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ABSTRACT 
Conventionally, adherent cells are cultured in vitro using flat 2D cell culture trays.  

However the 2D cell culture method is tedious, unreliable and does not replicate 

the complexity of the 3D dynamic environment of native tissue. Nowadays 3D 

scaffolds can be used to culture cells. However a number of challenges still exist, 

including the need for destructive enzymes to release confluent cells. Poly(N-

isopropylacrylamide) (PNIPAAm), a temperature responsive polymer, has 

revolutionised the cell culture fraternity by providing a non-invasive means of 

harvesting adherent cells, whereby confluent cells can be spontaneously released by 

simply cooling the cell culture medium and without requiring enzymes. While 

PNIPAAm monolayer cell culturing is a promising tool for engineering cell sheets, the 

current technology is largely limited to the use of flat 2D substrates, which lacks 

structural and organisational cues for cells. 

 

The aim of this project was to develop a 3D PNIPAAm scaffold which could be 

used efficiently for non-invasive 3D culture of adherent cells. This project was 

divided into three phases: Phase 1 (preliminary phase) involved development and 

characterisation of cross-linked PNIPAAm hydrogels; Phase 2 involved development 

and characterisation of PNIPAAm grafted 3D non-woven scaffolds, while Phase 3 

focused on showing proof of concept for non-invasive temperature-induced cell 

culture from the 3D PNIPAAm grafted scaffolds. 

 

In Phase 1, PNIPAAm was cross-linked with N,N’-methylene-bis-acrylamide (MBA) 

using solution free-radical polymerisation to form P(PNIPAAm-co-MBA) hydrogels. A 
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broad cross-link density (i.e. 1.1 - 9.1 Mol% MBA) was investigated, and the effect of 

using mixed solvents as the co-polymerisation medium. The P(PNIPAAm-co-MBA) 

gels proved unsuitable as a robust cell culture matrix, due to poor porosity, slow 

swelling/deswelling and poor mechanical properties.   

 

Subsequently, in Phase 2, polypropylene (PP), polyethylene terephthalate (PET), 

and nylon fibers were processed into highly porous non-woven fabric (NWF) 

scaffolds using a needle-punching technology. The NWF scaffolds were grafted with 

PNIPAAm using oxyfluorination-assisted graft polymerisation (OAGP). The OAGP 

method involved a 2 step process whereby the NWF was first fluorinated (direct 

fluorination or oxyfluorination) to introduce new functional groups on the fibre surface. 

The functionalised NWF scaffolds were then graft-polymerised with NIPAAm in an 

aqueous medium using ammonium persulphate as the initiator. 

 

Following oxyfluorination, new functional groups were detected on the surface of the 

NWF scaffolds, which included C-OH; C=O; CH2-CHF, and CHF-CHF. PP and nylon 

were both easily modified by oxyfluorination, while PET displayed very little changes 

to its surface groups. Improved wetting and swelling in water was observed for the 

oxyfluorinated polymers compared to pure NWF scaffolds. PP NWF showed the 

highest graft yield followed by nylon and then PET. PNIPAAm graft yield on the PP 

NWF was ~24 ± 6 µg/cm2 on grafted pre-oxyfluorinated NWF when APS was used; 

which was found to be significantly higher compared to when pre-oxyfluorinated NWF 

was used without initiator (9 ± 6 µg/cm2, p= 1.7x10-7); or when grafting was on pure 

PP with APS (2 ± 0.3 µg/cm2, p = 8.4x10-12). This corresponded to an average 

PNIPAAm layer thickness of ~220 ± 54 nm; 92 ± 60 nm; and 19 ± 3 nm respectively. 

Scanning electron microscopy (SEM) revealed a rough surface morphology and 

confinement of the PNIPAAm graft layer to the surface of the fibers when 

oxyfluorinated NWF scaffolds were used, however when pure NWF scaffolds were 

used during grafting, homopolymerisation was observed as a loosely bound layer on 

the NWF surface. The OAGP method did not affect the crystalline phase of bulk PP 

as was determined by X-ray diffraction (XRD), however, twin-melting thermal peaks 

were detected from DSC for the oxyfluorinated PP and PP-g-PNIPAAm NWF which 

possibly indicated crystal defects. Contact angle studies and microcalorimetric DSC 

showed that the PP-g-PNIPAAm NWF scaffolds exhibited thermoresponsive 

behaviour. Using the 2,2-Diphenyl-1-1-picrylhydrazyl (DPPH) radical method and 

electron-spin resonance (ESR), peroxides, as well as trapped long-lived peroxy 
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radicals were identified on the surface of the oxyfluorinated PP NWF, which are 

believed to be instrumental in initiating graft polymerisation from the NWF. A free 

radical mechanism which is diffusion controlled was proposed for the OAGP method 

with initiation via peroxy radicals (RO•), as well as SO4
•- and OH• radicals, whereby 

the latter result from decomposition of APS. 

 

In Phase 3 of this study, proof-of-concept is demonstrated for use of the PNIPAAm 

grafted NWF scaffolds in non-invasive culture of hepatocytes. Studies demonstrated 

that hepatocyte cells attached onto the 3D PNIPAAm scaffolds and remained 

viable in culture over long periods. The cells were released spontaneously and 

non-destructively as 3D multi-cellular constructs by simply cooling the cell culture 

medium from 37 °C to 20 °C, without requiring destr uctive enzymes. The PP-g-

PNIPAAm NWF scaffolds performed the best in 3D cell culture. Additionally the 

CSIR is developing a thermoresponsive 3D (T3D) cell culturing device, whereby the 

3D thermoresponsive NWF scaffolds are used in the bioreactor for cell culture. 

Temperature-induced cell release was also verified from the 3D 

thermoresponsive scaffolds in the bioreactor. This technology could lead to 

significant advances in improving the reliability of the in vitro cell culture model.  

 

Key-words: Poly-N-Isopropylacrylamide; graft polymerisation; 3D scaffolds; non-

wovens; hydrogels; cell culture 
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DEFINITIONS AND ABBREVIATIONS 
 

2D  Two dimensional 

3D  Three dimensional 

APS  Ammonium persulphate 

ATR-FTIR Attenuated total reflectance Fourier transform infrared 

CSIR  Council for Scientific and Industrial Research 

DPPH  2,2-Diphenyl-1-1-picrylhydrazyl 

DMEM  Dulbecco’s Modified Eagle Medium 

DSC  Differential scanning calorimetry  

ECM  Extracellular matrix 

ESR  Electron spin resonance 

FCS   Foetal calf serum  

FDA  Fluorescein diacetate  

LCST  Lower critical solution temperature 

LVE  Linear viscoelastic  

MBA  N,N’-methylenebisacrylamide 

NIPAAm N-isopropylacrylamide 

NWF  Non-woven fabric 

OAGP  Oxyfluorination-assisted graft polymerisation 

PBS  Phosphate buffered saline  

PE  Polyethylene 

PET  Polyethyleneterephthalate 

PNIPAAm Poly(N-isopropylacrylamide) 

PP  Polypropylene 

TCPS  Tissue-culture polystyrene 

TEMED N,N,N’-N’-tetramethylenediamine 

R  Cross-link density (nMol NIPAAm/nMol MBA) 

SEM  Scanning electron microscopy 

THF  Tetrahydrofuran 

UV-VIS Ultraviolet-visible 

XRD  X-ray diffraction 

XPS  X-ray photoelectron spectroscopy 
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