-eye jammer [19,21].

The geometry that will be used in this Appendix is given in Figure B.1, which is
based on the geometry of the full cross-eye jammer system in Figure 4.1 on page 38 with
extraneous information removed.

The angle from the x axis to the target (θe in Figure B.1) and the trigonometric
relationships of this angle are extremely important in the analysis of cross-eye jamming.
The value of this angle and its trigonometric values will be investigated in this section.

From inspection of Figure B.1, it can be seen that the horizonal and vertical distances
to the top and bottom crosses are given by

∆x = r ± dc
2

sin (θc) (B.1)

and

∆y = ±dc
2

cos (θc) (B.2)

where the upper and lower signs give the results for the upper and lower crosses respec-
tively.

The range to the top and bottom crosses in Figure B.1 are given by

rt =

√[
r ± dc

2
sin (θc)

]2

+

[
dc
2

cos (θc)

]2

(B.3)

=

√
r2 ± rdc sin (θc) +

(
dc
2

)2

(B.4)

and the conventional far-field range approximation is given by

rt ≈ ∆x (B.5)

≈ r ± dc
2

sin (θc) (B.6)

when r � dc. In extreme cases, the range to the crosses can be approximated by the
range to the point between the crosses giving

rt ≈ r. (B.7)
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Figure B.1: The geometry used to evaluate far-field approximations.

While the relative errors caused by using the approximations in (B.6) and (B.7) are
generally small compared to the true range, they can still be significant in absolute
terms, particularly at short ranges. Using the conservative values of r = 1 km, dc =
20 m and θc = 60◦, the range to the top cross displays errors of 12.4 mm and 8.67 m for
(B.6) and (B.7) respectively. While these errors are less than 0.0013% and 0.9% of the
true range respectively (implying a small relative error), the distance errors correspond
to more than 0.4 and 289 wavelengths at X-Band respectively (large absolute error).

The value of θe can be calculated from

tan (θe) =
∆y

∆x
(B.8)

=
±dc

2
cos (θc)

r ± dc

2
sin (θc)

(B.9)

for the top and bottom crosses. This can be simplified by noting that r � dc to give

tan (θe) ≈
dc
2r

cos (θc) (B.10)

to a high degree of accuracy at all but very short ranges. For example, (B.10) gives an
error of less than 0.9% for the conservative values of r = 1 km, dc = 20 m and θc = 60◦.

Given that r is much larger than dc, the approximation tan(x) ≈ x can be used to
simplify (B.9) and (B.10) to

θe ≈
dc

2
cos (θc)

r ± dc

2
sin (θc)

(B.11)

and

θe ≈
dc
2r

cos (θc) (B.12)

respectively. The difference between (B.9) and (B.12) for the conservative values of r =
1 km, dc = 20 m and θc = 60◦ is again less than 0.9%, so the accuracies of (B.10) and
(B.12) are comparable.
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The cosine of θe can be computed from

cos (θe) =
∆x

rt
(B.13)

=
r + dc

2
sin (θc)√

r2 + 2r dc

2
sin (θc) +

(
dc

2

)2
(B.14)

≈ 1 (B.15)

and the sine of θe is given by

sin (θe) =
∆y

rt
(B.16)

=
dc

2
cos (θc)√

r2 + 2r dc

2
sin (θc) +

(
dc

2

)2
(B.17)

=
dc

2
cos (θc)

r + dc

2
sin (θc)

×
r + dc

2
sin (θc)√

r2 + 2r dc

2
sin (θc) +

(
dc

2

)2
(B.18)

= tan (θe)× cos (θe) (B.19)

≈ dc
2r

cos (θc) . (B.20)

The errors that arise from using the approximations in (B.15) and (B.20) are less than
0.0013% and 0.9% respectively.

The above trigonometric approximations can be summarised as

tan (θe) ≈ sin (θe) ≈ θe ≈
dc
2r

cos (θc) (B.21)

and
cos (θe) ≈ 1 (B.22)

as long as r � dc making θe small.
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APPENDIX C

DERIVATIVES OF MONOPULSE PATTERN

The general form of the monopulse error for the general and phase-comparison cases is
given by (3.15) on page 31 which is repeated below for reference.

MX =

∑M
m=0 γm sin (εmx)∑N
n=0 ζn cos (κnx)

(C.1)

This appendix proves that all even-order derivatives of (C.1) are zero when x is zero.
The general monopulse error in (C.1) can be rewritten as

MX = MXSMXC (C.2)

where MXS and MXC are given by

MXS =
M∑
m=0

γm sin (εmx) (C.3)

and

MXC =

[
N∑
n=0

ζn cos (κnx)

]−1

. (C.4)

The Nth-order derivatives of MX can be determined from Leibniz’s rule for higher-
order derivatives of products [73] and are given by

∂N

∂xN
MX =

[
∂N

∂xN
MXS

]
MXC +

(
N

1

)[
∂N−1

∂xN−1
MXS

] [
∂

∂x
MXC

]
+(

N

2

)[
∂N−2

∂xN−2
MXS

] [
∂2

∂x2
MXC

]
+ · · ·+

[
∂

∂x
MXS

] [
∂N

∂xN
MXC

]
(C.5)

=
N∑
n=0

(
N

n

)[
∂N−n

∂xN−n
MXS

] [
∂n

∂xn
MXC

]
. (C.6)

The most important point to note about (C.6) is that the sum of the order of the
derivatives of MXS and MXC is equal to N in all the terms. This means that all terms
of (C.6) where N is even will thus have either odd-order derivatives of both MXS and
MXC or even-order derivatives of both MXS and MXC .

The P th-order derivatives of MXS are given by

∂P

∂xP
MXS =

M∑
m=0

γm
∂P

∂xP
sin (εmx) . (C.7)
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From (C.7), it is clear that all even-order derivatives of MXS are zero when x is zero
because all the terms of the derivative contain sine functions. This means that all
the even-order derivatives of MX will all be zero when x is zero if all the odd-order
derivatives of MXC can be shown to be zero when x is zero.

The derivatives of MXC are more complicated because the function of x is in the
denominator, so the chain rule is required [73]. The first three derivatives of MXC are
given by

∂

∂x
MXC = −

[
N∑
n=0

ζn cos (κnx)

]−2 [ N∑
n=0

ζn
∂

∂x
cos (κnx)

]
(C.8)

∂2

∂x2
MXC =

∂

∂x

[
∂

∂x
MXC

]
(C.9)

= 2

[
N∑
n=0

ζn cos (κnx)

]−3 [ N∑
n=0

ζn
∂

∂x
cos (κnx)

]2

−[
N∑
n=0

ζn cos (κnx)

]−2 [ N∑
n=0

ζn
∂2

∂x2
cos (κnx)

]
(C.10)

∂3

∂x3
MXC =

∂

∂x

[
∂2

∂x2
MXC

]
(C.11)

= −6

[
N∑
n=0

ζn cos (κnx)

]−4 [ N∑
n=0

ζn
∂

∂x
cos (κnx)

]3

+

6

[
N∑
n=0

ζn cos (κnx)

]−3 [ N∑
n=0

ζn
∂

∂x
cos (κnx)

][
N∑
n=0

ζn
∂2

∂x2
cos (κnx)

]
+[

N∑
n=0

ζn cos (κnx)

]−2 [ N∑
n=0

ζn
∂3

∂x3
cos (κnx)

]
(C.12)

where the details of the derivations are suppressed in the interests of brevity. The
first- and third-order derivatives of MXC in (C.8) and (C.12) both contain odd-order
derivatives of cosine in every term, so these derivatives of MXC are zero when x is zero.

Every term of the P th-order derivative of MXC can be represented by

K

[
N∑
n=0

ζn cos (κnx)

]−kd P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

(C.13)

where K and KP are arbitrary integer constants, kd is a positive integer and kp are
arbitrary integers greater than or equal to zero. From (C.6), the total number of differ-
entiations of each term in (C.13) must equal the order of the derivative, so the following
relationship must hold

P =
P∑
n=1

nkp (C.14)
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as seen in (C.8), (C.10) and (C.12). This means that there must be at least one odd-
order derivative of a sum of cosines in every term of the derivative of MXC whenever
P is odd. These odd-order derivatives will be sums of sines which are zero when their
argument is zero.

All that remains to prove that all even-order derivatives of (C.1) are zero is to prove
that (C.13) is indeed the general form of any term of the P th-order derivative of (C.1).
Mathematical induction is used to prove this statement.

The form of MXC in (C.4) can be represented by (C.13) by setting K = 1, kd = 1
and M = 0. The base case for mathematical induction is thus proved.

The inductive step can be proved by taking the derivative of (C.13) and noting that
all the terms in the result can also be represented by (C.13).

∂

∂x

K
[

N∑
n=0

ζn cos (κnx)

]−kd P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp
 (C.15)

= K
∂

∂x


[

N∑
n=0

ζn cos (κnx)

]−kd


P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

+

K

[
N∑
n=0

ζn cos (κnx)

]−kd

∂

∂x


P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp
 (C.16)

= −Kkd

[
N∑
n=0

ζn cos (κnx)

]−kd−1 N∑
n=0

ζn
∂

∂x
cos (κnx)

P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

+

K

[
N∑
n=0

ζn cos (κnx)

]−kd P∑
m=1

 ∂

∂x

Km

[
N∑
n=0

ζn
∂m

∂xm
cos (κnx)

]km
 ×

P∏
p=1
p6=m

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

 (C.17)

= −Kkd

[
N∑
n=0

ζn cos (κnx)

]−kd−1 N∑
n=0

ζn
∂

∂x
cos (κnx)

P∏
p=1

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

+

K

[
N∑
n=0

ζn cos (κnx)

]−kd P∑
m=1

Kmkm

[
N∑
n=0

ζn
∂m

∂xm
cos (κnx)

]km−1

×

N∑
n=0

ζn
∂m+1

∂xm+1
cos (κnx)

P∏
p=1
p6=m

Kp

[
N∑
n=0

ζn
∂p

∂xp
cos (κnx)

]kp

 (C.18)

Careful examination of (C.18) shows that each term has the form given in (C.13) thereby
proving the inductive step and completing the proof.

All the even-order derivatives of (C.1) are thus equal to zero when x is zero.
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