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SUMMARY

OPTIMIZING LDPC CODES FOR A MOBILEWIMAX SYSTEM WITH A SATURATED

TRANSMISSION AMPLIFIER

by

Brian P Salmon

Studyleader: Professor J.C. Olivier (University of Pretoria, South Africa)

Co-Studyleader: Dr B.T.J. Maharaj (University of Pretoria, South Africa)

Department of Electrical, Electronic and Computer Engineering

Master of Engineering (Electronic)

In mobile communication, the user’s information is transmittedthrough a wireless

communication link that is subjected to a range of deteriorating effects. The quality of the

transmission can be presented by the rate of transfer and the reliability of the received stream.

The capacity of the communication link can be reached through the use of channel coding.

Channel coding is the method of adding redundant information to the user’s information to

mitigate the deteriorating effects of the communication link. Mobile WiMAX is a technology

that makes use of orthogonal frequency division multiplexing (OFDM) modulation to transmit

information over a wireless communication channel. The OFDM physical layer has a high

peak average to power ratio (PAPR) characteristic that saturates the transmitter’s amplifier

quite easily when proper backoff is not made in the transmission power. In this dissertation an

optimized graph code was used as an alternative solution to improve the system’s performance

in the presence of a saturated transmission’s amplifier. The graph code was derived from a

degree distribution given by the density evolution algorithm and provided no extra network

overhead to implement. The performance analysis resulted in a factor of 10 improvement in the

error floor and a coding gain of 1.5 dB. This was all accomplished with impairments provided

by the mobile WiMAX standard in the construction of the graph code.

Keywords:

Low-density parity-check codes, Density Evolution, Peak-average power-ratio, WiMAX.



OPSOMMING

VERBETERING VAN ’ N LDPC KODE VIR ’ N MOBIELE WIMAX STELSEL MET ’ N

VERSADIGDE TRANSMISSIE VERSTERKER

deur

Brian P Salmon

Studieleier: Professor J.C. Olivier (Universiteit van Pretoria, Suid Afrika)

Mede-Studieleier: Dr B.T.J. Maharaj (Universiteit van Pretoria, Suid Afrika)

Departement Elektriese-,Elektroniese- en Rekenaar Ingenieurswese

Meester in Ingenieurswese (Elektronies)

Mobiele kommunikasie behels die stuur van gebruiker informasiedeur ’n draadlose

kommunikasie medium wat ’n reeks verswakking effekte het wanneer dit ontvang word. Die

kwaliteit van die kommunikasie kan vergelyk word teen die data tempo en die betroubaarheid

van die informasie. Deur vorige studies is daar gevind dat kanaal kapasiteit kan bereik

word deur gebruik te maak van kanaal kodering. Kanaal kodering is ’n metode wat

addisionele informasie byvoeg om die gebruiker se informasie te beskerm teen die effekte

van die kommunikasie medium. Mobiele WiMAX is ’n tegnologie wat gebruik maak van

ortogonale frekwensie divisie multipleksering (OFDM) modulasie om informasie deur ’n

draadlose kommunikasie medium te stuur. OFDM het ’n hoë piek-tot-gemiddelde drywing

verhouding (PGDV) eienskap wat die afsender versterker met gemak versadig wanneer gepaste

krag vermindering metodes nie in die afsender gebruik word nie. In hieride dissertasie was ’n

grafiese kode ontwerp wat as ’n alternatiewe oplossing is tot die versadiging van die transmissie

versterker. Die grafiese kode is afgelei van ’n grade distribusie wat afgelei was deur die

digtheid evolusie algoritme en die voordeel van hierdie grafiese kode is dat geen ekstra netwerk

behandeling nodig is om dit te implementeer nie. ’n Faktor van 10 in verbetering was gesien

in die fout vloer van die stelsel effektiteit analise en ’n kodering wins van 1.5 dB was ook

verkry. Al die bogenoemde is bereik deur die grafiese kode ontwerp selfs met die beperkte

stelsel parameters in die mobiele WiMAX standaard.
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CHAPTERONE
INTRODUCTION

1.1 BRIEF H ISTORY OF CODING THEORY

Even though the need for reliable communication is as old as our civilization itself, it is only in

recent times that communication has utilized radio frequency (RF) signals. In 1897, Guglielmo

Marconi demonstrated that continuous communication could be provided using RF signals [1].

The possibility to correct errors in RF communication was shown to be possible by Shannon in

1948 [2]. Shannon showed that given a desired rate of communication measured inbits/s/Hz,

a minimum threshold in the required signal to noise ratio (SNR) is required if all the errors are

to be corrected.

The theory of error correction coding (ECC) evolved soon after Shannon’s work by the

introduction of Hamming codes [3], followed by the development of Golay codes [4]. Both

codes were considered to be perfect codes [5], but more importantly this work led to new

research on finding optimal error correction codes.

The class of convolutional codes [6] was developed in 1955 and outperforms both perfect codes

in an additive white Gaussian noise (AWGN) channel [5] in terms of the achievable bit error

rate (BER). The efficient decoding of the convolutional codes was shown to be possible by

Viterbi [7] in 1967. The Viterbi algorithm found many practical applications over the next40

years as convolutional codes were standardized as a mandatory coding scheme in most wireless

technologies [8–10].

In 1960, a linear block code known as Reed Solomon codes [11–14] was developed and found

many practical applications ranging from compact disc players to deep-space applications [15].

1



CHAPTER ONE INTRODUCTION

Reed Solomon codes are most suitable when the correction of bursterrors in a communication

medium is desired and are decodable using the Berlekamp-Massey algorithm [5].

In 1963, Gallager invented the sparse linear block code [16], and these have become known

as Low-Density Parity-Check (LDPC) codes. The encoding and decoding of these codes was

considered unfeasible, and hence was soon forgotten [17–19].

Over the following decade other error correcting codes were developed but it was not until

1982 that the Trellis Coded Modulation (TCM) error correction codes [20] proved to yield

more performance gain by joining a coding and a modulation scheme with each other.

The next key point in the field of coding theory was the discovery of the Turbo codes [21] in

1993. Turbo Codes were able to approach the Shannon limit within a fraction of a decibel (dB)

in an AWGN channel. Turbo codes was standardized in mobile WiMAX [8] as an optional

coding scheme.

LDPC codes were rediscovered [19] in 1999 and this started renewed research at finding sparse

graph codes that could approach capacity. Belief propagation [22–24] was shown in 1963

as an algorithm for decoding LDPC codes [16]. It is possible to decode large LDPC codes

using Belief propagation, which led to relatively simple decoding strategies. This was a key

contributing factor in the success of LDPC codes. It was demonstrated that LDPC codes

were also able to reach the Shannon limit [25, 26] just as Turbo codes could but with a lower

complexity.

A method for optimizing a LDPC code, known asdensity evolution(DE), was first presented in

[16] for a binary erasure channel (BEC). This method later evolved to use continuous functions

with special emphasis on a binary symmetrical channel (BSC) [27]. Further optimization of

LDPC codes was achieved through the analysis of irregular code design to reach the Shannon

capacity for both a frequency non-selective fading channel and the AWGN channel [28, 29].

1.2 BRIEF OVERVIEW OF W I MAX

Mobile WiMAX (Worldwide Interoperability for Microwave Access) which is also known as

the IEEE802.16e-2005 standard, operates with the following physical (PHY) air interfaces:

single carrier modulation, orthogonal frequency division multiplexing (OFDM) and orthogonal

frequency division multiple access (OFDMA) respectively. Mobile WiMAX was created by
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the WiMAX forum1 in December 2005 and is an amendment to the fixed WiMAX standard

(IEEE802.16d-2004). The aim is to deliverlast milebroadband wireless access as an alternative

to digital subscriber loop (DSL) solutions.

FIGURE 1.1: Competing technologies

The mobile WiMAX standard defines the operational region be in the ultra high frequency

(UHF) and super high frequency (SHF) band which is below the10 GHz band. The radio

wavelength in this band is long enough to support a non line of sight (NLOS) communication

link [8, 9]. The main factors limiting the performance in this band are the thermal noise

generated at the receiver and the multipath propagation of signals [30].

The mobile WiMAX is scalable within a range of available channel bandwidths ranging between

1.25-20 MHz and provides downlink and uplink speeds of10-70 Mbps. Capacity may be

improved by using an intelligent Adaptive Antenna System (AAS) and Multiple Input Multiple

Output (MIMO) technology [31].

1.3 OBJECTIVE OF THIS DISSERTATION

LDPC codes have matured [18] since its rediscovery and were included as an optional coding

scheme in the mobile WiMAX standard [8]. For this reason, the first objective in this

1 WiMA X Forum was formed in June 2001 to promote conformance and interoperability of the WiMAX
standard (IEEE802.16-2001).
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dissertation was to study the performance achievable when usingthe LDPC code defined

in the mobile WiMAX standard. In order to verify results presented in this dissertation, a

realistic WiMAX simulation platform needed to be designed and developed. Hence, a realistic

mobile WiMAX simulator was developed that conforms to the mobile WiMAX standard [8].

The scalable OFDMA PHY air interface was implemented with the full-usage of subchannels

(FUSC) as mode of operation. Implementation was based on its inherent frequency diversity

over subchannels and its low network overhead.

The second objective in this dissertation was to compare the LDPC codes to the National

Aeronautics and Space Administration’s (NASA) convolutional code2 in order to establish a

common performance platform.

The last objective was to analyze and develop a novel sparse graph code to reduce the effect of

the high peak-to-average power ratio (PAPR) which is a characteristic of OFDM modulation.

This method has the distinct advantage of limiting the backoff at the power amplifier and

therefore reduces the loss of sensitivity in practical WiMAX systems.

1.4 OUTLINE OF THE DISSERTATION

The outline of this dissertation is as follows. The dissertation starts by describing a realistic

mobile WiMAX simulation platform in Chapter 2 with all its characteristics of interest.

Chapter 3 explains how an error correction coding scheme operates within a mobile WiMAX

communication system and is followed by the design parameters and implementation of

the standardized convolutional code in the mobile WiMAX platform. The standardized

convolutional code will serve as a benchmark to compare performance of all sparse graph codes

as used in this dissertation.

The notation and design parameters used in the analysis and design of a LDPC code is given in

chapter 4. LDPC codes are optimized by using the analysis for peak clipping conditions at the

transmitter. In the same chapter the manner in which LDPC codes were constructed in order to

combat the effect of peak clipping, is addressed.

Chapter 5 begins with illustrating the range of channel conditions that will be used for testing

different coding schemes. Both the convolutional code and standardized LDPC code are tested

on the mobile WiMAX platform for a range of channel conditions. This is followed by

2 The NASA convolutional code is a mandatory coding scheme in mobile WiMAX
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the illustration of performance improvement of the optimized LDPC codes in peak clipping

conditions. The dissertation is concluded in chapter 6 with concluding remarks and future

research.

1.5 CONTRIBUTIONS FROM THIS AND RELATED STUDIES

The following journal paper based on the mobile WiMAX simulation platform was submitted

to the Institute of Electrical and Electronics Engineers (IEEE) Transactions on Education:

1. B.P. Salmon, W. Kleynhans, J.C. Olivier and B.T. Maharaj,”Teaching the theory of

channel estimation and coding via a mobile WiMAX simulation platform”, submitted

for publication

The following conference paper was submitted to the PIMRC Conference 2008 and the work is

based on the results directly obtained from this dissertation:

1. B.P. Salmon, W. Kleynhans, J.C. Olivier and B.T. Maharaj,”Performance analysis of

channel coding techniques in a mobile WiMAX system with reduced transmission power”,

submitted for publication

The author co-authored the following conference papers that were submitted to the PIMRC

2008 conference and is based on a related dissertation on the analysis of channel estimation and

equalization methods:

1. W. Kleynhans, B.P. Salmon, J.C. Olivier and B.T. Maharaj,”On adaptive frequency

domain interpolation for mobile WiMAX”, submitted for publication

2. W. Kleynhans, B.P. Salmon, J.C. Olivier and B.T. Maharaj,”An evaluation of channel

estimation methods on a mobile WiMAX platform”, submitted for publication

The following IEEE WCNC 2007 conference paper has been accepted with the work being

directly based on the results from this dissertation:

1. B.P. Salmon and J.C. Olivier,”Performance analysis of low-density parity-check codes

on a WiMAX platform”, in Proc. IEEE WCNC’2007, vol. 1, Hong Kong, March 2007,

pp. 569-571.
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CHAPTERTWO
MOBILE WIMAX

2.1 CHAPTER OVERVIEW

The chapter begins with discussing the mobile fading channel of interest that was used within

the mobile WiMAX simulator. The mobile fading channel with all desired characteristics

was emulated with a complex base band communication model. The mobile fading channel

characteristics of interest were discussed in this chapter and are AWGN, multipath propagation

and flat fading respectively. Several different multipath propagation profiles are appended

in appendix A that were obtained from [32, 33] which are included within the performance

evaluation platform. The effects of large-scale fading which is thoroughly described in [1] will

not be covered in this dissertation. Popular models used in the industry to emulate large-scale

fading are the modified Okumura model, Lee model, Longley-Rice model and the COST231

model [1, 34–37].

The second part of this chapter discusses the mobile WiMAX standard [8, 9] and how the

developed simulator conforms to the standard. The inherent scalability of the OFDMA

modulation scheme [8, 32], makes it widely considered to be the physical layer of choice in

the use of mobile WiMAX [1, 38] and will be the air interface used in this dissertation. The

chapter continues by explaining the limiting characteristics of using OFDM as a modulation

scheme and illustrates its shortcomings. The chapter is concluded with an explanation of the

construction of a mobile WiMAX simulation platform that will exert realistic system parameters

and can be used as a baseline for all simulation conclusions.

6



CHAPTER TWO MOBILE WIMAX

2.2 ADDITIVE WHIT E GAUSSIAN NOISE CHANNEL

In the design of a system that transfers information through a communication medium, it is

always convenient to construct a mathematical model to analyze the communication medium.

This mathematical model should reflect all the characteristics of the transmission medium [39].

Bearing this in mind, the fundamental AWGN physical channel will be addressed first. This

channel is an additive statistical model and only the first and second moment of the process is

required. The AWGN channel model is applied as

r(t) = x(t) + η(t), (2.1)

wherex(t) denotes the transmitted symbol andr(t) the received symbol. The received symbol is

corrupted by the communication channel and the AWGN processη(t) has a probability density

function (PDF) that is Gaussian distributed as

p(η(t)) =
1√

2πση(t)

exp

(

−(η(t)−mη(t))
2

2σ2
η(t)

)

, (2.2)

with meanmη(t) and variance ofσ2
η(t). The power spectral density (PSD) of the processη(t)

is a constant double-sided flat spectrum for the entire frequency spectrum and is a memoryless

process. The induced entropy for the corresponding AWGN process that is given by [30] as

H(η(t)) =
1

2
log2(2πeσ

2
η(t)), (2.3)

with the natural numbere=2.7183. All of the above mentioned properties of the AWGN process

is important in this analysis and will become more apparent later in this dissertation.

2.3 MOBILE FADING CHANNELS

A more sophisticated mathematical model was required when analyzing a more complex

communication system. The first characteristic behind electromagnetic wave propagation is the

reflection, diffraction and scattering of these waves [1, 40, 41]. Two classifications, large-scale

and small-scale propagation, can be identified from these three characteristics and both are

always present in any mobile wireless channel.

Large-scale propagation models are traditionally focused on predicting the average received

signal strength within a given environment with the displacement between the two stations as
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reference. This is accomplished through the construction of a statistical propagation model

by matching a semi-empirical model to a large sample set of field measurements. To each

fitted model a degree of confidence can be assigned to verify the accuracy of the model [1, 34].

This attenuation factor is the path loss experienced in the system and should be taken into

consideration when calculating the link budget of the communication link [34]. The focus of this

dissertation is not to calculate the link budget and for this reason only small-scale propagation

was evaluated.

Small-scale fading is used to classify the rapid fluctuation in the received RF signal over a short

period of time. This rapid fluctuation is caused by numerous contributors, namely the motion

of the receiving device, the current environmental scatterers and the dynamic change in the

environment that influence the propagation of these electromagnetic waves. These contributing

factors present multiple versions of the same transmitted signal to the receiver with a varying

delay profile. This small-scale fading, or simply fading, in the communication medium is

mathematically expressed as

r(t) =
L

∑

k=1

ak α(t)x(t− τk) + η(t), (2.4)

whereEq. (2.4) is an extension toEq. (2.1). The physical factors given inEq. (2.4) that

influence the properties of the small-scale propagation of electromagnetic radio waves are

explained in the following sections.

2.3.1 Small-scale Fading Channel Parameters

2.3.1.1 Rayleigh Fading Distribution

Modern communication standards are designed to cater for the user’s needs and operational

environment. The packet structure and carrier frequency of mobile WiMAX is ideal for

mobile NLOS communication, which the typical subscriber station (SS) experiences. Fading

distribution for small-scale propagation in a line of sight (LOS) transmission are closely

correlated to a Ricean distribution and as the LOS component strengthens, the distribution

converges to a Gaussian distribution [42]. But for the typical mobile WiMAX user the Rayleigh

distribution is of interest, because it possesses the statistical time varying nature of the non light

of sight (NLOS) communication link [1, 30, 39, 40, 42]. This fading component denoted asα(t)

in Eq. (2.4) on page 8 has an amplitude PDF as
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p(α(t)) =











α(t)
σ2

r(t)

exp

(

− α2(t)
2σ2

r(t)

)

0 ≤ α(t) ≤ ∞,

0 α(t) < 0.

(2.5)

Whereσr(t) is the root mean square (RMS) [1] value of the received signalr(t) before envelope

detection andσ2
r(t) is the average power ofr(t) before envelope detection. The statistical mean

mα(t) is given as

mα(t) = E[α(t)] =

√

π

2
σr(t) = 1.253314 σr(t), (2.6)

and the variance is equal to

σ2
α(t) = E[α2(t)]−E2[α(t)] =

(

2 −
√

π

2

)

σ2
r(t) = 0.429204 σ2

r(t). (2.7)

The phaseθα(t)(t) of the frequency non-selective fading signalα(t) is uniformly distributed

over[0, 2π) and is given in [1, 30, 39, 40] as

p(θα(t)(t)) =
1

2π
− π ≤ θα(t)(t) ≤ π. (2.8)

2.3.1.2 Coherence Bandwidth

The coherence bandwidthBc is a measure of the bandwidth over which the channel’s

frequencies have a high correlation in amplitude variation and phase shifts. This implies

that all the used carrier frequencies within the coherence bandwidth [1, 30, 39, 43] will fade

simultaneously and can be calculated as

Bc =
1

βcbστ
. (2.9)

Where the RMS delay spread is denoted byστ [1] and the degree of correlation between

frequencies within a given bandwidth is denoted byβcb ∈ R
+.

2.3.1.3 Doppler Spread

The motion of the subscriber station generates a Doppler frequency shiftfcD on the carrier

frequencyfc [1]. The amount of frequency shift exerted on the carrier frequency can be

calculated as
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fcD =
vss fc

c
cos (θss), (2.10)

with vss as the velocity of the SS while assuming the basestation (BS) is stationary. The angle

of displacement between the SS and the BS is presented byθss and the carrier frequency byfc

of the communication system. A design parameter is to determine the maximum operable speed

for a mobile WiMAX subscriber station and from this derive the maximum expected Doppler

frequency shift and is expressed asfD= max(fcD). Doppler spreadBD is the measure of

spectral broadening of a single spectrum in a band of frequencies. The Doppler power spectrum

for a continuous wave (CW) carrier can be well approximated by the following PSD [1, 34]

Sx(t)(f) =







σ2
x(t)

π
√

f2
D
−(f−fc)2

if |f − fc| ≤ fD,

0 if |f − fc| > fD.
(2.11)

Coherence timeTc is a statistical measure of a time period in a transmission sequence over

which the channel impulse response (CIR) remains invariant. The coherence time is inversely

proportional to the Doppler spread [1] of the channel and is expressed as

Tc =
βct

BD
. (2.12)

With βct ∈ R
+ for a degree of correlation between amplitudes within a given time period.

2.3.1.4 Rate of Fading Fluctuation

Depending on the rate of fluctuation in the received sequence compared to the frequent changes

in the communication channel, the channel can be classified into either a fast or slow fading

channel. A channel is classified as fast fading when the time duration of the transmitted

sequenceTx(t) is longer than the coherence timeTc of the channel and the transmission

bandwidthBx(t) is smaller than the Doppler spreadBD [1]. On the other hand a channel is

classified as slow fading when the time duration of the transmitted sequenceTx(t) is much

shorter than the coherence timeTc of the channel and the transmission bandwidthBx(t) is larger

than the Doppler spreadBD [1]. The properties of both classifications is given in summary as

Fast fading → Tx(t) > Tc, Bx(t) < BD,

Slow fading → Tx(t) ≪ Tc, Bx(t) ≫ BD.
(2.13)
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2.3.1.5 Multipath Propagation

The environment presents many points for reflection, diffraction and scattering for all

propagating signals. These scatterers support multiple paths for signal propagation to the

receiving antenna of the subscriber station. These multiple versions of the same transmitted

sequence arrives at the receiving antenna on different propagating paths. Each propagating path

has a different distance, arrival time, arrival angle and phase orientation [44] to the other paths.

This multipath propagation is expressed as

r(t) =
L

∑

k=1

akx(t− τk) + η(t). (2.14)

Hence the received signal consist ofL multipath versions of the signalx(t), where each

version is attenuated from an index value in vector{a} and delay by the same index value

in vector {τ}. These two vectors are obtained from the dynamic environment that induces

different combinations of how the signal propagates and is known as the power delay profile

(PDP). Either constructive or destructive combinations can be observed during the process of

combining the multiple versions of the transmitted sequence and results in the fluctuations

within the received sequence. The combination of delayed sequences are known as intersymbol

interference (ISI) and will either extend or shorten the duration of the symbol.

2.3.2 Multipath Fading

Depending on the bandwidth of the signal and the delay spread [1], a system will experience

different delays in the propagating paths at the receiving antenna. These different delays in the

propagating paths divides the communication channel into two classifications.

Frequency Non Selective Fading → Bx(t) ≪ Bc, Tx(t) ≫ στ ,

Frequency Selective Fading → Bx(t) > Bc, Tx(t) < στ ,
(2.15)

whereTx(t) is the symbol time period,Bx(t) is the bandwidth of the signal,στ is the RMS

delay spread andBc is the coherence bandwidth of the communication channel. Frequency

non-selective fading preserves the spectral characteristics of the transmitted signal over the

channel, but due to the multipath propagation within the environment the signal strength will

fluctuate in gain at the receiver. The most common amplitude distribution for a frequency

non-selective channel is the Rayleigh distribution. In a frequency selective fading channel the
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spectral characteristics are altered and the outcome is that various frequency gains are expected

over the entire channel bandwidth.

2.4 WI MAX P LATFORM

FIGURE 2.1: One OFDMA TDD time frame.

WiMAX (IEEE 802.16) is a technology for broadband wireless communication that

incorporates OFDM modulation to transfer data at high rates over a communication channel.

The WiMAX standard provides both licence and licence exempted bands for the industry. The

Wireless MAN OFDMA air-interface for IEEE 802.16e-2005 will be the focus in this chapter

and this air-interface offered by the WiMAX standard operates in the 2.5 GHz spectrum.

This frequency band operates below the 11 GHz sprectrum and is subjected to the physical

environment where the wavelength is long enough to support a NLOS transmission, with

multipath propagation becoming a significant impairment. The simulation platform designed

in this dissertation incorporates a Wireless MAN OFDMA air interface which includes all the

following features:

• Scalable OFDMA [45] to support multiple channel bandwidths from 1.25 to 20 MHz.

• Support TDD transmission and frame support.
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• Conforms to the mobile packet format.

• FUSC operation mode is supported.

• Support waterfilling over all subcarriers.

• Support adaptive modulation schemes.

The WiMAX simulator with default settings is available at http://opensource.ee.up.ac.za/.

2.4.1 Modulator

A OFDM system with channel equalization is illustrated in figure 2.2 [8, 9]. The first step

in transmission is to obtainN modulated symbols in the frequency domain. The modulation

scheme of the data carriers is determined by the channel conditions and quality of the RF signal.

In the downlink bursts the BS support 4-QAM (QPSK), 16-QAM and 64-QAM modulation

schemes. With good channel conditions the more complex 64-QAM modulation scheme is

used, and as lower RF signal quality is experienced the less complex modulation schemes are

used. In an initial study [46] it was shown that WiMAX operates86.01% of the time in the

4-QAM mode,10.48% of the time in the 16-QAM mode and0.8% of the time in 64-QAM

mode. There is also2.7% probability that WiMAX is in an unoperable region.

The simplest method to construct a QAM signal is to impress separate information bits on

each of the quadrature carriers and assign them using a gray coding scheme [8, 9]. The two

quadrature carriers are the inphase and quadrature carriers [39] and are multiplexed to obtain

the transmitted signal waveform in the frequency domain [39, 47] as

sn(f) = AmcgF (f)cos(2πfcf) + AmsgF (f)sin(2πfcf) n = 1, . . . , N. (2.16)

Where{Amc} and{Ams} are the sets of amplitude levels that are obtained by mappingk-bit

sequences into signal amplitudes andgF (f) is the frequency pulse shaping filter. The length of

thek-bit sequence for aM-QAM constellation is given by

k = log2(M). (2.17)

Rectangular QAM constellations [8] have a distinct advantage of being generated as two PAM

signals that are impressed onto the two quadrature carriers and leads to ease of modulation and
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FIGURE 2.2: OFDMA system with channel estimation and equalization.
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demodulation in the system. There exist two methods of demodulating a signal constellation,

namely hard decision and soft decision demodulation.

Both decision methods induce the same probability of symbol error for aM-QAM constellation

when no coding is applied and is given in [30] as

PM = 1 −
(

1 − 2

(

1 − 1√
M

)

Q

(

√

3Eav

(M − 1)N0

))2

for k even. (2.18)

With Eav/N0 denoting the average signal-to-noise ratio (SNR) per symbol. Both decision

methods will be discussed in the following sections.

2.4.1.1 Hard Decision Detection

The function of the demodulator in Figure 2.2 on page 14, is to make a decision on each of

the received symbols based on the observation ofs̃n(f), n ∈ [1, N ] for all the subcarriers.

The decision criterion is based on maximum aposteriori probability (MAP) and selects the

signal corresponding to the highest posterior probability in the set of posterior probabilities

{P (sn,m(f)|s̃n(f))} [39]. Using Baye’s rule the MAP detection can be expressed as

P (sn,m(f)|s̃n(f)) =
p(s̃n(f)|sn,m(f))P (sn,m(f))

p(s̃n(f))
, m ∈ [1,M ]. (2.19)

wherep(s̃n(f)|sn,m(f)) is the conditional PDF that̃sn(f) is observed on subcarriern, given

that symbolsn,m(f) was transmitted. The symbolsn,m(f) presents themth-QAM symbol,

m ∈ [1,M ], that was transmitted over thenth subcarrier. By expanding onEq. (2.19) we

obtain the following

P (sn,m(f)|s̃n(f)) =
p(s̃n(f)|sn,m(f))P (sn,m(f))

∑M
m=1 p(s̃n(f)|sn,m(f))P (sn,m(f))

, m ∈ [1,M ]. (2.20)

With perfect source encoding the a priori probabilityP (sn,m(f)) for themth-QAM symbol

being transmitted is assumed to be equal probable; i.e.,P (sn,m(f)) = 1/M , ∀ m. By

substituting equal probable symbols intoEq. (2.20) we acquire the expression as

P (sn,m(f)|s̃n(f)) =
1
M
p(s̃n(f)|sn,m(f))

1
M

∑M
m=1 p(s̃n(f)|sn,m(f))

, m ∈ [1,M ], (2.21)

that simplifies to
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P (sn,m(f)|s̃n(f)) =
p(s̃n(f)|sn,m(f))

∑M
m=1 p(s̃n(f)|sn,m(f))

, m ∈ [1,M ]. (2.22)

When evaluating an AWGN channel,Eq. (2.22) can be written as

P (sn,m(f)|s̃n(f)) = βqam ·
(

1√
2πση(t)

exp

(

− D(s̃n(f), sn,m(f))

2σ2
η(t)

))

, (2.23)

with βqam given as

βqam =

( M
∑

m=1

1√
2πση(t)

exp

(

− D(s̃n(f), sn,m(f))

2σ2
η(t)

))−1

. (2.24)

D(s̃n(f), sn,m(f)) denotes the euclidean distance between the symbolss̃n(f) andsn,m(f). To

maximizeP (sn,m(f)|s̃n(f)), the distance vectorD(s̃n(f), sn,m(f)) must be minimized. In

summary, only a set{m}, m ∈ [1,M ] euclidean distances must be computed and then select

the symbol corresponding to the shortest distance to obtain the most likely symbol transmitted

and decode the corresponding binary sequence for the receiver. This hard decision detection for

each subcarriern is given by

ũn = HD(un|s̃n(f)) =
M

min
m=1

(

D(s̃n(f), sn,m(f))

)

, n ∈ [1, N ]. (2.25)

2.4.1.2 Soft Decision Detection

By substituting a hard decision detector with a soft decision detector, system complexity is

increased. Soft decision detection starts with the same MAP algorithm for symbol detection

as shown inEq. (2.20). By assuming all the same parameter as in section 2.4.1.1, the symbol

probability is

P (sn,m(f)|s̃n(f)) =
p(s̃n(f)|sn,m(f))P (sn,m(f))

∑M
m=1 p(s̃n(f)|sn,m(f))P (sn,m(f))

, m ∈ [1,M ]. (2.26)

Assuming again equal probable symbol transmission we expressEq. (2.26) as

P (sn,m(f)|s̃n(f)) =
1
M
p(s̃n(f)|sn,m(f))

1
M

∑M
m=1 p(s̃n(f)|sn,m(f))

, m ∈ [1,M ], (2.27)

that simplifies to
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P (sn,m(f)|s̃n(f)) =
p(s̃n(f)|sn,m(f))

∑M
m=1 p(s̃n(f)|sn,m(f))

, m ∈ [1,M ]. (2.28)

When evaluating an AWGN channel,Eq. (2.28) can be written as

P (sn,m(f)|s̃n(f)) = βqam ·
(

1√
2πση(t)

exp

(

− D(s̃n(f), sn,m(f))

2σ2
η(t)

))

, (2.29)

with βqam given as

βqam =

( M
∑

m=1

1√
2πση(t)

exp

(

− D(s̃n(f), sn,m(f))

2σ2
η(t)

))−1

. (2.30)

The hard decision detection chooses the most probable symbol and demodulates the symbol

to the correct binary sequence given a symbol constellation map. The main difference for

a soft decision detection is that instead of demodulating to a binary information stream, the

soft decision detector calculates the corresponding bit probability for each bit in the binary

sequence. The soft decision detection for the probability of thejth bit being a1 in vectorũn for

each subcarriern is

ũn(j) = SD(un(j)|s̃n(f)) =

M
∑

m=1

P (sn,m(f)|s̃n(f)) · P (un(j) = 1|sn,m(f)), (2.31)

whereP (un(j) = 1|sn,m(f)) is the probability that the binary sequence mapped to symbol

sn,m(f) has a binary value of 1 in positionj. Eq. (2.31) must be computedK = log2(M) times

to obtain the completẽun(j) vector and is expressed as

{ũn(j)} =

{

SD(un(1)|s̃n(f)) ;SD(un(2)|s̃n(f)) ; . . . ;SD(un(K)|s̃n(f))

}

. (2.32)

Eq. (2.32) is used to calculate each bit probability of being a1. The bit probability of0 for each

bit is calculated as

P (un(j) = 0) = 1 − P (un(j) = 1), j = 1, 2, . . . , log2(M). (2.33)
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2.4.2 OFDM Modulation

The approach of OFDM is to subdivide the available channel bandwidth into a number of

equal size orthogonal bands of subcarriers. This subdivision provides N bands where different

information symbols can be transmitted simultaneously on the N subcarriers. WiMAX is

designed that each subcarrier bandfSC must have a bandwidth size of10.49KHz. This size

of bandwidth satisfies the following inequality [8] of

fD ≪ fSC ≪ 1

στ

. (2.34)

With the maximum Doppler frequency shift denoted byfD and the RMS delay spread denoted

by στ . Synchronizing subcarriers for orthogonality [8, 9, 39] and mitigating the effect of ISI is

optimized ifEq. (2.34) holds as a design parameter.

The OFDM modulator and demodulator can be impletemented by use of a parallel bank of filters

or when the number of subcarriers are large, typicallyN > 25, it would be more efficient to

implement the modulator and demodulator using a fast Fourier transform (FFT) algorithm [39].

The OFDM modulation of the N subcarriers, which is the inverse fast Fourier transform (IFFT)

function [47, 48] is given as

xj(t) =
1

N

N
∑

k=1

sk(f) exp

(

2 i π(j − 1)(k − 1)

N

)

, j ∈ [1, 2, . . . , N ], (2.35)

and the OFDM demodulation, which is the FFT function [47, 48] is given as

yk(f) =

N
∑

j=1

rj(t) exp

(−2 i π(k − 1)(j − 1)

N

)

, k ∈ [1, 2, . . . , N ]. (2.36)

The next major design parameter to discuss is the transmission of OFDM symbols with

the restrictive high PAPR characteristic [39, 49–51]. A characteristic of OFDM is that the

modulation seldomly exerts excessive high amplitude peaks. These high amplitudes are caused

by the symbols in theN subcarriers that add constructively in phase with each other in the

frequency domain. Proper rollback in the transmission power of the communication system

must be adhered to in order to ensure that the high power amplifier (HPA) does not saturate in

the operation region. This operational region for the HPA is defined as

xj(t) =







xj(t) if xj(t) ≤ xsaturated(t),

xsaturated(t) if xj(t) > xsaturated(t).
(2.37)
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Wherexsaturated(t) denotes the saturation point of the HPA in the linear operating region. For

illustration purposes the operation region of an amplifier is shown in Figure 2.3 on page 19.

The first notable difference is the operational regions of the ideal amplifier and the HPA. The

saturation point is the maximum amplification where the amplification predictability of the HPA

still corresponds to the ideal amplifier. To ensure no corruption of the OFDM symbols occur

at the transmitter end, the highest peak amplitude value for a given OFDM modulation is set to

the saturation point of the amplifier. This is accomplished by backing off in the power of the

operation point (average OFDM power) until the highest peak amplitude value is less than or

equal to the amplifier’s saturation point. This back off region is also shown in Figure 2.3 and

illustrates the massive loss in amplification gain in the usage of OFDM as a modulation scheme.

FIGURE 2.3: Operational region of HPA.

Definition 2.4.1 OFDM modulatingN-subcarriers in the frequency domain, will create an

OFDM symbol that is compiled ofN discrete complex time symbols.

The transmitter’s HPA saturates when the transmission symbols are amplified and the high

amplitude values are amplified beyond the HPA’s saturation point. By peak clipping a set of
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time symbols in an OFDM symbol will result in a complete distortion of the symbolsyk(f),

k ∈ [1, N ] in the frequency domain. This is commonly referred to as inband distortion and

outband smearing of the transmission band in the frequency spectrum [1, 8–10, 39] and this

distortion at the receiver is expressed as

yk(f) =
N

∑

j=1\ j′

rj(t) exp

(−2 i π(k − 1)(j − 1)

N

)

+
N

∑

j′=1\ j

rj′(t) exp

(−2 i π(k − 1)(j′ − 1)

N

)

.

(2.38)

Where thekth subcarriers at the receiver is presented byyk(f). The first summation inEq.

(2.38) on the right is the set of symbols of received valuesrj(t) that are not saturated and the

second summation is the set of saturated symbols in the the received OFDM symbol denoted

by rj′(t). The communication channel was omitted in Figure 2.4 to illustrates the effect that a

saturated HPA has on the transmitted signal. The horizontal lines in the figure are the preset

saturation level of the HPA.

FIGURE 2.4: OFDM system with−8dB clip in the HPA.

It is observed in Figure 2.4 that by clipping a single time instance effects the entire OFDM

symbol and these effects have been well researched in [49, 50]. An emphirical graph running 1
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Tera samples, is plotted in Figure 2.5 on page 21 for an OFDM systemusing a 128-point FFT

and aEb/N0 of 0 dB with various peak clipping levels.

It is concluded from the empirical graph presented in Figure 2.5, that there is no serious

performance degradation for peak clipping levels above -7.5 dB in the saturation point for a

128-point FFT OFDM system. The foundation for this is the increase in number of clipping

occurrences in all the OFDM symbols. Filters can be placed to limit the out band smearing but

other techniques need to be used to bring the inband distortion down and will be discussed later

in this dissertation (see section 4.10).

FIGURE 2.5: Simulated statistics of an OFDM system.

2.4.3 Channel Estimation and Equalization

The advantage of using OFDM as modulation scheme is the ability to mitigate the effects of

multipath propagation. This is acquired by accurately estimating the channel impulse response

(CIR) from the reference symbols [52]. The CIR is used to equalize the data symbols in an

OFDM symbol [38]. This process is realized by appending a cyclic prefix (CP) to the OFDM
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symbol before transmission [8, 9]. The CP is a copy of the last fraction of time symbols and is

illustrated in Figure 2.6.

FIGURE 2.6: OFDM symbol with cyclic prefix appended.

The CP is compulsory in mobile WiMAX1 and needs to be included in the analysis of this

dissertation even though channel estimation and equalization is not the focus. The appending

of the CP to each transmission sequence reduces system’s bandwidth utilization [8, 9] and this

loss in signal to noise ratio is denoted as

Losscp [dB] = 10 log10

(

1 − Tcp

Tx + Tcp

)

. (2.39)

With the transmission time of the CP and OFDM symbol denoted asTcp andTx respectively.

The typical losses experienced in mobile WiMAX is tabulated in table 2.1 as

TABLE 2.1: Power loss in mobile WiMAX

Cyclic prefix length Power loss

CP = 1
4

−0.9691 dB

CP = 1
8

−0.5115 dB

CP = 1
16

−0.2632 dB

CP = 1
32

−0.1336 dB

It should be noted that this is a neccessary loss in bandwidth utilization for the gain in BER

performance over a communication system in a multipath propagation environment that uses

no equalization. It was for this reason that the bandwidth addition is included in all simulation

results to make a fair comparison to other technologies.

1 Mobile WiMAX supports cyclic prefix length of1
4
, 1

8
, 1

16
and 1

32
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2.5 SIMULATING A M OBI LE FADING CHANNEL

2.5.1 Simulating an AWGN Channel

This section gives a description on how to generate accurate AWGN noise samples and how

these samples are scaled by their variance to obtain a specific quantity of energy per bit for

a normalized noise band at the receiver (Eb/N0). In this dissertation a PDF transformation

algorithm known as the Bray-Marsagalia algorithm [53] was used to transform a uniform

amplitude PDF distribution into a Gaussian amplitude PDF with zero mean and unit variance.

The two moments of the Gaussian process will be denoted asN (mη(t), σ
2
η(t)) with meanmη(t)

and varianceσ2
η(t). The PDF transformation algorithm is only as strong as the uniformly

generated samples that are used as inputs. The Wichmann-Hill algorithm [54, 55] was used

to produce uniform distributed samplesUwh(t) ∈ [0, 1]. There exists two advantages in using

the Wichmann-Hill algorithm as uniform number generator, the first is that the length of the

repetition sequence can be extended without deteriorating the statistical properties [54]. The

second advantage is that the uniform number generator can be adjusted to opertate on any

hardware/software platform.

When investigating the performance of a communication system, most research characterizes

the performance of the system by evaluating the BER for a given signal strength. The signal

strength can either be expressed as a signal-to-noise ratio (SNR) or energy per bit to noise

power ratio (Eb/N0). The SNR is defined as the average signal power to noise power at the

receiver [56]. Using the SNR quantity is meaningless if the noise equivalent bandwidth is not

specified [40] and even then it is difficult to compare and analyze communication systems.

Consequently the SNR is normalized as shown in [39, 40] to theEb/N0 quantity and will now

be derived in this section to accommodate an OFDM communication platform. The following

deriviation is an extention to the scaling factor derived in [40]. The following relationship

between SNR andEb/N0 holds as

SNR =
σ2

x(t)

σ2
η(t)

=
Eb fbit

N0

∫ ∞

0
|HRX(f)|2 df =

Ec fbit

Rc N0

∫ ∞

0
|HRX(f)|2 df , (2.40)

whereσ2
x(t) is the variance of the transmitted signal andσ2

η(t) is the variance of the required

Gaussian distributed signal. The energy of a bit for an uncoded transmission stream is denoted

by Eb, while the energy of a bit for a coded transmission stream is denoted byEc. fbit is the

uncoded bit rate of the transmission signal and the code rate for the current coding scheme is
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denoted byRc. HRX(f) is the frequency response of the receiver’s noise limiting filter with the

single sided PSD level of the AWGN channel denoted byN0. Eq. (2.40) can be written in terms

of the required noise variance to normalize the SNR toEb/N0 as

σ2
η(t) =

σ2
x(t)Rc

∫ ∞

0
|HRX(f)|2 df

Ec

N0
fbit

. (2.41)

Now if Gaussian variables are produced with a Gaussian generator [53] at a constant rate of

fsamp [Hz], the effective noise bandwidth [40] for this generator is equal to

Bns =
fsamp

2
. (2.42)

The Gaussian amplitude samples are produced with unit variance and zero mean [53] and has

the property [40] of

Nns · Bns = σ2
ns(t) = 1, (2.43)

with Nns denoting the single-sided PSD of the noise generated. By substitutingEq. (2.43) into

Eq. (2.42) yields [40] a relation of

Nns =
2

fsamp
. (2.44)

This equates to the power of the Gaussian amplitude generator at the output of the receive filter

as [40]

σ2
r(t) = Nns

∫ ∞

0

|HRX(f)|2 df =
2

fsamp

∫ ∞

0

|HRX(f)|2 df. (2.45)

The Gaussian amplitude generator was scaled bykη [40] to obtain the required normalized noise

bandwidth as expressed inEq. (2.41), withkη given as

kη =
σ2

η(t)

σ2
r(t)

. (2.46)

By substitutingEq. (2.41) andEq. (2.45) intoEq. (2.46) the scaling factorkη [40] is given as

kη =
σ2

x(t)fsamp

2 fbit
Eb

N0

. (2.47)

To incorporate an OFDM transmission system into the scaling factorkη, some attributes of the

system must first be discussed. The first extension is to include the power [48] of an OFDM

symbol and is expressed as
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Px(t) = F−1(Ps(f)), (2.48)

whereF−1 denotes the OFDM modulator which is the IFFT function given inEq. (2.35). The

power ofPs(f) can be computed [48] as

Ps(f) = lim
F→∞

1

2F

∫ F

−F

|s(f)|2df. (2.49)

SubstitutingEq. (2.49) andEq. (2.35) intoEq. (2.48), the power in the time domain is

expressed as

Px(t) = lim
N→∞

1

N

N
∑

j=1

(
∣

∣

∣

∣

1

N

N
∑

k=1

sk(f) exp

(

2 i π(j − 1)(k − 1)

N

)
∣

∣

∣

∣

2 )

, (2.50)

which equates to

Px(t) = lim
N→NFFT

Ps(f)

N
. (2.51)

TheNFFT denotes the number of subcarriers within the OFDM system and for mobile WiMAX

theseNFFT values are typically128, 512, 1024 and2048 respectively. The second extension is

to include the cyclic prefix that utilizes system bandwidth. The number of time symbols in an

OFDM symbol is extended to

NTotal = NFFT +NCP, (2.52)

with NFFT andNCP denoting the number of samples in an OFDM symbols and the CP in the

time domain respectively. The last extension is the uncoded bit ratefbit in Eq. (2.47) needs to

be replaced byNbit for the uncoded bit rate in an OFDM system.Nbit represents the parallel

uncoded bit rate of all the subcarriers and is calculated by the summation of all the uncoded

data rates in all the subcarriers in a single OFDM symbol and is expressed as

Nbit =

N
∑

j=1

fbit, j , (2.53)

with fbit, j denoting the uncoded bit rate ofjth subcarrier. Thus the final power scaling factor

in an OFDM modulation system for the required noise variance as a function ofEb/N0 [dB] is

given as
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kη =
σ2

x(t).fsamp.(NFFT +NCP)

10(0.1.Eb/N0).2.NFFT.Nbit
. (2.54)

Figure 2.7 on page 28 illustrates how the power scaling factorkη is scaled to produce Gaussian

noise samples with the correct variance required for a givenEb/N0 value.

2.5.2 Simulating a Jakes Flat Fading Channel

When using a fading process to emulate a fading channel, the fading process should have

statistical properties resembling a mobile fading channel’s characteristics [42]. Well known

algorithms have been presented in the literature [57, 58] and among all the contenders the two

most well known mathematical reference models are the Clarke [59] and Jakes [60] model.

Various implementations of both models have been proposed in the literature [40, 57, 58]. With

the high sampling period required for the carrier frequency of mobile WiMAX, a deficiency

was discovered in using the Clarke model with a time domain filter [40] and for this reason the

Jakes model was implemented. Various improvements have been made to the Jakes model and

the improved Jakes model [61] was used because it is the best sum-of-sinusoid [57, 58] model.

The improved Jakes model is given as

Z(t) = ZI(t) + i ZQ(t), (2.55)

with

ZI(t) =

√

2

M

( M
∑

n=1

cos(2πfDt cos(αn) + φn)

)

, (2.56)

ZQ(t) =

√

2

M

( M
∑

n=1

cos(2πfDt sin(αn) + ϕn)

)

, (2.57)

αn =
2πn−π+θ

4M
, for n ∈ [1, 2, . . . ,M ]. (2.58)

Whereφn, ϕn andθ are statistically independent uniform distributed samples on[−π, π) for all

n andfD is the maximum Doppler frequency. The statistical properties required for any fading

process is given as

RZQZQ
= RZIZI

= J0(2πfDτ), (2.59)
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RZQZI
= RZIZQ

= 0, (2.60)

RZZ = 2J0(2πfDτ), (2.61)

whereJ0() denotes the zero-order Bessel function of the first kind. It is proved that the improved

Jakes model [61] complies with all required statistical properties [61] given inEq. (2.59) -Eq.

(2.61). The last parameter that needs to be addressed is the number of sinusoidsM . For best

statistical propertiesM → ∞, but in [61] it was proven that a good approximation of the

process can be observed forM ≥ 8. The next step is to extract channel state information from

the process and supply it to the receiver. The fading amplitude is extracted from the fading

model as

|Z(t)| =
√

ZI(t)ZI(t) + ZQ(t)ZQ(t), (2.62)

and the phase as

∠(Z(t)) = arctan

(

ZQ(t)

ZI(t)

)

. (2.63)

Channel State Information (CSI) obtained fromEq. (2.62-2.63) can be used to supply the

receiver with perfect CSI to optimize the channel coding technique. The process of estimating

the fading process is not the focus of this dissertation and only perfect estimation will be used

within the channel decoders at the receiver.

2.5.3 Simulating a Mobile Fading Channel

In Figure 2.7, an illustration to simulate a frequency selective fading channel [40] is given.

The communication model is capable of emulating a time-invariant multipath fading channel

with each of theL propagation paths which are independently faded. The communication

channel operates by receiving a OFDM symbolxext(t), which hasNFFT + NCP complex

baseband signal points that are copied onto each of theL propagation paths and are delayed and

attenuated according to the PDP. In addition, each propagation path is independently flat faded

according to receiver’s sampling rate and mobile speed using theImproved Jakes Model[61]

given byEq. (2.55) in section 2.5.2. To maintain orthogonality between all the subcarriers, the

flat faded propagation path is assumed to be slowly time-varing [62] and is valid if
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FIGURE 2.7: Simulating a mobile fading channel.

Tb ≤
0.01

fD

. (2.64)

WhereTb denotes the OFDM symbol time andfD denotes the maximum Doppler frequency

shift. TheL propagation paths are combined at the receiver and corrupted by AWGN noise.

The AWGN noiseη(t) is scaled accordingly using the power scaling factorkη (see section

2.5.1). The output of the communication model after the AWGN noise is given byrext(t) and

is fed to the receiver module.

2.5.4 Simulating a Mobile WiMAX System

The last section of this chapter addresses the two functional blocks, WiMAX Frame Constructor

and WiMAX Frame Deconstructor, in Figure 2.2 on page 14 respectively.

The function of the WiMAX Frame Constructor is to ensure that the OFDM symbol’s

subcarriers are loaded with the correct control and data signals that conform to the WiMAX

standard [8, 9]. There exist many different operating schemes and modes [8] in WiMAX. The

more popular OFDMA was used as access scheme [32], with the FUSC chosen as the operation

mode. There exist four different operating bandwidths available in mobile WiMAX and with

each bandwidth there is a corresponding FFT size and they are 128, 512, 1024 and 2048 FFT
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FIGURE 2.8: Frame structure for mobile WiMAX operating under FUSC mode.

size respectively with corresponding ranges of 1.25MHz to 20MHz system bandwidth. A frame

structure for a 128 point FFT is shown in Figure 2.8 with all different types of subcarriers.

The frame constructor starts by filling in all the null carriers into their positions, which are

the left, right and DC guardbands. The null carriers within the OFDMA symbol carries

no information and the left and right guardbands are placed to reduce the adjacent carrier

interference (ACI). The direct current (DC) guardband is placed to ensure that there is no

DC information at the receiver, this is because most electronic devices are sensitive to a DC

component [63].

The frame constructor continues by assigning a sequencial numerical value to all the unused

subcarriers left in the OFDMA symbol. This is followed by placing the pilot (reference carriers)

tones in the correct numerical valued subcarrier. There are two types of pilot tones in a WiMAX

system, namely the constant and variable pilot tones. The constant pilot tones are always

assigned to the same location, while the variable pilot tones use a predetermine vectorVariable

Set#X[8] to determine their positions as
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Pilot location = VariableSet#X + 6 � ((FUSC symbol number)mod 2). (2.65)

After assigning a location to each pilot, the pilot requires a synchronized reference source

between the BS and SS, to supply pilots with pseudo-randomized data that is modulated.

FIGURE 2.9: PRBS generator for pilot modulation.

This pseudorandom binary source (PRBS) is presented in Figure 2.9 and is initialized by loading

five least significant bits (LSB) with the cell identification (CID) as indicated by the frame

preamble in the first downlink zone into the five LSB bits of the register (Register 1-5). This is

followed by loading register 6 and 7 with an increment (+1) sement number as indicated by the

preamble in the first downlink zone. The last four registers (Register 8-11) is loaded with11112

for the downlink burst. After this, the pilot amplitudes are clocked out serially for the OFDM

symbol.

This PRBS will generate data for the pilot tones and is dictated by [8] to have a average boost of

2.5 dB over the average data subcarrier and is modulated with an amplified BPSK modulation

scheme as

Ck =
8

3

(

1

2
− Out

)

. (2.66)

The frame constructor continues by assigning a sequencial numerical value to all the unused

subcarriers left in the OFDMA symbol (after guard and pilot insertions) and will be used to

insert the data carriers. Table 2.2 summarizes the subcarrier distributions for FUSC operations

within mobile WiMAX.

All the data subcarriers (SC) are further subdivided into groups of subcarriers known as

subchannels. In FUSC mode each subchannel has 48 subcarriers assigned to it and the number

of available subchannels are also documented in Table 2.2. To allocate the subcarriers of each

subchannel the positions can be computed as
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subcarrier(k, s) = Nsubch � nk +
(

ps �
(

nkmodNsubch

)

+DLPermBase

)

mod
(

Nsubch

)

. (2.67)

where thekth subcarrier,k ∈ [0, Nsubcar−1], of the sth subchannel,s ∈ [0, Nsubch−1], is

denoted as subcarrier(k,s). The constantnk is equal tonk = (k + 13 � s )modNsubcar andps(j)

is the series obtained from the basic permutation sequence [8] that was cyclically shifted to the

left s times. TheDLPermBase is a N0, with DLPermBase ∈ [0, 31] , which is set to preamble

CID in the first zone.

TABLE 2.2: Subcarrier distribution in mobile WiMAX frame

FFT size # Left SC # Right SC # DC SC # Pilot SC # Data SC # Subchannel

128 11 10 1 10 96 2

512 43 42 1 42 384 8

1024 87 86 1 82 768 16

2048 173 172 1 166 1536 32

The modulated symbols that are mapped to each of these subcarriers have already been

discussed in section 2.4.1 and section 2.4.2. After all the subcarriers have been assigned, they

are passed to the OFDM modulator for transmission. At the receiver’s module the WiMAX

Frame Deconstructor is used to reverse the entire process discussed in this section and supply

the mapped information symbols to the correct subchannel.

2.6 CONCLUDING REMARKS

The chapter embarks on describing the realistic mobile WiMAX platform that was implemented

(section 2.5.4) for the simulation study of this dissertation. In section 2.4.1.2 a formula

was presented to calculate the bit probability for any baseband signal constellation that was

used within the simulator. The discussion continues on mobile WiMAX using OFDMA as

modulation scheme and in section 2.4.2 we give a mathematical description on the effects PAPR

will exert on the transmitted symbol. To compensate for the OFDM system an extension to the

AWGN scaling factor [40] is shown in section 2.5.1.
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CONVOLUTIONAL CODES

3.1 CHAPTER OVERVIEW

Binary convolutional codes [6] have been found to have many applications in numerous

communication systems [5] and is seen as a benchmark for performance analysis in most coding

schemes. The chapter begins by explaining the procedures of how channel coding is applied in a

systematic approach (section 3.2) to the mobile WiMAX standard [8]. The chapter continues by

discussing the standardized convolutional code used with all its design parameters (section 3.3).

The block interleaver proposed in the mobile WiMAX was shown in section 3.4. Section 3.5

discusses the Viterbi decoding algorithm that employs the maximum-likelihood (ML) sequence

detection for the decoding of a convolutional code. The chapter concludes in section 3.5.3

with a mathematical description of the performance of the convolutional code and its decoding

implementation constraints.

3.2 CHANNEL CODING - M OBILE W I MAX

In this section a brief discussion follows on how coding was applied in the mobile WiMAX.

Figure 3.1 represents the encoding process at the transmission module and Figure 3.2 represents

the decoding process at the receiver module. The binary source supplies the system with binary

user payload data and is shuffled by use of a randomizer [8]. For the purpose of this dissertation

the binary source with the randomizer is seen as a source coding block and it was assumed that

perfect source coding has been used and entropy has been reached with acceptable distortion.

The source encoded datab is passed to the forward error control (FEC) encoder (section 3.3) that
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FIGURE 3.1: Channel coding process for mobile WiMAX transmitter.

FIGURE 3.2: Channel coding process for mobile WiMAX receiver.

adds redundant bits to the information stream and this coded streamc is shuffled by the block

interleaver (section 3.4). After all the operations are performed, the coded binary streamcint

is passed to the WiMAX frame constructor that loads all subcarriers to conform to the mobile

WiMAX standard [8]. The complete process is reversed at the receiver module with the FEC

decoder (section 3.5) estimating the most probable coded bit sequence sent fromc̃ and decoding

it to the most probable information bit streamb̃.

3.3 BI NARY CONVOLUTIONAL CODE

Definition 3.3.1 A codeC of lengthnC and cardinalityMC over a finite fieldF is a subset of

F
nC withMC elements.

C ,
{

c[1], c[2], . . . , c[MC ]
}

, c[i] ∈ F
nC , m ∈ [1,MC]. (3.1)
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The elements of codeC are called codewords [64].

Definition 3.3.2 The rateRc of a codeC is used to define the number of information bits per

transmission bits for a given channel coding scheme of lengthnC and cardinalityMC over a

finite fieldF and is given asRc , n−1
C log|F|MC .

Definition 3.3.3 The total number of shift registers within a convolutional encoder is referred

to as thememory of the convolutional code and is denoted bym and the number of input bits

into the encoder is presented byk.

A convolutional code is an error correcting code (ECC) that uses a finite state diagram to process

memory into a serial stream of information bits.

FIGURE 3.3: Convolutional encoder,Rc = 1
2
, K = 7.

Figure 3.3 illustrates the design of the convolutional encoder [5] used in this dissertation.

Definition 3.3.4 The constraint lengthK, is equal to thememory of the convolutional encoder

incremented by1, in shortK = m+ 1.

The constraint lengthK of a convolutional code is the fundamental design parameter and will be

discussed in section 3.5.3. It is traditional to define the convolutional encoder by expressing the

generator taps in octal form. The convolutional encoder presented in Figure 3.3 is of interest, as

it is proposed in [8, 9] as a mandatory channel coding scheme and its generator taps are given

as

g = (171; 133)oct, (3.2)

or as finite impulse response (FIR) system [5] given as

g1 = 1 +D +D2 +D3 +D6 and g2 = 1 +D2 +D3 +D5 +D6. (3.3)

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 34

UNIVERSITY OF PRETORIA



CHAPTER THREE CONVOLUTIONAL CODES

Since the output of the encoder is dependent on the input bit and the current stored memory

in the registers, thememory-m rate-Rc convolutional encoder can then be presented as a

state diagram [65]. The state diagram is a graph of all the state nodes of the encoder and

all possible transitions from a current state (current register contents) to another state (new

register contents). There are2m states in a convolutional encoder and only2k branches entering

and2k branches leaving each state of the diagram, withk denoting the number of input bits

into the encoder. The state diagram for the proposed convolutional code is not illustrated in

this dissertation, as there are 64 states with 4 branches eminating at each state node. The state

diagram information is given in table format in appendix B and can be extended to a state

diagram.

After the state diagram has been obtained from the structure of the convolutional encoder, it can

be further developed to a time transition state diagram [5] known as a trellis diagram [5, 30, 40].

Zero tailing bits are appended to the information bits to ensure that the trellis always terminates

in the all-zero state, this simplifies the decoding process and only requiresm zero bits to flush

the convolutional encoder.

3.4 TIME DIVERSITY - I NTERLEAVER

The main idea of an interleaver [66, 67] is to obtain time diversity in a digital communications

system [1]. Time diversity in a communication system is the transmission of information

symbols at time spacings that are longer than the coherence timeTc of the communication

channel. This is exploited by taking bursty error symbols and de-interleaving it over an entire

frame after which a channel coding algorithm is used to control the number of errors within the

frame. Time diversity can be mathematically expressed by shuffling the data stream according

to a certain permutation vector. It must be remembered not to add any redundancy bits to the

information stream. The mapping of am1 x m2 block of input bits according to a permutation

is

c = (c0; c1; . . . ; cm1m2−1), (3.4)

with c denoting the input block and the interleaved block as

cint = (cint(0); cint(1); . . . ; cint(m1m2−1)). (3.5)
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The proposed interleaver for mobile WiMAX [8] in this dissertation is the block interleaver.

This block interleaver is defined by a two step permutation. The first permutation ensures

that adjacent coded bits are mapped to non-adjacent subcarriers and the second permutation

ensures that the adjacent code bits are mapped alternatively onto different significant bits on the

constellation map [9]. The first permutation of the interleaver is defined as

mk =
Ncbps

d
� (kmod d) +

⌊

k

d

⌋

. (3.6)

Where the number of input bits to the block interleaver is denoted byNcbps. Integerk, k ∈
[0, Ncbps-1], is the index of the code bits before the first permutation and integermk, mk ∈
[0, Ncbps-1], is the index of the code bits after the first permutation. The integerd is equal to

16nsc, with nsc denoting the number of allocated slots per FEC block. The second permutation

of the interleaver is defined as

jk = s

⌊

mk

s

⌋

+

((

mk +Ncbps −
⌊

d �mk

Ncbps

⌋)

mod s

)

. (3.7)

Wheres = Ncpc/2, with Ncpc equal to the coded bits per subcarrier, i.e.,2,4 or 6 for 4-QAM,

16-QAM or 64-QAM, respectively. Integermk,mk ∈ [0, Ncbps−1], is the index of the code bits

before the second permutation, and integerjk, jk ∈ [0, Ncbps − 1], is the index of the code bits

after the second permutation. After the interleaving is done on the coded bits stream the data

is transfered to the modulation scheme in use. To reverse the process at the receiver module

just prior to the passing of the coded bits to the channel decoder, the first permutation of the

de-interleaver is equal to

mj = s �

⌊

j

s

⌋

+

((

j +

⌊

d � j

Ncbps

⌋)

mod s

)

. (3.8)

Where integerj, j ∈ [0, Ncbps − 1], is the index of the coded bit before the first permutation and

integermj , mj ∈ [0, Ncbps − 1], is the index of the coded bit after the first permutation. The

second permutation of the de-interleaver is given as

kj = d �mj − (Ncbps − 1) �

⌊

d �mj

Ncbps

⌋

. (3.9)

With integermj,mj ∈ [0, Ncbps − 1], is the index of the code bit before the second permutation

and integerkj, kj ∈ [0, Ncbps − 1], is the index of the code bit after the second permutation.

This block interleaver was used in all simulations in this dissertation as it is mandatory to bit

interleave all coded bits in a mobile WiMAX communication system.
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3.5 DECODING M ETH OD - V ITERBI ALGORITHM

The function of the decoding algorithm is to estimate the correct stream of uncoded bits that

will result in the minimum number of errors. There is of course a one-to-one mapping between

the coded bits and the information bits [1]. In the design of a convolutional encoder, a unique

trellis diagram can be extracted, as discussed in section 3.3. The decoding of a convolutional

code is used to estimate the most likely path through the trellis given a vector of received

coded bits. The most popular decoding algorithm for the convolutional codes is the Viterbi

algorithm [7, 68].

Definition 3.5.1 Hamming distance is the number of bit differences there are between two

binary sequences of the same length [65].

Definition 3.5.2 Hamming weight is the Hamming distance between a given binary sequence

and the all-zero sequence of the same length.

Definition 3.5.3 The free distancedfree of a convolutional code is the smallest Hamming

distance between any two distinct code sequences.

Definition 3.5.4 A non-systematic code is a codeC that has no information bits within the

encoder’s output bits stream (only parity bits), while a systematic code has information bits

included in the coded bits of the encoder’s output stream [5].

Definition 3.5.5 Coding gain is defined as the difference in SNR between a coded and uncoded

system or two coded systems with the same rate.

The main decoding rule of the Viterbi algorithm is to solve

d
ML(

c̃
)

, argmax c∈C p C̃ |C

(

c̃ | c
)

, (3.10)

wherec is the transmitted codeword and̃c is the received codeword. The decoded codeword

of the ML estimator is presented byd
ML(

c̃
)

. The probability is maximized by obtaining the

codeword that yields a minimum distance to the received codeword as

d
ML(

c̃
)

, argmin c∈CD
(

c̃ , c
)

, (3.11)

whereD( ) presents a function for calculating the distance between two binary sequences, but

this will be discussed in more detail in section 3.5.1 and 3.5.2. There are2MC codewords that
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need to be tested for each decoding step and proves to be a dauntingtask even for the small

values ofMC. The Viterbi algorithm utilizes the trellis to decode the received codeword, but

the advantage of the Viterbi algorithm is that it exploits the property in the trellis that when two

contending paths enter a given node that only the strongest path is considered. This advantage

significantly decreases decoding complexity in computations and for this reason the Viterbi

algorithm is the preferred decoding algorithm for a convolutional code.

The Viterbi algorithm starts by subdividing the codeword of lengthnC into kC equal size bit

sequences. The length of these equally sized bit sequences is equal to the number of output

bits at the encoder. Let each of the sequences be presented byrbranch(i), with i ∈ [0, kC − 1].

By mappingrbranch(i) sequential to each time transition in the trellis the Viterbi algorithm can

compute all possible branch metrics to obtain the shortest path distance. Soft decision and hard

decision detection of branch metrics will be explained in the following section.

3.5.1 Hard Decision - Viterbi Algorithm

The Viterbi algorithm uses the branch weight to calculate the distance between the received

code sequence and a particular branch, in an effect to compute the cumulative path metric for

every surviving path. The path with the lowest metric at the end of the decoding process, as

shown inEq. (3.11), is accepted as the most correct path. The received information is obtained

by reading the information bits in reverse from the trellis path. The branch metric for hard

decision decoding is computed as

dbranch

(

rbranch(i) , BM
(i)
q,w

)

=

√

Dhamming

(

rbranch(i) , BM
(i)
q,w

)

, ∀ q, w ∈ [0, 2m−1],

(3.12)

with Dhamming( ) denoting a function to calculate the Hamming distance (Def.3.5.1) between

two sequences of lengthkC. BM (i)
q,w denotes the output of the encoder given a state transition

from stateq to statew at time instancei. It should be noted that if there exists no state transition

between stateq andw at time instancei, that the Hamming distance is equal to∞. As a result

of only the surviving paths being stored, the cumulative path metric is calculated as

dcum

(

c̃ , Rbranch

)

=

kC−1
∑

i=0

dbranch

(

rbranch(i) , BM
(i)
q,w

)

, (3.13)

whereRbranch is the concatenated branches ofrbranch(i) for the surviving path. The procedures
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for decoding the convolutional code using the Viterbi algorithmfor an arbritary received code

sequence is given as summary in the following steps: (1) Set all starting nodes path metrics

equal to∞ in the trellis except the all-zero state. (2) Draw the trellis in memory to the size

of your received code sequence. (3) Start at the first node in all-zero state withi=0. (4) Find

the branch metric in all subsequence branches to all nodes at time instancei=0. (5) Save the

smallest metric into all nodes at destination statesw and add the cumulative metric at all the

nodes. (6) Discard all other branches into nodes at all statesw ∈ [0, 2m−1]. (7) Repeat the

three steps before and increasingi to move through the complete trellis. (8) Discard all paths

that dont terminate in the all-zero state. (9) Trace back the path with lowest cumulative metric

and save all corresponding input bits. (10) Output bits from decoder to system.

3.5.2 Soft Decision - Viterbi Algorithm

The advantage of soft decision decoding (SDD) is the extra information that is preserved for the

decoding process. This excess of information can be measured from the cutoff rate [30] used at

the receiver. If hard decision decoding (HDD) is used with a binary signal and two-quantization

levels, the cutoff rateR2 [30] is given as

R2 = 1 − log2

(

1 +

√

4Q
(

√

2RcEb

N0

)(

1 −Q
(

√

2RcEb

N0

)) )

, (3.14)

whereQ( ) is theQ-function[30] that is expressed as

Q(x) =
1√
2π

∫ ∞

x

exp

(−t2
2

)

dt. (3.15)

The cutoff rateRQ [30] for soft decision detection is given below withQ→ ∞ as

RQ = max
{p(sj(f))}

(

−log2

Q−1
∑

i=0

( q−1
∑

j=0

p(sj(f))

√

∫

ri

(

1√
2πση(t)

exp

(

−D(s̃j(f), sj(f))2

2σ2
η(t)

))

ds̃j(f)

)2)

,

(3.16)

whereD() denotes the function to calculate the Euclidean distance andri corresponds to the

region of the transition probability of quantization leveli. The probability of transmitting a

particular symbol is given byp(sj(f)), j ∈ [0, q − 1] andq is the total number of symbols.

The total number of quantization levels are presented byQ andσ2
η(t) is the noise variance of the

AWGN process.
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By comparingEq. (3.14) andEq. (3.16) [30] for any given code rateRc, there will always be

a 2dB gain in quantization at the receiver module when employing soft decision decoding for

an AWGN channel. Another alternative is to only quantize the data toQ = 8 or more, then the

loss of information is only0.2dB fromQ = ∞. It is noted that∞-quantization levels are used

in the Viterbi algorithm, the only change from hard decision detection is to update the branch

metricEq. (3.12) to

dbranch

(

rbranch(i) , BM
(i)
q,w

)

=

√

D
(

rbranch(i) , BM
(i)
q,w

)

, ∀ q, w ∈ [0, 2m−1]. (3.17)

Whererbranch(i) is now quantized byQ-levels andD() is the Euclidean distance between the

two quantized sequences.

3.5.3 Performance Analysis of Convolutional Codes

The free distance and the bit error rate performance can be derived from the state diagram of

the convolutional code. A upper bound [30, 69] for the minimum free distance of a rate1
nC

convolutional code is given as

dfree ≤ min
l≥ 1

⌊

2l−1

2l−1
(K + l − 1)nC

⌋

. (3.18)

The free distancedfree can also be directly derived from the transfer function [30, 39]. The

advantage of having a large minimum free distancedfree code is that it lowers the decoded

BER of the convolutional code. The disadvantage however is when a decoding process fails,

the code induces more bit errors within the received coded sequence. For a more direct relation

to performance enhancement [70] of the minimum free distance is the coding gain (CG) given

by

CG[ dB ] = 10log10(Rc dfree). (3.19)

This is observed at highEb/N0 values as an asymptotic coding gain. The best performance

comparison is found by obtaining a union bound for the bit error probabilitypCC of the

convolutional code. The following union bounds for a convolutional code in an AWGN channel

is given as [5, 71]

pCC < Q
(

√

2Rc dfree
Eb

N0

)

exp

(

2Rc dfree
Eb

N0

)

dT (D,N, J)

dN

∣

∣

∣

∣

D=DO, N=1, J=1

, (3.20)
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with

DO =







√

4Q(
√

2RcEb/N0)(1 −Q(
√

2RcEb/N0)) Hard decision detection,

exp(−RcEb/N0) Soft decision detection,

(3.21)

whereT (D,N, J) is the transfer function [30, 39] with the Hamming weight of the input stream

presented by the power ofN . A connection between two states is presented by the power ofJ

and the Hamming weight of the output stream is presented by the power ofD. The union bound

of the bit error probability for a convolutional code (expressed inEq. (3.20)) is a function of

the minimum free distancedfree. The following relation is always present as

pCC ∝ K. (3.22)

Good BER performance has been acquired [72] for a convolutional code operating with a more

complex QAM modulation scheme in an OFDM symbol. The relation inEq. (3.22) is a

drawback in the improvement of the BER performance of a convolutional code. The reason

behind it is that by increasing the constraint lengthK, the memorym of the coding scheme is

increased, which results in a massive increase of complexity in the system decoder. In summary,

an increase in the constraint lengthK of 1, results in the total of number of states being doubled.

This is because the number of states within the state diagram is equal to2K−1. This increase

in complexity at the receiver module, makes it unfeasible for a practical implementation of the

corresponding decoder. The next drawback is that there exists a maximum number of input

bits kmax that saturates the memory property of the convolutional encoder and yields no more

coding gain for large input blocks. This maximum number of input bitskmax is equal to

kmax = 5K + 1. (3.23)

Thus to effectively encode larger packets of binary data, the constraint lengthK must be

increased. As discussed before, this is a practical limitation in all systems using a convolutional

code.

3.6 CONCLUDING REMARKS

This chapter discussed the incorporation of the channel coding scheme into a mobile WiMAX

platform. Thereafter the mandatory convolutional code [8] was discussed with particular
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emphasis on the design parameters and constraints. It was observed from the constraints that

the decoding complexity of the convolutional code will be too high to fully utilize a subchannel

in an OFDM symbol (section 3.5.3).
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CHAPTERFOUR
LOW-DENSITY PARITY CHECK CODES

4.1 CHAPTER OVERVIEW

Mackay [19] rediscovered the LDPC code in 1999 that was proposed by R. Gallager [16]. The

LDPC code was optimized for a BEC channel [16] and in 2001, R.L. Urbanke and T. Richardson

proposed a method for optimizing a LDPC code for a continuous channel [27, 28]. After the

design and development of the LDPC code, it matured [18] and found an application as a new

optional coding scheme to be used in the mobile WiMAX standard [8].

This chapter’s focus is on explaining all the concepts necessary to understand the design of a

LDPC code. The chapter starts by explaining the decoding process and properties of a linear

block code and then translates this to a factor graph. A LDPC code is a very sparse graph

code and will often be referred to as a graph code in this chapter. The chapter continues with a

discussion on statistical notation1 used to describe a graph code and is followed by explaining

the notation in a LDPC code design and all necessary simplification required.Density evolution

[16] is the method of optimizing a graph code (section 4.8) and can be illustrated as a visual

process by means of an extrinsic information transfer (EXIT) chart [73]. The chapter concludes

with showing how a LDPC code can be optimized for an OFDM modulation system with peak

clipping conditions at the transmitter.

1 See Appendix C for information on notation.
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4.2 LINEAR BLOC K CODES

A linear block code is a codeC(nC , kC) that is completely defined byMC = 2kC codewords.

Each codeword consists ofnC symbols of setF2 and all addition operations are done with a

component-wise modulo-2 addition function [39]. A linear block code is akC-dimensional

subspaceF of anC-dimensional spaceFnC [74].

Definition 4.2.1 A block codeC(nC, kC) is linear if all combinations of two codewords results

in a codeword.

Definition 4.2.2 The minimum distancedmin(C) of codeC is equal to the minimum Hamming

distance between any two codewords [5, 39] and is expressed as

dmin(C) = min{D( cq , cw ) : cq, cw ∈ C, q 6= w}. (4.1)

WhereD( ) is the function that calculates the Hamming distance between two binary sequences.

A design parameter of a linear block codes is to seperate the distance between all the2kC

codewords in the spaceFnC to a maximum. ThisFnC space where all codewords are allocated

is known as theHamming space. A Hamming sphereSt(cq) of radiust andcentered around

codewordcq is the set of vectors at a Hamming distance less than or equal tot from codeword

cq.

St(cq) = {cw ∈ F
nC |D( cq , cw ) ≤ t}. (4.2)

The idea of the Hamming sphere is that when any codewordcw is received within the radius

centered atcq in the space ofFnC , it will be mapped to the codewordcq. This concept illustrates

theerror correcting capabilitiest of a linear codeC(nC , kC). To improve the average expected

error correcting capabilityt it is good practice to strive to enlarge all the Hamming spheres

in the spaceFnC (seperating codewords as far as possible in the Hamming space). The larger

the Hamming spheres, the more error must be induced to the codeword before the codeword

is relocated to a new Hamming sphere and is mapped to an incorrect codeword. The error

correcting capabilities can also be expressed in terms of the minimum distancedmin [5, 39] as

t =

⌊

dmin − 1

2

⌋

. (4.3)
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To compute the minimum distancedmin of the linear block codeC(nC, kC) all the codeword

needs to be weighted against the all-zero codeword and is expressed as

dmin = min
2kC−1

{D( cq , 0 ) : cq ∈ C, cq 6= 0}. (4.4)

In this dissertation it was not feasible to compute the minimum distance, as there were2kC − 1

Hamming weights to be calculated and thatkC ≥ 288. This leads to more than4.9732x1086

Hamming weight computations for a single LDPC code. ThekC-dimensional subspaceF is

mapped to thenC-dimensional by defining a generator matrixG of sizekC x nC to encode a

message streamb of size1 x kC as

c = b · G. (4.5)

The generator matrixG must be full rank ofkC to ensure that the linear block codeC(nC, kC) is

a proper code [64], as anall-zero column conveys zero information - no pun intended. For every

linear codeC(nC , kC) there exist anC-kC dual spaceC⊤ generated by the rows of the matrixH,

whereH is referred to as the parity check matrix and is a full rank (nC -kC) x nC matrix. The

dual code is defined as

G · H⊤ = 0. (4.6)

This property is used at the decoder to verify codewords and is given as

c · H⊤ = 0. (4.7)

The complexity of encoding the information streamb with the generator matrix can be

accomplished withO(n2) operations [75] and the linear codeC has a description size of

min{Rc · n2
C , (1 − Rc) · n2

C} bits at most [64]. In the decoding of the received codeword to

their correct codeword in the Hamming space, it is conventional in linear codes to first check if

an incorrect codeword has been received at the decoder. This is done by verifying the dual code

property inEq. (4.7) and the result is termed as the syndromesC of the codeword̃c. This dual

code is computed as

sC = c̃ · H⊤. (4.8)

If an error vectorε is induced onto the codeword asc̃ = c + ε, thenEq. (4.7) will not yield an

all-zero vector and is expanded as
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sC = (c+ ε) · H⊤ (mod 2). (4.9)

With linear addition, the syndrome can be divided as

sC = c · H⊤ + ε · H⊤ (mod 2). (4.10)

By substitutingEq. (4.7) intoEq. (4.10) yields a syndromesC of

sC = ε · H⊤. (4.11)

The next section will cover on how to construct a good specific linear code and show how the

decoder attempts to eliminate the error vector in a given received codeword.

4.3 SPARSE GRAPH CODES

A linear block code known as the LDPC code was first invented by Robert Gallager in 1963 [16].

The main characteristics of a LDPC code is that the parity-check matrixH is very sparse

(usually a density of less than 1% in the matrix). This has the effect of lowering the number

of dependencies (received coded bitsc̃
[q]
, q ∈ [0, nC − 1]) for each element in the syndrome

vectorsC [w], w ∈ [0, (nC -kC-1)]. This sparse matrix enables the linear block code to exhibit

exceptional BER performance using a message-passing decoder (discussed in section 4.5).

These dependencies of each syndrome can be illustrated in a bipartite graph (Tanner graph)

and is discussed in section 4.4.

4.4 FACTOR GRAPHS

In iterative decoding of a LDPC code, the decoding process can be understood in terms of a

graphical model of a codeC [76, 77]. A factor graph provides a structure to take advantage

of the distributive law to reduce complexity in the decoding process significantly. The Viterbi

decoding algorithm can be graphically presented by a trellis diagram [40] which is a special case

of a factor graph and offers a reduction in complexity for a convolutional code. The approach

with a factor graph is to factorize the function that need to be solved and identify groups of

subfunctions for global functions and execute them once off. A factor graph for a LDPC code

can be generalized to a Tanner graph [78] and is an efficient method in expressing the operations
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of the sum of product algorithm. Belief propagation [24] which operates by message-passing is

an instance of the sum-product algorithm and the operation of the algorithm will be discussed

in section 4.5.

Definition 4.4.1 A factor graph is a bipartite graph that expresses the structure of the

factorization [64, 77] as

g(c̃1, c̃2, . . . , c̃nC
) =

∏

j∈J

fj(C̃j). (4.12)

Whereg(c̃1, c̃2, . . . , c̃nC
) factors into several local functions. A factor graph has a variable

node for each variablẽci with i ∈ [1, nC] and a factor node for each local functionfj. An edge

connecting a variable node with a factor node exists only if an argument is made between them.

A factor node is known as a check node in coding theory field and will be used in this

dissertation.

4.4.1 Tanner Graphs

A Tanner graph is an example of a factor graph [77] and is tailor made to fit the decoding

process of a LDPC code. With a linear codeC(nC , kC) the parity-check matrixH was used to

describe the bipartite graph of the decoder. The Tanner graph of codeC(nC , kC) hasnC variable

nodes that corresponds to each element of the codeword andmC=(nC -kC) check nodes that

corresponds to each of the parity-check constraints (syndromes) ofH. An edge in the Tanner

graph exist only if the corresponding matrix valueHij has a1, wherei andj denotes the column

and row of the parity-check matrix respectively.

FIGURE 4.1: Example Tanner graph of LDPC (40,20) code.
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As seen in Figure 4.1 even a short length LDPC code that is sparse isgraphically concentrated.

The density of edges in the graph for a LDPC code grows linearly with the codeword length

nC, but is intense sincenC ≥ 576 in this dissertation. The next attribute that is addressed is

the degree of connection that exists at each variable and check node. The degree is equal to the

number of edges that emanate from a node, which can either be a check or variable node.

Definition 4.4.2 When all the check nodes have the same degree of edges and all the variable

nodes have the same degree of edges, then it is a regular graph code.

Definition 4.4.3 A LDPC code with all check nodes of degreer and variable nodes of degree

l is known as a regular LDPC code.

Definition 4.4.4 A LDPC code with a degree distribution for all degrees of check nodes and a

seperate degree distribution for all degrees of variable nodes, is known as a irregular LDPC

code.

A Tanner graph describes an ensemble of codes given a certain connection between nodes [79]

and is a statistical approach [16, 64, 79] to defining the ensemble. Assuming that the graph has

Λi variable nodes of degreei andPj check nodes of degreej the following equalities hold in

the Tanner graph as

Λ(x) =
lmax
∑

i=1

Λi x
i, (4.13)

and

P (x) =

rmax
∑

j=1

Pj x
j . (4.14)

WhereΛ(x) andP (x) denotes the variable and check node degree distributions of the graph

code respectively. This notation presented inEq. (4.13) -Eq. (4.14) must satisfy the following

relationships for the graph code as
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lmax
∑

i=1

Λi = nC, (4.15)

rmax
∑

j=1

Pj = nC(1 − Rc), (4.16)

Λ(1) = nC , (4.17)

P (1) = nC(1 − Rc), (4.18)

P ′(1) = Λ′(1). (4.19)

Definition 4.4.5 A new code rateRc is defined for the sparse codeC and is known as the design

rate [64] given as

Rc(Λ, P ) = 1 − P (1)

Λ(1)
. (4.20)

This new design rate and code rate have a difference [64] given by

P (Rc−Rc(Λ, P ) ≥ ̺) ≤ exp(−0.34657nC ̺). (4.21)

By choosingnC substantial large enough the difference between the design rate and code rate

is negligible and are seen as the same parameter.

The degree distributions can be normalized as

L(x) =
Λ(x)

Λ(1)
, (4.22)

R(x) =
P (x)

P (1)
. (4.23)

With the normalized variable node degree distribution denoted byL(x) and the normalized

check node degree distribution denoted byR(x) for a graph code. A variable nodes with degree

1 tends not to propagate messages efficiently and exerts early error floors in all graph designs

[64]. Due to this, only variable nodes with degree> 1 were evaluated. The asymptotic analysis

of a graph code is easier from a edge perspective rather than a node perspective as presented in

Eq. (4.13) - (4.14). The edge perspective for a graph code is given as

λ(x) =

lmax
∑

i=1

λi x
i−1 =

Λ′(x)

Λ′(1)
=
L′(x)

L′(1)
, (4.24)

and
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ρ(x) =

rmax
∑

j=1

ρj x
j−1 =

P ′(x)

P ′(1)
=
R′(x)

R′(1)
. (4.25)

Whereλ(x) andρ(x) denotes the variable and check edge degree distributions of the graph code

respectively. All degree distributions are polynomials with non-negative expansions around

zero. The graph code hasλi fraction of edges that connect to a variable node with degreei and

ρj fraction of edges that connect to a check node with degreej. The following relationships

hold for the edge perspective [64] as

Λ(x)

n
= L(x) =

∫ x

0
λ(z)dz

∫ 1

0
λ(z)dz

, (4.26)

P (x)

n(1−Rc)
= R(x) =

∫ x

0
ρ(z)dz

∫ 1

0
ρ(z)dz

. (4.27)

The design code rate from a edge perspective is given by

Rc(λ, ρ) = 1 −
∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

. (4.28)

4.5 BELIEF PROPAGATION

An ensemble of codes with a given characteristic can be evaluated by means of a Tanner graph

[80], which simplifies the analytical investigation into the search for good codes [19]. There

are many different message passing decoders that operate on a factor graph, but the coding

scheme of interest is the LDPC which is now optional in the mobile WiMAX standard [9].

Many methods exist for decoding a LDPC code, but the Belief propagation algorithm [24, 81]

was chosen for its optimality. In [19, 82] a Belief propagation is conditioned to operate in a

iterative decoding structure to relay the messages between the nodes in the Tanner graph. The

decoding process of the belief propagation solves the following

c̃ · H⊤ = sC (mod 2). (4.29)

Each check node (equation) is dependent (edge exist) on a set of variable nodes (coded bitsc̃i,

i ∈ [0, nC − 1]) and each variable node is dependent on a set of check nodes. The aim of the

Belief propagation is to compute the marginal posterior probabilities:P (c̃i = 1|sC,H), i ∈
[0, nC − 1] and these computations of the graph code are intractable due to the vast cycles [82]
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inherent a Tanner graph. This is not problematic as the decoding process produces codewords,

not marginal posterior probabilities. Lets denote the setl of coded bits̃cl that participate in the

mth check equation ofsC asL(m) , {l : Hml = 1}. Likewise, lets define the setm check bits

that code bitl of received vector̃cl participate in asM(l) , {m : Hml = 1}.

The algorithm starts by computing the soft values of the received codeword and to iteratively

update the two a-posteriori probability ratiosqx
ml and rx

ml [5, 19, 24]. Letqx
ml denotes the

probability that thelth bit of the received codeword̃cl has a valuex, x ∈ F2, given the

information obtained via the check nodesM(l) \ m. Let rx
ml denotes the probability that a

check nodem is satisfied when bitl is fixed to a valuex and the other bits are independent with

probabilitiesqml′ , with l′ = L(m) \ l′.

Circulating the extrinsic information within a message passing decoder enhances the

performance within a Bayesian network [19]. This is accomplished by excluding the outgoing

edge when calculating the current node. This property of circulation of extrinsic information

only, is expressed in the degree distribution from a edge perspective as

λ(x) =

lmax
∑

i=1

λi x
i−1, (4.30)

for the variable node and as

ρ(x) =

rmax
∑

i=1

ρi x
i−1, (4.31)

for the check node. The coefficientsλi andρi are associated withxi−1 rather than withxi

[27, 28]. During the examination of the message passing decoder it became apparent that(i-1)

incoming branches should be used and that outgoing branches be excluded to eliminate the use

of self information. The decoding steps are in the following sections.

4.5.1 Log-Likelihood Ratios

It is more convenient to map the codewordc to an antipodal signal of{±1} for analysis. The

log-likelihood ratio (LLR) is defined as functionLLR( c̃ ) expressed as

LLR( c̃i ) = ln

(

P (c̃i = 1)

P (c̃i = 0)

)

i ∈ [0, nC − 1], (4.32)

given the probabilistic information for each coded bit from the mobile WiMAX receiver module.

For a binary memoryless channel, theLLR( c̃ ) of the received codeword̃c constitutes a
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sufficient statistic with respect to decoding the codeword on a Tanner graph [64]. The rest of

this section, both normal Belief propagation (plain text) and LLR operated Belief propagation

(italic text) [83] will be explained [5].

4.5.2 Belief Propagation - Decoding Steps

4.5.2.1 Initialization Step

The Belief propagation decoder starts by buffering the initial prior probability values of the

entire codeword into two seperate buffers as

p1
l = P (c̃l = 1) l = 0, 1, 2, . . . , (nC − 1), (4.33)

p0
l = P (c̃l = 0) l = 0, 1, 2, . . . , (nC − 1). (4.34)

The conditional matrixqx
ml is preloaded respectively as

q1
ml = P (c̃l = 1|Hml = 1) for every (l,m), (4.35)

q0
ml = P (c̃l = 0|Hml = 1) for every (l,m). (4.36)

The Belief propagation decoder buffers the initial prior LLR values of the entire codeword into

a buffer as

pl = LLR(c̃l) l = 0, 1, 2, . . . , (nC − 1). (4.37)

The LLR matrixqml is preloaded respectively with the initial prior LLR values as

qml = pl for every (l,m). (4.38)

4.5.2.2 Horizontal Step

In the horizontal step the conditional matrixrx
ml is updated by going through all the check

equations and computing the following two equations given as

r0
ml =

∑

{c̃l′ :l
′∈L(m)\l}

P (sm|c̃l = 0, {c̃l′ : l′ ∈ L(m) \ l}) ·
∏

l′∈L(m)\l

q
c̃l′

ml′ , (4.39)

r1
ml =

∑

{c̃l′ :l
′∈L(m)\l}

P (sm|c̃l = 1, {c̃l′ : l′ ∈ L(m) \ l}) ·
∏

l′∈L(m)\l

q
c̃l′

ml′ , (4.40)
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and the syndrome vector is given as

sC = [s0 s1 . . . snC
], (4.41)

obtained fromEq. (4.29). Finally, note thatr0
ml+r

1
ml=1 and was scaled accordingly [19, 83].

In the horizontal step the LLR matrixrml is updated by going through all the check equations

and computing the following equation for all combinations of (l,m) as

rml = ln

((

1 −
∏

l′∈L(m)\l

1 − exp(qml′)

1 + exp(qml′)

)

�

(

1 +
∏

l′∈L(m)\l

1 − exp(qml′)

1 + exp(qml′)

)−1)

. (4.42)

4.5.2.3 Vertical Step

In the vertical step the conditional matrixqx
ml is updated by going through all the variable nodes

and computing the following equations as

q0
ml = ζml · p0

l

∏

m′∈M(l)\m

r0
m′l , (4.43)

and

q1
ml = ζml · p1

l

∏

m′∈M(l)\m

r1
m′l , (4.44)

with

ζml =
1

q0
ml + q1

ml

. (4.45)

The posterior probabilities [19] are computed after each iteration as

q0
l = ζl · p0

l

∏

m∈M(l)

r0
ml , (4.46)

q1
l = ζl · p1

l

∏

m∈M(l)

r1
ml . (4.47)

In the vertical step the LLR matrixqml is updated by going through all the variable nodes and

computing the following equation

qml = pl +
∑

m′∈M(l)\m

rm′l . (4.48)
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The posterior LLR [19] is computed after each iteration as

ql = pl +
∑

m∈M(l)

rml . (4.49)

4.5.2.4 Decoding Verification Step

In this step a provisional decoded codewordd = [d0 d1 . . . dnC−1] is created as

dl =







1 if q1
l > q0

l

0 if q1
l < q0

l

l = [0, 1, . . . , nC−1]. (4.50)

In this step a provisional decoded codewordd = [d0 d1 . . . dnC−1] is created as

dl =







1 if ql ≥ 0

0 if ql < 0
l = [0, 1, . . . , nC−1]. (4.51)

A new syndromesC is calculated as

d · H⊤ = sC (mod 2). (4.52)

Both versions of the belief propagation algorithm terminates all processes if the syndrome

satisfies a valid codeword (sC = 0). If codewordd is not a valid codeword, then the decoder

attempts another iteration (repeatsEq. (4.39) -Eq. (4.52)) until a valid codeword is found. The

decoder declares a decoding failure and outputs the current codeworddwhen a preset maximum

number of iterations are reached. It is shown in [28] that some degree distributions using Belief

propagation message-passing can take up to1800 iterations to propagate the fraction of error

messages to zero. There exist several suboptimal Belief propagation implementations that yield

nearly optimal results with reduced complexity [83, 84].

4.6 SIMPLIFICATIONS FOR ANALYSIS

The performance of a graph code can be analyze by tracking the propagating error messages

inside the corresponding Tanner graph. Analyzing these messages is a daunting task and some

simplifications were needed. These simplifications in the analysis process is presented in the

next two sections.
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4.6.1 Restriction to the All-Zero Codeword

It is convention to assume that the source encoder will produce an information symbolsb =

[b0 b1 . . . bkC
] that is completely random in nature with the following properties as

P (bi = 1) , P (bi = 0), i = 0, 1, . . . , kC, (4.53)

Rbibi
(i) =







1 if i , 0,

0 if otherwise,
(4.54)

with Rxx denoting the autocorrelation function of the binary stream. Because the information

source is uniformly distributed, then the codewords were produced uniformly. Tracking

propagating error messages are possible only if the transmitted codeword is known prior to

analysis. Finding codewords for the analysis is an extensive task for a code ensemble. This

is accomplished by generating a parity-check matrix for a LDPC code that conforms to a

certain degree distribution and from this the dual code (generator matrix) is found. Due to

the sparseness of matrixH, there exist orders of validG that will provide correct encoding.

The encoding process as stated in section 4.2 is a higher order complexity than the decoding

process. In [17] the authors address the problem of lowering the complexity of the encoder,

but in the process much of the designed degree distribution is lost and the graph code degrades

in performance. The next step for analysis was to generate codewords to test is the Tanner

graph and thereafter multiple LDPC codes must be generated to obtain the ensemble’s average

performance.

In [27] the concept of restricting the encoder to produce only the all-zero codeword is

introduced for analysis. The all-zero codeword is always present in any linear block code

to simplify analysis. The next important characteristic of the graph code is that is operates

with message-passing of symbol/bit probabilities and is concerned with the fraction of error

messages and how they are distributed. It is not dependent on the value of the coded bits

but only on the reliability of the messages. As a consequence, we can transmit any particular

codeword to analyze the system performance.

4.6.2 Concentration

The second simplification in the analysis of a codeC was to observe the ensemble average

performance rather than to analyze individual codes. It is shown in [27, 28] that an individual
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code of the ensemble distribution has a performance equal to the ensemble average with a high

probability. In Figure 4.2 an example of a tree graph is give on how all the messages stem from

different neighbourhoods [27, 64] and propagate their message contents to the initial node in

the center of the graph.

FIGURE 4.2: Tree graph with depth of 2 iterations for codeC

The check node update rule was given inEq. (4.42) and the variable node update rule was given

inEq. (4.48). A tree graph is a visual presentation of all messages passed to a single node and is

an alternative illustration of a Tanner graph. The probability of cycles being present in a given

degree distribution can be calculated and is proved to be a function of the codeword length [64].

As nC → ∞, the probability of cycles being present in the graph converges to zero. The edge

distribution converges to a complete tree distributed graph that is express as

lim
nC→∞

EC∈LDPC(λ(x),ρ(x),nC)[Pb(C, ση(t), l)] = PTl(λ(x),ρ(x))(ση(t)). (4.55)

Whereση(t) is the noise variance andl is the number of iterations performed within the Belief

propagation decoder. The tree ensemble graph is denoted byTl with the corresponding expected

error asPTl
. An example of a tree graph is shown in Figure 4.2 and when used the code only

circulates extrinsic information [19, 85] and will always converge to a stable edge network.

After the edge network converged, the network can provide conditional probabilities as outputs.

From all the design properties and the concentration theorem holds that the ensemble average
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performace [27, 64] is given as

P{|Pb(C, ση(t), l) − EC′∈LDPC(λ(x),ρ(x),nC)[Pb(C′, ση(t), l)]| ≥ δ} ≤ exp(−̟nC), (4.56)

with ̟ > 0 andδ > 0. In summary, by increasing the length of the codewordnC , the expected

number of cycles are decreased within the Tanner graph. This converges the Bayesian network

to a tree graph that the Belief propagation operates on and will result in a high probability of

similiar results being produced from the belief propagation decoder.

4.7 NOISE THRESHOLD

The performance of the decoding process is a function of the fraction and distribution of

unreliable messages. Thus if there exist enough incorrect messages at key positions, the Belief

propagation will fail to converge to a valid codeword in the Hamming space. From this follows

two classifications of decoding solutions. The first is a successful decoding process and is

expressed as

lim
l→∞

PTl(λ(x),ρ(x))(ση(t)|ση(t) ≤ σ∗
η(t)(λ(x), ρ(x))) ≈ 0. (4.57)

Whereση(t) is the noise variance andσ∗
η(t) is the threshold variance for a given code.Eq. (4.57)

states that the fraction of errors within a Tanner graph is expected to converge to zero when the

noise variance of the channel is less than the noise threshold of the code. A failed decoding

process is expressed as

lim
l→∞

PTl(λ(x),ρ(x))(ση(t)|ση(t) > σ∗
η(t)(λ(x), ρ(x))) ≥ ψ. (4.58)

Whereψ is a positive constant andσ∗
η(t) is the threshold variance for a given code.Eq. (4.58)

states that the fraction of error within a Tanner graph is expected to converge to a constant value

of ψ when the channel’s variance is larger than the threshold’s variance. The noise threshold

σ∗
η(t) is the largest variance that the Belief propagation decoder can accommodate to iterate to

a zero bit probability. This threshold is the supremum of the channel’s variance range and is

defined as

σ∗
η(t)(λ(x), ρ(x)) = sup{ση(t) ∈ [0,∞] : lim

l→∞
PTl(λ(x),ρ(x))(ση(t)) → 0}. (4.59)
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The goal of graph code optimization is to obtain a degree distribution pair (λ(x), ρ(x)) of

a predetermined code rateRc(λ(x), ρ(x))=Rc that would yields the largest possible noise

thresholdσ∗
η(t)(λ(x), ρ(x)).

4.8 DENSITY EVOLUTION

Density evolution is an algorithm that determines the noise thresholdσ∗
η(t) for a given degree

distribution pair (λ(x), ρ(x)). This is accomplished by computing the density evolution

equation

aiter(l) = a0(l) ∗ λ(ρ(aiter−1)), (4.60)

where the L-densitya (see appendix C) is a presentation of the LLR probability density function

and define the following operators as

λ(aiter(l)) =

lmax
∑

j=2

λj(aiter(l)
∗(j−1)), (4.61)

and

ρ(aiter(l)) = Γ−1

( rmax
∑

j=2

ρj(Γ(aiter)
⊛(j−1))

)

. (4.62)

With iter denoting the current iteration number. The density evolution algorithm starts by

obtaining an initial log-likelihood statistical distribution (L-density) of the communication

channel. The mean of thel-density is positive due to the analysis of the all-zero codeword

with the mapping of0 → 1 and1 → −1 that was used in the analyzing modulation scheme (see

section 4.5.1). The probability of the bit error expected in al-density is computed as

Pb(aiter(l)) =

∫ 0

−∞

aiter(z)dz. (4.63)

The initial l-density for both AWGN and a Rayleigh faded channel [29] is given as

a0(l) = aAWGN(l) =
ση(t)

2
√

2π
exp

(

−
(l − 2/σ2

η(t))
2

2(4/σ2
η(t))

)

, (4.64)

and

a0(l) = aRay(l) =
ση(t)

2α
√

2π
exp

(

(l − 2α2/σ2
η(t))

2

8α2/σ2
η(t)

)

. (4.65)

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 58

UNIVERSITY OF PRETORIA



CHAPTER FOUR LOW-DENSITY PARITY CHECK CODES

With l being the log-likelihood ratio of the code bit obtained after detection andα being the

corresponding fading amplitude for the current code bit. After the initial density function for

the communication channel is obtained,Eq. (4.60) is recursively executed for a specificσ2
η(t)

until Pai(l) ≤ E is satisfied fromEq. (4.63), whereE is a preset bit error probability2. If

ση(t) < σ∗
η(t), then the recursive computation ofEq. (4.60) yields al-density of

lim
iter→∞

aiter(l) ≈ ∆∞. (4.66)

If the recursive computation ofEq. (4.60) yield the desiredE , then the noise varianceσ2
η(t) is

increased and the density evolution is performed once more. This is done continually until a

large enough noise varianceσ2
η(t) is obtained for which the criteria can’t be satisfied. The largest

noise variance that yields the criteria is defined as the noise threshold (see section 4.7). It is

shown in [28], that almost1800 iterations is needed to attain the required bit error probability.

The complete process discussed above is utilized to obtain the noise threshold of a single graph

code’sC degree distribution pair. Many authors [27–29] have used differential evolution [29, 86]

to acquire degree distributions near Shannon’s capacity [26] and several suboptimal methods

have been proposed [87, 88] that uses the central limit theorem to simplify the process [75].

4.8.1 Stability Conditions

It is always desirable to ensure stability in the message-passing decoder so that it will converge

to a zero bit error probability. This stability is of importance in the operable range ofση(t) <

σ∗
η(t). If the following condition holds

B(achannel(l))λ
′(0)ρ′(1) < 1, (4.67)

(whereB(·) is the Bhattacharyya constant [89]) then thel-density will evolve according toEq.

(4.66). For an AWGN channel this reduces from

B(aAWGN(l))λ′(0)ρ′(1) < 1, (4.68)

to

exp

( −1

2σ2
η(t)

)

λ′(0)ρ′(1) < 1. (4.69)

2 Typically E=10−8
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Now a upper bound for the noise threshold is equal to

σ∗
η(t) ≤

1
√

2 ln(λ′(0)ρ′(1))
. (4.70)

4.9 LIMITATIONS OF CYCLE -FREE L OOPS

In this section one of the drawbacks in the design of LDPC code was discussed. The edges in

the Tanner graph has a high probability of taking on the shape of a tree ensembleTl(λ(x), ρ(x))

when the codeword length increases. This is desirable due to the fact that the graph will then

converge to a stable condition, given enough iterations were performed by the belief propagation

decoder.

FIGURE 4.3: Left: Tree ensemble example. Right: Cycle-4 graph example.

In the construction of a LDPC code there is always a probability that an edge connects two

nodes to form a cycle within a graph. In Figure 4.3 an example of a graph with a cycle of length

4 is given. The property of passing only extrinsic information is lost in the presence of a cycle

and this causes a reduction of the performance of the graph code.

Definition 4.9.1 The shortest cycle that is present inside a graph is known as the girth of the

codeC.

The girth for a tree shape graph is infinite and according to [19] is the most effective shape

for decoding a graph. A method of detecting cycles (loops) inside a graph is proposed in

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 60

UNIVERSITY OF PRETORIA



CHAPTER FOUR LOW-DENSITY PARITY CHECK CODES

[90, 91] and was used in the construction of the codes. TheProgressive Edge Growth (PEG)

algorithm [92, 93] is a method used for constructing codes with large girths. The PEG algorithm

progressively connects an edge between two nodes and then verifies if the girth of the code is

higher than a preset quantity. This method was used for code construction in this dissertation

and has shown to lower the error floor [94] that are expected with cycles in the design of a

LDPC code [95].

From this discussion it appears that only tree ensembles should be pursued in code construction.

Unfortunately there are some drawbacks in using a tree ensemble for finite length analysis of

a code. For a fixed codeword lengthnC, a very sparse3 parity-check matrixH is required to

create a tree shape graph. This very sparse matrix lowers the overall Hamming distance and

decreases the overall codeC performance. A code with a tree graph has at least#C codewords

of Hamming weight2 [64], where#C is equal to

#C = nC ·
2Rc − 1

2
. (4.71)

FromEq. (4.71), a rate above or belowRc = 1
2

has ahigh probability of containing more

low weight codewords#C and hence deteriorates the overall performance [96], and hence

only half-rate codes will be evaluated. The bit error probability for a tree graph can also be

characterized by the initiall-densitya0(l) of the communication channel and MAP decoding

as [64] as

Pb = (2Rc − 1) · Pb(aiter(l) ∗ aiter(l)). (4.72)

The drawback of using a very sparse code is the slow converging in the Tanner graph to

eliminate the error messages. Awave effect[19] is found in dense factor nodes because the

reliable information messages are spread over the Tanner graph rapidly and results in fast

converging networks. In Figure 4.4 and 4.5 the evolution of the degree distribution is shown

as the performance of the LDPC approaches the Shannon’s capacity [2] limit. In [28] the

authors presents optimized degree distributions that are within0.06dB of capacity for a AWGN

channel and in [29] the authors presents optimized degree distributions that are within0.07dB

of capacity for a Rayleigh faded channel.

Good codes’ [19] degree distribution require a heavy weight atλ2 and atlimx→∞ λx. For

example, the authors in [28, 29] use heavy distribution weight ofλ50 to obtain excellent BER

3 Very sparse codes are more than a constant factor sparser than sparse codes
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FIGURE 4.4: Optimized variable node degree distribution for a half-rate LDPC code.

FIGURE 4.5: Optimized check node degree distribution for a half-rate LDPC code.

results. This is unfortunately an extremely limiting factor if working with codeword length

nC < 2500 and the graph code causes groups of cycles. Thus a balance must be achieved

that uses heavy degrees but limits the number of cycles, while also extending the length of the

girth to a maximum. In summary, a balance between the density of matrix and the induce error
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floor must be found. The higher the density, the lower the noise threshold but the higher the

error floor for a finite length LDPC code. The reverse is true that the lower the density the

higher the noise threshold but the lower the error floor. Another method was to modify the

belief propagation decoder to compensate for the deliberately induced cycles [97, 98], that will

improve BER performance for short length codewords.

4.10 OPTIMIZING A LDPC CODE FOR A SATURATED

AMPLIFIER
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FIGURE 4.6: Density evolution of the channel’s PDF with increasing PCL.

The objective of this dissertation is the optimization of a LDPC code for an OFDM modulation

scheme with a saturated power amplifier. The effect that peak windowing and clipping has on

a turbo code and LDPC code was evaluated in [51] and shows the loss in BER performance

to the gain in distance with more saturation at the amplifier. Several methods have been

developed to further improve the BER performance in this saturated amplifier OFDM system.
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An improvement was acquired by employing a selective mapping approach with an error control

code [99]. Another method was to form clusters in the parity-check matrixH of the LDPC

code to spread the effects of the inband distortions to several OFDM symbols [100]. In this

dissertation, the density evolution method was used to optimize a LDPC code for a saturated

OFDM symbol. The first step in the analysis was to obtain an initial channel’s distribution with

the saturated OFDM symbol effect included. The initiall-density channel’s distribution was

acquired through numerical analsis and the results are shown in figure 4.6.
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FIGURE 4.7: Density evolution of the channel’s PDF with increasing PCL (above average
transmission power).

It was shown that the initial channel’s probability density function remained intact and is

denoted bya0(l). The initial channel PDFa0(l) does not change in form with a saturated

amplifier, except the variance of the process increases with saturation at the amplifier. The

power clipping levels above the average transmission power was of interest otherwise too many

unreliable messages are produced within the Tanner graph. The power clipped levels of interest

is shown in Figure 4.7 and the results from the channel’s PDF forming was desirable in obtaining

a degree distributions for the LDPC code.
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Degree distributions has been found to optimized both a static AWGN PDF and a Rayleigh

PDF [28, 29]. The saturated amplifier in an OFDM symbol increases the noise threshold of the

graph code. Degree distributions [28, 29] were used to construct LDPC codes according to the

constraints presented in a finite length analysis. The constructed LDPC codes were compared to

the standardized LDPC code to observe improvements for a mobile WiMAX system [8] and are

shown in chapter 5. The optimized LDPC codes outperformed the standardized code because

of the improved noise threshold [28, 29] calculated by the density evolution algorithm for the

degree distributions. This is a motive to pursue optimized LDPC codes presented in [28, 29] for

future developed communication standards.

4.11 CONCLUDING REMARKS

An alternative method was proposed in this chapter to combat the effect that a saturated

amplifier has on an OFDM symbol. A graph code known as a LDPC code was used to combat

these effects by means of a method known as density evolution. Density evolution analyzes the

channel’s PDF with the induced saturated amplifier to optimize a Tanner graph. When a Tanner

graph is optimized in the design it will effectively eliminate the error messages through the use

of the belief propagation algorithm.
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CHAPTERFIVE
SIM ULATION RESULTS

5.1 CHAPTER OVERVIEW

This chapter evaluates the performance of three coding schemes in a range of channel

conditions. All the simulation results were performed on a mobile WiMAX simulation platform

[8] developed as part of this dissertation. Table 5.1 lists the simulation parameters that were used

in this chapter.

TABLE 5.1: Overall Simulation Environment Parameters

Description Value

Transmission mode FUSC

FFT size 128-point

Sampling Time 700ns

Carrier frequency 2.5GHz

Cell ID number < 0 0 0 >

Subchannels 2

The FUSC mode was used in the physical layer for performance analysis. This mode was used

for the frequency spreading of subchannels over the entire channel bandwidth. The simulation

was setup to emulate a subscriber station that operates at the cell’s edge of the serving base

station. In section 5.2 the uncoded mobile WiMAX system was evaluated in a range of channel
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conditions. Section 5.3 evaluates the performance of a convolutional code in a mobile WiMAX

environment which was used as a benchmark for the other coding schemes. In section 5.4, the

performance of the standardized LDPC code was evaluated and the optimized LDPC code was

evaluated in section 5.5. The chapter concludes with a discussion of the overall performance

observed and comments on future implementations.

5.2 EVALUATION OF THE M OBILE W I MAX P LATFORM

In this section the performance of the developed mobile WiMAX platform was evaluated by

way of BER analysis. Three different channel scenarios were addressed as part of the analysis

for mobile WiMAX while the channel encoder and channel decoder were omitted in this section.

5.2.1 Performance Analysis in a Static AWGN Channel
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FIGURE 5.1: BER graph for an uncoded WiMAX system in a static AWGN channel.

The first channel condition to address was the static AWGN channel and the simulation
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parameter for the uncoded mobile WiMAX platform is given in table5.2.

TABLE 5.2: Simulation Environment Parameters for Figure 5.1

Description Value

Channel Static AWGN

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

In Figure 5.1 a comparison of the mobile WiMAX system is made to thenarrowband complex

QPSK theoretical curve [30, 39]. The mobile WiMAX system uses amplified pilot bands,

guard bands (left, right and DC) and a cyclic prefix that makes up the difference in the two

performance curves. The cyclic prefix was set to the maximum allowable length [8] to show

the loss in bandwidth. The WiMAX system has an asymptotic loss of1.6854 dB compared to

the theoretical QPSK curve in a static AWGN channel. The asymptotic loss is of the overall

throughput scaling calculated inEq. 2.54 on page 26 and the power normalization of the

reference and guard bands in each OFDM symbol.

5.2.2 Performance Analysis in a Frequency Non-Selective Fading

Channel

TABLE 5.3: Simulation Environment Parameters for Figure 5.2

Description Value

Channel Frequency non-selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 68

UNIVERSITY OF PRETORIA



CHAPTER FIVE SIM ULATION RESULTS

The second channel condition to consider is a frequency non-selective fading channel and the

simulation parameters are given in table 5.3. Figure 5.2 presents a comparison between the

mobile WiMAX system and a narrowband complex QPSK theoretical curve for a flat fading

channel [30]. The WiMAX system has an asymptotic loss of1.674 dB compared to the

theoretical QPSK curve in a frequency non-selective fading channel. The asymptotic loss is of

the overall throughput scaling calculated inEq. 2.54 on page 26 and the power normalization

of the reference and guard bands in each OFDM symbol.
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FIGURE 5.2: BER graph for uncoded WiMAX system in a frequency non-selective fading
channel.

5.2.3 Performance Analysis with a Saturated Transmission Amplifier

The third channel condition is the frequency selective fading channel with four peak clipping

levels (PCL). The simulation parameters are given in table 5.4 and theITU Pedestrian-B

Channel 103 model1 was used in this simulation. A higher modulation scheme was used

1 Physical degraded channel response presented in appendix A

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 69

UNIVERSITY OF PRETORIA



CHAPTER FIVE SIM ULATION RESULTS

for a more comprehensive observation of the effect that peak clipping levels have on a

communication system.
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FIGURE 5.3: BER graph for a uncoded WiMAX system with peak clipping at the transmitter.

TABLE 5.4: Simulation Environment Parameters for Figure 5.3

Description Value

Channel Frequency selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/8

Data Modulation 16-QAM

Channel PDP ITU Pedestrian-B Channel 103

Channel Estimation Least Square Estimation

Interpolation method Wiener Interpolator
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A least squares channel estimator was used to accurately estimate the channel impulse response

in each of the OFDM symbols and a Wiener interpolator was used subsequently to interpolate

the data subcarriers that were linearly equalized. In Figure 5.3 the four different peak clipping

levels over the uncoded mobile WiMAX system was shown. The error floor increases as the

peak clipping level decreases2 and the system does not reach a BER of10−3 in the evaluated

Eb/N0 range.

5.3 EVALUATION OF THE CONVOLUTIONAL CODE

In this section the focus was to establish a benchmark for other coding schemes and this was

done by evaluating the mandatory convolutional code [8] on a mobile WiMAX platform.

5.3.1 Performance Analysis in a Static AWGN Channel

A 1/3-rate convolutional code with a short constraint lengthK = 3 was implemented to show

the improvement by increasing the constraint lengthK, as with the NASA code. The simulation

parameters are given in table 5.5 for this section.

TABLE 5.5: Simulation Environment Parameters for Figure 5.4

Description Value

Channel Static AWGN

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

An asymptotic coding gain [70] of1.4238 dB was observed with the hard decision Viterbi

decoding algorithm for a convolutional code,K = 3, compared to the uncoded mobile WiMAX

system at a BER of10−6. An asymptotic coding gain of3.7621 dB was obtained when using

the soft decision Viterbi decoding algorithm at a BER of10−6. The NASA3 code is plotted in

Figure 5.4 with a coding gain of3.4691 dB when the hard decision Viterbi decoding algorithm

2 Lower peak clipping level at the transmitter
3 1/2-rate convolutional code with constraint lengthK = 7
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was used and a coding gain of5.80824 dB when the soft decision Viterbi decoding algorithm

was used at a BER of10−6. A coding gain of2.0461 dB was acquired when the number of states

in the convolutional code was increased from4 to64. This concludes that while the performance

gain is linear, the complexity growth is exponential. Thus increasing the constraint length of

the convolutional code becomes an unfeasible solution.
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FIGURE 5.4: BER graph for a convolutional coded WiMAX system in a static AWGN channel.

5.3.2 Performance Analysis in a Frequency Non-Selective Fading

Channel

In this section the convolutional codes were evaluated on a frequency non-selective fading

channel and the simulation parameters are given in table 5.6.

The hard decision decoded1/3-rate convolutional code withK = 3 has a asymptotic coding

gain of -2.8866 dB to the uncoded mobile WiMAX system and the soft decision decoded

1/2-rate convolutional code withK = 7 has a coding gain of -1.0953 dB at a BER of10−3.

This proves that a longer constraint length improves the performance on the communication
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system. When perfect channel state information (CSI) was supplied to the Viterbi decoding

algorithm an asymptotic coding gain of0.7215 dB was observed to the uncoded WiMAX system

at a BER of10−3. An interleaver was used to obtain more time diversity [40, 101] and for the

NASA code an improvement in the system performance can be seen in Figure 5.5. For a hard

decision Viterbi decoding algorithm a asymptotic coding gain of7.755 dB was found for an

expected BER of10−3 and higher coding gains at higherEb/N0 values to the uncoded WiMAX

system. The soft decision Viterbi decoding algorithm has an infinite4 coding gain. The BER

performance was further improved by0.6372 dB when the decoding process was supplied with

perfect CSI. The conclusion is that a convolutional code only exerts good performance when

the memory inherent in the code is extended over a range of fades. This is accomplished by

either an interleaver or a long contraint length that both have a length significantly longer than

the inverse of the coherence bandwidth (section 2.3.1.2).
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FIGURE 5.5: BER graph for a convolutional coded WiMAX system in a frequency non-selective
fading channel.

4 No asymptotic comparison to performance curves
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TABLE 5.6: Simulation Environment Parameters for Figure 5.5

Description Value

Channel Frequency non-selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

5.3.3 Performance Analysis with a Saturated Transmission Amplifier

In this section the performance in a frequency selective fading channel with four peak clipping

levels (PCL) was evaluated and the simulation parameters are given in table 5.7.
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FIGURE 5.6: BER graph for a convolutional coded WiMAX system with peak clipping at
transmitter.
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In Figure 5.6 the performance of the NASA convolutional code was compared to the uncoded

mobile WiMAX system. Three of the four peak clipped convolutional codes outperforms the

uncoded system without any clipping and has an infinite coding gain. Convolutional codes have

been applied to selective mapping techniques [102–105] to obtained a further2.6 dB in coding

gain with a saturated transmission amplifier. The selective mapping technique is a method that

inserts redundant bits at the transmitter and treats the raised cosinus filter as a convolutional

encoder. Due to the constraints of the mobile WiMAX standard [8], the selective mapping

method was not implemented. The LDPC code still outperforms the convolutional code even

with the additional2.6 dB coding gain from the convolutional coded selective mapped OFDM

symbol.

TABLE 5.7: Simulation Environment Parameters for Figure 5.6

Description Value

Channel Frequency selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/8

Data Modulation 16-QAM

Channel PDP ITU Pedestrian-B Channel 103

Channel Estimation Least Square Estimation

Interpolation method Wiener Interpolator

5.4 EVALUATION OF THE STAN DARDIZED LDPC CODE

This section’s focus was to establish the performance of the standardized LDPC coding scheme.

The parity-check matrix used in [8] was defined asHstd and the code was constructed by

concatenating circulated shifted identity matrices with each other. The variable node degree

distribution forHstd is given by

λstd(x) = 0.458x+ 0.333x2 + 0.208x5, (5.1)
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and the check node degree distribution forHstd is given by

ρstd(x) = 0.667x5 + 0.333x6. (5.2)

5.4.1 Performance Analysis in a Static AWGN Channel

The simulation parameters of the LDPC coded mobile WiMAX platform usingHstd in a static

AWGN channel are given in table 5.8. In Figure 5.7 the noise threshold effect that was expected

in a LDPC code using iterative decoding was seen at4.2 dB.

TABLE 5.8: Simulation Environment Parameters for Figure 5.7

Description Value

Channel Static AWGN

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

Majority of the errors were corrected in the first hundred iterations performed on the LDPC

code and for a BER below10−18 more than1500 iterations were required [28]. The BER range

for this dissertation only requires1000 iterations. With a single interation a coding gain (CG) of

1.6801 dB was obtained to the uncoded mobile WiMAX system and was the same for all lengths

of LDPC code proposed in the WiMAX standard. Two lengths of LDPC code was evaluated in

this section with respective lengths ofnC = 576 andnC = 1152. A coding gain of7.504 dB for

lengthnC = 576 was observed while a coding gain of7.9114 dB for length ofnC = 1152 was

observed at a BER of10−6. There was a coding gain of1.6958 dB between the standardized

1/2-ratenC = 576 LDPC code and the NASA convolutional code at a BER of10−6 presented in

the mobile WiMAX standard. A higher coding gain of2.1032 dB was measured for a1/2-rate

nC = 1152 LDPC code5 compared to the use of the NASA convolutional code at a BER of

10−6. The optional LDPC code in the mobile WiMAX standard was a much better choice in

coding scheme for a static AWGN channel.

5 The mobile WiMAX standard supports LDPC code lengths ofnC ∈ [576, 2304].
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FIGURE 5.7: BER graph for LDPC coded WiMAX system in static AWGN channel.

5.4.2 Performance Analysis in a Frequency Non-Selective Fading

Channel

The performance of the standardized LDPC code was analyzed in a frequency non-selective

fading channel in this section and the simulation parameters are given in table 5.9. The result

of the analysis showed that in Figure 5.8 a clear advantage is observed in using the LDPC code

in a mobile WiMAX system. The coding gain in the evaluated range was infinite compared

to the uncoded WiMAX system. It was observed that the LDPC code with lengthnC = 576

does not compete with the convolutional code in the observation region. By extending the

length tonC = 1152 the LDPC code becomes long enough to combat the fades in a frequency

non-selective fading channel and then outperforms the convolutional code.

There was no asymptotic nature between any of the BER performance graphs, but table 5.10

was compiled with coding gains for the LDPC code of lengthnC = 1152 and the mandatory

convolutional code for a flat fading channel.

The results presented in table 5.10 shows that the LDPC code outperforms the convolutional
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FIGURE 5.8: BER graph for a LDPC coded WiMAX system in a frequency non-selective fading
channel.

TABLE 5.9: Simulation Environment Parameters for Figure 5.8

Description Value

Channel Frequency non-selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

code at every BER level, except for a BER lower than10−6. Further performance improvement

was expected when the codeword length grows (nC > 1152) of the LDPC code. The system

complexity grows linear with the codeword lengthnC, making it a feasible solution. The coding

gain is increased and the expected error floor is lowered when the codeword length is extended.
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Table 5.10: BER comparison between the convolutional code and the standardized LDPC code

BER Convolutional code LDPC Coding gain

10−3 10.8893 dB 10.0781 dB 0.8112 dB

10−4 13.7081 dB 12.4611 dB 1.2470 dB

10−5 16.5965 dB 15.4870 dB 1.1095 dB

10−6 19.6322 dB 19.1169 dB 0.5153 dB

5.4.3 Performance Analysis with a Saturated Transmission Amplifier
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FIGURE 5.9: BER graph for a LDPC coded WiMAX system with peak clipping at the
transmitter.

The next effect to evaluate was the loss in performance of the standardized LDPC code in the

presence of a saturated transmission amplifier. The simulation parameters were given in table

5.11. In Figure 5.9 an infinite coding gain was observed to the uncoded WiMAX system.

The LDPC was more resilient to the effect of transmission amplifier saturation than the
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TABLE 5.11: Simulation Environment Parameters for Figure 5.9

Description Value

Channel Frequency selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/8

Data Modulation 16-QAM

Channel PDP ITU Pedestrian-B Channel 103

Channel Estimation Least Square Estimation

Interpolation method Wiener Interpolator

TABLE 5.12: BER comparison of the convolutional code and standardized LDPC code

Peak clipping level BER Convolutional code Standardized LDPC Coding gain

0 dB 10−3 21.1928 dB 16.8525 dB 4.3403 dB

0 dB 10−4 25.6938 dB 20.7939 dB 4.8999 dB

−6.5 dB 10−3 22.5355 dB 17.7499 dB 4.7856 dB

−6.5 dB 10−4 28.5506 dB 21.8202 dB 6.7304 dB

−8 dB 10−3 25.5598 dB 18.4102 dB 7.1496 dB

−10 dB 10−3 > 30 dB 19.8104 dB > 10.1896 dB

convolutional code. The disadvantage in using LDPC codes in a finite analysis of the codeword

length, was that an error floor was observed in the BER graph. A codeword length ofnC > 104

was required to reduce the error floor to a BER value of10−18. Table 5.12 with coding gains for

the standardized LDPC code was compiled to illustrate the performance gains.
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5.5 EVALUATION OF OPTI MIZED LDPC CODE

This section’s focus was to use different degree distribution and design codes to improve

performance in the current telecommunication system. The limiting factor in the construction

of a code is the constraint of the short codeword length (nC < 104) and the design was a

difficult task [28]. Long codewords (106 < nC < 107) have a low probability of producing

cycles in a graph and can handle heavier degree distributions which results in improve BER

performance [27]. The benchmark for the optimized design is the standardized LDPC code

that was used in the mobile WiMAX (see section 5.4) standard [8]. The new codes were

constructed by use of the optimized degree distributions and PEG algorithm. By observing that

most designed codes follow a trend in performance (expected average ensemble’s performance),

there were still some good and poor codes found in the search. In the next three sections the

results of the search is shown for the range of channel conditions.

5.5.1 Performance Analysis in a Static AWGN Channel

This section’s results have been researched in [28] for a static AWGN channel. These optimized

degree distributions were applied in the code construction in an attempt to improve on the

current standardized LDPC code. This should have been a straightforward task, but due to the

short lengthnC of the LDPC code this proved to be a formidable task. A good LDPC code was

found and the performance results were illustrated in Figure 5.10. The simulation parameters

for this section are given in table 5.13 and a performance gain was observed.

TABLE 5.13: Simulation Environment Parameters for Figure 5.10

Description Value

Channel Static AWGN

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

A coding gain of0.1954 dB was acquired for the shorter optimized LDPC code (nC = 576),

compared to the standardized LDPC code (presented in section 5.4.1). A coding gain of0.2106
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FIGURE 5.10: BER graph for a optimized LDPC (DE) coded WiMAX system in a static AWGN
channel.

dB was obtained for the longer LDPC code (nC = 1152) compared to the standardized LDPC

code of equivalent length. This was evident as the noise threshold for the optimized code was

much lower than the noise threshold of the standardized LDPC code. This difference between

the two code designs becomes more apparent as the codeword length grows (nC → ∞) and

concludes that there is room for improvement in a fixed length design of a LDPC code in a

static AWGN channel.

5.5.2 Performance Analysis in a Frequency Non-Selective Fading

Channel

The design of a LDPC code for a frequency non-selective fading channel has been researched

in [29]. The constraint was again the short codeword length (nC < 104).

The problem with the degree distributions presented in [29] was that they were more dense than

the degree distributions presented in [28]. The effect of heavy edge density is that the Tanner
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FIGURE 5.11: BER graph for a optimized LDPC (DE) coded WiMAX system in a frequency
non-selective fading channel.

graph is not sparse6 if nC is not long enough.

Definition 5.5.1 The number of edgesE is given by [28]

E =
nC

∫ 1

0
λ(x)dx

. (5.3)

When code construction was initiated many more rules were followed for cycle elimination and

code construction proved to be more difficult. The simulation parameters are given in table 5.14

and the results of the optimized LDPC code are given in Figure 5.11.

The shorter LDPC code (nC = 576) presented a coding gain of0.4292 dB compared to the

standardized LDPC code and a coding gain of0.5146 dB was observed for the longer LDPC

code (nC = 1152). This observation was expected in the numerical analysis when the length

of the codeword was increased to converges to the expected code ensemble’s performance and

corresponding noise threshold.

6 High edge density with a shortnC results in high number of cycles that can’t be eliminated.
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TABLE 5.14: Simulation Environment Parameters for Figure 5.11

Description Value

Channel Frequency non-selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/4

Data Modulation 4-PSK

Channel PDP Single-tap channel

5.5.3 Performance Analysis with a Saturated Transmission Amplifier

This section shows the results of the contribution made in this dissertation. Effort has been

made to bring the correlation down of the data in the subcarriers in an OFDM symbol, but

unfortunately most methods requires an increase in network overhead. The idea was to assign

data symbols to an OFDM symbol which have low correlation but required major network

overhead to control placing within symbols. In this dissertation an alternative approach is

presented in which a Tanner graph is used which exploits the nature of the communication

system and attempt to optimize it by training with a given degree distribution.

TABLE 5.15: Simulation Environment Parameters for Figure 5.12

Description Value

Channel Frequency selective fading

Maximum Doppler Shift 104Hz

Cyclic Prefix Length 1/8

Data Modulation 16-QAM

Channel PDP ITU Pedestrian-B Channel 103

Channel Estimation Least Square Estimation

Interpolation method Wiener Interpolator

Numerical analysis was done in section 4.10 and shows that information data transmitted
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through a mobile channel still retains it original probability distribution even with an saturated

amplifier. The only change was the variance was increased as more peak clipping was applied

at the transmitter. In terms of a Tanner graph, only the noise threshold shifts accordingly and

almost10 dB of peak clipping can be applied while maintaining an operable communication

system using an 128-FFT OFDM symbol.

This approach is more desirable due to the zero network overhead and proposed the use of

coding theory as an alternative method for reducing the effects of peak clipping induced by

the transmitter. A comparison of the optimized LDPC code was made to the existing optional

LDPC code present in the mobile WiMAX system [8] in Figure 5.12.
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FIGURE 5.12: BER graph for a optimized LDPC (DE) coded WiMAX system with peak
clipping at the transmitter.

Table 5.16 was compiled to show the performance improvement when using optimized LDPC

code to combat the peak clipping levels induced by the transmitter.

These results indicate that the use of LDPC codes should rather be the mandatory coding scheme

of choice in a frequency selective fading channel with peak clipping induced by the transmitter.
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TABLE 5.16: BER comparison of an optimized LDPC code to the standardized LDPC code

Peak clipping level Coding gain LDPC Hstd Error Floor LDPC Hopt Error Floor

0 dB 1.5985 dB 1.08725 · 10−5 1.6701 · 10−6

−6.5 dB 1.1339 dB 1.79023 · 10−5 3.63356 · 10−6

−8 dB 0.8698 dB 3.07068 · 10−5 8.43122 · 10−6

−10 dB 0.8278 dB 5.7298 · 10−5 2.09536 · 10−5

The performance of LDPC code was good in a realistic channel modelwith an OFDM symbol

that was peak clipped near the average transmission symbol power. The error floor will always

be present when using a LDPC code and this can be compensated by the system designer by

adjusting the link budget [1] accordingly in the communication link.
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CONCLUSION

6.1 CHAPTER OVERVIEW

The conclusions and remarks from this dissertation are discussed in detail in this chapter. This

chapter concludes with future research prospects that emanate from this dissertation.

6.2 REMARKS ON CODING SCHEMES USED IN THIS

DISSERTATION

In this dissertation, a study was conducted on the feasibility and efficiency of the use of a

LDPC code in a wireless communication system. The coding schemes were evaluated on a

mobile WiMAX platform with channel conditions ranging from a static AWGN channel to a

frequency selective fading channel with a saturated amplifier at the transmitter. The LDPC

code was optimized for each of these channel conditions presented in this dissertation.

6.2.1 Remarks on the use of Convolutional Codes

The convolutional code [8], which has been researched over the last 30 years, was included

in this dissertation solely as a performance benchmark for other coding schemes. The NASA

convolutional code1 was implemented to support any remarks pertaining to the performance of

other coding schemes. The remarks on the use of a convolutional code are:

1 Mandatory coding scheme in mobile WiMAX [8]
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• The performance of the convolutional code is demonstrated in the design and the

constraint lengthK of the encoder. The complexity of the convolutional encoding is

low and the convolutional code was optimized through numerical searches in a finite

space [30].

• A disadvantage for a convolutional code is that the decoding computation complexity

grows exponentially while the constraint length grows only linearly in the channel

encoder even when applying trellis expurgation [40].

• Good performance results were obtained by using a convolutional code in a frequency

non-selective fading channel, but an operable state could only be achieved with an

interleaver. Perfect CSI was required to enhance the performance of the convolutional

code in order to compete against the LDPC code.

• A poor BER was observed with a convolutional code in a frequency selective fading

channel when the transmitter’s amplifier saturates the OFDM symbols. The BER

performance could be improved when multiple codewords were interleaved over multiple

transmission bursts to the subscriber station, but this was a daunting task to control the

sequences over the network and to keep the latency low when using the multiple access

scheme.

• The last drawback when using a convolutional code is the limitation in the length of

the data packet. When longer data packets are generated, as demand increases, the

convolutional coding scheme does not offer much improvement2. The alternative was to

subdivide the packet into smaller packets to reduce the complexity of the channel decoder

followed by interleaving all the packets, but the performance gain will only be minimal

and limited.

6.2.2 Remarks on the Standardization of LDPC Codes

LDPC codes were first introduced by Gallager [16] in 1963, but unfortunately in that era the

technology for applying very large sparse matrices was not feasible and interest was lost in

the method. LDPC codes were revisited in 1999 [19] and standardized in the mobile WiMAX

standard [8]. The following conclusions relating to the LDPC code used in the mobile WiMAX

standard were made through this dissertation.

2 The performance of a convolutional code is proportional to the number of memory registers in the encoder.
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• The advantage of a LDPC code is that a parity-check matrixH canbe tailor made for most

channel conditions. The problem was in obtaining a generator matrix for the encoding

process as well as the search for an effective generator matrix for a given parity-check

matrix, this is an ongoing research topic. The mobile WiMAX standard employs a circular

shifted generator matrix that enables the transmitter to encode the information stream with

low latency. In summary, the standardized LDPC code was optimized for encoding and

not for the channel conditions.

• The standardized LDPC code was found to be superior in performance to the

convolutional code in a static AWGN channel, which was seen when the noise threshold

was reached and the decoder could iterate the received sequence to have zero errors.

• Good BER performance was observed when using the standardized LDPC code in a

frequency non-selective fading channel provided that the length of the code was at least

nC > 1000 in order to outperform the convolutional code. This concludes that better

BER performances can be obtained from a longer LDPC codeword lengthnC. The LDPC

outperforms the convolutional code without any CSI.

• The standardized LDPC code illustrates that a sparse graph code is a method for

improving BER performance in a communication system with amplifier saturation of an

OFDM symbol at the transmitter. By adjusting the peak clipping levels, a desired BER

performance can be obtained when the link budget includes the noise threshold of the

LDPC.

6.2.3 Remarks on Optimizing LDPC Codes

The LDPC code was accepted as an optional coding scheme in the mobile WiMAX standard [8]

and was optimized for the encoding at the transmitter with a short codeword lengthnC. The

short length of the codeword was a significant impairment on the overall BER performance.

Near capacity performing LDPC codes have been designed [28, 29] under the assumption that

the codeword length was longer than106. In this dissertation a search for good LDPC codes

was found for codeword lengths ofnC < 104 and was verified as in chapter 5.

• Density evolutionwas used to analyze the progress of the messages passed within the

belief propagation decoder in order to optimize the graph code. The graph code was
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optimized for the entropy [73] that the messages induce from a clipped OFDM modulated

sequence and communication channel.

• These optimized graph codes were simulated on the mobile WiMAX platform to verify

any performance gains. Performance improvements have been found for both the static

AWGN channel and the frequency non-selective fading channel.

• It was shown that a graph code can be optimized for clipped OFDM symbols in a

frequency selective fading channel. This decreased the overall link budget required for

the system and lowers the error floor by a factor of10.

6.3 FUTURE RECOMMENDATIONS AND RESEARCH

Some prospective research endeavours are listed below that can be performed on the mobile

WiMAX with a short description of each.

• The mobile WiMAX platform can be expanded by means of MIMO capabilities that can

be used for space-time-frequency diversity. From this a range of numerical analysis can

be performed and the LDPC code can be optimized for this communication system.

• A current research field is to expand the density evolution method in order to analyze

message passing algorithms in a Galois Field (GF) as well as the stability issues that arise

in the use of this method.

• A thorough analysis of current source encoding techniques and their application in the

mobile WiMAX standard.

• Higher network layer control can be implemented for adaptive modulation schemes and

adaptive pilot modulation which can be used to optimize network utilization.

6.4 CONCLUSION

In this dissertation several coding schemes were analyzed on a mobile WiMAX platform which

was developed as part of this dissertation. The mobile WiMAX and channel characteristics

of interest in this dissertation were discussed in chapter 2. In chapter 2 the advantages and

disadvantages of using the OFDM modulation as the access scheme in mobile WiMAX was
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discussed. Emphasis was placed on the performance degradation that amplifier saturation has

on an OFDM symbol and the limitations it presents on the mobile WiMAX system.

The mandatory convolutional coding scheme in mobile WiMAX [8] was implemented in this

dissertation as a benchmark for other coding schemes. A cross road has been reached in

the technology used in mobile WiMAX as most coding schemes3 have started reaching their

practical limits. Most of these codes were not feasible to improve the BER performance

and were limited by the complexity of the decoder or by the limited provided error control

capabilities. The contradiction was that the payload size was to short for the more powerful

coding schemes4 which thrives on long codeword lengths.

A performance evaluation was conducted on the standardized LDPC code used in the mobile

WiMAX platform and it outperform the mandatory coding scheme. By means of the numerical

analysis on the channel messages received at the Belief propagation decoder, a LDPC code

was designed through graph analysis to compensate for the channel condition and amplifier

impairments. This optimized LDPC code was compared on the mobile WiMAX platform

to the other coding schemes and was found to have the best BER performance in all the

channel conditions. LDPC codes will become more popular as the available payload size in

the communication system becomes longer5.

3 Convolutional code, Reed Solomon code, Hamming code, Golay code, etc.
4 LDPC code and Turbo code
5 Typical codeword lengths ofnC > 104
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APPENDIXA
POWER DELAY PROFILES

This section provides power delay profiles that are typically experienced in the 2.3 - 2.5 GHz

band.
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FIGURE A.1: Power delay profile for a rural area.
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FIGURE A.2: Power delay profile for a suburban area.
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FIGURE A.3: Power delay profile for an alternative suburban area.
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FIGURE A.4: Power delay profile for a micro-cell hilly area.
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FIGURE A.5: Power delay profile for a urban high-rise area.
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FIGURE A.6: Power delay profile for a urban rooftop area.
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FIGURE A.7: Power delay profile for the ITU Channel 103 - Pedestrain B model.
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APPENDIXB
NODE TABLE FOR CONVOLUTIONAL CODE

The most extensive convolutional code used today is theNASAstandard code[5, 106], which

has been used in many standards [8–10] and was standardized in mobile WiMAX [8] as a

mandatory coding scheme. This code can be punctured and is pragmatic [107, 108] for TCM

[20].

FIGURE B.1: CC encoder,Rc = 1
2
, K = 7.

The convolutional encoder design has a free distancedfree = 10 and is illustrated in Figure B.1

with the generator taps of the encoder given in octal form as

g = (171; 133)oct. (B.1)

For the ease of implementation of a channel decoder, it is necessary to obtain the state diagram

and all node information. These nodes can be easily hard-coded into most chipsets and for this

reason is given in table B.1 as
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APPENDIX B NODE TABLE FOR CONVOLUTIONAL CODE

TABLE B.1: State node information for mandatory CC in mobile WiMAX

Current node Input Output Destination node Input Output Destination node

000000b 0b 00b 000000b 1b 11b 100000b

000001b 0b 11b 000000b 1b 00b 100000b

000010b 0b 01b 000001b 1b 10b 100001b

000011b 0b 10b 000001b 1b 01b 100001b

000100b 0b 00b 000010b 1b 11b 100010b

000101b 0b 11b 000010b 1b 00b 100010b

000110b 0b 01b 000011b 1b 10b 100011b

000111b 0b 10b 000011b 1b 01b 100011b

001000b 0b 11b 000100b 1b 00b 100100b

001001b 0b 00b 000100b 1b 11b 100100b

001010b 0b 10b 000101b 1b 01b 100101b

001011b 0b 01b 000101b 1b 10b 100101b

001100b 0b 11b 000110b 1b 00b 100110b

001101b 0b 00b 000110b 1b 11b 100110b

001110b 0b 10b 000111b 1b 01b 100111b

001111b 0b 01b 000111b 1b 10b 100111b

010000b 0b 11b 001000b 1b 00b 101000b

010001b 0b 00b 001000b 1b 11b 101000b

010010b 0b 10b 001001b 1b 01b 101001b

010011b 0b 01b 001001b 1b 10b 101001b

010100b 0b 11b 001010b 1b 00b 101010b

010101b 0b 00b 001010b 1b 11b 101010b
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Current node Input Output Destination node Input Output Destination node

010110b 0b 10b 001011b 1b 01b 101011b

010111b 0b 01b 001011b 1b 10b 101011b

011000b 0b 00b 001100b 1b 11b 101100b

011001b 0b 11b 001100b 1b 00b 101100b

011010b 0b 01b 001101b 1b 10b 101101b

011011b 0b 10b 001101b 1b 01b 101101b

011100b 0b 00b 001110b 1b 11b 101110b

011101b 0b 11b 001110b 1b 00b 101110b

011110b 0b 01b 001111b 1b 10b 101111b

011111b 0b 10b 001111b 1b 01b 101111b

100000b 0b 10b 010000b 1b 01b 110000b

100001b 0b 01b 010000b 1b 10b 110000b

100010b 0b 11b 010001b 1b 00b 110001b

100011b 0b 00b 010001b 1b 11b 110001b

100100b 0b 10b 010010b 1b 01b 110010b

100101b 0b 01b 010010b 1b 10b 110010b

100110b 0b 11b 010011b 1b 00b 110011b

100111b 0b 00b 010011b 1b 11b 110011b

101000b 0b 01b 010100b 1b 10b 110100b

101001b 0b 10b 010100b 1b 01b 110100b

101010b 0b 00b 010101b 1b 11b 110101b

101011b 0b 11b 010101b 1b 00b 110101b

101100b 0b 01b 010110b 1b 10b 110110b
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Current node Input Output Destination node Input Output Destination node

101101b 0b 10b 010110b 1b 01b 110110b

101110b 0b 00b 010111b 1b 11b 110111b

101111b 0b 11b 010111b 1b 00b 110111b

110000b 0b 01b 011000b 1b 10b 111000b

110001b 0b 10b 011000b 1b 01b 111000b

110010b 0b 00b 011001b 1b 11b 111001b

110011b 0b 11b 011001b 1b 00b 111001b

110100b 0b 01b 011010b 1b 10b 111010b

110101b 0b 10b 011010b 1b 01b 111010b

110110b 0b 00b 011011b 1b 11b 111011b

110111b 0b 11b 011011b 1b 00b 111011b

111000b 0b 10b 011100b 1b 01b 111100b

111001b 0b 01b 011100b 1b 10b 111100b

111010b 0b 11b 011101b 1b 00b 111101b

111011b 0b 00b 011101b 1b 11b 111101b

111100b 0b 10b 011110b 1b 01b 111110b

111101b 0b 01b 011110b 1b 10b 111110b

111110b 0b 11b 011111b 1b 00b 111111b

111111b 0b 00b 011111b 1b 11b 111111b
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APPENDIXC
NOTATIONS

C.1 NOTAT ION FOR I NFORMATION THEORY

This section is focussed on presenting the notations used within this dissertation.

TABLE C.1: List of commutative semirings for iterative decoding

K ”( +, 0 )” ”( x, 1 )” Description

F ( +, 0 ) ( x, 1 )

F[x, y, . . . ] ( +, 0 ) ( x, 1 )

R≥0 ( +, 0 ) ( x, 1 ) sum-product

R≥0 ∪ {∞} ( min,∞ ) ( x, 1 ) min-product

R≥0 ( max, 0 ) ( x, 1 ) max-product

R ∪ {∞} ( min,∞ ) ( +, 0 ) min-sum

R ∪ {−∞} ( max,−∞ ) ( +, 0 ) max-sum

{0, 1} (OR, 0 ) (AND, 1 ) Boolean
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Definition C.1.1 If X is a discrete random variable with probability distributionpX(x), then

the entropy is defined as [39]

H(X) = −
x

∑

pX(x) log pX(x). (C.1)

Definition C.1.2 The joint entropy of a random variablesX andY is defined as [39]

H(X, Y ) = −
x,y
∑

pX,Y (x, y) log pX,Y (x, y), (C.2)

and the chain rule [109] can be used to extendEq. (C.2) to [64]

H(X, Y ) = H(X) +H(Y |X) = H(X) +
∑

x

H(Y |X=x)pX(x). (C.3)

WhereH(Y |X=x) is the entropy of the random variable, given the probability distribution of

pY |X(y|x) andx is fixed.

Definition C.1.3 The mutual information [39] between two random variablesX and Y is

defined as

I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X), (C.4)

and the maximum rate of reliable transmission [64] as

C = max
pX(x)

I(X;Y ). (C.5)

Definition C.1.4 The MAP decoding rule [64] is given by

b̃
MAP

( c̃ ) = argmax c∈C pC|C̃
( c|c̃ ), (C.6)

b̃
MAP

( c̃ ) = argmax c∈C p C̃|C
( c̃|c )

pC( c )

p
C̃
( c̃ )

, Bayes′ rule (C.7)

b̃
MAP

( c̃ ) = argmax c∈C p C̃|C
( c̃|c )pC( c ). (C.8)

Definition C.1.5 Processing of MAP and ML is equivalent if the codewords is uniformly

distributed as

pC( c[i] ) =
1

2kC

, i = [0, 1, . . . , kC − 1]. (C.9)

DEPARTEMENT OFELECTRICAL, ELECTRONIC AND COMPUTER ENGINEERING PAGE 109

UNIVERSITY OF PRETORIA



APPENDIX C NOTATIONS

This equatesEq. (C.8) to

b̃
MAP

( c̃ ) = argmax c∈C p C̃|C
( c̃|c )pC( c ), (C.10)

b̃
MAP

( c̃ ) = argmax c∈C p C̃|C
( c̃|c ), Constant factor (C.11)

b̃
MAP

( c̃ ) = b̃
ML

( c̃ ). (C.12)

C.2 NOTATION FOR DISTRIBUTIONS

This section was focussed on presenting the different distributions that are used with the analysis

of LDPC codes.

C.2.1 L-Distribution

Definition C.2.1 The log-likelihood ratio for a received code bit is given as

LLR( c̃i ) =
P (c̃i = 1)

P (c̃i = 0)
. (C.13)

Definition C.2.2 Let L denote the random variable of the log-likelihood ratio obtain from

Eq. (C.13),L ∈ (−∞,∞], in a space denoted byAL. The distribution of random variable

L is presented byA(l) and letA(l) be a right-continuous non-decreasing function overR

respectively that satisfies the following properties [27] of

lim
l→−∞

A(l) = 0, (C.14)

lim
l→∞

A(l) ≤ 1, (C.15)

A ∈ AL, (C.16)

P (L ∈ (−∞, lu]) = A(lu), (C.17)

P (L = ∞) = 1− lim
lu→∞

A(lu). (C.18)

Definition C.2.3 A probability mass exists atl = ∞ as shown inEq. (C.15) for the Belief

Propagation algorithm.
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Definition C.2.4 A density a(l) is defined as the derivative (Radon-Nikodyn) of the set of

elements in spaceAL, with the densities existing over(−∞,∞].

Definition C.2.5 The densitya(l) corresponds to the distributionA(l) with
∫

l

g(x)dA(x) =

∫

l

g(x)a(x)dx, (C.19)

wheng(x) is assumed to be a non-negative continuous function.

Definition C.2.6 The Heavy distribution (step distribution) is defined as [64]

Hz(x) =







0 x < z,

1 x ≥ z.
(C.20)

Definition C.2.7 The density ofHz(x) is presented by∆z(x) and∆z(x) is the Dirac function

[48] shifted byz.

Definition C.2.8 The convolution of two L-distributionsA,B ∈ AL is defined as [27, 64]

(A ∗B)(l) =

∫

A(l − y)dB(y) =

∫

B(l − y)dA(y), (C.21)

and the corresponding L-densitiesa andb is expressed as(a ∗ b)(l).

Definition C.2.9 The distributionA(l) ∈ AL is symmetric and thus the following property

holds
∫

f(x)dA(x) =

∫

e−xf(−x)dA(x), (C.22)

for a bounded continuous functionf(x).

Definition C.2.10 The Bhattacharyya constant associated with a symmetricl-densitya(l) is

given as [64]

B(a(l)) =

∫

a(x) exp

(−x
2

)

dx, (C.23)

and for the purpose of an AWGN channel we have [27]

B(aAWGN(l)) =

∫

√

σ2
η(t)

8π
exp

(

−
(x− 2/σ2

η(t))
2σ2

η(t)

8

)

exp

(−x2

2

)

dx, (C.24)

B(aAWGN(l)) = exp

(

− 1

2σ2
η(t)

)

. (C.25)
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C.2.2 G-Distribution

Definition C.2.11 We defineh(l) as an unconventional probabilistic hard-decision function

that takes the log-likelihood ratiol=LLR( c̃i ) of the code bit as [64]

h(l) =



























1 if l > 0,

1 if l = 0 probability of 1
2
,

−1 if l = 0 probability of 1
2
,

−1 if l < 0.

(C.26)

Definition C.2.12 The G-distribution is a convenient method of expressing operations done at

the check node of the Tanner graph [27] and is given as

g(l) =

(

h(l), ln

(

coth

( |l|
2

)))

, (C.27)

with l=LLR( c̃i ). Note thatg(l) takes on value in ranges of{±1} × [0,∞]. It should be

noted that in the horizontal step the Belief Propagation decoding can easily be computed with a

1/tanh(l/2) function, but for analysis of the G-distribution we rather use thecoth(l/2) function

for providing positive values for the distribution.

Definition C.2.13 A sufficient representation for a G-density inEq. (C.28) and G-distribution

in Eq. (C.29) is presented by [27, 64] as

a(s, x) =⊥{s=1} a(1, x)+ ⊥{s=−1} a(−1, x), (C.28)

A(s, x) =⊥{s=1} A(1, x)+ ⊥{s=−1} A(−1, x), (C.29)

with the notation of

⊥{s=e}=







1 if s = e,

0 otherwise.
(C.30)

The distributionsA(1, x) andA(−1, x) are both non-decreasing right continuous functions with
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the following properties of

lim
x→∞

A(1, x) ≥ lim
x→∞

A(−1, x), (C.31)

A(1, 0) ≥ 0, (C.32)

A(−1, 0) = 0, (C.33)

a(1, 0) = |A(1, 0)|, (C.34)

a(1,∞) =
1

2

(

1 − lim
x→∞

A(1, x) − lim
x→∞

A(−1, x)

)

, (C.35)

a(−1,∞) =
1

2

(

1 − lim
x→∞

A(1, x) − lim
x→∞

A(−1, x)

)

, (C.36)

A(s, x) ∈ AG. (C.37)

This ensures that point mass probabilities exists atx = 0 andx = ∞.

C.2.3 Mapping of Distributions

It is convenient to switch between distributions in our analysis. LetΓ denote the map of a

L-distribution to aG-distribution and letΓ−1 denote the inverse operator [27].

Definition C.2.14 TheΓ operator is given as

A(1, z ≥ 0) = 1 − A−(ln(coth(z/2))), (C.38)

A(−1, z ≥ 0) = A(−ln(coth(z/2))), (C.39)

a(1, z ≥ 0) =
a(ln(coth(z/2)))

sinh(z)
, (C.40)

a(−1, z ≥ 0) =
a(−ln(coth(z/2)))

sinh(z)
. (C.41)

Definition C.2.15 TheΓ−1 operator is given as

A(z ≥ 0) = 1 − A
−(1, ln(coth(z/2))), (C.42)

A(z < 0) = A(−1, ln(coth(−z/2))), (C.43)

a(z ≥ 0) =
a(1, ln(coth(z/2)))

sinh(z)
, (C.44)

a(z < 0) =
a(−1, ln(coth(−z/2)))

sinh(−z) . (C.45)
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Definition C.2.16 The convolution of two G-distributionsA, B ∈ AG is defined as [27, 64]

A⊛B =⊥{s=1}

(

A(1, ·)∗B(1, ·)+A(−1, ·)∗B(−1, ·)
)

+ ⊥{s=−1}

(

A(−1, ·)∗B(1, ·)+A(1, ·)∗B(−1, ·)
)

(C.46)

with

A(s, x) =⊥{s=1} A(1, x)+ ⊥{s=−1} A(−1, x), (C.47)

B(s, x) =⊥{s=1} B(1, x)+ ⊥{s=−1} B(−1, x). (C.48)

Where∗ denotes a one-sided convolution of standard distribution [64].
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