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SUMMARY

FOUNTAIN CODES AND THEIR TYPICAL APPLICATION IN

WIRELESS STANDARDS LIKE EDGE

by

Trienko Lups Grobler

Supervisor: Professor J.C. Olivier

Department of Electrical, Electronic and Computer Engineering

Master of Engineering (Computer)

One of the most important technologies used in modern communication systems is

channel coding. Channel coding dates back to a paper published by Shannon in 1948 [1]

entitled “A Mathematical Theory of Communication”. The basic idea behind channel

coding is to send redundant information (parity) together with a message to make the

transmission more error resistant. There are different types of codes that can be used

to generate the parity required, including block, convolutional and concatenated codes.

A special subclass of codes consisting of the codes mentioned in the previous paragraph,

is sparse graph codes. The structure of sparse graph codes can be depicted via a graphi-

cal representation: the factor graph which has sparse connections between its elements.

Codes belonging to this subclass include Low-Density-Parity-Check (LDPC) codes,

Repeat Accumulate (RA), Turbo and fountain codes. These codes can be decoded by

using the belief propagation algorithm, an iterative algorithm where probabilistic in-

formation is passed to the nodes of the graph.

This dissertation focuses on noisy decoding of fountain codes using belief propagation

decoding. Fountain codes were originally developed for erasure channels, but since any

factor graph can be decoded using belief propagation, noisy decoding of fountain codes

can easily be accomplished. Three fountain codes namely Tornado, Luby Transform

(LT) and Raptor codes were investigated during this dissertation. The following results

were obtained:
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1. The Tornado graph structure is unsuitable for noisy decoding since the code

structure protects the first layer of parity instead of the original message bits (a

Tornado graph consists of more than one layer).

2. The successful decoding of systematic LT codes were verified.

3. A systematic Raptor code was introduced and successfully decoded. The simula-

tion results show that the Raptor graph structure can improve on its constituent

codes (a Raptor code consists of more than one code).

Lastly an LT code was used to replace the convolutional incremental redundancy

scheme used by the 2G mobile standard Enhanced Data Rates for GSM Evolution

(EDGE). The results show that a fountain incremental redundancy scheme outperforms

a convolutional approach if the frame lengths are long enough. For the EDGE platform

the results also showed that the fountain incremental redundancy scheme outperforms

the convolutional approach after the second transmission is received. Although EDGE

is an older technology, it still remains a good platform for testing different incremental

redundancy schemes, since it was one of the first platforms to use incremental redun-

dancy.

Keywords: articulation principle, belief propagation, Enhanced Data Rates for GSM

Evolution(EDGE), factor graph, fountain code, incremental redundancy, Luby-Transform

codes(LT), low-density parity-check codes(LDPC), noisy decoding, Raptor codes, sparse

graph, Tornado codes.
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SAMEVATTING

FONTEIN KODES EN HUL TIPIESE GEBRUIK IN DRAADLOSE

STANDAARDE SOOS VDGE

deur

Trienko Lups Grobler

Studieleier: Professor J.C. Olivier

Departement Elektriese, Elektroniese en Rekenaar Ingenieurswese

Meester in Ingenieurswese (Rekenaar)

Een van die belangrikste tegnologieë wat gebruik word in kommunikasie stelsels is

kanaalkodering. Kanaalkodering dateer terug na die publikasie van Shannon in 1948 [1]

getiteld “A Mathematical Theory of Communication”. Die basiese idee agter kanaalkoder-

ing is om addisionele inligting met ’n boodskap te stuur (pariteit), sodat die boodskap

meer bestand sal wees teen foute wat gemaak word as gevolg van geraas. Daar is ver-

skillende tipes kodes wat gebruik kan word om die ekstra inligting te genereer, naamlik

blok-, konvolusie- en aangeskakelde kodes.

’n Spesiale subklas van kodes wat bestaan uit die kodes genoem in die vorige paragraaf,

is yl grafiekkodes. Die struktuur van yl grafiekkodes kan grafies voorgestel word deur

’n faktoriserings-grafiek (met min verbindingslyne tussen elemente binne die grafiek).

Die kodes wat deel is van hierdie subklas sluit in Lae-Digtheid Pariteit-Kodes (LDPK),

Herhaal-Akkumuleer (HA) kodes, Turbo kodes asook fonteinkodes. Yl grafiekkodes kan

gedekodeer word deur die gebruik van sekerheids-propagasie (iteratiewe algoritme waar

waarskynlikhede na die nodes van die grafiek aangestuur word).

Hierdie verhandeling fokus op die raserige dekodering van fonteinkodes deur sekerheids-

propagasie te gebruik. Fonteinkodes was oorspronklik ontwerp vir uitwis-kanale. Om-

dat enige yl faktoriserings-grafiek gedekodeer kan word met behulp van sekerheids-

propagasie, was dit eenvoudig om raserige dekodering toe te pas op fontein faktoriserings-

grafieke. Drie hoof fonteinkodes, naamlik Warrelwind, Luby Transform (LT) en Toege-
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draaide kodes is ondersoek in die verhandeling. Die volgende gevolgtrekkings kan

gemaak word:

1. Die Warrelwind grafiek struktuur kan nie gebruik word vir raserige dekodeer-

ing nie weens die feit dat die struktuur van Warrelwind kodes die eerste laag

pariteit beskerm in plaas van die oorspronklike boodskaplaag (’n Warrelwind

grafiek bestaan uit meer as een laag).

2. Die feit dat raserige dekodering van sistematiese LT kodes moontlik is, is bevestig.

3. ’n Sistematies Toegedraaide kode is ontwerp en ook gedekodeer (raserig). Die

simulasie resultate wys dat die Toegedraaide kode se grafiek beter resultate kan

lewer as die grafieke van die kodes waaruit die Toegedraaide grafiek bestaan (’n

Toegedraaide kode is saamgestel uit meer as een kode).

’n Sistematiese LT kode is ook gebruik om die inkrementele-pariteit konvolusie skema

van Verbeterde Data Tempo GSM Evolusie (VDGE) te vervang. Die simulasie resultate

wys dat ’n fontein inkrementele-pariteit skema beter vaar as ’n konvolusie benadering

as die blok lengtes lank genoeg is. Die resultate wys ook dat die fontein benadering

beter vaar as die konvolusie benadering na die tweede trasnmissie ontvang is. Alhoewel

VDGE ’n ouer tegnologie is, bly dit ’n goeie platform om inkrementele-pariteit skemas

op te toets, omdat VDGE een van die eerste platforms is waarop inkrementele-pariteit

gebruik is.

Sleutelwoorde: artikulasie-beginsel, sekerheids-propagasie, Verbeterde Data Tempo

GSM Evolusie(VDGE), faktoriserings-grafiek, fontein kode, inkrementele-pariteit, Luby-

Transform kodes, lae-digtheid pariteit-kodes(LDPK), raserige dekodering, Toegedraaide

kodes, yl grafieke, Warrelwind kodes.
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CHAPTER 1

INTRODUCTION

1.1 CHAPTER INTRODUCTION

The need to communicate is as old as mankind itself. Communication has applications

in peace keeping, is vital to world economic stability, and is a key to sustained economic

growth. Modern communication tools like e-mail and mobile phones are developments

towards instantaneous global communication and interaction.

The development of mobile telephony happened in phases, each phase is known as a

Generation. Mobile development is currently in the third generation (3G), which en-

ables the use of multimedia applications on our mobile phones. Simple communication

tools are simply taken for granted, but are in fact complicated devices, that include

state of the art probabilistic inference calculations (such as the mobile telephone).

This thesis aims to make wireless communication more reliable. This chapter begins

by explaining how channel coding can be used to improve communication, followed

by the general history of channel coding and mobile telephony. In short, this chapter

summarizes the theory and application of error correcting codes in communication

systems. The chapter ends with the contribution made by this thesis as well as a

layout of the dissertation.

1.2 CHANNEL CODING

One of the most important elements of a modern communication system is error cor-

rection coding. In error correcting coding redundant information (parity) is added to a

message to make the message more resilient against noise induced errors during trans-

mission. The field of error correcting coding dates back to a paper published by Shan-

non [1]. Shannon predicted that reliable communication is achievable, if redundancy is

added to the message across a memoryless channel, as long as the communication rate

does not exceed the capacity of the channel. Shannon however did not propose any

1



CHAPTER 1 INTRODUCTION

coding scheme to achieve this. Since 1948 effort has been put into the ongoing search

for codes able to achieve these theoretical bounds. The codes developed over the years

can be classified into mainly three types, namely block codes, convolutional codes and

concatenated codes.

The main block codes developed during the past 60 years include Hamming [2], Bose-

Chaudhuri-Hocqhuenghem (BCH) [3, 4, 5], Reed-Solomon (RS) [6] and Low Density

Parity Check (LDPC) codes [7, 8, 9]. Some of the most important developments in de-

coding algorithms of block codes include the Berlekamp-Massey hard decision decoding

algorithm of RS codes [10], the construction of block code trellis diagrams to enable

soft decision Viterbi decoding [11] of linear block codes [12] and the development of

BP (belief propagation) decoding of sparse graph (LDPC) codes [13, 8, 14].

CC (Convolutional codes) were first introduced by Elias in 1955 [15]. Two important

decoding algorithms were developed to decode these codes namely Viterbi trellis de-

coding [11] and the MAP (Maximum A-Posteriori) algorithm [16].

The first concatenated codes were developed by Forney [17] and much later Turbo

codes (very good concatenated codes) were developed by Berrou et al. [18].

Two other advances in coding theory is worth mentioning as well. The development of

TCM (Trellis Coded Modulation) (combining modulation and coding) [19] and STC

(Space Time Codes) (using multiple antennas) [20].

The target set by Shannon has now almost been reached by using Turbo and LDPC

codes. These codes can perform arbitrarily close to the Shannon bound when used on

the AWGN channel and the binary erasure channel if large block (code) sizes are used.

In MacKay [14] Turbo and LDPC codes are discussed in terms of their factor graph

representations, and are therefore also part of a family of codes known as sparse graph

codes, that also includes Repeat Accumulate (RA) and fountain codes. These codes

are called sparse due to the low density factor graphs that represent them. BP is the

main algorithm used to decode these codes (BP was originally developed by Pearl and

Gallager [13, 7, 8]).

1.3 MOBILE TELEPHONY

The development of cellular networks can be classified in different classes (grouped

together by technology), each class is known as a generation:

0G : Half-duplex radio phone technology which operated without a cellular network

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA
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CHAPTER 1 INTRODUCTION

(1946).

1G : Voice communication through analog FM transmission. Frequency Division Mul-

tiple Access/Frequency Division Duplexing (FDMA/FDD) was used to accommodate

multiple users and channels (1980s). Advanced Mobile Phone System (AMPS), Total

Access Communication System (TACS) and Nordic Mobile Telephony (NMT) were

examples of 1G networks.

2G : Purely digital networks using digital modulation and Time Division Multiple Ac-

cess (TDMA) or Code Division Multiple Access (CDMA) to support voice, text messag-

ing (SMS) and circuit-switched data communication (1990s). The two best examples of

2G networks are Global System for Mobile communication (GSM) and Interim Stan-

dard 95 (IS-95). Forward error correction (FEC) and encryption are also supported

by this generation. Other special services like caller identification are also available to

users. Some additional standards were developed to increase the data speeds of 2G

networks, including 2.5G General Packet Radio Service (GPRS) and 2.75G Enhanced

Data Rates for GSM Evolution (EDGE).

3G : Provides data rates up to 2 Mbps using wideband modulation techniques with

increased user capacity (2000’s). Services like Internet, e-mail, multimedia streaming,

video telephony and instant messaging are all services available to 3G devices (this

includes mobile handsets and computers). The two main 3G standards are Wideband

Code Division Multiple Access (WCDMA) and Multi Carrier CDMA (MC-CDMA).

Improvements on the 3G standard include 3.5G High Speed Downlink Packet Access

(HSDPA) and 3.75G High Speed Uplink Packet Access (HSUPA).

4G : Higher data rates (10Mbps to 1 Gbps) will be supported through the use of an all-

IP futuristic network. The multiple access technology used by this generation will in all

likelihood be OFDM (Orthogonal Frequency Division Multiplexing). The application

layer services like mobile video will be provided. There will be seamless integration

between all generation networks.

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA
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CHAPTER 1 INTRODUCTION

1.4 MOTIVATION AND CONTRIBUTION

The research reported in this dissertation builds on the results found in [21, 22]. In

[21] different codes were decoded using soft decision Viterbi decoding. In [22] these

results were extended to the BP decoding of sparse graph codes like LDPC, Repeat

Accumulate and Turbo codes. These codes are discussed in the book by MacKay [14].

This dissertation investigates the BP decoding of the final class of sparse graph codes

from [14], which is fountain codes, and also builds on the idea of systematic fountain

codes [23]. Fountain codes are also used as an alternative Incremental Redundancy

(IR) scheme [24, 25], and tested on the EDGE platform. Although EDGE is an older

technology (2G) it still remains a good platform to test the performance of different

IR schemes. The main contributions of this thesis are summarized below:

1. BP decoding of simple block and convolutional codes: A Hamming (7,4,3)

and a RSC(2,1,2) (Recursive Systematic Convolutional) code are decoded using

BP decoding. The main aim of this is to show how different codes can be decoded

using BP and factor graphs. This supports the idea of movement away from trellis

decoding towards factor graphs. It will become clear that many different codes can

be combined and then be decoded using a single algorithm and graph structure.

For instance, block and convolutional codes can be combined in one graph and

then be decoded using BP.

2. Noisy decoding of the systematic Tornado graph structure using BP:

The factor graph of a systematic Tornado code has more than one layer. The

BP algorithm was applied to this unique factor graph structure, since BP can be

applied to any factor graph as shown in Chapter 2. The Tornado (80,40) code

from Section 3.3.4 was used for simulation purposes. From the simulation results

it was concluded that the graph structure of a Tornado code does not lower

the BER when compared to the BER performance of its individual layers (the

Tornado(80,40) code actually performs worse). The first parity layer, however,

has a very low BER. This shows that the Tornado code actually protects its first

parity layer rather than the original message bits. This makes the graph structure

of a Tornado code unsuitable for noisy decoding purposes [26]. The results from

Section 5.2.7 replaces the simulation results obtained in Section IV of [26].

3. Verification of noisy decoding of systematic LT codes : Systematic LT

codes are introduced in [23]; a decoding algorithm for these codes are also given
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in the same publication. This algorithm was derived using the same principles

discussed in Chapter 2, approximately the same time as this dissertation. The

simulations (in this dissertation) were performed on a systematic LT (80,40) code

that uses an improved robust soliton distribution with parameters (40,0.05,0.05)

(see Section 5.2.7 for more details). The simulation results confirm the results

obtained in [23], showing that the decoding algorithm works. A smaller code is

used in this dissertation, since the decoding algorithm is tested and not the BER

performance of systematic LT codes.

4. Noisy decoding of the systematic Raptor graph structure: Systematic

Raptor codes are introduced in this dissertation. The Raptor code uses a pre-

code as well as a weakened LT code in the construction of its factor graph. But

since the two graphs (when combined) form one new graph, a Raptor code can

be decoded using BP as discussed in Chapter 2 and 3. This is demonstrated by

using a low complexity example; a Raptor (80,20) code consisting of a (40,20)

regular (3,6) LDPC code as pre-code followed by a LT (80,40) code (see Sections

3.5 and 5.2.7 for greater detail). The simulation results, show that the new graph

structure does perform better under flat fading conditions (no line of sight), but

performs worse than its constituent codes under AWGN channel conditions.

5. Introducing fountain codes as an IR scheme: Currently punctured convolu-

tional codes are used as incremental redundancy scheme in EDGE [24, 25]. This

dissertation studies the performance obtained when fountain codes replace the

current scheme. The fountain code used for this scheme can be found in Section

5.3. The simulation results show that the convolutional approach outperforms the

fountain code for the first transmission. The fountain code however outperforms

the convolutional code from the second transmission onwards. In summary, the

fountain code has potential as an IR scheme, and depends on the specific envi-

ronment it is used in. If large frame lengths are used it is the most likely approach

to use [26].

1.5 LAYOUT OF DISSERTATION

The main aim of this thesis is to test a fountain incremental redundancy scheme on

the EDGE platform. The secondary aim is to test the different fountain factor graphs
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on a standard QPSK transmission system. The results of the two aims can be obtained

in Chapter 5 and 6.

Chapter 5 and 6 are preceded by theoretical chapters that enabled the creation of the

simulations responsible for the results found in these chapters. In the first case BP

is explained in detail in Chapter 2; this is required by Chapter 3 to enable the noisy

decoding of fountain codes. The EDGE platform is introduced in Chapter 4. Combin-

ing Chapters 3 and 4 makes it possible to implement a fountain IR scheme. The basic

content of each chapter is summarized below:

Chapter 2: The chapter introduces factor graphs followed by the sum-product algo-

rithm. The sum-product algorithm is shown to calculate the marginal function by using

the articulation principle. Finally belief propagation is derived from the sum-product

algorithm by substituting the factor graph with a Tanner graph. The chapter ends

with an example of how belief propagation can be applied to decode a simple Ham-

ming (7,4,3) block code.

Chapter 3: The chapter begins by giving a general overview of fountain code de-

velopment over the past decade. After this section, each of the three fountain codes

(Tornado, LT, Raptor) are explained under the following general headings: encoding,

decoding on erasure channel, design, noisy decoding and factor graph representation.

Chapter 4: A global overview of EDGE is given (including data rates obtainable)

followed by the structure of the TX (Transmission) blocks used by the standard. The

current encoder used by EDGE follows the TX block section. The chapter ends with

the concept of IR, how the current encoder implements IR and how fountain codes

could replace the current scheme.

Chapter 5: The chapter is divided into two main sections. In the first part of the

chapter the three fountain codes are investigated on a standard flat fading channel.

Some simple non-fountain codes are also investigated in this section. The second sec-

tion investigates the use of fountain codes on the EDGE platform to implement IR.

Chapter 6: The chapter contains all the conclusions drawn from the simulations results

presented in Chapter 5.
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CHAPTER 2

SPARSE GRAPH CODES AND

BELIEF PROPAGATION

2.1 CHAPTER INTRODUCTION

The chapter introduces factor graphs followed by the sum-product algorithm. The sum-

product algorithm is shown to calculate the marginal function by using the articulation

principle. Next belief propagation is derived from the sum-product algorithm by sub-

stituting the factor graph with a Tanner graph. An example is given to show how to

construct factor graphs (Tanner) for simple block codes. The chapter ends with an

example of how belief propagation can be applied to decode a simple Hamming (7,4,3)

block code (the second last section discusses classic LDPC BP).

2.2 FACTOR GRAPH DEFINITION

A factor graph is a bipartite graph that shows how a function can be factored into

the product of local functions. As an example g(x, y) = x · y + x can be factored in to

g(x, y) = f1(x) · f2(y) where f1(x) = x and f2(y) = y + 1. The corresponding factor

graph is depicted in Figure 2.1.

f1 f2x y

Figure 2.1: A simple factor graph representing g(x, y) = x · y + x

A bipartite graph is a graph that can only consist of two types of nodes. In the case of

a factor graph these two types are the variable (depicted as circles in Figure 2.1) and

function nodes (depicted as squares in Figure 2.1) respectively. A variable node can

only be connected to a function node if that variable is an argument of that specific

7



CHAPTER 2 SPARSE GRAPH CODES AND BELIEF PROPAGATION

function. Nodes of the same type are never connected with each other and the edges

are not directed.

Assume the function g can be factored as [27, 28]

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) (2.1)

its factor graph is shown in Figure 2.2

x1 x2 x3 x4 x5

fA fB fC fD fE

Figure 2.2: The factor graph of g(x1, x2, x3, x4, x5)

Suppose one is interested in calculating the marginal function [14] g̃ in terms of the

variable x1, which in this case is equal to

g̃(x1) =
∑

x2,x3,x4,x5

g(x1, x2, x3, x4, x5)

=
∑

x2

∑

x3

∑

x4

∑

x5

fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) (2.2)

where
∑

xi
denotes a summation over all the values the variable xi can take on. Using

equation (2.2) it is easy to define the general marginal function g̃(xj) as being the

function g summed over all possible combinations of values that the arguments of g

can have other than the argument xj. Since g is factored (as shown in equation (2.1))

and the local functions are not dependent on all xk, k ∈ {2, · · · , 5} it is possible to

rewrite equation (2.2) as

g̃(x1) = fA(x1)
∑

x2

fB(x2)
∑

x3

fC(x1, x2, x3)
∑

x4

fD(x3, x4)
∑

x5

fE(x3, x5) (2.3)

Now simplify the calculation of equation (2.3) as

fI(x3) =
∑

x5

fE(x3, x5) and (2.4)

fII(x3) =
∑

x4

fD(x3, x4) (2.5)
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Assuming fE(x3, x5) is defined as

fE(x3, x5) =

{

1 if (x3, x5) = (0, 0) or (x3, x5) = (1, 1)

0 if (x3, x5) = (1, 0) or (x3, x5) = (0, 1)
(2.6)

then it is easy to see that fI(x3) is equal to fE(x3, 0) + fE(x3, 1). The value of fII(x3)

can be calculated similarly. Then using fIII(x3) = fI(x3) · fII(x3) one can calculate

fIV (x1, x2) =
∑

x3

fC(x1, x2, x3) · fIII(x3) and (2.7)

fV (x1) =
∑

x2

fB(x2) · fIV (x1, x2) (2.8)

Finally g̃ can be calculated with g̃(x1) = fA(x1) · fV (x1), assuming all local functions

are defined as in the case of fE.

From the above it is clear that due to the structure of the factor graph some calculations

could be performed locally at a function node without any other knowledge of the

factor graph. The results of the locally calculated functions can be passed on to other

variable nodes to help the remaining function nodes higher up in the hierarchy perform

their calculations. This message passing approach forms the basis of the sum-product

algorithm.

2.3 SUM-PRODUCT ALGORITHM

If the sum-product algorithm is applied to the factor graph of a function g(x1, x2, . . . , xN)

it calculates the marginal function [27, 28]

g̃(xi) =
∑

xj

∀j∈{1,2,··· ,N}\{i}

g(x1, x2, · · · , xi, · · · , xN) (2.9)

where i ∈ {1, 2, · · · , N}. To make the notation more compact, we define

f(x1, x2, · · · , xL) ↓ xi =
∑

xj

∀j∈{1,2,··· ,L}\{i}

f(x1, x2, · · · , xL) (2.10)

where i ∈ {1, 2, · · · , L} and ↓ is known as the summary operator. This can also be

written in the following notation

f(x1, x2, · · · , xL) ↓ xi = f(XA) ↓ xi (2.11)
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where i is the same as before and A ≡ {1, 2, · · · , L} making XA ≡ {x1, x2, · · · , xL}.
In words the notation XA represents the set of all variables with subscripts contained

in variable index set A. Take note that the marginal function does not have to be

calculated only in terms of xi but can also be calculated in terms of a set of variables

XB ≡ {x1, · · · } : f(XA) ↓ XB (sum over all variables except over those contained in

variable set XB).

The sum-product algorithm can be best understood by interpreting each node of a fac-

tor graph as a processor [27, 28]. The factor graph consists of two different types of pro-

cessors, which are the “variable” and the “function” processors respectively. Two pro-

cessors can only communicate if they are connected via an “edge” (wire/connections).

Each of the two different types of processors uses a different formula to process the

information it receives on its connections. So the basic idea is that each variable proces-

sor begins by sending the message 1 to their adjacent function processors. The function

processors use a unique update rule for each received message (by using all the other

received messages except the one being updated). After each function processor has fin-

ished updating its messages it sends them back to the variable processor. The variable

processor performs the same action using a different update rule. It is very important

to keep in mind that the messages being passed between processors are entire func-

tions. This passing of messages between processors continue until no new message (do

not change) can be generated. Now the update rules of each processor can be given.

The update rules used by the two different processors can be merged into the following

general rule if the internal function of a variable processor is assumed to be equal to

the unity function.

Rule 1 (The Sum-Product Update Rule) The message sent from a node v on an

edge e is the product of the local function at v (in the case of a variable node this is equal

to the unit function) with all messages received at v on edges other than e, summed

over all variables other than the variables associated with e (except one which is either

the variable of the considered node or the variable of the node where the messages are

sent to) [27, 28].

This rule can be represented mathematically by two update equations (see also Figure

2.3). These update equations for the variable and function nodes are respectively given

as [27, 28]:
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f

µh1→x(x)

h1

h2

µf→x(x)

µy1→f (x)

y1

µx→f (x)
y2

x

Figure 2.3: A fragment of a factor graph showing the update rules for the

sum-product algorithm

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (2.12)

and

µf→x(x) =

(

f(x, y1, y2, · · · )
∏

y∈n(f)\{x}

µy→f (y)

)

↓ x (2.13)

where µv→w represents the message sent from node v to node w and n(v) denotes all

the neighbors of node v. It is important to mention here that the messages µh→x(x)

depend only on x and for this reason the ↓ operator is omitted in the calculation of

µx→f (x). In the special case when a variable node has only two neighbors (see also

Figures 2.4 and 2.5)

h

µh→x(x)

f

µx→f (x)

x

Figure 2.4: A variable node with only two edges
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x

µx→f (x)

f

xf

µf→x(x)

Figure 2.5: Leaf nodes

the message is simply passed on as µx→f (x) = µh→x(x). Leaf nodes send the following

messages µx→f (x) = 1 or µf→x(x) = f(x).

2.4 BASIC CHARACTERISTICS OF THE SUM-

MARY OPERATOR

The following characteristics of the summary operator are important. In the first case

it is easy to see that [27]

g(XC) ↓ XB = g(XC) ↓ XB∩C (2.14)

since XC can only be summed over elements contained in it. The above can easily be

understood by looking at the following example,

g(x1, x2, x3) ↓ {x2, x3, x4} = g(x1, x2, x3) ↓ {x2, x3} (2.15)

since x4 is not part of g.

2.4.1 AXIOMS

The operator ↓ can only be called a summary operator if, for all R-valued functions

f and g and for all variable index sets B, C and D, the following axioms are satisfied

[27]:

1. B ⊂ C ⇒ f(XD) ↓ XB = [f(XD) ↓ XC ] ↓ XB
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2. B ⊂ C ⇒ [f(XB) · g(XD)] ↓ XC = f(XB) · [g(XD) ↓ XC ]

3. B ∩ C = ∅ ⇒ [f(XB) · g(XC)] ↓ XD = [f(XB) ↓ XD] · [g(XC) ↓ XD]

Axiom 1 implies that a marginal can be obtained by evaluating a sequence of ever more

restrictive summaries, and that the evaluation of these summaries can be done in any

order. In the example,

g(x1, x2, x3) ↓ x1 = (g(x1, x2, x3) ↓ {x1, x2}) ↓ x1

= (g(x1, x2, x3) ↓ {x1, x3}) ↓ x1 (2.16)

x3 can be summarized followed by x2 or vice versa, it doesn’t matter since the same

result is obtained. Axiom 2 shows that when B ⊂ C then f(XB) is a constant. This is

illustrated by the example below,

(f(x1) · g(x1, x2, x3)) ↓ {x1, x2} = f(x1) · (g(x1, x2, x3)) ↓ {x1, x2} (2.17)

Axiom 3 implies that if two functions have no arguments in common, the marginal of

the product is the product of the marginals. The last axiom is also made clear with an

example

[f(x1, x2) · g(x3, x4)] ↓ {x1, x3} =
∑

x2

∑

x4

f(x1, x2) · g(x3, x4)

=
∑

x2

f(x1, x2) ·
∑

x4

g(x3, x4)

= (f(x1, x2) ↓ {x1, x3}) ·
(g(x3, x4) ↓ {x1, x3}) (2.18)

The following lemma is easily derived from the above axioms (and can be extended to

products consisting of more than two functions) as shown in [27],

Lemma 1 If XA and XB are disjoint and do not contain x, then

[f(x,XA)g(x,XB)] ↓ x = [f(x,XA) ↓ x] · [g(x,XB) ↓ x] (2.19)

2.5 MESSAGE PASSING SCHEDULES

This section closely follows the notation of [27, 28]. Until now only the way messages

are updated has been defined, the order (schedule) in which this should occur has not.

The assumption is made that one message is passed every clock cycle (assuming the

message passing is synchronized by a discrete time clock).
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2.5.1 “NOWHERE IDLE” SCHEDULES

A schedule in which at least one message (only pending messages may be updated) is

updated in every clock cycle (prevents schedule from becoming “lazy”) is known as a

“nowhere idle” schedule. A node v has a message pending at en edge e only if node v

can send a different message than the one sent previously on e. Generally whenever a

new message arrives it will cause pending messages at each edge of that node. It follows

naturally that if a “nowhere idle” message passing schedule is applied to a factor graph

that has no loops and is a finite tree, the sum-product algorithm will terminate (no

pending messages will remain due to the absorption of messages by leaf nodes). The

following theorem shows that the final result of the sum-product algorithm (using a

“nowhere idle” schedule) is g̃ as defined in equation (2.9) [27, 28].

Theorem 1 Let F be a factor graph for a function g(x1, x2, · · · , xN), and suppose F

is a finite tree. Let xi be any variable of F, i.e. i ∈ {1, 2, · · · }. Every nowhere idle

schedule for the sum-product algorithm will eventually result in a state with no pending

messages. Then it is true that

g(x1, x2, · · · , xN) ↓ xi =
∏

f∈n(xi)

µf→xi
(xi) (2.20)

where n(xi) denotes the set of neighbors of xi, i.e. the set of function nodes that are

connected by an edge to xi.

The above theorem is shown to be true in Section 2.6 by using the articulation principle.

This is done by first showing the validity of the above theorem in the case of a special

subclass of “nowhere idle” schedules known as generalized forward/backward (GFB)

schedules and then generalizing the result for all “nowhere idle” schedules.

2.5.2 GFB SCHEDULES

After a GFB schedule finishes, exactly one message was passed (updated) in each

direction on every edge of a factor graph. To ensure the above the restrictions of the

“nowhere idle” schedule needs to be tightened. For a GFB a node v may only update

a message on edge e if it has received messages on all edges except e. Using the GFB

only leaf nodes of a graph F can send messages in the beginning of the algorithm (only

nodes with pending messages). See Figure 2.5 for the values of these messages. After

the leaf nodes have sent their messages they are deleted from the tree (including their

edges). Some of the nodes that received messages from the original leaf nodes will now
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be leaf nodes and therefore be able to send messages themselves. Clearly this process

can continue until a single node remains. Since at each stage the graph is a tree of

more than one node, there are always at least two leaf nodes in a position to send a

message, so this process will not stall. When only a single node v remains a message

will have been passed in one direction over each edge in the original graph. Now the

original graph gets reconstructed adding any neighbor of any retrieved node (starting

with v) randomly (sending a message). After the original graph F is reconstructed a

message will have been passed in both directions on every edge of F . At this stage the

algorithm terminates and g̃ can be calculated using equation (2.20) for any variable in

F . This is proven in Section 2.6.

2.6 ARTICULATION PRINCIPLE

Assume that F is a finite tree. If any edge {v, w} of F is cut two sub graphs Fw→v

(containing v, but not w) and Fv→w (containing w, but not v) are obtained and the

variable associated with edge {v, w} is denoted as x{v,w}

The articulation principle [27] refers to the idea that the message µv→w sent from v to

w must articulate (encapsulate or summarize) for the variables attached to Fv→w the

product of the local functions in Fw→v. This is expressed as

µv→w = fw→v(Xw→v) ↓ Xv→w (2.21)

where Xx→y refers to the variable set containing x{x,y} and the variables of Fx→y and

fx→y(Xx→y) refers to the product of the local functions in Fx→y (see also Figure 2.6).

4 5
2C

A 1

E

D 3B

Xw→v = {1, 2, x{v,w}}

w

fw→v(Xw→v) = A · B · C

Fw→v Fv→w

Xv→w = {3, 4, 5, x{v,w}}

fv→w(Xv→w) = D · E · w

x{v,w} = v

Figure 2.6: Articulation Principle notation represented graphically
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When F is a tree, it can be observed that only x{v,w} is present in variable sets Xv→w

and Xw→v formed when F is cut at x{v,w} (Xv→w ∩ Xw→v = x{v,w}). Now equation

(2.21) can be written as [27]

µv→w = fw→v(Xw→v) ↓ x{v,w} (2.22)

due to equation (2.14).

The articulation principle has now been defined but it must now be proven to hold in a

finite tree graph F that employs the message-passing algorithm (using a GFB schedule)

for all messages sent in F . The messages sent by leaf nodes (see Figure 2.5 for values)

clearly satisfies equation (2.22). If it can be shown that equation (2.22) is true for all

outgoing messages whenever it is true for incoming messages, then by induction it will

be true for all messages. Assuming {v, w} is the outgoing edge of v and suppose that

the equivalent of equation (2.22) is satisfied for all incoming messages at v, i.e.,

(∀u ∈ n(v)\w)µu→v = fv→u(Xv→u) ↓ x{u,v} (2.23)

If v is a variable node, x{u,v} = v. For distinct u1, u2 ∈ n(v), Xv→u1 ∩ Xv→u2 = {v};
hence, from Lemma 1 , equation (2.12) and equation (2.22), the following is obtained

[27]

µv→w(v) =
∏

u∈n(v)\w

(fv→u(Xv→u) ↓ v)

=

(

1 ·
∏

u∈n(v)\w

fv→u(Xv→u)

)

↓ v

= fw→v(Xw→v) ↓ v (2.24)

as desired.

If v is a local function node, then for each u ∈ n(v)\w, x{u,v} = u. Assuming the

equivalent of equation (2.22) holds and using u ∈ n(v)\w, x{u,v} = u it becomes clear

that the incoming messages of v can be expressed as

uu→v = fv→u(Xv→u) ↓ u (2.25)

unless u is a leaf node, in which case uu→v = 1. Now applying the axioms defining the
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summary operator and Lemma 1, the following is obtained [27]

fw→v(Xw→v) ↓ w
(a)
=

[

v(Xn(v))
∏

u∈n(v)\{w}

(fv→u(Xv→u)

]

↓ w

(b)
=

[(

v(Xn(v))
∏

fv→u(Xv→u)

)

↓ n(v)

]

↓ w

(c)
=

[

v(Xn(v)) ·
((

∏

fv→u(Xv→u)

)

↓ n(v)

)]

↓ w

(d)
=

[

v(Xn(v)) ·
∏

(fv→u(Xv→u) ↓ n(v))

]

↓ w

(e)
=

[

v(Xn(v)) ·
∏

(fv→u(Xv→u) ↓ u)

]

↓ w

(f)
=

[

v(Xn(v)) ·
∏

µu→v(u)

]

↓ w

(g)
= µv→w(w) (2.26)

In all cases, the product is over u ∈ n(v)\{w} as shown in equality (a), which follows

directly from the definition of fw→v(Xw→v) ↓ w. Equality (b) is a consequence of Axiom

1, since {w} ⊂ n(v), and (c) is due to Axiom 2. Equality (d) is due to Axiom 3, since

Xv→u1 and Xv→u2 are disjoint for distinct u1 and u2 in n(v)\{w}. Then (e) follows since

Xv→u ∩ n(v) = {u}, while (f) is due to equation (2.25) and (g) follows by definition

(2.13).

It has now been shown that the articulation principle holds for a finite tree that employs

the sum-product algorithm (GFB schedule). It still needs to be shown that when the

articulation principle is valid g̃ can be calculated by equation (2.20). This is shown by

[27]

g(XS) ↓ x =

(

∏

f∈n(x)

fx→f (Xx→f )

)

↓ x

=
∏

f∈n(x)

(fx→f (Xx→f ) ↓ x)

=
∏

f∈n(x)

µf→x(x) (2.27)

with S being the subscript index of all variables contained in a graph F (the marginal

function is calculated in terms of variable x and f is any neighbor of x). The first

equality follows from the fact that g(XS) can be written as the product of the local

functions contained in the disjoint sub trees obtained by removing node x from F . The

second equality follows from Lemma 1 (since for distinct f1 and f2 in n(x), we have
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Xx→f1 ∩ Xx→f1 = {x} and the third equality follows from the articulation principle

(2.22).

In the case of the “nowhere idle” schedule every node will have received messages

(that conforms to the articulation principle) sent from every other node (directly or

indirectly), at termination (because F is a finite tree) and therefore the message on

each edge {v, w} of F will be equal to the product of the local functions in Fw→v (from

[27]). From here the same result can be obtained for the “nowhere idle” schedule as for

the GFB schedule (using similar arguments as in the case of the GFB) [27].

2.7 NORMALIZED MARGINALS

The normalized marginal is defined as

ĝ(xi) =
g̃(xi)

∑

xi
g̃(xi)

(2.28)

If only the normalized marginal is required, then an alternative version of the sum-

product algorithm is used [14]. This alternative form is obtained by changing equations

(2.12) and (2.20) to

µx→f (x) = α1

∏

h∈n(x)\{f}

µh→x(x) (2.29)

and

ĝ(xi) = α2

∏

f∈n(xi)

µf→xi
(xi) (2.30)

where α1 = 1
P

x µx→f (x)
and α2 = 1

P

xi

Q

f∈n(xi)
µf→xi

(xi)
.

2.8 BELIEF PROPAGATION AND SPARSE

GRAPH CODES

For the factor graph of a sparse graph code the variable nodes are replaced by code

nodes and the function nodes are replaced by check nodes. See Figure 2.9 for an example

of a factor graph. When the sum-product algorithm is applied on a factor graph of a

sparse graph code it is called belief propagation.

In the case of a sparse graph code the messages being passed between nodes are either

probability vectors or log-likelihoods (beliefs). More precisely in the case of an LDPC

code, the messages being passed from a code node q to a check node r is the probability
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that q is either a 1 or a 0, given the observed value of q and all the values received from

the neighbors of q except from r during the previous round. The message sent from a

check node r to a code node q is the probability that q is equal to either a 1 or a 0

given all the values received by r from its neighbors during the previous round except

from q. Due to the unique structure of the factor graph and the type of messages used

by belief propagation the update rules simplify dramatically. These update rules are

derived in this section directly from the sum-product algorithm.

The link between belief propagation and the sum-product algorithm can easily be shown

by remembering that belief propagation is a bit wise decoding algorithm. This means

that each decoding iteration of belief propagation improves the probability value of

each bit. The final probability that a certain bit tn (posterior probability) was a 1 or 0

is (obtained through bit wise decoding) equal to the marginalized probability (of being

a 1 or a 0) of all the other bits in the received codeword [22]. This can be represented

mathematically as

Pr(tn|r) =
∑

{tn′ :n′ 6=n}

Pr(t|r) (2.31)

with t representing the sent codeword and r the noisy received codeword. Now equation

(2.20) can be used to calculate equation (2.31), since equation (2.20) is a marginaliza-

tion problem. This is in effect belief propagation decoding as will be shown below.

Since the factor graph of a sparse graph code contains loops, equation (2.20) can only

calculate equation (2.31) approximately.

The scheduling algorithm used in this dissertation entails updating all the messages

of the code nodes first followed by all the messages of all the function nodes. This

approach is a “nowhere idle” schedule making equation (2.20) applicable.

2.8.1 PROBABILITIES, LIKELIHOODS AND

LOG-LIKELIHOODS

The probability that a random binary variable X is equal to either 1 or 0 is denoted

mathematically as Pr[X = 1] or Pr[X = 0]. The likelihood ratio λ of X is then defined

as

λ(X) =
Pr[X = 0]

Pr[X = 1]
(2.32)
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The log-likelihood ratio Λ of X will then be equal to

Λ(X) = ln λ(X)

= ln

[

Pr[X = 0]

Pr[X = 1]

]

(2.33)

The ratios λ and Λ can also consist of conditional probabilities by substituting Pr[X =

1] and Pr[X = 0] with Pr[X = 1|Y ] and Pr[X = 0|Y ] respectively in the above

formulas. This will then give λ(X|Y ) and Λ(X|Y ).

2.8.2 UPDATE RULE DERIVATION FOR BELIEF PROP-

AGATION

Assuming the messages consist of probability vectors, let (Pr[Xk = 0|C∀i∈{1,2,··· ,n}\{k}],

Pr[Xk = 1|C∀i∈{1,2,··· ,n}\{k}]) be the output probability vector of the kth variable (code)

node of a factor graph consisting of v variable nodes (assume that the kth variable

node has degree n). Where [·|C∀i∈{1,2,··· ,n}\{k}] means “given all Ci except Ck” with

i ∈ {1, 2, · · · , n} and k ∈ {1, 2, · · · , v}. Also let (Pr[Xk = 0|Ci], Pr[Xk = 1|Ci]) be an

input probability vector of the same variable node. Using equation (2.29) it is easy to

show that the output probability vector of a message node can be updated using (see

also Figure 2.7)

Pr[Xk = 0|C∀i∈{1,2,··· ,n}\{k}] = α
∏

∀i∈{1,2,··· ,n}\{k}

Pr[Xk = 0|Ci]

Pr[Xk = 1|C∀i∈{1,2,··· ,n}\{k}] = α
∏

∀i∈{1,2,··· ,n}\{k}

Pr[Xk = 1|Ci] (2.34)

where α = 1
Pr[Xk=0|C∀i∈{1,2,··· ,n}\{k}]+Pr[Xk=1|C∀i∈{1,2,··· ,n}\{k}]

. When the messages are log-

likelihood ratios instead the update rule changes to

Λ(Xk|C∀i∈{1,2,··· ,n}\{k}) =
∑

∀i∈{1,2,··· ,n}\{k}

Λ(Xk|Ci) (2.35)
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Xk

(Pr[Xk = 0|C1],Pr[Xk = 1|C1])

(Pr[Xk = 0|Cn],Pr[Xk = 1|Cn])

∀C
i
∈
{1

,2
,·
··

,n
}\

{k
}

(Pr[Xk = 0|C∀i∈{1,2,··· ,n}\{k}],

Pr[Xk = 1|C∀i∈{1,2,··· ,n}\{k}])

Figure 2.7: A variable(code) node from a factor graph of a sparse graph

code with probability vectors as messages

The update rule derivation for the check node is a bit more involved and is done by first

investigating what happens at a 3-port check node of a sparse graph code as depicted

in Figure 2.8.

X1

X2

X3

(Pr[X3 = 0|Y1, Y2],Pr[X3 = 1|Y1, Y2])

(Pr[X1 = 0|Y1],Pr[X1 = 1|Y1])

(Pr[X2 = 0|Y2],Pr[X2 = 1|Y2])

Figure 2.8: A check node from a factor graph of a sparse graph code with

probability vectors as messages

The function of a 3 port check node is defined as

fXOR(x1, x2, x3) =

{

1 if x1 ⊕ x2 = x3

0 otherwise
(2.36)

where x1, x2, x3 ∈ {0, 1} and ⊕ donates the binary xor operation. Again assuming the

messages are probability vectors, then the update rule for Pr[X3 = x3|Y1, Y2] can be

easily derived from equation (2.13) and is equal to

Pr[X3 = x3|Y1, Y2] =
∑

x1,x2

fXOR(x1, x2, x3) Pr[X1 = x1|Y1] Pr[X2 = x2|Y2] (2.37)
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which implies that the output probability vector (Pr[X3 = 0|Y1, Y2], Pr[X3 = 1|Y1, Y2])

can be calculated as

Pr[X3 = 0|Y1, Y2] =
∑

(x1,x2) so that x1⊕x2=0

Pr[X1 = x1|Y1] Pr[X2 = x2|Y2]

= Pr[X1 = 0|Y1] Pr[X2 = 0|Y2] + (2.38)

Pr[X1 = 1|Y1] Pr[X2 = 1|Y2]

and

Pr[X3 = 1|Y1, Y2] =
∑

(x1,x2) so that x1⊕x2=1

Pr[X1 = x1|Y1] Pr[X2 = x2|Y2]

= Pr[X1 = 0|Y1] Pr[X2 = 1|Y2] + (2.39)

Pr[X1 = 1|Y1] Pr[X2 = 0|Y2]

Note that if 2 Pr[X1 = 0|Y1]− 1 = p and 2 Pr[X2 = 0|Y2]− 1 = q, then 2 Pr[X1 ⊕X2 =

0|Y1, Y2]−1 = 2 Pr[X3 = 0|Y1, Y2]−1 = pq due to the fact that equation (2.40) is equal

to equation (2.41) (shown by using equation (2.38))

pq = (2 Pr[X1 = 0|Y1] − 1)(2 Pr[X2 = 0|Y2] − 1)

= 4 Pr[X1 = 0|Y1] Pr[X2 = 0|Y2] −
2 Pr[X1 = 0|Y1] − 2 Pr[X2 = 0|Y2] + 1 (2.40)

2 Pr[X1 ⊕ X2 = 0|Y1, Y2] − 1 = 2(Pr[X1 = 0|Y1, Y2] Pr[X2 = 0|Y1, Y2] +

Pr[X1 = 1|Y1, Y2] Pr[X2 = 1|Y1, Y2]) − 1

= 2(Pr[X1 = 0|Y1] Pr[X2 = 0|Y2]) +

2((1 − Pr[X1 = 0|Y1])(1 − Pr[X2 = 0|Y2])) − 1

= pq (2.41)

Also note that if another edge is added to the check node then 2 Pr[X1⊕X2 = 0|Y1, Y2]−
1 = r and 2 Pr[X4 = 0|Y4]−1 = s then 2 Pr[(X1⊕X2)⊕X4 = 0|Y1, Y2, Y4]−1 = rs = pqs

using the same reasoning as before and therefore for an n-port node

2 Pr[Xk = 0|Y∀i∈{1,2,··· ,n}\{k}] − 1 = 2 Pr[X1 ⊕ X2 ⊕ · · · ⊕ Xk−1 ⊕ Xk+1 ⊕ · · · ⊕ Xn = 0

|Y∀i∈{1,2,··· ,n}\{k}] − 1

=
∏

∀i∈{1,2,··· ,n}\{k}

(2 Pr[Xi = 0|Yi] − 1)

=
∏

∀i∈{1,2,··· ,n}\{k}

(Pr[Xi = 0|Yi] − Pr[Xi = 1|Yi]) (2.42)
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Showing that the output probability vectors can be updated with

Pr[Xk = 0|Y∀i∈{1,2,··· ,n}\{k}] =
1

2
+

1

2

∏

∀i∈{1,2,··· ,n}\{k}

(Pr[Xi = 0|Yi] −

Pr[Xi = 1|Yi])

Pr[Xk = 1|Y∀i∈{1,2,··· ,n}\{k}] =
1

2
− 1

2

∏

∀i∈{1,2,··· ,n}\{k}

(Pr[Xi = 0|Yi] −

Pr[Xi = 1|Yi]) (2.43)

Now by equation (2.32)

P [Xi = 0|Yi] =
λ(Xi|Yi)

1 + λ(Xi|Yi)
(2.44)

leading to

2 Pr[Xi = 0|Yi] − 1 =
λ(Xi|Yi) − 1

λ(Xi|Yi) + 1

=
eΛ(Xi|Yi) − 1

eΛ(Xi|Yi) + 1

= tanh

(

Λ(Xi|Yi)

2

)

(2.45)

which means that

Pr[Xk = 0|Y∀i∈{1,2,··· ,n}\{k}] =
1

2
+

1

2

∏

∀i∈{1,2,··· ,n}\{k}

tanh

(

Λ(Xi|Yi)

2

)

(2.46)

Pr[Xk = 1|Y∀i∈{1,2,··· ,n}\{k}] =
1

2
− 1

2

∏

∀i∈{1,2,··· ,n}\{k}

tanh

(

Λ(Xi|Yi)

2

)

. (2.47)

Using equation (2.46) and equation (2.47) it is possible to calculate the log-likelihood

message sent out from the kth edge as:

Λ(Xk|Y∀i∈{1,2,··· ,n}\{k}) = ln

1 +
∏

∀i∈{1,2,··· ,n}\{k} tanh

(

Λ(Xi|Yi)
2

)

1 −∏∀i∈{1,2,··· ,n}\{k} tanh

(

Λ(Xi|Yi)
2

)

= 2 tanh−1

(

∏

∀i∈{1,2,··· ,n}\{k}

tanh

(

Λ(Xi|Yi)

2

)

)

. (2.48)

This concludes the derivation of the update rules for belief propagation.

It is also clear that equation (2.30) changes to

Pr[Xk = 0|C∀i∈{1,2,··· ,n}] = α
∏

∀i∈{1,2,··· ,n}

Pr[Xk = 0|Ci]

Pr[Xk = 1|C∀i∈{1,2,··· ,n}] = α
∏

∀i∈{1,2,··· ,n}

Pr[Xk = 1|Ci] (2.49)
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with

α =
1

Pr[Xk = 0|C∀i∈{1,2,··· ,n}] + Pr[Xk = 1|C∀i∈{1,2,··· ,n}]

and

Λ(Xk|C∀i∈{1,2,··· ,n}) =
∑

∀i∈{1,2,··· ,n}

Λ(Xk|Ci) (2.50)

when probability vectors and LLR’s are used for messages.

2.8.3 FACTOR GRAPH CONSTRUCTION

A factor or Tanner graph [29] can be constructed for any parity check matrix H(M×N)

or generator matrix G(K ×L). Loosely speaking a Tanner graph is a factor graph that

has probability vectors as messages (set member indicator function [27]) and factors

as a product of checks. The Hamming (7,4,3) code will be used as an example to

demonstrate how a factor graph is constructed [30].

The H(3 × 7) matrix of the Hamming (7,4,3) code is expressed as:

H =









1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1









(2.51)

The graph constructed from H contains 3 check nodes rm;m = 1, · · · , 3 and 7 code

nodes qn;n = 1, · · · , 7. The way code nodes connect to check nodes is dictated by the

rows of H. The first row gives the parity check equation q1 ⊕ q2 ⊕ q3 ⊕ q5 = r1. This in

effect means code nodes {1, 2, 3, 5} connect to check node 1. This is repeated for each

row. The resulting factor graph can be seen in Figure 2.9. Similarly the columns of H,

when interpreted as incidence vectors, indicate in which parity-check equations code

symbols appear or participate in. The leftmost column of H indicates that code node

1 is connected to check nodes {1, 3}
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Figure 2.9: Factor graph representation of the parity-check matrix of the

Hamming (7,4,3) code
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Figure 2.10: Factor graph representation of the generator matrix of the

Hamming (7,4,3) code

The G(4 × 7) matrix of the Hamming (7,4,3) code is equal to

G =













1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1













(2.52)

The graph constructed from G contains 3 check nodes rm;m = 1, · · · 3 and 7 code nodes

qn;n = 1, · · · , 7. The graph contains three layers. The first layer consists of the code
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nodes representing the original message bits (this is the identity matrix that takes up

to 4 rows and 4 columns of G) in this case code nodes {1, 2, 3, 4}. These nodes are

also known as message nodes. The second layer consists of 3 check nodes (the r layer

in Figure 2.10). The third layer consists of the remaining code nodes {5, 6, 7} and are

also known as parity nodes. The G matrix actually defines which message nodes are

connected to which parity nodes (indirectly). This is true since the second and third

layer are connected one on one meaning check node 1 is connected to code node 5 and

so on. So the remaining columns of G determine which message nodes connect to which

check nodes. For instance column 5 shows that code nodes {1, 2, 3} connect to check

node 1. This is repeated for the remaining columns. The resulting factor graph can

be seen in Figure 2.10. The rows of G (the non identity part-from column 5 onwards)

determines which check nodes are connected to a specific message node. For instance

row 1 shows that check nodes {1, 3} connect to code node 1. If no Identity matrix is

contained in G, a fake Identity matrix is inserted with dimensions K × K and the

graph is constructed as described above. The nodes constructed by the fake Identity

matrix is not transmitted leading to a non-systematic code. Take note that all code

nodes are connected to special function nodes that can only send the observed value

Pr(ri|ti) (see also equation (2.55), take note that ri represents a soft received value

and not check node i). If the graph was generated by a non-systematic G matrix the

special function nodes are all set to 0 (if messages are LLR) for all message nodes.

2.8.4 BP FOR LDPC CODES

The complete belief propagation algorithm can now be given for decoding sparse graph

codes using the H matrix. This is also known as LDPC decoding [14, 30]. By using this

example it is possible to construct a decoding algorithm for any factor graph whether

constructed from H or G.

The following notation is introduced to make the description of the belief propagation

algorithm clearer. Let hi,j denote the entry of H in the ith row and jth column. Let

L(m) = {l : hm,l = 1} (2.53)

denote the set of code positions that participate in the mth parity-check equation, and

let

M(l) = {m : hm,l = 1} (2.54)

denote the set of check equations in which code position l participates. The algorithm

iteratively computes two types of conditional probabilities:
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• qx
m,l: The probability that the l-th bit of the code word t has the value x, given

the information obtained via the check nodes other than check node m. This

quantity can also be expressed as an LLR value, qL
m,l.

• rx
m,l: The probability that a check node m is satisfied when bit l is fixed to a value

x and the other bits are independent with probabilities qx
m,l′ ,l

′ ∈ L(m)\l. This

quantity can also be expressed as an LLR value, rL
m,l.

Further assuming that the modulated symbols m(tl) (BPSK modulation) are sent over

an AWGN channel with flat fading added and received as rl. Also assume that the

AWGN channel has zero mean and variance N0/2 and the instantaneous average fading

amplitude of rl is αl. With the above in mind it is possible to calculate the probability

Pr(rl|tl) of the l-th code bit after transmission through an AWGN channel with flat

fading added as [22]

Pr(rl|tl) =
1√

2πσ2
exp

[

− (rl − αltl)
2

2σ2

]

(2.55)

with 2σ2 = N0/2. Note that the aim of the algorithm is to calculate equation (2.31),

which can only be approximated due to loops contained in the factor graphs of sparse

graph codes. Now the BP algorithm can be introduced [14, 30].

Initialization

For l ∈ {1, 2, · · · , N}, initialize the a-priori probabilities of the code nodes (these values

form the special function nodes of the factor graph discussed in Section 2.8.3),

p0
l = Pr(rl|tl = 0[−1]) =

1

1 + exp(rlαl
4

N0
)

(2.56)

pL
l = ln

[

Pr(rl|tl = 0[−1])

Pr(rl|tl = 1)

]

= Λ(rl|tl) = −rlαl
4

N0

(2.57)

and is calculated by using equation (2.55) and assigning tl = −1, 1 (BPSK modulation).

Also p0
l = 1 − p1

l .

For every (l,m) such that hm,l = 1,

q0
m,l = p0

l , q1
m,l = p1

l , qL
m,l = pL

l (2.58)

Message Passing

Step1: Bottom-up (horizontal)

For each l,m compute

δrm,l =
∏

l′∈L(m)\l

(q0
m,l′ − q1

m,l′) (2.59)
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and

r0
m,l = (1 + δrm,l)/2 r1

m,l = (1 − δrm,l)/2 (2.60)

rL
m,l = 2 tanh−1

(

∏

l′∈L(m)\l

tanh(qL
m,l′/2)

)

(2.61)

which is derived from equations (2.43) and (2.48).

Step2: Top-down (vertical)

For each l,m compute

q0
m,l = p0

l

∏

m′∈M(l)\m

r0
m′,l q1

m,l = p1
l

∏

m′∈M(l)\m

r1
m′,l (2.62)

and normalize, with α = 1/(q0
m,l + q1

m,l),

q0
m,l = αq0

m,l q1
m,l = αq1

m,l (2.63)

qL
m,l = pL

l +
∑

m′∈M(l)\m

rL
m′,l (2.64)

which is derived from equations (2.34) and (2.35). The reason for adding the pk
l term is

to incorporate the special function nodes discussed in Section 2.8.3. For each l compute

the a-posteriori probabilities,

q0
l = p0

l

∏

m∈M(l)

r0
m,l q1

l = p1
l

∏

m∈M(l)

r1
m,l (2.65)

and normalize with, α = 1/(q0
l + q1

l ),

q0
l = αq0

l q1
l = αq1

l (2.66)

qL
l = pL

l +
∑

m∈M(l)

rL
m,l (2.67)

which is derived from equations (2.49) and (2.50).

For n = 1, 2, · · ·N compute

Pr(tn = 0|r) ≈ q0
n Pr(tn = 1|r) ≈ q1

n Λ(tn|r) ≈ qL
n (2.68)

due to equation (2.20).

Decoding

For n = 1, 2, · · ·N compute

yn =

{

0 if q0
n > 0.5

1 otherwise
(2.69)
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or

yn =

{

0 if qL
n > 0

1 otherwise
(2.70)

where yn is the n-th bit of the decoded codeword y. If yH = 0, then y is the estimated

codeword. Otherwise return to step 1. If the number of iterations exceed a predeter-

mined threshold, a decoding failure is declared and the hard received values are given

directly as the output.

2.8.5 BP DECODING EXAMPLE

The BP algorithm for LDPC codes was formally introduced in Section 2.8.4. In this

section a more general approach will be followed to show how BP decoding can be

applied to any factor graph using the update rules of Section 2.8.2 directly on a factor

graph of a Hamming (7,4,3) G matrix (see Section 2.8.3).

The belief propagation algorithm will now be applied to the factor graph found in

Figure 2.10. Assuming the following corrupted codeword r =
(

-0.3505, 0.2181, 0.6464,

-0.3264, -0.5954, 0.1677, -0.0654
)

was received by the receiver (very low SNR) in the

form of −Λ(ri|ti) (see equation (2.55)).

Firstly the initialization phase of the belief propagation algorithm needs to be imple-

mented. Since only the special function nodes can send messages (equal to the observed

soft value −Λ(ri|ti)) in the beginning of the algorithm these messages will propagate

down each edge that is indirectly connected to them through a code node (because all

other messages are equal to 0). Hence the edges connected to q1 will all have the value

of −Λ(r1|t1) = −0.3505 after initialization as can be seen for edges a and g in Table

2.1. It becomes clear from the above that the initialization phase is actually a complete

iteration of belief propagation (one update of all check and code nodes). The remaining

messages for the initialization phase can be found in Table 2.1 and was obtained in the

same manner.

The next step is to update all the edges of the check nodes using equation (2.48). But

since the received values are −Λ equation (2.48) changes to

Λ(Xk|Y∀i∈{1,2,··· ,n}\{k}) = −2 tanh−1

(

∏

∀i∈{1,2,··· ,n}\{k}

− tanh

(

Λ(Xi|Yi)

2

)

)

(2.71)
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To update message a at check node r1 messages {b, c,−Λ(r5|t5)} are needed.

a = µr1→q1

= −2 tanh−1

(

(−1)3 · tanh

(

0.2181

2

)

· tanh

(

0.6464

2

)

·

tanh

(−0.5954

2

))

= −0.0196 (2.72)

The remaining updated messages can be found in Table 2.1 and were obtained in the

same manner.

The next step is to update all the edges of the check nodes using equation (2.35). To

update message a at code node q1 messages {g,−Λ(r1|t1)} are needed

a = µq1→r1

= (0.0011) + (−0.3505)

= −0.3494 (2.73)

The remaining updated messages can be found in Table 2.1 and were obtained in the

same manner.

Table 2.1: One iteration of belief propagation on a Hamming (7,4,3) code

Edge Initialization Update Check Update Code

a -0.3505 -0.0196 -0.3494

b 0.2181 0.0313 0.2078

c 0.6464 0.0109 0.6434

d 0.2181 -0.0085 0.2476

e 0.6464 -0.0029 0.6573

f -0.3264 0.0057 -0.3252

g -0.3505 0.0011 -0.3701

h 0.2181 -0.0018 0.2410

i -0.3264 0.0012 -0.3207

Now one iteration of belief propagation has been completed (actually two if the initial-

ization phase is included) and −Λ(ti|r) can be approximated by using equation (2.50).

For q1 this will be equal to

−Λ(t1|r) ≈ (0.0011) + (−0.3505) + (−0.0196)

= −0.3690 (2.74)
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This can be continued for all i ∈ N and the result of this can be found in Table 2.2.

Table 2.2: −Λ(ti|r) after 1 iteration of BP (Hamming (7,4,3))

−Λ(t1|r) −Λ(t2|r) −Λ(t3|r) −Λ(t4|r) −Λ(t5|r) −Λ(t6|r) −Λ(t7|r)

-0.3690 0.2392 0.6543 -0.3195 -0.6072 0.1568 -0.0593

From Table 2.2 the decoded codeword y can be obtained and is equal to y =
(

0, 1, 1,

0, 0, 1, 0
)

. If this is not a valid codeword the algorithm needs to be repeated, otherwise

y is the output. If a predetermined number of iterations have been performed without

success the hard limited original received codeword r is given as output.
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CHAPTER 3

FOUNTAIN CODES

3.1 CHAPTER SUMMARY

The chapter provides a general overview of fountain code development. After the

overview each of the three fountain codes (Tornado, LT, Raptor) are analyzed under

the following general headings: encoding, decoding on erasure channel, design, noisy

decoding, factor graph representation.

3.2 OVERVIEW OF FOUNTAIN CODES

Digital fountain codes use the concept of a sparse-graph at their core. The first sparse-

graph code was introduced by R.G. Gallager in [7, 8] in the early 1960s and is known as

LDPC codes. One of the code families derived from the sparse-graph concept was digital

fountain codes. Digital fountain codes are designed for the binary erasure channel [31],

in which each codeword symbol is lost with a fixed constant probability p in transit

independent of all the other symbols.

The digital fountain concept [32, 33] started as a data carousel (broadcast disk) [34].

In this approach the source loops through all transmission packets continuously; the

receivers may log onto this stream at any time and download packets until they have

received the entire message. A data carousel can be seen as an imperfect approximation

of an ideal solution, which is referred to as a digital fountain. The difference between a

data carousel and a digital fountain is that a digital fountain can reconstruct the mes-

sage from any subset of encoding packets equal in length to the original message (note

that the packets are encoded using some sort of FEC), while the decoding properties

of a data carousel is not as strict (the packets used does not have to be any subset

or a specific length). A digital fountain can be compared to a running tap. When a

cup is filled it is not important which droplets land in the cup, but only that enough

water is required to fill the cup. The above metaphor also highlights another important

property of digital fountain codes namely its ability to generate an infinite amount of

encoded packets from the original source.
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One of the first coding schemes chosen to create digital fountains is Reed-Solomon

(RS) codes [6, 35, 36]. The reason RS codes were considered is the fact that the original

message can be constructed from k RS symbols, where k represents the original message

size (in packets) and n represents the code size (in packets). The two main drawbacks

of RS codes are the limited amount of distinct decoding symbols and the quadratic

algorithm used to decode it [32, 37].

The next coding scheme proposed to approximate a digital fountain is a sparse-graph

erasure code called Tornado codes [38, 39]. The sparse property of Tornado codes solved

the quadratic time problem of RS codes (made directly proportional to n). This does

come with a price; the receivers have to receive a little bit more than k packets to

correctly decode the original message. Note that a Tornado code is not a true fountain

code (rather a predecessor), due to the fact that it can not produce an unlimited supply

of unique encoded bits.

The next logical evolution was to develop a rateless code which is a true fountain code.

Luby Transform (LT) codes were the first rate less codes and were discovered by Luby

[40, 41, 14]. LT codes have a similar graph structure than Tornado codes, though its

graph is not predefined giving LT codes their rateless property. To make this structure

possible each encoded symbol must store a list of its neighbors in real time, which

can be accomplished in practice if the receiver and transmitter share the same random

seed and degree distribution. They can agree on this before transmission begins. The

underlying degree distribution is a very important design choice and the robust soliton

distribution is a popular choice [40]. Using this degree distribution leads to encoding

symbols with average degree O(ln k). Encoding symbols with average degree O(ln k)

leads to codes that can encode and decode in time proportional to O(k ln k) [40]. These

codes also require that the receiver receive a little more than k packets before accurate

decoding can be accomplished. A detailed comparison of the implementation of RS,

Tornado and LT codes as digital fountains can be found in [32, 33].

The only improvement over LT codes is to lower the average degree of encoding symbols

to a constant which would lead to decoding in time proportional to O(k). Raptor codes

[42, 43, 41, 44] accomplish just this by using pre-coding. An average degree distribution

of O(ln k) is required to cover each message node with high probability. To remove this

restriction, a message can be pre-coded using an erasure code like Tornado. If an

encoded message M ′ is treated as the message then it is not necessary to recover every

packet of M ′ in order to recover M (original message), but instead just a constant

fraction of the packets of M ′. This reduces the decoding time complexity to O(k).
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Research on using digital fountain codes on non-erasure channels were presented in

[43, 45, 23, 46, 26]. Take note that fountain codes consist of at least 10000 encoded

bits (it becomes efficient at such large lengths). The above is summarized in Table 3.1

Table 3.1: The different coding schemes used in the past to approximate a

digital fountain code

Code Negatives Positives

RS Limited distinct decoding symbols Can decode with k encoded packets

Quadratic decoding algorithm

Tornado Need more than k encoded Decoding time proportional to n

packets to decode

Limited distinct decoding symbols

LT Need more than k encoded Decoding time proportional to k.lnk

packets to decode

Unlimited distinct decoded symbols

Raptor Need more than k encoded Decoding time proportional to k

packets to decode (due to pre-coding)

Unlimited distinct decoded symbols

3.3 TORNADO CODES

The Tornado code was one of the first codes used to approximate a fountain. Its basic

structure, encoding and decoding algorithms are presented in the following sections.

The most popular design approach is also discussed below. This section closely follows

the notation of [38, 26].

3.3.1 BASIC STRUCTURE

The basic structure of a Tornado code consists of layered bipartite graphs. Each bi-

partite graph B is associated with a code C(B) with k message bits and βk redundant

bits (check, parity bits), where 0 < β < 1. Each graph B thus consists of k left nodes

and βk right nodes.

The encoding of C(β) is accomplished by setting each check bit equal to the ⊕ (mod-2

sum) of its neighboring message bits. The codes used are systematic and sparse. Due
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to a predefined graph structure Tornado codes are not rateless like LT codes.

The decoding of a layer on an erasure channel is accomplished by substituting the

correctly received bits into the graph structure and then solving the unknown bits it-

eratively using the following decoding operation.

Given the value of a check bit and all but one of the message bits on

which it depends, set the missing message bit (or check bit depending

on which layer) to be the ⊕ of the check bit and its known message bits

(check bits).

This procedure only works if enough bits are received correctly. The above is explained

in more detail in [38] (an example is given in section 3.4.2).

Now that a single bipartite graph was introduced it can be cascaded to form a Tornado

code. First C(B) is used to produce βk check bits for the original k message bits. Then

a similar code is used to produce β2k check bits for the βk check bits of C(B), and so

on. The last level of a Tornado code may use a conventional erasure correcting code like

RS (Reed-Solomon) [38]. Implementing Tornado codes on non-erasure channels using

belief propagation will prohibit this approach since Reed-Solomon codes are not sparse

codes.

To circumvent this problem the last layer consists of a unique bipartite graph that

specializes in maximizing error recovery of left as well as right hand side nodes. The

other layers are only designed to maximize error recovery of left hand nodes. The

reason being that these layers assume that the conventional error correcting code has

performed all the necessary corrections of the left nodes, at the last layer of the graph.

The Tornado graph structure can now be formally defined as follows [38]. A family of

codes C(B0), · · · , C(Bm) can be constructed from a family of graphs B0, · · · , Bm, where

Bi has βik left nodes and βi+1k right nodes. The variable m is chosen that βm+1k is

roughly
√

k. The cascade ends with an erasure correcting code C of rate 1 − β with

βm+1k message bits. The code C(B1, · · · , Bm, C) has k message bits and

m+1
∑

i=1

βik + βm+2k/(1 − β) = kβ(1 − β) (3.1)

check bits formed by using C(B0) to produce βk check bits for the k message bits, using

C(Bi) to form βi+1k check bits for the βik bits produced by C(Bi−1) and finally using
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C to produce an additional kβm+2/(1 − β) check bits for the βm+1k bits output by

C(Bm). As C(B0, B1, · · · , Bm, C) has k message bits and kβ/(1 − β) check bits, it is a

code of rate 1 − β.

The decoding of a complete Tornado code on an erasure channel is done as follows.

The conventional erasure code recovers all the missing left and right check nodes of

the last layer, making all the check bits of C(Bm) known. This, with all the other

received values can now be substituted into the remaining graph. Now the graph can

be decoded (bit by bit), if enough bits were received correctly, by using the decoding

operation described earlier in this section. The code is called a Tornado since if enough

bits are received the decoding happens at once (quickly), one after the other. This has

the appearance of a Tornado storm [32, 38].

A Tornado code has encoding and decoding times proportional to n ln(1/ǫ), where

1 + ǫ (0 < ǫ < 1) is known as the decoding inefficiency. In other words a Tornado

code requires at least (1 + ǫ)k packets to decode. The encoding and decoding time

dependence come from the fact that for a Tornado code the speed of encoding and

decoding depend on the amount of edges in the graph. Since the average degree of a

node is equal to ln(1/ǫ) and the conventional error correcting code C has about
√

k

left nodes, encoding and decoding becomes linearly proportional to the code length n

[38].

3.3.2 DEGREE SEQUENCES

An edge is a line that connects any two nodes, one from the left with one on the right.

Edges that are adjacent to a node of degree i on the left (or right) is referred to as

edges of degree i on the left (or right), where the degree of a node is determined by the

amount of edges connected to it. Each of the degree sequences is specified by a pair of

vectors (λ1, · · · , λm) and (ρ1, · · · , ρm), where λi is the initial fraction of edges on the

left of degree i and ρj is the initial fraction of edges on the right of degree j. Note that

the graphs are specified in terms of fractions of edges, and not nodes, of each degree.

The sequence λ give rise to a generating polynomial λ(x) =
∑

i λix
i−1 . The average

left degree of the graph is thus equal to

al =

[

∑

i

λi/i

]−1

(3.2)

If E is the number of edges in the graph, then the number of left nodes of degree i is

Eλi/i (3.3)
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and hence the number of left nodes is

E
∑

i

λi/i (3.4)

The above can be repeated for the right side nodes, as long as E remains constant [38].

For an effective erasure correcting code the degree sequences have to satisfy the follow-

ing theorem from [38].

Theorem 2 Let k be an integer, and suppose that C = C(B1, · · · , Bm, C) is a cascade

of bipartite graphs as explained in section 3.3.1, where B1 has k left nodes. Suppose

that each Bi is chosen at random with edge degrees specified by λ(x) and ρ(x), such

that λ(x) has λ1 = λ2 = 0, and suppose δ is such that

ρ(1 − δ · λ(x)) > 1 − x (3.5)

for x ∈ (0, 1]. Then, if at most a δ-fraction of the coordinates of an encoded word in

C are erased independently at random, the erasure decoding algorithm of section 3.3.1

terminates successfully with probability 1 − O(k3/4), and does so in O(k) steps.

3.3.3 DESIGNING A TORNADO CODE FOR THE ERA-

SURE CHANNEL

The Tornado code consists of multiple layers of bipartite graphs. A popular design for

these layers is discussed in this section and is summarized in figure 3.1.

Heavy Tail/
Poisson

Double Heavy
Tail

Intermediate 
Layer

Last
Layer

Tornado Code

Figure 3.1: A popular design of a Tornado code

All of the intermediate layers are designed using the heavy tail distribution for the

left nodes (discussed below). The last layer is designed using the double heavy tail

distribution for the left nodes (discussed below). This is done due to the fact that the
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double heavy tail distribution is more effective than the heavy tail distribution when

correcting erasures on the right and left nodes of the bipartite graph, according to [38].

The code in this section is designed to satisfy the condition represented by equation

(3.5).

An intermediate layer is designed in the following manner as discussed in [38]. Let

B be an intermediate bipartite graph with k left nodes and βk right nodes. The left

degree sequence is described by the following truncated heavy tail distribution. Let

H(D) =
∑D

i=1 1/i be the truncated harmonic sum truncated at D, where D is an

integer used to trade off the average degree with how well the decoding process works.

The fraction of edges of degree i = 2, · · · , D + 1 on the left is given by

λi = 1/(H(D)(i − 1)) (3.6)

From equations (3.2) and (3.6) it can be shown that al = H(D)(D+1)/D. The average

right degree ar needs to satisfy al/β. The right degree sequence is defined by the Poisson

distribution with mean ar : for all i ≥ 1 the fraction of edges of degree i on the right

equals

ρi =
e−ααi−1

(i − 1)!
(3.7)

where α is chosen such that the average degree on the right is equal to ar. In other

words, α satisfies

αeα/(eα − 1) = ar (3.8)

This approach however does not work due to the fact that there are nodes of degree

two on the left. To overcome this problem a small change is made in the structure of B.

Let γ = β/D2. The βk right nodes of B can be split into two distinct sets, the first set

consisting of (β − γ)k nodes and the second set consisting of γk nodes. The graph B is

then formed by taking the union of the two graphs B1 and B2. B1 is formed between

the k left nodes and (β−γ)k right nodes as described above. B2 is formed between the

k left nodes and the second set of γk right nodes, where each of the k left nodes has

degree three and the 3k edges are connected randomly to the γk right nodes.

For this graph δ = β(1 − 1/D) and is defined by equation (3.5).

The last layer is designed using a different technique than the other layers [38]. The

edge distribution on the left is now a double heavy tail. In other words λ(x) = λ̄(x2),

where λ̄ is the edge distribution function of the heavy tail distribution. The right edge

distribution is calculated using linear programming (simplex method [47]). Assuming

that the right side only needs to satisfy equation (3.5). From λ(x) and δ (choosing
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it at least equal to δ = β(1 − 1/D)) ρ(x) can be calculated. The objective is to find

ρm; m ∈ M , where M is a fixed set of positive integers and has a size of at least N .

Let xi = 1/N for i = 1, 2, · · · , N . The simplex method can now be used to minimize

∑

i

(ρ(1 − δλ(xi)) + xi − 1) (3.9)

subject to ρi > 0, ρ(1 − δλ(xi)) > 1 − xi,
∑

i ρi = 1 and
∑

k λk/k =
∑

i ρi/i (if

the amount of left and right hand nodes are equal). This solution is only feasible if

ρ(1 − δλ(x)) > 1 − x for all x ∈ (0, 1].

3.3.4 AN EXAMPLE DESIGN

This example is based on the example given in [26]. The first step in designing a

Tornado code is choosing the dimensions of the code, and the amount of layers. A

(n, k) = (80, 40) code with 2 layers is considered here. Although a typical Tornado

code consists of at least 10000 encoded bits, the example considered here is sufficient

to highlight a flaw in Tornado codes when used on an AWGN channel with flat fading

added. The first layer will consist of the heavy tail distribution as described in Section

3.3.3 with D = 3 and β = 0.5. The first layer will thus consist of 40 right nodes and

20 left nodes. The first layer consists of the union between two graphs B1 and B2 (see

Section 3.3.3). The nodes on the right needs to be divided into two unique sets. First

γ = β/D2 = 1/18 needs to be calculated. Now B1 will use ⌊(β − γ)k⌋ = 17 and B2

will use 3 nodes on the right. Both graphs will use all of the left hand nodes. First

B1 is designed and then B2 is added to form B. The polynomials λ(x) and ρ(x) of

B1 is designed by using the values calculated in Table 3.2 and can be found in Table

3.3. Note from Table 3.2 that a new β is used to calculate the average right degree.

With λ(x), ρ(x) and equation (3.3) the degrees of each node can be determined. Since

equation (3.3) does not divide the edges of B1 perfectly, seven edges remain (only 92

edges are used). The remaining edges are donated to B2. To complete B, B2 needs to

be added to B1. This is easily accomplished by adding three edges to each left node

and assigning these edges (including the seven donated ones) randomly to the three

nodes of B2. One such assignment is shown in Table 3.4.

The last layer of the graph is designed by using linear programming. It consists of the

20 parity bits of the first layer on the left and 20 parity bits on the right. Assuming

D is also equal to three for the last layer and that δ remains the same as the previous

layer λ(x) and ρ(x) can be calculated as shown in Table 3.5. With λ(x) and equation
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(3.4) one can calculate E, which is equal to 78 in this case. With E, λ(x), ρ(x), and

equation (3.3) Table 3.6 can be constructed. The reason for a node of degree 3 on the

right is that two edges remained after dividing the edges on the right. These two edges

were assigned to a random node of degree one.

A random (80,40) Tornado code is shown in Figure 3.2. The first layer of nodes represent

the original 40 message bits. The second 20 nodes represent the first layer of parity

bits. The last 20 nodes represent the second layer of parity bits. Take note that the

check nodes are omitted to make the factor graph representation more simple.

Table 3.2: Values needed for the design of B1

Unknown Value Equation

EB1 99 (3.4)

βnew 0.425 17/40

al 2.444 (3.2)

ar 5.5 ar = al/βnew

α 5.477 (3.8)

δ 0.333 δ = β(1 − 1/D)

Table 3.3: Polynomial degree distributions of B1

Unknown Equation

λ(x) (3.6)

λ(x) = 0.5455x + 0.2727x2 + 0.1818x3

ρ(x) (3.7)

ρ(x) ≈ 0.0042 + 0.0229x + 0.0627x2 + 0.1145x3 + 0.1568x4

0.17185x5 + 0.1568x6 + 0.1227x7 + 0.084x8

EB1,new
= 92 EB2 = 127

E = 219
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Table 3.4: Complete design of first layer

Left Nodes Right Nodes

Degree Amount Degree Amount

5 26 2 1

6 9 3 2

7 5 4 3

5 3

6 3

7 2

8 2

9 1

35 1(B2)

46 2(B2)

Table 3.5: Polynomial degree distributions of second layer

Unknown Equation

λ(x) λ(x) = λ̄(x2)

λ(x) = 0.5455x2 + 0.2727x4 + 0.1818x6

ρ(x) (3.9)

ρ(x) = 0.079 + 0.9921x4

E = 78

Table 3.6: Complete design of second layer

Left Nodes Right Nodes

Degree Amount Degree Amount

3 13 1 5

5 5 3 1

7 2 5 14
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Figure 3.2: A random (80,40) Tornado code

3.3.5 FACTOR GRAPH REPRESENTATION

A factor graph of a simple Tornado code is given in Figure 3.3.
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Figure 3.3: A simple factor graph of a two layer Tornado code
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It is easy to see that a Tornado code can be decoded on a noisy channel by using the

algorithm of Section 3.4.3.

The white circles represent the original message bits. The black circles represent the

first check bits, while the circles filled with a horizontal pattern represent the check

bits of the first parity layer. The check nodes of these bits are colored similarly. The

vertically filled function blocks contain the channel LLR as defined by equation (3.10).

Noisy decoding of Tornado codes is discussed in greater detail in [26].

3.4 LT CODE

The LT code was the first rate less code used to approximate a fountain. Its basic

structure, encoding and decoding algorithms are presented in the following sections.

The most popular design approach is also discussed below. This section closely follows

the notation of [41].

3.4.1 ENCODER

An LT code is actually a dynamic LDGM (low-density generator matrix) code. It

generates codewords through a random sparse G matrix. It is also rate less, for it can

keep on deriving parity bits without end. The encoder can be described in simpler

terms [41]:

Each encoded parity bit pn can be generated from the message bits m1,m2, · · · ,mk

through the following two steps:

1. Choose the degree dn of pn randomly from a degree distribution ρ(d).

2. Choose at random dn message bits, and set pn equal to the bit wise sum, modulo

2, of the chosen message bits.

This procedure is exactly the same as multiplying a message with a dynamic random

G matrix. It is important to note here that a standard LT code is non-systematic [40],

since only the parity bits that were generated is sent through the erasure channel. To

create a systematic LT code [23] is quite simple; send the message bits before the parity

bits. This code comes in handy for decoding noisy codewords.
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3.4.2 ERASURE DECODER

The decoding process on the erasure channel can be thought of as a simplification of

the sum-product algorithm [41]. Since the messages being passed are either completely

certain or unknown the algorithm simplifies greatly and can be summarized in the

following steps [41]:

1. Find a parity bit pn that is connected to only one message bit mk (if there is

no such parity bit, the decoding algorithm stops and fails to recover all message

bits).

(a) Set mk = pn.

(b) Add mk to all parity bits pn′ that are connected to mk:

pn′ := pn′ + mk for all n′ such that Gn′k = 1.

(c) Remove all the edges connected to mk.

2. Repeat 1 until all mk has been recovered.

This algorithm is demonstrated for a toy case in Figure 3.4 [41]. The white circles

represent message bits, while the black circles represent parity bits. A parity bit is the

⊕ of all the message bits connected to it. This is a simplification of the factor graph

representation of Chapter 2 (where the code and check nodes were drawn separately).

There are three message bits and four parity bits, which have values p1, p2, p3, p4 = 1011.

During the first iteration, the only parity bit that is connected to one message bit is

the first parity bit (see Figure 3.4(a)). This value is copied to m1 (see Figure 3.4(b)),

delete the parity bit, and then the new value of m1 gets added to p2 and p4 (see Figure

3.4(c)). This disconnects m1 from the graph. At the start of the second iteration (see

Figure 3.4(c)), p4 is connected to a single message bit m2. Now one sets m2 equal to

p4 (see Figure 3.4(d)), and then add this value to p2 and p3 (see Figure 3.4(e)). Finally

one sees that the parity bits connected to m3 are equal as expected and can be used

to restore m3 (see Figure 3.4(f)).

What is clear from the above is that this procedure works nicely on non-systematic LT

codes.
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1p p2 p3 p4

m2 m3m1

1 0 1 1

1

0 11 1 1 0

1

1 0

1 1 1 1

1 0 1 0 1

a) b) c)

d) e) f)

Figure 3.4: BP decoding of a simple LT code on an erasure channel

3.4.3 NOISY DECODER

To decode an LT code from a noisy channel it is important to construct the factor

graph in the notation of Chapter 2. The code from Figure 3.4 can also be drawn as in

Figure 3.5.
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Figure 3.5: A simple factor graph of an LT code
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Section 2.8.5 shows how to decode any factor graph (see that same section for an exam-

ple). For clarity the algorithm will be given here using simpler and clearer equations.

A code node usually represents a received bit and is assigned a channel LLR Λ(mn)

(see equation (2.57)).

Λ(mn) = − 4

N0

αnrn (3.10)

where rn is the soft value of the nth received bit, αn is the average fading amplitude of

rn and N0 is the single-sided noise power spectral density.

As can be seen from Figure 3.5 an LT factor graph consists of two node types, check

and code nodes. Each of these types of nodes use different formula’s to update its

branches. The input LLR’s of a code node are summed together to produce the output

LLR (including channel LLR), and is described as [22, 26, 23, 46]:

Λ(mo) =
∑

i6=o

Λ(mi) + Λ(mn) (3.11)

For a check node

Λ(mo) = 2 tanh−1

[

∏

i6=o

tanh(0.5Λ(mi))

]

(3.12)

is used. Take note that the output branch is not used in the calculation. To update a

node each branch of a node needs to be updated with the above formula’s. All branches

are usually set to zero for the first iteration.

The order in which the nodes are updated can be chosen uniquely for each factor graph.

Standard LDPC iterative belief propagation involves updating the code nodes first and

then the check nodes. After such an iteration has been completed, the algorithm can

stop or continue with another cycle. Usually the algorithm stops if a codeword is found

or a certain predetermined amount of cycles are reached. See Sections 2.8.5 and 2.8.4

for exit calculations (determining the decoded bit values).

What is clear from the above is that this algorithm will work better on systematic than

non-systematic codes. If the code is non-systematic the message nodes will all have

initial LLR values equal to 0. The 0 values will hamper efficient belief propagation,

making almost all messages equal to zero.

3.4.4 DEGREE DISTRIBUTION

The design of a good degree distribution of an LT code for an erasure channel is closely

related to the classical problem of throwing k balls into K bins [40, 41]. From classical

probability theory one knows that k = K · ln(K/δ) balls are required to cover each of
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the K bins with probability at least 1 − δ. When performing the same analysis on a

LT code the balls are analogous to the edges (in the factor graph) and the bins are the

same as the message bits. The amount of edges required makes sense, all of the message

bits must at least be connected to the graph to obtain successful decoding. The LT

decoding process will only work if at the end all message bits are covered (meaning

that the decoding process from Section 3.4.2 will not halt). This will only occur when

at least one parity bit has degree one after each iteration [40]. Using the above it is

easy to see that a good LT code will have O(K · ln(K/δ)) edges, average left degree

of O(ln(K/δ)) and encoding and decoding times of O(K · ln(K/δ)). Take note that in

this section k represents the amount of edges in a graph and K the amount of message

nodes, this is done since in classic LT notation the amount of message bits is always

referred to with a capital letter K.

The ideal soliton distribution [40],

ρ(d) =

{

1/K for d = 1
1

d(d−1)
for d = 2, 3, · · · , K

(3.13)

conforms to the above requirements. One of its primary characteristics is that after

every iteration of the decoding process (from Section 3.4.2) exactly one parity bit has

degree one. This however works poorly in practice since minor fluctuations in decoding

will lead to termination of the decoding prematurely [40].

The robust soliton distribution has two extra parameters c and δ; it is designed to keep

the expected number of degree-one parity bits equal to approximately:

S ≡ c ln(K/δ) ·
√

K (3.14)

rather than one, throughout the decoding process. The parameter δ is a bound on the

probability that the decoding fails to run to completion after a certain number K ′ of

bits were received. The parameter c is a constant of order one. A positive function can

now be defined [40]

τ(d) =















S
Kd

for d = 1, 2, · · · , (K/S) − 1
S
K

ln(S/δ) for d = K/S

0 for d > K/S

(3.15)

To obtain the robust soliton distribution µ [40], ρ and τ are added and normalized:

µ(d) =
ρ(d) + τ(d)

Z
(3.16)
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where Z =
∑

d ρ(d) + τ(d). The number of encoded bits required at the receiving

end to ensure that the decoding runs to completion, with probability at least 1 - δ, is

K ′ = KZ.

Some degrees have such low probabilities pd that parity bits of degree d are absent.

Instead these probabilities can be used to reinforce the amount of degree-one parity

bits. This is done by introducing an extra factor [48]

v(d) =

{

∑

µ(di) for d = 1

0 for d > 1
(3.17)

where di represents the degree-i term of the distribution, satisfying the following in-

equalities






1
di(di−1)

+ S
Kdi

Z
K < 1 for 2 ≤ di ≤ K

S
− 1

1
di(di−1)

· K
Z

< 1 for (K
S

+ 1) ≤ di ≤ K
(3.18)

The improved robust soliton distribution κ(d) [48], can now be defined as

κ(d) =
ρ(d) + τ(d) + v(d)

Z
(3.19)

where Z =
∑

d ρ(d) + τ(d) + v(d). The distribution κ(d) can be seen in Figure 3.6 for

K = 10000 with δ = 0.05 and c = 0.2 (example of a good LT code).
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Figure 3.6: The improved robust soliton distribution κ(d) for K = 10000 with

δ = 0.05; c = 0.2

3.5 RAPTOR CODES

The main idea behind Raptor codes [42] is to use a pre-code C to lower the average

degree of each encoding symbol to a constant. This makes the decoding time needed

proportional to k. A Raptor codeword of length n is constructed from a message of

length k by first encoding it with C to produce an intermediate codeword of size k̃.

The intermediate codeword is encoded by a weakened LT code to produce the required

codeword of length n. The reason for the faster execution of the encoding and decoding

lies in the fact that the pre-code lifts the restriction of the average degree of each

encoding symbol. The average degree of each encoding symbol no longer needs to be

O(ln k̃); it may be lowered to a constant. The pre-code will correct all the erasures the

LT code failed to correct (due to the fact that it will not be able to cover all the input

symbols). Since the pre-code and the weakened LT code can be encoded and decoded

in time proportional to k, the entire codeword can be decoded in time proportional to
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k (O(k ln(1/ǫ))). The decoding is performed in exactly the same manner as in Section

3.4.2; the only difference is the algorithm is first deployed on the weakened LT code. If

the LT code terminates, the pre-code is activated to decode the remaining message bits

that the LT code failed to correct. Since it has been shown in Section 3.4.3 that noisy

decoding can be applied to any factor graph it can also be applied to Raptor codes.

The design of a Raptor code, for the erasure channel, comes down to the design of an

efficient pre-code C and a weakened LT code CLT . A popular choice for the pre-code is

a right regular LDPC code [42]. Figure 3.7 illustrates a popular design of Raptor codes

[42].

LDPC 
Pre−Code

Weakend
LT Code

Raptor Code

Figure 3.7: A popular design of a Raptor code

The pre-code need not be an LDPC code and can be many codes; even a Tornado code

can be used [42]. What is interesting to note is that CLT also requires more than k̃

symbols in order to be to decoded (it also has a decoding inefficiency). A Raptor code

is also rate less since it uses an LT code.

3.5.1 A GOOD PRE-CODE

An LDPC code can be decoded in exactly the same manner as explained in Section

3.4.2 as long as the code contains a minimum amount of stopping sets. A stopping

set is a set of code nodes such that their induced graph has the property that all the

check nodes have degree greater than one. Meaning the decoding will fail since there

are no more degree one check nodes left. Since the union of two stopping sets is again

a stopping set, a bipartite graph contains a unique maximal stopping set (which may

be the empty set).

The LDPC codes considered here can be described as the ensemble of graphs denoted

by P(Λ(x), n, r), where Λ refers to the right degree distribution, n is the length of

the codeword and r is the amount of check nodes used by the LDPC code [42]. The
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probability bound for a maximal stopping set of size s for P(Λ(x), n, r) is calculated

in the following paragraph.

Let r be a positive integer. For n ≥ 1, z, o ∈ Z, and d ≥ 1 let An(z, o) be recursively

defined by

A0(r, 0) := 1

A0(z, o) := 0, for (z, o) 6= (r, 0)

An+1(z, o) :=
∑

l,k

An(l, k) ·

∑

d

Λd

(

l

l − z

)(

k

k + l − z − o

)(

r − l − k

d − k − 2l + 2z + o

)

(

r

d

) ,

for n ≥ 0 (3.20)

then the upper bound for the probability that the random graph G, from the ensemble

P(Λ(x), n, r), has a maximal stopping set of size s can be calculated by using the

following [42]

(

n

s

) r
∑

z=0

As(z, 0)

(

1 −
∑

d

Λd

(

r − z

d

)

(

r

d

)

)n−s

(3.21)

Since the maximal stopping set size s determines the fraction of bits a code can correct

effectively, s can be used to design a LDPC code. If the probability of s is high then

decoding of C will fail regularly, if at least s bits were erased. The art of designing a

good LDPC pre-code is to make the probability of s = k̃δ as small as possible, where

δ is the fraction of unrecovered input symbols of the weakened LT code.

A good LDPC code designed by using equation (3.21) is the right regular code with

Λ(x) = x4 [42]. It is also advised to use an extended Hamming code before the right

regular code, to remove small stopping sets [42].

3.5.2 THE WEAKENED LT CODE

A weakened LT code is designed by using the following inequality [42]

Ω′(x) ≥
− ln

(

1 − x − c
√

1−x
k̃

)

1 + ǫ
(3.22)

for x ∈ [0, 1 − δ] and Ω(x) is the degree distribution of the right hand side of the

weakened LT code CLT , k̃ is the amount of input symbols, c is a positive constant, δ is
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the fraction of input symbols that can not be recovered by CLT and 1+ǫ is the decoding

inefficiency of CLT . For equation (3.22) to be solvable, δ needs to be larger than c/
√

k̃.

Given δ, ǫ, c and k̃ the interval [0, 1 − δ] can be discretized and the above inequality

can be required to hold on these discretization points. From these linear inequalities

the unknown coefficients of Ω(x) are obtained. Linear programming can now be used

to solve the minimization problem created by the objective function Ω′(1) to obtain a

degree distribution with minimum possible average degree (using the simplex method

[47]).

When a Raptor code is designed for the erasure channel it is easy to see that the pre-

code needs to be systematic, and the weakened LT code non-systematic. For a noisy

channel both codes need to be systematic for the same reason as discussed in Section

3.4.3.

3.5.3 FACTOR GRAPH REPRESENTATION

A factor graph representation of a Raptor code is given in Figure 3.8. This is not the

only possible factor graph for a Raptor code, but it is a popular design.

The white circles represent the original codeword code nodes of length k. The circles

filled with a horizontal pattern represent the parity bits generated by the pre-code C
(they are also code nodes). The black circles represent the parity bits generated by

the weakened LT code CLT (they are also code nodes). All the circles together form all

the code nodes of a systematic Raptor code. In the non-systematic case only the bits

represented by the black circles are sent over the erasure channel. The horizontally filled

check nodes represent the check nodes of the pre-code. The black checks represent the

check nodes of the LT code. As mentioned before noisy decoding can easily be applied

to this factor graph, since any factor graph can be decoded using the algorithm given in

Section 3.4.3. The vertically filled function blocks contain the channel LLR as defined

by equation (3.10). Designing Raptor codes for non-erasure channels is discussed in

[43].

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA

52



CHAPTER 3 FOUNTAIN CODES

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

Channel LLR

Message Nodes

Pre−code Nodes

Pre−code Check Nodes

LT Check Nodes

LT Nodes

Channel LLR L
T

 C
o
d
ew

o
rd

 

P
re

−
co

d
e 

C
o
d
ew

o
rd

Figure 3.8: A simple factor graph of a Raptor code with an LDPC code as

pre-code
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CHAPTER 4

ENHANCED DATA RATES FOR

GSM EVOLUTION (EDGE)

4.1 CHAPTER INTRODUCTION

The digital mobile phone technology Enhanced Data rates for GSM Evolution (EDGE)

is discussed briefly in this chapter. The chapter starts with a general overview of EDGE.

The overview includes the coding schemes, data rates obtainable and other techniques

used by the standard. The next section gives the structure of the transmission (TX)

blocks used by EDGE for each coding scheme. The information in the transmission

section include data payload sizes as well as puncturing rates (again for each cod-

ing scheme). Next the chapter introduces the physical convolutional encoder used by

EDGE. Each coding scheme uses the same encoder, but the puncturing schemes differ.

The different puncturing schemes are also discussed. Lastly the use of punctured con-

volutional codes as incremental redundancy scheme is explained in detail. The use of

fountain codes as alternative incremental redundancy scheme is also discussed in the

last section.

4.2 OVERVIEW OF EDGE

EDGE is a digital mobile phone technology that allows increased data transmission

rates and improved data transmission reliability when compared to older technologies

like GPRS (General Packet Radio Service) available to users of GSM (Global System

for Mobile communications). Although EDGE is technically a 3G network technology,

it is generally classified as the unofficial standard 2.75G, due to its slower network

speed. EDGE helps in bridging the gap between 2G and 3G, and enables the use of

multimedia services (it is more a transition technology) [49]. EDGE uses a bandwidth of

270.833 kHz [50] and uses nine modulation and coding schemes (MCS) to vary its data

rates. Gaussian minimum-shift keying (GMSK) [51] is used by the lower four coding
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schemes (similar to GPRS) and 8 phase shift keying (8PSK) [51] for the upper five of its

nine coding schemes. The fact that 8PSK can modulate 3 bits per symbol is the reason

for the increase in data rate (when compared with GMSK that can modulate only 1 bit

per symbol). One frame block (1392 bits) is transmitted over 4 bursts in a total time of

20 ms making the bit rate 278.4 kbit/s and yielding a bit rate of 69.6 kbit/s per time

slot (compared with the current 23.2 kbit/s (GPRS)) (this is true for uncoded using no

headers) . The receiver is now more complex and employs sophisticated equalization

techniques. The actual maximum bit rate of EDGE is achieved by MCS9 and equals

59.2 kbit/s, the difference is due to EDGE implementation issues like headers and

parity bits [24]. The improvement of 8PSK modulation is summarized in Table 4.1 [49]

Table 4.1: Comparison between EDGE and GPRS

EDGE GPRS

Modulation 8PSK, 3 bits per symbol GMSK, 1 bit per symbol

Payload/burst 348 bits 116 bits

Rate/time slot 69.6 kbit/s 23.2 kbit/s

EDGE also uses Link Adaptation (LA) [49, 52], which adapts the MCS scheme to fit

the channel conditions. Otherwise one uses a too strong or weak code for the channel,

hampering throughput. EDGE introduces Incremental Redundancy (IR) [49, 25], which

sends additional redundancy information to the receiver after a decoding failure. Both

transmissions can now be combined for better decoding. EDGE combines these two

techniques to maximize throughput. Each MCS scheme has different throughput rates

to enable the use of LA. The weaker the channel the stronger the coding scheme, the

less the throughput. The speed of all nine MCS schemes is given in Table 4.2 [50, 53].

The code rates obtainable by each MCS scheme when employing IR is given in Table

4.3. The * indicates that some bits have been sent more than once.

Only the upper five coding schemes are discussed in greater detail in the remainder

of this chapter since they attribute to a higher bit rate. The data is encoded by a

punctured convolutional code [51, 30] which can be decoded using the Viterbi algorithm

[11].
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Table 4.2: Comparison between the EDGE modulation and coding schemes

(MCS)

MCS Speed Modulation

MCS1 8.8 kbit/s GMSK

MCS2 11.2 kbit/s GMSK

MCS3 14.8 kbit/s GMSK

MCS4 17.6 kbit/s GMSK

MCS5 22.4 kbit/s 8PSK

MCS6 29.6 kbit/s 8PSK

MCS7 44.8 kbit/s 8PSK

MCS8 54.4 kbit/s 8PSK

MCS9 59.2 kbit/s 8PSK

Table 4.3: Code rates obtainable with convolutional code
MCS Scheme Transmission 1 Transmission 2 Transmission 3

MCS 5 0.37 0.33* -

MCS 6 0.49 0.33* -

MCS 7 0.76 0.38 0.33*

MCS 8 0.92 0.46 0.33*

MCS 9 1 0.5 0.33*

4.3 STRUCTURE: EDGE TX BLOCKS

As mentioned in Section 4.2 each transmission block of EDGE consists of 1392 bits

and is sent over 4 bursts in a total time of 20 ms. The structure of each transmission

block depends on the MCS scheme currently employed. MCS5 and MCS6 have only

one data payload in each transmission block, while MCS7, MCS8, MCS9 have two data

payloads contained in each transmission block. This is illustrated in Figures 4.1 and

4.2 [24].
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USF
ENC

MAC Hdr.
ENC

USF
ENC

MAC Hdr.
PUNC

USF MAC Hdr. E FBI BSC TBData Payload

3 bits 33 bits

#Data block length

36 bits 99 bits #Encoded block length

SB Punctured

Encoded

8 bits

Puncturing

36 bits 100 bits 1248 bits

1392 bits

4 bursts

#Data block length+ 

348 bits

Convolutional Encoder

Figure 4.1: TX Block structures for MCS5 and MCS6
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Encoded 1 Encoded 2

#Encoded block length 1 #Encoded block length 2

Punctured 1 Punctured 2

#Data block length 2

#Data block length+ 1 #Data block length+ 2

348 bits

Convolutional Encoder

Figure 4.2: TX Block structures for MCS7, MCS8 and MCS9

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA

57



CHAPTER 4 ENHANCED DATA RATES FOR GSM EVOLUTION (EDGE)

The basic procedure in creating a transmission block [24] is that the E (Extension bit),

FBI (Final Block Indicator), BCS (Block Check Sequence), TB (Tail bits), USF (Uplink

State Flag) and MAC/RLC (Medium Access Control/Radio Link Control) header bits

are appended to the data payload to form a MAC/RLC block. The length of the data

payload and the MAC/RLC block depends on the MCS scheme used. The USF and

MAC/RLC header are encoded separately. The remaining bits of the MAC/RLC block

are encoded with a rate 1/3 convolutional encoder. The length of this encoded block

also depends on the MCS scheme used. The encoded USF field is not punctured, but

the other fields are punctured. In the case of MCS6 and MCS7 the encoded MAC/RLC

header is only padded with a zero and not punctured. Finally SB (Stealing bits) are

added to complete the 1392 bit transmission block. After puncturing the TX block is

also interleaved. The above procedure for encoding the data payload is done twice for

MCS7, MCS8 and MCS9, due to two data payloads. The decoding of a TX block is

done by following the above steps in reverse [24]. The general procedure for creating a

TX block is depicted in Figure 4.3. The sizes of each variable field is found in Tables

4.4 and 4.5 [24].

ENCODING

PUNCTURE

INTERLEAVE

DATA DEINTERLEAVE

DEPUNCTURE

DECODE

DATA

CREATING TX BLOCK RETRIEVING DATA

Figure 4.3: General procedure for creating a TX block
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Table 4.4: Different field lengths considered in TX block of EDGE (MCS5

and MCS6)

MCS5 MCS6

#Data block length 448 592

#Data block length+ 468 612

#MAC/RLC block length 504 648

#Encoded block length 1404 1836

Table 4.5: Different field lengths considered in TX block of EDGE (MCS7,

MCS8 and MCS9)

MCS7 MCS8 MCS9

#Data block length 1&2 448 554 592

#Data block length+ 1&2 468 564 612

#MAC/RLC block length 984 1176 1272

#Encoded block length 1&2 1404 1692 1836

For detailed information on the function of each field, the interleaving scheme used

and more detail see [24]. For the remainder of this chapter the focus will be on the

convolutional encoder and its use by the IR scheme.

4.4 CONVOLUTIONAL ENCODER

The encoder used is a (3,1,7) convolutional encoder (constraint length 7) with generator

polynomials [49, 24]:

G0(D) = 1 + D2 + D3 + D5 + D6

G1(D) = 1 + D + D2 + D3 + D6

G2(D) = 1 + D + D4 + D6 (4.1)

The exact same encoder is used for each coding scheme, though the puncturing differs.

The puncturing schemes for each MCS scheme are given in Tables 4.6, 4.7 and 4.8 [24].
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Table 4.6: Puncture pattern 1 for each MCS scheme

MCS Scheme Pattern 1

MCS5 b1 = [110111111]

b2 = [110]

p1 = ∅
p1 = [p1b1] for k = 1 · · · 154

p1 = [p1b2] for i = 1 · · · 6
p1[48 372 696 1020] = 1

MCS6 b1 = [110]

p1 = ∅
p1 = [p1b1] for k = 1 · · · 612

p1[33 99 165 231 297 429 495 561 627 693 825 891 957· · ·
1023 1089 1221 1287 1353 1419 1485 1617 1683 1749 1815] = 1

MCS7 b1 = [110010001001110100]

p1 = ∅
p1 = [p1b1] for k = 1 · · · 78

p1[2 20 38 236 416 596 776 956 1136 1352 1370 1388] = 0

MCS8 b1 = [101001100010010010001001100100010001]

p1 = ∅
p1 = [p1b1] for k = 1 · · · 47

p1[846] = 1

MCS9 b1 = [100]

p1 = ∅
p1 = [p1b1] for k = 1 · · · 612
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Table 4.7: Puncture pattern 2 for each MCS scheme

MCS Scheme Pattern 2

MCS5 b1 = [101111111]

b2 = [101]

p2 = ∅
p2 = [p2b1] for k = 1 · · · 154

p2 = [p2b2] for i = 1 · · · 6
p2[137 461 785 1109] = 1

MCS6 b1 = [101]

p2 = ∅
p2 = [p2b1] for k = 1 · · · 612

p2[17 83 149 215 281 413 479 545 611 677 809 875 941· · ·
1007 1073 1205 1271 1337 1403 1469 1601 1667 1733 1799] = 1

MCS7 b1 = [001101100010001011]

p2 = ∅
p2 = [p2b1] for k = 1 · · · 78

p2[17 35 53 197 377 557 737 917 1097 1367 1385 1403] = 0

MCS8 b1 = [010010001001100101010010010010100100]

p2 = ∅
p2 = [p2b1] for k = 1 · · · 47

p2[583] = 1

MCS9 b1 = [010]

p2 = ∅
p2 = [p2b1] for k = 1 · · · 612
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Table 4.8: Puncture pattern 3 for each MCS scheme

MCS Scheme Pattern 3

MCS5 -

MCS6 -

MCS7 b1 = [001001110100110010]

p3 = ∅
p3 = [p3b1] for k = 1 · · · 78

p3[14 32 50 302 482 662 842 1022 1202 1364 1382 1400] = 0

MCS8 b1 = [001100010100001001100100001101001010]

p3 = ∅
p3 = [p3b1] for k = 1 · · · 47

p3[1157] = 1

MCS9 b1 = [001]

p3 = ∅
p3 = [p3b1] for k = 1 · · · 612

4.5 INCREMENTAL REDUNDANCY

Incremental Redundancy (IR) [49, 25] works on the following principle. As soon as a

received block fails to decode, the block is retransmitted using different parity. Now the

information from both transmissions can be combined to decode the original message.

Effectively the code rate is decreased after the second transmission, adding more parity

to the transmitted codeword. This can continue for a third transmission depending on

the coding scheme used.

IR is accomplished in EDGE by using a punctured convolutional code, see Figure

4.4. During the first transmission the data (1) is encoded by a rate 1/3 convolutional

encoder and punctured using puncture pattern 1 (2). Since only one transmission was

made the combination stage is skipped (3). If the decoding (4) fails the loop starts

again. The second transmission punctures the encoded data by using pattern 2 (2).

Due to differences in the puncturing patterns the receiver will be able to fill in some

punctures of the first transmission. If some bits (in the same bit positions) were sent

twice, they are averaged (since they are LLR) to obtain a new soft value for that bit.

These calculations are performed at the combination stage (3). Decoding takes place
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again, if decoding fails again the procedure needs to be repeated. The amount of cycles

depend on the MCS scheme used. For MCS5 and 6, only two transmissions are possible.

For MCS7 to 9 three transmissions are possible. If the maximum puncturing pattern

is reached a decoding failure is declared (2). IR is illustrated for a toy case in Figure

4.5.

ENCODE 1/3 CC
PUNCTURE++

MESSAGE

COMBINE

DECODE
TRUE

FALSE

MAX PUNCTURE?

DECODED UNDECODABLE

PUNCTURE = PATTERN1 OF MCSx

(1)

(2)

(3)

(4)

Figure 4.4: IR implemented with punctured convolutional codes
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Figure 4.5: Segment of a Trellis displaying IR

In Figure 4.5(a) the white circles represent the bits that were punctured and the black

circles represent the bits that were sent during transmission 1. The trellis in Figure

4.5(b) represent what happened to Figure 4.5(a) after a second transmission was made.

As one can see all the bits have values now because the puncture patterns of both
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transmissions were different. Some bits were sent twice; these bits are indicated by the

circles containing patterns.

(1) − SYSTEMATIC
>(1) − NON−SYSTEMATIC

MESSAGE

COMBINE

DECODE
TRUE

FALSE

DECODED

(1)

(2)

(3)

(4)
ENCODE
GENERATE FOUNTAIN GRAPH

Figure 4.6: IR implemented with fountain codes

This is however not the only approach that can be followed. EDGE can also use a foun-

tain code to implement an IR scheme (see Figure 4.6). Raptor or LT codes can be used

to replace the puncturing scheme [26], e.g. a message can be encoded using a systematic

LT code [23] (2) and if the frame at the decoder (4) is invalid the transmitter retrans-

mits the message using a different non-systematic LT structure (2). Now the receiver

can use both transmissions for successful decoding (3). The cycle can be continued

until a valid frame is received. In contrast to punctured convolutional codes, fountain

codes have the ability to utilize all the retransmitted information for decoding and

can have an endless amount of retransmissions. The reason being it grows dynamically

(rate less), and does not fill up punctures. A Raptor code can also be used, with the

first transmission being a pre-code, such as an LDPC code. From there on the scheme

is exactly the same. A systematic fountain code is used on the first transmission since

noisy decoding of non-systematic codes performs poorly. For the second transmission a

non-systematic LT code (only parity) is used, because the graphs can be combined at

the receiver (BP decoding [22, 26, 23, 46], see Section 3.4.2). No puncturing is required

for this scheme. The above is illustrated for a toy case in Figure 4.7.

In Figure 4.7 the white circles represent the bits sent. In Figure 4.7(a) we have the

factor graph after the first transmission, in Figure 4.7(b) we have the factor graph

after the second transmission. As one can see the graph grows dynamically, decreasing

the code rate. Since fountain codes never have retransmissions it can be a very powerful
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code to use as an IR scheme.

a) b)

Figure 4.7: Segment of a Factor graph (fountain code) displaying IR

The code rates obtainable by using these schemes to implement IR are indicated in

Tables 4.3 and 4.9.

Table 4.9: Code rates obtainable with fountain code
MCS Scheme Transmission 1 Transmission 2 Transmission 3

MCS 5 0.37 0.19 -

MCS 6 0.49 0.24 -

MCS 7 0.76 0.38 0.25

MCS 8 0.92 0.46 0.31

MCS 9 1 0.5 0.33
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CHAPTER 5

SIMULATION RESULTS

5.1 CHAPTER INTRODUCTION

This chapter contains all the results from the simulations performed for this thesis.

The simulations can be divided into two main sections. Simulations were performed on

a i) standard QPSK platform and on the ii) EDGE platform. The effect of the different

fountain factor graphs were evaluated on the QPSK platform, while fountain codes

were used as the incremental redundancy scheme of choice on the EDGE platform.

Some simple codes were also implemented on the QPSK platform.

Note the importance of the QPSK simulations, even though the main contribution of

this thesis is the implementation of fountain codes as incremental redundancy scheme.

The QPSK platform was used in the first case to test some simple codes. The testing of

simple codes were performed to verify the working of the belief propagation algorithm

as presented in Chapter 2 and to illustrate the wider application of belief propagation on

any factor graph representation of any code whether block or convolutional (depending

on block size and density), which helps in understanding how belief propagation can

be applied to the strange factor graph representations of fountain codes. A feasibility

study on fountain codes (when used on the QPSK channel) was also conducted so that

the correct fountain code could be selected as incremental redundancy scheme. The

results of the noisy decoding of fountain codes were also included to show how these

codes performed on noisy channels since this has not been completely discussed in

literature. In short the QPSK simulations are included to show how belief propagation

can be applied on a multitude of different factor graph structures.

5.2 SIMULATION: QPSK PLATFORM

In this section the QPSK platform is introduced, the performance of an uncoded QPSK

platform is discussed and the performance of some simple codes are presented. Lastly

the performance of different fountain codes are given.
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5.2.1 QPSK PLATFORM

Most of the codes in this chapter were tested on a standard QPSK [51] communication

system. A standard QPSK communication system is depicted in Figure 5.1.

QPSK RX+xQPSK TX

Average fading amplitude AWGN

Figure 5.1: A simple QPSK communication system

In this channel the source output is modulated using QPSK modulation, sent over a

flat fading channel and demodulated at the receiver. The channel consists of a product

and a sum. First the signal is multiplied by the average fading amplitude and then

AWGN is added. The channel is described as flat since its transfer function in the

frequency domain is constant over the signal bandwidth. The noise that is added to

the signal can be attributed to a variety of noise sources, including galactic noise (for

example radiation), terrestrial noise, amplifier noise, interference from other communi-

cation systems, and last but not least, thermal noise caused by the motion of electrons

in conducting media (the noise is Gaussian distributed with constant power spectral

density (white)). Fading is due to the constructive/destructive interference of many

electromagnetic waves (signals) at the receiver caused by reflection, diffraction and

scattering of the original transmitted signal by objects in the vicinity of the transmis-

sion system. The fading can either be slow or fast (fade slower or more rapidly). This is

determined by the maximum Doppler spread BD of the channel. This phenomenon of

fast and slow fading can be attributed to the Doppler effect (change in frequency due to

relative movement between transmitter and receiver). In the case of the channel used

in this chapter slower fading is simulated by setting BD = 33 Hz, while faster fading is

simulated by setting BD = 100 Hz (this is only true for this simulator). Another im-

portant characteristic of the channel is the amount of line of sight (LOS) between the

transmitter and receiver. This is determined by the Rician factor K of the channel. For

no LOS (NLOS) K = −100 dB and for some LOS K = 9 dB. All codes are simulated

for all combinations of these four parameters. These parameters completely describes

the channel simulator for this specific case, but more detail is needed to approximate
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a real channel (for example multipath delay spread and signal bandwidth). The imple-

mentation details of this channel is omitted and is described in detail in [21, 22]. The

settings of the QPSK transmitter are shown in Table 5.1

Table 5.1: Settings of QPSK transmitter

Variable Name Value

fc Carrier frequency 2 kHz

fs Sampling frequency 16 kHz

fb Bit rate 1 kbps

The different channel parameters that describe the flat fading channel is summarized

in Table 5.2

Table 5.2: Flat fading channel parameters

Variable Values Reason

Cnorm 4.76(100Hz) and 8.27(33Hz) Ensure unity power of filtered output signal

BD 33Hz and 100Hz Simulates slow and fast fading respectively

K -100dB and 9 dB Simulates NLOS and LOS respectively

The variable Cnorm is a scaling factor used by the flat fading channel to ensure unity

power of the filtered output signal (used by the Doppler filters to create Doppler

spread). For an in depth description of this variable see [21, 22]. The QPSK receiver

assumes perfect carrier recovery, phase synchronization and channel state information.

The demodulation approach used is matched filtering implemented by an integrating

dump circuit [51, 21, 22].

5.2.2 THEORETICAL BER CURVES: UNCODED QPSK

Two theoretical BER curves for an uncoded QPSK transmission system are discussed.

Firstly when sent through an AWGN only channel the theoretical BER output is equal

to [51]:

Pb(e) = Q

(

√

2Eb

N0

)

(5.1)

where Q(x) equals

Q(x) =

∫ ∞

x

e−z2/2dz (5.2)
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Secondly the theoretical BER curve of a flat fading channel is (NLOS, slow fading)

equal to [51]:

Pb(e) = 1/2 − 1/2

√

Eb/N0

1 + Eb/N0

(5.3)

Fading without any LOS is known as Rayleigh fading. These theoretical BER curves

are drawn in Figure 5.2.
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Figure 5.2: Theoretical BER performance of an uncoded QPSK communi-

cation system on a flat fading channel

5.2.3 SIMULATED BER CURVES: UNCODED QPSK

The simulated BER curves for all combinations of fading channel parameters for the

uncoded QPSK system can be found in Figures 5.3 (BD = 33Hz and K = −100dB,9dB)

and 5.4 (BD = 100Hz and K = −100dB,9dB). In Figure 5.5 the uncoded QPSK system

is simulated for AWGN conditions only.
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Figure 5.3: BER performance of an uncoded QPSK communication system

on a flat fading channel, BD = 33Hz
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Figure 5.4: BER performance of an uncoded QPSK communication system

on a flat fading channel, BD = 100Hz
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Figure 5.5: BER performance of an uncoded QPSK communication system

on a AWGN channel

These results can be compared with [21] to verify their correctness. As shown in Figures

5.3 and 5.4 the simulated fading BER curves perform better than the theoretical upper

bound due to the correct implementation of Doppler spread and LOS. As these factors

can determine the severity of the fading a signal experiences. If more LOS is added

the BER curve improves as expected. The simulated fading curves can not do worse

than the theoretical upper bound since this curve represents the worst possible fading a

signal can experience, with NLOS as well as the fact that the fading that is experienced

is extremely slow.

5.2.4 SIMPLE CODES

In this section some simple channel codes are introduced. Channel coding is used to

decrease the bit error rate of a transmission system by adding parity to a message. An

encoder is placed in front of the transmitter, and a decoder is placed after the receiver

in Figure 5.1. The encoder is usually implemented by matrix multiplication or shift

registers. The decoder can consist of different decoding techniques including Viterbi

[11] and BP [30, 14]. The codes mentioned below were tested on the QPSK transmission

system to show how BP can be applied to different codes (having diverse factor graph
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representations). The codes tested for this purpose include a simple Hamming, RSC

and LDPC code. All simulations only perform BP decoding, 10 iterations of BP. The

resulting BER graphs of these simple codes are given in Section 5.2.5 and discussed in

Section 5.2.6.

5.2.4.1 HAMMING (7,4,3)

The Hamming (7,4,3) [2, 51, 30] code is a block code and has a G and H matrix equal

to equation (2.52) and equation (2.51) respectively. Block codes are presented using

the notation (n, k, dmin), where n represents the length of a code word, k is the length

of the original message and dmin is the minimum hamming weight between any two

codewords. Encoding is accomplished by multiplying the message with G. From the G

and H matrix one can construct a factor graph as done in Section 2.8.3. From the factor

graph the code can be decoded using BP as shown in Section 2.8.5. Figures 5.7 and 5.8

present the simulated BER results obtained when decoding Hamming (7,4,3) with BP

under slow and fast fading channel conditions respectively. On each of these graphs the

simulated LOS and NLOS results are displayed. For completeness the simulated BER

for AWGN channel conditions is shown in Figure 5.9. These graphs are discussed in

detail in Section 5.2.6.

5.2.4.2 GALLAGER (20,5,6)

The Gallager (20,5,6) (the original LDPC code [7]) is a block code and has G and H

matrices equal to

G =



















0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0

1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1 0 0

1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1



















(5.4)
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H =







































































1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
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(5.5)

The encoding and decoding are done using the same principles as discussed for the

Hamming code (since G and H are available). Figures 5.10 and 5.11 show the simulated

BER results obtained when decoding Gallager (20,5,6) with BP under slow and fast

fading channel conditions respectively. On each of these graphs the simulated LOS and

NLOS results are displayed. For completeness the simulated BER for AWGN channel

conditions is shown in Figure 5.12. These graphs are discussed in detail in Section 5.2.6.

5.2.4.3 RSC (2,1,2)

In general a CC (convolutional code) [15] can be encoded via linear shift registers

(state machine). The amount of shift registers a CC uses is known as the constraint

length K of the code. The memory of a CC is equal to K + 1. The state machine

(encoder) works by receiving k information bits (symbol) and outputting n encoded

bits after performing some modular (in the case of binary symbols) operations on the

information symbol and the current register symbols. After the calculation the registers

get shifted up (right), and in so doing changing the state of the state machine for the

next information symbol leading to a code with memory. A CC is thus defined via

the following parameters (n, k,K). The encoder of a systematic RSC (2,1,2) (1,5/7)
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[51, 30] code is shown in Figure 5.6, where (1,5/7) refers to the way the registers are

connected.

S1S0

v0

v1

u

Figure 5.6: The RSC (2,1,2) (1,5/7) encoder

Convolutional codes are usually decoded using a trellis and the Viterbi algorithm [11].

To be able to decode this code using BP one needs to construct a factor graph repre-

sentation of this code. The H matrix of this code is equal to [54]

H =



















1 1 0 0 0 0 0 0 0 0 . . .

0 1 1 1 0 0 0 0 0 0 . . .

1 1 0 1 1 1 0 0 0 0 . . .

0 0 1 1 0 1 1 1 0 0 . . .
...

...
...

...
...

...
...

...
...

...
. . .



















(5.6)

From H the factor graph can be constructed. This H matrix has no predefined length

and depends on the code segment length that must be decoded at a time. Making the

code segments (200,100) (98 information bits, 2 tail bits) an appropriate H matrix with

dimensions (100 × 200) can be constructed. Two bits are needed for the convolutional

encoder to end in the zero state, and take up the last four columns of the H matrix.

The last row of H must end with the sequence ...1 1 0 1 1 1, to support termination

in the zero state. The even columns represent information bits, while the odd columns

represent parity bits. With the above the RSC can be decoded using BP. The results

from this code were obtained by decoding code segments of length (200,100). Figures

5.13 and 5.14 present the simulated BER results obtained when decoding RSC (2,1,2)

with BP under slow and fast fading channel conditions respectively. On each of these
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graphs the simulated LOS and NLOS results are displayed. For completeness the sim-

ulated BER for AWGN channel conditions is shown in Figure 5.15. These graphs are

discussed in detail in Section 5.2.6.

5.2.5 SIMULATED BER CURVES: SIMPLE CODES

All of the simulated BER curves of the simple codes are presented in this section.
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Figure 5.7: BER performance of a Hamming(7,4,3) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.8: BER performance of a Hamming(7,4,3) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.9: BER performance of a Hamming(7,4,3) coded QPSK communi-

cation system on a AWGN channel [BP decoding]
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Figure 5.10: BER performance of a Gallager(20,5,6) coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.11: BER performance of a Gallager(20,5,6) coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.12: BER performance of a Gallager(20,5,6) coded QPSK commu-

nication system on a AWGN channel [BP decoding]
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Figure 5.13: BER performance of a RSC(2,1,2) coded QPSK communication

system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.14: BER performance of a RSC(2,1,2) coded QPSK communication

system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.15: BER performance of a RSC(2,1,2) coded QPSK communication

system on a AWGN channel [BP decoding]
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5.2.6 DISCUSSION OF RESULTS: SIMPLE CODES

The maximum coding gain and cross over point (in dB) of each simple code (compared

to uncoded QPSK) is displayed in Tables 5.3 and 5.4 and also in Figures 5.16 and 5.17.

Table 5.3: Coding gain obtained by simple codes when compared to uncoded

QPSK

Simple Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

Hamming [dB] 1.75 1.2 2.7 2.8 1.6

Gallager [dB] 3 2.5 4 5.5 0.6

RSC [dB] 2.2 1.5 3 3 1.8

Table 5.4: Cross over point of simple codes, compared to uncoded QPSK

Simple Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

Hamming [dB] 6 3 3 2 2

Gallager [dB] 8 7 6.2 5.5 7.5

RSC [dB] 5 3 4 2 2
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Figure 5.16: Table 5.3 represented graphically
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Figure 5.17: Table 5.4 represented graphically

The most important results include:
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1. The RSC (2,1,2) code performs on average about 0.3 dB better than the Hamming

(7,4,3) code. They have similar cross over profiles. The Hamming (7,4,3) performs

on average 2 dB better than an uncoded system.

2. The Gallager (20,5,6) code performs on average 3.1 dB better than uncoded.

The price for the improvement is a very high cross over profile (cross at high

Eb/N0 values). The high cross over profile makes the code impractical for practical

implementation. The code also performs only marginally better under AWGN

conditions due to a high cross-over profile. The Gallager (20,5,6) code is included

for historical value.

3. The simple codes studied can not be compared directly to the fountain codes,

since only 10 iterations of BP were used for decoding. The strength of larger codes

lie in the fact that the amount of belief propagation iterations is large. For in-

stance the Hamming (7,4,3) code will not show much improvement if the amount

of iterations is increased from 10 to 100 (due to a small factor graph). On the

other hand the LDPC (40,20) code will show large improvements if the amount

of decoding cycles is increased. That is why only certain codes are compared with

each other. For this study only 10 iterations were considered. See Chapter 6 for

more detailed conclusions.

5.2.7 FOUNTAIN CODES

One of the main contributions of this thesis is the soft decoding of fountain codes (using

BP). The three example fountain codes used to illustrate how this can be accomplished

are presented here. The basic theory of how each fountain code is constructed and how

to decode these codes were discussed in Chapter 3 (see Section 3.4.3 for soft decoding).

All of the codes from this section were decoded using 10 iterations of BP.

5.2.7.1 TORNADO (80,40)

The Tornado code used for the simulations is exactly the same as the code designed in

Section 3.3.4, except for the fact that B2 (second graph used to create first layer) no

longer consists of 3k edges. The amount of edges is reduced to k to lower the chances

of creating parallel assignments. The code is just too small for so many edges. Other

derivations of this basic Tornado code are also simulated on the QPSK transmission

model. In the first case the code consisting of only the first layer of the Tornado (80,40)

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA

82



CHAPTER 5 SIMULATION RESULTS

code is called Tornado (60,40)f . The last layer of the Tornado (80,40) code is called

Tornado (40,20)l. The simulated BER performance of the first layer of parity bits (of

Tornado (80,40)) is also investigated (the 20 parity bits produced by Tornado (60,40)f )

and referred to using the notation Tornado (80,40)p. The encoding of Tornado codes

and the noisy decoding of Tornado are discussed in Sections 3.3 and 3.4.3 respectively.

The figures associated with the simulated BER performance of each Tornado code on

the QPSK transmission model is given by Table 5.5 (see Section 5.2.7.2). These graphs

are discussed in detail in Section 5.2.7.3.

Table 5.5: Figures representing the simulated BER performance of a Tor-

nado code
Code Slow fading Fast fading AWGN

Tornado(80,40) Figure 5.18 Figure 5.19 Figure 5.20

Tornado(60,40)f Figure 5.21 Figure 5.22 Figure 5.23

Tornado(40,20)l Figure 5.24 Figure 5.25 Figure 5.26

Tornado(80,40)p Figure 5.27 Figure 5.28 Figure 5.29

5.2.7.2 SIMULATED BER CURVES: TORNADO

The simulated BER performance of each Tornado variation is given in this section.
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Figure 5.18: BER performance of a Tornado(80,40) coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.19: BER performance of a Tornado(80,40) coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 100Hz
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Uncoded, AWGN, Theoretical BER

Tornado(80,40), AWGN, Simulated BER

Figure 5.20: BER performance of a Tornado(80,40) coded QPSK commu-

nication system on a AWGN channel [BP decoding]

−5 0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

  
  
  
  
 B

it
 E

rr
o
r 

P
ro

b
a
b
ili

ty

 

 

Uncoded, AWGN, Theoretical BER

Uncoded, Rayleigh, Theoretical BER

Uncoded, K = −100dB, Simulated BER

Uncoded, K = 9dB Simulated BER

Torndado(60,40), first layer, K = −100dB, Simulated BER
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Figure 5.21: BER performance of a Tornado(60,40)f coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.22: BER performance of a Tornado(60,40)f coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.23: BER performance of a Tornado(60,40)f coded QPSK commu-

nication system on a AWGN channel [BP decoding]
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Figure 5.24: BER performance of a Tornado(40,20)l coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.25: BER performance of a Tornado(40,20)l coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.26: BER performance of a Tornado(40,20)l coded QPSK commu-

nication system on a AWGN channel [BP decoding]
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Tornado(80,40), first parity, K = 9dB, Simulated BER

Figure 5.27: BER performance of a Tornado(80,40)p coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.28: BER performance of a Tornado(80,40)p coded QPSK commu-

nication system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.29: BER performance of a Tornado(80,40)p coded QPSK commu-

nication system on a AWGN channel [BP decoding]
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5.2.7.3 DISCUSSION OF TORNADO CODE RESULTS

The maximum coding gain and cross over point of each Tornado variation (compared

with uncoded QPSK) are displayed in Tables 5.6 and 5.7 and also in Figures 5.30 and

5.31

Table 5.6: Coding gain obtained by Tornado codes when compared to un-

coded QPSK

Tornado Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

Tornado [dB] 5 5.1 5.2 6.5 1.5

Tornadol [dB] 5.5 5.8 6.2 6.7 1.8

Tornadof [dB] 6 6.2 6 7 2.8

Tornadop [dB] 7.8 6.5 7.8 8.8 3.5

Table 5.7: Cross over point of Tornado codes, compared to uncoded QPSK

Tornado Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

Tornado [dB] 4 3 4 3 3

Tornadol [dB] 2 1 1 1 1

Tornadof [dB] 2 1 2 1 1

Tornadop [dB] 1 0 1 0 0.5

ELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING
UNIVERSITY OF PRETORIA

90



CHAPTER 5 SIMULATION RESULTS

Tornado Tornado_l Tornado_f Tornado_p
0

1

2

3

4

5

6

7

8

Codes

C
o
d
in

g
 G

a
in

 [
d
B

]

−100dB@33Hz
9dB@33Hz
−100dB@100Hz
9dB@100Hz
AWGN

−100dB@33Hz
9dB@33Hz
−100dB@100Hz
9dB@100Hz
AWGN

Figure 5.30: Table 5.6 represented graphically
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Figure 5.31: Table 5.7 represented graphically

The most important results pertaining to the Tornado code include:
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1. The Tornado (80,40) code is outperformed by its two layers Tornado (40,20)l and

Tornado (60,40)f . Tornado (60,40)f also outperforms Tornado (40,20)l on aver-

age. The Tornado (80,40) code has a higher cross over profile than its constituent

codes. The two one layer Tornado variations have similar cross over profiles.

2. The result of only testing the first parity layer of the Tornado (80,40) code is

that these bits are extremely well protected. Tornado (80,40)p has a lower BER

and cross over profile than all Tornado variations tested. See Chapter 6 for more

detailed conclusions.

5.2.7.4 REGULAR LDPC (40,20)

The regular LDPC [7, 14, 30] code of this section is used as the pre-code of the Raptor

(80,20) code presented later on in this main section. The LDPC code studied here is

a (3,6) uniformly distributed regular code. This means that its H matrix has 3 and 6

uniformly distributed ones in each of its columns and rows respectively. The H matrix

of the LDPC (40,20) code was generated randomly. The easiest way of encoding LDPC

codes is to multiply the message with the generator matrix. The generator matrix G is

obtained from H by using Gauss-Jordan elimination. Decoding is performed by using

the algorithm presented in Section 2.8.4. Figures 5.32 and 5.33 present the simulated

BER results obtained when decoding LDPC (40,20) with BP under slow and fast

fading channel conditions respectively. On each of these graphs the simulated LOS and

NLOS results are displayed. For completeness the simulated BER for AWGN channel

conditions is shown in Figure 5.34 (see Section 5.2.7.7). These graphs are discussed in

Section 5.2.7.8.

5.2.7.5 SYSTEMATIC LT (80,40)

LT codes were discussed in Section 3.4. An LT code is uniquely defined by its distri-

bution, generally the improved robust soliton distribution with parameters (K, δ, c) is

used. The LT (80,40) code studied here has the following values for these parameters

(40,0.05,0.05). From (K, δ, c) the LT code can be generated. The LT encoder was dis-

cussed in Section 3.4.1 and its noisy decoder in Section 3.4.3. Take note the LT code

used was systematic [23]. Non-systematic LT codes do not perform well with the de-

coding algorithm from Section 3.4.3. Figures 5.35 and 5.36 present the simulated BER

results obtained when decoding LT (80,40) with BP under slow and fast fading channel

conditions respectively. On each of these graphs the simulated LOS and NLOS results
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are displayed. For completeness the simulated BER for AWGN channel conditions is

shown in Figure 5.37 (see Section 5.2.7.7). These graphs are discussed in Section 5.2.7.8.

5.2.7.6 SYSTEMATIC RAPTOR (80,20)

The Raptor code is discussed in detail in Section 3.5, where it was illustrated that a

Raptor code consists of a pre-code (usually an LDPC code) and a weakened LT code.

The Raptor code constructed in this section however does not conform to the standard

design of a Raptor code. The LT code used is not weakened, and the LDPC code used

is regular. Deviations from the standard design is allowed, since decoding is done on

a noisy channel and the improved speed of Raptor codes are no longer the primary

design consideration. The Raptor code of this section is systematic since the decoding

algorithm from Section 3.4.3 only performs well on systematic codes. So the Raptor

code used here consists of the LDPC (40,20) (pre-code) and LT (80,40) code discussed

earlier. Encoding was discussed in Section 3.5 and decoding in 3.4.3 (since the new code

is one new factor graph decoding algorithm from Section 3.4.3 may be applied). Fig-

ures 5.38 and 5.39 present the simulated BER results obtained when decoding Raptor

(80,20) with BP under slow and fast fading channel conditions respectively. On each

of these graphs the simulated LOS and NLOS results are displayed. For completeness

the simulated BER for AWGN channel conditions is shown in Figure 5.40 (see Section

5.2.7.7). These graphs are discussed in Section 5.2.7.8.

5.2.7.7 SIMULATED BER CURVES: LDPC, LT AND RAPTOR

The simulated BER performance of the remaining fountain codes are given in this

section.
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Figure 5.32: BER performance of a LDPC(40,20) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.33: BER performance of a LDPC(40,20) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.34: BER performance of a LDPC(40,20) coded QPSK communi-

cation system on a AWGN channel [BP decoding]
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Figure 5.35: BER performance of a LT(80,40) coded QPSK communication

system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.36: BER performance of a LT(80,40) coded QPSK communication

system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.37: BER performance of a LT(80,40) coded QPSK communication

system on a AWGN channel [BP decoding]
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Figure 5.38: BER performance of a Raptor(80,20) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 33Hz
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Figure 5.39: BER performance of a Raptor(80,20) coded QPSK communi-

cation system on a flat fading channel [BP decoding], BD = 100Hz
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Figure 5.40: BER performance of a Raptor(80,20) coded QPSK communi-

cation system on a AWGN channel [BP decoding]

5.2.7.8 DISCUSSION OF RESULTS: LDPC, LT AND RAPTOR

The maximum coding gain and cross over point of each fountain code (compared with

uncoded QPSK) are displayed in Tables 5.8 and 5.9 and also in Figures 5.41 and 5.42

Table 5.8: Coding gain obtained by fountain codes when compared to un-

coded QPSK

Fountain Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

LDPC [dB] 5.2 4.8 5.8 6.4 1.2

LT [dB] 6 4.5 5.5 4.5 1

Raptor [dB] 6.5 6 6.5 5.6 0.5

Tornadof [dB] 6 6.2 6 7 2.8
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Table 5.9: Cross over point of fountain codes, compared to uncoded QPSK

Fountain Code -100dB 9dB -100dB 9dB AWGN

@33Hz @33Hz @100Hz @100Hz

LDPC [dB] 4 2 3 2 2.3

LT [dB] 1 1.6 2 1.6 2

Raptor [dB] 4 3.5 4 3.5 4.5

Tornadof [dB] 2 1 2 1 1
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Figure 5.41: Table 5.8 represented graphically
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Figure 5.42: Table 5.9 represented graphically

The most important results pertaining to fountain codes include:

1. The LDPC (40,20) code performs better than LT (80,40) except for extreme

fading conditions (-100 dB @ 33 Hz). The LT (80,40) performs marginally worse

than LDPC (40,20) for the other channel conditions, but begins to deteriorate

under moderate fading conditions due to an error floor. The cross over profile of

the LT (80,40) code does however perform better than the LDPC (40,20) code

by almost 1 dB on average. The LT (80,40) and the LDPC (40,20) codes don’t

perform well under AWGN conditions if only 10 iterations of BP are applied.

2. The Raptor (80,20) code outperforms its constituent codes under extreme fading

conditions but deteriorates quickly under moderate fading conditions. It starts

performing worse under fading conditions 9 dB @ 100 Hz. The performance in-

crease under extreme fading conditions do come with a drawback; a higher cross

over profile (1.25 dB worse than the LDPC (40,20) code). The Raptor (80,20)

code performs extremely poor under AWGN conditions (only a maximum of 0.5

dB improvement over an uncoded scheme is achieved).

3. The three codes mentioned were only compared to the best Tornado code. All

codes performed worse than Tornado (60,40)f except for the Raptor (80,20) code
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that outperforms the Tornado code under extreme fading conditions. The cross

over profile of the Tornado code is better than all three codes mentioned previ-

ously.

4. Although the Tornado code outperforms the other codes, especially on the AWGN

channel, it can not be generalized. The LT code used has a bad distribution since

K << 10000 and therefore will not perform as proficient as it should, hampering

the Raptor code as well. The LDPC code used is regular, while the Tornado code

is irregular. See Chapter 6 for more detailed conclusions.

5.3 SIMULATION: EDGE PLATFORM

In this section the second simulation platform is introduced followed by the results of

implementing a fountain IR scheme on this platform.

5.3.1 EDGE PLATFORM

The EDGE platform was discussed in Chapter 4. Some simulation specific parameters

need to be defined so the results can be repeated; these parameters are given in Table

5.10.

Table 5.10: Parameters defining EDGE platform used for simulations

Parameter Value

Maximum Doppler Frequency 41.6Hz

Fading Frequency selective

Channel Model Typically Urban

Co channel interference None

Channel state information Estimated

(real world receiver)

The main idea simulated on the EDGE platform is the use of fountain codes as in-

cremental redundancy (IR) scheme (see Section 4.4). As mentioned in Chapter 4 the

current EDGE scheme uses convolutional codes. For the details of each MCS scheme

see Sections 4.4 and 4.5. For the fountain approach a systematic LT code was used to

implement the IR scheme. The LT codes used for each MCS scheme are different. As
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mentioned in Section 5.2.7.5 each LT code can be uniquely defined by the distribution

(K, δ, c). The LT codes used for this simulation can all be described by (x, 0.01, 0.06),

where x differs for each MCS scheme. The value of x for each coding scheme can be

found in Table 5.11

Table 5.11: The value of K for each MCS scheme
MCS x

5 468

6 612

7 468

8 564

9 612

The first transmission consists of x message bits and 1248 − x parity bits in the case

of MCS5 and MCS6. All other retransmissions send 1248 parity bits. In the case of

MCS7, MCS8 and MCS9 two data payloads are sent, each consisting of 612 bits. For the

first transmission one data payload consists of x message bits and 612 − x parity bits.

During the second transmission only parity bits are sent. See Section 4.5 for the code

rates obtainable. Belief propagation was used as decoding algorithm, 200 iterations.

5.3.2 SIMULATED BLER CURVES: EDGE

The results obtained via computer simulation of IR (EDGE system) using fountain

and convolutional codes for each MCS scheme can be found in Figures 5.43 to 5.47.
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MCS5− Convolutional code, (1) TX

MCS5− Fountain code, (1) TX

MCS5− Convolutional code, (2) TX

MCS5− Fountain code, (2) TX

Figure 5.43: BLER performance of IR implemented on EDGE (MCS5) using

convolutional and fountain codes
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MCS6− Convolutional code, (1) TX

MCS6− Fountain code, (1) TX

MCS6− Convolutional code, (2) TX

MCS6− Fountain code, (2) TX

Figure 5.44: BLER performance of IR implemented on EDGE (MCS6) using

convolutional and fountain codes
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MCS7− Convolutional..., (1)...

MCS7− Fountain..., (1)...

MCS7− Convolutional..., (2)...

MCS7− Fountain..., (2)...

MCS7− Convolutional..., (3)...
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Figure 5.45: BLER performance of IR implemented on EDGE (MCS7) using

convolutional and fountain codes
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MCS8− Convolutional code, (1) TX

MCS8− Fountain code, (1) TX

MCS8− Convolutional code, (2) TX

MCS8− Fountain code, (2) TX

MCS8− Convolutional code, (3) TX

MCS8− Fountain code, (3) TX

Figure 5.46: BLER performance of IR implemented on EDGE (MCS8) using

convolutional and fountain codes
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MCS9− Convolutional code, (1) TX

MCS9− Fountain code, (1) TX

MCS9− Convolutional code, (2) TX

MCS9− Fountain code, (2) TX

MCS9− Convolutional code, (3) TX

MCS9− Fountain code, (3) TX

Figure 5.47: BLER performance of IR implemented on EDGE (MCS9) using

convolutional and fountain codes

5.3.3 DISCUSSION OF RESULTS: EDGE

The actual dB improvement due to the fountain approach on each transmission for

each MCS scheme can be found in Table 5.12.

Table 5.12: Improvement of fountain approach when compared to convolu-

tional approach

MCS Transmission 1 [dB] Transmission 2 [dB] Transmission 3 [dB]

5 -0.6 0.75 -

6 -1.75 1.5 -

7 -8 4 3

8 -4 1 1.2

9 -1.8 6 1.8
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Figure 5.48: Table 5.12 represented graphically

The most important general observations that can be made from the simulations are:

1. Implementing IR on EDGE using the convolutional approach outperforms the

fountain approach on the first transmission. This is true for all MCS schemes.

2. The fountain approach starts gaining over the convolutional approach during the

second transmission, for all MCS schemes.

3. In the case of MCS5, MCS6 and MCS9 the fountain approach only performs

marginally worse than the convolutional IR scheme during the first transmission.
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CHAPTER 6

CONCLUSIONS

6.1 CHAPTER INTRODUCTION

This chapter briefly summarizes the main conclusions drawn from Chapter 5 in two

sections namely Section 6.2 that discusses the conclusions obtained from the QPSK

platform simulations and Section 6.3 that discusses the conclusions obtained from the

EDGE platform simulations.

6.2 CONCLUSIONS: QPSK PLATFORM

The most important findings of the QPSK simulations include the following:

1. The most important result from decoding simple codes (see Section 5.2.4) is

that different codes (block and convolutional) can be decoded with one type of

decoder, namely a BP decoder (depending on the size and density of the factor

graph used). Further merging this result with the results from the Raptor code

(see below) implies that many codes can be combined into one factor graph and

decoded using one graph structure. This is even true if a block and convolutional

code are combined. As can be seen from Section 5.2.4.3 a convolutional code can

be represented by a factor graph. The factor graph of a convolutional code can

thus easily be combined with an LT code (the same procedure will be used as in

the case of a Raptor code, see Section 5.2.7.6).

2. The main result from the simulations performed on the Tornado variations (see

Section 5.2.7.1) is that the Tornado graph structure is not suitable for noisy

decoding. What happens is that the individual layers perform better than the

Tornado (80,40) code. This is probably true due to the fact that the second layer

doesn’t really protect the original message bits, but the first layer of parity. This

is supported by the fact that the first parity layer has an extremely low BER.

The entire graph works to protect the first parity layer, instead of protecting the

original message bits (see Sections 5.2.7.2 and 5.2.7.3).
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3. The most important results obtained by simulating these fountain codes (see

Section 5.2.7) are the improvement of the systematic Raptor code (under extreme

fading conditions) over its constituent codes and the verification of systematic

LT decoding (see Sections 5.2.7.4, 5.2.7.5, 5.2.7.6, 5.2.7.7 and 5.2.7.8). Improved

Raptor decoding implies that combining codes into one graph and decoding can

lead to improved codes. The fact that the Raptor code performs worse under

moderate fading conditions implies that the weaknesses of the constituent codes

may also be amplified by code combination. However the main result is that with

research (density evolution) and specific codes a stronger code may be created

from weaker codes.

6.3 CONCLUSIONS: EDGE PLATFORM

The main conclusions and improvements regarding the EDGE platform simulations are

discussed below (see Section 5.3).

6.3.1 MAIN CONCLUSIONS

The following conclusions can be drawn from the observations gathered from the sim-

ulation results of the EDGE platform (See Sections 5.3.2 and 5.3.3):

1. The reason the first transmission of MCS5 and MCS6 using the fountain IR

approach performs only marginally worse, is because these schemes only have

one data payload per MAC/RLC block (see Section 4.3). This implies longer

codewords than MCS7, MCS8 and MCS9. Fountain codes perform better with

longer codewords. They perform especially well when their code rate Rc < 0.5.

This is why MCS5 is closer to the convolutional approach than MCS6, due to an

original lower code rate (see Section 4.5).

2. MCS6 shows a larger improvement than MCS5 during the second transmission

probably due to a larger K (see Section 3.4). LT codes perform better for larger

values of K, as long as the code rate Rc < 0.5. It can also be due to the fact that

the convolutional code performs worse in the case of MCS6.

3. MCS7 and MCS8 perform poorly on the first transmission if fountain codes are

used due to very small code lengths. MCS7, MCS8 and MCS9 have two data

payloads per RLC/MAC block implying extremely small code lengths (see Section
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4.3). Most sparse graph codes perform poorly if the code length is small. In the

case of the systematic LT code, the code can not cover all of its message bits with

so few parity bits.

4. For MCS9 the code rate is 1 (see Section 4.3), which makes the uncoded scheme

almost as good as using a punctured convolutional code. This is the reason for

the fountain approach only performing marginally worse (since the code rate is 1

only message bits are sent during the first transmission if the fountain approach

is used).

5. The improvements of MCS7 and MCS9 on retransmissions can be compared with

the improvements of MCS5 and MCS6 respectively.

6.3.2 IMPROVEMENTS

The following improvements are possible:

1. The systematic LT code used, can be redesigned by using density evolution.

2. The systematic LT code can be replaced with a systematic Raptor code. Now for

the first transmission one can use a specially designed LDPC code (using density

evolution). The LT codes used for retransmissions can also be redesigned using

density evolution (for a specific channel). This approach ought to work, when

compared to the results obtained from the systematic Raptor code.

3. The frame lengths can be made larger. If larger frame lengths are used the foun-

tain code will always outperform the convolutional approach.

4. The above improvements will only work on MCS5 and MCS6. For MCS7, MCS8

and MCS9 the only possible way to improve the results is to use some sort of CC

as pre-code and an LT code as inner code. These two graphs need to be combined

for decoding.

6.3.3 FINAL NOTES

The final conclusions are:

1. The convolutional IR scheme has good coding gain for smaller frame lengths.
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2. It can be shown that the fountain approach will outperform the CC scheme for

larger block sizes.

3. The fountain approach has an endless amount of retransmissions and uses all of

the resent bits. CC has some repetitions and can not have an endless amount of

retransmissions.

4. The fountain decoding structure grows larger after each transmission, slowing

decoding.

5. The fountain approach has potential, and if the frame lengths are large enough

it may be the default choice for an IR scheme.

6.4 SUMMARY OF WORK

This dissertation focused on noisy decoding of fountain codes using belief propagation

decoding. Fountain codes were originally developed for erasure channels, but since any

factor graph can be decoded using belief propagation, noisy decoding of fountain codes

can easily be accomplished. Three fountain codes namely Tornado, Luby Transform

(LT) and Raptor codes were investigated during this dissertation. The following results

were obtained:

1. The Tornado graph structure is unsuitable for noisy decoding since the code

structure protects the first layer of parity instead of the original message bits (a

Tornado graph consists of more than one layer).

2. The successful decoding of systematic LT codes were verified.

3. A systematic Raptor code was introduced and successfully decoded. The simula-

tion results show that the Raptor graph structure can improve on its constituent

codes (a Raptor code consists of more than one code).

Lastly an LT code was used to replace the convolutional incremental redundancy

scheme used by the 2G mobile standard Enhanced Data Rates for GSM Evolution

(EDGE). The results show that a fountain incremental redundancy scheme outperforms

a convolutional approach if the frame lengths are long enough. For the EDGE platform

the results also showed that the fountain incremental redundancy scheme outperforms

the convolutional approach after the second transmission is received. Although EDGE
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is an older technology, it still remains a good platform for testing different incremental

redundancy schemes, since it was one of the first platforms to use incremental redun-

dancy.

6.5 CRITICAL EVALUATION AND

FUTURE WORK

The results of this dissertation show that fountain codes have great potential as in-

cremental redundancy scheme. Unfortunately for EDGE the frame sizes are too small

to use effectively as incremental redundancy scheme. For other platforms using larger

frame lengths this approach will work well. Further coding gains can also be obtained

by redesigning the LT code for the specific channel using density evolution.
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