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9. APPENDICES 
 

Appendix A: In vitro study methods 
 

A.1 Media and chemicals 
 
Minimum essential medium (MEM), Dulbecco’s modified Eagle’s medium (DMEM) 
(both with EBSS and L-glutamine) supplemented with fetal bovine serum (FCS) (10% 
vol/vol) and pennstrep fungizone 100X (1% vol/vol) were purchased from Bio-Whittaker, 
Adcock Ingram Scientific, Johannesburg, South Africa. Gentamycin sulphate ((50 mg/ml 
at 0.1% vol/vol), Phenix, South Africa), insulin ((I2767) 50 mU/L), glucagon ((G664) 16 
µg/L), dexamethasone ((D4902) 67 µg/L) and epidermal growth factor (EGF (E9644) 
20µg/L); from Sigma-Aldrich, Johannesburg, South Africa, were added to all media. 
Filter-sterilized collagenase type IV (Sigma (C5138)) was dissolved in MEM (0.68 g/425 
ml) with 0.65 g CaCl2, 25 ml of FCS and antibiotics as above. Collagenase solution was 
prepared fresh on the day of the isolation procedure. Washing buffer at 10-15oC 
contained deionised water with 5% FCS, dexamethasone as above, 7.01 g/L NaCl, 0.46 
g/L KCl, 0.10 g/L Ca Cl2 and 2.383 g HEPES. Perfusion buffer at 37 oC contained 5% 
FCS, dexamethasone, 9 g/L NaCl, 0.42 g/L KCl, 2.1 g/L NaHCO3, 0.9 g/L D-Glucose 
and 4.77 g/L HEPES. For chelation, EDTA (0.58 g/L) was added to Perfusion buffer on 
the day of the procedure. All buffers were oxygenated with a carbogen gas mixture (5% 
CO2 and 90%O2) during the isolation procedure. Percoll (Sigma (P16440)) was mixed 9:1 
with 10X Hank’s balanced salt solution (HBSS) (80g/L NaCl, 4g/L KCl, 1/Lg MgSO4, 
0.6g/L KH2PO4, 0.4g/L Na2HPO4 and 10g of Glucose). Solutions used for perfusing the 
liver during hepatectomy and transport were, firstly, 1L of clinical saline at 5-10oC, 
supplemented with 0.58g EDTA, 40mU Insulin, 67 µg/L Dexamethasone and antibiotics, 
followed by 1L of University of Wisconsin (UW) solution at 5-10 oC, with insulin, 
dexamethasone and antibiotics. The pH of all solutions was adjusted in a sterile manner 
to between 7.35 and 7.4 using concentrated HCl or NaOH. insulin, glucagon, 
dexamethasone and EGF were added to media on the day of use. 
 
A.2 Hepatocyte culturing, cell evaluation methods and statistics 
 
The cell suspension received from the Centrifuge and BRAT procedures were evaluated 
for viability and cell count using the Trypan Blue exclusion test in a Neubauer bright-line 
hemacytometer. The bowl volume employed in any BRAT procedure was randomly 
selected. To determine the effect of oxygenating the cells and media during the BRAT 
procedure, in three pairs of experiments flow cytometry was conducted on hepatocytes 
received after oxygenation had or had not occurred. After all procedures, media aliquots 
were tested for pathogens in order to determine the sterility of the procedures. In addition, 
after both centrifuge and BRAT procedures, aliquots containing 3.5-4 x 106 cells were 
taken for seeding in 75 cm2 cell culture flasks (Corning, Adcock Ingram, Johannesburg, 
SA) and subsequent culturing in a humidified CO2 incubator at 37 degrees Celsius. 
Culture medium was changed 12 hours after seeding, and every 24 hours thereafter for 7 
days. In order to determine the impact on hepatocyte cell cycle, flow cytometry of cells 
scraped from the cell culture flasks was performed 3 and 7 days after seeding.  
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Media samples were taken daily prior to changing the medium, to evaluate hepatocyte 
viability by means of LD and AST leakage and to examine the state of Cellular oxidation 
and Aerobic metabolism by means of the lactate to pyruvate ratio. Lactate and pyruvate 
concentrations were measured enzymatically, lactate at 520 nm and pyruvate at 340 nm 
on the Beckman Synchron LX system (Beckman kit 445875 and Sigma kit 726 
respectively). The liver enzymes, lactate dehydrogenase (LD) and aspartate 
aminotransferase (AST) were also detected enzymatically at 340 nm using the Synchron 
LX system (Beckman Coulter kits 442655, 442665 respectively).  
 
To allow the cells time to recover after the isolation procedure galactose elimination at 
Day 2 and urea production at Day 3 were investigated (results not presented in this 
study). On day 4 after isolation, cytochrome P450 activity was investigated by means of 
lidocaine clearance, by adding 500 µg/ml lidocaine and sampling once every hour for 3 
hours. To measure lidocaine, an aliquot of the sample was spiked with bupivacaine as the 
internal standard. The proteins were precipitated with 1 M perchloric acid. After 
centrifugation, the supernatant was decanted and neutralized with 1M NaOH. Two 
extractions with dichloromethane followed and then the organic layers were combined 
and dried under a stream of dry nitrogen. The residue was redissolved in dichloromethane 
and analyzed by gas chromatography mass spectrometry. On completion of the lidocaine 
study, serum-free MEM replaced that in the flasks, and albumin production was 
investigated with sampling 24 hours later. Albumin concentration was determined 
colorimetrically by measuring at 600 nm on a Technikon RA-XT system (Miles 
Technikon method SM4-0131E94).  
 
The Flow cytometry procedure involved the incubation of 1 ml of propidium iodide 
solution (Coulter DNA-Prep Reagents Kit) with 100 µL of a 2 x 106 cells/ml suspension, 
in the dark, for 30 minutes at room temperature. The samples were analyzed using a 
Beckman-Coulter Altra Flow Cytometer. A comparison of forward and side scatter data 
was used to gate the viable cells, in order to exclude debris from the population of cells 
present in the samples, while the DNA histograms indicated the relative cell cycle status 
of the suspension, that is, the proportion of DNA in the G0/G1, S or G2M phases. In 
order to examine if the cultured hepatocyte populations were proliferating normally and 
to determine if the isolation procedures had been sterile, daily examination of the culture 
flasks was performed using an Olympus CKX41 inverted microscope set for phase 
contrast. Digital micrographs, using an Olympus C4040 camera, were taken at day 3 and 
day 7 after the seeding of the culture flasks. 
 
Statistical Analyses 
 
GraphPad Prism 2.01 was used as a spreadsheet and Statistix 8 was used for the analysis 
of all data. Values are presented as the mean + the standard deviation. The lidocaine 
clearance and albumin production trends were calculated as follows: The raw data 
concentration values were converted to absolute quantities and graphed according to 
time. Straight lines were fitted to each set of results and the mean and standard deviation 
of the gradients of these lines were calculated. In the case of the lactate to pyruvate ratios 
and liver enzyme results, the mean and standard deviations were calculated according to 
each time interval in each experiment. Flow cytometry results were calculated as above, 
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and where appropriate, P values (P<0.05) were calculated by the 2-tailed Mann-Whitney 
t-test for possible significant differences.   
 
A.3 Cell culturing, metabolic evaluations and statistics 
 
Daily sampling investigated lactate dehydrogenase (LD), aspartate aminotransferase 
(AST), glucose, lactate and pyruvate concentrations. These were measured using 
enzymatic kits. pO2, pCO2 and pH were measured on a blood gas machine. The oxygen 
uptake rate (OUR) was calculated after sampling with the gas supply turned off.  
 
Metabolic clearance/production studies were performed in both dynamic and static 
configurations as follows: on day 2 D(+)galactose elimination, using gas chromatography 
mass spectrometry (GC-MS) for detection; on day 3 ammonia detoxification (NH4Cl) 
with urea synthesis, using enzymatic methods for detection. On day 4 lidocaine clearance, 
using LC-MS for detection; and on day 5 albumin production, using a spectrophotometric 
method. Upon termination on day 7, imaging studies involved either scanning electron 
microscopy (SEM), to investigate the presence of cells in the foam, or isotopic scanning 
to examine the seeded-distribution of active hepatocytes in the foam.  
 
For SEM the method was as follows; Circulating medium was replaced with fixative: 
2.5% glutaraldehyde in a 0.1 M phosphate buffer (PBS) at pH 7.4. After 30 minutes 
circulation the foam was removed and sections cut from the inlet, middle and outlet. 
After washing in PBS buffer these were placed in 1% Osmium tetroxide (OsO4) for 30 
minutes. Following water washes, the samples were dried in ethanol and mounted on 
aluminium plates. After high pressure CO2 critical point drying for an hour the samples 
were gold sputtered and viewed with a JEOL JSM-840 Scanning Electron Microscope. 
 
Radioactive labeling was performed by the active uptake of a 300 µCi dose of 99mTc-
labeled-DISIDA N-(2,6-diisopropylacetanilide)-imino-diacetate which is metabolized 
only by active hepatocytes. This was injected into the medium and allowed to circulate 
for 6 minutes. The medium was drained and the circuit washed twice, after which the 
foam was removed and cut into three radial sections at the inlet, central and outlet 
portions along the bioreactor axis. These sections were placed on the inverted face of a 
low energy, high-resolution collimator of an Elscint Apex gamma camera, and scanned 
for 10 minutes.  
 
Statistics: Microsoft Excel was used for data processing while Statistix 8 was used for 
analysis. Values are presented as the mean + standard deviation. Clearance/production 
rates were calculated by converting the raw data to absolute quantities and graphing 
according to time. The gradients of the linear fittings were taken to be the rates. Statistical 
significance was measured using Student’s t test. 
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Table A.4.1 Modified-HGM cell culture media components  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: All items except * purchased from Sigma-Aldrich, Johannesburg, South Africa. 
*’s were purchased from Bio-Whittaker, Adcock Ingram Scientific, Johannesburg, South 
Africa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Component Concentration 
Deionized autoclaved H20 10 L/bottle of DMEM 
*Powder DMEM +BSS,glutamine equivalent for 10 L 
NaHCO3 22 g for 10 L equivalent 
*Streptomycin-Fungizone 10 ml/L 
*Gentamycin sulphate 1 ml/L 
*Fetal Calf Serum 100 ml/L 
Insulin mUnits/L 
Glucagon 15-20 µg/L 
Dexamethazone 67 µg/L 
Epidermal Growth factor 20 µg/L 
Transferrin (Fe2+ saturated)  200 µl/L or 5-6 mg/L 
DMSO 1 % v/v 
Glucose 2 g/L 
Galactose 2 g/L 
Nicotinamide 0.610 g/L 
Zinc chloride 0.544 mg/L 
Zinc sulphate 0.750 mg/L 
Cupric sulphate 0.2  mg/L 
Manganese sulphate 0.025 mg/L 
Sodium selenite 5-6 µg/L 
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Appendix B: In vivo study methods 
 
B.1 Anesthesia protocol 
 
Caprofen (Rimadyl ®, 5 mg/kg BW SC) was injected pre-operatively, followed by 
isoflurane (Safe Line pharmaceuticals) inhalation using a Boyle’s isofor inhalation 
machine with 100 % O2. Buprenorhine (Temgesic ®, 0.1 ml/100g BW IM) was given at 
the time of incision. To manage pain post-operatively, carprofen was given once daily 
with buprenorphine adjusted to 30 % of normal liver weight every 12 hrs. On 
termination, all animals were euthanased through inhalation of a lethal overdose of 
isoflurane. 
 
Recovery, pain and toxicity scoring 
 
The National Society for the Protection and Care of Animals (NSPCA) pain and toxicity 
scoring sheets were completed once daily to assess possible toxicity, pain and humane 
end-points for the experiments.  
 
Statistics 
 
Microsoft Excel (ver. 2003) was used as a spreadsheet while Statistix (ver. 8, Tallahasee, 
Fl, USA) was used for data analysis. The mean and standard deviations were calculated 
for all variables. Non-parametric Wilcoxon rank sum tests, appropriate for small groups, 
were used to determine the statistical significance of differences between groups. 
 
B.2  Animal preparation 
 
Pathogen-free pigs were purchased from a herd two weeks prior to each experiment to 
allow for quarantine and acclimatisation. They were housed in environmentally 
controlled stables (25˚C) with a 12 hr light/dark cycle (University of Pretoria Biomedical 
Research Centre). Food was composed of a standard pig diet (EPOL) and water until 
fasting commenced 24 hours prior to each experiment. Energy and electrolytes (Rehidrat, 
Pfizer) were supplemented during the daytime (08:00-16:00). At 16:00 lorazepam was 
administered (2 mg IM, Ativan, Aspen) by using a pole-syringe (Dan-Inject) followed by 
an antibiotic (1g IV, Ceftriaxone, Pharmacare) as intestinal flora prophylaxis.  Each pig 
was hence kept nil per mouth until commencement at 07.00 the following morning. 
 
Anaesthesia protocol 
 
The pigs were immobilized by IM injection of midazolam (0.3 mg/kg, Dormicum, 
Roche) and ketamine (10 mg/kg, Anaket, Centaur).  A 20G IV Teflon catheter (Jelco, 
Johnson & Johnson) was placed in the ear vein for induction of anesthesia with propofol 
(3 mg/kg, Diprivan, Astra Zeneca) and intubation with a 7.5 mm endotracheal tube. A 
nasogastric tube was placed per os to deflate the stomach. After sterile preparation the 
animal was transferred to the theatre where it was immobilized in the supine position and 
draped for abdominal surgery. Anaesthesia was maintained with 1.5% isoflurane in an 
air-oxygen mixture with the aid of a circle rebreathing anaesthetic machine with carbon 
dioxide absorption (Procare 500, Ohmed, Scientific Group). Fresh gas flow rate was set 
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at 300 ml/min for oxygen and 600 ml/min for air. Minute volume was maintained with 
positive pressure ventilation (Ohmeda 7000 Ventilator) to maintain end-tidal carbon 
dioxide partial pressure in the range of 35-40 mmHg. Intra and postoperative analgesia 
was supplemented with the lumbar epidural administration of ropivacaine (0.2 ml/kg, 
Naropin, Astra) and morphine sulphate (0.1 mg/kg, morphine sulphate-Fresenius amps, 
Fresenius Kabi). Ceftriaxone (1g, Pharmacare) was administered IV as before.  Blood 
volume and blood glucose were maintained with 5% dextrose in a balanced electrolyte 
solution (Intramed, Ringer Lactate) administered at 10 ml/kg/hr for the duration of 
anesthesia. All pulse-oximitery (TL-101T, Nihon Kohden, Medical Systems), CO2 (TG-
900P, Nihon Kohden, Medical Systems), electrocardiographic (ECG) (BR-903P, Nihon 
Kohden, Medical Systems) and electroencephalographic (EEG) electrodes were attached 
to the animal at this time.  Prior to liver devascularization, 500 ml of a gelatin plasma-
expander (20 ml/kg IV, gelofusine, B/Braun) was administered IV. This dose was 
repeated immediately following liver devascularization. Perioperatively, arterial blood 
pressure was maintained at a mean pressure of between 60-80mmHg (MX 950 Transtar 
Pressure Transducers, Medex Medical) with the IV infusion of phenylephrine (2-25 
µg/kg/min phenylephrine, Covan). Core body temperature was maintained as near as 
possible to 37.5 degrees C using forced hot air (Bair hugger 505, Augustine Medical).  
 
Catheter placement 

Prior to the liver devascularization procedure, an arterial catheter (G16, 115.17 Vigon, 
Viking Medical) was placed in the common carotid artery for monitoring arterial 
pressures and blood gases. The external jugular vein was exposed for cannulation with a 
vascath (CS 15123E, Arrow) and a double lumen venous catheter (CV50688 Fr 7, Arrow) 
was inserted into the lumen of the internal jugular vein for monitoring central venous 
pressure (CVP). Positioning was verified after connection of the respective catheters to 
the monitors. A supra-pubic cystostomy was also performed prior to closing the abdomen 
using a 10 fg Foleys catheter to monitor urine output 
 
Intensive care  
 
Following surgery the animal was transferred to an intensive care unit (ICU). Continuous 
ventilation was maintained (40% O2, tidal volume 10-15 ml/kg) with a post expiratory 
pressure (PEEP) of 5 mmHg (Ventilator 7200a, Puritan-Bennet). Settings were adjusted 
hourly according to arterial blood gas (ABG). Sedation was maintained by infusing 
midazolam (0.3 mg/kg/hr Dormicum, Roche), fentanyl (0.02 mg/kg/hr Fentanyl, Janssen) 
and pentobarbitone (4 mg/kg/hr Pentobarbitone, 6%, Kyron) with infusion pumps 
(Modular 3000, Smith’s Medical). Boluses of muscular relaxant (0.3 mg/kg/hr Esmeron, 
Sanofi Synthelabo) were administered IV when necessary. Hemodynamic stability was 
regulated according to CVP (no less than 14 mmHg) and urine output (2 ml/kg/hr) using 
fluid boluses including Ringer’s lactate (Adcock Ingram) and colloid (Gelofusine, 
B/Braun). Blood glucose was maintained using 50% glucose (Adcock Ingram) to prevent 
hypoglycaemia. Dobutamine (2.5-10 µg/kg/min Dobutrex, Eli Lilly) and Phenylephrine 
(1 µg/kg/min Phenylephrine, Knoll) were titrated to maintain mean arterial blood 
pressure at a minimum of 60mmHg. Blood potassium (3.4-4.5 mmol/l) and sodium (135-
145 mmol/l) concentrations were maintained using Potassium chloride (Adcock Ingram) 
and Sodium chloride (Adcock Ingram). Heparin was titrated according to activated 
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clotting time (ACT). Bolus doses (3-5 units/kg) was administered IV until the ACT (as 
measured by a Hemochron JR, Brittan Health Care) returned to normal (220-250 secs).  
Body temperature was maintained as above. Intensive care was maintained until the 
cessation of cardiac function, which was defined as the point of death in this study. 
 
Clinical measurements 
 
Systemic and biochemical indices were measured for the duration of each experiment 
(table 4.1). Arterial blood pressure and Central venous pressure (CVP) were connected to 
a calibrated electronic pressure transducer (MX9522, Medex, SSEM). A multiparameter 
patient monitor (BMM-10-1K, Gambro and BSM 4103K Nihon Kohden) was used to 
monitor the ECG, pulse rate, CVP, systolic-, diastolic-, mean arterial blood pressure and 
haemoglobin saturation with the aid of a pulse oximeter probe placed on the tongue. End-
tidal CO2 partial pressure was measured with an in-line sensor placed between the 
endotracheal tube connection and the breathing circuit. Rectal temperature and ABG 
measurements were performed hourly while blood biochemical samples were taken four-
hourly. Standard [human] laboratory methods were used for these indices. Continuous 
EEG measurement was performed until termination. A diagrammatic drawing of the 
brain structure was superimposed on the external bone features and a standardized 
measuring protocol was adapted from the International 10/20 electrode placement system 
for humans. Subcutaneous needle electrodes were used for registering activities at the 
frontal, central, temporal and occipital regions of the brain. A digital recording system 
was used for EEG monitoring (Medtronic Walter Graphtek PL-EEG, Medtronic) and a 
software package (Neuro, Galileo NT version 2.31/00, Medtronic) was used for digital 
spectral Fast Fourier Transform (FFT) analysis. Frequency spectra of 10-second epochs 
were used in the analysis. In this study we describe only the alpha (8-15 Hz), total delta 
(0-4 Hz) and relative power values in the frontal and central regions of the brain. All 
clinical measurements were terminated at death.  
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Appendix C: The derivation of the compartmental model equations  
 
C.1 System model diagram 
 
The figure below is a simplified representation of the BALSS system connected to a 
patient, with basic notation and stream (flow-circuit) numbers. 

 
 
C.2 Model Notation 
 
Symbol Description Units 
Cai Concentration of component i in stream a mol i / m3 

Cxi        Concentration of component i in compartment x mol i / m3 
fi Fraction of substrate i that is unbound 
g Ratio of filtrate to feed flow rates for PFC separator 
Ha Hematocrit in stream a = (Volume cellular components)/(Volume plasma 

+ Volume cellular components) 
Km,i Michaelis constant for substrate i mol i / m3 
nxi Number of moles of component i in compartment x mol i 

ain&  Molar flow rate of component i in stream a mol i /s 
N Number of hepatocytes in bioreactor cells 
Qa Volumetric plasma flow rate of stream a (i.e. excluding PFC and cellular 

blood components) m3/s 
Qa,pfc Volumetric flow rate of stream a, including PFC = Qa/(1-φa) m3/s 
Qa,ct Volumetric flow rate of stream a, including cellular blood components = 

Qa/(1-Hct,a) m3/s 
xir  Reaction rate of component i in compartment x mol i /m³.s 

t Time s 
Vmax,i Maximal rate of metabolism for substrate i mol i /m³.s 
Vx Volume of compartment x, excluding PFC and cellular blood component 

volume m3 

Vx,pfc Volume of compartment x, including PFC = Vx/(1-φx) m3 

Vx,ct Volume of compartment x, including cellular blood components = Vx/(1-
Hx) m3 
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Greek symbols 
φa  Volume fraction of PFC (perfluorocarbon) in stream a 
 
General subscripts 
0 Value of variable at time zero 
a Stream a 
b Bioreactor 
ct Includes cellular blood components 
m1 Mixer 1 
m2 Mixer 2 
p Patient 
pl Plasma 
ι Constituent / toxin i 
x Compartment x 
 
 
C.3 Input parameters (with typical/indicative values for the UP-CSIR BALSS, where 
available) 
 
Parameter Description Typical value Units 
 
Cbi,0 Starting concentration of component i in bioreactor 0 mol/m3 
Cm1i,0 Starting concentration of component i in mixer m1 0 mol/m3 
Cm2i,0 Starting concentration of component i in mixer m2 0 mol/m3 
Cpi,0 Starting concentration of component i in patient 0.07 mol/m3 
fi Fraction of total substrate i that is unbound 1  
g Filtrate to feed flow rate for PFC separator 0.025 
H8 Hematocrit of plasma separator concentrate 0.8 
Hp Hematocrit in patient 0.5 
Kmi Michaelis constant for substrate i 20.86 mol i / m3 
N Number of hepatocytes in bioreactor 1x1010 cells 
Q1,ct Rate of withdrawal of blood from patient 2x10-6 m3/s 
Q3,pfc Flow rate of plasma-PFC blend into bioreactor 8.33x10-6 m3/s 

pir  Rate of reaction of component i in patient  3.56x10-8 mol/m³.s 
Vb,pfc Volume of bioreactor 0.0003 m3 

Vrmax Maximum metabolic rate of hepatocytes 3.1x10-11 mol/s.cell 
Vm1,pfc Volume of mixer m1 0.00065 m3 

Vm2,ct Volume of mixer m2 0.0001 m3 

Vp,ct Volume of blood in patient 0.004 m3 

φ3 Volume fraction PFC in stream 3 0.1 
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C.4 Output parameters  
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C.6 Basic assumptions 
 

1. Constituent i is well mixed in the bioreactor (b), patient (p), mixer 1 (m1) and 
mixer 2 (m2) (i.e. these vessels are modeled as continuously stirred tank reactors). 

2. Both plasma and PFC separators have 100% separation efficiency (i.e. no cellular 
blood components pass into stream 2, and no PFC (perfluorocarbon) emulsion 
droplets pass into stream 7). 

3. Volumes of lines and separators are negligible. 
4. Separators do not differentially separate plasma constituents (i.e. filtrate and 

concentrate have the same plasma constituent concentrations). 
5. Changes in stream volumetric flow rates due to reactions are negligible. 
6. PFC does not absorb any plasma components/constituents in significant 

quantities. 
7. Rate of production in patient ( ppiVr ) is the net rate (i.e. production by body – 

clearance by body – excretion by body). 
8. Bioreactor clearance rates are determined by cell number and by toxin 

concentration. 
9. Mixer 2 is a combination of the two physical reservoirs (the plasma and blood 

reservoirs). 
 
C.7 Flow rates 
 
The total blood flow rate of stream 1, Q1,ct, is an input parameter.  The flow rate of stream 
8, Q8,ct, can be calculated from the known hematocrit (H) levels in streams 1 and 8, where 
the definition of hematocrit in this document is defined as the volume fraction of cellular 
components in the total blood stream: 
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where H1=Hp 
 
The flow rate of stream 2: 
 812 QQQ −=  (C.2) 
 
The return flow rate of blood to the patient must be equal to the flow rate of blood 
extracted from the patient: 
 19 QQ =  (C.3) 
 
The flow rate of stream 7 can now be calculated: 
 897 QQQ −=  (C.4) 
 
The exit flow rate from the bioreactor must be equal to the inlet flow rate: 
 34 QQ =  (C.5) 
 
The ratio of filtrate flow rate to inlet flow rate for the PFC separator, g, is given by: 
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The concentrate flow rate from the PFC separator is now given by: 
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C.8 Concentrations 
 
The number of moles of component i in compartment x is given by: 
 xxixi VCn =  (C.8) 
 
The molar flow rate of component i in stream a is given by: 
 aaiai QCn =&  (C.9) 
 
Because of the assumption of good mixing, the concentration of a constituent in the exit 
streams from any vessel is equal to the concentration of the same constituent in the vessel 
at any given time: 
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Because no concentration changes occur in the separators, separator exit concentrations 
are equal to separator inlet concentrations: 
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C.9 Molar balances 
 
Taking a mole balance for component i over the patient: 
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Substituting from equation (C.10), and rearranging: 

 
pi

p
im

p
pi

pi

piimppi
pi

p

C
V
QC

V
Q

r
dt

dC

QCQCVr
dt

dC
V

1
2

9

192

−+=

−+=
 (C.13) 

 
Similarly, taking a mole balance over the bioreactor: 
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Substituting from equation (C.10) and rearranging: 
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Taking a mole balance over mixer m1: 
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Substituting from equations (C.10) and (C.11), and rearranging: 
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Taking a mole balance over mixer m2: 
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Substituting from Equations (C10) and (C11), and rearranging: 
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C.10 Rates of production/clearance 
 
The production rate (rpi) of component i in the patient is assumed to be constant.  The rate 
of clearance/metabolism of component i in the bioreactor can be approximated using the 
Michaelis-Menten relationship [91]: 
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When Cm1i.fi>>Kmi, then the rate of metabolism = Vmax,i.  When Cm1i.fi<<Kmi, then the 
rate of metabolism = Vmax,i.fi.Cm1i/Kmi.  The Michaelis-Menten parameters (Vmax,i and Kmi) 
can be determined from a single compartment bolus experiment by rewriting Equation 
(A.20), as follows: 
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Thus a plot (called a Lineweaver-Burk plot) of 1/ri vs. 1/Ci should yield a straight line 
with y-intercept 1/Vmax,i and gradient Kmi/Vmax,ifi. 
 
The Vmax value determined from the plot is dependent on enzyme concentration (e.g. if 
enzyme concentration doubles, Vmax doubles), while Km is not [91].  If one assumes that 
enzyme concentration is directly proportional to hepatocyte ‘concentration’ (i.e. 
hepatocytes per reactor volume), then one can calculate a reduced maximum reaction rate 
(Vrmax, with units mol/s.cell) from the experimentally determined Vmax value as follows: 
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This reduced maximum reaction rate can now be used to estimate Vmax for different 
reactor sizes and hepatocyte loadings. 
 
Using equation (C.20), equation (C.15), can now be rewritten as: 
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C.11 Summary of equations and parameters 
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These equations are supported by the following set of algebraic equations:
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Calculation of flow rates and volumes from input parameters: 
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Calculation of PFC volume fraction in stream 6: 
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Appendix D: On line model sensitivity and verification 
Table D.1 Numerical associations in and between classes 
 

 
Notes: 1. Inclusion in the table required a Pearson coefficient > 0.4 and a Spearman coefficient> 0.3.      

Association Variable 1 Variable 2 Pearson 
correlation 

> 0.4 

Spearman 
correlation 

> 0.3 

Comments 

 ave_pH rLactate -0.71 -0.47  
 ave_pH ave_pCO2 -0.67 -0.47 sources of change in pH 
 ave_pH ave_HCO3 +0.46 +0.58  
 ave_Pulse rNa+ -0.61 -0.33 electrolyte effect 
 rK+ rCreatinine +0.87 +0.64 kidney indices related 
 rCreatinine Urine_Tot -0.72 -0.70  
 rBilirubin rALP +0.46 +0.59  
 rBilirubin rALT +0.73 +0.78  
 rBilirubin rAST +0.66 +0.74  
 rBilirubin rLD +0.48 +0.73 Liver indices related 
Internal rAmmonia rBcAA/AroAA +0.79 -0.39  
 rAmmonia rAST +0.53 +0.56  
 rAmmonia rLD +0.74 +0.37  
 Fr_a/d_fr Pw_a/d_fr -0.47 -0.57 EEG frequency and power  
 rPT rAPTT -0.49 -0.30  
 rPT rAntiThrombin +0.79 +0.68  
 rPT rFibrinogen +0.46 +0.31  
 rFibrinogen rAntiThrombin +0.81 +0.61 Coagulation indices 
 rFactor II rFactor VII +0.71 +0.66  
 rFactor VII rFactor X +0.69 +0.52  
 rFactor II rFactor X +0.44 +0.40  
 rAmmonia Fr_a/d_fr -0.79 -0.54 Encephalopathy  
 rAmmonia Fr_a/d_ct -0.42 -0.36 and the liver 
 rAmmonia Pw_a/d_fr +0.38 +0.43  
 rBcAA/AroAA Fr_a/d_fr +0.90 +0.75 Encephalopathy 
 rBcAA/AroAA Fr_a/d_ct +0.61 +0.43 and *Fischer’s ratio 
 rBcAA/AroAA Pw_a/d_fr -0.47 -0.43  
 rGlutamine Fr_a/d_fr -0.61 -0.46 Encephalopathy 
 rGlutamine Fr_a/d_ct -0.40 -0.57 and glutamine 
 rGlutamine Pw_a/d_fr 0.92 +0.93  
External rLactate Fr_a/d_fr -0.96 -0.64 Encephalopathy 
 rLactate Fr_a/d_ct -0.86 -0.89 and lactate 
 rLactate Pw_a/d_fr +0.47 +0.64  
 rPyr Fr_a/d_ct -0.57 -0.39  
 rPyr Pw_a/d_fr +0.48 +0.64  
 rCreatinine rGlutamine +0.61 +0.43 Kidney function and *AAs 
 rCreatinine rPT +0.43 +0.72 Coagulopathy 

rCreatinine rFibrinogen -0.44 -0.39 and the kidneys 
rCreatinine rAmmonia +0.78 +0.35 Liver and kidneys 

 Urine_Tot rHkt +0.59 +0.53 The effect of fluids  
 Fluids_Tot rHkt +0.52 

+0.81 
+0.46 on hematocrit 

 rHb rHkt +0.68  
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 2. prefixes: r = rate of change over time, and ave_ = average over time. 3. All variables with Fr_a/d were 
for indices of electro-encephalograms (EEG), which were measured in the animal experiments, but have 
shown no prognostic value.  BcAA/AroAA = Fischer’s ratio, where AAs = amino acids (see section 4.2). 
 

D.2 First-order assumptions   

The assumption of the linearity over time of the composing first order equations was 
investigated by determining the best-fit linear equation for each data for all variables. A 
mean R2 value, the numerical square of the Pearson coefficient (and the proportion of the 
variance in the dependent variable attributable to the variance in each independent 
variable) was calculated for all variables (figure D.2.1). The majority of the variables had 
R2 values above 0.5 (Pearson coefficients > 0.7) which indicated that they mostly linear 
and justified the numerical design of the model. Of interest was a strong correlation 
between the variables that exhibited the greatest change, that is, the highest P values 
(table 4.2.2) and those that were most linear over time. Variables that had R2 values < 
0.5, but which were still felt to possess some prognostic value were weighted to relatively 
decrease their contribution to the eventual prediction. Specifically, a percentile weight 
was used related to their linearity. In general, the variables used for prediction during the 
surgical interval (T<0) had lower R2 values (were less linear) than those used during the 
ICU period (T>0). This validated the use of a larger number of variables in the T<0 
period, each with relatively less weight than in the T>0 period. It was also expected that 
the T<0 part would be less accurate than the T>0 part. 
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Figure D.2.1 Linearity of variable trends. The majority of measured variables demonstrated an R2 value above magnitude 0.5.
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D.3 Model sensitivity 
 
1. Tornado diagrams [285] function as a macro in Excel and require the specification of 

a high and low value for each of the input variables of the model. The output is then 
displayed in terms of each of the composing variables’ ranges about the mean 
predicted value. Thus, the dependence of the model’s output on each of the inputs is 
visible. i.e. the larger the particular input variable’s range about the summated mean 
predicted value, as determined by the weight appropriated to that variable, the greater 
the influence that variable has on the model’s output. The data range used for the 
diagrams below was that measured in practice (section 5.2). The method assumes the 
Gaussian normality of the input populations. Only a selection of the BI Tornado 
diagrams are presented below: 
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Figure D.3.1 Tornado diagram for PI model (T<0) 
Note: The Ischemic time clearly has the greatest impact on Survival during the surgical interval. 
Output sensitivity is determined by the weight appropriated to each variable. 
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Figure D.3.2 Tornado diagram for PI model (T>0) 
Note: The rate of increase of blood Ammonia most strongly impacted Survival after surgery. 
Output sensitivity is determined by the weight appropriated to each variable. 

 
Figure D.3.3 BI Model Sensitivity for BcAA/AroAA (BI) (at 12 hrs) 
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Figure D.3.4 BI Model sensitivity for creatinine (at 12 hrs) 

 
2. Monte Carlo simulation 
 
This procedure [285-287] was used to determine the sensitivity of the model’s outputs to 
generated random numbers as inputs. The model was programmed into an Excel 
spreadsheet then 1000 random numbers, parameterized about the measured mean and 
standard deviation for each variable, were generated. This data was used as input to the 
model. Output sensitivity was determined individually and in combination. i.e. either one 
variable was randomized independently while retaining all other variables on their mean 
values, or all variables were randomized simultaneously, followed by the summation of 
the results. This method of analysis assumes normality in the input data. The latter 
assumption was also tested by using the same procedure but with uniformly distributed 
populations of generated numbers. The results were then graphically projected: 
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Figure D.3.5 PI Model (T<0) prediction variation using normal distributions (N=1000) of 
independent variables. The majority of variation in model output originated with the 
Ischemic_time. All input variables individually very closely approximated the measured mean. 
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Figure D.3.6 PI Model (T>0) prediction variation using normal distributions [N=1000] of 
independent variables (T>0). All inputs very closely estimated the measured mean. There was a 
similar amount of variation in prediction from rAmmonia, rHkt and rHb. 
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Figure D.3.7 PI Model (T>0) prediction variation using uniform distributions (N=1000) of non-
Gaussian variables. Survival was slightly underestimated when the distributions were uniform as 
opposed to normal. 
 
D.4 Assumptions of normality 
 
The measured raw data for the input variables was tested for normality using Shapiro-
Wilk tests with P(W) values as are available in Statistix 8 (table 5.2.7). Despite the small 
population sizes, it was only in the derived variables rHb and rAmmo (PI model) that 
normality was excluded in the P(W) values, using the population from which the model’s 
equations had been derived. To examine the effect that non-normal distributions would 
have on model predictions, the inputs in question were also randomized using uniform 
distributions. The duration of survival was marginally underestimated in the PI.  
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Table D.4.1 Normality of independent variables in the PI 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: 
1. As the W-value approaches 1, the distribution approaches normality.  
If the P(W) value is < 0.05, normality may not be assumed. 
2. In the T<0 part of the model all distributions indicated normality. 
3. In the T>0 part of the model, only in rHb and rAmmo could normality not be assumed based 
on the P(W) values in both sets of data. 
* Indicates the data sets (N=8) from which the model was initially defined. 
†  Indicates all the data sets measured (N=12).  
4. The effect of non-normal distributions on model prediction variation was tested by means of 
employing uniform distributions for the above variables (figure 5.2.10).  
5. The BI is derived from independent variables present in the T>0 part of the PI. The nature of 
the distributions of those variables will thus also determine prediction variation in the BI. 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Time 
period 

Shapiro 
Wilk  

W-value 

P(W) 
value 

Number 
of cases 

Survival  
Body weight 
Ischemic 
time 
MAP_isch 
MAP_post 
Pulse_isch 
Pulse_post 
Temp_post 
Urine_oper 

 
 
 
 

T<0 
 

0.8834 
0.9485 
0.8502 
0.9082 
0.9767 
0.9191 
0.9737 
0.8442 
0.9063 

0.1705 
0.6738 
0.0749 
0.3414 
0.9454 
0.4224 
0.9257 
0.0644 
0.2906 

9 
9 
9 
8 
9 
8 
8 
9 
9 

Survival 
rMAP 
ave_pH 
rK+ 
rHkt 
rHb 
rHb 
rAmmonia 
rAmmonia 

 
 
 
 

T>0 

0.8925 
0.9572 
0.9816 
0.8727 
0.8769 
0.6765 
0.6204 
0.7065 
0.8200 

0.2471 
0.9353 
0.9703 
0.1602 
0.1758 
0.0012 
0.0001 
0.0027 
0.0160 

8 
8 
8 
8 
8 

8* 
12† 
8* 
12† 
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Table D.5.1 The number of independent variables used to calculate each biochemical in 
the BI 

Notes:  
1. The greater the number of weighted input variables the greater the likelihood of prediction 
accuracy. 
2. Due to being determined by only one independent variable, the clotting factors and two of the 
liver enzymes, are unlikely to be predicted with great accuracy. Unfortunately, at the time of 
writing, there were no on-line sensors for these variables. 
 
 
D.6 Model Verification methods and results 
 
D.6.1 ANOVA 
 
a. A statistical mean and standard deviation for all measured and predicted values was 
calculated (columns 4 and 5, table D.6.1). From this a percentage deviation of each 
predicted mean and standard deviation from each measured mean and standard deviation 
was calculated (column 6). Bearing in mind the large numerical range of measurement in 
the biochemical variables it was found that the predicted standard deviations about each 
mean differed to a greater extent than that in the measured. The greatest error was found 
in Factor X with a – 4.291 % difference. The percentage error for urea was 280.936%, 
and those for creatinine and glutamine were also unacceptably large.  
 
b. An ANOVA comparison, using a ‘single factor without replication’ method on a 0.05 
confidence level, was drawn between all predicted and measured populations. The 
variance in the predicted (above) and measured (below) populations was similar (column 
7). In general, the variance in the predicted population was greater than in the measured, 
with the largest differences in urea, glutamine and creatinine once again. The mean 
square values (column 8) indicated that sources of variation were less between 
populations than within them. F-ratios were uniformly smaller than F-crit values, 
indicating that the differences were best explained by chance. The confidence (P) values 
(column 10) were mostly above 0.8, with the exception of fibrinogen, AST and LD, 
whose P values were below 0.55. However, all were far above 0.05, thus, the null 
hypothesis was rejected. Thus, it was not possible to detect a significant difference 
between the two populations in any of the parts of the model.  

Number of independent variables 
V
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e 

4 3 2 1 
BcAA/AroAA ALP Glutamine Bilirubin 

Fibrinogen  Antithrombin PT 
Creatinine  LD Factor II, 

VII, X 
   Factor 
   AST 
   ALT 
   Urea 
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Table D.6.1 ANOVA results for the PI and BI model/s (highlighted variables were discarded) 

1. 
Model 
Output 

2.  
Pearson 

Correlation 
coefficient: 
predicted to 
measured 

3. 
Output correction 

formula 

4. 
Measured: 

Mean 
Std dev 

5. 
Predicted: 

Mean 
Std dev 

6. 
Percentage 
deviation of 

predicted (mean & 
std dev) from 

measured 

7. 
Variance: 
Predicted 

over 
Measured. 

8. 
Mean Square 

(MS): 
between & 

within grps. 

9. 
F value & 

F-crit 
value. 

10. 
P value 

(α = 
0.05) 

Prognosis  T<0 0.733 y=0.1913x+20.636 24.88 
5.64 

25.07 
7.69 

0.14 
4.24 

59.08 
31.84 

0.15 
45.46 

0.003 
4.60 0.956 

Prognosis  T>0 0.864 y=0.2823x+19.109 26.63 
5.98 

26.63 
6.92 

0.001 
2.39 

47.82 
35.70 

5.33x10-6

41.76 
1.28x10-7

4.60 0.999 

BcAA/AroAA 0.811 y=0.6624x+1.3662 1.98 
0.75 

2.03 
0.90 

1.27 
45.88 

0.86 
0.57 

1.94x10-8 
0.72 

2.71x10-8 
4.03 0.999 

BilirubinTOT 0.864 y=1.27x +3.9589 12.41 
7.49 

13.30 
9.24 

-0.91 
7.28 

8.34 
56.07 

13.74 
71.13 

0.19 
3.98 0.662 

Fibrinogen 0.962 y=1.1821x-0.8357 1.96 
0.71 

1.72 
0.74 

2.12 
27.84 

0.55 
0.51 

0.59 
0.53 

1.11 
4.07 0.297 

PT 0.945 y=0.8624x+4.4398 15.39 
5.24 

16.12 
6.57 

-0.41 
4.31 

43.14 
27.44 

8.82 
35.76 

0.25 
3.99 0.621 

AntiThrombin 0.841 y= 0.6329x +28.5 65.98 
20.18 

65.98 
23.99 

0.04 
1.21 

575.56 
407.13 

1.11x10-4 
491.35 

2.26x10-7 
4.01 0.999 

Factor II 0.847 y=0.7741x+8.3169 32.60 
13.86 

32.60 
16.36 

-0.03 
2.46 

267.50 
192.09 

1.75x10-6 
229.8 

7.62x10-9 
3.99 0.999 

Factor VII 0.837 y=0.6739x+14.753 30.35 
19.40 

30.35 
23.18 

-0.38 
3.83 

537.21 
376.47 

6.82x10-5 
456.84 

1.49x10-7 
3.99 0.999 

Factor X 0.786 y=0.6641x+24.718 28.96 
27.11 

28.96 
34.51 

-4.29 
22.40 

1.19x103 
735.03 

3.56x10-5 
962.96 

3.69x10-8 
3.99 0.999 

ALP 0.747 y=0.4547x+170.63 330.65 
260.53 

344.56 
348.78 

-0.10 
0.47 

1.22x105 
6.79x104 

3.39x103 
9.56x104 

0.04 
3.98 0.851 

AST 0.810 y= 0.763x +1306 1521.16 
2025.67 

1871.04 
2627.43 

-0.51 
1.13 

6.90x106 
4.10x106 

2.04x106 
5.61x106 

0.36 
3.99 0.549 

LD 0.800 y=0.7057x+949.87 1673.18 
1545.16 

2020.51 
2230.23 

-0.03 
0.11 

4.97x106 
2.39x106 

2.08x106 
3.74x106 

0.56 
3.98 0.459 

ALT 0.729 y=0.5878x+88.486 120.0 
113.81 

126.88 
151.95 

-0.25 
1.69 

2.31x106 
1.30x104 

814.64 
1.83x104 

0.05 
3.98 0.833 

Creatinine 0.522 y=0.4318x+82.663 129.55 
53.27 

129.55 
101.95 

0.15 
1.72 

1.04x104 
2.84x103 

3.74x10-4 
6615.82 

5.65x10-8 
3.99 0.999 

Urea 0.164 y= 0.074x +2.391 2.24 
0.87 

2.31 
5.17 

-3.66 
280.94 

26.70 
0.75 

0.09 
13.91 

6.46x10-3 
13.91 0.936 

Glutamine 0.463 y= 0.267x +178.8 207.68 
96.39 

207.71 
207.95 

-0.05 
1.10 

4.32x104 
9.28x103 

9.14x10-3

2.63x104 
3.48x10-7 

4.01 0.999 
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D.6.2 Relative error 
 
a. The error of each predicted to corresponding measured value was calculated as a 
fraction of each measured value. i.e. the deviation at a particular point or point 
error. This was divided by the standard deviation of the measured population and 
converted to a percentile scale to give the relative error for each part of the model. 
If the point error exceeded 100% of the standard deviation of the measured 
population, then there was a significant difference between the two populations at 
that point. In general, the closer the mean relative error value to zero, the closer the 
model has estimated the mean of the measured population, while the standard 
deviation of the relative error (SDre) indicates the predicted population’s range of 
error.  
 
A potential weakness in this method was that when a variable demonstrated a very 
large numerical range over the course of an experiment, the relative error would 
tend to be larger in the small range and smaller in the large range of the raw data. 
i.e. the relative error converged to zero as the measurement range increased. This 
effect was only noticeable in the liver enzymes in which there were extremely large 
measurement ranges (from 0-7000 IU/l). These enzymes have no prognostic value 
in ALF and for this reason the effect could have been ignored. However, for the 
sake of thoroughness, 
 
b. A quantitative index for comparison was calculated by multiplying the 
measurement range with the standard deviation of the relative error (SDre) (table 
D.6.2.1). The larger the returned value, the larger the prediction error region. This 
represents a method of indicating the average relative accuracy of the various parts 
of the model. What must be borne in mind, especially in the biochemical variables, 
is that although the deviation in the relative error may have been small, the 
measured value range was often very large. In practice the point errors may still 
have been large. 
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Figure D.6.2.1 Relative prediction error for the PI (T<0)  

 
Figure D.6.2.2 Relative error for PI (T>0)  
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Figure D.6.2.3 Relative error for the BI (Prothrombin time)  
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Figure D.6.2.4 Relative error for the BI [BcAA/AroAA]  
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Table D.6.2.1 Comparative accuracy of the PI and BI models (using ‘training’ data) 

Notes:  
1. *SDre = Standard deviation of the relative error 
2. The closer the mean prediction error to 0, the closer the mean measured value has been 
estimated. 
3. The smaller the Range*SDre the smaller the error region and the more accurate the 
predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
Index 

Measured values Accuracy Index 
Max Min Range Mean SDre Range*SDre 

Prognosis  T<0 36 20 16 0.14 4.24 67 
Prognosis  T>0 36 20 16 0.001 2.39 38 
BcAA/AroAA 3.75 1.19 2.55 1.67 29.00 48.43 
BilirubinTOT 30.0 1.0 29.0 -0.91 7.28 211.2 
Fibrinogen 2.97 0.50 2.47 2.12 27.84 68.76 
PT 29.75 9.90 19.85 -0.41 4.31 85.49 
AntiThrombin 112.89 14.00 98.89 0.04 1.21 119.44 
Factor II 59.65 7.61 52.04 -0.03 2.46 127.87 
Factor VII 74.95 6.19 68.76 -0.08 3.28 225.54
Factor X 104.96 1.00 103.96 0.98 3.94 409.93 
ALP 1206.0 57.0 1149.0 -0.01 0.32 366.9 
AST 6607.0 23.0 6584.0 0.01 0.07 441.1 
LD 6161.0 155.0 6006.0 -0.001 0.05 301.2 
ALT 377.0 23.0 354.0 0.15 1.15 405.2 
Creatinine 284.8 11.5 273.3 0.15 1.72 468.8
Urea 4.6 1.6 3.2 67.71 173.81 556.2
Glutamine 445.0 76.8 368.2 0.63 0.94 344.2 
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