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Summary

Using a Kalman filter that contains a forward-predictive model of a relevant system, to pre-

dict the states of that system by means of an analysis-by-synthesis implementation in order

to evade significant time delays incurred by feedback mechanisms was previously applied to

the coordinated movement of limbs by means of the cerebellum. In this dissertation, the

same concept was applied to the auditory system in order to investigate if such a concept is

a universal neurophysiological method for correctly estimating a state in a quick and reliable

way. To test this assumption an auditory system model and Kalman estimator were designed,

where the Kalman filter contained a stochastically equivalent forward-predictive model of the

complete auditory system model. The Kalman filter was used to estimate the power found in

a particular band of the frequency spectrum and its performance in the mean-squared error

sense was compared to that of a simple postsynaptic current decoding filter under various

types of neural channel noise.

It was shown that the Kalman filter, containing a biologically plausible internal model could

estimate the power better than a postsynaptic current decoding filter, proposed in the lit-

erature. When the just-noticeable difference in intensity discrimination, as reported in the

literature, was compared to model-predictions, it was shown that a smaller mean-squared

error results in the case of the designed auditory system model and Kalman estimator.

This suggests that the application of the Kalman filter concept is important as it provides

a bridge between measured data and the auditory system model. It was concluded that a

Kalman filter model containing a biologically plausible internal model can explain some char-

acteristics of the signal processing of the auditory system. The research suggests that the

principle of an estimator that contains an internal model could be a universal neurophysio-

logical method for the correct estimation of a desired state.

Keywords- Auditory system, estimation, Kalman filtering, modelling, analysis-

by-synthesis, internal model, intensity discrimination, postsynaptic current, neu-

ral code, neural channel model.
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Graad: M.Eng. (elektroniese)

Opsomming

’n Kalmanfilter met ’n vorentoe-voorspellermodel van ’n gegewe stelsel om die toestande van

die stelsel te voorspel deur ’n analise-deur-sintese tegniek, is voorheen gebruik in die konteks

van koördinering van beweging van ledemate deur die cerebellum. In hierdie verhandeling is

dieselfde beginsels toegepas op die gehoorstelsel om te ondersoek of dit ’n universele neurofi-

siologiese metode is vir vinnige en betroubare skatting van toestande. Om dit te toets is ’n

model van die ouditiewe stelsel en ’n Kalmanskatter ontwikkel, met ’n Kalmanfilter wat ’n

stogastiese-ekwivalente vorentoe-voorspellermodel van die gehoorstelsel bevat. Die Kalman-

filter is gebruik om die drywing in ’n gegewe band van die frekwensiespektrum te skat, en

die werkverrigting in ’n gemiddelde-kwadraat fout sin is vergelyk met dié van ’n eenvoudige

postsinaptiese stroom dekoderingsfilter met verskillende tipes ruis in die neurale kanaal.

Dit is aangetoon dat die Kalmanfilter met ’n biologies-realistiese interne model beter doen

as die postsinaptiese stroom dekoderingsfilter wat in die literatuur voorgestel word. Die net-

waarneembare verskil in intensiteitsdiskriminasie soos beskryf in die literatuur word vergelyk

met modelvoorspellings en daar word aangetoon dat die gemiddelde-kwadraat fout kleiner is

vir die ontwerpte gehoorstelselmodel en Kalmanskatter.

Dit dui aan dat toepassing van die Kalmanfilterkonsep belangrik is, deurdat dit ’n brug

bou tussen gemete data en ’n gehoorstelselmodel. Die gevolgtrekking is dat die Kalmanfilter

met ’n biologiese-realistiese interne model sommige van die eienskappe van die prosessering

van seine deur die gehoorstelsel kan verklaar. Die navorsing dui daarop dat die beginsel van

’n skatter wat ’n interne model van die eksterne werklikheid bevat, ’n universele neurofisiolo-

giese metode mag wees vir die korrekte skatting van ’n verlangde toestand of sein deur die

brein.

Sleutelwoorde- Gehoorstelsel, estimasie, Kalmanfilter, modellering, analise-deur-

sintese, interne model, intensiteitdiskriminasie, postsinaptiese stroom, neurale

kode, neurale kanaal model.
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CHAPTER 1

INTRODUCTION

Neurons communicate by producing sequences of fixed-size electrical impulses called action

potentials (AP) or spikes. Perceptions, decisions and ideas can all be encoded into trains of

action potentials, but the basis of this coding scheme is still not well understood. Decipher-

ing this code is one of the primary goals in experimental neuroscience, which is especially

interesting to engineers since parallels exist to well-established communications and signal

processing theories.

Neurobiological coding schemes are present in the visual and auditory systems, amongst

others. To facilitate augmentation of damaged or defective parts thereof, an in-depth under-

standing into the functioning of these parts is required. This has sparked an interest to model

such systems in terms of their physiology and has found widespread applications in cochlear

and visual implants.
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Chapter 1 Introduction

1.1 PROBLEM STATEMENT

A thorough understanding of how the different parts of the central nervous system (CNS)

exploit neural spike patterns reliably and swiftly given relatively unreliable components such

as neurons, still poses an interesting problem. Particularly in the auditory system, APs are

utilised to transmit information to the central auditory nervous system (CANS) and are used

in some form or another to produce sound perception.

Previously a concept called the analysis-by-synthesis method was successfully applied to

a motor control problem where the cerebellum coordinates the movement of limbs (Miall,

Weir, Wolpert and Stein, 1993; Wolpert, Ghahramani and Jordan, 1995). It was argued that

a forward-predictive model is present in the cerebellum that predicts the position of the arm

given a particular motor command and a noisy measurement fed back by the visual system

or proprioception.

The problem addressed was to investigate how neural coding is implemented in the central

nervous system by taking an analysis-by-synthesis design approach rather than the traditional

analysis approach. This was done by designing a coding/decoding system taking limitations

of the auditory system into account. The biological implications of such a design were then

investigated. The objective was to use this approach to improve understanding of neural

coding.

Electrical, Electronic and Computer Engineering 3
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Chapter 1 Introduction

1.2 NEUROBIOLOGY: AN ENGINEERING PERSPECTIVE

The human body or any biological organism for that matter contains a vast number of

interacting systems making life as it is possible. It is not surprising that these intricate sys-

tems have caught the imagination of many scientists and engineers who found a need to

explore them. An interest in the auditory system, being one of the most complex biological

interfaces between a human being or animal and its surroundings, has been the catalyst in

creating a community of people dedicated to gain an understanding into its highly complex

nature. The insights gained have led to considerable advances made in the field of cochlear

implants (Meyer-Bäse and Scheich, 1997; Loizou, 1999) and visual implants (Meyer, 2002; Hu-

mayun, Weiland, Fujii, Greenberg, Williamson, Little, Mech, Cimmarusti, Boemel, Dagnelie

and de Juan Jr., 2003).

Any sensory system can be broken down into various stages of signal processing blocks, much

like a communications system, the aim being to communicate a particular message from one

point to another, reliably and effectively under the influences of the surrounding environment.

An engineer can thus deduce that similar principles that apply to a communication system

will also be applicable to such a biological system. One way of understanding the intricate

details of the auditory system would be to analyse such a system with the help of properly

designed and conducted experiments. The experimental results could then be employed to

design a model of the processes, consisting of a series of black boxes each performing the

function of the various steps found within the auditory system. This would result in a model

producing outputs analogous to those of the auditory system.

To design such a model certain characteristics of the auditory system can guide one, some-

thing that is often neglected. Specifically, the auditory system is a dynamic system as the

behaviour of the outer haircells suggest (Yost, 2000). Depending on the type of stimuli re-

ceived by the stereocilia of the outer haircells through the cochlea, the stereocilia can stiffen

or relax resulting in variable frequency selectivity, due to mechanical coupling between the

basilar and tectorial membrane (see Chapter 2). There however seems to be some form of

feedback mechanism both locally and via the CANS (Warren, 1999) that connects the inner

haircells and the outer haircells. Cochlear emissions (ringing) (Yost, 2000) observed 5-10 ms

after delivering a click to the cochlea, where ringing is induced by outer haircell motility, is

a good example of a local form of feedback. Such short reaction times however do not seem

biologically plausible when transmission delays between the inner haircells, the central audi-
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tory nervous system (CANS) and the outer haircells are taken into account. It thus seems

plausible that some form of system or mechanism exists within the auditory system that can

circumvent the delays incurred by feedback loops by predicting the measured information fed

back.

A similar argument was brought forward by Liberman and Mattingly (1985) and Miall et al.

(1993). In the coordinated movement of limbs by means of the cerebellum, it was argued that

any feedback system involving the eye as a sensor would result in significant delays. In fact

just the feedback loop from retina to motor cortex would introduce a delay of 200-250 ms.

Feedback loops however cannot explain the fast reaction times found in human movement

controlled via the cerebellum, where an entire movement takes place in 200-300 ms. This

suggests that some form of an internal model that can predict the outcome given a particular

neuronal command, could be present.

By using a forward-predictive model as shown in Figure 1.1 (Miall et al., 1993) an appropriate

action can be estimated and used before sensory feedback is available.
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Figure 1.1: Control strategy using a forward-predictive model in negative feedback loop

(Adapted from Miall et al. (1993)).

A forward-predictive model, predicting the outcome to a particular control stimulus could

provide an estimate to what the outcome would be before the feedback network of sensors

would report the result. This would result in the initiation of corrective measures in a very

short time. The CNS however cannot know the real outcome of the action until actual feed-

back is received and ignoring it altogether would result in instability and then total collapse

of the control system if only a slight error in the feedback predictive model were present.

These errors thus need to be incorporated in some way into the model.
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Wolpert et al. (1995) did just that, by applying a Kalman filter to the problem. By tak-

ing feedback measurements into account, the estimator corrects any errors incurred by the

forward-predictive model.

In Figure 1.2 the Kalman filter model for the motor system process is given.
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Figure 1.2: Kalman filter model for motor system process. The internal model is comprised

of the forward model of the arm’s dynamics and the model of the sensory output (Adapted

from Wolpert et al. (1995)).

Motor commands given by the cerebellum are, together with the current state of the arm,

processed by an internal model of the arm’s dynamics. The predicted next state is also used to

drive a sensory model of which the predicted sensory feedback is then compared to the actual

sensory feedback. In this particular case, a Kalman filter based on the observer framework is

used to adjust the predicted next state in order to find the next state estimate. The Kalman

filter has access to both the motor command generated by the cerebellum (controller action

in Figure 1.1) and sensed state of the arm via the visual feedback system. The bias and

variance of experiments conducted and simulations performed by Wolpert et al. (1995) were

compared and shown to be closely related, suggesting that an analysis-by-synthesis method

using a Kalman filter can be used to describe the motor control process. The only problem

that exists with using the Kalman filter configuration depicted in Figure 1.2 is the fact that

the system is now subjected to delays incurred by the sensory feedback loop via the visual

system as was the case in Figure 1.1.
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Nevertheless, similarly to the proposition made by Wolpert et al. (1995) it could be suggested

that the auditory system contains an internal model of the auditory system in the form of

a forward-predictive model and an estimator. It was shown (Tobey, 1993) that hearing is

fundamental to a persons ability to speak. For children that learn to speak, hearing provides

a feedback that is used to improve their speech-production skills. After one has learned how to

speak, the internal model as such has been “calibrated” for a particular language. In fact by

slightly adapting Figure 1.2 a similar estimator model can be created for controlling speech

generation by means of feedback via the auditory system.
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Figure 1.3: Kalman filter model for speech process.

In Figure 1.3 the forward-predictive model for the arm is replaced by a model that converts

a motor command created by the CNS to voiced and unvoiced speech sounds (see Chapter

4). The sensory mechanism in this case is not the visual system but the auditory system.

Supporting the proposition is the following observation made by Blamey, Arndt, Bergeron,

Bredberg, Brimacombe and et al. (1996) and documented by Loizou (1999). The factors

affecting the performance of cochlear implant patients are amongst others:

1. The duration of deafness,

2. age at onset of deafness and

3. duration of cochlear implant use.
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Taking into account these factors, Blamey et al. (1996) developed a three-stage model of

auditory performance for postlingually deafened adults as shown in Figure 1.4.
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Figure 1.4: A three-stage model of auditory performance for postlingually deafened adults

(Louizou 1999). The thick lines show measurable auditory performance, and the thin line

shows potential auditory performance.

Stage 1 begins after normal language development where the auditory performance is close to

100 %. The auditory performance is defined here as the ability to discriminate, detect, identify

or recognise speech. Stage 2 begins at the onset of deafness and decreases are dependent on

the etiology of the hearing loss as well as continued deprivation of sound. Stage 3 begins with

implantation and the patient immediately attains improvement in auditory performance, de-

pending on the duration of deafness. As the patient’s experience with the implant increases,

the level of auditory performance rises. Seeing that haircells that are severely damaged in

mammals cannot recover or be replaced (Yost, 2000) the only true gains achieved in terms

of auditory performance must be attributed to some form of learning. Learning thus would

justify the use of some form of an internal model that learns to mimic the behaviour of the

auditory system and by doing so, takes on an assisting role.

It has been shown as early as 1980 by Subtelny (1980) that it was possible to teach deaf

subjects how to speak in a intelligible way but that deviations in the speech production was
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present, most notably in the speech rhythms. Cooper (1991) also documented how a com-

bination of speech therapy combined with the implantation of a cochlear implant increased

the overall speech production performance as far as melody, rhythm and intonation was con-

cerned. Seifert, Oswald, Burns, Vischer, Kompis and Haeusler (2002) did a study with cochlear

implant subjects and compared the formant frequency positions between prelingually deaf-

ened children and children with normal speech development. No significant difference in the

fundamental frequency was observed but broader scattering of the higher formant frequencies

f1 to f3 was observed in subjects with implantations done after the age of four years. This

would indicate that learning correct speech production as far as the formant frequencies are

concerned becomes increasingly difficult after the age of four. This is a good indication that

some form of trainable internal model for speech production is present that can be taught by

means of a feedback mechanism via the auditory system and good speech therapy.

Most interestingly however was a rare study done by Ito, Suzuki, Toma, Shiroma and Kaga

(2002) in which a 6-year-old boy lost his normally-developed language ability within 2 months

after bilateral sudden peripheral deafness. The patients expressive language age, a measure

of normal development of language abilities in regards to age, regressed to a 9-11 months

expressive language age. Within 10 months after the introduction of a cochlear implant the

patient had reacquired most of his language abilities and at the age of 6 years and 9 months

had a expressive language age of 5 years. It was estimated that the patient would within two

years catch up with his peers as far as his language abilities were concerned.

It is evident from this study that an “internal model” as such has both the ability to de-

teriorate in performance once the feedback mechanism is interrupted as was evident in the

6-year-old boys regression period. It is also evident from the study that the model can be “re-

calibrated” once the feedback mechanism is restored. It is thus highly plausible that some form

of internal model is present in the CANS, CNS or both which relies on a feedback mechanism.

It is thus interestingly enough to note that a Kalman filter is nothing more than a system

that estimates states by using an internal model and measurements from the noisy process.

When no measurements are fed back to it, the Kalman filter is forced to rely solely on its

internal model. If noise is present, the state estimates start drifting from the true states re-

sulting eventually in the divergence of the filter. After new measurements are introduced, the

Kalman filter can in some cases eventually start tracking the true states again. It can thus

be argued that a Kalman filter could assist the auditory system in signal estimation required
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for reliable sound perception.

1.3 PRIMARY RESEARCH QUESTION AND HYPOTHESES

As shown, analysis-by-synthesis may provide useful insight in how the CNS successfully copes

with possible errors induced and the delays incurred. In addition it provides a mean to de-

sign and test models. Having followed the logical steps as was done up to now the following

question could be asked: Does the presence of internal models as was discussed suggest that it

is a universal neurophysiologic method for correctly estimating a state in a quick and reliable

way? If so what are the biological implications thereof? This is the primary research question.

To address this question an analysis-by-synthesis design approach, not to be confused with

the analysis-by-synthesis implementation used by the Kalman filter, was taken to design a

coding/decoding system that takes certain biological constraints into consideration. By im-

plication the hypotheses thus are as follows:

1. There exists an internal model in the auditory system, that by means of an analysis-

by-synthesis implementation, can explain the functioning of the system and

2. it is possible to take an analysis-by-synthesis design approach as compared to the more

traditional analysis approach and by doing so to gain a better understanding of the

auditory system and neural coding.

1.4 APPROACH

As was mentioned, the approach was to find an internal model by means of a design method-

ology that takes certain biological constraints into consideration. The primary objective was

to investigate the biological implications that such an approach has, in particularly what sig-

nal processing steps are required and if the biology can support the implementation thereof.

While the former objective was investigated extensively, the latter was not directly addressed

in this dissertation. More detail on this approach is to follow.

The auditory system when receiving an acoustic signal in some form or another, which may

be temporally or spectrally represented, needs to process the information in such a way that
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the CANS can interpret this information correctly. The information that reaches the CANS

is however not always reliable and according to the hypotheses depends on an internal model

and an estimator to make the best estimate of what information was transmitted. The system

that assists the auditory system in processing the information in the CANS could be similar

to Figure 1.2 and Figure 1.3 and is depicted in Figure 1.5.
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Figure 1.5: Kalman filter model for auditory system.

However, unlike the Kalman filter model used by Wolpert et al. (1995) and depicted in Figure

1.2 the Kalman filter has only access to a stochastic model of the acoustic signal, found in the

forward-predictive model of auditory system of Figure 1.5, rather than the true acoustic sig-

nal. The motivation for this is discussed in Chapter 4. Thus unlike the observer configuration

used by Wolpert et al. (1995), the model in Figure 1.5 only has access to the measurements

taken after the actual spike coding/decoding takes place. These measurements are fed back

to the Kalman filter as is indicated by the actual coder/decoder measurement label shown in

Figure 1.5.

The signal from the acoustic source is processed by a forward-predictive model mimicking

the behaviour of the auditory system. At its output the forward-predictive model contains

information found in the mechanical vibrations of the basilar membrane just before being

converted to APs by the inner haircells. At any given moment in time, the information is

represented by states, which the Kalman filter needs to predict by observing the information

through noisy measurements. The measurements of the information are however only made
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after it has been coded to APs. It was assumed that the CANS has to decode the APs in

order to interpret the information contained within the spike trains. The sensory model of

Figure 1.2 and Figure 1.3 can be replaced by a spike coder/decoder model.

Before the Kalman filter can be designed and the Kalman gain calculated, a good model

of the cochlea has to be found. This model serves as a reference point to the physiology of

the auditory system.

1.4.1 Auditory System Modelling

The auditory system extends from the pinnae (see Chapter 2) up to the CANS. However,

little is known about what happens after the inner haircells and cochlear nucleus (CN)

(Eggermont, 2001), as far as interpretation of APs by the CANS is concerned. To avoid

speculating about neural interpretation higher up in the brainstem this model only included

process’s up to and including the induction of spike action potentials.

In Figure 1.6 a functional diagram depicts the auditory system.
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Figure 1.6: Model of auditory system.

A source signal, entirely defined by amplitude, frequency and phase at any given point in

time, is broken down into smaller manageable blocks of data by the signal decomposition

functional unit before the information contained within it is coded. The information is then

transmitted by a neural channel, which is inherently noisy. The decoding functional unit is

not essential in the auditory system as such seeing that little clarity exists on how exactly

the CANS utilises the information coded in the APs. It was however included here, seeing

that it was used as part of the testing mechanism to compare data generated by the auditory

system model to that obtained by the estimator.
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1.4.1.1 Signal decomposition and channel model

The travelling wave of the basilar membrane vibrates with a maximum amplitude at a position

along the cochlea that is dependent on the frequency of stimulation (Yost, 2000). Each nerve

fiber is most sensitive to a particular frequency and the individual fibers within the auditory

nerve are also organised according to the particular frequency at which they are most sensitive

and the location along the cochlea at which they innervate haircells. The basilar membrane

thus acts like a bank of bandpass filters, which overlap to some extent in the frequency

domain. Combined with the tonotopic nature of the cochlear nerve bundle, the mechanical to

neural transduction can be thought of as a spectrum analyser spreading the information of

the spectrum of the signal across a large number of channels, which are in this case a string

of nerve fibers. But instead of coding the filtered signal in terms of amplitude, frequency and

phase, the signal is demodulated with itself and only the power contained within a particular

band is transmitted (Chapter 4). The power of the entire audible frequency spectrum is then

carried among the unreliable auditory nerve fibers as will be discussed in Chapter 5.

1.4.2 Signal Recovery by Means of Estimation

Due to an unreliable transmission medium an estimator is applied to the auditory system in

order to estimate the signal that was present just before it was coded by the inner haircells.

The aim is to organise the signal power distribution among the auditory nerves in a map and

to do so reliably, given a noisy channel (Chapter 5). No higher-level processing was applied

to this power spectral map in order to avoid speculations on how the CANS interprets the

information.

In order to apply an estimator such as the Kalman filter to the auditory system model

(see Figure 1.5) a stochastically equivalent internal model subjected to various Kalman fil-

tering restrains and conditions needs to be found. A short introduction to Kalman filters is

given in the next section.

1.4.3 The Kalman Filter

A completely deterministic process with a plant and measurement process model can be

evaluated uniquely and infinitely many times given a set of initial conditions seeing that no
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degree of stochasticity exists. However, as soon as some randomness is introduced by, for

example, noisy measurements, only an estimate can be found of a particular state of the

stochastic system. The need thus arises to, in some optimal way, estimate state variables.

The Kalman filter being an optimal estimator in the minimum mean-squared error (MMSE)

sense (see Section 6.6) can do just that. It estimates the conditional mean and covariance

of the probability distribution of the state of a linear stochastic system with uncorrelated

Gaussian process and measurement noise. The Kalman filter thus estimates states based

only on the first two moments of the stochasticity seeing that uncorrelated Gaussian process

and measurement noise can be uniquely defined by its mean and variance.

To apply this knowledge to the auditory system model given in Figure 1.6 a stochastic

equivalent model in the form of a recursive integrator model needs to be found, which is

more commonly named a shaping filter (see Subsection 6.7.1.1). In Figure 1.7 the special

form of a shaping filter is depicted (see Chapter 6 for general form).

)(2 tω
)(txSF )(1 tω�SFG SFH
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�

Figure 1.7: Special form of continuous-time shaping filter.

The uncorrelated Gaussian noise ω2(t) multiplied by process noise coupling matrix GSF

is integrated to give the state xSF (t). The results is recursively fed back via the dynamic

coefficient matrix FSF . The state xSF (t) is also observed via the measurement matrix HSF .

Written as a set of equations the process noise can be written as

ẋSF (t) = FSF (t)xSF (t) + GSF (t)ω2(t), (1.1)
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and the measurement equation as

ω1(t) = HSF xSF (t). (1.2)

The auditory system in Figure 1.6 is however not in the state-space form of Equation (1.1)

and Equation (1.2).
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The motive behind finding a state-space equivalent in the first place if none is present is

made clear by the continuous system model, measurement model and Kalman filter system

diagram as depicted in Figure 1.8.
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Figure 1.8: Continuous Kalman filter (bottom) with continuous system model and meas-

urement model (top). The continuous system and measurement model represent the true

process, while the continuous Kalman filter estimates the state variable based on an internal

representation of the continuous system and measurement model. Φ(t) represents the forward-

predictive model, H(t) the measurement or sensory model and K(t) the Kalman gain. Φ(t),

H(t), K(t) and G(t) are all matrices.

Given a system, in this case continuous in time, and a measurement model, the continuous

Kalman filter can recursively and optimally estimate the state variable x(t) (Chapter 6). The

Kalman filter assumes that the continuous system and measurement model can be modelled
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as shown in Figure 1.8, where a white-noise source ω(t) drives a recursive linear process to

generate a state variable x(t) and a white-noise source v(t) corrupts the measurements taken

via the matrix H(t). It is evident from the diagram at the bottom of Figure 1.8 that the

“internal model” of the continuous Kalman filter contains information about the system and

measurement models in the form of the matrices Φ(t) and H(t). By means of such an internal

model or whitening filter the Kalman filter can optimally estimate the state variable x(t).

Thus if a process such as the auditory system can be mathematically described in terms

of state-space equations and is included in the internal model of the Kalman filter, optimal

estimation of the desired state variables is possible.

This is one of the main requirements of a Kalman filter and thus by implication the next task

is to find state-space equations for the process given in Figure 1.6 resulting in Figure 1.9b.
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Figure 1.9: Auditory system model a) and stochastic model for a) shown in b). The Kalman

filter contains an internal model of the stochastic model. x
′
(t) and z

′
(t) are the stochastic

equivalents of x(t) and z(t).

Electrical, Electronic and Computer Engineering 17

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  
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The logical functional units in a) need to be replaced by equivalent state-space equations to

form the estimator equivalent process in b). The source and signal decomposition blocks in a)

can however be logically grouped in one large state-space equation to form the auditory shap-

ing filter in b). Similarly the encoding/coding, channel noise and decoding functional unit can

be modelled by the measurement shaping filter. The reason why the encoding/coding func-

tional unit was not included in the auditory shaping filter will become apparent in Chapter

6.

Thus by rewriting the auditory system in terms of state-space equations a very similar estima-

tor equivalent process can be found allowing for optimal estimation of the state variables as

was already mentioned. To a reader familiar with Kalman filters it might already be evident

that the process depicted in Figure 1.5 is the Kalman filter found in Figure 1.9B and the

actual measurement feedback in Figure 1.5 is obtained from the auditory system model. Once

the relevant Kalman filter has been found for the stochastic model of the auditory system,

the Kalman filter can be applied to the auditory process in Figure 1.9 to estimate the states

x(t) by observing the measurements z(t).

One of the primary reasons why a Kalman filter is more relevant for this particular mo-

delling problem shown in Figure 1.9 is because a degree of stochasticity exists within the

model itself. Even if a perfect model of the cochlea were to be found, additional noise sources

would most certainly be present. Neurons for example (see Chapter 5) are inherently noisy.

Thus to model the sensory functional unit in Figure 1.5, some form of stochasticity has to be

introduced to the system. The Kalman filter is a suitable choice seeing that a combination of

deterministic and stochastic input and measurement signals can be modelled.

Another advantages of the Kalman filter is its recursive implementation, which requires only

the knowledge of the previous states to make an estimate thus greatly reducing memory

requirements and increasing the computational efficiency.

1.4.4 Testing the Hypotheses

Once the Kalman filter has been found and applied to the auditory system the validity of

the hypotheses can be verified. By evaluating the performance of such an estimator given an

internal model linked closely to the physiology of the auditory system, it can be deduced if
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the assumption that an internal model exists in the CANS is a plausible one. Furthermore

the implications that such an internal model has on the biology can also be found.

1.5 OBJECTIVES OF DISSERTATION

The objectives of this dissertation were

1. to design and build a complete model of the auditory system up to and including the

inner haircells,

2. to design and test an estimator containing a biologically plausible internal model in the

form of a forward-predictive model and

3. to gain by means of the above mentioned analysis-by-synthesis method an understand-

ing into the challenges the biology might face when trying to convey information using

some form of a neural code.

The tools that were used to reach the above mentioned objectives were modelling and simu-

lation, which are discussed in more detail below.

1.5.1 Modelling

A key part in understanding a particular process is to model it and by means of simulations,

experiments and measurements validate the assumptions made. Although this approach pro-

vides models that mimic the functionality of a given process, they shed only little light on

the original concept behind the process. The analysis-by-synthesis design approach was thus

used to model a concept, given certain physiological limitations. In particular the auditory

system was studied. The aim was to find a model that could extract information from any

real signal and represent it in such a way that neural coding was straightforward.

The model, simulated in MATLAB provides an insight into the concept behind auditory

signal processing and a mean to compare performances and the implications thereof. By do-

ing so an in depth understanding was gained into the signal processing demands required to

convey information in a meaningful yet very reliable way and how the limitations affect the

process as a whole.
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1.5.2 Estimation

Estimation methods provide a tool to extract information from a noisy environment, given

the approximate knowledge of the underlying process. In this case, the estimator was required

to make an estimate of the decoded signal at the output of the auditory system model (see

Figure 1.6) given a noisy measurements. The argument was that the brain would have to

be able to reliably estimate any form of information contained within the original signal. It

was thus of paramount importance that the estimation process was as close to optimal as

possible.

1.5.3 Note on Units Used

The units that are used in this work are picked relative to the leaky integrate-and-fire neuron

in Chapter 5 since its the only functional unit that is based on an electrical model with very

specific units. Thus, units of volts are used throughout. These voltages are not actual internal

voltages that can be measured. Rather, they relate to external sound pressure level (SPL) as

explained in Section 7.7. The voltage units used also translate to a specific spike rate (which

is measurable) as explained in Subsection 5.5.2.

1.6 REVIEW OF LITERATURE VS. CONTRIBUTION

Interest in the field of auditory perception has drawn the attention of the speech and hearing

sciences, neurobiologists and engineers among others. Each has contributed a great deal

towards the pool of knowledge that has been gathered over the last couple of decades. The

focus in the different disciplines has however always been on only part of the auditory system.
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The auditory system as was discussed earlier can be divided into logical functional units as

is illustrated in Figure 1.10.
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Figure 1.10: Auditory system given as a sequence of signal processing steps.

Some have combined information about most parts of the auditory system (Flanagan, 1972;

Yost, 2000; Warren, 1999; Deutsch and Deutsch, 1993; Allen, 1985). However, due to the

immense complexity of the auditory system as a whole, most application based research

tends to focus on only parts of the auditory system. Models for the auditory system for ex-

ample have been designed and discussed by Flanagan (1972), Deutsch and Deutsch (1993),

Meyer-Bäse and Scheich (1997) and Doh-Suk, Lee and Rhee (1999). The focus of neurobio-

logical research on the other hand lies more on the mechanical to neural transduction side,

specifically the interpretation at neuronal level (Rieke, Warland, de Ruyter van Steveninck

and Bialek, 1997; Eliasmith and Anderson, 2003; Deutsch and Deutsch, 1993; Maass and

Bishop, 1999; Bialek, Rieke, de Ruyter van Steveninck and Warland, 1991; Abbott, 1994).

Others have applied Kalman filtering to auditory system modelling, to track either lower

or higher hierarchial level information such as interspike intervals (ISI) (Hammarberg, 2002;

Hanekom and Krüger, 2000; Gray, Slocumb and Elton, 1994) or formant positions and inten-

sities (Niranjan and Cox, 1994; Lu and Doerschuk, 1996). The difficulties with tracking spike

trains by either employing ISI tracking or doubly stochastic point processes (Snyder, 1975)

is finding a suitable process and measurement noise model.
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The first step to designing a Kalman filter for either lower or higher hierarchial level infor-

mation tracking, is to design its process and measurement noise models as depicted in Figure

1.11.
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Figure 1.11: Kalman filtering applications for different hierarchial level problems.

The process and measurement models form the foundation with which the Kalman filter esti-

mates state variables and solves higher level problems. All higher hierarchial level operations

are solely dependent on the validity and correctness of the process and measurement models.

The success of how well an estimator will perform thus lies within its foundation.

Niranjan and Cox (1994) for example used an autoregressive (AR) model closely related

to speech signals for an internal model (Level 1 ). They then combined the results of vari-

ous Kalman filters for each particular frequency channel using a pseudo-Bayesian algorithm

(GPB1)(Bar-Shalom and Li, 1993) to track formant frequencies (Level 2 & 3 ). Hanekom and

Krüger (2000) and Gray et al. (1994) used white process noise and coloured measurement

(Level 1 & 2 ) noise processes to estimate the ISI. The shortcoming of this approach is that

the process and measurement noise models cannot account for the entire process from source

to spike train generation. Snyder (1975) on the other hand rather than tracking ISI used a

Kalman-Bucy filter to track doubly stochastic Poisson point processes coding an intensity

process (Level 1 & 2 ). Once again the spike trains were assumed to be Poisson distributed,

something that is not necessarily true as will be discussed in Chapter 3.

Utilising a forward-predictive and sensory feedback model forces one to find a more pre-
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cise model for the auditory system, by modelling it as close as possible to the physiology.

Finding a biologically plausible system based on the most well understood parts of the audi-

tory system, the outer, middle and inner ear including the neural coding just before the

cochlear nucleus (CN), is thus the primary contribution that was made.

In short, the contributions made are:

1. The design of a forward-predictive and measurement model that can be linked to the

auditory system from acoustic signal generation, right up to the neural processing func-

tional unit shown in Figure 1.11,

2. to apply a Kalman filter to the forward-predictive and measurement model as was done

for a motor system problem by Wolpert et al. (1995) and to examine the implications

that such an implementation has and

3. finally to estimate with the help of an extended Kalman filter the power at a particular

point within the frequency band, which forms part of a power map spanning across the

entire audible frequency range that can be interpreted at higher levels in the CANS.

1.7 OVERVIEW OF DISSERTATION

The dissertation is logically divided into four main parts. The first part examines the physi-

ology of the auditory system ranging from the outer ear right through to the inner ear and

CANS.

In the second part the knowledge gained from the first part is applied and mathematical

models are found describing the transition of the sound as it passes from the outer ear right

through to the CANS. The group of models form the auditory system model (see Figure 1.9)

that is used to generate the simulated sensory data.

In the third part of the dissertation the estimator equivalent model, as is depicted in Figure

1.9b, is designed by finding physiologically plausible forward-predictive and sensory-feedback

models.

In the forth and final part of the dissertation the estimator model with forward-predictive

model and sensory-feedback model is used to predict the power spectral map given noisy
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measurements taken from the simulated auditory system, which is driven by a source. The

entire system is simulated and the results and the implications thereof are discussed.

These four parts were subdivided amongst the following chapters in such a way, that a

logical transition from gaining background knowledge on the subjected matter to designing

and implementing the complete system can be made. A quick outline of the dissertation is

given below.

Chapter 2 identifies the logical processing units found in the auditory system modelling

the outer, middle, inner ear, in particularly the inner and outer haircells, and parts of the

CANS. The physiological structure of each part of the auditory system is examined in order

to characterise it and to identify constraints. In this way, more knowledge is gained about

the biological implications that the auditory system has on modelling and simulations thereof.

In Chapter 3, the functionality of the inner haircells in terms of neural coding of infor-

mation is discussed. Seeing that a lot of controversy exists around this part of the CANS, an

in-depth look will be taken at the literature published thus far and their resulting implications.

Given the information about the physiology of the auditory system, mathematical models

for each of the functional units identified in Chapter 2 can now be derived and are found

in Chapter 4. The model of the inner haircell was not included in this chapter as a clear

distinction between physical and neurochemical transmission was made. This chapter also

focuses on the interface between the surrounding area and the auditory system, such as a

speaker generating acoustic signals, which are received by the auditory system and also de-

fines what type of source signals are to be expected.

Chapter 5 investigates the transmission medium of the system, specifically the neural path-

ways found in the CANS. This is the only logical functional unit within the system that is

closely related to the physiology rather than just the functionality of the auditory system.

The channel, being the limiting factor in any communication system, is defined in terms of

the way by which information is communicated from the one end to the other and the nature

of the noise present. It also discusses how information is converted from a mechanical signal

to APs by means of a leaky integrate-and-fire model (LIF) and how the CANS might inter-

pret this information. In particular, it is examined how the signal can be decoded by means

of optimal estimation and postsynaptic current (PSC) filtering.
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In Chapter 6 a state-space equivalent model for the auditory system (Chapter 4 to Chapter

5) is defined and an extended Kalman filter (EKF) designed. A step-by-step design procedure

for process and measurement noise models is given where a stochastic, zero-mean equivalent

model representing the source signal, defined in Chapter 4, is also designed as part of the

process noise model.

In Chapter 7 the forward-predictive model from Chapter 4 and the estimator equivalent

model from Chapter 6 are combined. The system is then evaluated in terms of its perfor-

mance under noisy conditions found on the neural transmission channels. In particular it

is investigated how spike-time jitter and the loss of spikes influence the performance of the

EKF. The results and the general implications of the analysis-by-synthesis approach and the

Kalman filter model are discussed. A link to the physiology is provided by comparing the

just-noticeable difference in intensity discrimination of the model to psychoacoustic data in

the literature.

In Chapter 8 the dissertation is concluded by addressing the hypotheses and research ques-

tion in context with the results obtained. The implications that these results have on the

biology are also discussed. In addition, the strengths and weaknesses of the auditory sys-

tem model and accompanying estimator model are stated and finally possible future work is

presented.

Electrical, Electronic and Computer Engineering 25

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



CHAPTER 2

FUNDAMENTALS OF HEARING

2.1 AIM OF THIS CHAPTER

In this chapter the reader is provided with the necessary biological background of the auditory

system and the functions of the outer, middle and inner ear. The transduction of mechanical

information to neural stimuli is investigated and the knowledge gained here is later applied

in Chapter 4 to design a model for the auditory process. Although a short introduction is

given to the type of spike patterns found in the CANS, particularly rate-level coding and

phase-locking, the detail of what information is being transmitted is left for Chapter 3.

2.2 INTRODUCTION

Even though the analysis-by-synthesis approach was taken to derive a generic model to de-

compose, (en)code, transmit and then recover the original signal, each functional unit was

derived by keeping in mind the physiology and functionality of the auditory system. It is thus

imperative to define how each functional unit relates in certain ways to the biology. In this

chapter a general overview of the entire auditory system is given, whereas the particulars

of each functional unit within the system derived will be looked at in more detail in the

successive chapters.
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Chapter 2 Fundamentals of Hearing

2.3 THE OUTER, MIDDLE, INNER EAR AND CENTRAL AUDITORY NER-

VOUS SYSTEM

The structure of the outer, middle and inner ear is depicted in Figure 2.1.
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Figure 2.1: a) Main components of the inner ear in relation to the other structures of the

ear. b) Schematic diagram of the middle ear and partially uncoiled cochlea, showing the

relationship of the various scalae. Reprinted with permission by Yost (2000).

The auditory system can be divided into four sections: The outer ear, middle ear, inner ear

and central auditory nervous system. When sound impinges on the pinna it gets funnelled by
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the external auditory channel to the tympanic membrane. The tympanic membrane denotes

anatomically the boundary between outer ear and middle ear. It is attached to the three

middle ear bones collectively called the ossicles. The tympanic membrane is connected to the

malleus via the handle, which in turn connects to the incus, which is connected to the stapes.

The inner ear again can be divided into three parts: The semicircular canals, the vestibule

and the cochlea.

The function of the middle ear is amongst others to pass the sound pressure acting on the

tympanic membrane to the inner ear’s oval window. This in turn physically excites the fluids

within the inner ear, which results in a oscillatory movement of the basilar membrane. The

movement of the basilar membrane causes the cilia of the haircells to vibrate, which translate

this movement into neuronal action potentials. The coded sound signal is then transmitted

from the cochlea via afferent bundles of neurons to the cochlear nucleus and beyond.

2.3.1 The Basilar Membrane and Resultant Neural Coding

2.3.1.1 Basilar membrane

To understand the principles behind the mechanical to neuronal action potentials conversion,

a closer look at the mechanical response of the basilar membrane has to be taken.

The basilar membrane response is a travelling wave that is induced through the movement

of the fluids within the inner ear responding to the pressure transmitted via the middle ear.

The motion of the membrane travels towards the helicotrema.
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The envelopes of the travelling waves for different stimulatory frequencies and their corre-

sponding phase response are shown in Figure 2.2.
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Figure 2.2: a) Envelopes of travelling waves of four different frequencies b) Phase shift in

degrees between the motion of the stapes and a point on the basilar membrane. Reprinted

with permission by Yost (2000).

While low excitation frequency stimulate the basilar membrane closest to the apex, high fre-

quencies do so, closest to the base of the basilar membrane (Greenberg, 1997).

Similar amplitude and phase responses for the basilar membrane can be found in Flana-

gan (1972). It is of great interest to note that the amplitude response for a single frequency

results in a Gaussian-like distributed curve around the stimulus frequency. This behaviour of

course can be directly attributed to the nature of travelling waves propagating via the basilar

membrane as will be discussed in Chapter 4. This implies that a single frequency excites

multiple parts of the basilar membrane and thus groups of haircells, which fire with different

group-delays.

2.3.1.2 Haircells and auditory nerves

There are approximately 12 000 outer and 3 000 inner haircells where the primary function

of the outer haircells is to sharpen the frequency selectivity while the inner haircells carry
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the neurally coded basilar membrane movement to the cochlea nucleus. When the basilar

membrane vibrates, the tectorial membrane situated on top of the organ of Corti moves.

Due to different hinging points, shearing forces between them are created. The stereocilia of

the outer haircells, which are situated in the organ of Corti are directly connected to the

tectorial membrane and are stimulated via bending. The result is an active response of the

outer haircells to the stimulus, which consequently results in the expansion or contraction

of the stereocilia also known as motility. The stereocilia of the inner haircells are probably

not attached to the tectorial membrane and fluids trapped between the stereocilia and tec-

torial membrane probably cause inner haircell shearing (Yost, 2000). The action potentials

generated by this particular form of bending are then transmitted via the cochlear nerve to

the cochlear nucleus. Each cell needs a certain time to recover between firings. The neural

response of auditory nerves firing to small movements of the basilar membrane show both

intensity coding as well as phase-locking.

The knowledge of how the inner haircells code basilar membrane movement can be used

to improve cochlear implants. Several research teams have tried to model such auditory neu-

rons resulting in models such as the Brachman-Payton, Cooke and Meddis model (Meyer-Bäse

and Scheich, 1997).

The type of neural coding scheme possibly used by the central auditory nervous system has

been extensively analysed and potential models have been derived (Flanagan, 1972; Rieke

et al., 1997; Maass and Bishop, 1999; Lestienne, 2001). A look is taken at two possible types

of code, the rate-level code and the phase-locking code found in the auditory system. In

Section 3 a more extensive look will be taken at the neuronal code in general.

2.4 RATE-LEVEL FUNCTIONS IN THE AUDITORY SYSTEM

When increasing the level of the acoustic stimulus and measuring changes in the spike rate of

a single neuron it is found that an increase in the intensity results in an increase in neuronal

firing. The rate-level function is obtained by measuring the dependence of the spike rate on

the intensity of the stimulus averaged over a period in time.
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Several such rate-level functions are shown in Figure 2.3.
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Figure 2.3: Intensity or rate-level functions for the three neurons: High, medium and low

spontaneous rate fibers. The output is plotted in spikes per second as a function of the input

level in dB sound pressure level (SPL). Reprinted with permission by Yost (2000).

The neural output spike rates for high, medium and low spontaneous rate fibers increase

approximately linearly over a 30 to 70 dB sound pressure level (SPL), which is also known as

the neuronal dynamic range. The rate-level function is never zero due to spontaneous activity

by the neurons, resulting in a threshold spike rate or neuron threshold, which is present even

if no stimulus is applied. Rate-level coding appears to be predominant at high frequencies in

the auditory system taking over from the phase-lock coding above roughly 1 kHz.

2.5 PHASE-LOCKING

While the rate-level function is obtained by averaging over a time window and thus classified

a rate code, temporal codes convey information by means of spike positions in time. When a

sinusoidal stimulus is applied to the auditory periphery spike clustering is observed around

a specific phase when phase-locking occurs. From the phase the fundamental frequency of

that particular signal can be determined. At high frequencies clusters can also occur at

submultiples of the spike rate due to a maximum possible spike rate of 500-1000 spikes per

second per neuron. The degree of phase-locking is determined by how close the fundamental

frequency corresponds to the characteristic frequency (CF) of that particular neuron.
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Phase-lock coding is the principal coding mechanism found at low frequencies in the auditory

system. The degree of locking seems to decrease for increasing frequencies and appears to

disappear at 1 kHz (10% phase-locking) where the rate code takes over as the chief coding

mechanism.

2.5.1 Current Computer Models

Computer models that simulate the function of the auditory system such as the one by

Patterson, Allerhand and Giguere (1995) illustrate the neuronal activity graphically. Figure

2.4 shows the response to the stimulus (vowel /e/).
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Figure 2.4: The output of a computational model of the auditory periphery. Each line is a

simulation of a PST (Poststimulus Time) histogram of a tuned auditory nerve fiber. The right-

hand y-axis represents the distance in millimetres from the stapes. Printed with permission

by Yost (2000).

The frequency band is divided into a tonotopic fashion where each increment represents a

CF along the distance of the cochlear.
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2.6 CONCLUSION

This chapter examined the physiology of the auditory system and how each part of this

system, from the outer ear right through to the inner ear and its outer and inner haircells,

processes the external acoustic signal. This facilitates better understanding of the signal

processing that takes place within the auditory system and allows for modelling by means of

existing signal processing tools. Although not much information about the way information is

being coded by the haircells was given, a better understanding of the fundamentals of neural

coding in the cochlea in terms of rate-level coding and phase-locking was gained. In the next

chapter a more critical look will be taken at neural coding in general.
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CHAPTER 3

UNDERSTANDING THE NEURAL CODE

3.1 AIM OF THIS CHAPTER

Chapter 2 discussed how the inner haircells respond to vibrations of the basilar membrane.

Two main trends were identified, rate-level coding and phase-locking. These are measurable

responses of the inner haircells to basilar membrane stimulation. New research however shows

that neural coding is much more complicated than was thought.

The aim of this chapter is to provide the reader with a summary as far as neural coding

in the CNS is concerned by examining the advances that were made in the field of neuro-

science over the last few decades. It is also examined how models for neural coding have

changed and how different models explain certain aspects of neural coding found in the CNS

but not others. It is thus by no means clear how the auditory system encodes information

at the inner haircells but by means of a thorough investigation, certain assumptions can be

made that are quite plausible. The relevance of these assumptions for this particular problem

is discussed, a particular coding strategy chosen and then applied in Chapter 5 where neural

coding by means of a particular coder is evaluated.

3.2 INTRODUCTION

By means of neural coding the cochlear can convey the message it has received from the

outside world to the CANS. Chapter 2 discussed that a mechanical to neural action potential

transduction takes place in the inner ear where the basilar membrane response is converted

to a pattern of spikes or action potentials comprehendible to the CANS. In Figure 1.5, the

spike generation and decoding process forms part of the Kalman filter model seeing that any

measurements taken by the CANS are derived from action potentials. Measurements in the

form of action potentials are however awkward to work with and converting them into a more
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comprehendible format (for us) is desirable. A model representing the coding and decoding

process thus needs to be found. In this chapter spike coding/decoding is discussed in terms

of many possible models that have been documented by others.

Over the last century an enormous amount of information has been gathered and impressive

progress has been made in the field of neuroscience. Man’s inquisitiveness into the way that

sensory neurons communicate information and the interpretation of this information has led

to the inception of a vast number of models mimicking all stages of the neuronal communi-

cations processes of encoding, transmission and decoding.

In order to achieve an understanding of this code the underlying characteristics, given cer-

tain biological constraints, have to be studied. A look will be taken at the most important

models and methods that have accumulated over the years. In Chapter 2 the auditory sys-

tem, the mechanism of mechanical to neurological transduction and possible codes found in

the auditory system were briefly discussed. The possible coding scheme, implemented by the

physiology has been the focus of many years of research with the most notable publications

by the first pioneers such as Pitts and McCulloch (1947), MacKay and McCulloch (1952),

Hodgkin and Huxley (1952) to more recent publications by Rieke et al. (1997), Maass and

Bishop (1999), Martignon, Deco and Laskey (2000), Lestienne (2001), Eggermont (2001),

Eliasmith and Anderson (2003).

3.2.1 Neural Coding Background

Early studies of spike trains showed that under repeated trials (Yost, 2000; Deutsch and

Deutsch, 1993; Lestienne, 2001) the average spike count over an appropriate window was di-

rectly proportional to the intensity of an input stimulus. These studies also suggested that the

emission of sensory fibers was not completely deterministic and that a component of stochas-

ticity was present. Experiments showed that this random behaviour could be described by

a Poisson point process and that the underlying information was a spike rate, corrupted by

noise (Teich and Khannan, 1985; O’Neil, Lin and Ma, 1986; Johnson, 1996). It has however

come to light over the last decades that a rate code might be insufficient to describe the cod-

ing of information in the CNS (Lestienne, 2001; Rieke et al., 1997; Martignon et al., 2000).

It has been evident from more recent studies that the relatively large averaging windows

required to determine the average spike rate are biologically implausible. Reaction times such
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as the compensating flight torque by the fly have been measured in the order of milliseconds,

where cells firing 100 spikes per second can generate only a few spikes (Rieke et al., 1997).

Further experiments involving the bat auditory system also underlined the importance of

small numbers of spikes. It has further been shown by Frisina (2001) and Eggermont (2001)

that both rate and temporal codes are found in the CNS implying that at different levels

different codes could be present, each fulfilling a particular role.

The relevance of a neural code and how to chose a particular one for design purpose is

however not a simple task due to the ambiguity that exists in the CNS about what type of

neural coding is utilised. In Section 3.8 this problem is addressed more closely, but before

such a decision can be made a closer look at rate codes and temporal codes has to be taken.

3.2.2 Coding versus Encoding

While common neuroscience literature use the terms coding and encoding synonymously,

they are in fact implying two different processes (Lestienne, 2001). While temporal coding

for example is characterised by a one-to-one correspondence between the time of occurrence

of a sensory event and the time of occurrence of an action potential, temporal encoding of

a signal corresponds to situations in which information of a dynamic signal is encoded in a

temporal pattern of action potentials. Throughout this document it will be assumed that an

input stimuli can only be coded. This however does not imply that encoding schemes are not

implemented by the CNS.

3.3 RATE CODE

A rate code conveys one parameter at a time, the average rate, which is obtained by deter-

mining the average number of spikes in a particular window size, where the window size can

be variable (typically 100 ms for a maximum spike rate of 300-500 spikes per second) (Rieke

et al., 1997). An interesting statistically characteristic of a rate code is that it becomes a time

code if the window size shrinks to zero. A rate code can also be described stochastically by

a probability of spike occurrences.

With a rate code a tradeoff exists between reaction time of a code and its robustness to

noise. This tradeoff is determined by the size of the window over which the average number
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of spikes is determined. For example if the window size is made large, the code is slow to

react to fast stimuli but provides a robust estimate in the presence of noise. On the other

hand, if the window size is made small, the spike rate becomes more prone to interference

from noise but reacts faster to fast changing stimuli.

A clear disadvantage of the rate code is that it cannot code more than one variable at a

time, making it a one-dimensional code with a low transmission rate. This is not the case as

far as temporal codes are concerned as is evident from the next section. Another interesting

fact about the rate code is that under repeated trials of the same input stimulus different

temporal structures were produced that can be attributed either to noise or to higher-order

underlying statistics (Eliasmith and Anderson, 2003).

As was mentioned in Subsection 3.2.1 rate coding cannot explain the fast reaction times

that are possible in the bat auditory system, where large averaging windows would introduce

unrealistic delays. This however does not mean that pure rate codes do not exist since they

play a vital role in the auditory system after the CN and the central auditory midbrain and

the cortex (Frisina, 2001). Thus a rate code can explain some parts of neural coding but not

others and seems to be a particular type of code used selectively by the CNS.

3.4 TEMPORAL CODES

A temporal code, unlike a rate code, assumes that information is carried in the precise timing

of spike positions. There are two major types of temporal codes (Eliasmith and Anderson,

2003):

1. The time code or instantaneous rate code depends on the interspike interval (ISI) and

2. the second type depends on the placement of a spike relative to the onset of a stimuli.

While the former is based on a group of spikes like phase-locking and real-zero crossing (RZC)

(Kumaresan and Wang, 2001) codes, the latter depends entirely on just one single spike and

its position relative to the onset of the stimulus. Codes depending on ISI are typically used

to code more than one parameter at a time (see Subsection 3.4.1 and Subsection 3.4.2) where

single spikes are used as classifiers in spiking neural nets (Maass and Bishop, 1999).
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Temporal codes have been compared to rate codes on various occasions (Rieke et al., 1997;

Rullen and Thorpe, 2001) using an information transmission approach. The rate code was

compared to the mean interspike interval code and it was found that the rate code is far

from optimal for fast information transmission whereas temporal structure of spike trains

can be used effectively to maximise information transfer rates when each cell fires only once.

Temporal codes however are far less robust in the presence of noise.

In Section 3.3 it was mentioned that a rate code could not explain certain parts of neu-

ral coding such as fast reaction times given only a few spikes. The same ambiguity exists

with temporal codes. It has been shown that precise timing is not always required for suc-

cessful transmissions (Rieke et al., 1997). Ones again it seems that the CNS uses different

codes for different tasks.

3.4.1 Phase-Lock Coding

Phase-locking in the auditory system was discussed in Section 2.5. Being one of the two

forms of temporal codes that have been defined thus far provides a mean of encoding both

amplitude and frequency information rather than just amplitude information as the rate code

does. It has been suggested by Rieke et al. (1997) that the instantaneous rate of firing can

be linked as following to amplitude (A), frequency (ω) and phase (φ) information:

r(t) = r0 + GA sin(ωt + φ). (3.1)

The spontaneous spike rate r0 can be assumed to be large enough so that the spike rate at

any given time will never be smaller than zero. The desired increase in spike rate relative

to the input amplitude can be scaled by any desirable constant G. Low spike rates at the

troughs of the sinusoid are however a matter of concern in that low spike rates are more sus-

ceptible to noise especially if only one channel carries the information. The physiology of the

auditory system avoids such problems at low frequencies by employing populations of neurons.

It is interesting to note that the instantaneous spike rate was used to encode temporal infor-

mation. This suggests that it is not the spike rate that makes a code a rate code, rather it is

the way the spike rate is determined. If the instantaneous spike rate was however averaged

over a window larger than the period of r(t), no phase-locking would have been evident even
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though it was present.

3.4.2 Representing Signals by using only Timing Information

A recent publication by Kumaresan and Wang (2001) showed that a signals envelope and

phase could be represented by timing information alone. While only real-zero (RZ) signals can

uniquely be represented by their zero-crossings it was shown that any band-pass filtered signal

could be mapped to such signals. The result is that any signal can be spectrally decomposed

by a filter bank and then coded by a real-zero crossing (RZC) algorithm, resulting in a spike

train or in this case known as the converted zero crossings (CoZeCs), representing the zero-

crossings of the mapped real-zero signals. A synthesis filter bank then reconstructs the spike

trains into an estimate of the original signal. It was also shown that this particular encoding

scheme performs well if no noise is present on the spike trains, but did not pursue the matter

further than that. A disadvantage of this method however is that two pairs of CoZeCs need

to be transmitted, requiring four channels per spectral block. For a system that guarantees

no reliability in the presence of noise, it requires a particularly high number of neurons.

3.5 POPULATION CODES

Recent advances in multi-electrode recording have brought us closer to the understanding of

population codes. They have been observed and studied from amongst others in the retina

(Nirenberg and Latham, 1998) to the hippocampal place cells in rats (Zhang, Ginzburg, Mc-

Naughton and Sejnowski, 1998). In these cases a neuron occupies a “place” where spatial

overlapping results in information sharing, which has been shown to increase robustness of

transmission. Population codes convey no information about the exact timing of spikes but

weight the spike rate by a means of a tuning curve. Tuning curves specify the average re-

sponse of a cell to a certain input as a function of the feature values of the cell. Population

of neurons can be shown to implement optimal estimators such as maximum likelihood esti-

mators (MLE) (Zhang et al., 1998).

The response variability of the neurons within a population have a major impact on the

encoding capacity of the group. It has been shown by Pouget, Zhang, Deneve and Latham

(1998), Brunel and Nadal (1998) and Pouget, Deneve, Ducom and Latham (1999) that nar-

rower tuning curves increase the Fisher information if the noise distribution is constant over
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the width of the tuning curve. The Fisher information determines how well an estimate of a

parameter can be found from an observation with a given probability distribution function.

Wilke and Eurich (2001) showed that representational accuracy of populations with inho-

mogeneous tuning properties such as tuning curve width and fragmentation into specialised

subpopulations were superior to identically and radially symmetric tuning curves. Zemel,

Dayan and Pouget (1998) argued that a population activity can convey higher-order statis-

tics and not just a single value.

While population coding automatically assumes interaction due to cross-correlations between

neurons within a group, studies by Nirenberg and Latham (1998) showed that linear recon-

struction methods, which treat the cells as independent coders, were as effective as a neural

network that can utilise correlations amongst different cells when reconstructing the stimulus.

The same observation was made earlier by Warland, Reinagel and Meister (1997) where ex-

periments suggested that correlated activity plays a minimal role in encoding visual stimuli.

That however does not imply that adjacent neurons within a group are completely indepen-

dent since a population of neurons has been shown to convey information reliably within

a short period of time (Panzeri and Schultz, 2001), something that an isolated rate-coding

neuron is unable to do.

It is thus apparent that the way that neurons, as individuals or a group, code and reconstruct

information differently depending on the requirement of a particular system.

3.6 SPATIOTEMPORAL CODING

Unlike population codes, spatiotemporal grouped neurons utilise the timing information of

the spikes found on each nerve to make a decision rather than the spike rate.

Martignon et al. (2000) found that higher spatiotemporal order statistics within a group

(more than 2 neurons) of neurons was plausible if log-linear models were used. The results

were applied to detect synchronisation in experimental data, in particular the recordings for

the frontal cortex of Rhesus monkeys. The experiments confirmed the existence of synchro-

nisation and thus higher-order temporal patterns, which in turn confirms that encoding can

take place in the CNS.
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Deco and Schürmann (1999), from the information point of view designed a model that

represents a group of neurons that need to classify a particular input, given spike-time in-

formation. However, instead of finding an optimal estimator, as suggested in Section 5.4.2,

they developed a neural net that trains the weights between the neurons and the axonal

transmission delay related to a particular weight. In effect synchronous clusters are formed

that fire when a particular input stimuli is present.

Masuda and Aihara (2002) did similar experiments using integrate-and-fire (IF), leaky integrate-

and-fire (LIF) and FitzHugh-Nagumo (FHN) neurons and a multi-layer neural network where

a group of sensory neurons drive a cortical neuron. The spike trains from the different sensory

neurons were superimposed and shown to interfere with each other, but not to such an extent

that it became detrimental. The same spike train superimposition method was implemented

by Hanekom and Krüger (2000). Masuda and Aihara (2002) used the ISI to reconstruct the

original continuous signal by means of a filter. They showed that the coding scheme was quick

in encoding changes in an input signal with little energy required. Similar rate codes would

be slower in reacting to fast changing stimuli and require higher spike rates and thus more

energy to code.

3.7 ADAPTIVE NEURAL CODING

In order to code efficiently, with regards to information theory, the coding strategy has to

match the statistics of the signal. This would require an adaptive code instead of a static one

as was assumed in the coding strategies discussed previously. The relevance of adaptive neural

coding can be understood better by considering the following reasoning. In the case of a H1 cell

of the blowfly the dynamic range spans less than two orders of magnitude where the ambient

light level varies over more than nine (Smirnakis, Berry, Warland, Bialek and Meister, 1997).

The neural circuits are faced with the trade-off between encoding the full range of their inputs

and resolving gradations among those inputs. It was shown by Smirnakis et al. (1997) and

later by Brenner, Bialek and de Ruyter van Steveninck (2000) and Fairhall, Lewen, Bialek

and de Ruyter van Steveninck (2001) that light adaptation takes place where the sensitivity

of the retina becomes proportionally less as the intensity of the light increases. It was further

shown that not only changes in the mean light intensity were provided for but also changes

in the variance. Adaption to these statistics occurred over a wide range of time scales, from

a few tens of milliseconds up to a minute. By adapting to the statistics of the environment
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the information transmission rate is also maximised as was observed by Brenner et al. (2000).

Adaptive neural coding however introduces ambiguities since the meaning of spikes depend

on the context. Thus the additional requirement imposed on adaptive neural coding is context

coding, which can be done by coding the context separately or by using a interval distribution

method devised by Fairhall et al. (2001). It was shown that by collecting interspike intervals

and finding their interval probability density, a distinct “fingerprint” for fixed zero mean and

variable variance Gaussian random variables could be identified.

Adaptive neural coding illustrates that the neural coding system found in various parts of

the CNS is indeed an efficient one, maximising the transmission rate for different input signal

statistics.

3.8 CHOOSING A CODE

As is quite evident from the preceding section, choosing the “best” or “correct” code, if there

is such a thing, is not a trivial task. In fact it has been argued by Frisina (2001) that in

the auditory system there exist various levels of coding between the cochlear hair cells from

where spikes originate up to the auditory periphery and cochlear nucleus (CN) and also the

auditory midbrain and cortex. It seems that synchronisation is important up to the auditory

periphery, whereas rate coding is more important for the auditory midbrain. Frisina (2001)

also stated that different types of neurons, low, medium and high spontaneous rate fibres

encoded high, medium and low sound intensities respectively, which agrees with Chapter 2.

In principle, for simulation purposes, picking the rate code as the fundamental code is an

adequate choice as long as all constraints of the particular choice are defined and taken into

consideration. The rate code is one of the most widely applied codes in neural coding simu-

lations and forms part of recent publications such as Eliasmith and Anderson (2003). While

a rate code is robust in a noisy environment if the averaging window is chosen to be large,

it cannot code more than one variable at a time and coding both amplitude and phase for

example would require two dedicated neurons. A temporal code such as phase-locking how-

ever can code both amplitude and phase and thus increase the amount of information that is

being transmitted by one neuron. Robustness plays an important role in this problem since

the power spectral map needs to be estimated as best as possible. However, as was mentioned
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in Section 3.6 exploiting cross-correlation between neurons in the decoding process is no more

effective than treating them as independent neurons as far as linear reconstruction methods

are concerned. Thus in the case of linear decoders no advantage is gained by using more

complex cross-correlated neuron networks. For this reason it seems natural to assume that

no cross-correlation exists between different neurons.

As was discussed in Section 3.7, no one particular rate or temporal code can optimally

code a signal with changing input statistics. This is an important aspect of neural coding

since the auditory system can effectively work with a wide variety of acoustic signals ranging

from pure tones to complex speech patterns. It is thus evident that the spike coding/decoding

functional unit in the CANS should be a dynamic rather than a static one, adapting to new

input signal statistics as they become available. This would however require another observer

system, keeping track of the statistics of the signal being estimated. Thus in order to avoid

overcomplicating the problem a static spike coding/decoding model was chosen.

From the discussion above it is evident that in order to pick a neural code the require-

ments of the coding system based on the advantages and disadvantages of a particular code,

needs to be defined. Since the definitions of the different neural codes however already lead to

confusion, it is refrained from picking a neural code as such. Instead, in Chapter 5 a particu-

lar coding mechanism is chosen based on physiological information that has been discovered

and documented. The implications of such a decision leads to an interesting discovery about

neural codes.

3.9 CONCLUSION

In this chapter the different types of neural code were introduced and discussed. Each code was

examined in terms of how information is transmitted by means of trains of action potentials

both on a single neuron and in groups. The advantages and disadvantages of each code were

mentioned and compared. Since the boundary between a rate code and a temporal code is

not clearly definable and disputes continue, no particular code is chosen here. Alternatively,

biologically plausible neuron models are investigated and complementing linear estimators

defined. On those grounds and based on the information found in this chapter it will be briefly

discussed, which theoretical definition of a neural code fits this specific implementation the

best. The motivation for such an approach is to demonstrate to the reader the inconsistencies
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within the definitions of a neural code.
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CHAPTER 4

SIGNAL DEFINITION AND DECOMPOSITION

4.1 AIM OF THIS CHAPTER

Now that information about the auditory system (Chapter 2) and neural coding process

(Chapter 3) has been gathered, mathematical models can be derived. The aim of this chapter

is to design and simulate a biologically plausible auditory system (representing the forward-

predictive model of the auditory system in Figure 1.5 in the logical form of Figure 4.1) from

the outer ear right through to the inner ear, excluding the mechanism for mechanical to

neural transduction.
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Figure 4.1: The shaded functional units, source and signal decomposition are designed and

evaluated in this chapter.

The model for the inner haircells (represented by part of the spike coder/encoder functional

unit in Figure 4.1) is designed in Chapter 5. This chapter also analyses the signal generation

aspect, seeing that a good model for the acoustic signal is required in order to build an

estimator in Chapter 6.
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4.2 INTRODUCTION

In order to test the hypothesis that an internal model of the auditory system is present, an

accurate signal model has to be found that describes the source driving the model. In the

next few sections the requirements of the process model are investigated, which in this case

is a simple pure-tone with time varying amplitude, frequency and phase.

4.3 INPUT SIGNAL DEFINITION

Speech represents the major complex acoustic stimulus for most humans. Speech waveforms

can be viewed as a sum of sinusoids, which have temporal and spectral units. Frequencies

created by the vibration of the vocal folds are called voicing fundamental frequency and fre-

quencies at which the vocal tract resonates are called formant frequencies. A phoneme is

the basic auditory unit of speech allowing for the identification of the difference between the

words had, head, heed and hid. Most phonemes differ in the various frequencies of the vari-

ous formants. While for most vowel sounds the formant frequencies stay constant over time,

in the case of most other phonemes various formant frequencies do change. These changes

however occur relatively slow in time and formant frequencies can stay constant for between

approximately 10 ms to 100 ms (Cole, 1980; Yost, 2000). Another interesting phenomena is

that no more than 3 to 5 fundamental formant frequencies are required to correctly identify

a phoneme (Cole, 1980). For example the vowel /e/ has formants located at approximately

500 Hz, 1.8 kHz and 2.6 kHz respectively (Yost, 2000).

Speech is a particular form of acoustic stimuli and can be divided into two distinct types

(e.g., Haykin, 1994):

1. Voiced sounds: The source of excitation is pulse like and periodic where voiced sounds

during vowels are characterised by quasi-periodicity, low-frequency content, and large

amplitude.

2. Unvoiced sounds: The source of excitation is noise like, characterised by randomness,

high-frequency content, and relatively low amplitude.

The next step is to simulate an acoustic signal based on a model of speech, which is defined

below.
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4.3.1 Input Signal Definition

The most complex signal the auditory system has to contend with, namely speech, can be

represented by three to four formant frequencies spread across the frequency range in a par-

ticular manner. Speech can be subdivided into voiced and unvoiced sounds, as was already

mentioned.

Creating a signal model to generate both voiced and unvoiced signals at the same time would

be ideal, since it would represent the true nature of a speech signal. This would however

require two processes, one quasi-periodic in the low-frequency range and one random in the

high-frequency range. Common speech synthesisers switch between the two models depending

on the type of speech signal being modelled (Haykin, 1994). To avoid such a complex model

of the two stimuli types only the more complex voiced sounds are considered. The unvoiced

sounds are easily simulated as shown by Moore (1972) and Haykin (1994) where a white-noise

source drives a continuous-time first-order linear time-invariant system in the form of

X(s) =
a

s + a
. (4.1)

While it is easier to model a random process stochastically, signals that are more determinis-

tic and quasi-periodic by nature provide for a more challenging task in modelling. The signal

model in this case is taken to be a close representation of the envelope of a formant (with

harmonic structure) found in speech signals. Besides some slight alterations to the nature of

a true formant, a strict set of conditions is defined. This simplifies the signal model without

loosing the desired functionality, namely, a periodic signal changing randomly in amplitude,

frequency and phase.

The input signal to the system is defined as being:

1. A single periodic sinusoid with varying amplitude (r), frequency (ω) /2π and phase (φ)

with time, which represents the envelope of a formant,

2. where the formant is constant over a specified time window before an instantaneous

frequency “jump” occurs.

3. Amplitude changes occur simultaneously with the frequency and phase changes,
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4. where both the amplitude and frequency are taken to be Gaussian random variables

and the phase a uniformly distributed random variable.

5. The signals bandwidth is limited to 500 Hz.

The signal can be thought of as modulating a particular amplitude (r) (measured in volts)

with a carrier frequency (ω) /2π (measured in Hertz) by means of amplitude modulation

(AM), as is discussed later in the section, where the magnitude and position (in the spectral

band) stays constant for a period of time after which the formant frequency changes again.

Although speech is normally band limited to 3.2 kHz as in the case of the analogue telephony,

this speech signal was limited to 500 Hz for the following reason:

1. The speech signal model is practically more realisable due to a reduced bandwidth

translating to a smaller number of samples.

In order to estimate the behaviour of the speech signal under noisy transmission conditions,

no noise is specifically added to the signal itself. Although this in not a very realistic approach

it serves a special purpose, namely to investigate how reliable the communications within the

central auditory nervous system have to be in order to be able to estimate the stimulus to

a certain degree. This is the common communications engineering approach to simulate the

reliability of any transmission system, given a particular noisy or unreliable channel.

Since the characteristics of the speech signal model have now been defined, a stochastic

model can be derived. The stochastic model forms an integral part of the internal model of

the Kalman filter as was mentioned in Section 1.4 and is derived below.

4.3.2 Stochastic Input Signal Analysis

The aim of analysing the source signal as a stochastic process is to facilitate understanding

of the statistics of this speech signal. This paves the way to finding a shaping filter for the

speech signal in Chapter 6.
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Keeping this in mind the voiced sounds are defined as being a quasi-periodic random signal

with a large amplitude and low frequency, stochastically defined as

x(t) = r cos(ωt + φ), (4.2)

where a bold typeface represent a continuous random variables, r represents the random

amplitude, ω the random frequency and φ the random phase. If it can be assumed that the

variables r, ω and φ are statistically independent from each other with φ being uniformly

distributed over the interval (−π, π), it can be shown that the autocorrelation function can

be found by setting

ψ(t1, t2) = E [x(t1)x(t2)] ,

= E [r cos(ωt1 + φ)r cos(ωt2 + φ)] , (4.3)

and given the trigonometric identity

cosα sinβ =
1
2

[cos(α− β) + cos(α + β)] , (4.4)

Equation (4.3) can then be solved as:

ψ(t1, t2) = E
[
r2

]
E

[
1
2

[cos(ω(t1 − t2)) + cos(ω(t1 + t2) + 2φ)]
]

. (4.5)

Using the trigonometric identity

cos(α± β) = cosα cosβ ∓ sinα sinβ, (4.6)

the fact that

1
2π

∫ π

−π
cos 2φ dφ = 0, (4.7)
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and

1
2π

∫ π

−π
sin 2φ dφ = 0, (4.8)

the autocorrelation of the random process in Equation (4.2), assuming only a uniformly

distributed phase between (−π, π), is then given by

ψ(t1, t2) =
1
2
E

[
r2

]
E [cos [ω(t1 − t2)]] . (4.9)

If the process in Equation (4.2) is wide sense stationary (WSS) then ψ(t1, t2) = ψ(τ).

The autocorrelation function of the random process (Equation (4.2)) can now be evalu-

ated, given different distributions for the first and second expectation in Equation (4.9). The

autocorrelation function or the power spectral density (PSD) function uniquely describes any

random process. In this case the autocorrelation function of x(t) in Equation (4.2) is of spe-

cial interest. It describes how the combination of the random variables r, ω and φ behaves

as one single random variable. By determining x(t) in terms of the amplitude, frequency and

phase an implicit solution is found for the mixing of random variables. Thus not three, but

only one process needs to be simulated, simplifying the model considerably as will be evident

in Chapter 6.

To investigate how the three random variables behave, appropriate distributions have to

be found for each one of them. The derivations are limited to the Gaussian and uniform

distributions resulting in a very useful outcome later. For the first term, only the Gaussian

distribution will be evaluated while for the second term both the uniform and Gaussian dis-

tributions will be evaluated. In particular, if the amplitude r is a Gaussian random variable

(RV) with N(0, σ2
r), where N(µ, σ2) is defined as a Gaussian random variable with mean µ

and variance σ2, then

E
[
r2

]
=

∫ ∞

−∞
r2 1√

2πσr

e−r2/2σ2
r dr,

=
2√

2πσr

∫ ∞

0
r2e−r2/2σ2

r dr. (4.10)
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Given that

∫ ∞

0
x2 e−ax2

dx =
1
4a

√
π

a
[a > 0] , (4.11)

it follows that

E
[
r2

]
=

2√
2πσr

[
σ2
r

2

√
2σ2

rπ

]
,

= σ2
r

[
σ2
r > 0

]
. (4.12)

If the second term in Equation (4.9) is a uniform RV with E [x] = 0 and E
[
x2

]
= f2

c /3 then

E [cos(2πfτ)] =
1

2fc

∫ fc

−fc

cos(2πfτ) df ,

=
1

4πfcτ
[sin(2πfτ)]

∣∣∣∣∣
fc

−fc

,

=
sin(2πfcτ)

2πfcτ
. (4.13)

If τ = 1/Ts, in other words, if the continuous RV is sampled at the Nyquist rate then

E [cos(2πfτ)] = 0 thus the samples will be statistically independent of each other. On the

other hand if the second term in Equation (4.9) is a Gaussian RV with N(0, σ2
f ) then

E [cos(2πfτ)] =
∫ ∞

−∞
cos(ωτ)

1√
2πσf

e−ω2/2σ2
f dω, (4.14)

and given that

∫ ∞

0
cos(bx) e−ax2

dx =
1
2

√
π

a
e−b2/4a [a > 0] , (4.15)
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Equation (4.14) reduces to

E [cos(2πfτ)] =
2√

2πσf

∫ ∞

0
cos(τω) e−ω2/2σ2

f dω,

= e−(τσf )2/2. (4.16)

Thus for the uniformly distributed random amplitude, phase process and Gaussian distributed

random frequency process the autocorrelation function is given by

ψ(τ) =
1
2
σ2
r

sin(2πfcτ)
2πfcτ

, (4.17)

and for the Gaussian-distributed random amplitude, frequency process and uniformly dis-

tributed random phase process the autocorrelation function is given by

ψ(τ) =
1
2
σ2
r e−(τσf )2/2. (4.18)

From Equation (4.17) it follows that the autocorrelation function is a sinc function, decreasing

with increasing τ . The zero-crossings of the autocorrelation function are at

τ = fc,
1
fc

,
2
fc

, · · · (4.19)

This has the implication that if Equation (4.17) is sampled at

Ts = τ = fc,
1
fc

,
2
fc

, · · · (4.20)

then the successive samples are uncorrelated and statistically independent.

Both stochastic models given by Equation (4.17) and Equation (4.18) are based on the as-

sumption that the random variable f has a zero mean. In order to find a more general model

with an arbitrary, non-zero mean µ for the random variable f , the second term in Equation

(4.9) is derived such that
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E [cos(2πfτ)] =
∫ ∞

−∞
cos(ωτ)

1√
2πσf

e−(ω − 2πµ)2/2σ2
f dω. (4.21)

Performing variable substitution in Equation (4.21) by letting

u = ω − 2πµ

du = dω, (4.22)

Equation (4.21) now becomes

E [cos(2πfτ)] =
1√

2πσf

∫ ∞

−∞
cos [(u + 2πµ)τ ] e−u2/2σ2

f du. (4.23)

Keeping in mind that the cosine term in Equation (4.23) can be expanded such that

cos(A±B) = cosA cosB ∓ sinA sinB, (4.24)

Equation (4.23) can be expanded to

E [cos(2πfτ)] =
1√

2πσf

[
cos(2πµτ)

∫ ∞

−∞
cos(uτ) e−u2/2σ2

f du−

sin(2πµτ)
∫ ∞

−∞
sin(uτ) e−u2/2σ2

f du

]
. (4.25)

Using the definite integral solutions

∫ ∞

0
cos bx e−ax2

dx =
1
2

√
π

a
e−b2/4a [a > 0] , (4.26)

and

∫ ∞

−∞
sin bx e−ax2

dx = 0, (4.27)

Electrical, Electronic and Computer Engineering 53

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 4 Signal Definition and Decomposition

Equation (4.25) now reduces to

E [cos(2πfτ)] = cos(2πµτ) e−(τσf )2/2. (4.28)

The autocorrelation of Equation (4.28) is now of a periodic nature rather than just an ex-

ponentially decaying function. The autocorrelation function based on Equation (4.12) and

Equation (4.28) can now be written as

ψ(τ) =
1
2
σ2
r cos(2πµτ) e−(τσf )2/2. (4.29)

To see why the derivation of the autocorrelation function is so important it has to be realized

that there is one problem with the stochastic model in Equation (4.2) concerning this im-

plementation. In order to obtain the autocorrelation function Equation (4.17) and Equation

(4.18) by inserting the appropriate distributions into Equation (4.2), at least one distribution

inserted is non-white. In Subsection 1.4.3, one of the requirements of the shaping filter is that

a white-noise source has to drive the shaping filter. This requires two steps.

First, the white-noise source random variable x has to be converted to a uniform random

variable by

u = Fx(x), (4.30)

where Fx is the cumulative distribution function (CDF) of the random variable x. Then

the uniform random variable u in the interval (0,1) needs to be transformed to the desired

random variable y with known CDF Fy by letting

y = F−1
y (u), (4.31)
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Thus, in order to realize the random process given in Equation (4.2), shaping filters trans-

forming all non-white random variables to white ones would be required in the configuration

shown in Figure 4.2.

)(xFx )()1( uFy
−�

�
�

Figure 4.2: Systematic process required to convert non-white-noise source x to white-noise

source y.

However, a better alternative exists. Equation (4.18) can be represented by a special form of

the Gauss-Markov process as will be shown in Chapter 6. The Gauss-Markov is a nth-order

process that produces an autocorrelation function similar to Equation (4.18) when driven by

a white-noise process.

The speech signal has been defined (Subsection 4.3.1) and a stochastic model derived (Sub-

section 4.3.2). The next logical functional unit that needs to be designed in the model of the

auditory system in Figure 4.1 is the signal decomposition functional unit.

4.4 SIGNAL DECOMPOSITION MODEL

The signal decomposition model in Figure 4.1 has the task to perform a similar function to

that of the basilar membrane and the nerve fibers innervating the inner haircells. From Chap-

ter 2 it is evident that the travelling wave of the basilar membrane vibrates with a maximum

amplitude at a location along the cochlea that is dependent on the frequency of stimulation.

Each nerve fiber is most sensitive to a particular frequency and the individual fibers within

the auditory nerve are also organised according to the particular frequency at which they

are most sensitive and the location along the cochlea at which they innervate haircells. The

auditory nerves are thus organised topographically, which is known as tonotopic organisation

or place theory.

The basilar membrane as such can thus be seen as a spectrum analyser spreading the in-

formation of the spectrum of the signal across a large number of neural channels. This is the

primary function of the signal decomposition model. But before such a design can be made,
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an in-depth understanding of how a real signal with amplitude, frequency and phase can be

spilt in the frequency domain, needs to be gained.

4.4.1 Signal Decomposition Fundamentals

In order to be able to successfully break a signal into its most elementary components,

knowledge of the fundamental signal characteristics is of importance. Any sinusoid can be

specified completely by its amplitude, frequency and phase:

x(t) = A sin(2πft + φ). (4.32)

For any periodic signal there exists a unique Fourier series (Ziemer, Tranter and Fannin,

1998), which for the trigonometric case is given by

x(t) = a0 +
∞∑

n=1

an cos(2πnf0t) +
∞∑

n=1

bn sin(2πnf0t), (4.33)

where the cosine and sine terms are called the basis function, a0 the time average and f0 the

fundamental frequency. Equation (4.33) implies that every periodic signal can be represented

by a sum of harmonically related sinusoidal terms. In the frequency domain the periodic signal

can be represented as frequency components at 0,±f0,±2f0 . . ., which make up the spectrum.

At this point it should be obvious to the reader that one method of extracting all infor-

mation required to successfully reconstruct a periodic signal with an amplitude, frequency

and phase is to extract the harmonically related sinusoidal terms. One option that follows

logically from a Fourier series is to divide the spectrum in frequency bands centred around

the frequency components 0,±f0,±2f0 . . .. The frequency resolution is dependent on the ob-

servation window in the time domain. By increasing the observation window the frequency

resolution increases but the temporal resolution decreases. For example, knowing that for-

mant frequencies are only static for a period of approximately 20 ms and assuming the input

signal to be a pure tone situated at 300 Hz, the main-lobe width of the signal in the fre-

quency domain would be 100 Hz allowing for no greater frequency resolution than 100 Hz.

By increasing the observation window the frequency resolution would increase but spectral

“smearing” would occur, a term given to changes in amplitude, frequency or phase taking
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place during the observation window period.

Nevertheless, dividing the spectrum in frequency bands can be done by applying a filter

bank to the incoming signal, where each filter occupies a specific frequency band. The result

is a group of frequency components that can now be transmitted separately and combined

at any stage in terms of a Fourier series to represent the original signal.

4.4.2 Filter Banks

Most common spectral analysis/synthesis models in auditory signal processing applications

utilise a bank of filters closely related to the filtering properties of the basilar membrane

such as the gammatone and gammachirp filters (Irino and Unoki, 1999). The gammachirp

filter is an extension of the popular gammatone filter, where the gammachirp filter extends

the symmetric amplitude response of the gammatone filter to an asymmetric one. Figure 4.3

shows the frequency response of the basilar membrane closely modelled by a gammachirp

filter.
���������
	��
���

��� �����
���
���

Figure 4.3: Frequency response of points along basilar membrane. Reproduced from Irino

& Unoki (1999).

The gammachirp filter bank extends logarithmically in frequency, which can be closely linked
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to logarithmic tonotopic organisation in the cochlear (Yost, 2000). However, in order to keep

the signal decomposition functional unit as generic as possible the spectral bands of the filter

banks in this dissertation are assumed to be linearly spaced in frequency and symmetrical

around the centre frequencies. The individual pass-bands are identical in shape and can be

thought of as a base-band filter being translated up in the frequency domain to the required

centre frequencies.

Another study that supports a filter bank theory as far as signal decomposition is concerned

is the findings by Rieke et al. (1997) that auditory neurons tuned to high frequencies are

sensitive to fluctuations in the envelope of the waveform as seen through a bandpass filter.

There is thus enough evidence supporting the theory that the basilar membrane response

combined with particularly tuned neurons, performs the function of an analysis filter bank.

4.4.3 Signal Decomposition Tools

In order to model the spectral analysis function of a bandpass filter bank different techniques

can be used. Given below are some of the tools available. Popular transforms are the fast

Fourier transform (FFT) (Haykin, 1994; Ziemer et al., 1998; Oppenheim and Schafer, 1989),

fast Hartley transform (Le-Mgoc and Vo, 1989), direct cosine transform (DCT) (Rao and

Yin, 1990; Watkinson, 1995), Chirp-z transform (Ziemer et al., 1998) and wavelet decom-

position (Vetterli, 1992; Daubechies and Maes, 1996; Walker, 1999). The input signal can

also be directly filtered by an infinite impulse response filter bank or finite impulse response

filter bank. The FFT is the most popular method for spectral analysis due to its fast and

efficient algorithm. DCTs are popular in video image encoding seeing that returns double

the frequency resolution than that of a discrete Fourier transform (DFT). In this case the

infinite impulse response (IIR) filter bank approach was chosen because of its infinite nature

that can be easily implemented by a shaping filter as will become evident in Section 4.6 and

Chapter 6.
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4.4.4 System Decomposition Model

The auditory system model including the source and analysis filter bank is depicted in Figure

4.4.
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Figure 4.4: Signal decomposition diagram.

The signal generated by the source, defined in Subsection 4.3.1, is passed through a bank of l

frequency selective filters that subdivides the spectrum into equal but overlapping frequency

bands, which are assigned to specific neural channels. The frequency selective information

is then demodulated and low-pass filtered as motivated in Section 4.5, to extract the power

contents of the signal. The bandpass filter bank is implemented by a bank of IIR filters as is

discussed below.
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4.4.5 Infinite Impulse Response Filter

The infinite impulse response (IIR) filter can be written in the z -domain as

H(z) =

M∑

n=0

bnz−n

1−
N∑

n=1

anz−n

, (4.34)

and as the difference equation

y [k]−
N∑

n=1

any [k − n] =
M∑

n=0

bnx [k − n] . (4.35)

The coefficients an represent the delay terms in Equation (4.35) and determine the poles

of a linear time-invariant system. The coefficients bn on the other hand determine the zeros

of the linear time-invariant system. It is evident from Equation (4.35) that H(z) is not of

finite length in the sampled time domain. In this class of filters at least one non-zero pole

is not cancelled by a zero. The primary advantage of IIR filters over finite impulse response

(FIR) filters is that they typically meet a given set of specifications with a much lower fil-

ter order than a corresponding FIR filter. IIR filters unlike their higher-order counter parts

are non-linear phase filters, which make them unsuitable for any linear-phase applications.

Classical IIR filter types are Butterworth, Chebyshev Types I and II, elliptic and Bessel filters.

One of the greatest distinguishing factors between the aforementioned IIR filters and the

elliptic filter, which implements the filter bank in this dissertation, is the filter order required

to obtain a specified response. It also offers a steeper roll-off than the Butterworth or Cheby-

chev I, II filter. Its drawback is that it is equiripple in both the pass and stopband.

The IIR filter due to its infinite transfer function length can be thought of as a pth order

autoregressive (AR), moving average (MA) process, or ARMA process. The ARMA process

is discussed in Chapter 6 and its relevance to this IIR filter bank will become clear.

In this dissertation the bandpass filter bank was implemented by means of IIR filters. The

reason for choosing IIR filtering above any other signal decomposition tool mentioned in
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Subsection 4.4.3 is due to its two main advantages:

1. The IIR filter typically meets a given set of specifications with a lower filter order than

FIR filters and the elliptic filter produces the lowest order implementation of any type

of filter and

2. the IIR implementation is closely related to that of a shaping filter.

The first advantage stated is quite straightforward and the reader is referred to Oppenheim

and Schafer (1989) for more detail on the filter design. The last advantage stated is however

less clear and will be discussed in more detail below.

In any Kalman filtering problem the internal model of the Kalman filter needs to statis-

tically mimic the behaviour of the underlying process in order for the Kalman filter to be

the best optimal estimator for the problem. Usually the underlying process is subjected to

a system identification (SID) procedure (Gelb, 1984) from which a process can be derived

that mimics the behaviour of the process and fulfills the requirements of an internal model

for the Kalman filter. As was mentioned in Section 1.4, the real process needs to be modelled

by a shaping filter. In this dissertation, an alternative approach to SID or power spectrum

estimation is taken. The IIR filter bank is directly converted to a shaping filter. Not all filters

however can be directly translated into a shaping filter. Below, it will be shown why the FIR

filter is not a candidate for direct translation but the IIR is.

The discrete-time shaping filter can be derived from the continuous shaping filter given in

Chapter 1, Figure 1.7 and is shown in Figure 4.5.

kω
'
kx

ky
�

SFΓ SFH

SFΦ

�

�
1−z

Figure 4.5: Special form of discrete-time shaping filter.
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In the sampled time domain the recursive shaping filter equations are given by:

xk+1 = ΦSF xk + ΓSF ωk, (4.36)

and

yk = HSF xk. (4.37)

To simplify the problem it will be assumed for the moment that all matrices in Figure 4.5

are scalars. It is evident from Equation (4.36) that the input ωk is coupled by a variable ΓSF

to the recursive loop. ΦSF modifies the previous state estimate xk and feeds it back to the

coupled input. Keeping the difference equation Equation (4.36) in mind a look is now taken

at the FIR and IIR filters.

The FIR filter has, as its name suggests, an impulse response of finite length and can be

written in the z -domain as

H(z) =
M∑

n=0

bnz−n, (4.38)

or as a convolutional sum in the sampled time domain as

y [k] =
M∑

n=0

bnx [k − n] , (4.39)

where x[k] is an input. The IIR on the other hand as discussed in Subsection 4.4.5 has an

infinite impulse response in the z -domain given by

H(z) =

M∑

n=0

bnz−n

1−
N∑

n=1

anz−n

, (4.40)
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and a difference equation given by

y [k]−
N∑

n=1

any [k − n] =
M∑

n=0

bnx [k − n] . (4.41)

If it is assumed for a moment that HSF is simply one and the output is equal to the state

variable xn then it is apparent from Equation (4.39) that no feedback mechanism is present

in the case of the FIR filter. The IIR filter on the other hand possesses a feedback mechanism

through its numerator coefficients an (see Equation (4.41)). Thus, the first requirement of

transforming any filter to a shaping filter is that poles are present. In fact as is discussed

in Chapter 6 the order of the polynomial in the denominator has to be at least one more

than the numerator polynomial. In Chapter 6 the expansion from a scalar to matrix format

is discussed and how both numerator and denominator coefficients are accommodated in the

shaping filter by means of the observable canonical form, the controllable canonical form and

others.

In the next section it is illustrated how an IIR filter can be implemented by an ARMA

model.

4.4.5.1 ARMA model implementing a filter

An ARMA model can implement a transfer function of the form

H(z) =
D(z)
A(z)

=

q∑

n=0

d(n)z−n

1 +
p∑

n=1

a(n)z−n

. (4.42)

ARMA models are ideal for implementing rational and realisable transfer functions in state-

space form, something that is desired when designing the Kalman filter. They can also be

used in system identification problems, where an unknown process with an experimentally

determined autocorrelation function needs to be represented in state-space form. ARMA

models can however represent only stationary time series, something that is avoided by using

an autoregressive integrated moving average (ARIMA) process, of which the random-walk

process is a simple example.
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Given the transfer function Equation (4.42), if the number of coefficients in the numerator

(q) and denominator (p) are equal (p = q), where the denominator is normalised to one,

the transfer function Equation (4.42) is said to be proper and can be written in state-space

form as (Furuta, Sano and Atherton, 1988; Burghes and Graham, 1980; DeRusso, Roy and

Close, 1965)




x1(k + 1)

x2(k + 1)

x3(k + 1)
...

xp(k + 1)




=




0 0 0 . . . −ap

1 0 0 . . . −ap−1

0
. . .

...
...

...

0 . . . 1 0 −a2

0 0 . . . 1 −a1







x1(k)

x2(k)

x3(k)
...

xp(k)




+




d1 − a1d0

d2 − a2d0

d3 − a3d0

...

dp − apd0




u(k), (4.43)

and

y(k) =
[

0 . . . 0 1
]




x1(k)

x2(k)
...

xp(k)




+ d0u(k). (4.44)

However, if the number of denominator coefficients (p) is one more than the number of

numerator coefficients (q) so that q = p − 1 then the direct feed-through that exists from

the input to the output via the coefficient d0 in (4.44) does no longer exist and the transfer

function driven by the source u [k] is said to be strictly proper and can be written in the

discrete-time state-space form

x [k + 1] = Ax [k] + Bu [k] ,

y [k] = Cx [k] , (4.45)

where bi = di. The feed-forward matrix D in this case is zero, which is significant since the

state-space form of a shaping requires that the feed-forward matrix be either zero or be re-

served for the measurement noise process (see Figure 1.7 and Equation (1.1)), at least in its
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most fundamental form.

If a filter has the required number of numerator and denominator coefficients then the filter

coefficients b and a can be implemented in the observable canonical form where

A =




0 0 0 . . . −ap−1

1 0 0 . . . −ap−2

0
. . .

...
...

...

0 . . . 1 0 −a2

0 0 . . . 1 −a1




, (4.46)

B =
[

b1 b2 b3 . . . bp−1

]T
, (4.47)

and

C =
[

0 0 0 . . . 1
]
. (4.48)

By inserting Equation (4.46) to Equation (4.48) in the state-space equation, Equation (4.45),

and driving it with a source u [k] the filter is applied by means of an ARMA process, which

acts like a shaping filter.

Most systems are however not found in a strictly proper form since the number of poles

and zeros, which are part of the filter design process do not always result in the desired form.

Designing, for example, a digital IIR filter in MATLAB, results in a proper transfer function

rather than the desired strictly proper transfer function with no direct feed-through. In order

to convert the transfer function, the number of coefficients in the denominator has to be one

more than the numerator. Given a denominator polynomial of the form

z0 + a1z
−1 + a2z

−2 + . . . + an−1z
1−n + anz−n, (4.49)
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then by shifting the coefficients to the left by one and inserting a zero at z−n the polynomial

becomes

z1 + a1z
0 + a2z

−1 + . . . + anz1−n + 0z−n. (4.50)

This mathematical manipulation is nothing more than adding an extra pole to the system,

increasing the order of the system by one.

The transition from proper to strictly proper is illustrated with the following example. Given

a fifth-order lowpass elliptic IIR filter with a cutoff frequency of 220 Hz and a sampling

frequency of 600 Hz, the transfer function is given by

0.2745z5 + 1.198z4 + 2.244z3 + 2.244z2 + 1.198z + 0.2745
z5 + 2.035z4 + 2.401z3 + 1.422z2 + 0.5243z + 0.0505

. (4.51)

The magnitude and phase responses are shown in Figure 4.6.
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Figure 4.6: Magnitude and phase response plot.
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The pole/zero locations are depicted by Figure 4.7.
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Figure 4.7: Pole/zero plot of fifth-order elliptic LPF in proper form.

The filter can also be represented in state-space format as:

x [k + 1] = Ax [k] + Bu [k] ,

y [k] = Cx [k] + Du [k] , (4.52)

where

A =




−2.035 −0.600 −0.178 −0.066 −0.013

4.000 0 0 0 0

0 2.000 0 0 0

0 0 1.000 0 0

0 0 0 0.500 0




, (4.53)

B =
[

1 0 0 0 0
]T

, (4.54)
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C =
[

0.639 0.397 0.232 0.132 0.065
]

(4.55)

and

D = 0.065. (4.56)

By adding an extra pole to the system the transfer function of Equation (4.51) becomes

0.2745z5 + 1.198z4 + 2.244z3 + 2.244z2 + 1.198z + 0.2745
z6 + 2.035z5 + 2.401z4 + 1.422z3 + 0.5243z2 + 0.0505z

. (4.57)

The magnitude and phase plot of Figure 4.6 stay the same but as the pole/zero plot of Figure

4.8 illustrates an additional pole is found at zero.
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Figure 4.8: Pole/zero plot with additional pole at zero.
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Rewriting the transfer function Equation (4.51) into a state-space format results in

A =




−2.035 −0.600 −0.178 −0.033 −0.003 0

4.000 0 0 0 0 0

0 2.000 0 0 0 0

0 0 2.000 0 0 0

0 0 0 1.000 0 0

0 0 0 0 0.250 0




, (4.58)

B =
[

1 0 0 0 0 0
]T

, (4.59)

C =
[

0.275 0.299 0.281 0.140 0.075 0.069
]

(4.60)

and

D = 0. (4.61)

The matrix D is as expected now zero and does not feed the input directly to the output as

required by a strictly proper system of which the shaping filter is one.

An alternative method of finding a suitable transfer function describing the underlying pro-

cess is spectrum estimation discussed below.

4.4.5.2 Spectrum estimation as an alternative method

Usually the problem of mapping any filter to a shaping filter is not done by direct mapping

as was described in Chapter 4 due to the problems that were encountered, such as filter

coefficients not directly fitting into an ARMA process. Many Kalman filter designers do not

have the advantage of knowing the exact transfer function of the system they are trying to

track, since it may be unknown to them, for one or other reason. They then often revert to

techniques such as system identification by means of spectral estimation to find an equivalent

transfer function. Most of the shaping filter designs are done by using one or other power
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spectrum estimation technique as discussed in Addendum A.1.

In Figure 4.4 the signal after being passed through a bank of IIR filters is demodulated

and then low-pass filtered to find the power in each band. The power calculation principle is

described next.

4.5 POWER CALCULATION PRINCIPLE

It could be argued that in the auditory system, once the information has been split into spec-

tral bands, the amount of power or energy present within each band specifies the intensity

at a specific position within the spectral band. Seeing that the position is known due to a

tonotopic organisation of the neural channel, a power spectral map discussed briefly in Section

1.4 can be found. The resolution of the power spectral map is determined by the width of

the bandpass filters and forms part of the fundamental low-level information that is available

to the CANS. In this case no interest lies with how the information is used by the CANS or

even the CNS but more in how information can be coded reliably in such a configuration.

In order to obtain a scaled version of the power or energy, the signal coming from each

bandpass filter can be squared. This process can be seen as demodulating the band-passed

signal as will be shown next.

4.5.1 Demodulation

4.5.1.1 Perfect demodulation of all frequencies

In AM demodulation it is generally desired to demodulate a message signal m(t) with a

spectrum centred around the carrier frequency fc, to baseband. In this case, the power in a

certain part of the spectrum as specified by the width of the BPF has to be estimated. A

message signal m(t) modulated by a carrier frequency fc can be given by

s(t) = Acm(t) cos(2πfct), (4.62)
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where the spectrum is given by

S(f) =
Ac

2
[M(f − fc) + M(f + fc)] . (4.63)

The demodulated signal is of the form (see Addendum A.2 for derivation).

d(t)AM = AcA
′
c

m(t)
2

[cosφ + cos(4πfct + φ)] . (4.64)

This process, called AM demodulation, demodulates a band centred around fc, to baseband.

The demodulated signal is then low-pass filtered to remove the high frequency component

found in Equation (4.64).

If a message signal m(t) is however demodulated by squaring the signal a slight alteration of

Equation (4.64) is required, resulting in

d(t)SQR = AcA
′
c

m(t)2

2
[cosφ + cos(4πfct + φ)] . (4.65)

When a sampled modulated signal is squared the demodulation process can be thought of as

the demodulation of each frequency component with itself and the other frequency compo-

nents in the band, which has the effect of demodulating every component of the spectrum to

the DC component with some additional unwanted components at other non-zero frequencies.

Thus all power that was found in the message signal is now found as a cumulative sum at

DC. However, for each frequency component a scaled version is found at twice the carrier

frequency as Equation (4.65) indicates. Cross-modulated frequency terms are also generated

by squaring the message signal. In order to obtain only the DC component, the demodulated

signal has to be low-pass filtered with a very narrow low-pass bandwidth. Some residue of

the unwanted frequency components is to be expected in the low-passed signal, something

that is investigated in more detail in Section 4.6.

4.5.1.2 Remarks on conversion from power units to Volt

In Section 4.3 the amplitude of the input signal was defined as being measured in volts. After

demodulation takes place the units of the demodulated signal becomes volts squared (i.e.
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power if measured over a 1 Ω resistor). However, in Chapter 5 it is required that the leaky

integrate-and-fire neuron be driven by a signal with units in volts. Since it was desired to

drive the LIF neuron directly by the demodulated signal, the magnitude of the demodulated

signal had to be converted to a value in volts. Thus, the relationship between the demodulated

signal and the LIF input is linear with a gain of one.
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4.6 SIMULATION

The aim of this section is to illustrate exactly how a speech signal defined in Section 4.3 can

be generated and then decomposed as shown in Figure 4.4. The speech model is evaluated

and the power spectral density (PSD) found, which will be compared to a stochastic model

found in Chapter 6.

4.6.1 Speech Signal Implementation

The quasi-periodic signal with random amplitude, frequency and phase was implemented

with the following specifications:

1. The random amplitude is a Gaussian RV with N(0 V, 1/6 V2),

2. where the random frequency is a Gaussian RV with N(307 Hz, 25 Hz2) and

3. the random phase is a uniform RV with zero mean on the interval (−π, π).

The signal jumps to the next random frequency every tskip = 20 ms. The amplitude was lim-

ited to have a maximum value of one by clipping all amplitudes above one and the frequency

variation was kept small in order to avoid too much clipping taking place, which would change

the statistics of the simulated signal considerably. The particular choice for a mean of 307

Hz, for the source signal will become apparent in the next few sections. The signal was gen-

erated by amplitude modulating the random amplitude with a random frequency and phase

as specified above. Every 20 ms a new amplitude, frequency and phase was chosen from the

specified distributions.

To generate the speech-like signal of a quasi-periodic nature, principles from AM were used.

AM can be thought of as modulating a signal m(t) with a carrier fc

c(t) = Ac cos(2πfct). (4.66)

The amplitude modulated wave can be described in the most general form by

s(t) = Ac [1 + kam(t)]] cos(2πfct), (4.67)

Electrical, Electronic and Computer Engineering 73

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 4 Signal Definition and Decomposition

where fc is the carrier frequency, Ac the carrier amplitude, ka the amplitude sensitivity and

m(t) message signal. By choosing

|kam(t)| < 1, (4.68)

the function

1 + kam(t) > 0, (4.69)

avoiding overmodulation and phase reversal.

Once the message signal has been amplitude modulated it is passed through the IIR filter

bank. By implementing the speech signal the following results can be obtained.

4.6.1.1 Speech signal implementation results

The source signal having the characteristics of a speech signal is simulated and plotted in the

time and frequency domain. The autocorrelation is also determined and plotted in terms of

time differences between samples (τ).
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Figure 4.9 depicts the generated random source signal as a function of time, taken over an

arbitrary 1 s interval.
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Figure 4.9: Random speech-like source signal.

The quasi-periodic signal has a constant amplitude and frequency over a period of 20 ms at a

time, where the magnitude of the signal is never larger than 1. The signal has the appearance

of that of a speech signal because of its quasi-periodic nature and its clearly distinct fixed-

interval formant frequencies. Unlike a true speech signal (Cole, 1980) no drifting of formant

frequencies occurs and only one formant is present at a time.
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In Figure 4.10 the PSD is shown as a function of frequency from 0-700 Hz.
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Figure 4.10: PSD of source signal.

The Yule-Walker (Marple, 1987; Kay, 1988) algorithm was used to estimate the PSD of the

random process. The power has the approximate form of a Gaussian distribution, centred

roughly around 300-310 Hz with a peak average power of roughly -28.0 dB/Hz over an inter-

val of 50 s.

The PSD is a clear indication of the average formant frequency behaviour of the generated

speech signal over an arbitrary 50 s interval. Over a 50 s interval the formant had changed

2500 times and was primarily located around the centre frequency of 307 Hz as defined in

Subsection 4.6.1
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The normalised autocorrelation function of the random input signal is shown in Figure 4.11.
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Figure 4.11: Normalised autocorrelation function of input signal.

The autocorrelation function of the simulated signal exhibits a periodic behaviour, where the

peaks are situated at ± 3.25 ms, ± 6.5 ms and ± 9.75 ms from τ = 0. The autocorrelation

function plot also indicates the quasi-periodic nature of the random input signal over a 20

ms interval. The particulars of the periodic behaviour of the autocorrelation function are

required in Chapter 6 for the design of the Gauss-Markov model.

In the next section the signal extraction functional block is simulated by implementing a

bank of elliptic filters.
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4.6.2 IIR Filter Implementation

The IIR filter bank was chosen with the following specifications:

1. The number of denominator coefficients (n) is one more (m = n− 1) than the number

of numerator coefficients (m) and

2. the centre frequencies of filters start at 300 Hz and increase in 15 Hz steps.

3. The filter bandwidths are increased according to a desired overlap rather than a change

of centre frequencies,

4. where 0 % overlap corresponds to the -6 dB bandwidth touching the - 6 dB points of

the adjacent filters and

5. where 50 % overlap corresponds to a 50 % overlap in the -6 dB bandwidth points of

adjacent filters.

4.6.2.1 Filter bank results

In this section the third-order elliptic IIR filter bank for the first three adjacent filters starting

at 300 Hz centre frequency representing three neural channels are shown. The filter charac-

teristics are plotted as magnitude and phase plots. Only the first three filters were plotted

seeing that the pattern repeats itself for filters lying higher up in the frequency band.
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In Figure 4.12 the frequency response (magnitude plot) is depicted for the case where the

filters, as defined, overlap by 0 %.
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Figure 4.12: Frequency response of third-order elliptic bandpass filters overlapping by 0%.

The three filters are centred at 300, 315 and 330 Hz. Their -6 dB bandwidths are 14.9 Hz

and they overlap at 307.5 and 322.5 Hz. The passband ripple is measured to be 0.2 dB and

the stopband -30 dB. The phase plot indicates a non-linear phase response.
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In Figure 4.13 the frequency response is depicted for the case where the filters overlap by 50

%.
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Figure 4.13: Frequency response of third-order elliptic bandpass filters overlapping by 50%.

The three filters are centred as in the case of 0 % overlap at 300, 315 and 330 Hz. The -6 dB

bandwidths are however now approximately 30.23 Hz. The -6 dB points of filter 1 (left) are

285.05 and 315.28 Hz, for filter 2 (middle) they are 300.04 and 330.27, and for filter 3 (right)

315.03 and 345.26 Hz. By the definition given in Subsection 4.6.2 the percentage overlap is

calculated to be 50 %. The phase response indicates a non-linear phase. In this dissertation

only a single channel implementation will be investigated (50 % overlap).
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The filter situated around 300 Hz is used as the default filter with corresponding state-spaces

matrices

A =




0 0 0 0 0 0 0

1 0 0 0 0 0 −0.946

0 1 0 0 0 0 5.105

0 0 1 0 0 0 −12.073

0 0 0 1 0 0 15.904

0 0 0 0 1 0 −12.297

0 0 0 0 0 1 5.2968




, (4.70)

B =
([

−3.343 11.895 −13.918 0.000 13.918 −11.895 3.343
]
· 10−3

)T
, (4.71)

C =
[

0 0 0 0 0 0 1
]

(4.72)

and

D = 0. (4.73)

In the next section the LPF used for removing any non-DC components as specified in

Subsection 4.5.1 is shown. The results of a simple demodulation procedure in conjunction with

the LPF is shown to illustrate how the filter implemented by the MATLAB filter function

and an ARMA process compare to a theoretically calculated one.

4.6.3 Power Extraction and Low-pass Filtering Results

The extraction of the power of a particular spectral band is obtained in two steps, squaring

and low-pass filtering. To compare how well this two-step process is approximate by the

simulated process, power from a simple modulated signal is extracted.
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The magnitude and phase response of the lowpass filter are shown in Figure 4.14.
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Figure 4.14: Magnitude and phase response of lowpass demodulation filter.

The filter’s 3 dB cutoff point is at 2 Hz with a passband ripple of 0.06 dB and a stopband

attenuation of 40 dB. The phase response is non-linear.

The state-space equations of the lowpass filter, in Figure 4.14 are given by

A =




0 0 0 0

1 0 0 0.996

0 1 0 −2.991

0 0 1 2.996




, (4.74)

B =
([

0.122 −0.122 −0.122 0.122
]
· 10−3

)T
, (4.75)

C =
[

0 0 0 1
]

(4.76)
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and

D = 0. (4.77)

4.6.3.1 Power extraction results

To demonstrate how the demodulation procedure extracting the power as discussed in Sub-

section 4.5 performs in the case of a pure-tone modulated to a carrier frequency, three de-

modulation implementations were compared. The first is a theoretical solution provided by

ideal demodulation by means of squaring and then low-pass filtering the signal. The second

and third method implement the lowpass filter, in this case an elliptic LPF, by means of the

filter function in MATLAB and an ARMA process.

The following signal

s(t) = m(t) cos(2πfct),

=
1
2

cos(2π300t), (4.78)

was demodulated and low-pass filtered. Theoretically the power (over a 1 Ω resistor) should

be

P =
[
m2(t)

2

]2

= 15.625 mW. (4.79)
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In Figure 4.15 the random input signal of Figure 4.9, as observed after the demodulation and

low-pass filtering stage, is shown.
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Figure 4.15: Random speech-like signal after demodulation and lowpass filter.

Almost all the power is found within the first 3 Hz of the spectrum, where no significant

sidelobes are observed.

The pure sinusoid 0.5 cos(2π300t) was demodulated and low-pass filtered. Table (4.1) sum-

marises the results:

Table 4.1: Results for pure-tone demodulation.

Model Power (mW) Attenuation (dB)

Theoretically calculated 15.625 -

ARMA 14.132 0.436

MATLAB filter function 14.141 0.434

Thus roughly 10 % of the sidelobe power is lost when low-pass filtering the squared signal,

where the ARMA model attenuates 0.5 % more than the filter function in MATLAB.
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4.7 DISCUSSION AND CONCLUSION

In this chapter the source signal and the extraction of bandlimited power by means of a bank

of elliptic filters was designed and evaluated.

The random test signal, in this case a speech signal as defined in Subsection 4.3, was de-

signed and later implemented in Chapter 7. The autocorrelation function given in Figure

4.11 indicates that a quasi-periodic random process is generated by the source model. The

PSD plot shown in Figure 4.10 shows that the formant frequency indeed changes randomly

with time and is centred around 307 Hz with a Gaussian-like distribution. The source signal

thus satisfies the design requirements of a formant frequency changing randomly in ampli-

tude, frequency and phase. A matching stochastic signal model for the speech model is found

in Chapter 6, when the estimator model is designed.

The bandpass and demodulation filter for power extraction purposes meet the specifications

given in Subsection 4.6.2. The loss of power in the demodulation filter is minimal and can

be adjusted by adding an overall gain to the filtered signal. The ARMA process introduces a

slightly larger loss than the filter function in MATLAB.

Although the bandpass filters were chosen to start at a centre frequency of 300 Hz it is

by no means required that they should be positioned at such a frequency. The positions were

chosen arbitrarily in order to underline the generic nature of the system. The bandwidths of

the bandpass filter banks are also fixed in size suggesting a low frequency resolution across

the entire frequency range. Comparing this to the Weber fraction (Yost, 2000) where the

fraction ∆F/F is found as a function of frequency, frequency resolutions in the auditory sys-

tem as small as 1.6 Hz in the range 500 to 2000 Hz have been measured. As was mentioned in

Subsection 4.4.1 allowing for a small bandwidth results in “smearing” of the spectrum being

analysed, while a large bandwidth produces only a coarse frequency resolution. This would

suggest that the physiology in the auditory system utilises an adaptive filter bank (Irino

and Unoki, 1999) changing the spectral resolution as desired. The function of sharpening

the frequency selectivity is performed by the outer haircells as was mentioned in Chapter

2. However, to keep the system as generic as possible and to illustrate a principle, the fact

that a bank of filters is present, rather than to find the exact auditory system parameters

for such a filter bank, a small scale model with linearly spaced elliptic filters as simulated in

Subsection 4.6.2 suffices.
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Another essential observation made by analysing the power extraction procedure is that the

phase information is lost when squaring the bandlimited signal. Since the interest lies only

in the magnitude of the power and the frequency information, which is represented in the

tonotopic organisation of the filter banks and the neural channels, phase is of no concern

here. The information of the speech signal is thus extracted in a generic way, by retaining

both power and frequency information.
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CHAPTER 5

ENCODER, DECODER AND CHANNEL MODELS

5.1 AIM OF THIS CHAPTER

A model for the source signal and the auditory system, excluding the inner haircells, was

designed and simulated in Chapter 4. The aim of this chapter as shown in Figure 5.1 is to

design an encoder model representing the mechanical to neural transduction at the inner

haircells, a channel and noise model that is linked closely to the biology of the auditory nerve

bundle and the noise introduced by unreliable neurons.
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Figure 5.1: The coding/encoding, channel noise and decoding functional units (shaded), are

designed and evaluated in this chapter.

A decoder is then designed to estimate the signal at the encoder input in order to evaluate

the performance of the encoder/decoder combination in the presence of noise. The encoder,

neural channel and decoder are the only parts of the complete system where the physiology

is implemented without generalisation. It is the central block, as far as the dissertation is

concerned, in that it subjected to a fixed set of constraints commonly found in the biology

and physiology.
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5.2 INTRODUCTION

The auditory system model found in Chapter 4 connects to the CANS via the inner hair-

cells. The CANS consists of an intricate network of neurons that transmits neural messages

from one location to another as required. As was mentioned in Chapter 2 an auditory nerve

bundle carries the information contained in the spike trains to the CN and from there to

the trapezoid body and superior olivary complex. The auditory nerve bundle thus forms a

channel between the inner haircells and the CANS. The information channel is subjected to

noise, to be investigated in this chapter.

In order to model this part of the auditory system, models for the encoder and channel

have to be found. Although it is unlikely that signal reconstruction as such takes place in

an actual neural system, a similar process is present that in some way or another extracts

information from the discrete-time sequence and converts it to a continuous signal. For ex-

ample the fly (Rieke et al., 1997) can initiate a turn based on a visual motion signal alone

encoded as a train of spikes and output an analogue torque signal. The signal reconstruction

or decoding in this case aids in evaluating how well the rate code performs if transmitted

over a noisy and thus unreliable channel.

Before the encoder and decoder are designed the channel and noise models are defined.

5.3 CHANNEL AND NOISE MODELS

This investigation pivots around the channel model. While the surrounding blocks form an

integral part of the system as a whole, the channel and its underlying limitations were closely

linked to the biology and physiology of any type of biological system utilising the transmission

of spikes or action potentials as a form of communication between two points. The surround-

ing functional blocks were then designed to take advantage of channel characteristics and to

reduce the effects of unreliable transmission encountered between successive neurons.

First, the channel model is defined after which the definition of the noise model follows.
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5.3.1 Nature of Channel Model

The channel model can be derived by considering the physiology of the auditory nerve bundle.

5.3.1.1 Physiology of auditory nerve bundle

The auditory nerve bundle can be divided into afferent and efferent fibers, where in the case

of the afferent fibers information is carried from the organ of Corti to the brainstem and

brain, and in the case of efferent fibers information is brought from higher neural centres to

the periphery (Yost, 2000).

There are approximately 12 000 outer and 3 000 inner haircells (Spoendlin, 1974). 90 to

95 % of the afferent fibers innervate the inner haircells (Spoendlin, 1974) indicating that the

inner haircells carry information from the cochlea to the cochlear nucleus. It is however not

clear what role the outer haircells play but it has been observed by Moody, Stebbins and

Hawkins (1976) that damage of the outer haircells causes a significant loss in sensitivity and

frequency resolution. More recently effects of outer haircell impairment on auditory nerve re-

sponses have been documented by (Liberman, 1984; Liberman and Dodds, 1984a; Liberman

and Dodds, 1984b; Liberman and Kiang, 1984).

5.3.1.2 Redundancy

Human inner haircells synapse onto between 6 to 8 auditory nerve fibers (Nadol, 1983) and

cat inner haircells synapse onto up to 20 auditory never fibers (Liberman, 1982). This suggests

that a form of redundancy is present at this stage of the auditory system. Another form of

redundancy is provided by population codes, which were discussed in Chapter 3. To simplify

matters it is assumed that one haircell is innervated by only one nerve fiber. This reduces

the computational load placed on the model.

5.3.1.3 Spike rates

Each cell needs a certain time to recover between firings. The delay between successive spikes

is called the absolute refractory period or “dead-time” in which no other action potentials

or spikes can occur. The relative refractory period follows the absolute refractory period in
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which the nerve fiber is yet again sensitive to input stimuli but only to strong ones. Measured

spike trains observed by Johnson (1996) suggested a refractory period of 4 ms and a maximum

spike rate of 250 spikes per second. It has also been shown that theoretical maximum spike

rates of 300 to 1 000 spikes per second are possible given the maximum refractory periods of

3 ms to 1 ms (Flanagan, 1972; Rieke et al., 1997).

5.3.2 Noise Model

The noise model is one of the most complex models in this dissertation. The reason for this

is because of the daunting task of making sense of neural coding by observing how neurons

in the CNS code signal information and to distinguish the signal from the noise by observing

the firing patterns (Lestienne, 2001). As was already discussed in Chapter 3 it is not quite

clear what neural code is present in the CANS or CNS and unless a neural code can clearly

be found the boundary between signal and noise is vague.

In fact it was shown by Cecchi, Sigman, Alonso, Martinez, Chialvo and Magnasco (2000)

that noise is dependent on the type of message signal being coded by a neuron, where a

leaky integrate-and-fire (LIF) neuron (see Subsection 5.4.1) was used with a noisy thresh-

old voltage. The reliability of the neural coding mechanism was tested where the reliability

is defined as the ability to produce the same firing pattern when presented with the same

stimulus. While temporal patterns were unreliable when the injection current was constant,

they became more reliable with a random input current. Similar simulations by Tiesinga, Fel-

lous and Sejnowski (2002) showed that reliability was indeed dependent on the message signal.

The dependence of the variability of spike trains, given a particular message signal is however

not solely due to the noisiness of the neuron but can be attributed also to the fact that

neurons are tuned to certain types of inputs and not to others such as the phenomenon of

tuning curves in the CANS suggests (Yost, 2000). Although new methods are being found

(Schreiber, Fellous, Whimer, Tiesinga and Sejnowski, 2003; Alstrøm, Beierholm, Nielsen,

Ryge and Kiehn, 2002) to measure the reliability of neurons, they only underline the depen-

dency of spike generation on a message signal. Thus the source of “noise” requires careful

scrutiny as is done next.
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5.3.2.1 “Noisy” spike trains

The individual neuron’s action potential has an all-or-none characteristic, which means that

the amplitude of the neural discharge does not vary with the level of the stimulus. The

amplitude of the action potential magnitude is typically 100 mV in the squid (Hodgkin and

Huxley, 1952). The regeneration of action potentials at the axons continually compensate

for losses in action potential magnitude so that the action potential suffers no decreases in

amplitude (Saito and Noguchi, 1981; Rasminsky, 1978) during transmission over myelinated

and unmyelinated networks of fibers. Changes in the shape and size of action potentials are

thus not the source of noise but rather the intracellular noise and extracellular noise, where

the former characterises the noisy process of spike generation such as temperature and ion

fluctuations. On the other hand, the latter describes the reliability of the transmission of the

action potential across a “channel”, which in this case is across the axon and dendrites of a

neuron.

Intracellular noise

Intracellular noise is generally characterised by noisy thresholds, noisy reset positions, a noisy

integration process and synaptic transmission failure, where the last item signifies an all or

none loss of a spike (Verveen and Derksen, 1968; Verveen and DeFelice, 1974).

It has been shown by Azouz and Gray (1999) and Azouz and Gray (2000) that the mem-

brane potential fluctuations spans a range of 15-25 mV in cortical neurons but that these

fluctuations are remarkably synchronised among neighbouring cells (Lampl, Reichova and

Fenster, 1999), which could hint to higher underlying statistics rather than just randomness

or noise.

Extracellular noise

Extracellular noise is generally characterised by spike-time spreading. Spike-time spreading

occurs between successive neurons and is a function of retransmission delays and conduction

velocities given a particular type of axon or dendrite. These delays have shown to be in the

microsecond range in transcallosal fibers by Houzel, Milleret and Innocenti (1994) indicating

a highly reliable conduction process from one synapse to another.
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Much research has been done into measuring spike trains and determining the amount of

stochasticity present relative to the deterministic component to ultimately determine what

neural code might be implemented by various neurological communication channels (Kohn,

1997). Some have suggested that only rate information is coded by spike trains and when

corrupted by noise, results in a Poisson point process (Johnson, 1996; Snyder, 1975). In more

recent experiments with retinal ganglion cells of rabbits and salamanders, it was shown that

the spike trains could not be entirely characterised by their spike rates (Lestienne, 2001; Rieke

et al., 1997; Deco and Schürmann, 1999) and that an underlying temporal correlation was

present. This meant that the “noise” as described by Poisson distributed point processes was

indeed not entirely noise but hinted at an underlying higher-order encoding process. Deter-

mining the nature of stochasticity of a measured spike train is thus no trivial task and may

differ for different parts of the CNS.

Gaussian noise

The location of where noise is introduced during the neural coding and transmission process

was defined in the previous section by identifying both intracellular and extra cellular noise.

The statistics of the noise are however chosen to be of a Gaussian nature for all types of

noise present. This simplifies the noise model and avoids designing more non-white shaping

filters for the estimator in Chapter 6. The simplification made are similar to the ones im-

plemented by Bialek et al. (1991), Cecchi et al. (2000) and Tiesinga et al. (2002). Bialek et

al. for example introduced Gaussian jitter noise to the spike train with a standard deviation

of 2 ms where the maximum spike rate of the neuron lay between 100 and 200 spikes per

second. Cecchi et al. and Tiesinga et al. on the other hand introduced Gaussian noise during

the spike generation process by a LIF neuron, simulating a noisy threshold.

The limitations of the channel model are summarised next.

5.3.3 Channel Model Characteristics

Given the channel and noise models in Subsection 5.3.1 and Subsection 5.3.2 the limitations

can be summarised as follows:
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1. An action potential or spike is represented by a Dirac-delta function,

2. where the maximum spike rate of a single neuron is 500 spikes per second.

3. Both the absolute and relative refractory periods are equal to 1 ms (2 ms in total),

4. the type of noise is additive white Gaussian noise (AWGN),

5. the noise found on the different channels is statistically independent from one another

and

6. spike transmissions are unreliable and spikes are lost at random.

5.4 ENCODER, DECODER MODEL

5.4.1 Leaky Integrate-and-Fire Model

The leaky integrate-and-fire neuron model (LIF) is one of the more simple neuron models

found in the literature (Eliasmith and Anderson, 2003; Maass and Bishop, 1999) and is used

to encode a time-dependent variable. The neuron model takes into consideration the capac-

itance between the fluids at the inside and the outside of the cell membrane and both the

capacitive and leakage currents. The leakage current flows through a leakage resistor, model-

ling the effect of ion channels in the cell membrane, where sodium, potassium and chloride

ions migrate through.

In an electrical sense the neuron model can be though of as a current source driving a

parallel resistor/capacitor combination as shown in Figure 5.2.
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Figure 5.2: Leaky integrate-and-fire model.
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A mathematical interpretation of Figure 5.2 is

RC
dV (t)

dt
+ V (t) = RI(t). (5.1)

As the current gradually charges the capacitor the voltage across it, representing the action

potential of the incoming spike train, rises exponentially until reaching a voltage of I(∞)R.

The time required to reach a steady-state depends on the time constant τRC . In order to define

a spike, a threshold voltage Vth needs to be defined, which the rising voltage V (t) reaches at

time tf , signifying a spike time. After the neuron has fired, generating an action potential or

spike at the output, switch s2 closes for a refractory period τd inhibiting additional firings. In

this case the value to which the voltage V (t) is reset is taken to be zero. The action potential

generated by the LIF neuron can be defined independently from the circuit in Figure 5.1

since it only determines the incident at which a spike is created and not the shape of the

spike. In this case only the spike times are relevant (see Section 5.5).

5.4.2 Optimal Linear Estimators

After having chosen a particular coding strategy, the next step would be to see how the spike

trains can be utilised to reconstruct the original continuous-time signal. This enables one to

evaluate for instance how well a particular code performs in a noisy environment. Although

signal reconstruction may or may not be important for the brain, since so little is known

about how the brain uses the information coded by the spikes, it provides a tool to under-

stand its robustness to errors and the information rate at which it conveys its message.

The first question that comes to mind is: In what way can a continuous-time signal, en-

coded by discrete spike times possibly be decoded to obtain the original signal? A form of

interpolation is required, that predicts what the signal might have been, regarding a par-

ticular spike train. This clearly requires a probabilistic approach to the problem in that one

wants to find the probability of a particular signal s(t), given a particular sequence of spike

times {ti} or

P[s(t)|ti]. (5.2)
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In order of the probability of Equation (5.2) to be of any use, the signal has to be uniquely

defined by a particular spike train, resulting in a clearly distinguishable peak of the conditional

distribution of P. Any ambiguities might result in finding the incorrect waveform s(t). Using

maximum likelihood estimation (MLE) or finding the minimum mean-squared error (MMSE),

provides tools to estimate the original signal.

5.4.3 MMSE

For the MMSE estimator it is desirable to estimate the signal ˆx(t) by observing the spike

train

p(t) =
N−1∑

n=0

δ(t− tn). (5.3)

This requires that for the linear reconstruction

x̂(t) =
∫

K1(τ)
N−1∑

n=0

δ(t− τ − tn), (5.4)

to find the kernel K1 that provides the best estimate in the MMSE sense. Equation (5.4) can

be simplified to

x̂(t) =
N−1∑

n=0

K1(t− tn). (5.5)

The kernel Kn(t) specifies not only the nature of the neuron but also the nature of the signal

and its surroundings. The dependency of the kernel on time, allows for an adaptation in the

environment, but requires continuous updating of the kernel. Equation (5.5) however is a

linear reconstruction filter where a non-linear version would be of the form

x̂(t) =
∑

i

K1(t− ti) +
1
2

∑

ij

K2(t− ti, t− tj) + . . . . (5.6)

Higher-order terms can be modelled by K2,K3, . . . , Kn. A method for finding the best esti-

mation of x̂(t) by observing a spike train was developed by Kolmogoroff and Wiener (Rieke
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et al., 1997). In particular if the signal and noise are of Gaussian nature and the neuron has a

linear input/output relationship then an optimal linear estimator exists where the first kernel

is found to be

K1 =

E
[
x2

]

E [n2]
E

[
x2

]

E [n2]
+ 1

, (5.7)

where n is the noise signal and

SNR =
E

[
x2

]

E [n2]
. (5.8)

As soon as the information signal, the noise signal or both are not of Gaussian nature, optimal

linear prediction is not possible anymore, even if the model for the neuron is a linear one.

The statistics of the signal and its environment is thus of utmost importance when designing

a decoder. Knowledge of the exact intrinsical workings of the encoder are thus not necessarily

a prerequisite as was argued by Eliasmith and Anderson (2003) and Rieke et al. (1997), to

finding a suitable optimal linear predictor.

5.4.4 Correlation Times

The decoding strategies also depend on the correlation time. If the neural response produces

a dense spike train and the number of spikes relative to the correlation time is larger than

one, then the extrapolated knowledge surrounding a spike overlaps with other spikes, making

reconstruction not feasible. On the other hand, if the correlation time is very small then a

narrow reconstruction filter as seen in the time domain will be more prone to “jitter” noise.

The reconstruction filter for the case where the correlation time is small relative to the

ISI, can be found by the reverse correlated function, while it becomes a bad approximation

if the correlation time becomes too large. There thus exists a tradeoff between the two. From

a filter design perspective, a wide-band LPF found by using a very narrow impulse response

will allow for high frequency estimation. If the higher frequency components were however

predominantly noise, a narrower LPF would remove these components. The organism is how-

ever pressed for time thus a relatively fast decision time is desirable, which would make it
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prone to noise.

There is thus no ideal optimal linear predictor for all cases but it has been shown by Elia-

smith and Anderson (2003) that a filter for a shorter correlation time also works well for

longer correlation times. These results are however based on the assumption that no noise

was present on the spikes themselves. The optimal filter was also found to be non-causal,

something that is not biologically plausible. A spike is only allowed to influence the estimate

once it has occurred while the stimulus influences the generation of the spike before the spike

occurs. Causality however introduces delays in the estimation, something that has to be kept

in mind when evaluating the estimator.

Generally the coder model together with the decoder model are limited by the channel model,

which was defined in Section 5.3. In this case the channel is limiting the amount of infor-

mation that can be transmitted at any given time due to noise added to the system. The

upper bound of the channel capacity can be obtained by viewing the channel as a generic

digital communication system (Proakis, 1995; Haykin, 1994). It has been shown that by using

intricate coding schemes to encode the stream of information, a higher bandwidth efficiency

can be obtained. In the next few sections the type of discrete time to spike-time coding that

was implemented is discussed but first a look will be taken at issues related to the coder and

optimal estimators for spike trains.

5.4.5 Linear Estimators

Finding an optimal linear estimator has been the focus of many a research and has been

extensively documented by amongst others Rieke et al. (1997) and Eliasmith and Anderson

(2003). Optimality however suggests having found the best solution given a problem and

its set of limitations. The way performance is classified and measured shapes the results and

different methods result in different solutions. It is thus of utmost importance when designing

optimal estimators for spike trains, that certain criteria’s are adhered to, enabling a compari-

sons to results obtained previously by others.

The information theoretical approach by Shannon and Weaver (1949), provides a quanti-

tative measure of how much information was present at a receiver Y , given an input X.

Although the derivations by Rieke et al. (1997), Eliasmith and Anderson (2003) are made,
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given a Gaussian source and channel, these methods provide an upper bound to the amount

of information that can possibly be transmitted by means of a particular spike train. In this

chapter only a short look will be taken at optimal estimators, since they are required when

designing postsynaptic current (PSC) filters. The aim here however is not to find an optimal

estimator, but rather a physiological plausible estimator. Nonetheless, the optimal estimator

provides a useful comparison to the suboptimal PSC filter.

The derivation of the optimal estimator was included solely for the sake of interest and

can be found in Addendum A.3 with relevant references.

5.4.5.1 Postsynaptic current filter

The PSC filter, unlike the optimal filter derived by Eliasmith and Anderson (2003), is a

much more plausible explanation of how the physiology would decode a spike train. For one,

the optimal filter is a non-causal filter suggesting that decoding of a spike occurs before an

onset of a spike, something that is highly unlikely. The PSC on the other hand is a causal

filter. There are various waveforms that resemble the exponentially decaying PSC such as the

exponential kernel (Abbott, 1994)

K(t) =
1
τ

e−t/τ , (5.9)

and alpha-function kernel

K(t) =
t

τ2
e−t/τ . (5.10)

While the exponential kernel is the least complicated one of them, having only one variable, it

produces a discontinuity at the beginning, which is eliminated by the alpha-function kernel.

Unlike the optimal filter, the PSC filter has a very specific magnitude response, which is

not optimally chosen for each particular frequency. Thus an inferior PSC filter, in the MMSE

sense, would be expected, as compared to the optimal filter. Also since the magnitude response

is fixed to a particular value for τ an optimal τ for a particular ensemble of input signals

would be expected.
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Noisy spike trains in the context of the LIF neuron coding

As was discussed in chapter Section 5.3, two types of noise models were implemented, one

introducing “jitter” on each individual spike and another randomly dropping spikes. Noise is

an important aspect for spike train decoding, which needs to be considered when designing a

decoding filter. Since the optimal and PSC filters act as lowpass filters it is expected that high

frequency noise is successfully attenuated. However, the smaller the membrane time-constant

the larger the passband of the linear estimators becomes, which increases the noise sensitive

of the decoder. It is thus imperative to study the performance of a decoding filter under all

conditions in particular to investigate the effects of

1. spike-time “jitter”,

2. random discarding of spikes and

3. linear decoding errors due to a non-linear encoding process.

5.4.5.2 Coding the signal

The speech signal was decomposed into separate but overlapping spectral bands (see Chapter

4). In this dissertation the interest only lay in the amount of power found in a particular band,

which was obtained by demodulating the entire frequency content within a particular band to

a single DC component. Two variables need to be coded, the time-varying DC component and

the frequency at which the particular component is found. The frequency dependent spatial

representation (tonotopic organisation) implicitly “conveyed” the frequency dependency of

each spectral band. It was assumed that an external higher-level system inherently knows of

such a tonotopic organisation. Such an assumption is plausible since in the auditory system at

frequencies above 1 kHz (Rose, Brugge, Anderson and Hind, 1967), phase-locking diminishes

rapidly as the frequency increases and intensity coding becomes the dominant information

being transmitted via the spike trains. The time-varying DC component was coded by a LIF

neuron, resulting in a time-varying spike rate.

Even though only a single variable, the time-varying DC component, is coded by a time-

varying spike rate does not imply that specifically a rate code is begin used as defined in

Chapter 3. The reason for this is simple. For the LIF neuron (see Equation (5.1)) I(t) is the

time-dependent input variable. As was discussed in Subsection 4.4.1 for any periodic signal
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there exists a Fourier series and the Fourier series is a sum of sinusoids. A sinusoid can be

fully described by its amplitude, frequency and phase. Thus by encoding a sinusoid with the

LIF neuron by using Equation (5.1), three or more variables can be coded simultaneously

in a spike rate. The change in spike rate, as in the single variable case, carries additional

information about the signal, which when decoding takes place, can be extracted for signal

reconstruction purposes.

However, does the way the signal is coded, in this case using a LIF neuron to code a time-

varying DC component, not predetermine the type of code used? To identify the ambiguity

it will be argued for both a temporal code and a rate code.

In the case of a rate code, it can be argued that since only one variable is being coded

and the rate of spikes is proportional to the magnitude of the input current, the code being

used is a rate code. By averaging over a time window the spike rate can be extracted and noise

removed from the spike train. This decoder, a PSC filter can be thought of as an averaging

tool, where τ determines the width of the averaging window. But does the precise timing of

the spikes play any significant role here? Yes, if a sinusoidal input signal was coded by means

of a time-dependent spike rate, the spike rate would vary accordingly, where the position of its

maxima can be used to indicate both amplitude and frequency of the sinusoid. By averaging

over a window larger than the period of the signal, the identity of the sinusoid would be lost.

This suggests that spike-time intervals are of great importance, something that is associated

with a time code. Thus the neural code that is used here has both the characteristics of a

rate code and a temporal code. Thus by having refrained from choosing a particular code in

Chapter 3 a code having both rate and temporal characteristics has been discovered.
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5.5 SIMULATION

5.5.1 Introduction

In this section the reliability of neural coding implemented by a LIF neuron is evaluated in

terms of intracellular and extracellular noise. However, before this can be done a suitable PSC

filter has to be found. This is done by finding an optimal filter first from which intuitively

the design of the PSC filter follows. The focus in this case is on the biologically plausible

PSC filter since optimal decoding has already been investigated extensively by others (Rieke

et al., 1997; Eliasmith and Anderson, 2003).

The noise added to the spikes combines the effects of the noise sources discussed in Sub-

section 5.3.2. Although it was mentioned that intracellular noise is dependent on the type

of message signal applied only its effect on the spike train is implemented here. The “jit-

ter” added to the spike times combines the effect of a noisy threshold, reset position and

integration process all of whom are intracellular noise sources. The spike time spreading, an

extracellular noise source can also be included here, since spreading of the individual spikes

can be logically implemented by adding “jitter”. Synaptic transmission failures (intracellu-

lar noise) however cannot be simulated as a form of spike-time jitter. Instead an additional

method of dropping spikes is added to account for this type of noise.

5.5.1.1 Dropping of spikes

The dropping of spikes investigates the effect that a loss of spikes from the original spike

train has on the reliability of the signal being transmitted. Spikes are dropped by a uniformly

distributed all-or-none random process where each spike is assigned a random variable lying

between zero and one. A cutoff threshold is then picked between zero and one according to

the desired number of spikes that need to be dropped. The dropping of spikes simulates the

synaptic transmission failure that was discussed earlier.

5.5.1.2 Spike-time “jitter”

In order to investigate the behaviour of an error in the exact occurrence of spike times, each

individual spike was displaced by a random amount obtained from a Gaussian distribution
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with a fixed variance. The variance was chosen in such a way that the standard deviation of

the error was at most slightly larger than the smallest spike interval. No spikes were however

dropped if the position of two adjacent spikes were reversed in the process of generating

the position errors. This process can be seen as simulating the noisy threshold, noisy reset

positions and noisy integration process that was discussed earlier.

5.5.2 Leaky Integrate-and-Fire Model Implementation

5.5.2.1 Coding

In Addendum A.4 the behaviour of the LIF is derived and can be represented by the convo-

lution integral

V (t) =
R

τRC

∫ Tf

0
e−(t− t′)/τRCx(t′) dt′. (5.11)

In order to apply the convolution integral in the discrete-time domain, a discrete version of

Equation (5.11) is required, which can be realized in the form of a tapped-delay-line filter

implementation. Defining t = nTs and t′ = kTs where the filter impulse response (Tf ) is

assumed to be of finite length Tf = NTs.

The discrete-time form is given by

V (nTs) =
1
C

N−1∑

k=0

e−kTs/τRCx(nTs − kTs)Ts. (5.12)

The spike times are obtained from Equation (5.12) by observing when V (nTs) reaches the

threshold voltage, discussed in Section 5.4. The exact position in time in which the membrane

voltage reaches the threshold voltage is obtained by means of interpolation of which the

resolution is dependent on the temporal resolution of the integral. The resulting spike times

can be thought of as point processes at positions in time given by

p(t) =
N−1∑

n=0

δ(t− tn), (5.13)
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where tn represents the spike positions in time.

5.5.2.2 Suitable parameters

The values for the time constant τRC can be found in Deutsch and Deutsch (1993) and are

given in Table (5.1).

Table 5.1: Typical neuron model parameters (unmyelinated).

Component Value

MaxRate 500 Spikes/s

Vth 90 mV

R 4 kΩ

C 1 µF

τRC 4 ms

Care however has to be taken when using these values since for a maximum spike rate of 500

spikes per second a constant current of 57 µA is required. If the current is larger, the spike

rate will increase. The current source driving the resistor/capacitor combination can thus

be though of as being the voltage as found at the output of the lowpass filter (Section 4.5)

(measured in volts and limited to a maximum of 1 V peak) divided by an appropriate resistor

to limit the operation of the LIF neuron to the active region as will be shown in Figure 5.3.

5.5.2.3 Neuron pairs

One of the limitations of the LIF neuron implemented by Equation (5.11) is that the voltage

V (t) only rises above a certain threshold Vth if the input x(t) is positive. Similarly if the

threshold voltage and exponential function in Equation (5.11) would undergo a sign reversal,

then the voltage V (t) would only drop below the threshold voltage if the input signal were

to be negative. Any signal that has both negative and positive components thus requires two

LIF neurons to code both positive and negative values. It is however not unusual to find “on”

and “off” neurons encoding the same stimuli as was discussed by Eliasmith and Anderson

(2003), Bialek et al. (1991) and Rieke et al. (1997). Thus the total range over which the

neuron pair is active is now doubled and a centre of reference becomes less significant.
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In the outer ear, different types of spontaneous rate auditory nerve fibers are grouped to-

gether to code the mechanical to neural transduction of a single inner haircell. In the case

of a low frequency stimulus, which can drop below zero, the drive is simply lost by the low

spontaneous rate fibers. However, in the case of high spontaneous rate fibers, which have a

“DC bias” by virtue of their spontaneous firings, a negative input stimulus is coded as a drop

in discharge. However, at a conceptual level the exact biological method of mechanical to

neural transduction and the subsequent neural coding becomes less important since neuron

pairing or grouping of different spontaneous rate auditory nerve fibers only serves to increase

the dynamic range of the input stimulus.

Consequently, in this dissertation it was assumed that two neurons encode the positive and

negative parts of the signal separately. Even though the quantity to be coded (see Subsection

4.5.1), namely the amount of power within a spectral band, can intuitively never be negative

since the signal is squared mathematically, the impulse response of the LPF following the

demodulator does go negative. In the absence of positive power within the band, the neurons

will fail to fire unless a second neuron codes the negative power as well.

5.5.2.4 DC level offset

Using pairs of neurons coding signals having both negative and positive amplitudes is one

way of solving the problem. Another is to simply work with positive signals. Any signal that

does contain negative components is simply translated by a DC offset.

5.5.2.5 Dynamic range

From Addendum A.4, Equation (A.28) it is known that for a constant current I0

V (t) = RI0

[
1− e−(t− t0)/τRC

]
, (5.14)

where I0 represents the ionic current through the membrane and V (t) the membrane voltage

across the membrane surrounding a neuron (Deutsch and Deutsch, 1993).
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From Equation (5.14) the “on” neuron will thus only fire if

Imin >
Vth

R
, (5.15)

and a constant current of

Imax =
Vth

R(1− e−1/MaxRate·τRC )
, (5.16)

is required to produce the maximum spike rate MaxRate. The current driving the “on”

neuron thus has to be in the range

Vth

R
≤ I0 ≤ Vth

R(1− e−1/MaxRate·τRC )
. (5.17)

It is clear from Equation (5.17) that only the membrane time constant τRC and the maximum

spike rate determine the dynamic range of the coder. It is however evident from Equation

(5.17) that when the current is below Vth/R the membrane voltage V (t) will never reach the

threshold voltage to produce a spike thus operating in the inactive region as shown in Figure

5.3.
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Figure 5.3: Dynamic range of “on/off” LIF neuron pair without bias current.
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A slight adaptation of Equation (5.14) is required to ensure that any current waveform I0

over the entire range, Imin to Imax will produce a spike, which requires an input current in

the active region of Figure 5.3. This is achieved by adding a bias current Ibias so that

Imin + Ibias ≥ Vth

R
. (5.18)

Imin is in this case zero, since an identical pair of neurons is used, though with opposite signs.

Imin on the other hand represents the boundary between the two neurons, which is chosen

at zero. Equation (5.14) then becomes

V (t) = R [g · I0 + Ibias]
[
1− e−(t− t0)/τRC

]
. (5.19)

Equation (5.19) contains a bias term that moves the operation of the LIF neuron relative to

the input current I(t) into the active region. The gain (g) ensures that the combined current

of I0 and Ibias never exceeds some maximum value over which the spike rate stays constant

(region above active region in Figure 5.3). It is however evident that the non-linear region of

operation has now changed and has to be taken into consideration if a non-linear estimator

were to be found.

Given the parameters found in the physiology (from Table (5.1)), the range in which the

current can lie according to Equation (5.14) and Equation (5.19) is summarised in Table

(5.2).

Table 5.2: Dynamic range of I0 in a single LIF neuron (g = 0.61).

Equation µA µA dB

V (t) = RI0

[
1− e−(t− t0)/τRC

]
22.5 57.2 8.1

V (t) = R [g · I0 + Ibias]
[
1− e−(t− t0)/τRC

]
0 57.2 35.2

When a neuron pair is used, more than double the current range can be attained (35.2 dB

instead of 8.1 dB).
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The visual difference between the two equations in Table (5.2) is shown in Figure 5.4.
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Figure 5.4: Comparison between biased and unbiased LIF neuron equation.

Both biased and unbiased waveforms depict the non-linear relationship that exists between

the input current I0 and the spike rate. As expected, the biased LIF neuron fires at any input

current between 0 and 57.2µA and thus operates in the active region of Figure 5.3 whereas

the unbiased waveform requires an input current of between 22.5 and 57.2µA in order to

fire as noted in Table (5.2). The bias however does not change the form of the input/output

relationship and merely “stretches” it across a larger range of input currents. The nature of

the LIF neuron’s response to an input current shown in Figure 5.4 also compares favourably

with measurements made on real neuron (Johnson, 1996).

5.5.3 Decoding

In order to obtain an estimate of the spike train coded original signal x(t), a filter h(t) is

required such that

x̂(t) =
∫ T

0
h(t− t′)

∑
n

δ(t′ − tn) dt′. (5.20)
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While it has been shown by Eliasmith and Anderson (2003) that an optimal filter can be

found (see Addendum A.3 for derivation), it remains a complicated task requiring a Monte

Carlo analysis of a large set of possible inputs. The optimal filter is non-causal and thus not

biologically plausible. It has however also been shown by Eliasmith and Anderson (2003)

that a linear filter related to the postsynaptic currents provides similar results in terms of

decodable information (only 6% less than optimal filter) and RMS error (about twice that of

optimal filter). The PSC model is given by

hPSC(t) =
1
τ

e−t/τsyn , (5.21)

where τsyn is the synaptic time constant. In fact, to find a linear filter it is only required that

kernel K satisfies

∫ ∞

0
K(t) dt = 1. (5.22)

From Equation (5.22) there are infinitely many kernels that satisfy this equation.

It is however interesting to note that scaled versions of the exponential and alpha-function

kernel, mentioned earlier and the difference of exponentials kernel

K(t) =
1

τ1 − τ2
[e−t/τ1 − e−t/τ2 ]. (5.23)

satisfy this condition. The exponential kernel that was used by Eliasmith and Anderson how-

ever has one drawback. It contains an instantaneous jump at t = 0 and thus a discontinuity,

which is eliminated by the two other kernels.

In this case only the potential of the first two kernels is explored as an alternative decoding

filter to that of the optimal linear filter. The first two kernels, PSC1 and PSC2 can be altered

by either changing the time constant or the amplitude of the impulse response resulting in

an adjustable gain in the frequency domain. No other possibilities exist to match the PSC

filters with the optimal linear filter.
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In Equation (5.9) and Equation (5.10) the areas of the functions are normalised to one since

this normalises the gain in the frequency response seeing that

∫ ∞

−∞
g(t)dt = G(0), (5.24)

where G(f) represents the Fourier transform of equation g(t). The normalised PSC filter

characteristics are summarised in Table (5.3) (see Addendum A.5 for derivation).

Table 5.3: Frequency and area characteristics of PSC filters.

PSC type Fourier transform Area

Exponential (PSC1)
1

1 + j2πfτRC
1

Alpha-function (PSC2)
1

(1 + j2πfτRC)2
1

From this point onwards the exponential kernel will be referred to as the PSC1 filer and the

alpha-function kernel filter as the PSC2 filter. To observe how the PSC1 filter characteristics

change with changing time constant, both the time and frequency response are shown in

Figure 5.5.
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Figure 5.5: Time and frequency response of PSC1 filter for different time constants.
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Choosing a smaller time constant results in a wider passband and a faster decaying impulse

response. Similarly by choosing a larger time constant, the passband is decreased and the

impulse takes longer to decay to zero.

The effect that the time constant has on the phase response of the filter is depicted in

Figure 5.6.
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Figure 5.6: Frequency and phase response for PSC1 filter.

The PSC1 filter has a non-linear phase response where the maximum slope of the phase

increases with an increasing time constant.
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Similarly, to observe how the PSC2 filter characteristics change with changing time constant,

both the time and frequency response are shown in Figure 5.7.
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Figure 5.7: Time and frequency response of PSC2 filter for different time constants.

In case of the second PSC filter the roll-off is much steeper and increases with increasing time

constant. Unlike the first PSC filter the impulse response of the second filter has a finite rise

time. Choosing a smaller time constant results in a faster rise and decay time.
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To observe the effect that the time constant has on the phase response of the filter the

frequency and phase response of the filter are depicted in Figure 5.8.
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Figure 5.8: Frequency and phase response for PSC2 filter.

Similarly to the phase response of the first PSC filter, the phase response is non-linear but

the phase increases much faster with an increasing frequency. Comparing the two PSC filters

on grounds of obtained results, it can be seen that the first PSC filter has a wider passband

than the second PSC filter but introduces less phase distortion for the same time constant.

The first PSC filter, however, due to its instantaneous change in amplitude, is physically

unrealisable and thus biologically implausible. Both PSC filters are however used as a mean

of comparing the performance of the two.

5.5.3.1 Scaling PSC decoding filters

PSCs however do not occur as normalised waveforms in the biology since PSC character-

istics depend on the dentritic tree at which APs from other neurons arrive (Deutsch and

Deutsch, 1993). The dendrites and the junctions between dendrites account for weighting

and spreading of PSCs as they move the information from the periphery to the neuron body.

Similar scaling or weighting factors are also found and used in spiking neural network the-

ory (Maass and Bishop, 1999), ranking the different inputs by importance. Obtaining these
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weights is a daunting task and this is exactly the reason why the optimal linear filter was

found first.

5.5.3.2 Optimal linear filter

Although PSC filters can be found independently from the optimal filter, the design strategy

for both is initially the same. Since the interest however lies in how close to optimal a par-

ticular PSC filter can get, the optimal filter is designed and evaluated first. Details regarding

optimal filter derivation and implementation can be found in Eliasmith and Anderson (2003).

The approach to finding an optimal or PSC filter is similar in that it is the best decoder

for a set of signals. It thus necessitates that the set of input signals be defined as an ensemble

where

x(t;A) =
(N−1)/2∑

n=−(N−1)/2

A(ωn) ejωnt. (5.25)

The set of amplitude coefficients A is selected from a random variable, chosen to be of a

Gaussian nature in this chase. The Gaussian random variable is distributed over some band-

width in steps of ωn and thus represents any bandlimited signal with the given statistics.

The signal is then coded by a pair of neurons such that

R(t;A) =
Mon∑

k

δ(t− t+k (A))−
Moff∑

l

δ(t− t−l (A))

=
2∑

i=1

M∑

k=1

φiδ(t− tik(A)), (5.26)

where φ = 1 for an ’on’ neuron and -1 for an ’off’ neuron. Equation (5.26) is taken as the

response of the neuron pair and by minimising the mean-squared error between the input

signal x(t;A) and a decoded version of the neuron response R(t;A) such a decoding filter

h(t) (see Addendum A.3) can be found.
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In the case of the optimal filter the decoding filter is given by

h(ωn) =
E{A(ωn)R∗(ωn;A)}A

E {|R(ωn;A)|2}A
, (5.27)

where the estimate of the original signal x(t) is given by

x̂(t) = h(t) ∗R(t;A). (5.28)

The symbol ∗ denotes convolution between the optimal filter and the neuron pair response.

By defining a signal for Equation (5.25) an optimal filter for the decoding functional unit can

be designed. From Chapter 4 it is known that the signal to be coded by the LIF neuron is a

very-low-frequency signal, since the power is calculated by squaring and then low-pass filter-

ing the bandlimited signal with a very narrow lowpass filter (see Section 4.5). The bandwidth

of the power signal was found to be no larger than 3 Hz (see Section 4.6). Firstly an opti-

mal linear coding/decoding functional unit is designed, which works with a signal bandwidth

of 5 Hz. Subsequently the change in design considerations are illustrated when the signal

bandwidth is increases to 20 Hz or larger, since the smaller bandwidth implementation is a

simplification of the larger one. While the optimal linear filter and accompanying PSC1 filter

are not directly used in Chapter 7 they give an insight into neural coding and estimation

since a very narrow signal bandwidth greatly reduces the complexity and thus the scope of

challenges a typical neural coding implementation faces.

5.5.3.3 Narrow-band signal

In Table (5.4) the statistics and characteristics of the narrow-band stochastic signal are given.

Table 5.4: Random variable characteristics for narrow-band stochastic signal.

RV characteristic Parameter

Type Gaussian

Bandwidth 5 Hz

Sampling frequency 5 kHz

RMS value 0.4 V
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A simple Gaussian RV with a narrow bandwidth is chosen where the sampling frequency is

kept large enough to allow for a better accuracy since all simulations are done in discrete-time

steps.

The optimal linear filter is shown below in both the time and frequency domain.
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Figure 5.9: Optimal linear decoding filter for a narrow-band signal.

The optimal linear filter has both a real and an imaginary part in the frequency domain

and, as expected, a narrow passband with a -3 dB cutoff of 22 Hz. In the time domain the

optimal filter has the shape of a characteristic sinc-function and a peak amplitude of 2.3 µV.

To explain why the gain of the filter and the amplitude of the impulse response are so small

relative to the RMS value of the signal it has to be kept in mind that the optimal filter is

defined for the current waveform (see Figure 5.2) rather than the voltage waveform where

the current can lie anywhere between zero and 57.2 µA. The filter is also non-causal as it is

defined for both positive and negative time.
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The optimally decoded signal obtained by applying the optimal linear decoder to a random

signal with statistics summarised in Table (5.4), is depicted in Figure 5.10.
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Figure 5.10: Optimally decoded signal.

In Figure 5.10 the undistorted waveform is compared to the optimally estimated one. The

dots found at an amplitude of 1 and -1 represent the occurrence of a spike at a particular

point in time. The mean-squared error (MSE) defined by

MSE = E
[
(Ai − Âi)2

]
, (5.29)

where Ai is the true signal and Âi the estimated signal at sample time i is found to be 6.3

mV.

5.5.3.4 PSC filter design

Now that the optimal linear filter has been found the two PSC filter types defined in Subsec-

tion 5.4.5 can be designed. In order to match the filtering characteristics of the PSC filter to

that of the optimal linear decoder the relevant impulse, frequency and phase responses should

be matched as best as possible. However, since the biology places restrictions on both the
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maximum amplitude of the PSC in the time domain and the time constant, choices regard-

ing optimisation are limited. As was mentioned in Chapter 3 no adaptive neural decoder is

implemented, limiting the design to one particular frequency response given a specific set of

input signal statistics. The time constant for the LIF neuron was chosen in Subsection 5.5.2

to be 4 ms leaving one degree of freedom, the gain of the filter. Two obvious possibilities exist

when optimising for gain only, scaling the gain of the PSC filter in such a way that the DC

gain matches that of the optimal filter or minimising the MSE of the decoded signal to that

of the true signal by choosing the best filter gain.

The result of matching the impulse response areas of the optimal linear and PSC filters

is depicted in Figure 5.11.
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Figure 5.11: Optimised PSC filters by matching DC gain to that of optimal filter.

The PSC1 filter matches the optimal filter well in the -15 to 15 Hz band, compared to the

PSC2 filter. The stopband attenuation of the PSC2 filter is however much closer to that of

the optimal linear filter compared to the PSC1 filter, which can be attributed to the steeper

roll-off characteristics of PSC2 filter.

The second method of minimising the MSE between the true and estimated signal is easily
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implemented since only the overall gain of the PSC filter can be scaled. This can be attributed

to the fact that different gains for the different frequencies stay constant in respect with one

another, allowing only an optimal gain offset, which translates the frequency response along

the gain axis.

The result of such scaling is shown in Figure 5.12.
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Figure 5.12: Optimised PSC filters by minimising the MSE.

Compared to Figure 5.11 only very little difference (0.8e-3 dB) exists between the two PSC2

filters as far as the frequency response is concerned. There however exists a 0.1 dB difference

between the gain of the PSC1 filter found in Figure 5.11 and that of the filter shown in Figure

5.12. Thus in the case of the second PSC filter from a MSE point of view, scaling the filter in

such a way as to match the DC gain to that of the optimal linear filter was a good one. It is

however evident that since a change in the optimal linear filter bandwidth also compromises

the validity of such a choice for the second PSC filter, the best way would be to scale the two

PSC filter in such a way as to minimise the MSE.
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5.5.3.5 Wide-band signal

In the previous sections the optimal linear filter and accompanying optimised PSC filters

were designed for a narrow-band signal relevant for this problem. However, what happens if

the signal has a larger bandwidth? In this section this question was briefly addressed and

the implications thereof discussed. In Table (5.5) the statistics and characteristics of the

narrow-band stochastic signal are given.

Table 5.5: Random variable characteristics for wide-band stochastic signal.

RV characteristic Parameter

Type Gaussian

Bandwidth 20 Hz

Sampling frequency 5 kHz

RMS value 0.4 V

A simple Gaussian RV with a 20 Hz bandwidth is chosen.

The optimal linear filter is shown below in both the time and frequency domain.
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Figure 5.13: Optimal linear decoding filter for a wide-band signal.
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The passband of the optimal linear filter is, as expected, wider than the one in Figure 5.9

with a -3 dB cutoff of 32 Hz (11 Hz wider). In the time domain, the optimal filter also has the

shape of a characteristic sinc-function but a peak amplitude of 3.5 µV. The impulse response

width is however, as expected, narrower than the one in Figure 5.9.

The wider frequency response now poses a problem when trying to fit a PSC filter to it.

As before it is attempted to fit the PSC frequency responses to the optimal linear filter, by

firstly matching the DC gain of the PSC filters to that of the optimal linear filter.

The results are shown in Figure 5.14.
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Figure 5.14: Optimised PSC filters by matching DC gain to that of optimal filter for wide-

band signal.

Even the wider PSC1 filter is now simply not wide enough to match the passband of the

optimal filter. Since the time constant is chosen to be fixed, the passband of the PSC filter

remains fixed.
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If the alternative method of scaling the gain of the PSC filter by minimising the MSE between

true and estimated signal is chosen, a similar gain is found for both PSC1 and PSC2 as Figure

5.15 illustrates.
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Figure 5.15: Optimised PSC filters by minimising MSE for wide-band signal.

It is evident that as the bandwidth of the signal to be coded increases, the “best fit” for

the PSC filters remains the same, but that the MSE will increase. It can be deduced from

this that utilising PSCs for decoding purposes limits the bandwidth of the signal to be

coded and decoded. As will be seen in the next few sections, the PSC2 filter competes very

favourable with the optimal filter for narrow-band input signals when a biologically plausible

time constant is chosen.

5.5.3.6 PSC filter application

The two optimisation methods for the narrow-band input signal case were used to optimise

the weight of the PSC filters in the MSE sense and the decoding PSC filters applied to a

decoding problem.
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Table (5.6) summarises the performances of the optimal linear decoder and the PSC filters

in the MSE sense.

Table 5.6: MSE performance of various filters.

Performance parameter Optimal filter PSC1 filter PSC2 filter

MSE (V2) 0.0063 0.0187 0.0070

While the optimal filter fared the best over a time interval of 4 s, the second PSC filter

performed significantly better than the PSC1 filter. In Figure 5.16 the signal estimated by

the first PSC filter is shown.
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Figure 5.16: Decoding performance of PSC1 filter.
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In Figure 5.17 the signal estimated by the PSC2 filter is shown along with the true signal.
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Figure 5.17: Decoding performance of PSC2 filter.

The estimated signal in Figure 5.17 looks significantly better than the one shown in Figure

5.16.

5.5.3.7 Decoding in the presence of noise

To evaluate how the decoding filters perform in the presence of noise the noise model specified

in Subsection 5.3.2 is now implemented. While the PSC filters were scaled optimally in the

MSE sense in the absence of noise no additional scaling is introduced to optimise for a

particular type of noise. The two noise sources spike-time jitter and the dropping of spikes

was applied in a similar way to that of Bialek et al. (1991). The MSE for the noiseless case

is compared to where either spike-time jitter was introduced or spikes were dropped.

Electrical, Electronic and Computer Engineering 123

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 5 Encoder, Decoder and Channel Models

The results are summarised in Table (5.7).

Table 5.7: PSC filter performance in the presence of noise.

Noise MSE (PSC1 filter) (V2) MSE (PSC2 filter) (V2)

none 0.0187 0.0070

σ = 0.8 ms 0.0206 (-0.43 dB) 0.0074 (-0.25 dB)

10 % dropped spike 0.0242 (-1.12 dB) 0.0109 (-1.91 dB)

From Table (5.6) it can be seen that the PSC2 filter is 4.26 dB better in decoding the random

narrow-band signal than the PSC1 filter when no noise is present and with a similar difference

(4.44 dB) in the case when jitter noise, with a standard deviation of 0.8 ms is added. In the

case of randomly dropping 10 % of the spikes present, the PSC2 filter performs only 3.47 dB

better in MSE sense than the PSC1 filter.

In Figure 5.18 and Figure 5.19 the estimated input signal is compared to the true signal

in the presence of spike-jitter noise over an arbitrary 4 s interval at a sampling frequency of

4 kHz for the two different PSC filters.
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Figure 5.18: PSC1 filter decoding performance in the presence of spike-jitter noise with a

standard deviation of 0.8 ms.
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Figure 5.19: PSC2 filter decoding performance in the presence of spike-jitter noise with a

standard deviation of 0.8 ms.

In Figure 5.20 and Figure 5.21 the estimated input signal is compared to the true signal when

10 % of its spikes are randomly lost over the unreliable channel due to noise.
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Figure 5.20: PSC1 filter decoding performance in the presence of 10 % spike loss.
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Figure 5.21: PSC2 filter decoding performance in the presence of 10 % spike loss.

The MSE of the two PSC decoders was evaluated as a function of the standard deviation in

spike-time jitter and the results are depicted in Figure 5.22.
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Figure 5.22: MSE as a function of spike-time jitter for PSC1 and PSC2 filters.
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The MSE at a particular spike-jitter variance was obtained by statistically averaging over 5

independent intervals of 4 s each, sampled at 4 kHz (80 · 103 samples for statistical approxi-

mation). As the standard deviation of the spike-jitter noise increases from 0.4 ms to 3 ms,

the MSE increases for both PSC1 and PSC2 decoding filters. Above a standard deviation of

1 ms the MSE due to PSC1 decoding increases almost twice as fast as that of the PSC2 filter

(MSE difference at 0.4 ms is 0.0121 and at 3 ms 0.0225.)

Similarly to Figure 5.22 the effect that changing the number of dropped spikes has on the

MSE of the decoder is shown in Figure 5.23.
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Figure 5.23: MSE as a function of dropped spikes for PSC1 and PSC2 filters.

The same statistical averaging parameters as for the spike variance case was used to obtain

Figure 5.23. The MSE increases linearly as a function of dropped spikes and the error doubles

after 25 % of the spikes are lost due to noise. In this case averaging over eighty thousand

samples gives a good approximation of the trend the MSE curve follows when an increased

number of spikes are dropped. If the MSE is computed over a larger set of random samples

the curve is expected to be smoother. Due to a time consuming spike generation process via

the convolution integral of Equation (5.12) the number of random samples averaged over

statistically was kept to a minimum.
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5.6 DISCUSSION AND CONCLUSION

In this chapter a coder/decoder based on a biologically plausible estimator, the PSC filter,

was successfully designed, implemented and evaluated. In Section 3.8 no particular code was

chosen. Instead, a biologically plausible neuron model, namely the LIF neuron, was chosen.

As was mentioned in Section 3.3 a rate code conveys only the average rate by determining

the average number of spikes in a particular window size. From the phase response of the

PSC filters given in Figure 5.6 and Figure 5.8 it can be deduced that a non-linear phase is

introduced to the estimated signal, which was removed for the sake of convenience in the

above evaluation. What is interesting to note is that as the time constant of the PSC filters

increase the bandwidth of the filter decreases, which in fact is nothing more than increas-

ing the averaging window just mentioned. As the time constant is increased the averaging

window used by a rate code increases. This is where the crux of picking a neural code lies.

While amplitude, frequency and phase information are present in the coded signal, picking

a particular decoding technique limits the observable degree of freedom of the signal. The

choice of a biologically plausible time constant of 4 ms still acts as an averaging window, yet

largely retains amplitude, frequency and phase (delayed) information. It can be concluded

that according to the definition of rate and temporal codes a combination of both codes

is used. By changing coding and decoding parameters it was chosen to ignore certain parts

of the information or to include all of it, therefore moving between a rate code and a time code.

Another issue that was addressed was the scaling of the PSC filters. Since the normalised

PSC filters of Equation (5.9) and Equation (5.10) are not scaled to an amplitude suitable

for proper decoding, a method was attained to scale the PSCs in order to minimise the MSE

between the original input signal and the estimated one. This was done by first finding an

optimal filter according to Eliasmith and Anderson (2003) from which the PSC filter for the

two different kernels, PSC1 and PSC2, was found. Since it was chosen to implement a fixed

time constant the only other PSC filter variable that could be changed was the amplitude

(gain). It was discovered that minimising the MSE rendered a scaled PSC filter capable of

decoding an ensemble of input signals as best as possible (in the MSE sense) given a fixed

time constant. It was also found that for a narrow-band signal, as in this case (see Section

4.6), the PSC2 filter performs well compared to the optimal linear filter since the frequency

response for such a narrow-band signal compares quite favourable to that of the PSC2 filter

with steep roll-off characteristics. Matching the surface areas of the PSC2 filter to that of the

optimal filter is similar to matching the DC gains of the two filters. An analogous result is
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obtained when the optimum weighted PSC2 filter is found in the MSE sense.

The PSC1 filter on the other hand with its shallower roll-off characteristics fits the frequency

response profile of the optimal linear decoder less favourable and even with optimal weighting

of the filter in the MSE sense, the PSC1 filter performs 4.26 dB worse than the PSC2 filter

for the same input signal. In general, the PSC2 filter performs in the order of 3.47 - 4.44 dB

better than the PSC1 filter.

Both PSC1 and PSC2 decoders are sensitive to spike-jitter noise and the loss of spikes due to

unreliable retransmissions between successive neurons. However, both filters are less vulner-

able to jitter noise than the dropping of spikes since the loss of spikes decreases the overall

power contained within the spike train as compared to spike-jitter noise where the overall

power is maintained but randomly redistributed. Since the MSE, defined in Equation (5.29),

is directly influenced by a change in amplitude and hence in power the results obtained can

be intuitively substantiated.

Since the PSC2 filter is a biologically more plausible filter than the optimal linear filter

and the PSC1 filter, it makes for a good choice for a decoding filter. Not only is the filter

causal and physically realisable but for a time constant of 4 ms and a narrow-band signal

specified in Table (5.4) performs unexpectedly well compared to the optimal linear filter (0.46

dB worse). Since the PSC2 filter is easier to implement and computational less intensive it

is the best choice that can be made in choosing a matching decoding functional unit for

implementation purposes in Chapter 7.
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CHAPTER 6

ESTIMATOR MODELS

6.1 AIM OF THIS CHAPTER

The aim of this chapter is to find an estimator based on the information gained on the auditory

system model specified and designed in the preceding chapters. An estimator provides a tool

to extract information from a noisy environment, given the approximate knowledge of the

statistics of the underlying process. Since the entire process has been designed in the preceding

chapters Chapter 4 to Chapter 5 and is thus known, an estimator (optimal or suboptimal)

can be found to estimate the state variables of the auditory system.
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In particular, an implementation of the well-established Kalman filter (Van Trees, 1968-

1971; Anderson and Moore, 1979; Bozic, 1979; Gelb, 1984; Sorenson, 1985; Lewis, 1986; Chui

and Chen, 1987; Brown and Hwang, 1997; Grewal and Andrews, 2001) is pursued in order to

enable estimation of the decoded signal z(t) in Figure 6.1a.
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Figure 6.1: Auditory system model a) designed in preceding chapters and stochastic model

for a) shown in b) will be designed in this chapter. x
′
(t) and z

′
(t) are the stochastic equivalents

of x(t) and z(t). (Reproduced from Figure 1.9)

This chapter provides all information to design, implement, initialise and evaluate the par-

ticular filter.
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6.2 ESTIMATION PROBLEM

6.2.1 Power Profile Estimation Problem

The aim of the estimator is to estimate the amount of power found in a particular frequency

band, as specified in Section 4.5, given a noisy measurement of the estimated signal. The

estimated signal is found after decoding of spikes has taken place by a PSC filter (designed

and evaluated in Chapter 5). The idea is to optimally (in the MMSE sense) reconstruct the

power profile across the entire bandwidth of the system. Since the power profile contains most

information of the original signal that was received at the filter bank, it can be used by higher

hierarchial level systems for further processing as was discussed in Figure 1.10. In this case,

finding a robust estimate of such a power profile is the main priority. Since the information

within the power profile is severely corrupted by noise when transmitted across the neural

channel (see Section 5.3), it demands a robust estimator.

One of the most well-established recursive estimators is the Kalman filter. Given the ap-

proximate underlying process and a noisy measurement it can reliable estimate the under-

lying states of any system, provided that it is observable, controllable and stable as will be

discussed later.

6.3 KALMAN FILTERING

In Section 1.4 the approach implementing Kalman filtering was briefly discussed and out-

lined. It is assumed at this point that the reader has little knowledge of the Kalman filter

design methodology, warranting a systematic and detailed design approach with the relevant

background theory. The reader more familiar with Kalman filters is however still urged to

read the following sections since the design information is contained within the sections. The

function of the Kalman filter is discussed next.

In order to estimate the state of a dynamic linear stochastic system the Kalman filter imple-

ments an optimal, in the minimum mean-squared error (MMSE) sense, recursive and linear

filter with time-varying gain. If the system that generates the measurement signal is lin-

ear and the noise added to the signal is Gaussian, then the Kalman filter is the optimal

MMSE estimator among both linear and non-linear filters (Chui and Chen, 1987; Brown
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and Hwang, 1997; Grewal and Andrews, 2001; Lewis, 1986; Hammarberg, 2002). The sys-

tem, in state-space formulation, describes how the measurements are related to a set of

inputs that may be purely stochastic, deterministic or a combination of the two. One of the

greatest advantages of the Kalman filter is its recursive implementation, which requires only

the knowledge of the previous state to make an estimate thus greatly reducing memory re-

quirements and increasing the computational efficiency. Both continuous and discrete-time

implementations of the Kalman filter algorithm exist, which allow for inherently continuous,

sampled-continuous or inherently discrete processes. A suboptimal version of the Kalman

filter, the extended Kalman filter (EKF) applied to inherently non-linear systems, is used in

this dissertation.

As was noted previously, the first step of designing a Kalman filter is to find a state-space

model of the underlying process. The state-space equations are defined next.

6.4 STATE-SPACE EQUATIONS

The basic Kalman filter estimator parameters can only be estimated optimally once a state-

space model has been derived for the underlying process.

Any nth-order differential equation describing some system has to be broken down into n

first-order differential equations, which form the set of state (system) equations and one

measurement equation given below.

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t). (6.1)

In Equation (6.1), u(t) is assumed to be a deterministic input driving a static system, since

the system attributes matrices A, B, C and D are independent of time. In this dissertation

a time-varying matrix in the continuous-time is represented as A(t) and in the discrete-time

by a subscript such that Ak. Thus the system attribute matrices in Equation (6.1) would

indicate a static system. Since the nomenclature for the system attribute matrices vary, a

formal definition is required.
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The most widely used names are summarised in Table (6.1).

Table 6.1: State-space equation variables.

Symbol Variable name

A System matrix

B Input coupling matrix

C Measurement sensitivity matrix

D Output coupling matrix

u Input or control vector

x State vector

ẋ Derivative of state vector

y Output vector

Symbols of variables that are defined at a later stage and are mainly used in conjunction with

the Kalman filter are given by Table (6.2).

Table 6.2: Other state-space equation variables.

Symbol Variable name

Φ Discrete-time state transition matrix

Γ Discrete-time process noise coupling matrix

H Discrete-time measurement sensitivity matrix

ω White Gaussian process noise vector

w Coloured process noise vector

v Measurement noise vector

Since some processes are inherently discrete in time and information regarding the system

variables are only available at certain discrete instances in time, a discrete-time representation

of Equation (6.1) could be required. The n first-order differential equations then become n

first-order difference equations of the form

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk. (6.2)
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A set of differential or difference equations, for a particular system for which the state-space

equations are required, can be obtained in more than one way and generally depend on the

type of information that is available to the Kalman filter designer. The most straightforward

approach is to find the linear transfer function of the system. The state-space equations have

to be derived for the stochastic equivalent model of the auditory system model as is discussed

below.
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6.5 STATE-SPACE MODELLING OF AUDITORY SYSTEM

The stochastic model for which the state-space equations have to be derived is shown in

Figure 6.2. This will be the internal model of the Kalman filter.
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Figure 6.2: Stochastic equivalent model for auditory system model.

The auditory system model, containing the source and signal decomposition block (see Figure

6.1a) and driven by a white-noise source, is derived first and written in state-space form of

Equation (6.2). Subsequently the measurement process model, containing the coding, channel,

noise and decoding block, is derived. However, a formal definition for the Kalman filter is

appropriate.
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6.6 DISCRETE-TIME KALMAN FILTER

Combining the Kalman filter, first introduced by the famous paper by Kalman (1960), with

the advances in digital computer technology makes it possible to easily implement its recursive

solution. The Kalman recursive equations consist of system and measurement equations and

will be described in more detail here.

6.6.1 Discrete-Time Kalman Filter State-Space Equations

A random process to be estimated can be modelled by a n-input, state-equation of the form

xk+1 = Φkxk + Γkωk + Bkuk, (6.3)

where Φk (n x n) is the state transition matrix, xk (n x 1) the vector containing all state

variables and ωk (n x 1) the zero mean, white Gaussian process noise vector coupled by the

process noise coupling matrix Γk (n x n). uk (n x 1) is a deterministic input, which is set to

zero since no deterministic input is required in this case.

The measurement of the process is assumed to occur in discrete-time steps given by the

m-output linear relationship

zk = Hkxk + vk, (6.4)

where Hk (m x n) is the measurement sensitivity matrix and vk (m x 1) the measurement

noise. A block diagram representation of Equation (6.3) and Equation (6.4) is given in Figure

6.3a.
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The noise process driving the system and measurement equations is defined to adhere to the

following covariance matrix conditions

E
[
ωkω

T
i

]
=





Qk, i=k

0, i6=k,
(6.5)

E
[
vkvT

i

]
=





Rk, i=k

0, i6=k,
(6.6)

E
[
ωkvT

i

]
= 0, for all k and i, (6.7)

where Qk and Rk are defined as the covariance matrices associated with ωk and vk respec-

tively, at a particular sampled interval k in time.

6.6.2 Discrete-Time Kalman Filter Equations

The discrete-time Kalman filter, being a minimum covariance error estimator, can be de-

scribed by the following equations.

The Kalman gain matrix is:

Kk = Pk(−)HT
k

[
HkPk(−)HT

k + Rk

]−1
. (6.8)

The state estimation observable update is:

x̂k(+) = x̂k(−) + Kk [zk −Hkx̂k(−)−HkBk−1uk−1] . (6.9)

The error covariance update is:

Pk(+) =
[
I− K̄kHk

]
Pk(−). (6.10)
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The state estimation extrapolation is:

x̂k+1(−) = Φkx̂k(+) + Bkuk. (6.11)

The error covariance extrapolation is:

Pk+1(−) = ΦkPk(+)ΦT
k + ΓkQkΓT

k , (6.12)

where all symbols are defined below.

The Kalman filtering process can be described as follows: The Kalman filter is initialised

by specifying an initial state estimate x̂0(−), where the (−) indicates the a priori and (+)

the a posteriori estimate. It is assumed that the statistics of the state estimate at time t0

are known and are contained in the error covariance matrix P0(−). Based on the statis-

tics of the measurement noise given by R0, the Kalman filter gain matrix K0 can be found

by solving for the Kalman gain matrix (Equation (6.8)). The Kalman filter gain minimises

the mean-squared estimation error and can now be used to find the a posteriori estimate

x̂0(+), using Equation (6.9), based on the error between the measurement z0, the estimated

measurement H0x̂0(−) and, if present, the deterministic input B0u0. The a posteriori error

covariance matrix P0(+) is found by reflecting the changes applied by the Kalman gain to

the a priori error covariance matrix P0(−) (see Equation (6.10)). The Kalman filter can now

project ahead and estimate the state variables (Equation (6.11)) and error covariance matrix

(Equation (6.12)) at t1, based on the a posteriori estimate and statistics of the process noise

contained in Q0. The process is subsequently repeated.
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Equation (6.11) and Equation (6.9) are visually shown in the block diagram of Figure 6.3.
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Figure 6.3: Block diagram of a) system, measurement model and b) discrete-time Kalman

filter.

From the Kalman filter equations (Equation (6.11) to Equation (6.8)) and the block diagram

above it should now be clear to the reader why an accurate description of the auditory model

is required. The Kalman filter contains an internal model of the process that generates the

measurements through matrices Φk and Hk. Since the Kalman filter relies on a good model

of the underlying process found in the matrices Φk and Hk and on correct initialisation of

the state variables xk and error covariance matrix Pk, any errors in the matrices Φk and Hk

not compensated for by process noise ωk or measurement noise vk will lead to divergence

(Gelb, 1984; Brown and Hwang, 1997; Grewal and Andrews, 2001) of the Kalman filter.

Correct and consistent initialisation is addressed in the next section.
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6.6.3 Correct and Consistent Initialisation

Before using the Kalman filtering equations Equation (6.11) to Equation (6.8), the initial

state estimate and its covariance matrix have to be set up in order to achieve optimal (in the

MMSE sense) performance. If initial values are uncertain, measurements made can be used

to find the MMSE state estimates at the starting point of Kalman iteration as suggested by

Hammarberg (2002). If no data is present to make such an assumption, as a last resort a

guess can be made regarding the state estimates and the uncertainty should be reflected in

its error covariance matrix. A large variance, for example, signifies a possible large difference

between the true and estimated state.

Ideally the initial values of the state estimates should be set to the expectation (mean)

of the estimate where

x̂0 = E [x0] (6.13)

and the error covariance matrix to the variance of the state estimate such that

P0 = Var [x0] , (6.14)

resulting in an unbiased estimate (Chui and Chen, 1987).

The consistency of the state estimates should be checked at the beginning of the filtering

process to identify any possible problems. An inconsistency may be identified by large dif-

ferences between the true and estimated states, which seem to increase over a finite amount

of time (local divergence) or over all time (divergence). An inconsistency can reveal that the

filter is biased or that the covariance matrix does not represent the true statistics of the initial

estimate. Inconsistencies could also point to an inaccuracy between the real system and the

model or that uncertainties specified by the process and measurement noise models are too

modest.

Other factors affecting the consistency of the state estimates produced by the Kalman filter

are observability, controllability and stability. The process noise driving the entire process,

ωk, is the “stochastic control” input, which serves to force the system to behave in a desired
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manner. Its ability to do so correctly is determined by the controllability of the system, which

is discussed in the following section.

6.6.4 Observability, Controllability and Stability

6.6.4.1 Introduction

Observability, controllability and stability are essentially derived from control theory but par-

allels or dualities exist between the control theory and estimation theory. While the knowledge

of control theory facilitates the understanding surrounding issues in the estimation theory, it

is not a prerequisite. See Addendum A.6 for more details on observability, controllability and

stability.

The significance of observability and controllability serves a main purpose in Kalman fil-

tering theory, namely to observe and control the internal model in such a way as to best

estimate the states through noisy measurements. The Kalman filter in effect needs to change

its gain optimally in order to make the best estimate. It can however only do so by recursively

passing the old estimates through a state transition matrix. It is thus dependent on the old

estimate being able to affect the new estimate through all states (controllability) and these

changes need to be observable through all states (observability).

6.6.4.2 Stability

Stability refers to the behaviour of state estimates when measurements are suppressed (Gelb,

1984). The stability of the Kalman filter is of great importance in that an unstable Kalman

filter will result in divergence of the state estimate and thus render the estimator ineffective.

To obtain the unforced Kalman filter response (with suppressed measurements) the state

estimation extrapolation (Equation (6.11)) needs to be substituted into the state estimation

update equation (Equation (6.9)) resulting in

x̂k+1 = [Φk −KkHk] x̂k. (6.15)

For stability purposes it is desired that the estimates x̂k+1 in Equation (6.15) tend to zero
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as time progresses for any initial condition of x̂0 (asymptotically stable).

Guaranteed asymptotical stability according to Gelb (1984) and uniqueness of the behaviour

of P requires

1. stochastic uniform complete observability (Equation (A.64)),

2. stochastic uniform complete controllability (Equation (A.65)),

3. bounded Q, R (from above and below) and

4. bounded Φ (from above).

Complete observability and controllability are quite restrictive and in many practical cases

of significance (Gelb, 1984) these conditions are not fulfilled. But in most cases Kalman fil-

ters designed in the usual way, as was discussed in Section 6.6, operate satisfactorily since

Equation (6.15) frequently tends to zero over a finite time interval of interest, even though

it might not be asymptotically stable in the strict sense. Instability is commonly associated

with modelling errors and implementation considerations.

Since the Kalman filter has now been formally defined and issues such as initialisation,

stability, controllability and observability addressed, the state-space equations can now be

defined.
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6.7 FORMATION OF STATE EQUATIONS

The state equations contain all state variables to be estimated, which cannot be measured

directly. In the case of this auditory model the state equations should describe the following

functional blocks shown in Figure 6.4 (see Subsection 4.4.4).
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Figure 6.4: Signal decomposition block diagram.

Ideally each functional unit of Figure 6.1 from the source signal to the coder/decoder pair

should be represented by an equivalent state-space equation describing the functional unit.

The coding/decoding and channel functional unit are not included in Figure 6.4. They will

not be modelled as part of the state equations but rather as part of the measurement equation.

In order to model the coding/decoding and channel functional units as part of the state

equations the discrete spike times generated by the coder would have to be modelled as sepa-

rate state variables, which was the approach followed by Snyder (1975) in a related problem.

Snyder defined the discrete spike times as a doubly stochastic Poisson processes that code

an intensity function. The author then found a Kalman-Bucy filter to optimally decode the

doubly stochastic Poisson process to estimate the intensity function. One problem with tak-

ing this approach in the current problem is that the spikes found on the noisy channel are

assumed to be of Poisson nature, which is not necessarily true. Furthermore, it also does not

separate the noise present on the channel from the information found in the spike train. Nev-

ertheless, the linear decoder obtained in Subsection 5.5.3 has a very similar impulse response
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function to the one found by (Snyder, 1975).

In this research optimal decoding of the spike-train is avoided and decoding errors in con-

junction with the channel noise are grouped as part of the measurement error of the power

profile. For decoding purposes a linear decoder was used with transient response parameters

closely related to the physiology as discussed in Section 5.5. The spike-decoding algorithm

does not form part of the estimator implementation and decoding errors made by the spike

decoder were assumed to be Gaussian noise. Even though the Gaussian noise assumption is

a crude approximation of noise found on the channel and errors due to linear decoding of a

non-linearly coded variable, it prevents the internal model of the estimator from becoming

too complicated. The advantage of grouping the estimation error together with the channel

noise in the measurement noise process of the Kalman filter, is that it allows for a modu-

lar design approach. Each different coding/decoding strategy can be compensated for by a

different measurement noise model, resulting in a more generic and robust estimator.

6.7.1 State Equations for the Source Model

The first task in setting up the state-space equations was to find a suitable model for the

source. As discussed in Section 4.3 finding a suitable stochastic model for the speech model

is not a trivial task. While unvoiced sounds are characterised by randomness, high-frequency

content and relatively low amplitude, voiced sounds are more pulse like and quasi-periodic.

While most designers refrain from making the speech signal model too complex (Moore, 1972)

and often use a simple first-order lowpass filter (Equation (4.1)) driven by white-noise as a

speech model, this oversimplifies the problem. The autocorrelation functions for the three

random processes (amplitude, frequency and phase) defined in Equation (4.2), were derived

in Section 4.3. The autocorrelation function for the voiced sounds was derived for the case

where the random amplitude and frequency process were of a Gaussian nature and the random

phase uniformly distributed, as shown in Equation (4.18) and reproduced for convenience in

Equation (6.16).

ψ(τ) =
1
2
σ2
r e−(τσf )2/2. (6.16)
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In the case where the random frequency was chosen to have a non-zero mean µ the autocor-

relation function was found to be

ψ(τ) =
1
2
σ2
r cos(2πµτ) e−(τσf )2/2. (6.17)

The two autocorrelation functions are however only theoretical approximations of the source

signal (defined in Section 4.4) and do not take into account that the simulated source signal

(Section 4.6) has a constant amplitude, frequency and phase over 20 ms intervals. Never-

theless, it will be shown that similarities exist between the simulated and theoretical source

signal (Equation (6.17)) and that the design methodology of finding a stochastic random

process for the theoretical source signal is very similar to finding a stochastic random process

for the simulated signal. In Subsection 6.7.2 a periodic random process was designed to match

that of the theoretical signal and then a similar approach was used to find a suitable periodic

random process for the simulated signal.

From the two autocorrelation functions (Equation (6.16) and Equation (6.17)) it is evident

that a complex shaping filter is required to stochastically model the source defined in Section

4.3. A single stochastic model as shown in Figure 6.4 was preferred since it required only a

single white-noise source and shaping filter to model a source signal containing three random

variables (amplitude, frequency and phase). A simple narrow-band noise model (defined in

Addendum A.7) could be used as a stochastic model for the source signal model as the result

of passing white-noise through a narrow-band filter results in a random variable of the form

given by Equation (4.2) with a random amplitude and phase. Since it however does not have a

random frequency, it can only be used as a signal model for a particular bandlimited channel

and would require not one but l source signal models for the l channels.

Thus, to maintain a single-source, multiple-channel system configuration as depicted in Fig-

ure 6.4 a stochastic model fitting the source model as a whole was required. This model will

be derived in Subsection 6.7.2, but first it is necessary to digress for a moment, to discuss

correlated noise processes and the integration thereof with the discrete-time Kalman filter.

This is done in Subsection 6.7.1.1 to Subsection 6.7.1.2.
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6.7.1.1 Correlated noise

As discussed in Section 6.6.1, the nature of the input noise driving the discrete-time Kalman

filter has to adhere to certain conditions, one of these requires it to be a white-noise processes.

A random variable is said to be white if its samples in time are uncorrelated (Haykin, 1994;

Brown and Hwang, 1997; Grewal and Andrews, 2001; Papoulis and Pillai, 2002). The random

variable g with random sequence g1, g2, . . . , gn is uncorrelated if

E
[
(gk − E [gk]) (gj − E [gj ])

T
]

= G (k, j) δ(k − j), (6.18)

where j and k are samples within the sequence n, δ (k) is the Kronecker delta function and

G(k, j) the autocovariance matrix of the random variable g. Finding a stochastic model, which

is not of white Gaussian nature as required by the discrete-time Kalman filter of Section 6.6,

requires a shaping filter to convert the PSD of white Gaussian noise to the required PSD.

By augmenting the state equations to include a shaping filter, a process coloured in time (ie.

samples are correlated), can be generated from a white Gaussian noise source.
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In order to achieve this a shaping filter as shown in Figure 6.5 needed to be designed, with

additional state variables, which feature in the model but are hidden from the output of the

system (Lewis, 1986; Brown and Hwang, 1997; Grewal and Andrews, 2001).

kω
'kx

kw
�

SFΓ SFH

SFΦ

�

�
1−z

�
�

�

SFD

kω

Figure 6.5: Discrete-time shaping filter model for non-white process noise wk, generated

from white Gaussian noise process ωk.

A system of the form

xk+1 = Φxk + Γwk

yk = Hxk + vk, (6.19)

where vk ∼ N(0, R), x0 ∼ N(E (x)0 , P0) (where N(m,σ2) is a Gaussian random variable

with mean m and variance σ2 and wk is not white) and the PSD of the process wk is given by

ΨW (f) that is not constant over all f (coloured), is a typical example where augmentation

of the state vector is required.
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If the autocorrelation function ψW (z) is rational and if the PSD |ΨW (z)| 6= 0 for almost every

z then there is a square, rational, asymptotically stable spectral factor H(z) with zeros inside

or on the unit circle such that

ΨW (z) = H(z)HT (z−1). (6.20)

If |ΨW (z)| 6= 0 on |z| = 1 then H(z) is strictly minimum-phase, i.e. all zeros are strictly inside

|z| = 1. If Equation (6.20) can be spectrally factored, then the system H(z) can be driven by

white-noise ωk ∼ N(0, 1) to produce a spectral density ΨW (z). The state realisation of H(z)

is given by

H(z) = HSF (zI − ΦSF )−1ΓSF + DSF , (6.21)

where the coloured noise wk is now given by the following spectrum shaping filter

x′k+1 = ΦSF x′k + ΓSF ωk

wk = HSF x′k + DSF ωk. (6.22)

Equation (6.22) is the general form of the shaping filter since it also contains a direct feed-

through matrix DSF . The direct feed-through has however been omitted since the state-space

equations of the Kalman filter require this input for the measurement noise process. However,

if a plant or system is of the form given by Equation (6.19) and an additional shaping filter

is required to produce the required correlated process noise wk, the direct feed-through can

be ’absorbed’ in the augmented process equation as will be discovered now.

Augmenting the state vector the process noise equation now becomes


 xk+1

x′k+1


 =


 Φ ΓHSF

0 ΦSF





 xk

x′k


 +


 ΓDSF

ΓSF


ωk, (6.23)
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with a measurement equation

yk =
[

H 0
]

 xk

x′k


 + vk. (6.24)

The direct feed-through matrix DSF is now contained in the input matrix. If the shaping filter

is however chosen to have DSF = 0 then the factor ΓDSF simply reduces to zero. Shaping

filters become useful tools when very specific and complex multi-stage colouring processes

are desired as will be seen in Section 6.6.

The shaping filter can be integrated with the discrete-time Kalman filter of Subsection 6.7.2

to provide for the case where the noise source ωk is not white. In the next section it will be

investigated how the simple Kalman filtering equations change when the filter is driven by a

coloured noise process.

6.7.1.2 Discrete-time Kalman filter with coloured process noise

The classic discrete-time Kalman filter (Kalman, 1960) assumes that both the process and

measurement noise are white Gaussian processes and that no cross-correlation exists between

process and measurement noise. In reality however very few systems can be modelled as such

and thus a method is required to convert or shape the non-white-noise sequence into the

required form. In this case, the process noise is assumed to be correlated (coloured).

One way of accomplishing such a conversion is to rewrite the state equation in such a way

so that the forcing function is driven by a zero mean, white Gaussian noise process as was

discussed in the previous section. Given the standard discrete-time state equation

xk+1 = Φkxk + Γkwk (6.25)

and measurement equation

zk = Hkxk + vk, (6.26)
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where the process noise wk is assumed to have correlated samples. The coloured process noise

can however be written as a process driven by a zero-mean white Gaussian noise process βk.

This conversion sacrifices complexity for a realistic source of process noise that is non-white

where

wk = Mk−1wk−1 + βk, (6.27)

where Mk is a suitable state transition matrix for the shaping filter. To use the previously

defined Kalman filter equations from Section 6.6, new state variables have to be derived with

the help of the shaping filter methodology. Letting

x̃k =


 xk

wk


 , (6.28)

Φ̃k =


 Φk 1

0 Mk


 (6.29)

and

β̃k =


 0

βk


 , (6.30)

the state equation can be rewritten as

x̃k+1 = Φ̃kx̃k + β̃k+1. (6.31)

The measurement sensitivity matrix Hk also has to be adapted to include the second state

variable wk and can now be written as

H̃k =
[

Hk 0
]
. (6.32)
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Given Equation (6.32) the measurement equation now becomes

zk = H̃kx̃k + vk. (6.33)

Comparing Equation (6.32) and Equation (6.33) with Equation (6.3) and Equation (6.4) and

assuming the deterministic input uk to be zero it can be seen that the augmented state and

measurement equation are in the same form as that of the original state and measurement

equations. The state equations can also be easily adapted to include the deterministic input

if this is required, but the form of the state and measurement equations will remain the same.

The Kalman filtering equations in Section 6.6 can thus be used unchanged.

Correct and consistent initialisation

For correct and consistent initialisation the same guidelines hold as for the discrete-time

Kalman filter in Section 6.6. According to Chui and Chen (1987) the initial state estimates

should be set to

x̂0 =


 E [x0]

0


 , (6.34)

since it was assumed that w−1 = 0. Thus no extra information can be obtained from the past

to make the best estimate and the best unbiased estimate of w thus becomes zero.
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The initial error covariance matrix should be set such that

P0 = Var
[
x̃0 − ˆ̃x0

]

= Var





 x0 −E[x0]

w0


 +


 Var

[
x0HT

0

]

0




[
H0Var [x0]HT

0 + R0

]−1 [
H0E[x0]− z0

]



=


 Var [x0]−Var [x0]HT

0

[
H0Var [x0]HT

0 + R0

]−1 H0Var [x0] 0

0 Q0




(6.35)

Since the shaping filter has been defined and the state-space equations derived a suitable

stochastic model for the source signal can now be derived. A vital clue to which statistical

model fits the source signal model the best is the requirement for a periodic autocorrelation

function (see Equation (6.17)). As will become evident in the next section, a special form of

the well-known Gauss-Markov (Gelb, 1984; Lewis, 1986) process provides just that.

Having discussed correlated noise processes and the integration thereof with the Kalman

filter, a stochastic model for the source signal model in Equation (6.17) can now be found.
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6.7.2 Stochastic Modelling of the Source Signal

From Equation (6.17) it can be seen that an exponentially decreasing periodic autocorrelation

function is required to model the theoretical source signal (where tskip = 0 s) defined in

Chapter 4. Since the autocorrelation function and PSD are related to each other by the Fourier

transform, stochastic modelling can be done either by matching autocorrelation functions

or PSDs. Since the PSD of a random variable describes the random variable much more

visually than the autocorrelation function, it was opted to match the PSDs rather than

the autocorrelation functions. First the PSD of Equation (6.17) was derived. The PSD of

a random variable can be obtained by taking the Fourier transform of the autocorrelation

function such that

PSD(ω) =
1
2
σ2
r

∫ ∞

−∞
cos(2πµτ) e−(σ2

f /2)τ2
e−jωτ dτ. (6.36)

By noting that a multiplication in the time domain results in a convolution in the frequency

domain such that

g1(t)g2(t) ­
∫ ∞

−∞
G1(λ)G2(f − λ) dλ, (6.37)

the autocorrelation function is divided into two separate functions g1, g2 and a constant term

σ2
r/2. The variable g1(τ) is then transformed such that

g1(τ) = cos(2πµτ),

G1(f) =
1
2

[δ(f − µ) + δ(f + µ)] (6.38)

and then g2(τ) such that

g2(τ) = e−(σ2
f /2)τ2

,

G2(f) =
√

2π

σf
e−2(π/σf )2f2

. (6.39)
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Convolving Equation (6.38) with Equation (6.39) and scaling by the missing factor σ2
r/2

results in the following PSD (for f > 0)

PSDpos(f) =
√

π

σf

σ2
r

2
√

2
e−2(π/σf )2(f − µ)2 . (6.40)

From Equation (6.40) it is evident that the PSD is an exponentially decaying function,

located at the mean frequency µ. Since any random variable generated by passing a zero-

mean Gaussian random variable through a linear system retains a zero-mean, generating a

forcing function for the Kalman filter, which per definition has to have a zero mean, requires

either a deterministic bias additional to that of a zero-mean forcing function or if possible a

zero-mean forcing function with similar spectral properties such as that of the nonzero-mean

random variable. A special form of the Gauss-Markov process, a zero-mean periodic random

process, provides for such an interesting alternative to using a fixed bias and is evaluated

next.

6.7.2.1 Gauss-Markov processes

A special class of random processes, generated by passing white-noise through linear time

invariant filters, is the family of Gauss-Markov processes (Gelb, 1984), defined in Addendum

A.8.

A first-order Gauss-Markov process, represented by the random variable X, has an auto-

correlation function given by

ψX(τ) = σ2 e−β1|τ | + µ2, (6.41)

with mean µ and PSD

ΨX(ω) =
2β1σ

2

ω2 + β1
2 . (6.42)

A second-order Gauss-Markov process has an autocorrelation function given by
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ψX(τ) = σ2(1 + β2|τ |) e−β2|τ | + µ2, (6.43)

with mean µ and PSD

ΨX(ω) =
4β2

3σ2

(ω2 + β2
2)2

. (6.44)

Comparing the Gauss-Markov processes with Equation (6.16), similarities between the auto-

correlation of the Gauss-Markov process and Equation (6.16) are apparent. Both autocor-

relation functions decay exponentially and are multiplied by a variance. However, since a

stochastic model for the random variable given by the autocorrelation function of Equation

(6.17) is required, which contains a periodic term as well, a special form of Gauss-Markov

process, the periodic random process, needs to be considered.

6.7.2.2 Periodic random processes

A random process X, which is closely related to the Gauss-Markov class of random vari-

ables is the periodic random process (PRP). While it is commonly listed as a second-order

Gauss-Markov process (Lewis, 1986) it is in fact a special form in that it exhibits periodic

behaviour. It is derived from the sinusoidal random process (Grewal and Andrews, 2001)

given by autocorrelation function

ψX(τ) = σ2 cos(ωnτ) (6.45)

and PSD

ΨX(ω) = πσ2 [δ(ω − ωn) + δ(ω + ωn)] . (6.46)

In state-space form it can be written as

ẋ(t) =


 0 1

−ωn
2 0


x(t) +


 0

1


w(t). (6.47)
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The autocorrelation function of the sinusoidal random process can be slightly adjusted by

adding an exponential term such that

ψX(τ) = σ2 e−β|τ | cos(ωnτ). (6.48)

The autocorrelation function of the PRP contains both a periodic and exponential decaying

function and the PSD of the PRP is given by

ΨX(ω) =
2βσ2

PRP (ω2 + α2)
ω4 + 2(2β2 − α2)ω2 + α4

. (6.49)

The differential equation of the periodic function is given by

ẋ(t) =


 0 1

−α2 −2β


x(t) +


 1

(α− 2β)


w(t), (6.50)

where

α = (β2 + ω2
n)0.5. (6.51)

Given the PSD of the PRP (Equation (6.49)) and that of the theoretical source signal model

(Equation (6.40)) a close theoretical approximation can be found by adjusting the standard

deviation of the periodic random process σ2
PRP and parameter β. Even though the similarities

between Equation (6.49) and Equation (6.40) are not immediately evident it will be shown

that close similarities between the two do exist.

The two PSDs of Equation (6.49) and Equation (6.40) were matched by selecting suitable

values for σ2
PRP and β that minimised the mean-squared error between the two PSDs.
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Table (6.3) summarises the values found.

Table 6.3: Statistics of theoretical source signal model (Equation (6.40)) and periodic ran-

dom process (Equation (6.49)).

Model Variable Value

Theoretical source signal

model (chosen)

σ2
r 1/6 (V2)

σ2
f 25 (Hz2)

Periodic random process

(matched)

β 4.63

σ2
PRP 0.105

The resultant PSDs for the two random processes, the theoretical source signal and the PRP,

are shown in Figure 6.6.
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Figure 6.6: PSD comparison between theoretical source signal and PRP.

It is clear from Figure 6.6 that indeed an equivalent periodic random process can be found

to match the PSD of the theoretical source signal model. The PRP matches the PSD of the

theoretical source signal model well in the 305 to 309 Hz range (around the mean value µ of

307 Hz) where almost all of the source signal model power is situated (-13 dB to -20 dB).

The additional advantage of the PRP is that it has a zero mean and thus does not require a

bias when implemented in the Kalman filter. The PRP PSD can also be easily adjusted, by
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changing the variance σ2
PRP and the parameter β, to match the PSD of a signal centred on

any frequency µ Hz.

The PSD of the theoretical source signal differs from the simulated source signal (see re-

sults obtained in Section 4.6) since stationarity was assumed (Section 4.3, Equation (4.9)).

However, since the simulated source signal is constant over a 20 ms interval, imitating the

behaviour of a formant frequency in speech, the theoretical PSD of the theoretical source

signal would be expected to become wider since the Fourier transform of a modulated rect-

angular pulse of 20 ms is a frequency shifted sinc function with a main-lobe width of 2/T

where T is the period of the rectangular pulse. In this, case the main-lobe width is 100 Hz,

which is relatively large compared to the 25 Hz frequency variance of the theoretical source

signal. Thus, the PRP has to be matched to the simulated source signal. This will be done

in Subsection 6.7.3.

However, the PRP discussed above is a continuous-time random process, which first needs

to be discretised before it can be integrated with the discrete-time Kalman filter. It is thus

necessary to digress for a moment to discuss the numerical evaluation of a continuous-time

system.

6.7.2.3 Numerical evaluated, sampled continuous-time system

Given a continuous process

ẋ(t) = Ax(t) + Bu(t), (6.52)

where u is a vector forcing function consisting of white-noise, the need often arises to sample

such a process. Reasons can vary from having to use digital measuring devices, to needing

to simulate a continuous-time process at discrete intervals in time. The sampling process can

be done analytically or numerically where the former allows for an exact, closed-form solu-

tion and where the latter only provides an approximation. The numerical solution however

avoids the time consuming task of inverse Laplace transforms, which become laborious for

high-order systems as will be evident later on.

When sampling Equation (6.52) at discrete steps in time to obtain the difference equa-
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tion relating the samples of x, the solution at time tk+1 may be written as (Brown and

Hwang, 1997)

x(tk+1) = Φ(tk+1,tk
)x(tk) +

∫ tk+1

tk

Φ(tk+1, τ)B(τ)u(τ) dτ, (6.53)

or as

xk+1 = Φkxk + ωk, (6.54)

where Φk represents the state transition matrix from time tk to tk+1 and ωk is the driven

response at tk+1.

The covariance matrix Qk of discrete forcing function ωk can be found by letting

Qk = E
[
xkxT

k

]

=
∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, %)B(%)E
[
u(%)uT (ς)

]
BT (ς)ΦT (tk+1, ς) d% dς. (6.55)

Given Equation (6.52) with initial conditions x(t0) = x0, the state transition matrix can be

found by evaluating

Φk = L−1
[
(sI−A)−1

] |t=∆t, (6.56)

where the symbol L−1 represents the inverse Laplace transform. For low-order systems Equa-

tion (6.56) gives a simple and straightforward, closed-form solutions. A similar situation

applies to finding the discrete-time covariance matrix Qk. For higher-order systems the

matrix-inverse however becomes quite laborious and at some stage virtually impossible to

find a closed-form expression. It is thus sometimes easier to resort to a numerical method,

especially if A is time-varying.
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In the absence of a forcing function the state changes from tk to tk+1

x(t) = Φ(t, tk)x(tk), t ≥ tk, (6.57)

which satisfies the matrix differential equation

Φ̇(t, tk) = A(t)Φ(t, tk), Φ(tk, tk) = I. (6.58)

If A is assumed to be constant over (tk, tk+1) then the state transition matrix is the matrix

exponential given by

Φk = eA∆t = I + A∆t +
(A∆t)2

2!
+ . . . . (6.59)

The numerical evaluation of Qk is slightly more complicated and it has been shown by Brown

and Hwang (1997) that Qk must satisfy the differential equation

Q̇k(t, tk) = A(t)Qk(t, tk) + Qk(t, tk)AT (t)

+ B(t)WBT (t) Qk(tk, tk) = 0, (6.60)

where W is the PSD matrix associated with the forcing function u in Equation (6.52). Solv-

ing Equation (6.60) is no trivial matter and a method especially suited for MATLAB given

by van Loan (1978) proceeds as follows:

First a 2n x 2n matrix is set up, where n is the number of state variables, such that

Fk =


 −A BWBT

0 AT


∆t. (6.61)
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Then solving for the matrix exponential (expm in MATLAB)

Gk = eF =


 . . . Φ−1Qk

0 ΦT


 , (6.62)

the solution for Φk is obtained by taking the transpose of the lower-right partition of Gk.

Finally Qk can be found by

Qk = Φk · (upper-right part of Gk). (6.63)

Having discussed the discretisation process of any continuous-time state-space system, the

principles can now be applied to discretise the continuous-time PRP given in Subsection 6.7.2.

Subsequently suitable parameters for σ2
PRP and the value β can be found, that match the

PSD of the discretised periodic random process to that of the simulated source signal.

6.7.3 Simulated Periodic Random Process

It was shown in Subsection 6.7.2.1 that the periodic random process with a zero mean and

variance σ2
PRP can be used to approximate the theoretical source signal model of Equation

(6.40). By finding suitable values for σ2
PRP and β the periodic random process was adjusted

in such a way as to emulate the first and second-order statistics of the theoretical source

signal model. However, the assumption made was that the signal in Equation (4.9), is wide

sense stationary. The simulated source signal however imitates the behaviour of that of a

formant frequency in speech as was mentioned earlier and defined in Section 4.3, where the

amplitude, frequency and phase stays constant over a 20 ms interval after which the three

values assume new random values. This process is similar to a modulated rectangular wave

with random amplitude, frequency and phase. Since a modulated rectangular wave in time

translates to a sinc signal in the frequency domain, where the main-lobe width is relatively

large compared to the variance of the random frequency (100 Hz compared to 25 Hz) an

increase in the value for parameter β in Equation (6.51) is expected. In order to find appro-

priate values for σ2
PRP and β for the periodic random process it was chosen to minimise the

mean-squared error between the estimated PSD (Yule-Walker spectral estimation method)

of the simulated source signal and the theoretical PSD of the periodic random process.

Electrical, Electronic and Computer Engineering 162

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 6 Estimator Models

With the aim of simulating the continuous-time periodic random process in discrete instants

in times, a numerical evaluation of Equation (6.50) and Q(t), using the methods in Subsection

6.7.2.3, is undertaken. The differential equation of the periodic random process is given by

Equation (6.50) and Equation (6.51) and needs to be discretised such that the state equation

of the PRP can be written as

βk+1 = Lkβk + ωk (6.64)

and the measurement equation written as

zk = Hkβk + vk. (6.65)

Lk can be found by either solving Equation (6.59) or by taking the transpose of the lower-

right partition of Gk in Equation (6.62). The process noise covariance matrix Qk can then

be found by solving Equation (6.63). For simulation and testing purposes the matrix Qk is

awkward to work with due to its non-diagonal nature (cross-correlation between two inputs).

To avoid this it is preferable to find a matrix Υk such that

ωk = Υkαk, (6.66)

where αk ∼ N(0, 1). It is required that

E
[
(Υkαk)(Υkαk)T

]
= E[ωkω

T
k ] = Qk, (6.67)

The matrix Υk can be found by factorising it in such a way that

ΥkΥT
k = Qk. (6.68)

The elements of Υk can be solved by Cholesky factorisation since Υk is the Cholesky factor

of Qk.

The numerically evaluated periodic random process of Equation (6.50) and Equation (6.51)
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is then given by

βk = Lk−1βk−1 + Υkαk, (6.69)

where

Lk =


 0.88783 0.00023301

−870.64 0.82946


 (6.70)

and

Υk =


 0.090971 0

85.239 32.151


 , (6.71)

for all k.

The parameters found for the continuous-time PRP, given by Equation (6.49) to Equation

(6.51) and the matched discrete-time PRP are summarised in Table (6.4).

Table 6.4: Statistics of both simulated source signal model and simulated periodic random

process (discrete).

Model Variable Value

Simulated source signal

model (chosen)

σ2
r 1/6 (V2)

σ2
f 25 (Hz2)

Discrete-time periodic

random process (matched)

β 124

σ2
PRP 0.100
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The following simulated results were obtained for the periodic random process as discussed

above. The periodic random process (Equation (6.69)) is shown at an arbitrary instant in

time, in this case at 11 s into the simulation, in Figure 6.7.
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Figure 6.7: Simulated discrete-time periodic random process as a function of time.

There are obvious similarities between the periodic random process shown in Figure 6.7 and

the simulated source signal defined and simulated in Chapter 4 and given by Figure 4.9. Both

random signals have similar random amplitudes, situated between -1 V and 1 V. The obvious

difference is that the simulated source signal has a constant amplitude, frequency and phase

over an interval of 20 ms, while the periodic random process changes at every sample in time.

Since the primary interest however lies in the PSD of the various signals, only the mean and

variance are important in this case as far as the Kalman filter is concerned.
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The PSDs for the simulated source signal, the theoretical periodic random process and the

estimated PSD for the simulated PRP are shown in Figure 6.8.

0 100 200 300 400 500 600 700
−55

−50

−45

−40

−35

−30

−25

Frequency (Hz)

PS
D

 (
dB

/H
z)

Source signal
Theoretical PRP
Estimated PRP

Figure 6.8: Estimated PSD of simulated source signal model, compared to theoretically

obtained PSD of the periodic random process (PRP) and the estimated PSD of the simu-

lated PRP. Estimated PSD of PRP obtained by means of Yule-Walker algorithm. PSD was

estimated over 1 million random samples.

Care has to be taken when performing such a direct comparison, since the theoretical PSD

of the PRP is an exact solution whereas the PSDs for the simulated source signal and the

simulated PRP are estimated ones. The well-known Yule-Walker algorithm (Marple, 1987;

Kay, 1988) was used to estimate the PSD from samples generated by the simulated source

signal model and the simulated periodic random process. The PSD of the simulated source

signal does not have a single distinct peak, but is (similar to the other two PSDs) situated

around 305-307 Hz. The PSD (shape and magnitude) of the simulated periodic random

process compares favourably to the theoretically obtained one and relatively well to the

simulated source signal. The effect that the 20 ms interval has on the PSD of the simulated

source signal is evident from Figure 6.8 and the parameter β that was found (see Table (6.4)).

As was expected the parameter β, determining the width of the PSD is much larger than was

derived for the theoretical case given in Table (6.3). Nevertheless, it is quite evident from the

results that the simulated source signal, as far as the PSD is concerned, can be replaced by
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a periodic random process with parameters given in Table (6.4).

6.7.4 State Equations for Signal Extraction, Demodulation and Low-pass Fil-

tering

From Figure 6.4 the next functional unit that needs to be written in a set of system equations

are the bandpass filters of the filter bank, where signal extraction for individual frequency

bands takes place and then the power extraction by means of demodulation and low-pass

filtering. Filters however can rarely be implemented directly in state-space form because of

the stringent limitations set on them by the Kalman filter.

Finding an approximation of the actual filter can be done by means of spectral estimation

algorithms such as the modified Yule-Walker algorithm, Prony’s method, Linear Prediction,

the Steiglitz-McBride method and inverse frequency design (These methods are available in

MATLAB). In this case an ARMA model of desired order is found that models the response

of the time-invariant linear filter as discussed in Subsection 4.4.5. Another method for ap-

proximating the filter would be to use the Kalman filter as a system identification tool and

to estimate the characteristics of the bandpass filter (see Gelb (1984)).

In this case, however, the problem was not bound to a particular filter design and any filter,

within limits, meeting the requirements set by the Kalman filter criterion could be designed.

This was done in Chapter 4. An IIR filter bank was designed and an ARMA model was

then used to implement the filter bank in the observable canonical form in Subsection 4.4.5.

Similarly, a lowpass filter for each channel was implemented by using an ARMA model set up

in the observable canonical form. Thus the state-space equations of the filters can be directly

implemented in the system equations.

The process of demodulation is realized by squaring the signal at the output of the BPF.

This results in a resultant DC component representing the sum of all frequency components

present across the band, which provides an indication of the signal power in the spectral band.

In order to obtain the resultant DC component on its own (removing the AC component)

requires filtering of the result with a narrow-band lowpass filter, rejecting all other frequency

components now situated at multiples of the fundamental frequency of the sampled signal.
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This demodulation procedure is a non-linear operation, however a linear approximation is

required for the Kalman filter. To investigate the implications of a non-linear functional unit

on the Kalman filtering problem requires the understanding of the non-linear dynamics of the

situation. It is thus necessary to digress for a moment to discuss some non-linear estimation

theory and in particular a non-linear estimator know as the extended Kalman filter.

6.7.4.1 Non-linear estimation

Many dynamic systems are not linear and can be written in continuous-time as

ẋ(t) = f(x(t), t) + u(t) (6.72)

and

z(t) = h(x(t), t) + v(t), (6.73)

or in discrete-time as

xk+1 = f(x, k) + ωk (6.74)

and

z = h(x, k) + vk, (6.75)

where f and h are non-linear functions of x. This provides potential problems since the

Kalman filter is inherently a linear, optimal estimator. However, if it can be assumed that to

some degree a dynamic system is linear over small perturbations, only slight alterations need

to be made to the Kalman filter resulting in the extended Kalman filter (EKF). A general

misconception is that the EKF applies methods of non-linear estimation theory to non-linear

systems when in fact it applies the same methods of linear estimation theory (found in Sec-

tion 6.6) to non-linear systems by assuming linearity over small perturbations. Nevertheless,

it has been shown by Anderson and Moore (1979) that by means of ingenuity and appro-
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priate simplifications, an EKF for non-linear dynamic systems can be found. An important

distinguishing factor between the Kalman filter and the EKF is that the latter is not optimal

(Anderson and Moore, 1979).

There are two main methods available to the design engineer to solve the problem of non-

linearity: Linearisation about a nominal trajectory and linearisation about the estimated

trajectory. The philosophy behind non-linear estimation is beyond the scope of this disserta-

tion but interesting material can be found in Kolk and Lerman (1992) and Naumov (2000).

Non-linear Minimum Variance Estimation

In this research the focus will be on the extended Kalman filter (EKF), which is the most

general non-linear minimum variance estimator. Two other methods for non-linear estimation

are discussed briefly in Addendum A.9 to give the reader an overview of the most important

methods, each with their advantages and disadvantages and appropriate references. The EKF

linearised about an estimated trajectory is discussed below.

Extended Kalman Filter

As was discussed, many dynamic systems are not linear yet the methodology of Kalman

filtering can be applied to these problems with a slight variation in the Kalman filtering

equations. The non-linear equations of Equation (6.72) and Equation (6.73) need to be lin-

earised around an estimated trajectory (Grewal and Andrews, 2001; Brown and Hwang, 1997)

in the case of the extended Kalman filter. Since only the sampled time domain is relevant

here, the following discrete-time state and measurement equation are chosen:

xk+1 = f(x, k) + ωk, (6.76)

zk = h(x, k) + vk. (6.77)

The noise processes ωk and vk are zero-mean white Gaussian noise processes with covariance

matrices Qk and Rk.
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Since an error exists between the true trajectory of x and the estimated trajectory x̂ such

that

xk = x̂k + δxk, (6.78)

where δxk is the error, Equation (6.76) and Equation (6.77) can be rewritten as

x̂k+1 + δxk+1 = f(x̂ + δx, k) + ωk (6.79)

and

zk = h(x̂ + δx, k) + vk. (6.80)

The right-hand side of Equation (6.79) and Equation (6.80) can now be approximated by

a Taylor series expansion of the form given in Equation (A.61). By using only a first-order

Taylor expansion approximation Equation (6.79) and Equation (6.80) can be rewritten as

x̂k+1 + δxk+1 ≈ f(x̂, k) +
∂f(x, k)

∂x

∣∣∣∣∣
x = x̂k(−)

(xk − x̂k) + ωk (6.81)

and

zk ≈ h(x̂, k) +
∂h(x, k)

∂x

∣∣∣∣∣
x = x̂k(−)

(xk − x̂k) + vk. (6.82)

Since

xk − x̂k = δxk (6.83)

and the fact that the unforced response can be defined as

x̂k+1 = f(x, k), (6.84)
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the linearised state-space equation and measurement equation can now be written as

δxk+1 ≈ ∂f(x, k)
∂x

∣∣∣∣∣
x = x̂k(−)

δxk + ωk (6.85)

and

[zk − h(x̂, k)] ≈ ∂h(x, k)
∂x

∣∣∣∣∣
x = x̂k(−)

δxk + vk. (6.86)

The differential state transmission matrix Φ[D] is now formally defined and related to the

non-linear function f(x, k) in the state equation such that

Φ[D](x̂, k) =
∂f(x, k)

∂x

∣∣∣∣∣
x = x̂k(−)

, (6.87)

where

Φ[D](x̂, k) =




∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
. . .

∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

∂f2

∂x3
. . .

∂f2

∂xn
∂f3

∂x1

∂f3

∂x2

∂f3

∂x3
. . .

∂f3

∂xn
...

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2

∂fn

∂x3
. . .

∂fn

∂xn



x = x̂k(−)

. (6.88)

Similarly, the differential measurement sensitivity matrix H[D], related to the non-linear func-

tion h(x, k) in the measurement equation by

H[D](x̂, k) =
∂h(x, k)

∂x

∣∣∣∣∣
x = x̂k(−)

, (6.89)
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can be defined as

H[D](x̂, k) =




∂h1

∂x1

∂h1

∂x2

∂h1

∂x3
. . .

∂h1

∂xn
∂h2

∂x1

∂h2

∂x2

∂h2

∂x3
. . .

∂h2

∂xn
∂h3

∂x1

∂h3

∂x2

∂h3

∂x3
. . .

∂h3

∂xn
...

...
...

. . .
...

∂hn

∂x1

∂hn

∂x2

∂hn

∂x3
. . .

∂hn

∂xn



x = x̂k(−)

. (6.90)

The EKF can be described by the following equations.

The Kalman gain matrix:

Kk = Pk(−)H[D][T ]
k

[
H[D]

k Pk(−)H[D][T ]
k + Rk

]−1
. (6.91)

The state estimation observable update:

x̂k(+) = x̂k(−) + Kk [zk − h(x̂k(−))] . (6.92)

The error covariance update:

Pk(+) =
[
I−KkH

[D]
k

]
Pk(−). (6.93)

The error covariance extrapolation:

Pk+1(−) = Φ[D]
k Pk(+)Φ[D][T ]

k + Qk. (6.94)

The state estimation extrapolation:

x̂k+1(−) = f(x̂k(+)). (6.95)

Electrical, Electronic and Computer Engineering 172

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 6 Estimator Models

Comparing the equations of the EKF to that of the Kalman filter in Section 6.6 it can be seen

how the estimators exactly differ from one another. The EKF (unlike the Kalman filter) is

based on non-linear process and measurement model extrapolations (Equation (6.95)). How-

ever, the error covariance propagations are determined from the linearised state transmission

matrix Φ[D] and measurement sensitivity matrix H[D]. Thus the state estimation update in

Equation (6.92) is based on a non-linearly extrapolated state estimate but a linearly deter-

mined Kalman gain matrix.

The EKF (Equation (6.85)) can easily be related to the linear Kalman filter (Equation (6.3))

as will be shown next.

If f is a linear function of k such that

x̂k+1 = f(x, k) = Φkxk (6.96)

and Equations (6.78) and (6.96) are substituted into Equation (6.85) then the linearised

state-space equation reduces to the linear state-space equation suitable for the linear Kalman

filter, where Φk is some arbitrary state transition matrix. For this reason, mixing of linear

and non-linear state-space and measurement equations, as will be done in Subsection 6.7.5,

poses no problem, since no mathematical differences exist.

Correct and Consistent Initialisation

The same rules that apply to the Kalman filter in Section 6.6 apply to the EKF with one

exception. Additional problems related to the linearisation of the state transition matrix and

measurement sensitivity matrix can lead to the divergence of the EKF. In this case, the de-

signer should be careful in picking the sampling rate of the EKF. For more information see

Brown and Hwang (1997) and Grewal and Andrews (2001).

Having defined the EKF and designed the accompanying stochastic models for each of the

functional units in the previous sections the complete EKF state and measurement equations

can now be setup.
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6.7.5 Signal Extraction, Demodulation and Low-pass Filtering

Since the periodic random process has now been simulated, the entire EKF can be set up by

concatenating the state equations of the functional units. The final state variable, the power

found in a particular frequency band, or neural channel, can be written as

εk+1 = 0 · εk + wk. (6.97)

The variable wk is however not a white Gaussian noise process, but rather a coloured process,

which will be defined in detail shortly. The measurement equation is of the form

zk = Hkεk + vk, (6.98)

where Hk is the measurement sensitivity matrix and vk a white Gaussian measurement noise

process with N(0, σ2). Since both the basic state and measurement equations have been found,

the shaping filters for the periodic random process, bandpass filter bank, demodulator and

LPF can be added. The state equation for the discrete-time periodic random process is given

by Equation (6.69). Appending these equations to the state equations of the bandpass filter

bank the following two sequential shaping filters are obtained, namely that of the periodic

random process given by

βk+1 = Lkβk + Υkαk, (6.99)

where Υkαk is as required a white Gaussian process with N(0, σ2) and the band-pass filtering

process given by

ξk+1 = Mkξk + Ωkβk. (6.100)

Demodulation is done by squaring the output of the bandpass filter bank, which is here

discretised only after the appending process has been completed.
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The next step is to append the state equation of the lowpass filter, which results in

γk+1 = Nkγk + Ξk (ξ¦k) (6.101)

and

wk = Γkγk. (6.102)

The diamond (¦) in Equation (6.101) denotes that the input into the lowpass filter is of

a special form since the output of the bandpass filter needs to be squared before the DC

component can be extracted from it. Ξk is thus a non-linear function of ξk. The non-linear

dynamics are however only discussed in the next section. The output of Equation (6.102)

now contains the correctly coloured process noise wk, which can drive the state variable of

the power process εk. In order to show that Equation (6.97) to Equation (6.102) can be used

with the discrete-time Kalman filter algorithm the state and measurement equations have to

be augmented as was done in Subsection 6.7.1.2.

Define a new state variable vector that contains all state variable vectors as

x̃k =




εk

γk

ξk

βk




. (6.103)

The dimensions of each of the state variables, representing a particular functional unit in the

Kalman filter are summarised in Table (6.5) (single channel implementation).

Table 6.5: Dimensions of state variables of the functional units within the Kalman filter.

Functional Unit Symbol Dimension

Periodic random process β (2 x 1)

Bandpass filter ξ (7 x 1)

Lowpass filter γ (4 x 1)

Power in channel ε (1 x 1)
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The newly defined state transition matrix Φ̃k can be used to absorb all state transition

matrices and process noise coupling equations of the preceding Equations (6.99) to (6.102).

By doing so the state transition matrix takes on the form

Φ̃k =




0 Γk 0 0

0 Nk Ξk 0

0 0 Mk Ωk

0 0 0 Lk




, (6.104)

where Φ̃k is a (14 x 14) matrix.

Combining the forcing functions so that it seems that the Kalman filter is driven by a white

Gaussian noise function, results in

α̃k =
[

ω1
k 0 0 0 ω2

k 0 0 0 0 0 0 0 Υkαk

]T
, (6.105)

where α̃k has dimensions (14 x 1). The purpose of adding the terms ω1
k and ω2

k , both with

dimensions (1 x 1), in Equation (6.105) will be discussed at the end of this section. For this

moment in time, it will be assumed zero and the forcing function acting on the dynamic

system influences the power state variable through the various dynamic systems mentioned

earlier.

The augmented state equation can now be directly used by the Kalman filter algorithm

and is given by

x̃k+1 = Φ̃kx̃k + α̃k. (6.106)

Since it was assumed that the channel noise could be modelled by simple white Gaussian

noise, very little changes need to be applied to the measurement equation of Equation (6.98).

The assumption is made that none of the state variables γk, ξk or βk can be directly measured

through the measurement sensitivity matrix making them “hidden” state variables. This is

not necessarily a good assumption as far as Kalman filters are concerned since it requires

that all state variables have to be visible through just one state variable, the power εk (i.e.
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the observability issue as discussed in Addendum A.6). It also requires that all recursive

changes applied by the process noise source α̃k+1 can effect the output of the system (i.e.

the controllability issue as discussed in Addendum A.6). From a biological point of view,

making the state variables, other than the power εk, hidden ones, is a plausible one since

no other sensory feedback mechanisms to the CANS exist in the auditory system before the

point where the haircells innervate the auditory nerve bundle. In this case the augmented

measurement sensitivity matrix is defined as

H̃k =
[

Hk 0 0 0
]
. (6.107)

The new measurement equation can then be written as

zk = H̃kx̃k + vk, (6.108)

where vk is defined as the measurement noise representing the channel noise from Section 5.3,

absorbing both spike-jitter noise and the loss of spikes to unreliable retransmissions between

synapses. As a last step before the state vector augmentation is complete the quadratic term

in Equation (6.101) needs to be linearised. This is done next.

6.7.5.1 Including the non-linear dynamic process

Due to the non-linear demodulation process by means of squaring the signal at the output

of the bandpass filter, modifications have to be made to the state-space equations derived

above. The task is complicated by the fact that the non-linear term appears in the middle of

the sequence of dynamic processes. However, by using the observable canonical form for the

bandpass and lowpass filter and the fact that if

f(x, k) = Akxk, (6.109)

then

∂f(x, k)
∂x

= Ak, (6.110)

Electrical, Electronic and Computer Engineering 177

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 6 Estimator Models

the EKF equations reduce to the standard Kalman filter equations if the process is discrete

and thus constant over a time interval. In this dissertation, only the quadratic term was

linearly approximated, which requires careful implementation. The similarities between the

Kalman filter algorithm and the EKF have to be exploited, which inherently are both linear

and assume linearity when updating the error covariance and Kalman gain equations. One of

the differences between the Kalman filter and the EKF is that the EKF assumes linearisation

about the estimated trajectory, while the Kalman filter assumes that the discrete-time model

is constant over a sample period. Another important difference is that the predicted state

estimate and predicted measurement in case of the EKF are updated with non-linear functions

f and h where

xk+1 = f(x, k) + ωk, ωk ∼ N(0, Qk) (6.111)

and

zk = h(x, k) + vk, vk ∼ N(0, Rk). (6.112)

The squared signal at the output of the bandpass filter passes directly into the lowpass filter

and by choosing both the bandpass and lowpass filter to be in the discrete-time observable

canonical form solving complex and time consuming matrix derivatives later are avoided, as

will become evident shortly.

The measurement sensitivity matrix of the observable canonical form is of the form

C =
[

0 0 . . . 0 1
]
, (6.113)

thus only the last element of the vector is passed through to the output. If the output of

the bandpass filter thus has to be squared, only the last element is of concern. The squared

output of the bandpass filter however has to drive the input of the lowpass filter as well and

assuming that from Equation (6.101) the matrix Ξk has to absorb both the measurement

sensitivity matrix and the coefficients of the zeros of the lowpass filter.

For a bandpass filter with n filter coefficients (number of pole-coefficients is n and number of
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zero-coefficients is n− 1)

fk(ξk) = Ξk (ξ¦k)

=




Ξ(1,k)

Ξ(2,k)

...

Ξ(m,k)







[
0 . . . 0 1

]



ξ(1,k)

...

ξ(n,k)







2

=




Ξ(1,k)ξ
2
(n,k)

...

Ξ(m,k)ξ
2
(n,k)


 , (6.114)

where m is the number of filter coefficients of the lowpass filter (number of pole-coefficients

is m and number of zero-coefficients is m− 1).

To linearise Equation (6.114) the function f needs to be differentiated with respect to ξ

such that

∂fk
∂ξk

= Φ[D]
k =




0 o 2 Ξ(1,k)ξ(n,k)

. . .

o 0 2 Ξ(m,k)ξ(n,k)


 , (6.115)

where o represents the upper and lower triangular matrix, which in this case are zero. Finding

the a priori and a posteriori error covariance matrix given by Equation (6.93) and Equation

(6.94) requires the use of the linearised measurement sensitivity matrix and state transition

matrix, which were just derived, whereas for the predicted state equation and predicted

estimate on the measurement (Equation (6.95), Equation (6.92)) the non-linear dynamic

state and measurement equations have to be used.
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It has to be noted here that the observable canonical form simplifies the matrix manipulations

since for the controllable canonical form where the measurement sensitivity matrix is given

by

C =
[

c0 c1 c2 . . . cn−1

]
, (6.116)

Equation (6.114) would then be given by

fk(ξk) = Ξk (ξ¦k)

=




0
...

0

1







[
c(1,k) c(2,k) . . . c(m,k)

]



ξ(1,k)

...

ξ(n,k)







2

=




0
...

0

(c(1,k)ξ(1,k) + c(2,k) + . . . + c(n,k)ξ(n,k))2




(6.117)

and for notational convenience let

υk = c(1,k)ξ(1,k) + c(2,k) + . . . + c(n,k)ξ(n,k), (6.118)

then the derivative for Equation (6.117) is given by

∂fk
∂ξk

=




0 0 . . . 0
...

0 0 . . . 0

2υkc(1,k) 2υkc(2,k) . . . 2υkc(n,k)




, (6.119)

which is significantly more intricate as far as implementation and computational complexity

is concerned.

Electrical, Electronic and Computer Engineering 180

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 6 Estimator Models

6.7.5.2 Robustness in tracking

Divergence of the state estimates from the true state variables is of great concern when design-

ing a Kalman filter. Even if an exact representation of the real-world system to be tracked is

found and implemented in the Kalman filter, convergence cannot be guaranteed. In fact, over

longer periods of time during the tracking process the predicted error covariance matrix and

hence the Kalman gain can tend to zero. The result is that the Kalman filter at some stage

only believes its internal model and disregards any new measurements. Any new trends in the

actual measurement data are thus not taken into consideration and divergence will occur. In

order to avoid such an outcome, fictitious process noise has to be injected. This will prevent

the Kalman filter from relying solely on its internal model, continuously readjusting its error

covariance matrix and Kalman gain, never satisfied with the estimate, even if it happens to

be equal to the true state variables. This is the effect that the term ω1
k in Equation (6.105)

has. However, care has to be taken when choosing the magnitude of the fictitious noise, since

it places a lower bound on the error covariance matrix (i.e. the Kalman filter bandwidth is

limited from below).

Finding an exact model of a real-world system is a daunting task, which is further com-

plicated if that system is non-linear. As was discussed in Subsection 6.7.4.1, linearisation

about an estimated trajectory is employed by the EKF, resulting in possible approximation

errors. Even though no errors as such are present in the internal model, approximations of

the non-linear process can lead to divergence. The term ω2
k provides a technique to counter-

act divergence by allowing for some deviation from the internal model of the Kalman filter

straight after the point of linearisation.

In this case two separate sources of fictitious process noise are added, one at the end of

all the processes, to represent errors, which occur along the entire process and another after

the linearisation procedure representing the error induced. In Chapter 7 the advantages of

this particular choice will become evident.
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6.8 DISCUSSION AND CONCLUSION

In this chapter the state-space representations for each of the logical functional units designed

in Chapter 4 to Chapter 5 were found. These were then implemented in the internal model

of the EKF as was discussed at the beginning of the dissertation (see Figure 1.5 reproduced

for convenience in Figure 6.9).
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Figure 6.9: Kalman filter model for auditory system with appropriate symbols (modified

from Chapter 1.1). Φ̃k is the augmented state transition matrix and H̃k the augmented

measurement sensitivity matrix.

The shaded block in Figure 6.9 (Forward model of auditory system) is a stochastic represen-

tation of the auditory process defined by the source signal mode, the bank of bandpass filters,

the demodulation functional unit and the lowpass filter shown in Figure 6.2. By means of

state augmentation the various models were appended, which resulted in a state transition

matrix of the form given by Equation (6.104). The measurement sensitivity matrix of Equa-

tion (6.107) replaces the spike coder/decoder block in Figure 1.5. The actual measurement

obtained by the auditory process model of Figure 6.1a is then compared to the estimated

measurement of the internal model. Based on the error covariance matrix a suitable Kalman

gain is found that minimises the MSE between the estimated state variables and the true

state variables. Although the recursive estimation process is portrayed in Figure 6.9, the error

covariance update procedure, based on the process noise and the measurement noise, is not,

hence the exclusion of the noise variables vk and α̃k found in Equation (6.106) and Equation
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(6.108) from Figure 6.9.

The periodic random process from Subsection 6.7.2 partially represents the shaded block

in Figure 6.9. In this chapter it was shown that the statistics of the source signal as far as

the mean and variance is concerned can be approximated by a periodic random process. The

source signal can thus be replaced by a statistical model in the EKF, allowing for a better

internal model, which in turn translates to a better estimate. Another advantage of using a

periodic random process of zero mean is that it can model a source signal with just about

any non-zero mean. Thus by adjusting the parameters σ2
PRP and β of the periodic random

process, any voiced sound model can be catered for.

In the next chapter the EKF derived in this chapter will be used to estimate the power

signal, given the noisy measurements obtained from the auditory system model.
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CHAPTER 7

EXTENDED KALMAN FILTER EVALUATION

7.1 AIM OF THIS CHAPTER

The main aim of this chapter is to test the formally stated hypotheses from Chapter 1, by

examining how well the extended Kalman filter (EKF), containing a biologically plausible

internal model, performs in the presence of decoding errors and spike channel noise specified

in Chapter 5. The EKF is used to estimate the power process x(t) generated by the auditory

system given in Figure 1.9 (repeated here as Figure 7.1). The implications of these findings

are discussed and a conclusion is drawn.

7.2 INTRODUCTION

In the preceding chapters all the tools and models required for building the complete system

were derived. As was discussed in Section 1.2, two separate systems were designed, the one

simulating the behaviour of the envelope of a speech formant and the subsequent signal

processing steps performed by the auditory system on this excitation signal as it passes

through the auditory system and the second, an EKF containing a stochastically accurate

internal model of the simulated auditory system.
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The two separate systems first shown in Figure 1.9 are reproduced below in Figure 7.1.
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Figure 7.1: Auditory system model a) and stochastic model for a) shown in b). The Kalman

filter contains an internal model of the stochastic model. x
′
(t) and z

′
(t) are the stochastic

equivalents of x(t) and z(t).

The auditory system given in Figure 7.1a is used to generate the simulated measurement

data z(t) for the estimator model shown in Figure 7.1b, which in turn needs to estimate the

state variables x(t) of the auditory system. Note that the Kalman filter does not estimate the

source signal m(t). In this model, the source signal is assumed to be noiseless and the task

of the Kalman filter is to compensate for internal noise, as explained in Section 5.3.

In the next section the entire auditory process that was designed in Chapter 4 to Chapter 5

is summarised briefly.
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7.3 COMPLETE AUDITORY SYSTEM MODEL

The auditory system model as was discussed in Section 1.2 can be modelled as a whole by

Figure 7.2. This is a more detailed version of Figure 7.1a.
���������
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Figure 7.2: Complete auditory system model driven by randomly changing formant fre-

quency (source signal), which in turn is decomposed into separate spectral bands from which

the power is extracted, coded, transmitted over a noisy channel and then decoded. This is a

discrete model with k the time index and Ts the sample period. The variables x(l,k) and z(l,k)

correspond to x(t) and z(t) in Figure 7.1a, respectively.

The auditory system is driven by a source signal defined in Section 4.3 with sample period

Ts. It models the continually changing formant frequency of a source producing only voiced

sounds. The envelope of the formant can change in amplitude, frequency and phase and its

progress is tracked across the entire audible frequency range of roughly 20 Hz to 20 kHz by

l evenly spaced but overlapping narrow-band bandpass filters, analogous to the functioning

of a spectrum analyser. In order to determine the average power in a particular band each

frequency component has to be demodulated to DC as was done in Section 4.6. The result

is first low-pass filtered to remove unwanted frequency components before the true power is

obtained. The power information is then coded by a LIF neuron pair allowing subsequent

transmission over a noisy neural channel (see Chapter 5). The variable tf(l,i) contains the spike

times for both the “on” and “off” neurons on channel number l, with i the spike number.
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For performance evaluation purposes, the signal is then linearly decoded providing a noisy

measurement z(l,k) as required by the EKF estimator discussed in the next section.

7.4 EQUIVALENT STOCHASTIC MODEL (EKF INTERNAL MODEL)

Given the source signal and auditory system model in Figure 7.2 the power x(l,k) present

within each spectral band needs to be estimated. The EKF requires a stochastic equivalent

model of the complete process in state-space form in order to make the best MMSE estimate.

As was discussed in Subsection 6.7.2 the implementation of a stochastic model, modelling a

wide variety of different possible input sources, is a challenging task, especially if the inputs

vary substantially over time. The best that can be done is to specify the source statistically

in terms of its mean, variance and autocorrelation function over a long period in time. It is

thus imperative to define a particular test signal and to find a statistical model that describes

the signal best. In Subsection 6.7.2 a stochastic equivalent model for the source was found

and implemented.
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This source model, the periodic random process, drives the spectral shaping blocks as is

shown in Figure 7.3.
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Figure 7.3: Equivalent stochastic model of the auditory process in Figure 7.2. The stochastic

model consists of a process noise (state equations) and measurement noise process (measure-

ment equations). The state equations are driven by one periodic random process (PRP).

Figure 7.3 shows the internal model of the EKF and the symbols used correspond to Equa-

tion (6.97) to Equation (6.102) in Chapter 6. The subscripts in brackets of the symbols in

Figure 7.3 represent the channel and sample number where the number in brackets behind

the symbol indicates a specific element of the vector used, otherwise all elements are used.

Since the source signal is decomposed by a bank of bandpass filters in the auditory system

model, a set of equivalent shaping filters had to be found for the equivalent stochastic model.

Seeing that the exact IIR filter coefficients are known due to the analysis-by-synthesis design

approach, the filters are implemented directly in Section 4.6 using an ARMA process.

The last part of the auditory system model that needs to be represented by an equivalent

stochastic model is the coder, decoder and channel. This stochastic block was kept separate

from the state equations and was implemented as measurement noise in the measurement

equation of the EKF. This was done to avoid awkward doubly stochastic point processes
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(Snyder, 1975) and simplified the EKF implementation substantially. The decoding mistakes

made by the linear decoder on non-linear data (APs) combined with the unreliability of the

channel was assumed to be Gaussian noise and implemented as Gaussian measurement noise.

The periodic random process drives the spectral shaping blocks representing the bandpass

filter bank, demodulator and lowpass filter and can be represented by the augmented state

equation (see Subsection 6.7.5) given by

x̃k+1 = Φ̃kx̃k + α̃k+1. (7.1)

Since only the state variables representing the power in each band are present, the measure-

ment equation can be written as

zk = H̃kx̃k + vk. (7.2)

In this dissertation the scope was limited to the design, implementation and simulation of

a single channel (l = 1), since a multi-channel implementation in the EKF would require

special attention. In the next section the EKF initialisation parameters are chosen.

7.5 EKF PARAMETER CHOICES AND INITIALISATION

In Section 6.6 and Subsection 6.7.1.1 the initialisation of the classic discrete-time Kalman

filter and the Kalman filter with non-white process noise was discussed. The initialisation

procedure is most often based on the statistics of the state variables at the beginning of

the estimation process. Since the Kalman filter is based on white process and measurement

noise, only the mean and variance is required to describe the state variables completely. It is

however not incorrect to, pick a random sample out of a set of RVs described by a particu-

lar mean and variance for an initial estimate of the state variables. Generally a statistically

initialisation approach is the best approach and is thus used in this dissertation.

For simulation purposes the entire system was initialised to zero initial conditions, which

simplified the choice of initial state variables considerably. In this case it can be stated with

certainty that the initial unbiased estimate is zero and the confidence in this estimate is
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infinite (zero initial variance). The initial state vector is thus chosen as

x̃0 =
[

0
]
, (7.3)

where x̃0 has dimensions (14 x 1). Statistically, the first state variables are chosen with zero

error and thus a zero matrix for the initial error covariance matrix would seem apt. Assuming

zero error in the initial estimate, however, allows the Kalman filter to rely solely on its inter-

nal model at the beginning of the estimation process, something that is never recommended

unless it is certain that no error exists in either the initial estimates or the internal model.

To avoid possible complications such as divergence or very slow convergence rates (locking)

the error covariance matrix should be chosen very carefully.

The purpose of applying injection noise (see Subsection 6.7.5) after squaring (see Figure

7.3) and again after the calculation of power, allowed for some error or uncertainty. In this

case it is wise to reflect the uncertainty of the estimate in the initial error covariance matrix.

Special attention also has to be given to the periodic random process since the intermediate

state variable was measured to have a variance of 0.4 · 106 V2 (see Subsection 6.7.3). This

state variable is a byproduct of the definition of the periodic random process and does not

exist in the real model. Nevertheless, a statistical suitable initial mean and variance had to

be chosen. The initial error covariance matrix for all simulations was chosen to be

P0 =




10−3 0 0 0 0 0 0 0 0 0

0 10−9 0 0 0 0 0 0 0 0

0 0 10−9 0 0 0 . . . 0 0 0 0

0 0 0 10−9 0 0 0 0 0 0

0 0 0 0 10−3 0 0 0 0 0

0 0 0 0 0 10−9 0 0 0 0
...

. . .
...

0 0 0 0 0 0 10−9 0 0 0

0 0 0 0 0 0 . . . 0 10−3 0 0

0 0 0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0 0 0.4 · 106




. (7.4)

No cross-correlation is assumed since all state variables were chosen to be the best, unbiased
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estimates. The units for the diagonal of the matrix P0(6 : 14, 6 : 14) are V2 since the units for

the random periodic process before and after the bandpass filter are measured in volts. After

the demodulation process (squaring) the variance becomes V4, represented by the diagonal

of the matrix P0(2 : 5, 2 : 5). The variance of the power (before conversion from power units

to volts) is measured in V4 since its units were formally defined to be in volts squared (see

Section 4.5).

The process noise matrix Qk was optimised for a particular driving process (the PRP) and

model uncertainty (error in model and linearisation). The measurement noise matrix Rk on

the other hand was optimised for a specific expected measurement noise. Thereafter the

matrices were never changed since choosing a particular process and measurement noise is

dependent on the real model, where changes have to be monitored by a higher hierarchial

level observation system and appropriate matrices applied to the estimation problem. The

motivation behind this assumption, is discussed in more detail in Chapter 8. The following

process noise matrix was implemented.

Qk =




10−10 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 . . . 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 10−13 0 0 0 0

0 0 0 0 0 0 0 0 0
...

. . .
...

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 . . . 0 0.090971 0

0 0 0 0 0 0 0 85.239 32.151




, (7.5)

where matrix location Qk(1, 1) represents the cumulative model uncertainty across the com-

plete stochastic model and Qk(5, 5) the compensation factor for any linearisation errors

(both tuned parameters). Besides the injection noise sources at matrix locations Qk(1, 1)

and Qk(5, 5) only the variance of the driving process (the PRP) was required, which was

defined and designed in Chapter 6. It was assumed that neither the cumulative model un-

certainty nor the linearisation error are correlated with any other process since they account

for uncertainties at exact positions within the equivalent stochastic model of Figure 7.3 (also

see Subsection 6.7.5) and correlations with all other points in the stochastic model are hard
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to determine.

The measurement noise was optimised for an arbitrary spike-time jitter standard deviation

of 1.5 ms and 4 % dropped spikes. This “tunes” the EKF for a particular amount of noise

expected. Ideally this value should be estimated by another lower hierarchial level system

and applied to the EKF by a higher hierarchial level observation system. Nevertheless, this

arbitrary amount of measurement noise expected was sufficiently described by a white-noise

process with variance given by

Rk = 3.5 (V4). (7.6)

The matrices for each of the stochastic functional units, derived in the previous chapters,

are summarised here for convenience. The intermediate measurement sensitivity matrices for

each of the stochastic functional units are also given. For the PRP of Equation (6.99) the

input coupling matrix is given by

Υk =


 0.090971 0

85.239 32.151


 ,

the state-transition matrix by

Lk =


 0.88783 0.00023301

−870.64 0.82946




and the intermediate measurement sensitivity matrix (absorbed in the input coupling matrix

of the following functional unit)

Hk =
[

1 0
]
. (7.7)

In this case only the first of the two state variables of βk is passed on to the bandpass filter.
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In the case of the bandpass filter the input coupling matrix is given by

Ωk =
([

−3.343 11.895 −13.918 0.000 13.918 −11.895 3.343
]
· 10−3

)T
, (7.8)

the state-transition matrix by

Mk =




0 0 0 0 0 0 0

1 0 0 0 0 0 −0.946

0 1 0 0 0 0 5.105

0 0 1 0 0 0 −12.073

0 0 0 1 0 0 15.904

0 0 0 0 1 0 −12.297

0 0 0 0 0 1 5.2968




(7.9)

and the intermediate measurement sensitivity matrix by

Hk =
[

0 0 0 0 0 0 1
]
. (7.10)

In the case of the observable canonical form, only the last state variable is passed on to the

lowpass filter. The process of demodulation was discussed in Subsection 6.7.5 and is omitted

here. In the case of the lowpass filter, the input coupling matrix is given by

Nk =




0 0 0 0

1 0 0 0.996

0 1 0 −2.991

0 0 1 2.996




, (7.11)

the state-transition matrix by

Ξk =
([

0.122 −0.122 −0.122 0.122
]
· 10−3

)T
, (7.12)
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and the intermediate measurement sensitivity matrix by

Hk = Γk =
[

0 0 0 1
]
. (7.13)

The augmented state equation (excluding linearisation, see Subsection 6.7.5 for linearisation

procedure) used by the EKF is

x̃k+1 =




εk+1

γk+1

ξk+1

βk+1




=




0 Γk 0 0

0 Nk Ξ¦k 0

0 0 Mk Ωk

0 0 0 Lk







εk

γk

ξk

βk




+




ω1
k

0

0

0

ω2
k

0

0

0

0

0

0

0

Υkαk




, (7.14)

with measurement equation given by

zk = H̃kx̃k + vk, (7.15)

where H̃k is given by

H̃k =
[

1 0 0 0 0 0 0 0 0 0 0 0 0 0
]
. (7.16)

The EKF was applied to the auditory model in Figure 7.2, its performance evaluated in the

MSE sense and the results discussed in the next section.
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7.6 FINAL RESULTS

In this section the final results obtained with the auditory and estimator system designed in

the previous chapters are shown and discussed.

The EKF was used to estimate the power signal at x
′
(t) (see Figure 7.1b), i.e. just be-

fore the neural coding step. Since x
′
(t) is the stochastic equivalent of x(t) in Figure 7.1a,

it is already an estimate of the true power signal as found in a particular channel. The sig-

nificance of the EKF as an estimator is however evaluated by how well it can estimate x(t)

in the presence of channel noise and decoding non-linearities. The EKF thus needs to be

evaluated for different channel and decoding errors (as was specified in Section 5.3). This is

done by determining the mean-squared error (MSE) between x(t) and x̂(t) when a particular

type of noise (spike-time jitter variance and spike loss) together with decoding errors due

to non-linearities in the signal is present. However, before the EKF is evaluated in terms of

its MSE performance, issues pertaining to observability, controllability and stability of the

estimator are evaluated and discussed.

7.6.1 Observability, Controllability and Stability

Critical evaluation criteria of a Kalman filter are observability, controllability and stability.

Even though the final behavioural results do not suggest instability, as the filter tracks the

signal for the above chosen noise criteria, they do not guarantee that the Kalman filter will

always be stable. In this case, evaluating the system in terms of observability, controllability

are recommended.

First, each functional unit in the extended Kalman filter setup was evaluated independently

by utilising the tools defined in Subsection 6.6.4. In this case it was sufficient to determine

the observability and controllability matrices to prove that the system was observable and

controllable since both Qk (Equation (7.5)) and Rk (Equation (7.6)) were defined as positive

definite matrices and the internal model was assumed to be stationary (i.e. constant system

parameters as a function of time). In this case the observability and controllability grammians

of Equation (A.64) and Equation (A.65) reduce to an algebraical expression in the form of

Equation (A.38) and Equation (A.39).
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The result was that each process found in the internal model of the Kalman filter was deter-

mined to be completely observable and controllable since the observability and controllability

matrices had full ranks. In case of the linearized process, the observability and controllability

grammian satisfied the conditions given in Addendum A.10.1 and Addendum A.10.2 over the

entire simulation interval.

7.6.2 Extended Kalman Filter Performance

Before the final results are shown and discussed, signal extracts illustrating how the EKF

performs in the presence of noise, are depicted. Two scenarios for two different amounts of

noise (both spike-time jitter and dropped spikes) are shown.

In Figure 7.4 the influence that a change in noise intensity has on spike-timing is shown.
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Figure 7.4: Corruption of original spike train (solid) by spike-time jitter and dropped spikes

over an arbitrary interval in time. Small amounts of noise are added (spike-time jitter standard

deviation of 1.5 ms and 4 % dropped spikes) to the spike train at the top of the figure while

large amounts are added to the spike train at the bottom of the figure (spike-time jitter

standard deviation of 2 ms and 15 % dropped spikes). New spike positions of corrupted spike

train are indicated by dashed lines.
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At the top of Figure 7.4 a relatively small amount of noise is added compared to the spike

train at the bottom of the figure. Both spike-time deviations and the loss of spikes are evident

from Figure 7.4. In the first extract, spike-time jitter noise (standard deviation of 1.5 ms)

was applied and spikes dropped randomly (4 %) on one of the l channels (bandpass filter

centred around 300 Hz).

The first 1.5 s of the power in that particular channel are shown in Figure 7.5.
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Figure 7.5: EKF performance in the presence of spike-time jitter noise with standard de-

viation of 1.5 ms and 4 % randomly dropped spikes. This is one of the l channels, with the

original power signal being coded by a LIF neuron pair, which is subsequently transmitted

across a noisy neural channel, linearly decoded by a PSC2 filter and then estimated by the

EKF.

Before time zero, no power is present in the channel since no stimulus has been applied to the

system yet. From the response of the EKF it is evident that the time it takes for “locking”

onto the undistorted power signal (original signal) is minimal (< 0.185 s) since the initial

value for the power signal is chosen to be zero, which is exactly from where the power process

initially starts off. From Figure 7.5 it is however also evident that even though the process

is initialised from zero, the filter tends to be “unstable” for a short period of time, before

locking eventually takes place.
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The amplitude of the power signal is far smaller than one, since the amplitude of the formant

frequencies is of a Gaussian nature with mean and variance given by N(0, 1/6). A gain stage

is used to allow operation in the active region of the neuron-pair as discussed in Section 5.5.

From Figure 7.5 it is evident that the PSC2 decoder derived from the optimal decoder in Sec-

tion 5.4, which is optimal only in the absence of noise, is corrupted by the channel noise. The

EKF maintains the shape of the original signal well and “smooths” the spiky output of the

PSC2 decoder. The EKF’s sensitivity to measurements can be set by changing the measure-

ment noise parameter in the EKF. However, larger than expected measurement noise forces

the EKF to rely more on its internal model and its initial estimates (states and error covari-

ance). This can have a detrimental effect on the estimates since any errors in the internal

model of the EKF can lead to divergence of the estimate. If the approximate measurement

noise is known, it provides for a suitable point of reference to start from. Additional tuning,

however, is almost always required in addition to a guessed or approximated point of reference.

Comparing the difference in MSE between the PSC2 decoded signal relative to the origi-

nal signal and the EKF estimated signal relative to the original signal, the EKF outperforms

the PSC2 filter by an order of 3.4 (5.3 dB).

The following extract illustrates how the performance of the EKF changes when the channel

noise is more severe (see also bottom of Figure 7.4).
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In Figure 7.6 spike-time jitter noise with a standard deviation of 2 ms is applied and 15 %

of the spikes are dropped randomly.
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Figure 7.6: EKF performance in the presence of spike-jitter noise with standard deviation

of 2 ms and 15 % spikes dropped randomly. This is one of the l channels, with the original

power signal being coded by a LIF neuron pair, which is subsequently transmitted across a

noisy neural channel, linearly decoded by a PSC2 filter and then estimated by the EKF.

A 2 ms spike-time jitter standard deviation corresponds to the gap that exists between spikes

at a constant spike rate of 500 spikes per second, where 500 spikes per second is in this case

the maximum spike rate.

The time it takes the EKF to lock onto the original signal, in Figure 7.6, is roughly 0.25

s. Since the variance of the measurement noise parameter in the EKF remains unchanged

from that of the previous example, the estimator struggles to cope with a larger than expected

measurement error variance. The reasoning behind a constant measurement noise variance is

as follows. Even though the channel noise is expected to vary over time, the EKF on its own

cannot detect these changes. In reality, in the case of the auditory system, it can be assumed

that another lower hierarchial system estimates the noise in the channel, which a higher hi-

erarchial level observatory system utilises to tune the measurement noise of the EKF. This

way, the measurement noise could always be chosen optimally (in the case where another
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Kalman filter estimates the noise), allowing for a better overall EKF performance.

From Figure 7.6 it is evident that the PSC2 decoder, optimised for a noiseless spike train,

does relatively poorly in the presence of the two noise processes. The EKF however still does

well in tracking the amplitude and shape of the original signal.

The two power signal extracts shown above give an indication of how the underlying EKF

performs under different conditions of noise. Using similar simulations the EKF is now evalu-

ated over a range of values for the two noise processes (spike-time jitter and dropped spikes)

found on the channel. To compare performances from different simulation runs, it has to be

kept in mind that although the statistics of the source signal are constant, a new random

sample for the amplitude, frequency and phase are chosen every 20 ms (see Section 4.3). The

random power signal is thus a slowly changing random variable and care has to be taken not

to limit the size of the ensemble of samples, which could lead to bad or inaccurate statistical

inference in terms of the MSE.

The simulations were time-intensive and a balance between statistical precision and rea-

sonable simulation times had to be found. A set of 20 runs of 4 s each, at a sampling rate of

4 kHz was chosen as a statistical set, which represents a pseudo-random sequence of 320 000

samples.

Since the initial time to “locking” was small and the settling time of the random process

never greater than 0.5 s, the first 0.5 s of each of the 20 runs was rejected when determining

the MSE. Thus the set contained 280 000 samples during which the amplitude, frequency and

phase of the formant frequency changed 3 500 times. Once the set was defined, simulated and

stored, an optimal decoding filter for the set (70 s) was found from which the parameters of

the PSC2 filter were derived.

The final results are shown in Figure 7.7 and Figure 7.8. These results were set out at

the beginning of the dissertation as to be obtained.

Electrical, Electronic and Computer Engineering 200

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 7 Extended Kalman Filter Evaluation

First the MSE was evaluated as a function of spike-time jitter noise with a standard deviation

ranging from 0.5 ms to 7.5 ms. No spikes were dropped and the results are shown in Figure

7.7.
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Figure 7.7: System performance in the presence of spike-time jitter noise for PSC2 decoded

and EKF estimated signals.

As expected, the PSC2 filter performs at its best at small amounts of spike-time jitter noise

as it was optimised to decode a noiseless spike train. Similarly, the EKF, tuned for low spike-

time jitter noise, performs the best at small amounts of spike-time jitter noise. As expected,

the MSE for both the PSC2 decoded signal and the EKF estimated signal increases with an

increase in spike-time jitter variance, however, the EKF on average outperforms the PSC2

decoding filter. This can be attributed to the fact the EKF has prior knowledge of the un-

derlying auditory system model and noise model while the PSC2 filter, a fixed filter, was

tuned to decode noiseless spike trains. It is thus not surprising that the slope of the MSE

versus spike-time jitter standard deviation is smaller for the EKF than the PSC2 decoding

filter. Even though errors in the expected measurement noise model cause the Kalman fil-

ter to operate as a suboptimal estimator at spike-time jitter noise variances other than for

what it was optimised, its a priori knowledge still makes it a more suitable estimator than a

static filter such as the PSC2 filter. The minimal degradation in performance in the MMSE

Electrical, Electronic and Computer Engineering 201

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



Chapter 7 Extended Kalman Filter Evaluation

error sense in the case of the EKF is however unexpected. The EKF performs exceptionally

well compared to the PSC2 decoding filter, over the entire range of spike-time jitter variances.

In the second case, the MSE was evaluated as a function of the number of dropped spikes,

which ranged from 0 % to 40 %. No spike-jitter noise was added and the results are shown

in Figure 7.8.
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Figure 7.8: System performance in the presence of spike-drop noise for PSC2 decoded and

EKF estimated signals.

Once again the MSE increases as a function of the number of spikes dropped and the EKF

outperforms the PSC2 filter but only up to the point where 25 % or less of the spikes are

dropped randomly. Even though the measurement noise model was not designed to contend

explicitly with spikes being dropped it remains a good model for a noisy channel where no

more than 25 % of the spikes are lost. However, the model is not as suitable to represent

the dropping of spikes incurred as a result of channel noise, as spike-time jitter noise and

additional modelling is required when such a channel is indeed present.
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7.7 RELATIONSHIP TO PSYCHOACOUSTIC DATA

The auditory system model derived here was based on signal processing steps found in the

auditory system of a human and particular attention was given to neural channel and noise

model as far as biological plausibility was concerned. In order to compare the auditory system

model to a real auditory system, experiments have to be made and measured psychoacoustic

data compared to simulated results. One such an experiment is to compare the just-noticeable

difference (JND) in intensity discrimination in the auditory system to that of the model de-

signed and simulated here.

The psychoacoustic parameter for intensity discrimination is the JND, which is approxi-

mately 1 dB (Zwicker and Fastl, 1990) above the auditory threshold of 20 micro-Pascal at

300 Hz. As was shown by Siebert (1970), the modelled standard deviation in the intensity

of the input signal can be equated to the psychoacoustic measured JND in the intensity dis-

crimination.

In this case an input signal of the form

x(t) = a · sin(2πft), (7.17)

is chosen where a is the intensity of the input signal and f the frequency, where f is taken

to be at 300 Hz, as up to now the bandpass filter was centred around 300 Hz. A relation-

ship has to be found that relates the estimated power signal to the intensity of the signal

x(t) and to compare this to the variance in the estimated acoustic intensity. The only way

to associate the SPL to the auditory system model is the common denominator, the spike rate.

In the case of a typical neuron (Colburn, 1973) the intensity can be related to the SPL

by

SPL (dB) = 10 · log10

(
a

Auditory threshold

)
, (7.18)

where a is the intensity (measured in watts/cm2) and the auditory threshold is 0.97e · 10−12

watts/cm2 or 20 micro-Pascal. The intensity a, measured in volts, can be related to the
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average spike rate r̄ by

r̄ = MaxRate · a√
2 (0.5 · a2 + 0.15 · 10−15)1/2

. (7.19)

Similarly to Equation (7.19), in the case of the LIF neuron (see Subsection 5.4.1), the intensity

of the signal x(t) can be related to the spike rate by first squaring and then low-pass filtering

it such that

z(t) = 10 · LPF
[
x2(t)

]

= 10 · a2/Rnorm. (7.20)

However, since the input to the LIF neuron in Equation (5.19) is limited to between 0 and 57.2

µA, Equation (7.20) has to be normalised by the factor 10/Rnorm. The normalised intensity

z(t) can now be related to the spike rate in the LIF neuron by

r(t) =
1

−τRC · loge

[
1− Vth

R(Ibias + gz(t))

] . (7.21)

The intensity/spike-rate relationship of a typical neuron, given by Equation (7.19), can be

compared to that of the LIF neuron, given by Equation (7.21), where the units for the inten-

sity of the LIF neuron are unspecified.

The results are shown in Figure 7.9.
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Figure 7.9: Spike rate vs. input intensity comparison between typical neuron and LIF neuron.

It is evident from Figure 7.9 that in the case of a typical neuron as far as intensities are

concerned, the spike rate increases rapidly at increasing, but low, intensities where its most

sensitive region is. The LIF neuron on the other hand responds in a linear manner to an

increase in intensity.

A 40 dB SPL is chosen as the point of operation and in the case of a typical neuron (from

Equation (7.18)) results in a constant spike rate of 27.93 spikes per second. This spike rate

corresponds to an intensity a of 2.90 · 10−3 V in the LIF neuron (from Figure 7.9 bottom).

The sinusoid of Equation (7.17) is applied to the auditory system model in Figure 7.2, where

x(t) represents the message m(t) in Figure 7.2a. The sinusoidal input results in a constant

power signal over time, which is preceded by a transient response phase. In order to cor-

rectly calculate the variance in the estimate, the transient response needs to be disregarded

and enough time allowed for settling of the estimated power. In this case the setting time

was no longer than 0.5 s and the power signal was taken after 0.5 s to determine the vari-

ance in the power signal. The variance in the estimated power was found to be 2.29 · 10−12

V2, which translates into a standard deviation in the input intensity of 1.23 · 10−3 V. To

translate the deviation in input intensity of the LIF neuron to that of a typical neuron,

the deviation in input intensity needs to be related to a deviation in spike rate. The input
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intensity of the LIF neuron with the additional standard deviation has now changed from

2.90 · 10−3 V to 1.67 · 10−3 V, which translates into a spike rate of 30.33 spikes per second

instead of 27.93 spikes per second. This spike rate corresponds to an intensity of 10.53e ·10−9

Pascal or 40.36 dB SPL. The standard deviation, under noiseless conditions, is thus 0.36 dB,

which corresponds very well with the measured psychoacoustic intensity JND of around 1 dB.

Similarly the modelled standard deviation in the intensity of the input signal can be found

for a range of SPLs as was done by Zwicker and Fastl (1990). It was shown that the JND

or just-noticeable difference in level (JNDL) varies with a varying SPL and can lie anywhere

between 2 dB (10 dB SPL) to 0.2 dB (100 dB SPL) for a 1 kHz tone.

In the simulated auditory system of Figure 7.1a the dependence of the JND in intensity

discrimination on the SPL is shown in Figure 7.10 over a range of 35 dB to 65 dB SPL.
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Figure 7.10: The JND in intensity discrimination as a function of the SPL for the simu-

lated auditory signal model for one of the l channels centred around 300 Hz (Compared to

psychoacoustic data from Zwicker & Fastl (1990)).

Figure 7.10 indicates that the intensity discrimination in the simulated auditory system model

after the neural channel (noiseless) and PSC2 decoding increases rather than decreases with

SPL as compared to the psychoacoustic data in Zwicker and Fastl (1990). This can be at-
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tributed to the particular MSE optimisation technique used in Section 5.4 to determine the

best PSC2 decoding filter. The PSC2 decoding filter is optimised for both the transient and

the steady-state response where its optimal bandwidth lies between 5 Hz and 10 Hz. Power

signals with a bandwidth below and above this range, such as in this case, result in inferior

decoding performance on part of the PSC2 decoding filter since the filter cannot track fast

and slow changes in the estimated signal equally well. Thus the standard deviation in inten-

sity discrimination in the auditory system model found was is in fact the worst case scenario.

Nevertheless, this experiment indicated how close the auditory system model designed and

simulated in this dissertation comes to a real auditory system as far as intensity discrimina-

tion is concerned.

Another interesting observation that can be made from Figure 7.10 is the fact that if an

EKF is used to estimate the power in the auditory system model from Figure 7.1a, the JND

is always smaller than that of the PSC2 filtered signal on its own. Although the trend of the

model output (after PSC2 decoding filter and again after EKF estimator) does not follow the

data from Zwicker and Fastl (1990), the magnitude is predicted accurately over a wide range

of intensities. At 40 dB SPL the JND in intensity discrimination of the PSC2 decoding filter

best matches that of the data while at 53.1 dB SPL the EKF best matches the data. From

the results in Figure 7.10 it is also evident that the EKF estimator follows the data over a

much wider range of input intensities (35 dB to 53.1 dB) than the PSC2 decoding filter on

its own (35 dB to 40.6 dB). These findings are significant in that they underline the necessity

of having an additional estimator at the output of the PSC2 decoding filter.

A final distinguishing factor between the JND in intensity discrimination found here and

that of Zwicker and Fastl (1990) is the fact that neural channel noise was not taken into

account in the first case. It can be assumed that some noise existed on the neural channels

in the human subject during the gathering of the psychoacoustic data. However, no chan-

nel noise was added to the JND in intensity discrimination experiments in this dissertation.

The decreasing trend of the JND in intensity discrimination as a function of the SPL found

by Zwicker and Fastl (1990) can most probably ascribed to an increase in the SNR in the

auditory system.
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7.8 DISCUSSION

In this chapter an EKF was initialised and applied to the estimation problem determining the

power present in a particular spectral band before neural transmission over a noisy channel

takes place. The result was that the EKF was able to estimate the power better than the

PSC2 decoder on its own, under all conditions of noise, even though the EKF measurement

noise model was optimised for only a very particular channel noise model and noise variance.

The EKF only required a noisy measurement after PSC2 decoding to achieve this. Over a

4 s interval (16 000 consecutive estimations) the EKF remained stable and converged to a

minimum mean-squared error solution. Each functional unit was both completely observable

and controllable. The concatenation of all functional units within the EKF however resulted

in an ill-conditioned state transition matrix since all state variables are projected through the

last state variable, in this case the power. It is advised to keep the order as low as possible

to avoid an ill-conditioned problem. This way the condition number is kept low resulting in

a better conditioned problem and hence more predictable system.

Modelling the spike-jitter variance and spike loss as a white Gaussian noise source in the

EKF was indeed a suitable, though suboptimal one. This is evident by the large variance

(Rk = 3.5) that was required for estimation purposes. A coloured measurement noise model

however would most likely increase the performance of the filter. Nevertheless, the EKF still

performed better in the presence of noise than just using a PSC2 decoder on its own.

When the auditory system model was compared to a real auditory system it was found

that the JND in intensity discrimination of the simulated auditory system model found by

PSC2 filtering alone performed worse than when the EKF estimated the power signal. In fact

for a SPL above 40.6 dB (up to 53.1 dB) the PSC2 filter could not explain the small JND in

intensity discrimination found by Zwicker and Fastl (1990) but the auditory system model

with EKF estimation could. This result suggest that estimation of signals in the auditory

system is vital for accurate auditory perception, requiring advanced estimation techniques

such as the Kalman filter.
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CHAPTER 8

CONCLUSION

8.1 INTRODUCTION

To understand the neural processing that takes place in the CANS and possibly the CNS, is

no trivial feat since the signal processing steps have only been partly and selectively uncov-

ered in the field of neuroscience. In particular, reliable and swift reactions on the part of the

CNS when faced with changing input stimuli pose an interesting question as far as modelling

of such a process is concerned.

As was mentioned in Section 1.1 and Section 1.2, a concept called the analysis-by-synthesis

method was successfully applied previously to a motor control problem. The analysis-by-

synthesis method assumes that an internal model, emulating the behaviour of a particular

system, assists with the estimation and decision making process, which could explain the reli-

ability and quick reaction times such as in the case of the motor control problem investigated

by Miall et al. (1993) and Wolpert et al. (1995). In this dissertation the same principles were

applied to a completely different neural system, the CANS. In particular the primary research

question that was asked was: Does the presence of internal models as was discussed suggest

that it is a universal neurophysiologic method for correctly estimating a state in a quick and

reliable way? If so what are the biological implications thereof?.
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In this dissertation the question was addressed by

1. First designing a complete model of the auditory system up to and including the inner

haircells in Chapter 4 and Chapter 5.

2. Then designing an appropriate EKF in Chapter 6. The estimator contained a biologi-

cally plausible internal model and was used to estimate the power contained within a

particular band, given a noisy transmission medium (neural channel).

3. The estimation performance gained by using an additional estimator (EKF) was inves-

tigated relative to only using PSC filters (see Chapter 7).

4. Finally, in Section 7.7 the auditory system model with matching EKF was compared

to the biology via psychoacoustic data.

8.2 DISCUSSION OF HYPOTHESES AND RESEARCH QUESTION

In Chapter 1 the hypotheses made were that

1. there exists an internal model in the auditory system, that by means of an analysis-by-

synthesis implementation, can explain the functioning of the system and

2. it is possible to take an analysis-by-synthesis design approach as compared to the more

traditional analysis approach and by doing so gain a better understanding of the audi-

tory system and neural coding.

In order to test the hypotheses the second proposition had to be assumed true before the

first proposition could be tested. In this dissertation it was shown that an EKF containing

a forward-predictive model of the auditory system and a spike coder/decoder model as part

of its internal model could indeed explain some characteristics of the auditory system when

compared to the JND in intensity discrimination (Section 7.7). It was apparent from the

results obtained that while a biologically plausible decoding filter such as the PSC2 filter

could only partially explain such low JNDs in intensity discrimination (from 0 dB up to 40.6

dB), the EKF could do so over a wider range of SPLs (from 0 dB up to 53.1 dB). It was also

shown that for different levels of channel noise (spike-time jitter noise and loss of spikes up

to 25 %) the EKF performed better in the MSE sense than the PSC2 decoder.
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Combining these findings with the research done by Miall et al. (1993) and Wolpert et al.

(1995) where it was shown that an analysis-by-synthesis implementation using a Kalman

filter (with forward-predictive model) can be used to describe the coordinated movement of

limbs by means of the cerebellum in humans (see Figure 1.2), it appears that an analysis-by-

synthesis implementation by means of a forward-predictive model forming part of the internal

model of the Kalman filter could be a universal neurophysiological method for the correct

estimation of a desired state.

8.3 RESEARCH CONTRIBUTION

The contributions that were made are summarised below:

1. A biologically plausible auditory system model representing the auditory system from

the outer ear right through to the haircells coding the basilar membrane movement was

designed using functional units similar to the ones found in multichannel cochlear im-

plant designs (Meyer-Bäse and Scheich, 1997; Loizou, 1999) and other auditory system

models (Flanagan, 1972).

2. Tracking of discrete events or point processes (Snyder, 1975; Gray et al., 1994) as is

required for the coder/decoder functional unit in Figure 7.2, or formants in speech

(Niranjan and Cox, 1994) as required for the source functional unit in Figure 7.2 by

means of Kalman filters is nothing new. However, using similar principles to track a

source signal (formant or other) as it travels through the complete auditory system up

to and including the mechanical to neural transduction and the estimation of a power

spectral map as discussed in Section 4.5, is unique as far as is known.

3. An analysis-by-synthesis implementation using a Kalman filter with a forward-predictive

model was previously applied to a problem concerning the coordinated movement of

limbs by means of the cerebellum (Miall et al., 1993; Wolpert et al., 1995). It was ar-

gued that the CNS internally simulates the behaviour of the motor system in order to

quickly and reliably estimate a state without having to rely solely on slow and unreli-

able sensory feedback. The same concept was, as far as is known, applied for the first

time to the auditory system here.

4. A problem not adequately addressed in the literature (Rieke et al., 1997; Eliasmith

and Anderson, 2003) is the correct scaling of PSC1 and PSC2 decoding filters. Correct
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scaling in the biology is performed via trained weighting factors in the dendritic trees.

For simulation purposes the PSC1 and PSC2 time constants were assumed to be fixed

by the biology to 4 ms. Thus only the gain of the PSC filters remained as a tuning

parameter. For a rough estimate, the DC gains of the PSC filters were matched to that

of the DC gain of the optimal filter, which was derived beforehand. The gain of the

PSC filters was then tuned so that the PSC decoded signal (noiseless channel) was the

MMSE estimate as compared to the true signal. The MMSE gain obtained was then

used as the default weight for one particular channel, for all experiments.

5. As far as is known, the stochastic model (periodic random process) represents the

voiced sounds in Section 4.3 more accurately than the ones found in the literature

(Moore, 1972; Bar-Shalom and Li, 1993; Haykin, 1994; Niranjan and Cox, 1994). In

addition, the stochastic source signal can model the envelope of a formant frequency

with a non-zero mean allowing for more precise modelling and simulation and ultimately

better MMSE estimates.

6. The estimator model derived in Chapter 6 is based on the exact model of the complete

auditory system model designed in Chapter 4 and Chapter 5. Since no simplifications

were made to the stochastic model representing the auditory system model before imple-

menting it in the internal model of the EKF, the estimator is the best MMSE estimator

for this particular model. Since the estimator estimates the lowest hierarchial level in-

formation, the power contained within a particular spectral band, this information can

be used by other higher-level estimators. It thus provides the critical foundation found

at Levels 1&2 in Figure 8.1 from which all higher hierarchial level systems can make

use.

8.4 IMPLICATIONS

8.4.1 Implications for the Biology

Given the findings in Chapter 7, the implications for the biology are as follows (Note that

the biological implementation of such an estimator at neural level was of no interest but its

implementation at system level was.):

The results suggest that a Kalman filter with forward-predictive model of the auditory sys-

tem model (see Figure 1.5) increases the reliability of the estimated power in almost all cases
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(except when more than 25 % of the spikes are dropped). Since the dropping of spikes was

not modelled explicitly in the EKF the poor performance under such conditions are of lit-

tle concern at present. Nevertheless, the increased reliability offered by an additional EKF

underlines its plausibility as a tool used by the auditory system to better estimate signals

in the presence of noise. In fact in Section 7.7 the necessity of an EKF was identified since

the PSC2 filter on its own could not explain the small measured psychoacoustic values of the

JND in intensity discrimination found by Zwicker and Fastl (1990) but the additional EKF

could. It thus seems that an additional estimator is much more of a necessity than just being

an additional tool available to the auditory system. The choice of using specifically an EKF

from the family of estimators that use an internal model of the signal origin is more a matter

of preference although the ease with which it can be implemented by a digital simulation tool

such as MATLAB and its robustness and versatility makes it a better option than a Wiener

filter for example.

An advantage of having taken an analysis-by-synthesis design approach (i.e. modelling a

concept rather than mimicking it functionality) was that neural coding issues were avoided

such as what neural code should be used to code the power signal etc. Choosing a LIF coder

for spike coding and a linear PSC decoder for signal extraction, demonstrated that it is possi-

ble to evaluate neural systems by making assumptions about the neural channel based on the

limited knowledge of neural codes available today. Nevertheless, it did not impede the design

of the higher hierarchial level systems such as the Kalman filter estimator but merely placed

restrictions on the transmission capabilities of the complete system. By doing so interesting

issues were raised such as how well can the decoder and EKF can estimate the original power

signal given a particular neural channel corrupted by noise. This suggests that the current

trend to find the “correct” neural code for a particular neural system in the CANS or CNS

in general should be superseded by first identifying the need of the system as a whole and

what information is found at various points along the signal processing path. Only then can

deductions be made of what information is hidden in the spike trains found in that particular

neural system.

Another implication of the findings in Chapter 7 for the biology is that Kalman based es-

timators, such as the one described, only explain lower hierarchical level functioning of the

CANS as discussed in Section 1.6.
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The Kalman filter, based on a process and measurement model, estimates the power for a

particular spectral band within the entire spectrum (Level 1&2 in Figure 8.1).
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Figure 8.1: Kalman filtering applications for different hierarchial level problems.

Once the power is reliably estimated a spectral map can be generated. However, for the

Kalman filter to operate satisfactory the assumption was made that knowledge of the process

noise and measurement noise is available, which is most certainly not the case in the biology,

due to continuous changes in the external stimuli and the characteristics of the channel.
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The Kalman filter in the biology thus requires another lower hierarchial level unit to obtain

the stimuli and channel characteristics and possibly a higher hierarchial level observer unit

to relay the information as shown in Figure 8.2.
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Figure 8.2: In order for the EKF to operate effectively, proper initialisation by an observer

unit is required. For this the observer unit however requires additional information collected

by the channel monitoring system.

Nevertheless, the lower hierarchial level model provides the foundation on which all higher

hierarchial level observer and estimator systems can be based on in the future, like for exam-

ple multiple-formant tracking (Niranjan and Cox, 1994).

The strong and weak points of the models are discussed next.

8.4.2 Strong and Weak Points of the Models

The strong points of the models are:

1. Since the auditory system model was modelled as accurately as possible given the

biological restrictions placed on it in Chapter 1, a very accurate stochastic equivalent

model could be derived that formed part of the internal model of the EKF. Since the

internal model is such a close representation of the auditory system model very little

injection or fictitious process noise was required for successful estimation (see Subsection

6.7.5). This in turn suggests that a very small difference exists between the auditory
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system model and the internal model of the EKF, which allows for a finer estimation

resolution or smaller estimator bandwidth.

2. The design of the forward-predictive model was kept modular by representing each

functional unit by a stochastic model. This allows for the removal of any of the present

functional units or for appending additional ones in order to realize alternative auditory

system models.

3. The periodic random process utilised as the stochastic model representing the voiced

sounds has a wide scope of applications. Not only is the model suitable for stochastically

representing voiced sounds (a group of formant frequencies) but it can also be used to

simulate any single formant if required. A further advantage of the periodic random

process is its ability to approximate the non-stationary behaviour of the source signal

model in Section 4.3, where the source signal remains constant over a period of 20 ms

before assuming a new random amplitude, frequency and phase.

4. The auditory system model and estimator model completely represent the first two

hierarchial levels of Figure 8.1 making it suitable to be used as platform for higher

hierarchial level systems such as a Kalman filter tracking only formant frequencies as

was done by Niranjan and Cox (1994) and Lu and Doerschuk (1996).

5. The EKF copes well with neural channel noise for which it was not necessarily opti-

mised for. In Subsection 7.6.2 it was evident from the results obtained that the EKF

performance, as far as the MSE is concerned, degrades only slightly compared to the

PSC2 filter over a wide range of spike-time jitter noise standard deviations. In fact

for a non-Gaussian noise source such as the dropping of spikes, the EKF performed

better than the PSC2 decoding filter in the case where less than 25 % of the spikes

were dropped. The EKF however never became unstable and diverged in the presence

of either noise source (spike-time jitter and loss of spikes) at any stage.

The potentially weak points of the models are:

1. For a single neural channel the number of state variables that need to be kept track

of for the simulation of the forward-predictive model is large (14 state variables, see

also Table (6.5)). With such a large filter-order the conditioning of the observability

and controllability matrices became a relevant point of concern as was shown in Section

7.6. The large filter-order of the EKF also increases the complexity of the simulations
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and thus the simulation times. This places a restriction on the amount of channels that

can be simulated simultaneously and the simulation of a large number of channels is

thus not advisable.

2. No specific shaping filter was chosen to represent the two noise processes found on the

neural channel (spike-time jitter and loss of spikes). The assumption that these two

noise sources could be modelled by a simple Gaussian noise process was a crude one,

requiring a large measurement noise variance for proper operation thus limiting the

bandwidth of the estimator (i.e. limiting the accuracy of the EKF in estimating the

true signal).

8.5 FUTURE RESEARCH POSSIBILITIES

Deriving the stochastic equivalent model from the auditory system model (see Chapter 6)

was a time-consuming task as an equivalent stochastic model had to be found for each func-

tional unit of the auditory system model, which however, resulted in a very accurate internal

model in the EKF (see results in Section 7.6). In future it would be interesting to investigate

how a simpler, lower-order EKF compares to the EKF designed in this dissertation as far as

MSE performance is concerned. The lower-order system and measurement models could be

found by using more traditional power estimation techniques such as the ones mentioned in

Addendum A.1.

In this dissertation the number of neural channels were limited to a single neural channel

due to the overall computational complexity of the stochastic equivalent model in the EKF.

However, since there are many neural channels transmitting information coded by the hair-

cells and overlaps in spectra exists, as depicted in Figure 4.3 and discussed in Section 3.5 and

Section 3.6, an investigation as to how such spectral overlaps can be exploited by decoders

and estimators, can be made. Since cross-correlations exist between adjacent neural chan-

nels (i.e. parts of the information are shared between them) it allows for estimation of the

power spectral map using sensor fusion principles (Klein, 1993; Arras, Tomatis, Jensen and

Siegwart, 2001) and Kalman filtering techniques. Once a multi-channel implementation is in

place that allows for coding and transmission of all power components in the spectral map, it

would be interesting to see how well this spectral map approximates the true source signal.

This can be assessed by converting the spectral map, which consists of discrete powers found

at frequencies determined by the location of the centre-frequencies of each bandpass filter in
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the filter bank, to a temporal signal by means of Fourier series expansions and comparing it

to the true source signal.

Finally, in Section 6.7, channel noise and decoding errors were grouped as part of the meas-

urement noise model. It was assumed for the sake of simplicity, that the two channel-noise

processes can be modelled by a white measurement noise process with zero mean and some

variance. It was however evident from the large measurement variance required for the suc-

cessful operation of the EKF, that this was a rather crude assumption. Even though the

EKF outperformed the PSC2 decoding filter in the presence of channel noise and decoding

errors in almost all instances, such a large measurement noise variance artificially keeps the

estimator bandwidth wider than necessary. A better model for the different noise sources

would ultimately allow for a better minimum EKF bandwidth, resulting in a better estimate.
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ADDENDUM A

DERIVATIONS AND EXTRA INFORMATION

A.1 POWER SPECTRUM ESTIMATION

Kalman filters are basically spectral estimators, estimating the transfer function by analysing

the autocorrelation function or power spectral density (PSD), where the PSD is simply the

Fourier transform of the autocorrelation function. The Kalman filter however needs some idea

of what the transfer function looks like in order to estimate it. It may for example assume

that the transfer function is of the form

H(z) =
b1 + b2z

−1 + . . . + bn+1z
−n

1 + a2z−1 + . . . + an+1z−n
, (A.1)

in the z -domain. Each of the coefficients (an) and (bn) can assume a value where the number

of poles and zeros determines the order of the system. The ARMA model of Equation (4.42) is

one example of how a stochastic signal can be modelled. However, to find the coefficients and

thus the poles and zeros of the transfer function in Equation (A.1), some form of estimation

has to be performed. Spectrum estimation by nonparametric estimation methods such as the

Periodogram, Bartlett’s method, Welch’s method, minimum variance spectrum estimation

method, parametric estimation methods such as the covariance method, Burg Algorithm,

AR, MA and ARMA method, frequency estimation methods like the Eigendecomposition,

Blackman-Tukey frequency estimation and minimum variance estimation method can be

found in Hayes (1996). All spectrum estimation methods in one form or another try to

approximate the autocorrelation function of the underlying process. By using one of these

methods the numerator and denominator coefficients of Equation (A.1) can be approximated

provided the process is linear and stationary. Adaptive filters (Widrow and Streans, 1985;

Hayes, 1996) on the other hand can estimate non-stationary processes just like a Kalman
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filter. Adaptive filters and spectrum estimation methods allow for alternative approaches to

be taken to implement IIR filters as shaping filters.

A.2 AMPLITUDE DEMODULATION

If a message signal m(t) is modulated by a carrier then

s(t) = Acm(t) cos(2πfct), (A.2)

where Ac is the carrier amplitude and fc the carrier frequency.

The demodulation process is just the reverse process, where the modulated signal s(t) is

again multiplied by the carrier. If coherent detection is not used then an unknown phase

difference φ exists and the demodulated signal can be written as

d(t) = A′cs(t) cos(2πfct + φ)

= AcA
′
cm(t) cos(2πfct) cos(2πfct + φ), (A.3)

where A′c is the demodulating carrier amplitude.

Using the trigonometric identities

cos(α± β) = cosα cosβ ∓ sinα sinβ

cosα cosβ =
1
2

[cos(α− β) + cos(α + β)]

cosα sinβ =
1
2

[sin(β − α) + sin(β + α)] , (A.4)
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the demodulated signal becomes

d(t) = m(t)
[
cosφ

1
2

[1 + cos(4πfct)]− sinφ
1
2

[0 + sin(4πfct)]
]

= AcA
′
c

m(t)
2

[cosφ + cos(4πfct + φ)] . (A.5)

A.3 OPTIMAL FILTERING

To find a filter that decodes a particular set of signals, or an ensemble of signals, rather

than just one specific signal, it is required that the input signal is defined in terms of an

input probability distribution function. One way of representing this distribution is to use

statistically independent Fourier coefficients that can be represented by the Fourier series

x(t;A) =
(N−1)/2∑

n=−(N−1)/2

A(ωn) ejωnt. (A.6)

Each value of A(ωn) in the vector A is chosen from a Gaussian distribution. Equation (A.6)

inherently assumes a stationary ensemble in that the statistics are independent of time.

The response of the neurons, in this case a pair of neurons, to the ensemble of signals can be

written as

R(t;A) =
Mon∑

k

δ(t− t+k (A))−
Moff∑

l

δ(t− t−l (A))

=
2∑

i=1

M∑

k=1

φiδ(t− tik(A)), (A.7)

where φ = 1 for an ’on’ neuron and -1 for an ’off’ neuron. In order to find the optimal

estimator the error between the true signal and the estimated signal has to be minimised.
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The error is given by

MSE = E
[
[x(t; (A))− h(t) ·R(t;A)]2

]
t,A

= E





x(t;A)−

∑

i,k

h(t− tik(A))




2


t,A

. (A.8)

Since it is simpler to evaluate the MMSE of Equation (A.8) in the frequency domain, the

error for every channel can be written, given a pair of on/off neurons as

E(ωn) = E

[
1
2π
|A(ωn)− h(ωn)R(ωn;A)|2

]

A

. (A.9)

Eliasmith and Anderson (2003) solve the optimal filter problem by minimising a windowed

form of Equation (A.9) which in return results in an optimal filter given by

h(ωn) =
E [A(ωn)R∗(ωn;A)]A

E [|R(ωn;A)|2]A
. (A.10)

The reader is referred to Eliasmith and Anderson (2003) for a detailed insight into the specific

process.

A.3.1 Information Transmission of a Linear Estimators for Non-linear Systems

To find the optimal linear estimator h given the response of the neurons R(x) to stimulus x,

a general expression for the information transmission can be derived by assuming that the

signal is drawn from a Gaussian distribution with N(0, σ2
x). The linear estimate can then be

found by

x̂ = hR(x). (A.11)
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The average mean-squared error can be found by letting

MSE = E
[
(x− x̂)2

]
x

= E
[
(x− hR(x))2

]
x
, (A.12)

over all possible signals. By setting Equation (A.12)’s derivative to zero and solving for h the

MMSE is found. Thus, the optimal linear estimator is given by

h =
E [x ·R(x)]x
E [R2(x)]x

. (A.13)

The signal, or explained variance is the variance of the estimate given by

E
[
x̂2

]
x

= h2E
[
R2(x)

]
x

=
E [x ·R(x)]2x
E [R2(x)]x

. (A.14)

The signal to noise ratio is the ratio of signal variance to the error variance which in this case

is

SNR =
E

[
x̂2

]
x

E [MSE]
, (A.15)

since a linear decoder was used to decode a non-linearly encoded signal.

The SNR is thus never infinite. For a Gaussian signal and Gaussian noise, the information

transmitted by the Gaussian channel is defined as

I =
1
2

log2(1 + SNR), (A.16)

measured in bits and by rewriting Equation (A.15) the following is obtained:
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(1 + SNR) =
E

[
x2

]
x

E [x2]x −
E [x ·R(x)]2x
E [R2(x)]x

. (A.17)

The signal can generally be defined by a set of independent Fourier coefficients at discrete

points in the frequency domain and written in the general form

x =
∑

n

A(ωn)Φn. (A.18)

Equation (A.16) can then be rewritten in a general form including the input signal which

results in

I(ωn) =
1
2

log2




E
[|A(ωn)|2]

A

E [|A(ωn)|2]A −
|E [A(ωn)R∗(ωn;A)]A |2

{|R(ωn;A)|2}A


 . (A.19)

The information rate is defined as the sum of independent information components across

the bandwidth of interest and can be expressed as

RI =
1
2

∆ω

2π

∑
n

Info(ωn). (A.20)

The information rate in this case is measured in bits per second.

A.4 LEAKY INTEGRATE-AND-FIRE MODEL

The leaky integrate-and-fire (LIF) neuron can be thought of as a current source driving a

capacitor in parallel with a resistor. The voltage across the resistor represents the membrane

potential. The first-order linear differential equation can be written as

I(t) =
u(t)
R

+ C
dV

dt
. (A.21)

If the time constant τRC = RC, also known as the membrane time constant, then Equation
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(A.21) can be written as:

τRC
dV

dt
= −V (t) + RI(t). (A.22)

If it is required that the solution should be of the form

V (t) = F (t) e−t/τRC , (A.23)

Equation (A.23) can be substituted into Equation (A.22) resulting in

d

dt

(
F (t) e−t/τRC

)
= − 1

τRC

(
F (t) e−t/τRC − I(t)R

)
. (A.24)

By rearranging Equation (A.24) the following is obtained:

dF (t)
dt

=
I(t)R
τRC

et/τRC . (A.25)

Integrating both sides, F (t) becomes

F (t) =
R

τRC

∫ t

0
et/τRC I(t′) dt′, (A.26)

which results in the general form of a convolution integral

V (t) =
R

τRC

∫ t

0
e−(t− t′)/τRC I(t′) dt′. (A.27)

The response of the LIF neuron can thus be found by convoluting an exponential function

with the current waveform.

If the current source is constant over the period [0; t] then Equation (A.27) simplifies to

V (t) = RI0

[
1− e−(t− t0)/τRC

]
. (A.28)
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Equation (A.28) can be used as an approximation if the waveform I(t) is unknown. Equation

(A.27) can be used to find a numerically solution if the current waveform is not constant.

A.5 FREQUENCY RESPONSE OF PSC FILTERS

Given the exponential kernel

xPSC1(t) =
1

τRC
e−t/τRC , (A.29)

and the fact that the Fourier transform can be obtained by

G(f) =
∫ ∞

−∞
g(t) e−j2πft dt, (A.30)

the frequency response of the first PSC filter can be found.

Keeping in mind that

∫ ∞

−∞
t e−at dt =

1
a2

e−at [−at− 1] , (A.31)

the Fourier transform can now be computed by solving

G(f) =
1

τRC

∫ ∞

−∞
e
−(

1
τRC

+ j2πf)t
dt

=
1

τRC


− τRC

1 + jτRC2πf
e
−(

1
τRC

+ j2πf)t



∞

0

=
1

1 + jτRC2πf
. (A.32)
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The area of the Equation (A.29) can be calculated as follows:

∆PSC1 =
1

τRC

∫ ∞

−∞
e−t/τRC dt

=
1

τRC

[
τRC e−t/τRC

]t

0

= 1− e−t/τRC . (A.33)

When t is sufficiently large or tends to infinity the area of the exponential PSC tends to one.

Similarly the Fourier transform of the alpha-function kernel given by

x(t) =
t

τ2
RC

e−t/τRC (A.34)

can be found by solving

G(f) =
1

τ2
RC

∫ ∞

−∞
t e
−(

1
τRC

+ j2πf)t
dt

=
1

τ2
RC


 τ2

RC

(1 + j2πfτRC)2
e
−(

1
τRC

+ j2πf)t
(−

[
1

τRC
+ j2πf

]
t− 1)




∞

0

=
1

(1 + j2πfτRC)2
. (A.35)

The area of the second PSC filter can be obtained by solving

∆PSC2 =
1

τ2
RC

∫ t

0
t e−t/τRC dt

=
1

τ2
RC

[
τ2
RC e−t/τRC (− t

τRC
− 1)

]t

0

=
[
1− (

t

τRC
+ 1) e−t/τRC

]
. (A.36)

When t is sufficiently large or tends to infinity the area of the alpha-kernel PSC tends to one.
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The results obtained are summarised in Table (A.1)

Table A.1: Frequency and area characteristics of PSC filters.

PSC type Fourier transform Area

Exponential 1
1+j2πfτRC

1

Alpha-function 1
(1+j2πfτRC)2

1

A.6 OBSERVABILITY AND CONTROLLABILITY IN CONTROL SYSTEM

THEORY

A deterministic, multi-variable, static plant of the form

xk+1 = Axk + Buk

yk = Hxk, (A.37)

can be evaluated in terms of its observability and controllability. A deterministic input uk

drives a plant A, where the state variables are given by xk. The observability condition de-

fines the ability to determine the states of a system by observing them via the measurement

sensitivity matrix H.

Equation (A.37) is said to be completely observable if the observability matrix defined as

a (n x np) matrix

Ξ ,
[
HT ,ATHT , . . . , (AT )n−1HT

]
, (A.38)

has rank n (Furuta et al., 1988; Burghes and Graham, 1980; Gelb, 1984; DeRusso et al., 1965).

A system of the form as in Equation (A.37) is completely controllable if the controllabil-

ity matrix defined as a (n x nm) matrix

ϕ ,
[
B,AB, . . . ,An−1B

]
, (A.39)
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has rank n (Furuta et al., 1988; Burghes and Graham, 1980; Gelb, 1984; DeRusso et al., 1965).

As was mentioned earlier, observability and controllability are as important in stochastic

models as they are in deterministic ones. For stochastic observability it is required that in

the absence of process noise, the measurement noise excites all measured states in the system.

Conversely, for stochastic controllability it is required that in the absence of measurement

noise, the process noise excites all states in the system (See Gelb (1984) for a formal deriva-

tion). For a discrete-time system stochastic observability and controllability is defined in

Subsection A.10.2.

A.7 NARROW-BAND NOISE

Narrow-band systems are quite common in control and communications theory, the primary

idea being to apply a narrow-band filter, with a bandwidth just large enough to pass the signal

of interest essentially undistorted while inhibiting excessive noise from passing through. The

spectral components of narrow-band noise is situated around a centre frequency fc and can

be specified as

n(t) = nI(t) cos(2πfct)− nQ(t) sin 2(πfct), (A.40)

where nI(t) and nQ(t) are independent Gaussian random processes commonly known as in-

phase and quadrature components of the signal n(t). If Equation (A.40) is converted from

rectangular to polar form by substituting

nI = r cos φ and

nQ = r sin φ, (A.41)

Equation (A.40) can be rewritten as

n(t) = r(t) cos(2πfct + φ(t)). (A.42)
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It should be obvious from Equation (A.42) that the narrow-band process is nothing more

than a random process with random amplitude and phase as was found in Section 4.3.

The corresponding density functions are

fr(r) =
r

σ2
e−r2/2σ2

, [r ≥ 0] (A.43)

and

fφ(φ) =





1
2π

, [0 ≤ φ < 2π]

0, [otherwise]

where the former is a Rayleigh distribution and the latter a uniform distribution.

The autocorrelation function of n(t), when passing white-noise with variance σ2 through

an ideal bandpass filter centred at fc with bandwidth B, is given by

ψ(τ) = 2σ2B sinc(Bτ) cos(2πfcτ), (A.44)

where the spectral autocorrelation functions for the in-phase and quadrature components are

given by

ψNI
(τ) = ψNQ

(τ) = 2σ2B sinc(Bτ). (A.45)

A.8 GAUSS-MARKOV PROCESSES

A special class of random processes generated by passing white-noise through linear time

invariant filters is the family of Gauss-Markov processes. Defined as (Gelb, 1984) a continuous

process, x(t) is first-order Markov if for every k and

t1 < t2 < . . . < tk, (A.46)
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it is true that the probability distribution for the process x(tk) is dependent only on the value

of the directly preceding probability x(tk) (hence first-order) or

F [x(tk)|x(tk−1), . . . , x(t1))] = F [x(tk)|x(tk−1)] . (A.47)

If the process is continuous it can be given by the linear differential equation

dx

dt
+ β1(t)x(t) = w(t) (A.48)

or in the state-space form as

ẋ(t) = −β1x(t) + w(t), (A.49)

where w(t) is a continuous white process with infinite variance.

If w(t) were to become a Gaussian random process with finite variance then consequently x(t)

would become Gaussian and the process would become a first-order Gauss-Markov process

with autocorrelation function

ψX(τ) = σ2 e−β1|τ | + m2
X , (A.50)

with mean mX and PSD

ΨX(ω) =
2β1σ

2

ω2 + β1
2 . (A.51)

For the continuous second-order Markov process it is true that for every k and

t1 < t2 < . . . < tk, (A.52)

it is true that

F [x(tk)|x(tk−1), . . . , x(t1))] = F [x(tk)|x(tk−1), x(tk−2)] . (A.53)
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An associated differential equation is

d2x

dt
+ 2β2(t)

dx

dt
+ β2(t)x(t) = w(t) (A.54)

or in state-space formulation

ẋ(t) =


 0 1

−β2 −2β


x(t) +


 0

1


w(t). (A.55)

Again, if w(t) were to become a Gaussian random process with finite variance then conse-

quently x(t) would become Gaussian and the process would become a second-order Gauss-

Markov process with autocorrelation function

ψX(τ) = σ2(1 + β2|τ |) e−β2|τ | + m2
X , (A.56)

with mean mX and PSD

ΨX(ω) =
4β2

3σ2

(ω2 + β2
2)2

. (A.57)

As a higher-order Gauss-Markov process, the nth-order Gauss-Markov process is given by the

autocorrelation function

ψX(τ) = σ2 e−βn|τ |
n−1∑

k=0

Γ(n)(2βn|τ |)(n−k−1)

(2n− 2)!k!Γ(n− k)
(A.58)

and PSD

ΨX(ω) =
(2βn)2n−1 [Γ(n)]2

(2n− 2)! (ω2 + β2
n)n . (A.59)

Electrical, Electronic and Computer Engineering 242

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  HHaauuggeerr,,  MM  MM    ((22000055))  



A.9 LINEARISATION IN THE EXTENDED KALMAN FILTER

A.9.1 Linearisation and the Linearised Kalman Filter

If the trajectory of the state estimates are known up to a certain extent, also known as the

nominal trajectory, where the measurements are of little importance, a linearised Kalman

filter can be derived. Due to a priori knowledge of the nominal trajectory, partial derivative

matrices can be found beforehand, which allow for off-line computation of the Kalman gains,

which can be stored and then utilised during the online process. The Kalman filter however

expects to have a perfect internal model with a degree of uncertainty provided by the process

and measurement noise, but is known to diverge over time as the nominal trajectory becomes

less and less accurate (Gelb, 1984).

While the state estimates are updated through their various non-linear functions, the compu-

tation of the error covariance matrix and the Kalman gain require linearised approximations

of the state variable and the measurement sensitivity. This can be achieved by two completely

different methods. The first method expands the functions f(x(t), t) and h(x(t), t) around a

nominal point (linearised Kalman filter (LKF)) or estimated trajectory (EKF) by means of a

Taylor series, while the second expands the probability density function f(x) of the random

variable x. The latter method will be described in the next section.

The Taylor expansion of the function f(x(t), t) for the LKF is given by

f(x(t), t) = f(x∗(t), t) +
∂f
∂x

∣∣∣∣
x = x∗

(x− x∗) + . . . , (A.60)

where x∗(t) is the nominal trajectory and for the EKF the Taylor expansion is given by

f(x(t), t) = f(x̂(t), t) +
∂f
∂x

∣∣∣∣
x = x̂

(x− x̂) + . . . , (A.61)

where x̂(t) is the estimated trajectory. In a similar manner h(x, t) can be expanded. In this

implementation of the EKF only the first partial derivative is used. Higher-order filters also

known as iterated Kalman filter (IKF) (not to be confused with the interval Kalman filter

found in Chen, Wang and Shieh (1997) and Chen, Xie and Shieh (1998)) truncate the Taylor
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series after the second term or further on. The additional terms account for higher-order effects

of the non-linearities and improve performance at the cost of an increased computational

burden.

A.9.2 Non-linear Estimation by Statistical Linearisation

If the probability density function of f(x) is known, another expansion method can be used

to manage non-linearities, which generally result in a more accurate series expansion than

the Taylor series (Gelb, 1984). f(x) is approximated by a series expansion of the form

f(x) ∼= n0 + n1x + n2x
2 + . . . , (A.62)

where the best appropriate coefficients nk are determined. The most frequently used method

for choosing the coefficients is to minimise the mean-squared value

E
[
(f(x)− n0 − n1x− . . .− nmxm)2

]
. (A.63)

This method does not require derivatives of f as the Taylor series does and non-linear dynamic

systems with a large number of non-linearities are thus treated with ease.

A.10 STOCHASTIC OBSERVABILITY AND CONTROLLABILITY

A.10.1 Stochastic Observability

In the absence of process noise and with perfect a priori information the condition for com-

plete observability is given by

α1I ≤
k∑

i=k−N

ΦT (i, k)HT
i R−1

i HiΦ(i, k) ≤ α2I, (A.64)

for some value of N > 0, where α1 > 0 and α2 > 0. The summation term in Equation

(A.64) is the solution for the error covariance matrix. When the linear system is stationary,

the criterion of observability can be expressed algebraically by Equation (A.38). For the
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continuous case see Gelb (1984).

A.10.2 Stochastic Controllability

In the absence of measurements and with perfect a priori information the condition for

complete controllability is given by

β1I ≤
k−1∑

i=k−N

Φ(k, i + 1)QiΦT (k, i + 1) ≤ β2I, (A.65)

for some value of N > 0, where β1 > 0 and β2 > 0. When the linear system is stationary and

Q is positive definite, the criterion of observability can be expressed algebraically by Equation

(A.39). For the continuous case see Gelb (1984).
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