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Abstract 

In resource recovery from end-of-life printed circuit board (PCB), the physical processing route 

is considered most environmentally friendly. The −75 µm fraction generated during the 

comminution assays well above many precious and base metal deposits, but contributes overall 

drop in value recovery. This investigation was aimed at exploiting the versatility of froth 

flotation for beneficiation of the PCB comminution fines.  

Chemical composition characterisation work shows wet assay of constituents in the sample vary 

with digestion condition. Absolute assays as for hazardous constituents thus require comparison 

of data from more than one digestion condition. Comparative assaying of samples from 

beneficiation treatments can use aqua regia digestion which gives a less hazardous procedure 

compared to hydrogen fluoride combined with microwave and nitric acid treatments. It also 

gives leach liquor from which all constituent elements can be analysed, compared to that from 

total digestion via sodium peroxide fusion. For this sample total digestion will therefore not 

always give better results compared to partial digestion. Findings also show that 

thermogravimetric analysis may not be recommended in PCB characterisation. It gave no distinct 

inflexion point to characterize any constituent. This is due to the very diverse material 

constituents of the sample. 
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Further on characterisation, the sample gave a loose bulk density lighter than water, and true 

sample density of 3 g/cm
3
. This coupled with surface hydrophobicity observed necessitates that 

pulping the sample must be done under water. Light optical and scanning electron microscopy 

showed particle liberation was very high, but not total. Morphology of the metallic particles was 

very diverse, with average circularity shape factor of 0.63. This coupled with the material 

diversity is a major constraint in sub-sieve size analysis of the sample. As shown by scanning 

electron microscopy energy dispersive X-ray spectroscopy, the liberated particles themselves 

contain more than one chemical element, being alloys. Beneficiation operation therefore cannot 

attempt to separate such particles into constituent elements but some bulk collection of metallic 

values into a concentrate. 

Reverse flotation of metallic values based on a scheme described as natural hydrophobic 

response (NHR) was found successful. Favorable kinetics under the scheme gave about 500 rpm 

and 500 ml/min aeration rate, at 300 g sample in a 3.5 l Leeds cell. Without the use of a 

collector, natural hydrophobic response was observed. The system also gave a stable froth 

without the aid of a frother. Investigations (surface tension and dynamic froth stability height 

measurements, combined with general literature) show the NHR froth is a fine particle stabilised 

froth, and not surfactant stabilised. Au and Pd, were among the elements best enriched into the 

sink; 64 % recovery for Au at enrichment ratio of three. Flotation over narrower and coarser 

fraction (+106 – 75 µm) shows the NHR scheme can be successfully applied at this size. 

Chemical conditioning schemes investigated shows very minimal responses to reagents. 

Potassium amyl xanthate (PAX) did not condition the metallic particles for flotation remarkably 

as it does with native metals. Sulfidation with sodium hydrogen sulfide shows a little 

improvement in response to PAX. Sodium mercaptobenzothiazole – a very selective collector for 

tarnished copper and lead minerals – did not show such selectivity in the PCB comminution fines 

pulp. Some cationic pull with tetrabutyl ammonium chloride towards selective pull of non-

metallic values after NHR pull has subsided was observed, although very little also. 

Macromolecular depression with carboxyl methyl cellulose did not subdue the natural 

hydrophobic response up to profuse percentage dosages. Depression by lowering surface tension, 

described as gamma depression, using Betamin 127A (active constituent: ethoxy nonyl phenol) 
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was effective to wet hydrophobic particles, but still not helpful for selective pull after chemical 

conditioning. At the lowered surface tension, frothing sets in coupled with entrainment. 

Probable causatives for the poor response to reagents are surface oxidation of the metallic 

particles and depression by calcium ions in pulp. Surface studies with field emission scanning 

electron microscope and auger electron spectroscopy composition depth profiling, show presence 

of organic layers on the surface of the metallic particles. The surfaces were also found to be 

oxidised down to about 340 nm depth profiled. None of the surfaces is a pure alloy, but 

occurring in forms that will be relatively inert to reagents. Beside these, from aqua regia wet 

assaying, the sample contains about 7 % calcium by mass, and ICP-MS trace element analysis of 

the process water confirms calcium presence up to 7 ppm equilibrium concentration in the pulp. 

Judging from the responses, the natural hydrophobic response scheme can be well recommended 

for PCB comminution fines flotation. Optimisation of the performance of the scheme responds 

remarkably well to kinetic parameters variation. With the generally low impeller energy and 

aeration rate found favourable for PCB CF flotation, and the zero reagent cost (no collector, no 

frother) of the NHR scheme, PCB comminution fines flotation shows good prospects. 
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