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Preface

In its most general form, the Blaschke-Santaló inequality is given by the fol-
lowing statement:

“The volume product of any convex body is at most equal to that of an
ellipsoid. Moreover, the maximum volume product is attained exclusively by

ellipsoids.”

This fundamental geometric inequality is well-known not only for its uses in a
variety of fields ranging from stochastic geometry and functional analysis[13]
to differential equations[9], but also for its close relation to the classical affine
isoperimetric inequality [16] (see for instance Lutwak [10]). Indeed, the first
proof of the Blaschke-Santaló inequality - due to Blaschke[4] for dimensions
2,3 and Santaló [16] for arbitrary dimensions - is based on that of the affine
isoperimetric inequality.

The conditions for equality in the affine isoperimetric problem which gave
rise to the characterization of the upper bound in the Blaschke-Santaló in-
equality were however only established for convex bodies with sufficiently
smooth boundaries. Although it was later found (by rather technical argu-
ments (Petty[12])) that these restrictions can be omitted, the question as to
whether it is possible to prove the Blaschke-Santaló inequality without direct
reference to the classical isoperimetric inequality and the therewith associated
smoothness assumptions, remained open until the early 1980’s. The first such
proof in the case of centrally symmetric convex bodies was forwarded by Saint
Raymond in 1981 in the paper entitled “Sur le volume des corps convexes
symmétriques” [15] and is the subject of this dissertation. A direct proof of
the Blaschke-Santaló inequality for general convex bodies was subsequently
given by M. Meyer and A. Pajor [11] in 1990.

In the case of symmetric convex bodies, the formulation of the Blaschke-
Santaló inequality is relatively simple. Let (X, ‖.‖X) be a finite dimensional
Banach space over R (also known as a Minkowski Space) with corresponding
dual space (X∗, ‖.‖X∗) and let m and m∗ be (associated) Haar measures de-
fined on X and X∗ respectively. A set C ⊂ X is said to be a convex body if

4

 
 
 



it is a compact convex set with non-empty interior. The volume product P of
any centrally symmetric convex body C ⊂ X is defined as the quantity

P (C) := m(C)m∗(Co)

where Co is the polar body associated with C. The Blaschke-Santaló inequality
for centrally symmetric convex bodies can now be formulated as follows:

Theorem 0.0.1 (The Blaschke-Santaló Inequality). Let C be any convex
symmetric body contained in the n-dimensional Banach space (X, ‖.‖). Then

1) The volume product P satisfies the following inequality

P (C) ≤ P (E) (0.0.1)

where E is an ellipsoid.

2) Equality occurs in (0.0.1) if and only if C is an ellipsoid.

Remark 0.0.2. It will be shown in Section 2.5 that all ellipsoids have the
same volume product. The existence of an upper bound for the volume product
is therefore implicit in the first part of Theorem 0.0.1.

Notation:

All vector spaces in this dissertation are assumed to be over the field R of real
numbers. A typical n-dimensional Minkowski Space is denoted by (X, ‖.‖)
or (X,B), where B denotes the unit ball induced by the norm ‖.‖. For any
1 ≤ p ≤ ∞, the Space lnp is defined as the Minkowski Space (Rn, ‖.‖p), where:

‖(x1, ..., xn)‖p :=

(
n∑

i=1

|xi|p
) 1

p

∀(x1, ..., xn) ∈ Rn.

for 1 ≤ p <∞ and

‖(x1, ..., xn)‖∞ := max{|xi| : i = 1, ..., n} ∀(x1, ..., xn) ∈ Rn.

The n-dimensional Lebesgue measure, defined on the collection B(Rn) of all
Borel sets in Rn, is denoted by λn or λ if the underlying dimension is implicitly
understood.

Outline of Dissertation:

The aim of this dissertation is to provide a relatively comprehensive exposition
of the Blaschke-Santaló inequality in the case of symmetric convex bodies with
particular emphasis placed on the approach outlined by Saint Raymond. The
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dissertation is structured as follows:

Chapter 1 provides a brief introduction to Minkowski Spaces and their asso-
ciated Euclidean structure. For any n-dimensional Minkowski space X there
exists a linear homeomorphism from X onto the well-known Euclidean space
ln2 and thus all Minkowski spaces are topologically equivalent. In these spaces,
the collection of convex symmetric bodies is interchangeable with the collection
of unit balls. Moreover, the unit ball of a Minkowski space X is an ellipsoid if
and only if X is isometric to ln2 and thus Theorem 0.0.1 can be interpreted as a
measure theoretic characterization of Hilbert spaces in finite dimensions. Any
linear functional acting on a Minkowski Space can be uniquely represented in
terms of the Euclidean inner product (regardless of the norm-structure of X),
which gives rise to the definition of the adjoint operator on the dual Minkowksi
space X∗.

Chapter 2 introduces both the Haar measure, an extension of the usual vol-
ume measure on Rn to n-dimensional Banach spaces, and the volume product.
Haar measures are closely related to to the well-known n-dimensional Lebesgue
measure λn and can indeed be interpreted in terms of the scaled Lesbesgue
measure. The rules governing the change in “volume”, due to a linear change
in variables, guarantee the invariance of the volume product under linear iso-
morphisms. The problem of finding the maximum volume product can thus,
without loss of generality, be formulated in the measure space (ln2 ,B(Rn), λn).
For unit balls of lnp -spaces, explicit volume formulas can be readily derived and
the Blascke-Santaló inequality can thus be solved directly for this subclass.

Chapter 3 focuses on the topological properties of the collection of compact
convex bodies contained in a given Minkowski Space, by defining a metric (the
Hausdorff metric) on this class. It will be shown that both the Haar measure
as well as the volume product are continuous functions with respect to this
metric. The Blaschke selection Theorem, proved in Section 3.4, forms the ba-
sis of all existence proofs in the ensuing chapters.

Chapter 4 deals with the method of Steiner symmetrization. The most useful
result in this Chapter, given by Theorem 4.3.3, asserts that for every sym-
metric convex body C ⊂ Rn there exists a sequence of successive Steiner
symmmetrals {Ci}∞i=1 of C converging to a Euclidean Ball with respect to
the Hausdorff metric. This Theorem, based partly on the Blaschke selection
Theorem and the continuity of the volume product, not only leads to the fa-
mous characterization of ellipsoids due to Bertrand[3] and Brunn[6] (which is
invoked in Chapter 5 to prove the second part of the Blaschke-Santaló inequal-
ity), but was also used directly by Meyer and Pajor [11] in a short proof of
the first part of the Blaschke-Santaló inequality.
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Saint Raymond’s proof of Theorem 0.0.1 is finally given in Chapter 6. This
proof is essentially constructive and not only exploits the symmetry of the
underlying convex body, but also various properties of convex- and concave
functions. The cross-sections of any symmetric convex body C in Rn can be
used to construct another convex body C ′, whose volume product is strictly
greater than that of C unless C satisfies the hypothesis of a certain corollary
of Brunn’s theorem which in turn implies that C must be an ellipsoid. In
order to maintain the fluency of Chapter 6, the necessary continuity- and
differentiability properties of convex-/concave functions are discussed in the
Appendix.
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Chapter 1

Minkowski Spaces and their
associated Euclidean
Structure

1.1 Introduction

In the interest of presenting a relatively self contained text, the first chapter
aims at broadly outlining the basic definitions and fundamental results con-
cerning Minkowski Spaces that will be used throughout the dissertation.

Finite dimensional Normed spaces, also known as Minkowski Spaces, are often
studied in terms of their relation to the familiar Euclidean Space ln2 . Indeed, let
(X, ‖.‖) be an n-dimensional Minkowski space with ordered basis {b1, ..., bn}.
The coordinatization mapping ζ : X → Rn is defined in terms of its action on
the basis vectors {b1, ..., bn} as follows:

ζ(bi) := ei for i = 1, ..., n

where {e1, ..., en} is the standard ordered basis for Rn. This linear isomor-
phism is the key to studying both the algebraic as well as the topological
structure of X and will be used frequently in sequel.

Evidently ζ is defined in terms of the ordered basis b = {b1, ..., bn}. To stress
its dependency on this basis we use the notation ζb. If another ordered basis
c = {c1, ..., cn} of X were to be chosen then ζc would define a different iso-
morphism from X onto Rn. The following lemma establishes a linear relation
between ζb and ζc.

Lemma 1.1.1. There exists an invertible linear mapping T : Rn → Rn such
that

ζc(x) = T (ζb(x)) for all x ∈ X (1.1.1)
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Proof. Since linear transformations preserve linear independence, it follows
that the sets {ζc(b1), ..., ζc(bn)} and {ζc(c1), ..., ζc(cn)} = {e1, ..., en} are both
bases of Rn. Let T be the invertible linear map defined by

T (ei) := ζc(bi) for i = 1, ..., n .

The linearity of T and ζc ensure that for any x =
∑n

i=1 αibi ∈ X we have

ζc(x) := ζc

(
n∑

i=1

αibi

)
=

n∑
i=1

αiζc(bi) =
n∑

i=1

αiT (ei)

= T

(
n∑

i=1

αiei

)
=: T (ζb(x))

1.2 The Norm Topology

Not only is the coordinatization mapping ζ an algebraic isomorphism, but
it also defines a homeomorphism from any n-dimensional Minkowski space
(X, ‖.‖) onto the familiar Euclidean space ln2 (Theorem 1.2.3 [18]). As a con-
sequence, all n-dimensional Minkowski Spaces are topologically equivalent to
ln2 . Particularly, any Minkowski space is locally compact, complete and has
the Heine-Borel property. Moreover, every linear map between Minkowski
spaces is bounded (Theorem 1.2.4 [18]). From this it follows that for any two
norms ‖.‖ and ‖.‖′ defined on a given Minkowski space X there exist constants
c1, c2 > 0 such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖ for all x ∈ X (1.2.1)

and hence all norms on X are equivalent.

1.2.1 Convex Symmetric Bodies and the Unit Ball

Let (X, ‖.‖) an n-dimensional Minkowski space. The ball in (X, ‖.‖) with
center x0 ∈ X and radius r > 0 is defined as the set

B(X;x0, r) := {x ∈ X : ‖x− x0‖ ≤ r}.

Similarly, the set

S(X;x0, r) := {x ∈ X : ‖x− x0‖ = r}

is called the sphere in (X, ‖.‖) with center x0 ∈ X and radius r > 0. For the
sake of simplicity, the unit ball B(X; 0, 1) is denoted by B(X) or simply by
B. The following terminology will prove useful in the characterization of unit
balls.

9

 
 
 



Definition 1.2.1. Let (X, ‖.‖) be an n-dimensional Minkowski space with
K ⊆ X.Then:

(i) K is said to be convex if λK + (1− λ)K ⊆ K for every λ ∈ [0, 1]

(ii) K is said to be (centrally) symmetric if −K = K

(iii) K is called a convex body if K is a compact convex set and intK 6= ∅

It follows directly from elementary properties of the norm that the unit ball
B = {x ∈ X : ‖x‖ ≤ 1} of a Minkowski Space (X, ‖.‖) is a convex symmetric
set and 0 ∈ intB = {x ∈ X : ‖x‖ < 1}. Moreover, Minkowski spaces are
characterized as those Normed spaces whose unit ball is compact (Theorem
1.2.8[18]) and hence B is a symmetric convex body.

Conversely, let C be an arbitrary symmetric convex body in (X, ‖.‖) and define
the Minkowski functional ‖.‖C : X → [0,∞) as follows:

‖x‖C := inf{ξ > 0 : x ∈ ξC} for all x ∈ X (1.2.2)

It can now be shown (Proposition 1.1.8 [18]) that the Minkowski functional
‖.‖C defines a norm on X with corresponding unit ball C. Consequently any
convex symmetric body in X gives rise to a unique norm and can thus serve
as the unit ball of X. The collection of symmetric convex bodies in X can
subsequently be used interchangeably with the collection of unit balls in X.

1.3 The Euclidean Structure of Minkowski Spaces

Let (X,B) be a Minkowski space with unit ball B and let ζ be the coordi-
natization mapping defined in section 1.1. By virtue of the fact that ζ is a
homeomorphism, it follows that the image ζ(B) ⊂ Rn of B is compact and
that the open set intζ(B) = ζ (intB) is non-empty. Moreover, the linearity
of ζ ensures that the convexity and symmetry of B are preserved. ζ(B) is
therefore a symmetric convex body and can hence be used to define a norm
on Rn. Now ζ defines an isometry from (X,B) onto (Rn, ζ(B)) and (X,B) is
said to be realized as (Rn, ζ(B)).
It is often convenient to impose an inner product structure on an arbitrary
Minkowski space (X,B). To this end, let ζ be the coordinatization mapping
corresponding to ordered basis {b1, ..., bn} and let

〈x, y〉 := ζ(x) · ζ(y) for every x, y ∈ X

where · denotes the usual dot product. The inner product 〈., .〉 is known as the
Euclidean structure of X in terms of {b1, ..., bn} and, though useful, generally
bears no relation to the norm induced by the unit ball B. It follows how-
ever from proposition 1.3.3(and the subsequent remark) that if the realization
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(Rn, ζ(B)) of (X,B) is a Hilbert space then (X,B) itself is a Hilbert space,
which is isometric to ln2 .

Definition 1.3.1. A subset C of a Minkowski Space (X, ‖.‖) is called an
ellipsoid if there exists an invertible linear transformation T : X → Rn such
that T (C) = B(ln2 ).

Proposition 1.3.3 asserts that that a Minkowski space (X,E) is a Hilbert space
if and only E is an ellipsoid. The proof is based on the well-known Jordan-
von Neumann characterization of inner product spaces, which is stated here
without proof (see Amir [1]).

Proposition 1.3.2 (Jordan-von Neumann Theorem). A normed space
(X, ‖.‖) is an inner product space if and only if the following relation holds:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ X (1.3.1)

Proposition 1.3.3. A Minkowski space (X,B) is a Hilbert Space if and only
if B is an ellipsoid.

Proof. Suppose (X,B) is a Hilbert space with inner product 〈., .〉 and let
{b1, ..., bn} be an ordered orthonormal basis for X. The image of a typical
point x =

∑n
i=1 βibi ∈ X under the coordinatization mapping ζ corresponding

to this basis is given by ζ(x) = (β1, ..., βn)T . Let ‖.‖ and ‖.‖2 denote the norms
corresponding to the unit balls B and B(ln2 ) respectively. Then:

‖x‖2 = 〈x, x〉 = 〈
n∑

i=1

βibi,
n∑

i=1

βibi〉

=
n∑

i=1

β2
i 〈bi, bi〉+

∑
i6=j

βiβj〈bi, bj〉

=
n∑

i=1

β2
i = ‖ζ(x)‖2

2

and thus ζ : X → Rn is the required linear bijection.
Conversely, suppose the unit ball B of the Minkowski space is an ellipsoid. By
definition there then exists a linear isometric isomorphism T : (X,B) → l2n. It
can now readily be seen that the mapping 〈., .〉 : X → X given by:

〈x, y〉 := (Tx) · (Ty) for x, y ∈ X (1.3.2)

defines an inner product on X whose induced norm agrees with the norm
corresponding to the unit ball B.

Remark 1.3.4. By virtue of the linearity of the coordinatization mapping ζ
and Proposition 1.3.3, a Minkowski space (X,B) is a Hilbert space if and only
if there exists a realization (Rn, E), where E is an ellipsoid. Moreover, if
there exists such a realization, then Lemma 1.1.1 guarantees that every other
realization of (X,B) is also a Hilbert space.
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In light of Proposition 1.3.3, the Blaschke-Santaló inequality can be refor-
mulated as a measure-theoretic characterization of Hilbert spaces in finite
dimensions:

Theorem 1.3.5. For any Minkowski space (X,K), the volume product P
satisfies the following inequality

P (K) ≤ P (E) (1.3.3)

where E is an ellipsoid. Moreover equality occurs in (1.3.3) if and only if
(X,K) is a Hilbert space.
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1.4 Dual Minkowski Spaces

The dual space (X∗, Bo) of an n-dimensional Minkowski space (X,B) is the
collection of all linear functionals on X, equipped with the dual norm

‖f‖ := sup{|f(x)| : x ∈ B} ∀f ∈ X∗

From the definition of the supremum and the symmetry of B, it follows readily
that the unit ball Bo of X∗, also known as the polar of B, can be written in
the form

Bo = {f ∈ X∗ : ‖f‖ ≤ 1} = {f ∈ X∗ : |f(x)| ≤ 1 ∀x ∈ B}
= {f ∈ X∗ : f(x) ≤ 1 ∀x ∈ B}

The Natural Dual basis

Let {b1, ..., bn} be an ordered basis of X. The action of any linear functional
f ∈ X∗ on a vector x ∈ X is uniquely determined by its action on {b1, ..., bn}.
Indeed if f, g ∈ X∗ are such that f(bi) = g(bi) for i = 1, ..., n and
x =

∑n
i=1 αibi ∈ X then

f(x) = f(
n∑

i=1

αibi) =
n∑

i=1

αif(bi) =
n∑

i=1

αig(bi) = g(
n∑

i=1

αibi) = g(x).

Elementary calculations show that the collection {b∗1, ..., b∗n} of functionals in
X∗, defined by

b∗i (bj) := δij for i, j = 1, ..., n

is linearly independent and spans X∗ and is therefore called the natural dual
basis of X∗ corresponding to {b1, ..., bn}. Consequently, dimX∗ = dimX and
the mapping bi 7→ b∗i (for i = 1, ..., n) defines an isomorphism from X onto
X∗.

The Hilbert Adjoint Operator

Suppose the Minkowski space (X,B) is equipped with an auxiliary Euclidean
structure 〈., .〉 relative to the basis {b1, ..., bn} and (X∗, Bo) is the dual with
corresponding natural dual basis {b∗1, ..., b∗n}. By means of the isomorphism
F : bi 7→ b∗i for i = 1, ..., n and the coordinatization mapping ζ, every linear
linear functional f =

∑n
i=1 γib

∗
i ∈ X∗ can be uniquely identified with both the

vector yf =
∑n

i=1 γibi ∈ X and the vector γ = (γ1, ..., γn) ∈ Rn. Moreover, for
any x =

∑n
i=1 aibi ∈ X, with a = (a1, ..., an):

〈x, yf 〉 := γ · a =
n∑

i=1

γi

n∑
j=1

αjb
∗
i (bj) =

n∑
i=1

γib
∗
i (

n∑
j=1

αjbj) = f(x)
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Remark 1.4.1. This representation resembles the well-known Riesz represen-
tation Theorem for linear functionals on Hilbert spaces. Note that

F (Bo) = {y ∈ X : 〈x, y〉 ≤ 1}

However, since the norm induced by the inner product 〈., .〉 does not necessarily
coincide with the norm corresponding to the unit ball B, the relation ‖yf‖ =
‖f‖ does not hold in general.

The Hilbert adjoint operator T ∗ of a linear isomorphism T on X relates the
change of the basis {b1, ..., bn} under T to the change of the corresponding
dual basis {b∗1, ..., b∗n}.

Proposition 1.4.2. For every isomorphism T : X → X, there exists an
isomorphism T ∗ : X∗ → X∗ such that (T ∗)−1 maps the natural dual basis of
X onto the natural dual basis of T (X).

Proof. Define T ∗ at an arbitrary vector f ∈ X∗ as the mapping

〈x, T ∗f〉 := 〈Tx, f〉 for all x ∈ X

Let {b1, ..., bn} be a basis for X with corresponding dual basis {b∗1, ..., b∗n}.
Evidently (T ∗)−1 exists and is defined at f ∈ X∗ as the mapping

〈y, (T ∗)−1f〉 := 〈T−1y, f〉 for all y ∈ X

It now follows from that fact that T ∗T ∗−1(b∗i ) = b∗i for i = 1, ..., n and the
definition of T ∗ that

δij = b∗i (bj) = 〈bj , T ∗(T ∗)−1b∗i 〉 := 〈Tbj , (T ∗)−1b∗i 〉

for all i, j = 1, ..., n. Hence the natural dual basis of X∗ corresponding to the
basis {Tb1, ..., T bn} is simply {(T ∗)−1b∗1, ..., (T

∗)−1b∗n}

Remark 1.4.3. The following two facts will prove useful in Chapter 2.

1. It is well known that if MT is the standard matrix representation of T
then T ∗ can be represented by the transpose (MT )t.

2. If T : X → X is an invertible linear transformation then

(T (B))o = {f ∈ X∗ : 〈Tx, f〉 ≤ 1∀x ∈ B}
= {f ∈ X∗ : 〈x, T ∗f〉 ≤ 1∀x ∈ B}
= (T ∗)−1{T ∗f ∈ X∗ : 〈x, T ∗f〉 ≤ 1∀x ∈ B} = (T ∗)−1Bo

14

 
 
 



Chapter 2

Haar Measures and the
Volume Product

2.1 Introduction

Let λn denote the n-dimensional Lebesgue measure defined on the collection
B(Rn) of Borel sets in Rn. A Haar measure functions as the volume measure
for arbitrary Minkowski Spaces and, as such, resembles the familiar Lebesgue
measure in its most salient features. Indeed all Haar measures are are non-zero
regular Borel measures which are invariant under both translations and lin-
ear transformations whose matrix representations have determinant 1. It can
be shown that every locally compact topological group admits a regular Borel
measure which is invariant under the action of the group (Cohn [7]). The proof
of the existence of such measures, even within the context of abelian groups, is,
however, quite tedious and doesn’t contribute considerably to the development
of the ideas in this chapter (The interested reader is referred to Cohn for a more
comprehensive treatment of the subject). We will therefore focus on the defini-
tion and elementary properties of Haar measures on Minkowski spaces. In par-
ticular, it will be shown (in subsection 4.2.1) that all Haar measures defined on
a given n-dimensional Minkowski Space are scaled versions of the well-known
Lebesgue measure. As a consequence, many problems involving volumes de-
fined on n-dimensional Minkowski Spaces, including that of finding the upper
bound for the volume product, can be translated into equivalent problems in
(Rn,B(Rn), λn). Section 4.3 deals with the effect of linear transformations
on the Haar measure of a given Borel set. The rules relating the change in
“volume” due to a linear change of variables naturally extend the well-known
rules which are valid for (Rn,B(Rn), λn) to arbitrary Minkowski Spaces. The
Volume Product, defined on symmetric convex subsets of a Minkowski space,
is introduced in section 4.5. This quantity is invariant under isomorphisms and
hence the general problem of finding the maximum(minimum) volume prod-
uct can without loss of generality be reformulated in (Rn,B(Rn), λn). For
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the subclass of unit balls {B(lnp ) : 1 ≤ p ≤ ∞}, explicit volume formulas are
readily available (section 4.4). In this case, the Blaschke-Santaló inequality
can be established through direct computation (section 4.6).

2.2 Definition and Elementary Properties

Definition 2.2.1 (Regular Borel measures). Let (X, ‖.‖) be a Minkowski
space and let B(X) denote the collection of Borel sets in X. A regular Borel
measure µ : B(X) → [0;∞] is a measure with the following properties:
(i) µ(U) = sup{µ(K) : K ⊂ U and K is compact} ∀ open sets U ⊆ X.
(ii) µ(A) = inf{µ(U) : A ⊂ U and U is open} for every A ∈ B(X).

Definition 2.2.2 (Haar measures). A non-zero, regular Borel measure µ,
defined on a Minkowski space (X, ‖.‖), is said to be a Haar measure if it has
the following properties:
(i) µ(K) <∞ for all compact sets K.
(ii) µ(U) > 0 for all open sets U
(iii) µ(A) = µ(A+ x) for all A ∈ B(X) and all x ∈ X.

Since B(X) is closed under translations, the expressions in (iii) are well-
defined. It can easily be verified that the Lebesgue measure λn on Rn sat-
isfies the criteria of the above definition and is hence an example of a Haar
measure.

2.2.1 Sections of Borel sets and Fubini’s Theorem

Fubini’s Theorem (stated here without proof) will be frequently used in sequel,
since it enables the computation of the volume of a Borel set in terms of the
volumes of its cross-sections.

Definition 2.2.3. Let F : X × Y → R. Then:
(i) The x-section Fx of F is defined as the function:

Fx : Y → R : y 7→ Fx(y) := F (x, y)

(ii) The y-section F y of F is defined as the function

F y : X → R : x 7→ F y(x) := F (x, y)

Definition 2.2.4. .
The x-section Ax of a measurable set A ⊂ X×Y is defined as the x-section of
the characteristic function χA. Hence Ax := {y ∈ Y : (x, y) ∈ A}. Similarly,
the y-section Ay of A is given by Ay := {x ∈ X : (x, y) ∈ A}
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Theorem 2.2.5 (Fubini’s Theorem). Let (X,M, µ) and (Y,N , ν) be σ-
finite measure spaces and let F : X×Y → R be a M×N -measurable function
which is integrable with respect to the product measure µ × ν. Then Fx is
integrable µ-almost everywhere and F y is integrable ν-almost everywhere.
Moreover, the functions f and g defined by

f(x) :=
{ ∫

Y Fxdν, if Fx is integrable;
0, otherwise.

g(y) :=
{ ∫

X F ydµ, if F y is integrable;
0, otherwise.

are integrable and∫
X
fdµ =

∫
X×Y

Fd(µ× ν) =
∫

Y
gdν

⇔
∫

X

(∫
Y
Fxdν

)
dµ =

∫
X×Y

Fd(µ× ν) =
∫

Y

(∫
X
F ydν

)
dν

It follows directly from Fubini’s Theorem that the product measure µ × ν of
any measurable set A ⊆ X × Y is given by

(µ× ν)(A) =
∫

X
ν(Ax)dµ =

∫
Y
µ(Ay)dν (2.2.1)

2.2.2 “Uniqueness”of Haar measures

In order to prove the main assertion of this section, namely that all Haar
measures, defined on a given Minkowski space are unique up to a scalar factor,
the following preliminary technical lemma is necessary.

Lemma 2.2.6. Let X be any Minkowski space and let µ be a Haar measure
on X. Then the following three facts hold:

(a) If g is a continuous, non-zero, non-negative function on X with compact
support, then 0 <

∫
X gdµ <∞.

(b) There exists a continuous function f such that
∫
X fdµ 6= 0

(c) If f is a continuous function on X and µ is a Haar measure on X, then∫
X f(x+ a)dµ(x) =

∫
X f(x)dµ(x) for any a ∈ X.

Proof. .
(a) µ is regular and g is continuous with compact support and hence∫
X gdµ <∞ (see Rudin chapter 2 [14]). Since g 6= 0, there exists some x0 ∈ X
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and some ε > 0 such that g(x0) > ε. By the continuity of g there must be an
open set U such that g(x) > ε ∀x ∈ U . Therefore∫

X
gdµ ≥

∫
U
gdµ ≥

∫
U
εdµ = εµ(U) > 0 ∵ definition 2.2.2(ii)

(b) Let A be some Borel set such that µ(A) > 0 and let U be any open set
containing A. Since µ is regular, definition 2.2.1 (i) implies that for any such
U, there must exist a compact set K ⊂ U such that µ(K) > 0. By Urysohn’s
lemma (see Rudin, Lemma 2.12 [14]) we can construct a continuous function
f with compact support such that χK ≤ f ≤ χU . For this function∫

X
fdµ ≥

∫
X
χKdµ = µ(K) > 0

(c) If χA is the characteristic function of measurable set A ⊂ X, then χA(x+
a) = χA−a(x). By the translation invariance of µ:∫

X
χA(x)dµ(x) = µ(A) = µ(A− a) =

∫
X
χA−a(x)dµ(x) =

∫
X
χA(x+ a)dµ(x).

The result holds for simple functions by additivity of integrals. For any non-
negative measurable function f, the result holds due to the Monotone Con-
vergence Theorem. Finally, any measurable function f can be written as the
difference of its positive- and negative parts. Since the result holds for f+ and
f−, it must by linearity hold for f.

We now show that all Haar measures on a given Minkowski Space are unique
up to a scalar factor.

Theorem 2.2.7. Let µ and ν be two Haar measures defined on the Minkowski
space X. Then there exists a constant c > 0 such that µ = cν.

Proof. Let f be an arbitrary continuous function with compact support and g
be a given continuous non-negative, non-zero function with compact support.
By lemma 2.2.6 (a), 0 <

∫
X gdν <∞. We use µ(x) instead of µ to stress the

dependence of the integral on the underlying variable. By making repeated
use of Fubini’s Theorem and lemma 2.2.6 (c) we have∫

X
f(x)dµ

∫
X
g(y)dν

=
∫

X

(∫
X
f(x)g(y)dµ(x)

)
dν(y) =

∫
X

(∫
X
f(x+ y)g(y)dµ(x)

)
dν(y)

=
∫

X

(∫
X
f(y)g(y − x)dν(y)

)
dµ(x) =

∫
X

(∫
X
f(y)g(−x)dµ(x)

)
dν(y)

=
∫

X
f(y)dν(y)

∫
X
g(−x)dµ(x) (2.2.2)
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Since g is a continuous non-negative, non-zero function with compact support,
it trivially follows that the function ĝ defined by ĝ(x) = g(−x) has the same
properties and hence 0 <

∫
X ĝdµ <∞. Now let

c :=

∫
X ĝdµ∫
X gdν

∈ (0,∞)

For all measurable functions f, relation (2.2.2) can thus be rewritten as:∫
X
fdµ = c

∫
X
fdν

Hence ∫
X
fd(µ− cν) = 0 for every measurable function f

According to lemma 2.2.6 (c), we must therefore have

µ− cν = 0 ⇒ µ = cν.

All Haar measures defined on a given Minkowski space are thus scalar multiples
of each other. In other words, the measurement of “volume” in Minkowski
Spaces is completely determined once a fixed scale is chosen. This concept can
be extended to relate Haar measures defined on isomorphic Minkowski Spaces.
Indeed, the following Theorem asserts that, if mX and mY are Haar measures
defined on the linearly isomorphic Minkowski Spaces X and Y respectively,
then mX can be viewed as a Haar measure defined on Y and must hence be
a scaled version of mY . This result is particularly useful when viewed in the
context of the coordinatization mapping ζ. Every Haar measure on a finite
dimensional Minkowski space X can then simply be expressed as a scaled
version of the well-known Lebesgue measure. This makes explicit volume
computations considerably easier since the Lebesgue measure is well known.

Theorem 2.2.8. Let T : X → Y be a linear isomorphism between the n-
dimensional Minkowski spaces (X, ‖.‖X) and (Y, ‖.‖Y ) and let mX be a Haar
measure on X. Then all Haar measures mY on Y are of the form

mY (C) = kmX(T−1(C)) for all C ∈ B(Y )

where k > 0.

Proof. Suppose T is an invertible linear mapping from X onto Y. Define the
measure m on Y as follows

m(C) := mX(T−1(C)) for all C ∈ B(Y ) (2.2.3)
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T is continuous and hence Borel measurable which implies T−1(C) ∈ B(X)
for every C ∈ B(Y ) and thus m is well-defined. Also, since T−1 is linear and
mX is a Haar measure, it follows that

m(C + x) := mX(T−1(C + x)) = mX(T−1(C) + T−1(x))

= mX(T−1(C)) =: m(C)

and so m is a Haar measure on Y. Moreover, Theorem 2.2.2 asserts that any
Haar measure mY on Y must be a scalar multiple of m. So there exists some
k > 0 such that

mY (C) = km(C) := kmX(T−1(C)) for all C ∈ B(Y )

2.3 Volume and Linear Transformations

This section discusses the effects of a bijective linear change of variables on
the Haar measure of a Borel set in X. As in the case of (Rn,B(Rn), λn), the
determinant of the underlying transformation plays a central role.

2.3.1 The Determinant

We begin by defining the determinant of linear mappings on Rn. As was
mentioned in chapter 1, every such transformation T can be represented by
means of an n × n matrix MT . We can hence define the determinant of any
linear map T in terms of the determinant of its corresponding standard matrix
representation MT .

Definition 2.3.1. The determinant det(T ) of a linear transformation
T : Rn → Rn is defined as the determinant of its corresponding matrix repre-
sentation MT .

The standard matrix representation of T is defined in terms of a specific or-
dered basis. It is well-known, however, that if M ′

T is another standard matrix
representation of T relative to a different ordered basis, then MT and M ′

T are
similar matrices. In other words there exists an invertible n×n matrix U such
that

M ′
T = UMTU

−1.

and hence det(M ′
T ) = det(UMTU

−1) = det(MT ).
The determinant of T is thus independent of the standard matrix representa-
tion used and is therefore well-defined.
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Now consider the linear transformation T defined on an arbitrary Minkowski
space X. Let ζ : X → Rn be a coordinatization mapping and define

Tζ := ζ ◦ T ◦ ζ−1

Since Tζ : Rn → Rn, it can be used to define the determinant of T .

Definition 2.3.2. The determinant of a linear transformation T : X → X is
defined as

det(T ) := det(Tζ)

Suppose ζ1 is another coordinatization mapping. According to lemma 1.1.1
there exists an invertible linear transformation F : Rn → Rn such that ζ1 = Fζ
which implies ζ−1

1 = (Fζ)−1 = ζ−1F−1. Therefore

Tζ1 := ζ1 ◦ T ◦ ζ−1
1 = F (ζ ◦ T ◦ ζ)F−1

⇒ Tζ = F−1Tζ1F

Now det(Tζ) = det(F−1ζ1F ) = det(Tζ1). The determinant of T doesn’t de-
pend on the chosen coordinatization and is thus well-defined.

2.3.2 Linear Change of Variables

The following Theorem relates the volume of the linear image of a set in Rn

to the volume of the set itself. The proof is based on that of Cohn [7]. The
subsequent Corollary generalizes this result to arbitrary Minkowski spaces.

Theorem 2.3.3. Let T : Rn → Rn be an invertible linear transformation
defined on the measure space (Rn,B(Rn), λn) then

λn(T (A)) = |det(T )|λn(A) for all A ∈ B(Rn) (2.3.1)

Proof. Recall that a cell in Rn is the set

J = {(x1, ..., xn)t ∈ Rn : ai ≤ xi ≤ bi for i = 1, ..., n}

where ai ≤ bi for i = 1, ..., n. By definition, λn(J) =
∏n

i=1(bi − ai). We will
prove that the relation (2.3.1) holds for every cell J. Every open set can be
written as the countable union of cells in Rn and therefore, by the countable
additivity of the Lebesgue measure, λn will satisfy (2.3.1) for any open set.
The regularity of λn (particularly point (ii) in definition 2.2.1) then finally
implies that (2.3.1) holds for any Borel set A. Also, the matrix representation
MT of T can be written as the product of elementary matrices and since
determinants respect products, it suffices to show that (2.3.1) holds only for
elementary matrices. Let Q1 be the elementary matrix obtained from the
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n × n identity matrix I by multiplying row j with a non zero constant r, so
det(Q1) = r. Now

Q1J = {(x1, ..., rxj , ..., xn)t : ai ≤ xi ≤ bi for i = 1, ..., n}
= {(x1, ..., xn)t : ai ≤ xi ≤ bi for i 6= j, raj ≤ xj ≤ rbj}

and hence λn(Q1J) = r
∏n

i=1(bi − ai) = |det(Q1)|λn(J).
Let Q2 be the elementary matrix corresponding to the interchange of row j
with row k (det(Q2) = −1). Then

Q2J = {(x1, ..., xn)t : ai ≤ xi ≤ bi for i 6= j, k; aj ≤ xk ≤ bj , ak ≤ xj ≤ bk}

which implies that λn(Q2J) =
∏n

i=1(bi − ai) = |det(Q2)|λn(J).
Finally let Q3 be the elementary matrix obtained by replacing row j with the
sum of row j and row k. The determinant of Q3 is 1. We may assume (by
multiplication with a suitable Q2 matrix if necessary) that

Q3(x1, ..., xn−1, xn)t = (x1, ..., xn−1, xn + xk)t.

We can view Rn as the cartesian product Rn−1×R. For every x = (x1, ..., xn−1)t

in Rn−1 the x-section Jx of J is of the form Jx = {y ∈ R : (x1, ..., xn−1, y)t ∈
J}. The corresponding x-section (Q3J)x of Q3J can be written as

(Q3J)x = {y ∈ R : (x1, ..., xn−1, y + xk)t ∈ Q3J}
= {y ∈ R : (x1, ..., xn−1, y)t ∈ J}+ (0, .., 0, xk)t = Jx + (0, .., 0, xk)t.

Thus, for all x ∈ Rn, Jx is a translation of (Q3J)x and, since the Lebesgue
measure λ1 is translation-invariant, it follows that λ1((Q3J)x) = λ1(Jx). Fu-
bini’s Theorem yields:

λn(Q3J) =
∫

Rn−1

λ1((Q3J)x)dλn−1

=
∫

Rn−1

λ1(Jx)dλn−1 = λn(J) = |det(Q3)|λn(J)

Corollary 2.3.4. Let T : X → X be an invertible linear transformation
defined on the Minkowski space X and let m be a Haar measure on X. Then

m(T (A)) = |det(T )|m(A) for all A ∈ B(X)

Proof. Let Tζ be defined as in definition 2.3.2. By making use of Theorem
2.2.8 in conjunction with Theorem 2.3.3 we obtain

m(T (A)) = kλn(ζ ◦ T (A)) for some k > 0

= kλn(ζ ◦ (ζ−1 ◦ Tζ ◦ ζ)(A))
= kλn(Tζ(ζ(A)))
= k|det(Tζ)|λn(ζ(A)) =: |det(T )|kλn(ζ(A))
=: |det(T )|m(A)
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An affine transformation F on a Minkowski space X is the mapping
F (x) = T (x)+a where T is invertible and linear and a ∈ X. It follows directly
from Corollary 2.3.4 and the translation-invariance of Haar measures that

m(F (A)) = |det(T )|m(A) for all A ∈ B(X)

If det(T ) = 1 then T is called a volume preserving map while F is said to be
a volume preserving affine map. In this case:

m(F (A)) = m(A) for all A ∈ B(X)

Haar measures are therefore invariant under volume preserving maps.

2.4 The Volume of the Ball B(lnp , x0, r) in Rn

Let B(lnp , x0, r) be the set {x ∈ Rn : ‖x−x0‖p ≤ r}. For the sake of notational
simplicity, the n-dimensional Lebesgue measure on Rn is denoted by λ and
the unit ball B(lnp , 0, 1) is written as B(lnp ). This section not only serves as
an application of the results in the previous sections, but will also be used in
conjunction with section 4.6 to find both the upper- and lower bounds for the
volume product of the unit balls B(lnp ), where 1 ≤ p ≤ ∞.

Lemma 2.4.1. λ(B(lnp , x0, r)) = rnλ(B(lnp , x0, 1))

Proof. Since λ is translation-invariant it can be assumed without loss of gener-
ality that x0 = 0. It is readily verified that the ball B(lnp , 0, r) can be obtained
from the unit ball B(lnp ) by means of the invertible linear transformation

T : B(lnp ) → B(lnp , 0, r) : (y1, ..., yn) 7→ T (y1, ..., yn) := r(y1, ..., yn)

with standard matrix representation given by MT = diag(r, ..., r). It therefore
follows from Theorem 2.3.4 that

λ(B(lnp ), 0, r) = |det(T )|λ(B(lnp )) = rnλ(B(lnp ))

Proposition 2.4.2. For any n ∈ N and any p ∈ [1,∞):

λ(B(lnp )) =

(
2Γ(1 + 1

p)
)n

Γ(1 + n
p )

Moreover
λ(B(ln∞)) = lim

p→∞
λ(B(lnp )) = 2n
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Proof. Let Ip :=
∫

Rn e
−‖x‖p

pdx. By definition of ‖.‖p we have:

Ip =
∫

Rn

e−‖x‖
p
pdx =

∫
Rn

e−
∑n

i=1 |xi|pdx =
∫

R

∫
R
...

∫
R

n∏
i=1

e−|xi|pdx1dx2...dxn

=
n∏

i=1

∫
R
e−|xi|pdxi =

(∫
R
e−|t|

p
dt

)n

=
(

2
∫ ∞

0
e−tpdt

)n

∵ By symmetry

Now let t = s
1
p
+1 then:

Ip = 2n

(∫ ∞

0
e−tpdt

)n

= 2n

(∫ ∞

0

1
p
s

1
p
−1
e−sds

)n

= 2
1
p
Γ
(

1
p

)
=
(

2Γ(1 +
1
p
)
)n

(2.4.1)

We also have:
e−‖x‖

p
p =

∫ ∞

‖x‖p

ptp−1e−tpdt

This follows easily from the Fundamental Theorem of Calculus. Indeed:∫ ∞

‖x‖p

ptp−1e−tpdt =
∫ ∞

‖x‖p

d

dt

(
−e−tp

)
dt = lim

s→∞
−e−sp

+ e−‖x‖
p
p = e−‖x‖

p
p

We may therefore express Ip as follows:

Ip =
∫

Rn

∫ ∞

‖x‖p

ptp−1e−tpdtdx

=
∫

Rn+1

χ{(x1,...,xn,t)∈Rn+1:‖x‖p≤t}pt
p−1e−tpdx1dx2...dxndt

But

{(x1, ..., xn, t) ∈ Rn+1 : ‖x‖p ≤ t} = [0,∞)× {(x1, ..., xn) ∈ Rn : ‖x‖p ≤ t}

According to Fubini’s Theorem:

Ip =
∫ ∞

0

(∫
{x∈Rn:‖x‖p≤t}

tp−1e−tpdx1...dxn

)
dt

=
∫ ∞

0
tp−1e−tp

(∫
B(lnp ,0,t)

dx1...dxn

)
dt

=
∫ ∞

0
tp−1e−tpλ(B(lnp , 0, t))dt

=
∫ ∞

0
tp−1e−tptnλ(B(lnp , 0, 1))dt ∵ By lemma 2.4.1

= λ(B(lnp , 0, 1))
∫ ∞

0
tn+p−1e−tpdt
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Again let t = s
1
p
+1 then

Ip = λ(B(lnp , 0, 1))
∫ ∞

0
p
1
p
s

1
p
−1(s

1
p )p+n−1e−sds

= λ(B(lnp , 0, 1))
∫ ∞

0
s
(n

p
+1)−1

e−sds

= λ(B(lnp , 0, 1))Γ(1 +
n

p
) (2.4.2)

Combining expressions (2.4.1) and (2.4.2) yields:

λ(B(lnp )) =

(
2Γ(1 + 1

p)
)n

Γ(1 + n
p )

The unit ball B(ln∞) is simply the cube [−1, 1]n whose volume is given by the
product of the length it’s sides. Hence λ(B(ln∞)) = 2n. Since the gamma
function is continuous and Γ(1) = 1, it follows that

lim
p→∞

λ(B(lnp )) = lim
p→∞

(
2Γ(1 + 1

p)
)n

Γ(1 + n
p )

= 2n = λ(B(ln∞))
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2.5 The Volume Product

Since the Santaló point (see [10]) of symmetric convex bodies coincides with
the origin, the definition of the volume product given here can be regarded as
a special case of the more commonly used definition ([10]). If m and m∗ are as-
sociated Haar measures (definition 2.5.3) defined on Minkoswki spaces X and
X∗ respectively and C is any symmetric convex body in X, then the volume
product P of C is given by P (C) := m(C)m∗(Co). Not only is this quantity
independent of the choice of the associated Haar measures (Lemma 2.5.5), it
is also invariant under linear isomorphisms (Proposition 2.5.6). These proper-
ties, when used in conjunction with Theorem 2.2.8, enable the reformulation
of the general Blaschke-Santaló inequality (Theorem 0.0.1) in (Rn,B(Rn), λn)
without loss of generality (Theorem 2.5.6 and the subsequent Corollaries).

2.5.1 Definition and Elementary Properties

Associated Haar measures

Definition 2.5.1. The parallelotope P(b1, .., bn) spanned by the ordered basis
{b1, ..., bn} of X is defined as the set:

P(b1, ..., bn) := {x ∈ X : x =
n∑

i=1

λibi, 0 ≤ λi ≤ 1 for i = 1, ..., n}

The parallelotope P∗(b1, ..., bn) is simply the parallelotope spanned by the dual
basis vectors {b∗1, ..., b∗n} of X∗.

Let m and m∗ be any two Haar measures defined on X and X∗ with ordered
bases {b1, ..., bn} and {b∗1, ..., b∗n} respectively. The following Theorem makes
use of properties of the Hilbert adjoint operator to show that the product
ς = m(P(b1, ..., bn))m∗(P∗(b∗1, ..., b∗n)) remains unchanged regardless of the
chosen ordered basis. Associated measures are then simply defined as those
measures for which ς = 1.

Theorem 2.5.2. If m and m∗ are Haar measures defined on X and X∗ re-
spectively, then the product m(P(b1, ..., bn))m∗(P∗(b∗1, ..., b∗n)) is independent of
the basis {b1, ..., bn}.

Proof. Let T : X → X be an isomorphism mapping the basis vectors {b1, ..., bn}
onto the basis {f1, ..., fn}. According to section 1.4, the natural dual basis
{f∗1 , ..., f∗n} is simply the set {(T ∗)−1b∗1, ..., (T

∗)−1b∗n} where T ∗ is the Hilbert
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adjoint operator of T . The linearity of T implies

P(Tb1, ..., T bn) = {x ∈ X : x =
n∑

i=1

λiTbi, 0 ≤ λi ≤ 1 for i = 1, ..., n}

= {x ∈ X : T−1(x) =
n∑

i=1

λibi, 0 ≤ λi ≤ 1 for i = 1, ..., n}

= {Tx ∈ X : x =
n∑

i=1

λibi, 0 ≤ λi ≤ 1 for i = 1, ..., n}

= T (P(b1, ..., bn))

Similarly it can be shown that

P∗(Tb1, ..., T bn) := P((T ∗)−1b∗1, ..., (T
∗)−1b∗n) = (T ∗)−1P(b∗1, ..., b

∗
n)

=: (T ∗)−1P ∗(b1, ..., bn)

Moreover, det((T ∗)−1) = (det(T ∗))−1 = det(T ), and hence

m(P(f1, ..., fn))m∗(P∗(f1, ..., fn)) = m(P(Tb1, ..., T bn))m∗(P∗(Tb1, ..., T bn))

= m(T (P(b1, ..., bn)))m∗(T ∗)−1(P∗(b1, ..., bn)))

= |det(T )||det((T ∗)−1)|m(P(b1, ..., bn))m∗(P∗(b1, ..., bn))
= m(P(b1, ..., bn))m∗(P∗(b1, ..., bn))

Definition 2.5.3. The Haar measures m and m∗ are said to be associated
Haar measures if:

m(P)m∗(P∗) = 1

The Volume Product

Definition 2.5.4. Let (X,B) and (X∗, Bo) be a pair of n-dimensional dual
Minkowski spaces and let m and m∗ be the associated Haar measures on X
and X∗ respectively. The volume product P (B) of B is defined as:

P (B) := m(B)m∗(Bo)

while the reduced volume product γ of B is given by

γ(B) := (n!P (B))
1
n

Lemma 2.5.5. The volume product is independent of the choice of associated
Haar measures m and m∗.
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Proof. Suppose (m1,m
∗
1) and (m2,m

∗
2) are two pairs of associated Haar mea-

sures. Since m1 and m2 are both Haar measures on X, it follows that there
exists a scalar α ∈ R such that m1 = αm2. Similarly there exists a scalar
β ∈ R such that m∗

1 = βm∗
2. Now for any parallelotope P(e1, ..., en) we have:

m1(P(e1, ..., en))m∗
1(P(e∗1, ..., e

∗
n)) = 1

⇒ αm2(P(e1, ..., en))βm∗
2(P(e∗1, ..., e

∗
n)) = 1

But
m2(P(e1, ..., en))m∗

2(P(e∗1, ..., e
∗
n)) = 1

Since m2 and m∗
2 are associated Haar measures. From this it follows that

αβ = 1. So for the unit sphere B we have

m1(B)m∗
1(B

o) = αm2(B)βm∗
2(B

o) = m2(B)m∗
2(B

o)

Therefore P (X) is independent of the choice of associated Haar measures.

Proposition 2.5.6. Let X and Y be n-dimensional Minkowski Spaces and
let T : X → Y be an linear isomorphism. Then P (T (B)) = P (B) for any
symmetric convex body B ⊂ X.

Proof. This result is a direct consequence of Theorem 2.2.8. Indeed let T ∗

be the Hilbert adjoint operator of T and let (mY ,m
∗
Y ) and (mX ,m

∗
X) be two

pairs of associated Haar measures on the spaces X, X∗, Y and Y ∗ respectively.
According to Theorem 2.2.8 there exist non-negative scalars α, β ∈ R such that

1 = mY (P(b1, ..., bn))m∗
Y (P(b∗1, ..., b

∗
n))

= αβmX(P(T−1b1, ..., T
−1bn))m∗

X(P(T ∗(b∗1), ..., T
∗(b∗n)))

for any basis {b1, ..., bn} of Y . Since mX and m∗
X are associated, αβ = 1.

Recall from remark 1.4.3 that (T (B))o = (T ∗)−1(Bo) and hence

P (T (B)) = mY (T (B))m∗
Y ((T ∗)−1(Bo))

= αβmX(B)m∗
X(Bo) = mX(B)m∗

X(Bo)
= P (B)

Corollary 2.5.7. For any Minkowski Space (X,B) with dual space (X∗, Bo)
we have P (B) = P (Bo) and hence γ(B) = γ(Bo).

Proof. The mapping T : X → X∗|bi 7→ Tbi := b∗i for i = 1, ..., n defines a
linear isomorphism from X onto X∗ such that T (B) = Bo. Proposition 2.5.6
now implies that P (B) = P (T (B)) =: P (Bo) and therefore γ(B) = γ(Bo).
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Corollary 2.5.8. The Blaschke-Santaló inequality can, without loss of gener-
ality, be reformulated in (Rn,B(Rn), λn).

Proof. Let X be an n-dimensional Minkowski space and suppose the Blascke-
Santaló inequality holds in Rn. Then P (B) ≤ P (E) for any symmetric convex
body B ⊂ Rn, where E ⊂ Rn is an ellipsoid. Since the coordinatization
mapping ζ defines an isomorphism from the Minkowski Space X onto Rn,
it follows from Proposition 2.5.6 and the definition of ellipsoids that for all
convex symmetric bodies C ⊂ X,

P (C) = P (ζ(C)) ≤ P (E) = P (ζ−1(E)),

where ζ−1(E) is an ellipsoid in X. Moreover, if K ⊂ X is a symmetric convex
body such that P (C) ≤ P (K) for all other symmetric convex bodies C ∈ X,
then P (ζ(C)) = P (C) ≤ P (K) = P (ζ(K)) for all sets ζ(C) ⊂ Rn. By the
second part of the Blascke-Santaló inequality for Rn and by Proposition 1.3.3,
it follows that ζ(K) and hence K is an ellipsoid.

Remark 2.5.9. Let {e1, ..., en} be the standard ordered basis for Rn with corre-
sponding dual basis {e∗1, ..., e∗n} and let m∗ denote the Haar measure on (Rn)∗,
associated with the n-dimensional Lebesgue measure λ.
The mapping T : (Rn)∗ → Rn|e∗i 7→ T (e∗i ) = ei defines a linear isomorphism
and hence, according to Theorem 2.2.8, there exists a scalar k > 0 such that
m∗(B) = kλ(T (B)) for all B ∈ B((Rn)∗). Since the volume of the cube
P(e1, ..., en) is equal to 1, it follows from the association of λ and m∗ that

k (λ(P(e1, ..., en))2 = m∗(P(e∗1, ..., e
∗
n))λ(P(e1, ..., en) = 1 ⇒ k = 1

and hence

P (C) = λ(C)λ(T (Co)) for all convex symmetric bodies C ⊂ Rn

Recall from Section 1.4 that T (Co) can be written in the form

T (Co) = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}.

In order to simplify notation in subsequent chapters, Co will from now on
implicitly be understood to denote the set T (Co).
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2.6 The Blaschke-Santaló Inequality for the Collec-
tion {B(lnp ) : 1 ≤ p ≤ n}

The following proposition makes use of the explicit formulae derived in section
4.4 to find both the lower- and upper bound of the volume product for the unit
balls B(lnp ), where 1 ≤ p ≤ ∞. For this restricted class of convex bodies, the
maximal volume product is attained exclusively for the Euclidean ball B(ln2 ),
which complies with the more general version of the The Blaschke-Santaló
inequality. The use of the reduced volume product γ instead of P is simply
for notational convenience. The proof of Proposition 2.6.1 is based largely on
properties of the gamma function Γ which are used here without proof. An
exhaustive discussion of these properties can be found in Artin [2].

Proposition 2.6.1 (St. Raymond). For all p ∈ [1,∞]

4 = γ(B(ln1 )) = γ(B(ln∞)) ≤ γ(B(lnp )) ≤ γ(B(ln2 )) (2.6.1)

Proof. Let 1 ≤ q ≤ ∞ be such that 1
p + 1

q = 1. Recall from Proposition 2.4.2
that the volume of B(lnp ) is given by:

λ(B(lnp )) =

(
2Γ(1 + 1

p)
)n

Γ(1 + n
p )

Proposition 2.6.1 is proved by considering the equivalent problem of maximiz-
ing and minimizing the function

F

(
1
p

)
:= lnP (B(lnp )) = lnλ(B(lnp )) + lnλ(B(lnq ))

over all possible values of p ≥ 1. The following arguments show that F :
(0, 1] → R is a concave function.
The gamma function is infinitely differentiable and can be expanded as follows:

Γ(x) = lim
n→∞

n!nx

(n+ x)(n− 1 + x)...(1 + x)x
<∞ for all x > 0 (2.6.2)

Consider the function x :7→ ln(Γ(x + 1)). By the above expansion and the
continuity of the natural logarithmic function, ln(Γ(x+ 1)) can be written as:

ln(Γ(x+ 1)) = lim
n→∞

ln
[

n!nx

(n+ x)(n− 1 + x)...(2 + x)(1 + x)

]
= lim

n→∞
[ln(n!) + (x+ 1) ln(n)−

n+1∑
j=1

ln(x+ j)]
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Since this sequence is absolutely convergent we may interchange differentiation
and limits:

d

dx
[ln(Γ(x+ 1))] = lim

n→∞

ln(n)−
n∑

j=0

1
x+ 1 + j


⇒ d2

dx2
[ln(Γ(x+ 1))] = lim

n→∞

 n∑
j=0

1
(x+ 1 + j)2

 =
∞∑

j=0

1
(x+ 1 + j)2

Now
d2

dx2

[
ln
(

Γ(x+ 1)n

Γ(1 + nx)

)]
=

d2

dx2
[n ln(Γ(x+ 1))]− d2

dx2
[ln(Γ(1 + nx))]

where

d2

dx2
[n ln(Γ(x+ 1))] =

∞∑
j=0

n

(x+ 1 + j)2
=

∞∑
j=0

n∑
k=1

1
(x+ 1 + j)2

(2.6.3)

and

d2

dx2
[ln(Γ(1 + nx))] = lim

m→∞

m+1∑
k=1

n2

(nx+ k)2
= lim

m→∞

m+1∑
k=1

1
(x+ k

n)2

=
∞∑

m=1

1
(x+ m

n )2
=

n∑
k=1

1
(x+ 0 + k

n)2
+

n∑
k=1

1
(x+ 1 + k

n)2
+ ...

=
∞∑

j=0

n∑
k=1

1
(x+ j + k

n)2
(2.6.4)

Combining expressions (2.6.3) and (2.6.4) yields:

d2

dx2

[
ln
(

Γ(x+ 1)n

Γ(1 + nx)

)]
=

∞∑
j=0

n∑
k=1

1
(x+ j + 1)2

− 1
(x+ j + k

n)2
< 0

for x ≥ 0. The function F : (0, 1] → [0,∞) is rewritten in terms of x as follows:

F (x) := ln
(
P (B(ln1

x

))
)

= ln
(
λ(B(ln1

x

))
)

+ ln
(
λ(B(ln

1− 1
x

))
)

From the definition of B(ln1
x

) and the above inequality it follows directly that

F is a concave function. In addition for any x ∈ (0, 1
2):

F (
1
2

+ x) := ln

(
λ(B(ln 1

x+1
2

))

)
+ ln

(
λ(B(ln 1

1−(x+1
2 )

))

)

= ln

(
λ(B(ln 1

1−( 1
2−x)

))

)
+ ln

(
λ(B(ln 1

1
2−x

))

)
= F (

1
2
− x)
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From this it follows that F is symmetric about 1
2 and therefore it attains

its maximum at the point x = 1
2 . In other words P (B(lnp )) ≤ P (B(ln2 ))

for all 1 ≤ p ≤ ∞. Moreover, since F is a concave function, it decreases
monotonically as x tends towards 1 or 0. This implies that F , and hence
P (B(lnp )), attains its minimum at the point x = 1 = p. Since (ln1 )∗ = ln∞, it
follows from Corollary 2.5.7 that

P (B(ln∞)) = P (B(ln1 )) ≤ P (B(lnp )) ∀1 ≤ p ≤ ∞.
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Chapter 3

The Hausdorff Metric

3.1 Introduction

In the ensuing chapters it is often more convenient to consider the distance
between sets rather than between points. For any Minkowski space (X, ‖.‖)
with unit ball B it is possible to define a metric δ, called the Hausdorff metric
on the collection K of non-empty compact subsets of X. Throughout this
Chapter a variety of different subclasses of K play a role. In aid of distin-
guishing between these subclasses, the following notation will prove useful:

K : The collection of all non-empty compact subsets of X.
C : The collection of all non-empty convex compact subsets of X.
Cb : The collection of all convex bodies in X.
Cb0 : The collection of all convex bodies whose interior contains the origin.
Cs: The collection of all symmetric convex bodies in X.

Remark 3.1.1. It can readily be seen that Cs ⊂ Cb0 ⊂ Cb ⊂ C ⊂ K.

Section 6.2 serves as an introduction to the Hausdorff metric. Even though
this metric depends on the underlying norm ‖.‖, it will be shown that the
equivalence of norms on Minkowski Spaces ensures the equivalence of the cor-
responding Hausdorff metrics. Under the Hausdorff metric, both the Haar
measure and the volume product can be regarded as continuous functions de-
fined on the collections Cb and Cs respectively (Section 6.3). Section 6.4 sets
out to prove the Blaschke selection theorem, namely:

“In the Minkowski space (X,B), the collection of all convex bodies contained
within the set aB (where a > 0) is sequentially compact with respect to the

Hausdorff metric”.

This theorem, especially when used in conjunction with the continuity of the
Haar measure and the volume product, is pivotal in proving Theorem 4.3.3,
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which will in turn be used not only to establish the first part of the Blaschke-
Santaló inequality directly, but also to prove Brunn’s theorem (Theorem 4.4.2)
in Chapter 4.

3.2 Definition and General Properties

Let (X, ‖.‖) be an n-dimensional Minkowski Space with fixed unit ball B. The
Hausdorff metric δ on K is expressed in terms of the quantity δ′, defined as
follows:

Definition 3.2.1. Let C,D ∈ K. Define:

δ′(C,D) := inf{ε > 0 : C ⊂ D + εB} (3.2.1)

Remark 3.2.2. Since D is non-empty, it follows that D + εB is non-empty
for all ε > 0. Moreover, C is compact and hence bounded, which implies
C ⊂ D + εB for a large enough ε. Hence δ′ is well defined.

Proposition 3.2.3 (Properties of δ′). For any C,D ∈ K the following hold:

1. δ′ ≥ 0 and δ′(C,D) = 0 ⇔ C ⊂ D

2. If A,C,D ∈ K then δ′(A,D) ≤ δ′(A,C) + δ′(C,D)

Proof. .
1. It is clear from the definition that δ′(C,D) ≥ 0 ∀C,D ∈ K.
Suppose δ′(C,D) = 0. By definition of the infimum, there exists a sequence
{εi} of positive scalars such that limi→∞ εi = 0 and C ⊂ D+ εiB for all i ∈ N.
This means that for any c ∈ C we have c = di + εibi for some di ∈ D, bi ∈ B.
Since ‖bi‖ ≤ 1 for all i ∈ N, it follows that

0 ≤ ‖c− di‖ = ‖εibi‖ = εi‖bi‖ ≤ εi → 0 as n→∞.

Hence the sequence {di} ⊂ D converges to c ∈ C and since D is compact (and
therefore closed), it follows that c ∈ D. But c ∈ C was arbitrary, and thus
C ⊂ D.
Conversely, suppose C ⊂ D. But D ⊂ D + εB for any ε > 0 (since 0 ∈ B).
This implies that C ⊂ D + εB for all ε > 0 and hence
0 ≤ δ′(C,D) = inf{ε > 0 : C ⊂ D + εB} = 0.

2. Suppose A ⊂ C + η1B and C ⊂ D + η2B. It then follows by prop-
erties of Minkowski addition that A ⊂ D + η1B + η2B = D + (η1 + η2)B.
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Therefore

{ε : A ⊂ C + εB}+ {ε : C ⊂ D + εB} ⊂ {ε : A ⊂ D + εB}
⇒ inf{ε : A ⊂ D + εB} ≤ inf [{ε : A ⊂ C + εB}+ {ε : C ⊂ D + εB}]

(∵ The infimum over a larger set is smaller)
⇒ inf{ε : A ⊂ D + εB} ≤ inf{ε : A ⊂ C + εB}+ inf{ε : C ⊂ D + εB}
⇒ δ′(A,D) ≤ δ′(A,C) + δ′(C,D)

Although Proposition 3.2.3(1) indicates that δ′ itself can clearly not be used
as a metric on K, the Hausdorff metric δ is defined in terms of δ′ as follows:

Definition 3.2.4. The Hausdorff metric δ defined on K is defined for all
C,D ∈ K as:

δ(C,D) := max{δ′(C,D), δ′(D,C)} (3.2.2)

Proposition 3.2.5. The Hausdorff metric is indeed a metric on K.

Proof. .

1. Since δ(C,D) := max{δ′(C,D), δ′(D,C)}, it is clear that δ(C,D) ≥ 0 for
all C,D ∈ K since δ′ ≥ 0. From this it also follows that δ(C,D) = 0 ⇔
both δ′(C,D) = 0 and δ′(D,C) = 0.From properties of δ′ we know that
this is only possible when C ⊂ D and D ⊂ C ⇒ C = D.

2. Triangle inequality : From the previous proposition, we know that for any
sets A,C,D ∈ K we have δ′(A,D) ≤ δ′(A,C) + δ′(C,D) and δ′(D,A) ≤
δ′(D,C) + δ′(C,A). It therefore follows that:

δ(A,D) = max{δ′(A,D), δ′(D,A)}
≤ max{δ′(A,C) + δ′(C,D), δ′(D,C) + δ′(C,A)}
≤ max{δ′(A,C), δ′(C,A)}+ max{δ′(C,D), δ′(D,C)}
= δ(A,C) + δ(C,D)

3. Symmetry :
δ(A,C) = max{δ′(A,C), δ′(C,A)} = max{δ′(C,A), δ′(A,C)} =: δ(C,A)

Generally, different norms give rise to different Hausdorff metrics. It will
shown in the next theorem, however, that for Minkowski spaces these Haus-
dorff metrics are equivalent.
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Proposition 3.2.6. If ‖.‖1 and ‖.‖2 are equivalent norms on X with associated
Hausdorff metrics δ1 and δ2 respectively, then there exist scalars c1, c2 > 0 such
that for all C,D ∈ K

c1δ2(C,D) ≤ δ1(C,D) ≤ c2δ2(C,D).

Proof. Since ‖.‖1 and ‖.‖2 are equivalent, there exist positive scalars c1, c2 > 0
such that

c1‖x‖2 ≤ ‖x‖1 ≤ c2‖x‖2 for all x ∈ X (3.2.3)

Let B1 and B2 be the unit balls corresponding to norms ‖.‖1 and ‖.‖2 respec-
tively. For any y ∈ c1B1, we have ‖y‖2 ≤ 1

c1
‖y‖1 ≤ 1 ⇒ y ∈ B2. Similarly for

x ∈ B2, we have 1
c2
‖x‖1 ≤ ‖x‖2 ≤ 1 ⇒ x ∈ c2B1. The inequalities in (3.2.3)

thus imply:
c1B1 ⊂ B2 ⊂ c2B1 (3.2.4)

Now consider any C,D ∈ K:

{ε > 0 : C ⊂ D + εB1} = {c1ε > 0 : C ⊂ D + c1εB1}
= c1{ε > 0 : C ⊂ D + εc1B1}
⊂ c1{ε > 0 : C ⊂ D + εB2} ∵ c1B1 ⊂ B2

Therefore

c1δ
′
2(C,D) = inf c1{ε > 0 : C ⊂ D + εB2}

≤ inf{ε > 0 : C ⊂ D + εB1} = δ′1(C,D)

Similarly c1δ′2(D,C) ≤ δ′1(D,C) and hence

c1δ2(C,D) ≤ δ1(C,D) (3.2.5)

Also:

c2{ε > 0 : C ⊂ D + εB2} = {c2ε > 0 : C ⊂ D + c2ε
1
c2
B2}

= {η > 0 : C ⊂ D + η
1
c2
B2}

⊂ {η > 0 : C ⊂ D + ηB1} ∵ 1
c2
B2 ⊂ B1

So

δ′1(C,D) = inf{ε > 0 : C ⊂ D + εB1}
≤ inf c2{ε > 0 : C ⊂ D + εB2} = c2δ

′
2(C,D)

Similarly δ′1(C,D) ≤ c2δ
′
2(C,D) and therefore

δ1(C,D) ≤ c2δ2(C,D) (3.2.6)

Together, relations (3.2.5) and (3.2.6) imply

c1δ2(C,D) ≤ δ1(C,D) ≤ c2δ2(C,D)

36

 
 
 



3.3 Continuity of the Haar measure and the Volume
Product

This section aims to show that any Haar measure m : Cb −→ [0,∞) is a
continuous mapping with respect to the Hausdorff metric δ. The continuity
of the volume product P : Cs −→ [0,∞) (Theorem 3.3.6) follows directly from
this result. The proof of the continuity of m is outlined as follows:
On the collection Cb0 ⊂ Cb, a relatively simple metric ∆2 can be defined, which
is equivalent to δ on Cb0 (Lemma 3.3.3). It can readily be shown (Theorem
3.3.4) thatm is continuous on Cb0 with respect to the metric ∆2 and hence with
respect to δ. The continuity of m in the case of the more general class Cb can
then be established by means of the translation-invariance of Haar measures
(Theorem 3.3.5).

3.3.1 The Metric ∆2

Definition 3.3.1. Let K1 and K2 be any two convex bodies in X whose inte-
rior contains the origin. Let

∆′(K1,K2) := inf{α ≥ 0 : K1 ⊂ αK2}.

The metric ∆2 is defined as:

∆2(K1,K2) := ln
(
max{∆′(K1,K2),∆′(K2,K1)}

)
Remark 3.3.2. Since the interior of K2 contains the origin, there exists a ball
B2 ⊂ K2 with center 0. Now K1 is compact and therefore bounded, so there
exists an α > 0 such that K1 ⊂ αB2 ⊂ αK2. The set {α > 0 : K1 ⊂ αK2} is
thus non-empty and ∆′ is well-defined.

It can be directly verified that ∆2 is indeed a metric.

Lemma 3.3.3. Let (X,B) be an n-dimensional Minkowski Space. Then the
metrics ∆2 and δ defined on Cb0 are equivalent.

Proof. We will show that any sequence {Kn}∞n=1 in Cb0 converges to some
K ∈ Cb0 with respect to ∆2 if and only if it converges to K with respect to δ:
Since K ∈ Cb0 , the origin is an interior point of K. Hence there exists a positive
scalar β1 such that the ball β1B ⊂ K. Furthermore K is bounded and therefore
there exists a β2 > 0 such that K ⊂ β2B. So

β1B ⊂ K ⊂ β2B (3.3.1)

(i) Suppose Kn −→∆2 K as n→∞:

For any given γ > 0, let ε =
1+

√
1+ 4γ

β2

2 > 1. Then γ = ε(ε− 1)β2.
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Since Kn −→∆2 K, there exists an Nγ ∈ N such that ∆2(K,Kn) < ln(ε) for
all n ≥ Nγ . This implies

K ⊂ εKn and Kn ⊂ εK ⊂ β2εB. (3.3.2)

Since Kn ⊂ K, any element kn ∈ Kn can be written in the form kn = εk =
k+(ε− 1)k for some k ∈ K. Therefore Kn ⊂ K+(ε− 1)K ⊂ K+(ε− 1)β2B.
Similarly K ⊂ Kn +(ε−1)Kn ⊂ Kn + ε(ε−1)β2B. Now ε(ε−1)β2 > (ε−1)β2

and hence the definition of δ implies that δ(K,Kn) ≤ ε(ε − 1)β2 = γ for all
n ≥ Nγ . Hence Kn −→δ K.

(ii) Conversely, suppose that Kn −→δ K as n→∞:
Again, let γ > 0 be given and choose ε > 0 such that γ = ln(1+ 2

β1
ε). Assume,

without any loss of generality, that γ < ln(2) ⇒ ε < β1

2 .
There exists an Nγ ∈ N such that δ(K,Kn) < ε for all n ≥ Nγ . From the
inclusions in (3.3.1) it follows that:

Kn ⊂ K + εB ⊂ (1 + εβ−1
1 )K. (3.3.3)

Moreover, by combining the inclusion in (3.3.1) with the definition of δ and
the fact that ε < β1

2 we obtain:

β1B ⊂ K ⊂ Kn + εB ⊂ Kn +
β1

2
B

and hence

β1

2
B ⊂ 1

2
Kn +

β1

4
B

⊂ 1
2
Kn +

1
4
Kn +

β1

8
B = (

1
2

+
1
4
)Kn +

β1

8
B ∵ convexity of Kn

⊂ (
1
2

+
1
4

+
1
8

+
1
16

+ ...)Kn

So any element b ∈ β1

2 B can be written as b = (1
2 + 1

4 + 1
8 + 1

16 + ...)k = k for
some k ∈ Kn and hence β1

2 B ⊂ Kn. So

K ⊂ KnεB ⊂ (1 + 2εβ−1
1 )Kn. (3.3.4)

From (3.3.3) and (3.3.4) it now follows that ∆2 ≤ ln((1 + 2εβ−1
1 )) = γ for all

n ≥ Nγ and so Kn −→∆2 K.

3.3.2 The Continuity of m : Cb −→ [0,∞)

Theorem 3.3.4. The mapping m : Cb0 → [0,∞) : K 7→ m(K) is a continuous
mapping on (Cb0 ,∆2) and hence on (Cb0 , δ).

38

 
 
 



Proof. Let K ∈ Cb0 and ε > 0 be given. Choose η > 1 such that

ηn(ηn − 1)m(K) < ε.

Then for any K ′ ∈ Cb0 such that ∆2(K,K ′) < ln(η) we have:

K ′ ⊂ ηK

⇒ m(K ′) ≤ m(ηK) = ηnm(K)
⇒ m(K ′)−m(K) ≤ (ηn − 1)m(K) < ηn(ηn − 1)m(K) < ε (3.3.5)

Also

K ⊂ ηK ′

⇒ m(K) ≤ m(ηK ′) = ηnm(K ′)
⇒ m(K)−m(K ′) ≤ (ηn − 1)m(K ′) ≤ ηn(ηn − 1)m(K) < ε (3.3.6)

From inequalities (3.3.5) and (3.3.6) it follows that |m(K) −m(K ′)| ≤ ε for
all K ′ in the ln(η)-neighborhood of K. Therefore m is continuous at K ∈ Cb0 .
Since K was arbitrary, m is continuous on (Cb0 ,∆2) and hence on (Cb0 , δ) (by
Lemma 3.3.3).

Theorem 3.3.5. The mapping m : Cb −→ [0,∞) is continuous with respect
to δ.

Proof. Let K be an arbitrary set in Cb. Since K is a convex body, there exists
some point x ∈ int(K). The interior of the translated set K − x thus contains
the origin and hence K − x ⊂ Cb0 . Theorem 3.3.4 now implies that m is
continuous at K − x with respect to δ and hence there exists for every ε > 0
an η > 0 such that

|m(K − x)−m(K ′ − x)| < ε whenever δ(K − x,K ′ − x) < η.

Now if δ(K,K ′) < η then

K ⊂ K ′ + ηB and K ′ ⊂ K + ηB

⇒ K − x ⊂ K ′ − x+ ηB and K ′ − x ⊂ K − x+ ηB

⇒ δ(K − x,K ′ − x) < η

Hence, by the translation-invariance of m:

|m(K)−m(K ′)| = |m(K − x)−m(K ′ − x)| < ε whenever δ(K,K ′) < η.
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3.3.3 The Continuity of P : Cs −→ [0,∞)

Suppose (X,B) is an n-dimensional Minkowski space with Dual space (X∗, Bo).
Let (C∗s , δBo) denote the collection of all symmetric convex bodies in X∗,
equipped with the Hausdorff metric defined in terms of Bo. Similarly, let
δB denote the Hausdorff metric defined in terms of B.

Theorem 3.3.6. The volume product P : Cs → [0,∞) is continuous with
respect to the Hausdorff metric δB.

Proof. Let m and m∗ be two associated Haar measures on X and X∗ respec-
tively. Define the mapping

ϕ : (Cs, δB) → (C∗s , δBo)|C 7→ ϕ(C) = Co.

The volume product P evaluated at an arbitrary set C ∈ Cs can thus be
written as the product

P (C) = m(C) · (m∗ ◦ ϕ)(C).

It is clear from Theorem 3.3.5 that m is continuous on Cs ⊂ Cb0 . It thus
remains to show that the composite function

m∗ ◦ ϕ : Cs −→ [0,∞)

is continuous. Since all polar bodies are contained in C∗s , ϕ can be regarded
as a mapping from Cs to C∗s . According to Lemma 3.3.3, there exist positive
real numbers c1, c2, d1, d2 > 0 such that

c1δB ≤ ∆2 ≤ c2δB and d1δBo ≤ ∆∗
2 ≤ d2δBo .

Given C ∈ Cs and ε > 0, let η = d1ε
c2

. If D ∈ Cs is such that δB(C,D) < η,
then

∆2(C,D) < d1ε

⇒ C ⊂ ed1εD and D ⊂ ed1εC

⇒ Do ⊂ ed1εCo and Co ⊂ ed1εDo ∵ Properties of Polar Bodies
⇒ ∆∗

2(C
o, Do) < d1ε⇒ δBo(Co, Do) < ε

This implies that ϕ is continuous. In addition, Theorem 3.3.5 guarantees the
continuity of the mapping m∗ : C∗s −→ [0,∞) and, since the composition of
two continuous functions is continuous, the result follows.
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3.4 The Blaschke selection theorem

Consider the n-dimensional Minkowski space (X,B). A setK ∈ X is said to be
uniformly bounded by the scalar a > 0 if K ⊂ aB. For the sake of notational
convenience, let Ka := {K ∈ K : K ⊂ aB} and Ca := {C ∈ C : C ⊂ aB}. The
Blaschke selection theorem can therefore be formulated as follows: “For any
a > 0, the collection Ca is sequentially compact in (K, δ).”

A set K ⊂ X is called totally bounded if for every ε > 0 there exist points
x1, x2, ..., xn ∈ K such that K ⊂

⋃n
i=1B(X,xi, ε). The strategy used in this

section to prove the Blaschke selection theorem resembles the approach used
in Thompson, Section 2.5 [18] and relies mainly on the following well-known
characterization of compactness in metric spaces, which is stated without proof
(see for instance Dunford and Schwartz [8]).

Theorem 3.4.1. For any set K in a metric space, the following statements
are equivalent:
(a) K is compact.
(b) K is sequentially compact.
(c) K is complete and totally bounded.

More specifically, the Blaschke selection theorem will be proved according to
the method outlined by the following steps:

1. (K, δ) is a complete metric space (Theorem 3.4.2).

2. Ka is a totally bounded (Theorem 3.4.3) and closed subset of the com-
plete space K and is therefore compact (Corollary 3.4.4).

3. C is a closed subset of K and is therefore complete (Lemma 3.4.6).

4. Ca is a closed subset of the compact set Ka and must hence be compact
(Theorem 3.4.7).

Theorem 3.4.2. If {Kn} is a Cauchy sequence in (K, δ) then Kn converges
to

K0 =
∞⋂
i=1

c`

∞⋃
j≥i

Kj

 ∈ K

Hence (K, δ) is a complete metric space.

Proof. Since the arbitrary intersection of closed sets is also closed, it follows
trivially that K0 is a closed set. Let ε > 0 be given. Then there exists an
n0(ε) > 0 such that δ(Ki,Kj) < ε for all i, j ≥ n(ε). This implies that
Kj ⊂ Ki + εB for all i, j ≥ n(ε).
In particular, for all j ≥ i ≥ n0(ε) we have Kj ⊂ Ki+εB and hence

⋃
j≥iKj ⊂
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Ki + εB. Since both Ki and B are compact sets, Ki + εB is closed, which
implies

c`

⋃
j≥i

Kj

 ⊂ Ki + εB ⊂ Ki + 2εB

This inclusion holds for all i ≥ n0(ε) and therefore it follows that

K0 =
∞⋂
i=1

c`

⋃
j≥i

Kj

 ⊂
⋂

i≥n0(ε)

c`

⋃
j≥i

Kj

 ⊂ Ki + 2εB (3.4.1)

for all i ≥ n0(ε).

Conversely, for any k ∈ N there exists an nk(ε) ∈ N such that δ(Ki,Kj) ≤ 2−kε
for all j, i > nk(ε). Choose an arbitrary positive integer m0 ≥ n0(ε) and let
x0 ∈ Km0 (this is possible since Km0 ∈ K and is therefore non-empty). Now
let m1 > max{m0, n1(ε)}. Then

δ(Km1 ,Km0) < 2−1ε < ε⇒ Km0 ⊂ Km1 + 2−1εB.

Therefore, x0 can be written in the form x0 = x1 + y, where x1 ∈ Km1 and
y ∈ 2−1εB, from which it follows that ‖x1−x0‖ = ‖y‖ ≤ 2−1ε < ε. Now choose
an m2 > max{m1, n2(ε)}. Similarly Km1 ⊂ Km2 + 2−2εB, which implies that
there exist x2 ∈ Km2 and y ∈ 2−2εB such that x1 = x2 + y and hence
‖x1 − x2‖ = ‖y‖ ≤ 2−2ε < 2−1ε. Generally if m1, ...,mk−1 and x1, ..., xk−1

have been chosen, take mk > max{mk−1, nk(ε)}. By the same argument there
is an xk ∈ Kmk

such that ‖xk − xk−1‖ < 2k−1ε.
Now {xi}∞i=1 is a Cauchy sequence in (X, ‖.‖) and must hence converge (by the
completeness of Minkowski spaces) to some x̄. Since the sequence {mk}∞k=1 is
strictly increasing and unbounded, it follows that for any n ∈ N there exists
an mn′ > n and hence xn′ ∈ Kmn′ ⊂

⋃
j≥nKj . In fact for any k ≥ n′ we have

mk > mn′ ⇒ xk ∈
⋃

j≥mk
Kj ⊂

⋃
j≥nKj . Since the sequence {xk} ⊂

⋃
j≥nKj

converges to x̄ it thus follows that x̄ ∈ cl
(⋃

j≥nKj

)
. This holds for any n.

Therefore x̄ ∈
⋂∞

n=1 c`
(⋃

j≥nKj

)
= K0. Hence K0 6= ∅. By continuity of the

norm we have:

‖x̄− x0‖ = lim
n→∞

‖xn − x0‖ = lim
n→∞

‖xn − xn−1 + xn−1 − xn−2 + ...+ x1 − x0‖

≤ lim
n→∞

n∑
k=1

‖xk − xk−1‖ ≤ lim
n→∞

n∑
k=1

2−(k−1)ε = 2ε

Hence for any m0 ≥ n0(ε) and any x0 ∈ Km0 we can find a x̄ ∈ K0 such that
‖x̄ − x0‖ ≤ 2ε, which implies x0 − x̄ ∈ 2εB and hence x0 ∈ K0 + 2εB. But
m0 ≥ n0(ε) is an arbitrary integer. Thus

Ki ⊂ K0 + 2εB for all i ≥ n0(ε) (3.4.2)
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From inclusions (3.4.1) and (3.4.2) it finally follows that δ(K0,Ki) ≤ 2ε for
all i ≥ n0(ε) which implies that δ(K0,Ki) → 0 as i→∞

Theorem 3.4.3. Ka is totally bounded.

Proof. Let ε > 0 be given. The ball aB is compact and hence there exists
a finite collection of balls {B(x1, ε), ...B(xk, ε)} with centers x1, ..., xk that
cover aB. Let J be the collection of all non-empty subsets of {x1, ..., xk}.
J contains 2k − 1 sets that are all bounded by aB, and (being finite unions
of compact point sets) are compact. Thus J ⊂ (Ka, δ). For any K ∈ Ka

define FK := {xi ∈ F : there exists an x ∈ K such that ‖xi − x‖ < ε}. By
the definition of Fk we have Fk ⊂ K + εB. Conversely, since

⋃k
i=1B(xi, ε)

is a finite covering of aB and hence of K, we can find for every x ∈ K an
xi ∈ FK such that ‖x − xi‖ < ε. It follows that x ∈ FK + εB and thus
K ⊂ FK + εB. Therefore δ(K,FK) < ε. In other words, every K ∈ Ka is
contained in some ball in (Ka, δ) with radius ε whose center is an element of
the finite set J ⊂ mathcalKa. Therefore Ka can be covered by a finite number
of ε-balls which implies that (Ka, δ) is totally bounded.

Corollary 3.4.4. Ka is compact with respect to δ.

Proof. Ka is a closed subset of K: Let {Ki} be a sequence in Ka converg-
ing to some K. Then {Ki} is a Cauchy sequence which (by completeness of
K) converges to K0 ⇒ K = K0. Now Ki ⊂ aB for all i ∈ N ⇒ K0 =⋂∞

i=1 c`
(⋃

j≥iKj

)
⊂ aB ⇒ K0 ∈ Ka. This implies that Ka is complete (since

K is complete). Also, Ka is totally bounded, according to Theorem 3.4.3. It
now follows from Theorem 3.4.1 that (Ka, δ) is compact.

The following technical Lemma establishes a closed-form expression for the
limit of any convergent sequence in K, which is used in Lemma 3.4.6 to show
that C is a closed (and hence complete) subset of (K, δ).

Lemma 3.4.5. If {Kn} is a sequence in (K, δ) such that Kn −→ K0, then

K0 =
⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Kj + εB)

Proof. The convergence Ki → K0 implies that for every ε > 0 there exists an
i(ε) ∈ N such that K0 ⊂ Kj + εB for all j ≥ i(ε). Hence

K0 ⊂
⋂
ε>0

⋂
j≥i(ε)

(Kj + εB) ⊂
⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Kj + εB) (3.4.3)

For the converse inclusion, note that since all convergent sequences are Cauchy
sequences, it follows from Theorem 3.4.2, that K0 is non-empty and can be

43

 
 
 



written in the form

K0 =
∞⋂
i=1

c`

∞⋃
j≥i

Kj

 .

and hence it suffices to show that

⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Kj + εB) ⊂
∞⋂
i=1

c`

∞⋃
j≥i

Kj

 .

Suppose

x ∈
⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Kj + εB).

Then for any ε > 0 there exists an i(ε) such that x ∈ Kj + εB for all j ≥ i(ε).
Let m ∈ N be arbitrary and choose n ∈ N such that n ≥ max{m, i(ε)}. Then

x ∈ Kn + εB ⊂
⋃

n≥m

Kn + εB

So for every ε > 0, there exist xi(ε) ∈
⋃

n≥mKn and y ∈ εB such that x =

xi(ε) + y. If xi(ε) = x then x = xi(ε) ∈
⋃

n≥mKn ⊂ c`
(⋃

n≥mKn

)
.

Even if xi(ε) 6= x, it still holds that ‖x − xi(ε)‖ = ‖y‖ < ε. This implies that
for any ε-neighborhood B(x, ε) of x, we can find xi(ε) ∈

⋃
n≥mKn ∈ such that

xi(ε) ∈ B(x, ε) and is distinct from x. Thus x is an accumulation point of⋃
n≥mKn and hence x ∈ c`

(⋃
n≥mKn

)
. Since m was arbitrary,

x ∈
∞⋂

m=1

c`

 ⋃
n≥m

Kn

 .

Lemma 3.4.6. The set C is a closed subset of (K, δ) and is therefore complete.

Proof. Let {Cn} be any sequence of sets in C converging to K0 ∈ K. By the
previous lemma,

K0 =
⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Cj + εB)

Now since the sum of two convex sets is always convex, we have Cj + εB
is convex. further the arbitrary intersection of convex sets is convex which
implies that

⋂
j≥i(Cj + εB) is convex. Now the sequence {

⋂
j≥i(Cj + εB)}∞i=1

is a nested sequence of convex sets therefore
∞⋃
i=1

⋂
j≥i

(Cj + εB) =
⋂
j≥1

(Cj + εB)
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which is convex. Finally, the set

K0 =
⋂
ε>0

∞⋃
i=1

⋂
j≥i

(Cj + εB)

is again the intersection of convex sets and hence is convex. So K0 ∈ C which
implies that C is closed.

Theorem 3.4.7 (The Blaschke Selection Theorem). The collection Ca

is sequentially compact with respect to δ.

Proof. Ca = Ka
⋂
C, where both C and Ka are closed (according to Theorem

3.4.6 and Corollary 3.4.4 respectively). Therefore Ca is a closed subset of
Ka. Since Ka is compact (Corollary 3.4.4), it follows that Ca must also be
compact.
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Chapter 4

Steiner Symmetrization and
the First Part of the
Blaschke-Santaló Inequality

Let A be a non-empty compact convex set in Rn and let H be a hyperplane
in Rn with unit normal vector u. The Steiner symmetral AH of A about H is
computed by translating all the chords of A which are perpendicular to H, in
the direction u until their midpoints lie on H. The union of all these chords
is symmetric about H and is called the Steiner symmetral AH of A about
H. Section 4.1 develops the formal method of Steiner symmetrization while
section 4.2 establishes some elementary properties of the Steiner symmetral. In
particular, it will be shown that the Steiner symmetral preserves convexity and
compactness (Propositions 4.2.1 and 4.2.2 ) as well as the volume (Theorem
4.2.3) of the original set. These two sections, as well as Section 4.3 are largely
based on Section 6.6 of the book “Convexity”(Webster[19]). Section 4.3 sets
out to show that for every convex body in A ⊂ Rn there exists a sequence of
Steiner symmetrals of A converging in the Hausdorff metric to a Euclidean ball
B0. This result not only leads to the famous characterization of ellipsoids due
to H. Brunn [6] (Theorem 4.4.2), which is invoked in Chapter 5 to prove the
second part of the Blaschke-Santaló inequality, but was also used directly by
Meyer and Pajor [11] in a short proof of the first part of the Blaschke-Santaló
inequality (Lemma 4.4.6 and Theorem 4.4.7).

4.1 Definitions

Let A ⊂ Rn be a non-empty compact convex set and H be a hyperplane with
unit normal vector u. The definition of the Steiner symmetral AH of A about
H relies on the orthogonal decomposition of Rn = H ⊕ H⊥ = H ⊕ span{u}.
Indeed, any vector a ∈ A can be written uniquely as a = p+ θu, where p ∈ H
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and θ ∈ R. The following definitions will prove useful in this context.

Definition 4.1.1. The projection H(A) of A onto the hyperplane H is defined
as the set H(A) := {p ∈ H : p + θu ∈ A for some θ ∈ R}. Also, for any
p ∈ H(A), let IA(p) := {θ ∈ R : p+ θu ∈ A}.

It follows directly from the convexity of A that both H(A) and IA(p) are
convex sets. Moreover, the compactness of A ensures that IA(p) is a non-empty
compact interval for any p ∈ H(A). The following functions are therefore well-
defined.

Definition 4.1.2. Define the functions αA, βA, γA : H(A) → R by:

αA(p) := min{θ : θ ∈ IA(p)}
βA(p) := max{θ : θ ∈ IA(p)}
γA(p) := βA(p)− αA(p)

When no ambiguities are apparent, the subscript A will be omitted. In terms
of the above notation, A = {p + θu : p ∈ H(A), θ ∈ IA(p)}. In other words,
A is the union of chords of the form {p + θu : θ ∈ IA(p)} where p ∈ H(A).
The Steiner symmetral AH of A about H is obtained by translating every such
chord along the line ` = span{u} so that its midpoint 1

2(α(p) + β(p)) lies on
H(A). More explicitly:

AH : = {p+ θu : p ∈ H(A), θ ∈ IA(p)− 1
2
(α(p) + β(p))}

= {p+ θu : p ∈ H(A), |θ| ≤ γ(p)} (4.1.1)

Another, equivalent definition, which will prove useful in Lemma 4.4.6 can be
understood in terms of the reflection of A about H. The Steiner symmetral
is constructed by mapping each chord of the form {p + θu : θ ∈ IA(p)} with
p ∈ H(A), onto the chord 1

2{p+ θu : θ ∈ IA(p)}+ 1
2{p− θu : θ ∈ IA(p)}. More

concisely:

AH = {p+
1
2
(θ1 − θ2)u : p ∈ H(A), θi ∈ IA(p) for i = 1, 2} (4.1.2)

In order to prove that the sets defined by (4.1.1) and (4.1.2) are equal, it
suffices to show that for a given p ∈ H(A), θ + 1

2(α(p) + β(p)) ∈ IA(p) if and
only if θ can be written as θ = 1

2(θ1 − θ2), where θi ∈ IA(p) for i = 1, 2.
For any θ ∈ IA(p)− 1

2(α(p) + β(p)), it can easily be seen that

θ1 := θ +
1
2
(α(p) + β(p)) and θ2 := −θ +

1
2
(α(p) + β(p))

are both contained in IA(p) and θ = 1
2(θ1 − θ2). Conversely, if θ = 1

2(θ1 − θ2),
where θi = λiα(p) + (1 − λi)β(p) with λi ∈ [0, 1] for i = 1, 2, it follows that
θ + 1

2(α(p) + β(p)) can be written as

θ +
1
2
(α(p) + β(p)) = µα(p) + (1− µ)β(p)
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where µ = 1+λ1−λ2
2 ∈ [0, 1]. Hence θ + 1

2(α(p) + β(p)) ∈ IA(p).

4.2 Elementary Properties

Proposition 4.2.1. .

(i) AH is symmetric about H. Moreover, if A is symmetric about H then
AH = A.

(ii) AH is convex.

(iii) If p ∈ H then the Euclidean ball B := {x ∈ Rn : .〈x− p, x− p〉 ≤ r2} is
symmetric about H and hence BH = B.

(iv) For any A,C ⊂ C with C ⊂ A, it follows CH ⊂ AH.

Proof. .

(i) If p + θu ∈ AH then p ∈ H(A) and | − θ| = |θ| ≤ 1
2γ(p). Therefore

p+θ(−u) = p−θu ∈ AH and hence AH is symmetric aboutH. Moreover,
suppose that for all p ∈ H(A), p− θu ∈ A whenever p+ θu ∈ A. In this
case α(p) = −β(p) and hence IA(p) = [−β, β]. Thus

AH = {p+ θu : p ∈ H, |θ| ≤ β} = A

(ii) Suppose a, a′ ∈ AH. According to definition (4.1.2),

a = p+
1
2
(θ1 − θ2)u and a′ = p′ +

1
2
(θ′1 − θ′2)u

where p, p′ ∈ H(A), θi ∈ IA(p) and θ′i ∈ IA(p′) for i = 1, 2. For any
µ ∈ [0, 1],

µa+(1−µ)a′ = µp+(1−µ)p′+
1
2
[
(µθ1 + (1− µ)θ′1)− (µθ2 + (1− µ)θ′2)

]
u

The convexity of H(A) and of IA(p) now imply that µa+(1−µ)a′ ∈ AH.

(iii) Consider a typical point q + θu ∈ B, where q ∈ H, θ ∈ R. Since the
vector q − p is parallel to H and therefore 〈u, q − p〉 = 0, it follows that

‖q + θu− p‖2 = ‖q − p‖2 + 2θ〈q − p, u〉+ θ2‖u‖2

= ‖q − p‖2 + θ2‖u‖2 = ‖q − θu− p‖2

It therefore follows that q − θu ∈ B and hence B = BH.
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(iv) For any p ∈ H(C) there exists a θ ∈ R such that p + θu ∈ C ⊂ A.
Therefore p ∈ H(A) which implies H(C) ⊂ H(A).
By making use of definition (4.1.2),

CH : = {p+
1
2
(θ1 − θ2)u : p ∈ H(C), p+ θiu ∈ C ⊂ A for i = 1, 2}

⊂ {p+
1
2
(θ1 − θ2)u : p ∈ H(A), p+ θiu ∈ A for i = 1, 2}

=: AH

The following Proposition asserts that the Steiner symmetral AH about H
preserves certain topological properties of the original set A. This leads to the
useful result that if A ∈ Cb then AH ∈ Cb.

Proposition 4.2.2. If A is a non-empty compact convex set in Rn then then
AH is also in C. Moreover, if A is a convex body, then AH is also a convex
body.

Proof. Let A be a non-empty compact convex set in Rn. It was seen in Propo-
sition 4.2.1 (ii) that the Steiner symmetral preserves convexity. Since all
Minkowski Spaces have the Heine-Borel property, it suffices to show in ad-
dition that AH is closed and bounded and has a non-empty interior whenever
A does.

AH is closed:
Let {xi}∞i=1 be a sequence in AH converging to some x ∈ Rn with respect to
the Euclidean norm. By definition, each xi ∈ AH is of the form xi = pi + θiu,
where pi ∈ H(A) and |θi| ≤ 1

2γ(pi) for i ∈ N. Moreover, the orthogonal decom-
position of Rn into H⊕ span{u} ensures that x can be written as x = p+ θu,
where p ∈ H and θ ∈ R. Since p− pi ⊥ u, it follows that for all i ∈ N

‖x− xi‖2 = 〈x− xi, x− xi〉 = 〈p− pi + (θ − θi)u, p− pi + (θ − θi)u〉
= 〈p− pi, p− pi〉+ 2(θ − θi)〈p− pi, u〉+ 〈p− pi, p− pi〉
= ‖p− pi‖2 + (θ − θi)2

≥ ‖p− pi‖2

So 0 ≤ ‖p−pi‖ ≤ ‖x−xi‖ → 0 as i→∞ and hence pi converges to p. This in
turn implies that the sequence {θiu} = {xi − pi} is convergent. Now span{u}
is closed and hence θiu→ θu⇒ θi → θ for some θ ∈ R.
Consider the points yi = pi + α(pi)u and zi = pi + β(pi)u in A. Since A is
compact, there exist subsequences {yik} and {zik} that converge to y, z ∈ A
respectively. But by the above argument, pik → p as k → ∞. The fact that
span{u} is closed hence implies that α(pik) → a and β(pik) → b for some
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a, b ∈ R as k → ∞. Moreover, since α(pik) ≤ β(pik) for all i ∈ N, it follows
that a ≤ b. The vectors z and y can thus be written as:

y = p+ au and z = p+ bu

where α(p) ≤ a ≤ b ≤ β(p) (∵ y, z ∈ A). This also implies that p ∈ H(A).
Finally:

|θ| = lim
k→∞

|θik | ≤ lim
k→∞

1
2
(α(pik)− β(pik)) =

1
2
(b− a) ≤ 1

2
γ(p)

Therefore x = p+ θu ∈ AH ⇒ AH is closed.

AH is bounded:
Since A is bounded there exists a Euclidean ball B such that A ⊂ B. Assume
without loss of generality that the midpoint of B lies on H. Parts (iii) and (iv)
of Proposition 4.2.1 now imply that AH ⊂ BH = B. Therefore AH is bounded.

If intA 6= ∅ then intAH 6= ∅:
If A has a non-empty interior there exists a Euclidean ball B ⊂ A. It follows
readily from part (iii) of Proposition 4.2.1 that BH is also a Euclidean Ball.
Moreover, part (iv) of proposition 4.2.1 implies that BH ⊂ AH and hence
intAH 6= ∅.
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Theorem 4.2.3. Let A ⊂ Rn be any non-empty compact convex set and H be
a hyperplane. Then λn(AH) = λn(A).

Proof. This Theorem is proved by induction. Let λn denote the n-dimensional
Lebesgue measure.
For n=1:
A is a non-empty closed interval [a, b] and H is a point in R. Any point x ∈ AH
is of the form x = H+θ, where |θ| ≤ 1

2(b−a). The length of the closed interval
AH is given by:

λ(AH) = max{x : x ∈ AH} −min{x : x ∈ AH}

= H+
1
2
(b− a)− (H− 1

2
(b− a)) = b− a = λ(A)

Suppose the Theorem holds for dimension n-1:
Let v be a vector parallel to H and let Hν = {x ∈ Rn : x · v = ν} for ν ∈ R.
The ν-section Aν of A is defined as the intersection A∩Hν . If it can be shown
that (AH)ν = (Aν)H for all ν ∈ R then Fubini’s Theorem, used in conjunction
with the induction hypothesis, implies:

λn(A) =
∫

R
λn−1(Aν)dν =

∫
R
λn−1((Aν)H)dν =

∫
R
λn−1((AH)ν)dν = λn(AH)

It thus suffices to show (AH)ν = (Aν)H for all ν ∈ R. Note that since v ⊥ u

p ∈ H(Aν)
⇔ p ∈ H, p+ θu ∈ A and p+ θu ∈ Hν for some θ ∈ R
⇔ p ∈ H(A) and p · v = (p+ θu) · v = ν

⇔ p ∈ H(A) and p ∈ Hν

⇔ p ∈ (H(A))ν

Therefore

p+
1
2
(θ1 − θ2)u ∈ (Aν)H

⇔ p ∈ H(Aν) = H(A) ∩Hν and p+ θiu ∈ A ∩Hν for i = 1, 2

⇔ p ∈ H(A), p+ θiu ∈ A for i = 1, 2 and p+
1
2
(θ1 − θ2)u ∈ Hν

⇔ p+
1
2
(θ1 − θ2)u ∈ (AH) ∩Hν = (AH)ν
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4.3 Sequences of Steiner Symmetrals

Theorem 4.3.1. Let {Ak} be a sequence of convex bodies that converge to a
convex body A ⊂ Rn. Then the sequence {(Ak)H} of Steiner symmetrals of Ak

will converge in the Hausdorff metric to the Steiner symmetral AH of A.

Proof. Let B denote the Euclidean unit ball and assume, without loss of gen-
erality that the origin is an interior point of A lying on H. Hence A ∈ Cb0

and H is a subspace. Since A is bounded and has a non-empty interior, there
exist positive numbers s, r > 0 such that

rB ⊂ A ⊂ sB ⇒ rB = (rB)H ⊂ AH ⊂ (sB)H = sB (4.3.1)

Also, by Lemma 3.3.3 it follows that {Ak} converges to A with respect to the
metric 42. Thus there exists an N1 ∈ N such that

rB ⊂ Ak ⊂ sB for all k ≥ N1

and hence

rB = (rB)H ⊂ (Ak)H ⊂ (sB)H = sB for all k ≥ N1 (4.3.2)

Let ε > 0 be given. Since Ak converges to A, there exists an N2 ∈ N such
that:

Ak ⊂ A+
rε

s
B and A ⊂ Ak +

rε

s
B for all k ≥ N2 (4.3.3)

Let k ≥ max{N1, N2}. Hence, according to (4.3.1), (4.3.2) and (4.3.3)

Ak ⊂ A+
rε

s
B ⊂ A+

ε

s
A = (1 +

ε

s
)A

⇒ (Ak)H ⊂ (1 +
ε

s
)AH = AH +

ε

s
AH ⊂ AH + εB

Similarly

A ⊂ Ak +
rε

s
B ⊂ Ak +

ε

s
Ak = (1 +

ε

s
)Ak

⇒ AH ⊂ (1 +
ε

s
)(Ak)H = (Ak)H +

ε

s
(Ak)H ⊂ (Ak)H + εB

From these two inclusions it follows that δ((Ak)H, AH) < ε which implies
convergence.

Definition 4.3.2. Let S(A) be the family of sets in Rn which can be obtained
by applying a finite number of Steiner symmetrizations to A . In other words

S(A) = {AN : N ∈ N, Ak = (Ak−1)H for k = 2, ..., N and A1 = AH}
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Theorem 4.3.3. For any convex body A ⊂ Rn there exists a sequence of sets
in S(A) that converges to the closed ball B0 of volume λn(A) whose center is
the origin.

Proof. Let B denote the Euclidean unit ball and let

r0 := inf{r > 0 : there is a C ∈ S(A) such that C ⊂ rB}

By the definition of the infimum there exists a sequence of sets {Ak} in S(A)
such that Ak ⊂ (r0 + 1

k )B ⊂ (r0 + 1)B for all k ∈ N. This sequence is thus
contained Ca with a = r0 + 1 must hence, according to the Blaschke selection
theorem, have a convergent subsequence {Aki

}, which converges to a convex
body B0. Since B0 ⊂ (r0 + 1

k )B for all k ∈ N, it follows that B0 ⊂ r0B. Also,
by Theorem 4.2.3, all sets {Aki

} have the same volume as A. The continuity
of the volume measure (Theorem 3.3.5) now implies that λn(B0) = λn(A).
If it can be shown that B0 is not a proper subset of r0B, then the result
follows. Suppose that there is an x0 ∈ r0B such that x0 /∈ B0. Since
r0B = conv(bd(r0B)), it can be assumeed, without loss of generality, that
x0 ∈ bd(r0B). B0 is closed and hence there exists an s > 0 such that
B0 ∩ B(x0, s) = ∅. Moreover, bd(r0B) is a compact set, from which it fol-
lows that there exist elements x1, ..., xm ∈ bd(r0B) such that bd(r0B) ⊂
B(x0, s) ∪B(x1, s) ∪ ... ∪B(xm, s).

Construction

Define C0, C1, C2, ..., Cm to be the sets Ci := bd(r0B) ∩ B(xi, s). It immedi-
ately follows that bd(r0B) =

⋃m
i=0Ci. Also let Hi be the hyperplane which

orthogonal to the vector xi − x0 and passes through the origin. It can readily
be seen that if Hi is defined as above, then C0 is the reflection of Ci about Hi.
Consider (B0)H1 . Since B0 ⊂ r0B it follows that (B0)H1 ⊂ (r0B)H1 = r0B.
Moreover, B0∩B(x0, s) = ∅ and therefore BH1 must be disjoint from C0∪C1.
Similarly (BH1)H2 is disjoint from C0 ∪ C1 ∪ C2. Applying successive sym-
metrizations to B0 about the hyperplanes H1, ...,Hm thus yields a convex
body B′

0 which is disjoint from C0 ∪ C1 ∪ ... ∪ Cm and hence from bd(r0B).
This implies B′

0 ⊂ int{r0B} and therefore there exists an 0 < ε < r0 such
that B′

0 ⊂ (r0 − ε)B. For every k ∈ N, let A′k be the set obtained by applying
the same sequence of Steiner symmetrizations to Ak about the hyperplanes
H1, ...,Hm. Since Ak converges to B0 it follows from Theorem 4.3.1 that A′k
converges to B′

0. But B′
0 ⊂ (r0 − ε)B and hence there must exist an N ∈ N

such that A′k ⊂ (r0 − 1
2ε)B for all k ≥ N . This implies that

A′N+1 ⊂ (r0 −
1
2
ε)B. (4.3.4)

Since AN+1 (and therefore A′N+1) is contained in S(A), inclusion (4.3.4) con-
tradicts the definition of r0. Hence B0 = r0B.
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4.4 Brunn’s Theorem and the First Part of the Blaschke-
Santaló Inequality

Theorem 4.3.3 is used in this section to prove the following two fundamental
results. Theorem 4.4.2, due to Bertrand[3] for dimension 2 and Brunn[6] higher
dimensions, establishes a characterization of ellipsoids which is used in chapter
5 to prove the second part of the Blaschke-Santaló inequality, whereas Theorem
4.4.7, due to M. Meyer and A. Pajor [11], makes direct use of Theorem 4.3.3
to prove the first part of the Blaschke-Santaló inequality.

Lemma 4.4.1. Let K be a fixed convex body contained in the Minkowski space
(X,B) and let {Ti}∞i=1 be a sequence of linear transformations such that the
sequence {T (Ki)}∞i=1 ⊂ Cs converges with respect to the Hausdorff metric δ to
some K̂ ∈ C. Then there exists a linear transformation T such that K̂ = T (K).

Proof. Since K ∈ Cs, there exists a scalar r1 > 0 such that r1B ⊂ K. Also,
since K̂ is in C, it is compact and hence bounded, therefore there exists a
scalar r2 > 0 such that K̂ ⊂ r2E.
Let Ki := Ti(K) for all i ∈ N and let ε > 0 be given. Then there exists an
N ∈ N such that Ki ⊂ K̂ + εB ⊂ (r2 + ε)B for all i ≥ N and thus

r1T (B) = Ti(r1B) ⊂ TiK = Ki ⊂ (r2 + ε)B.

From this it follows that ‖Ti‖ ≤ 1
r1

(r2 + ε) for all i ≥ N . Let
k = max{T1(E), T2(E), ..., 1

r1
(r2 + ε)}. Then ‖Ti‖ ≤ k for all i ∈ N. In other

words the sequence {Ti} is bounded and, since the set of all linear transfor-
mations on Rn is a finite dimensional space, it follows that this sequence has
a subsequence {Tik} which converges in norm to some linear transformation
T.

Theorem 4.4.2 (Bertrand/Brunn). Let C be a centrally symmetric convex
body in Rn with following property:

P1: For every vector v 6= 0, the centers of all the cross-sections of C by lines
parallel to v lie in a hyperplane M.

Then C is an ellipsoid.

Proof. Let v 6= 0 be an arbitrary vector in Rn and let M be the associated
hyperplane containing the midpoints of all cross-sections of C parallel to v.
Since v /∈ M, the set span{M, v} spans Rn and hence every x ∈ C can be
expressed as x = m+ γv where m ∈ M and γ ∈ R. In this case, property P1
is equivalent to the statement ‘m+ γv ∈ C ⇔ m− γv ∈ C’.

If P1 holds for some symmetric convex body C, then P1 also holds for the
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image T (C) of C under any invertible linear transformation T . Indeed, sup-
pose P1 holds for C ∈ Cs. Let v 6= 0 be an arbitrary vector and let M be
the hyperplane containing the midpoints of all chords through C which are
parallel to T−1(v) 6= 0. The symmetry of C readily implies that 0 ∈ M and
hence T (M) is also a hyperplane. Furthermore,

m+ γT−1(v) ∈ C ⇔ m− γT−1(v) ∈ C.

and therefore

T (m) + γv ∈ T (C) ⇔ T (m)− γv ∈ T (C).

T (M) is thus the desired hyperplane corresponding to v.

It will now be shown that for any symmetric convex body C satisfying P1,
the computation of the Steiner symmetral of C with respect to any hyper-
plane H can be represented by means of an invertible linear transformation
T : Rn → Rn. Let H be an arbitrary hyperplane with unit normal v and let
M be the corresponding hyperplane such that m+ γv ∈ C ⇔ m− γv ∈ C for
all m ∈M. Any two points x1, x2 ∈ C can be written as xi = mi +γiv, where
m1,m2 ∈ M and γi ∈ R for i = 1, 2. Furthermore, m1,m2 can be written as
mi = hi + θiv, where θi ∈ R, hi ∈ H and hence xi = hi + (θi + γi)v. Since
v ⊥ H, the Steiner symmetral of C about H can now be computed by means
of the mapping

xi = hi + (θi + γi)v 7→ T (xi) := hi + γiv for i = 1, 2.

It readily follows that T (x1+x2) = T (x1)+T (x2) and T (αx1) = αT (x1) for all
α ∈ R. Moreover, the inverse of T is given by T−1(h1+γ1v) := h1+(ξ1+θ1)v =
x1 for every x1 ∈ C.

According to Theorem 4.3.3, it is possible to obtain a sequence {Ci} of Steiner
symmetrals converging to the Euclidean ball B0, by making successive sym-
metrizations about the appropriate hyperplanes H1,H2, ... corresponding to
direction vectors v1, v2, .... Since these Steiner symmetrizations can be repre-
sented by invertible linear transformations, the sequence {Ci}∞i=1 can thus be
written in the form {Ti(C)}∞i=1, where Ti : Rn → Rn is a linear isomorphism
for i ∈ N. Lemma 4.4.1 now implies that there must be some linear mapping
T such that B0 = T (C). In addition, since Steiner symmetrizations preserve
volume,

λ(B0) = λ(T (C)) = |det(T )|λ(C) = λ(C) ⇒ det(T ) 6= 0

and hence T is invertible. Therefore, C = T−1(B0) from which it follows that
C is an ellipsoid.
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A set A ⊂ Rn is said to have a center of symmetry y ∈ A if for every x ∈ A,
2y − x ∈ A. The proof of the second part of the Blaschke-Santaló inequality,
outlined in Chapter 5, relies mainly on showing that any symmetric convex
body C at which the upper bound of the volume product is attained, satisfies
the following property:

For any hyperplane H ∈ Rn containing the origin, every cross-section of C
by hyperplanes parallel to H has a center of symmetry and these centers lie

in a line

Although this property does not correspond directly to the hypothesis used
in Brunn’s Theorem, it will be shown in Theorem 4.4.3 and the subsequent
corollary that it nevertheless suffices to guarantee that C is an ellipsoid.

Theorem 4.4.3 (Meyer and Pajor). Let C ⊂ Rn be a convex symmetric
body and H be a hyperplane containing the origin. Then the following two
statements are equivalent

a) The centers of all the cross-sections of Co by lines orthogonal to H lie
on a hyperplane M.

b) Every cross-section of C by a hyperplane parallel to H has a center of
symmetry and these centers if symmetry are in line.

Proof. Let v and u be the unit normal vectors of M and H respectively.
According to Remark 2.5.9 and a corollary to the Hahn-Banach Theorem (see
for instance Theorem 4.3, Rudin [14]),

Co = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}

and

C = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ Co}.

Suppose (a) holds. Evidently u cannot lie in M and hence every y ∈ Rn,
particularly every y ∈ Co, can be written in the form y = m + γu, where
m ∈ M and γ ∈ R. Moreover, hypothesis (a) together with the symmetry of
Co imply that m+ γu ∈ Co ⇔ −m+ γu ∈ Co. Since v /∈ H, any hyperplane
Hλ parallel to H is of the form Hλ = {x ∈ Rn : 〈x− λv, u〉 = 0}, from which
it follows that 〈x, u〉 = λ〈v, u〉 for all x ∈ Hλ. For any x ∈ C ∩ Hλ and any
y = m+ γu ∈ Co it thus follows that,

〈(2λv − x)− λv, u〉 = 〈λv − x, u〉 = −〈x− λv, u〉 = 0 ∵ x ∈ Hλ

and

〈2λv − x,m+ γu〉 = 2λ〈v,m〉+ 2λγ〈v, u〉 − 〈x,m+ γu〉
= 0 + 〈x, 2γu〉+ 〈x,−m− γu〉 ∵ v ⊥ m and 〈x, u〉 = λ〈v, u〉
= 〈x,−m+ γu〉 ≤ 1 ∵ x ∈ C
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Hence 2λv − x ∈ C ∩Hλ whenever x ∈ C ∩Hλ, from which it follows that λv
is the center of symmetry for each cross-section C ∩Hλ.
Since C = {x ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ Co}, the above arguments can
easily be reversed to show that the converse holds.

Corollary 4.4.4. Suppose C ⊂ Rn is a symmetric convex body such that for
any hyperplane H ∈ Rn containing the origin, every cross-section of C by
hyperplanes parallel to H has a center of symmetry and these centers lie in a
line. Then C is an ellipsoid.

Proof. It follows directly from Theorem 4.4.3 that, under these conditions,
Co satisfies the hypothesis of Brunn’s Theorem, which in turn implies that
Co is an ellipsoid. By the Riesz representation Theorem for linear function-
als on Hilbert spaces, the bidual space (Rn, (Co)o) is isometrically isomorphic
to (Rn, Co) and must therefore also be a Hilbert space. The reflexivity of
Minkowski Spaces now guarantees that (Rn, C) is a Hilbert space or equiva-
lently that C is an ellipsoid.

Theorem 4.4.7, due Meyer and Pajor [11], provides a short proof of the first
part of the Blaschke-Santaló inequality. Lemma 4.4.6 is partly based on the
Brunn-Minkowski inequality (see [5],[6] or Theorem 6.1.1 Schneider [17]),
which is given below without proof, and establishes the fact that the volume
product is non-decreasing under Steiner symmetrizations. Theorem 4.4.7 then
invokes Theorem 4.3.3 and the continuity of the volume product to show that
the upper bound of the set {P (C) : C ∈ Cs} is attained by ellipsoids.

Theorem 4.4.5 (The Brunn-Minkowski Theorem). Let A and B be
convex bodies in Rn, λ the n-dimensional Lesbesgue measure and µ ∈ [0, 1].
Then

λ(µA+ (1− µ)B)
1
n ≥ µλ(A)

1
n + (1− µ)λ(B)

1
n

and this inequality is strict unless A = kB + t, where k ∈ R and t ∈ Rn.

Lemma 4.4.6 (M. Meyer, A. Pajor). Let CH be the Steiner symmetral of
a centrally symmetric convex body C ⊂ Rn about a hyperplane H containing
the origin. Then

λn((CH)o) ≥ λn(Co) and hence P (C) ≥ P (CH) (4.4.1)

Proof. By applying a suitable volume preserving map , we may assume without
loss of generality that H = {(x1, ..., xn) ∈ Rn : xn = 0}. Moreover, we make
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the identification Rn ≡ H× R. Then

Co :={(Y, y) ∈ H × R : 〈Y,X〉+ yx ≤ 1 for all X ∈ H(C)
and x such that (X,x) ∈ C}

CH :={(X,x) ∈ H × R : X ∈ H(C), x =
1
2
(x1 − x2)

where (X,xi) ∈ C for i = 1, 2}

(CH)o :={(Y, y) ∈ H × R : 〈Y,X〉+
1
2
y(x1 − x2) ≤ 1 ∀X ∈ H(C)

and x| (X,xi) ∈ C, i = 1, 2}

For any y ∈ R, let (Co)y := {Y ∈ H : (Y, y) ∈ C} denote the y-section of
Co. It can directly be seen that 1

2((Co)y + (Co)−y) ⊂ ((CH)o)y for all y ∈ R.
Therefore

λn−1[((CH)o)y] ≥
(
λn−1[

1
2
(Co)y +

1
2
(Co)−y]

)
(4.4.2)

Also, since C is centrally symmetric, (Co)y = −(Co)−y. Hence, according to
the Brunn Minkowski inequality,(
λn−1[

1
2
(Co)y +

1
2
(Co)−y]

) 1
n−1

≥ 1
2
(
λn−1[(Co)y]

) 1
n−1 +

1
2
(
λn−1[(Co)−y]

) 1
n−1

=
1
2
(
λn−1[(Co)y]

) 1
n−1 +

1
2
(
λn−1[−(Co)y]

) 1
n−1

=
(
λn−1[(Co)y]

) 1
n−1

Thus

λn−1[(Co)y] ≤ λn−1[
1
2
(Co)y +

1
2
(Co)−y] ≤ λn−1[((CH)o)y] for all y ∈ R

Hence, by Fubini’s Theorem,

λn[Co] =
∫

R
λn−1[(Co)y]dy ≤

∫
R
λn−1[((CH)o)y]dy = λn[(CH)o] (4.4.3)

Theorem 4.2.3 asserts that λn(C) = λn(CH), from which it follows that
P (C) ≤ P (CH).

Theorem 4.4.7 (M. Meyer, A. Pajor). For any C ∈ Cs,

P (C) ≤ P (E) where E is an ellipsoid

Proof. According to Theorem 4.3.3, there exists a sequence {Cn} of successive
Steiner symmetrals of C (i.e. Cn = (Cn−1)H for all n ∈ N) converging to the
Euclidean ball B0 with respect to the Hausdorff metric. The previous Lemma
now implies that the corresponding sequence {P (Cn)} of Volume Products is
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increasing and, by the continuity of the volume product (Theorem 3.3.6), it
follows that

P (C) ≤ lim
n→∞

P (Cn) = P (B0).

Furthermore, since ellipsoids are simply defined as the images of the Euclidean
ball under linear isomorphisms, it follows from Proposition 2.5.6 that P (E) =
P (B0) for any ellipsoid E ⊂ Rn and hence the upper bound of {P (C) : C ∈ Cs}
is attained by all ellipsoids.

59

 
 
 



Chapter 5

Saint Raymond’s Proof of the
Blaschke-Santaló Inequality

5.1 Introduction

Let H ⊂ Rn+1 be an n-dimensional hyperplane containing the origin and
identify H× R with Rn+1. For any C ⊂ Rn+1 in Cs, let the t-section Ct of C
be given by:

Ct = C ∩H = {x ∈ Rn : (x, t) ∈ C} for any t ∈ R.

Furthermore, identify the dual space (Rn+1)∗ = (H × R)∗ with H × R by
means of the linear isomorphism e∗i 7→ ei. The action of a given vector (ξ, γ) ∈
(H× R)∗ on an arbitrary point (x, t) ∈ H × R is thus given by

(ξ, γ)(x, t) = 〈(ξ, γ), (x, t)〉 = ξ(x) + γt.

where 〈., .〉 denotes the Euclidean inner product. Chapter 5 discusses Saint
Raymond’s proof of the Blaschke-Santaló inequality for centrally symmetric
convex bodies [15]. This proof relies mainly on the construction described in
Lemma 5.3.1. Indeed, it will be shown that for any C ∈ Cs there exists a
convex symmetric body C ′ whose volume product is strictly greater than that
of C, unless C satisfies the hypothesis of Corollary 4.4.4, from which it follows
that C must be an ellipsoid. This not only proves that the upper bound of
the set {P (C) : C ∈ Cs} is attained by ellipsoids, but also that ellipsoids
are the only sets in Cs with this property. The set C ′ is defined in terms of
the t-sections Ct of C. Accordingly, section 6.2 introduces the preliminary
properties of the t-sections Ct of C and their associated polar bodies (Ct)o,
which are necessary to prove that C ′ is a symmetric convex body and to find
an expression for the volume product of C ′ in terms of that of C. The proof
the Blaschke-Santaló inequality is finally presented in Section 5.3.
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5.2 Sections of Centrally Symmetric Convex Bodies

5.2.1 Preliminary Results

The following elementary properties relating to t-sections Ct of the convex
body C result directly from the corresponding properties of C.

Lemma 5.2.1. Let C ⊂ Rn+1 = H×R be a convex set. Then Ct ⊂ H is also
convex.

Proof. Suppose x1, x2 ∈ Ct for some t ∈ R. Then (x1, t) ∈ C and (x2, t) ∈ C.
For any λ ∈ [0, 1]:

(λx1 + (1− λ)x2, t)
=(λx1 + (1− λ)x2, λt+ (1− λ)t)
=λ(x1, t) + (1− λ)(x2, t) ∈ C ∵ C convex

Therefore λx1 + (1− λ)x2 ∈ Ct and hence Ct is convex.

Lemma 5.2.2. Let C ⊂ H×R be a symmetric set. Then −Ct = C−t ∀t ∈ R.

Proof.

x ∈ −Ct ⇔ (−x, t) ∈ C
⇔ (x,−t) = −(−x, t) ∈ C ∵ symmetry
⇔ x ∈ C−t

Lemma 5.2.3. Let C ⊂ H×R be a convex body. Then I := {t ∈ R : Ct 6= ∅}
is a closed bounded interval in R

Proof. Let t1, t2 ∈ I and suppose x1 and x2 are elements of Ct1 and Ct2

respectively. This implies (x1, t1), (x2, t2) ∈ C. The convexity of C now implies
that for all λ ∈ [0, 1]:

(λx1 + (1− λ)x2, λt1 + (1− λ)t2) = λ(x1, t1) + (1− λ)(x2, t2) ∈ C

and hence Cλt1+(1−λ)t2 6= ∅ ∀λ ∈ [0, 1]. Therefore I is an interval.
In order to show that I is a closed subset of R, let {tn} be any sequence
in I converging to some t ∈ R. Since Ctn 6= ∅ ∀n ∈ N, there exists an
xn ∈ H such that (xn, tn) ∈ C ∀n ∈ N. Moreover, the compactness of C
guarantees that the sequence {(xn, tn)} has a subsequence which converges to
some point (x0, t0) ∈ C. Since tn → t, it follows (by uniqueness of limits) that
t = t0 ⇒ (x0, t) ∈ C ⇒ Ct 6= ∅ ⇒ t ∈ I and hence I is closed. The fact that I
is bounded follows directly from the bondedness of C.
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Lemma 5.2.4. Any set C ∈ H × R = Rn+1 is convex if and only if

Cλt1+(1−λ)t2 ⊇ λCt1 + (1− λ)Ct2 (5.2.1)

for any t1, t2 ∈ I = {t ∈ R : Ct 6= ∅}, λ ∈ [0, 1].

Proof. Suppose the set C is convex and

x ∈ λCt1 + (1− λ)Ct2

for some λ ∈ [0, 1]. Then x = λx1 + (1− λ)x2 where (x1, t1), (x2, t2) ∈ C.
Since C is convex:

(x, λt1 + (1− λ)t2) = (λx1 + (1− λ)x2, λt1 + (1− λ)t2)
= λ(x1, t1) + (1− λ)(x2, t2) ∈ C

Therefore

x ∈ Cλt1+(1−λ)t2 ⇒ Cλt1+(1−λ)t2 ⊇ λCt1 + (1− λ)Ct2

Conversely, suppose the inclusion (5.2.1) holds and let (x1, t1), (x1, t2) ∈ C.
Then x1 ∈ Ct1 and x2 ∈ Ct2 . For any λ ∈ [0, 1]:

λx1 + (1− λ)x2 ∈ λCt1 + (1− λ)Ct2 ⊆ Cλt1+(1−λ)t2

Therefore

λ(x1, t1) + (1− λ)(x2, t2) = (λx1 + (1− λ)x2, λt1 + (1− λ)t2, ) ∈ C

and hence C is convex.

5.2.2 Sections of Polar Bodies

Sections of a polar body are conveniently described in terms of the body’s
Minkowski functional.

Definition 5.2.5. For every t ∈ R, let pt denote the Minkoswki functional of
the polar body (Ct)o.In other words

pt(ξ) :=
{

sup{ξ(x) : x ∈ Ct}, if Ct 6= ∅;
−∞, if Ct = ∅. ∀ξ ∈ (Rn)∗ = Rn

Lemma 5.2.6. .

(i) For a given ξ ∈ (Rn)∗, the mapping t 7→ pt(ξ) is concave and continuous
on I.

(ii) For a given t ∈ I, the mapping ξ 7→ pt(ξ) is convex and continuous on
(Rn)∗.

Proof. .
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The mapping t 7→ pt(ξ):

Let ξ ∈ (Rn)∗, λ ∈ [0, 1] and t1, t2 ∈ I be given. Now

pλt1+(1−λ)t2 = sup{ξ(x) : x ∈ Cλt1+(1−λ)t2}
≥ sup{ξ(x) : x ∈ λCt1 + (1− λ)Ct2} ∵ Section 5.2.1
= λ sup{ξ(x) : x ∈ Ct1}+ (1− λ) sup{ξ(x) : x ∈ Ct2}
= λpt1(ξ) + (1− λ)pt2(ξ)

and hence pt is concave. Since pt is concave and finite on the interval I it
follows from Corollary A.1.4 that pt is continuous on intI. It only remains
to be shown that pt is continuous at the endpoints of I. Let t0 be the right
endpoint of I and let {ti}∞i=1 be a sequence in I converging to t0 ∈ I. Since I
is convex and contains 0, any ti can be expressed as ti = λit0 where λi ∈ [0, 1].
The set Cti is compact for every ti ∈ I and since ξ is a continuous functional,
there exists an xi ∈ Cti such that pti(ξ) = ξ(xi) for i ∈ N. The set C is compact
and hence the sequence {(xi, ti)} has a subsequence {(xik , tik)} converging to
some point (x, t0) ∈ C. Let x0 be the point in Ct0 at which ξ attains its
maximum. Now x ∈ Ct0 and hence ξ(x) ≤ ξ(x0). On the other hand, the
concavity of pt implies that for every k ∈ N, ξ(xλik

t0) ≥ λikξ(x0). Taking
limits as k → ∞, yields ξ(x) ≥ ξ(x0) and hence pt0(ξ) = limt→t0 pt(ξ). The
mapping t 7→ pt(ξ) is therefore continuous at t0. A similar line of reasoning
can be used to prove the continuity of pt at the left endpoint of I.

The mapping ξ 7→ pt(ξ):

Let t ∈ I, ξ1, ξ2 ∈ Ct and λ ∈ [0, 1] be given. By definition, pt(ξ1) ≥ ξ1(x) and
pt(ξ2) ≥ ξ2(x) for all x ∈ Ct. Thus

λpt(ξ1) + (1− λ)pt(ξ2) ≥ λξ1(x) + (1− λ)ξ2(x) for all x ∈ Ct

and hence λpt(ξ1) + (1− λ)pt(ξ2) is an upper bound of the set
{λξ1(x) + (1 − λ)ξ2(x) : x ∈ Ct}. But pt(λξ1 + (1 − λ)ξ2) is the least upper
bound and therefore

pt(λξ1 + (1− λ)ξ2) ≤ λpt(ξ1) + (1− λ)pt(ξ2)

Note that pt(ξ) < ∞ for any linear functional in (Rn)∗, since Ct is compact.
Thus intD(pt(.)) = D(pt(.)) = (Rn)∗. Corollary A.1.3 now implies that pt(.)
must be continuous at all ξ ∈ (Rn)∗.

Lemma 5.2.7. Let H be an n-dimensional subspace of Rn+1 and let C ⊂ H×R
a centrally symmetric convex body. Also denote the Minkowski functional of
(Ct)o by pt. Then:
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1. For any γ ∈ R, the γ-section (Co)γ := {ξ ∈ H : (ξ, γ) ∈ Co} of Co,
satisfies (Co)γ ⊆ (C0)o.

2. For any ξ ∈ (C0)o, the ξ-section (Co)ξ := {λ ∈ R : (ξ, λ) ∈ Co} of Co is
an interval in R of length r(ξ) + r(−ξ) where r(ξ) = inf{1−pt(ξ)

t : t > 0}

Proof. .
The first assertion can be easily proved. Let ξ ∈ (Co)γ for some γ ∈ R. This
implies (ξ, γ) ∈ Co and hence

ξ(x) + γt ≤ 1 for all (x, t) ∈ C

In particular, for any x ∈ C0 it follows that

(x, 0) ∈ C ⇒ ξ(x) ≤ 1 ⇒ ξ ∈ (C0)o

and therefore (Co)γ ⊆ (C0)o for all γ ∈ R.

In order to prove the second assertion, it is necessary to make a construc-
tion.

Construction

If ξ ∈ (C0)o then

ξ(x) ≤ 1,∀x ∈ C0 ⇒ p0(ξ) := sup{ξ(x) : x ∈ C0} ≤ 1

Also, the function t 7→ pt(ξ) is concave and continuous for any fixed ξ ∈ H∗.
According to lemma A.2.3, both the right and the left derivatives exist at
t = 0 ∈ intI and (p0(ξ))+ ≤ (p0(ξ))−. Moreover, it follows from lemma A.2.3
that

pt(ξ)− p0(ξ)
t

≤ (p0(ξ))+ ∀t > 0

and
pt(ξ)− p0(ξ)

t
≥ (p0(ξ))− ∀t < 0

Let α be any element of the interval [(p0(ξ))+, (p0(ξ))−]. Then

pt(ξ)− p0(ξ)
t

≤ (p0(ξ))+ ≤ α⇒ pt(ξ)− αt ≤ p0(ξ) for all t > 0

pt(ξ)− p0(ξ)
t

≥ (p0(ξ))− ≥ α⇒ pt(ξ)− αt ≤ p0(ξ) for all t < 0

Now define q(t) := pt(ξ)− αt. The concavity and continuity of pt(ξ) immedi-
ately imply that q is concave and continuous. Also

q(t) ≤ q(0) ≤ 1 for all t ∈ R.
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It also follows directly from the definition of Co that any real number γ is an
element of (Co)ξ if and only if

∀t,∀x ∈ Ct ξ(x) + γt ≤ 1

This condition is equivalent to:

pt(ξ) + γt ≤ 1 ∀t ∈ R
⇔ αt+ q(t) + γt ≤ 1 ∀t ∈ R
⇔ (α+ γ)t ≤ 1− q(t) ∀t ∈ R (5.2.2)

It can easily be seen that if γ1, γ2 ∈ R are two numbers satisfying condition
(5.2.2), then any convex combination of γ1 and γ2 will also satisfy (5.2.2) and
hence (Co)ξ is an interval in R.
In addition, −α ∈ (Co)ξ, since (α− α)t = 0 ≤ 1− q(t) for all t ∈ R.

The upper bound γ0 of (Co)ξ

Define γ0 := sup(Co)ξ. Consider the mapping t 7→ (γ + α)t where γ ∈ (Co)ξ.
This function represents a line `1 through the origin which, according to in-
equality (5.2.2), is bounded above by the concave function t 7→ 1− q(t). Note
that (γ0 + α) is defined as the supremum of all the slopes (γ + α) such that
(γ + α)t ≤ 1 − q(t) ∀t ∈ R. Since (γ + α) ≥ 0 for all γ ≥ −α, it follows that
the slope of `1 is non-negative and hence (γ + α)t ≤ 0 ≤ 1 − q(t) ∀t ≤ 0. In
order to find (γo + α), it thus suffices to consider only the case when t > 0.
Therefore:

(γ0 + α) = sup{(γ + α) : (γ + α)t ≤ 1− q(t) ∀t > 0, γ ∈ (Co)ξ}

= inf
t>0

1− q(t)
t

⇒ γ0 = inf
t>0

1− q(t)
t

− α = inf
t>0

1− q(t)− αt

t

= inf
t>0

1− pt(ξ)
t

=: r(ξ)

The lower bound γ1 of (Co)ξ

Similarly, for all γ ≤ −α, the function t 7→= (γ+α)t represents a line through
the origin with negative slope. Let γ1 := inf(Co)ξ.
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Since (γ + α)t ≤ 0 ≤ 1− q(t) ∀t ≥ 0, it follows that

γ1 + α = inf{γ + α : (γ + α)t ≤ 1− q(t),∀t < 0}

= inf{γ + α : (γ + α) ≥ 1− q(t)
t

,∀t < 0}

= sup
t<0

1− q(t)
t

⇒ γ1 = sup
t<0

1− q(t)− αt

t
= sup

t<0

1− pt(ξ) + αt− αt

t

= sup
t<0

1− pt(ξ)
t

= − inf
−t>0

1− p−t(−ξ)
−t

=: −r(−ξ)

The length of the interval (Co)ξ is thus given by γ0 − γ1 = r(ξ) + r(−ξ) for
all ξ ∈ (C0)o.
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5.3 Saint Raymond’s proof of the Blaschke-Santaló
Inequality for Convex Symmetric bodies

As was mentioned in the Introduction, this proof is essentially constructive.
It will be shown that for every C ∈ Cs there exists a set C ′ ∈ Cs such that
P (C) < P (C ′) unless C satisfies the hypothesis of Corollary 4.4.4 from which
it follows that C is an ellipsoid. The proof of Lemma 5.3.1 relies heavily on
certain properties of concave functions, which are examined in Appendix A.

Lemma 5.3.1. Let H ⊂ Rn be an n-dimensional hyperplane containing the
origin and let C ⊂ H × R be a convex symmetric body with t-sections Ct.
Define C ′ ⊂ H× R in terms of its t-sections as follows:

C ′t :=
1
2
(Ct − Ct) =

1
2
(Ct + C−t) ∵ by symmetry

Then:

1. C ′ is a convex symmetric body

2. The volume of C ′ is greater than that of C with equality occurring only
if all t-sections Ct of C have a center of symmetry.

3. The volume of C ′o is greater than that of Co with equality occurring only
if for all ξ ∈ H∗ there exists an αξ ∈ R such that

pt(ξ) = tαξ + pt(−ξ) ∀t > 0

Proof. .
1. The proof that C ′ ∈ Cs is based on the results in section 6.2.1:

Convexity

Suppose (x1, t1), (x2, t2) ∈ C ′ and α ∈ [0, 1]. It now follows from Lemma 5.2.4
that

x1 ∈
1
2
Ct1 +

1
2
C−t1 and x2 ∈

1
2
Ct2 +

1
2
C−t2

⇒ αx1 + (1− α)x2 ∈ α(
1
2
Ct1 +

1
2
C−t1) + (1− α)(

1
2
Ct2 +

1
2
C−t2)

=
1
2
(αCt1 + (1− α)Ct2) +

1
2
(αC−t1 + (1− α)C−t2)

⊆ 1
2
Cαt1+(1−α)t2 +

1
2
C−(αt1+(1−α)t2)

⇒ α(x1, t1) + (1− α)(x2, t2) ∈ C ′
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Symmetry

Suppose (x, t) ∈ −C ′ then x ∈ −1
2(Ct − Ct) = 1

2(Ct − Ct) ⇒ (x, t) ∈ C ′ and
hence C ′ is symmetrical.

Compactness

Let {(xi, ti)}∞i=1 be a sequence in C ′. According to the definition of C ′, any xi

can be written as:

xi =
1
2
yi +

1
2
zi where yi ∈ Cti and zi ∈ C−ti

The sequences {(yi, ti)}∞i=1 and {(zi,−ti)}∞i=1 are both contained in C and
must hence have subsequences converging to some points (y, t) and (z,−t)
in C respectively. The corresponding subsequence {tik} of {ti} must, by the
continuity of the projection mapping and the uniqueness of limits converge to
t ∈ I whereas {xik} converges to x = 1

2y + 1
2z where y ∈ Ct and z ∈ C−t.

Therefore (x, t) ∈ C ′ and C ′ is sequentially compact.

2. Let λn+1 denote the (n + 1)-dimensional Lebesgue measure and consider
the volumes of C and C ′. According to Fubini’s Theorem

λn+1(C) =
∫

I
λn(Ct)dt and λn+1(C ′) =

∫
I
λn(C ′t)dt

where I ⊂ R is the interval on which Ct 6= ∅. It can readily be seen that
the function ψ : t 7→ [λn(Ct)]

1
n is concave. Indeed, for any t1, t2 ∈ I and any

α ∈ [0, 1]

ψ(αt1 + (1− α)t2) = [λn(Cαt1+(1−α)t2)]
1
n

≥ [λn(αCt1 + (1− α)Ct2)]
1
n ∵ Lemma 5.2.4

≥ α[λn(Ct1 ]
1
n + (1− α)[λn(Ct2)]

1
n ∵ Brunn-Minkowski theorem

= αψ(t1) + (1− α)ψ(t2)

Since λn and hence ψ is finite for any t ∈ R, Corollary A.1.4 guarantees
that ψ is and hence the mapping t 7→ λn(Ct) is continuous on R. Consider the
comparison of the volume of an arbitrary t-section of C with the corresponding
t-section of C ′, where t ∈ I. Let t be an arbitrary element of I. By the Brunn-
Minkowski Theorem

[λn(C ′t)]
1
n = [λn(

1
2
(Ct − Ct))]

1
n ≥ 1

2
[λn(Ct)]

1
n +

1
2
[λn(−Ct)]

1
n

=
1
2
[λn(Ct)]

1
n +

1
2
|(−1)| [λn(Ct)]

1
n = [λn(Ct)]

1
n (5.3.1)
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This inequality is strict unless

Ct = kC−t + 2xt where k ∈ R, xt ∈ Rn.

In the case when equality does occur we have

λn(Ct) = λn(−kCt) = | − k|λn(Ct) ⇒ k = 1 ∵ C−t = −Ct

and hence
Ct = −Ct + 2xt

in which case xt is the center of symmetry of Ct. By virtue of Lemma 2.2.6a,
the continuity of the mapping t 7→ λn(Ct) together with inequality (5.3.1)
imply that

λn+1(C ′) :=
∫

I
λn(C ′t)dt >

∫
I
λn(Ct)dt =: λn+1(C)

unless Ct has a center of symmetry for all t ∈ I.

3. Consider the volume of the polar body Co:

λn+1(Co) =
∫
H×R

χCodλn+1 =
∫
H

[∫
R
χ{γ∈R:(ξ,γ)∈Co}dγ

]
dλn

According to Lemma 5.2.7(1), (Co)γ ⊆ (C0)o for all γ ∈ R. Therefore, the
set {γ ∈ R : (ξ, γ) ∈ Co} is empty whenever ξ /∈ (C0)o. The above integral
therefore reduces to: ∫

(C0)o

[∫
R
χ{γ∈R:(ξ,γ)∈Co}dλ

]
dλn

Moreover, Lemma 5.2.7(2) implies that for any ξ ∈ (C0)o, the interval
(Co)γ := {γ ∈ R : (ξ, γ) ∈ Co} has length r(ξ) + r(−ξ). A suitable change of
variables thus yields

λn+1(Co) =
∫

(C0)o

r(ξ)dλn +
∫
−(C0)o

r(−ξ)dλn

=
∫

(C0)o

r(ξ)dλn +
∫

(C0)o

r(ξ)dλn = 2
∫

(C0)o

r(ξ)dλn (5.3.2)

where r(ξ) = inft>0
1−pt(ξ)

t .
Since −C0 = C−0 = C0 and C0 is convex, C0 = C ′0. Hence

λn+1(C ′o) =
∫

(C0)o

2r′(ξ)dλn (5.3.3)

69

 
 
 



where r′(ξ) = inft>0
1−p′t(ξ)

t and

p′t(ξ) = sup
C′

t

ξ(x) =
1
2
(sup

Ct

ξ(x) + sup
C−t

ξ(x))

=
1
2
[pt(ξ) + p−t(ξ)]

Since

r(ξ) + r(−ξ) = inf
t>0

1− pt(ξ)
t

+ inf
t>0

1− p−t(ξ)
t

≤ inf
t>0

1− pt(ξ) + 1− p−t(ξ)
t

= 2 inf
t>0

1− p′t(ξ)
t

= 2r′(ξ)

for all ξ ∈ (C0)o, it follows that λn+1(Co) ≤ λn+1(C ′o). Moreover, the conti-
nuity of the mapping ξ 7→ pt(ξ) ensures that equality is only obtained if the
integrands in equations (5.3.2) and (5.3.3) are equal for every ξ ∈ (C0)o. In
other words

inf
t>0

1− pt(ξ)
t

+ inf
t>0

1− p−t(ξ)
t

= 2 inf
t>0

1− pt(ξ)
t

⇒ inf
t>0

1− pt(ξ)
t

= inf
t>0

1− p−t(ξ)
t

for all ξ ∈ (C0)o. (5.3.4)

Equation (5.3.4) now implies that for any ξ ∈ int(C0)o, both functions
t 7→ 1−pt(ξ)

t and t 7→ 1−p−t(ξ)
t attain their minima at the same value of t > 0.

Indeed, let ξ ∈ int(C0)o be fixed. It follows directly from the definition that
p0(ξ) < 1. Moreover, according to Lemma A.2.3, the concavity of the mapping
t 7→ pt(ξ) (Lemma 5.2.6) ensures that p0(ξ)−pt(ξ)

t is decreasing as t → 0+ and
that

lim
t→0+

p0(ξ)− pt(ξ)
t

= −(p0(ξ))+.

Therefore

1− pt(ξ)
t

=
1− p0(ξ)

t
+
p0(ξ)− pt(ξ)

t

⇒ 1− pt(ξ)
t

≥ 1− p0(ξ)
t

+ (p0(ξ))+

⇒ lim
t→0+

1− pt(ξ)
t

= ∞

In order to find inft>0
1−pt(ξ)

t it therefore suffices to consider values of t > 0 in
some positive compact interval J ⊂ I. The function 1−pt(ξ)

t is continuous on
this interval (Lemma 5.2.6) and hence attains its minimum at some t1 > 0. It
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can similarly be be shown that there exists a t2 > 0 such that inft>0
1−p−t(ξ)

t =
1−p−t2 (ξ)

t2
. Equation (5.3.4) now implies that

1− pt1(ξ)
t1

=
1− p−t2(ξ)

t2

⇒ pt1(ξ) = 1− t1
t2

(1− p−t2(ξ))

Moreover, by the definition of pt1 ,

1− pt1(ξ)
t1

≤ 1− pt2(ξ)
t2

⇒
1− (1− t1

t2
(1− p−t2(ξ)))
t1

≤ 1− pt2(ξ)
t2

⇒ p−t2(ξ) ≤ pt2(ξ)

Similarly, it follows from the definition of p−t2 that

1− p−t2(ξ)
t2

≤ 1− p−t1(ξ)
t1

⇒ pt2(ξ) ≤ p−t2(ξ)

and hence

p−t2(ξ) = pt2(ξ) ⇒ 1− pt2(ξ)
t2

=
1− p−t2(ξ)

t2
=

1− pt1(ξ)
t1

⇒ t1 = t2.

For any γ > 0 and any ξ ∈ (C0)o it follows that ξ
γ ∈ int(C0)o and that

1− pt( ξ
γ )

t
=

1
γ
· γ − pt(ξ)

t
.

According to Lemma A.2.4 there must therefore exists an αξ such that

pt(ξ) = αξ · t+ p−t(ξ) ∀t > 0

Theorem 5.3.2. Let n ∈ N and let C ⊂ Rn+1 be a convex symmetric body
such that

P (C) = max{P (B) : B ∈ Cs}.

Then C is an ellipsoid.

Proof. Let H be an arbitrary hyperplane passing through the origin. A suit-
able application of a volume preserving map ensures that H×R is isomorphic
to Rn+1. In order to prove that C is an ellipsoid, it suffices to show that
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there exists a line `, not contained in H, that satisfies the conditions in Corol-
lary 4.4.4. According to Lemma 5.3.1 there exists a convex symmetric body
C ′ ⊂ Rn+1 such that

λn+1(C) ≤ λn+1(C ′) and λn+1(Co) ≤ λn+1(C ′o) ⇒ P (C) ≤ P (C ′).

However, since P (C) = max{P (B) : B ∈ Cs}, it follows that

λn+1(C) = λn+1(C ′) and λn+1(Co) = λn+1(C ′o)

which, by Lemma 5.3.1, in turn implies that for every t ∈ I there exists a
center xt ∈ Ct such that Ct = C−t + 2xt. Therefore, for any ξ ∈ (C0)o

sup
Ct

ξ(x) = sup
C−t

ξ(x) + 2ξ(xt)

⇒ pt(ξ) = p−t(ξ) + 2ξ(xt)

Lemma 5.3.1 also implies that pt(ξ) = αξ · t + p−t(ξ) for every t ∈ I and for
some αξ ∈ R, and hence

αξ · t+ p−t(ξ) = p−t(ξ) + 2ξ(xt)

⇒ ξ(xt) =
1
2
αξ · t

It can readily be seen from the above expression that the mapping t 7→ xt is
linear. Indeed, let t1, t2 ∈ I and suppose β1, β2 ∈ R are such that β1t1 +β2t2 ∈
I. Then

ξ(xβ1t1+β2t2) = β1αξt1 + β2αξt2 = β1ξ(xt1) + β2ξ(xt2)
= ξ(β1xt1 + β2xt2)

For every ξ ∈ (C0)o and hence for every ξ ∈ (Rn)∗. The algebraic reflexivity
of Rn now implies that xβ1t1+β2t2 = β1xt1 + β2xt2 . The set {(xt, t) : t ∈ I} is
therefore contained in the straight line ` = {τ(xt0 , t0) : τ ∈ Rn}, where t0 6= 0
is some fixed element of I. Since H was arbitrary, the conditions for Corollary
4.4.4 are met and C must therefore be an ellipsoid.
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Appendix A

Convex- and Concave
Functions

A.1 Continuity of Convex-/Concave Functions

Definition A.1.1. Consider the function f : X → (−∞,∞] defined on the
Minkowski space X. The set D(f) := {x ∈ X : f(x) < ∞} is called the
effective domain of f and f is said to be a proper convex function if D(f) 6= ∅
and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ [0, 1].

A function f : X → [−∞,∞) is said to be a proper concave function if −f is
a proper convex function

Theorem A.1.2 and Corollaries A.1.3 and A.1.4 aim to show that all proper
convex- and concave functions are continuous on the interior of their effective
domains.

Theorem A.1.2. If a proper convex function f is bounded above on some
neighborhood V of a point x0 ∈ intD(f), then f is continuous on intD(f).

Proof. Continuity at x0

Let V be a neighborhood of x0 and M ≥ 0 such that |f(x)| ≤M for all x ∈ V .
Assume without loss of generality that x0 = 0 and f(x0) = 0. Indeed, let the
function F be defined by F (x) := f(x + x0) − f(x0) ∀x ∈ X. F is convex
since f is convex and F (0) = f(x0)− f(x0) = 0. Now f is continuous at x0 if
and only if F is continuous at 0. In addition, note that 0 ∈ V if and only if 0
is an element of the symmetric open set V ∩ (−V ) and hence we may assume
without loss of generality that V is symmetric. For every ε ∈ (0, 1) and every
x ∈ εV , x

ε ∈ V and hence we have

f(x) = f
(
ε
x

ε
+ (1− ε)0

)
≤ εf(

x

ε
) ≤ εM
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Conversely, the symmetry of V implies that −x
ε ∈ V and therefore

0 = f(0) = f

(
1

1 + ε
x+ (1− 1

1 + ε
)(−x

ε
)
)

≤ 1
1 + ε

f(x) +
ε

1 + ε
f
(
−x
ε

)
⇒ − f(x) ≤ εf

(
−x
ε

)
≤ εM

Combining these two inequalities, we obtain |f(x)| ≤ εM for all x ∈ εV . For
every δ ∈ (0, 1), there exists an ε = δ

M such that |f(x) − f(0)| ≤ δ for all
x ∈ εV .

Continuity at an arbitrary point y ∈ intD(f)

In order to prove that f is continuous at an arbitrary y ∈ intD(f), it suffices,
by virtue of the above arguments, to prove that there exists a neighborhood
Vy of y on which f is bounded. Since y ∈ intD(f), there exists a ρ > 1 such
that ρy ∈ D(f). Let V be the symmetric neighborhood of 0 which was used
above and define Vy := y + (1− 1

ρ)V . Any x ∈ Vycan be written as

x =
1
ρ
(ρy) + (1− 1

ρ
)z where z ∈ V ⊂ D(f) and ρy ∈ D(f)

and since D(f) is convex, Vy ⊂ D(f). Moreover, the convexity of f implies
that for any x ∈ Vy:

f(x) = f

(
1
ρ
(ρy) + (1− 1

ρ
)z
)
≤ 1
ρ
f(ρy) + (1− 1

ρ
)f(z) ≤ 1

ρ
f(ρy) + (1− 1

ρ
)εM

and hence f is bounded above on Vy.

Corollary A.1.3. A proper convex function defined on Rn is continuous on
intD(f).

Proof. According to theorem A.1.2, it suffices to show that that f is bounded
on some neighborhood V of 0. Choose an α > 0 small enough so that the
open set

V := {(x1, ..., xn) ∈ Rn : 0 < xi <
α

n
for i = 1, ..., n}

is contained in D(f) and denote the standard basis of Rn by {e1, ..., en}. Any
x = (x1, ..., xn) ∈ V can be written in the form

x =
n∑

i=1

xiei =
n∑

i=1

xi

α
(αei) +

(
1−

n∑
i=1

xi

α

)
0
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with 0 < xi
α < 1

n < 1 for i = 1, ..., n, and
0 <

∑n
i=1

xi
α <

∑n
i=1

1
n = 1 ⇒ (1 −

∑n
i=1

xi
α ) ∈ (0, 1). Since f is convex, it

follows that

f(x) ≤
n∑

i=1

xi

α
f(αei) +

(
1−

n∑
i=1

xi

α

)
f(0)

<
1
n

n∑
i=1

|f(αei)|+ |f(0)|

This result can readily be extended to include proper concave functions.

Corollary A.1.4. Any concave function f : Rn → [−∞,∞) is continuous on
the set −intD(−f) = {x ∈ Rn : f(x) > −∞}.

Proof. By definition of f , −f is a convex function which, according to corol-
lary A.1.3, is continuous on intD(−f). It therefore follows directly that f is
continuous on −intD(−f).

A.2 Derivatives of Concave Functions

Definition A.2.1. The right (left) derivative of a function f : R → R at a
point x ∈ R is defined as:

f ′+(x) = lim
t→0+

f(x+ t)− f(x)
t

f ′−(x) = lim
t→0−

f(x+ t)− f(x)
t

respectively, provided these limits exist.

Lemma A.2.2. Let f : R → [−∞,∞) be a concave function and let t1, t2, t3
be real numbers such that t1 < t2 < t3. Then

f(t2)− f(t1)
t2 − t1

≥ f(t3)− f(t1)
t3 − t1

≥ f(t3)− f(t2)
t3 − t2

(A.2.1)

Proof. Since t2 can be expressed as a convex combination of t1 and t2:

t2 =
t3 − t2
t3 − t1

t1 +
t2 − t1
t3 − t1

t3

It now follows from the concavity of f that

f(t2) ≥
t3 − t2
t3 − t1

f(t1) +
t2 − t1
t3 − t1

f(t3)
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Thus

f(t2) ≥
t3 − t2
t3 − t1

f(t1) +
t2 − t1
t3 − t1

f(t1)−
t2 − t1
t3 − t1

f(t1) +
t2 − t1
t3 − t1

f(t3)

= f(t1) +
t2 − t1
t3 − t1

(f(t3)− f(t1))

Hence
f(t2)− f(t1)

t2 − t1
≥ f(t3)− f(t1)

t3 − t1

The second inequality follows similarly.

Lemma A.2.3. For every concave function f : R → [−∞,∞) both the right-
and left sided derivatives exist at any point x ∈ int{x : f(x) > −∞} and

f ′+(x) ≤ f ′−(x)

Moreover for all t1, t2 ∈ int{x : f(x) > −∞} with t1 < t2 we have:

f ′−(t2) ≤
f(t2)− f(t1)

t2 − t1
≤ f ′+(t1)

Proof. Consider 0 < s1 < s2. Then for any t ∈ intD(f) we have

t− s2 < t− s1 < t < t+ s1 < t+ s2

Hence by inequality (A.2.1):

f(t)− f(t− s2)
s2

≥ f(t)− f(t− s1)
s1

≥ f(t+ s1)− f(t)
s1

≥ f(t+ s2)− f(t)
s2

Since this is true for any 0 < s1 < s2 it follows that the function
s 7→ f(t+s)−f(t)

s is non-decreasing as s → 0+ and bounded above (by the
number f(t)−f(t−s1)

s1
for example). Hence the limit:

f+(t) := lim
s→0+

f(t+ s)− f(t)
s

exists.
Similarly, the function s 7→ f(t)−f(t−s)

s is non-increasing as s → 0+ and
bounded below by the number f(t+s1)−f(t)

s1
. The limit

f ′−(t) := lim
s→0−

f(t+ s)− f(t)
s

= lim
s→0+

f(t)− f(t− s)
s

thus also exists. Moreover we have

f ′−(t) ≥ f ′+(t) ∀t ∈ intD(f)
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Furthermore, for any s > 0, t1 < t2:

f ′+(t1) ≥
f(t1 + s)− f(t1)

s

and
f ′−(t2) ≤

f(t2)− f(t2 − s)
s

Particularly, letting s = t2 − t2 we obtain:

f ′+(t1) ≥
f(t2)− f(t1)

t2 − t1
≥ f ′−(t2)

Lemma A.2.4. Let f, h : (0,∞) → [−∞,∞) be two concave functions. If for
all λ ∈ R the functions F (t) = λ−f(t)

t and H(t) = λ−h(t)
t attain their minimum

at the same point, then there exists an α ∈ R such that

f(t) = h(t) + αt ∀t > 0

Proof. . We will show that

f(t)− tf ′+(t) = h(t)− th′+(t) for all t > 0. (A.2.2)

By making use of the quotient rule for one-sided derivatives, this equation can
be reformulated as (

(f − h)(t)
t

)′
+

= 0 for all t > 0

⇒ f(t)− h(t)
t

= α for some α ∈ R,∀t > 0

from which the result follows.
Suppose (by way of contradiction) that there is a t0 > 0 such that

f(t0)− t0f
′
+(t0) < h(t0)− t0h

′
+(t0)

then, by completeness of reals, we can choose a λ such that:

f(t0)− t0f
′
+(t0) < λ < h(t0)− t0h

′
+(t0) (A.2.3)

Now let s be a point where both F and H attain their maximum. Hence
H(t) ≥ H(s) and F (t) ≥ F (s) for all t > 0. From this it follows that

F (t)− F (s)
t− s

≥ 0 ∀t > s

⇒ F ′+(s) := lim
t→s+

F (t)− F (s)
t− s

≥ 0
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Similarly

H(t)−H(s)
t− s

≤ 0 ∀t ∈ (0, s)

⇒ H ′
−(s) := lim

t→s−

H(t)−H(s)
t− s

≤ 0

Making use of the quotient rule for one-sided derivatives we have

F ′+(s) =
−f ′+(s) + f(s)− λ

s2
≥ 0

H ′
−(s) =

−h′−(s) + h(s)− λ

s2
≤ 0

From this it follows that:

f(s)− sf ′+(s) ≥ λ ≥ h(s)− sh−(s) (A.2.4)

Now inequality (A.2.3) together with (A.2.4) imply

f(t0)− t0f
′
+(t0) < λ ≤ f(s)− sf ′+(s) (A.2.5)

from which it follows that t0 < s. This assertion is proved in remark A.2.5,
appended to this lemma.
Another consequence of inequalities (A.2.3) and (A.2.4) is:

h(s)− sh′−(s) ≤ λ < h(t0)− t0h
′
+(t0) (A.2.6)

According to remark A.2.6, inequality (A.2.6) implies

h(t)− th′+(t) ≤ λ for all t ∈ (0, s) (A.2.7)

But inequality (A.2.6) together with the fact that t0 < s contradicts (A.2.7).
This proves that f(t)− tf ′+(t) ≥ h(t)− th′+(t) for all t > 0. By interchanging
the roles of f and h we obtain equation (A.2.2) and hence the result is proved.

Remark A.2.5. Suppose 0 < s < t0. From (A.2.5) we know:

0 < f(s)− f(t0) + t0f
′
+(t0)− sf ′+(s)

⇒ 0 < f(s)− f(t0) + t0f
′
+(t0)− sf+(t0) + sf ′+(t0)− sf ′+(s)

⇒ f(t0)− f(s)
t0 − s

< f ′+(t0) +
s

t0 − s
(f ′+(t0)− f ′+(s))
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But f is concave and hence lemma A.2.3 asserts that f(t0)−f(s)
t0−s ≥ f ′+(t0).

Therefore

s

t0 − s
(f ′+(t0)− f ′+(s)) > 0

⇒ f ′+(s) < f ′+(t0)

But according to lemma A.2.3 f ′+(s) ≥ f ′+(t0), since s < t0. This is clearly a
contradiction.

Remark A.2.6. Suppose h(t)− th′+(t) > λ for some t ∈ (0, s). Then

h(s)− sh′−(s) < h(t)− th′+(t)
⇒h(s)− h(t) < sh′−(s)− th′+(t) + th−(s)− th−(s)

⇒h(s)− h(t)
s− t

< h′−(s) +
t

s− t
(h′−(s)− h′+(t))

Again, the concavity of h implies that h(s)−h(t)
s−t ≥ h′−(s), from which it follows

that h′+(t) < h′−(s), which is impossible according to lemma A.2.3.
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