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CHAPTER 3 

 

LITERATURE REVIEW: AGRICULTURAL TECHNOLOGY 

ADOPTION 

 

3.1 Introduction 
 

In this chapter, a review of relevant literature on adoption and diffusion is provided. The 

chapter will review and compare the various approaches to study adoption and diffusion 

found in the literature discussing merits and drawbacks of each. The theoretical framework 

within which the compared approaches are placed is presented in section 3.2. Section 3.3 

will compare analytical models used to analyze adoption and diffusion of technologies and 

section 3.4 reviews empirical studies of relevance to this research. The final section 

presents analyses of technology adoption and diffusion in Ethiopia. 

 

3.2 Basic concepts and theoretical foundations of adoption analyses 

 

Technologies play an important role in economic development. Adoption and diffusion of 

technology are two interrelated concepts describing the decision to use or not use and the 

spread of a given technology among economic units over a period of time. Adoption of any 

innovation is not a one step process as it takes time for adoption to complete. First time 

adopters may continue or cease to use the new technology. The duration of adoption of a 

technology vary among economic units, regions and attributes of the technology itself. 

Therefore, adequate understanding of the process of technology adoption and its diffusion 

is necessary for designing effective agricultural research and extension programmes. The 

following sections define basic concepts of technology adoption and diffusion and provide 

a theoretical background to adoption and diffusion processes including hypotheses used to 

explain the S-shaped curve of diffusion. Stages, approaches and sequence of agricultural 

technology adoption, and benefits from adoption of innovations are also discussed in this 

section.  

 

Adoption and diffusion are distinct but interrelated concepts. Adoption commonly refers to 
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the decision to use a new technology or practice by economic units on a regular basis. 

Diffusion often refers to spatial and temporal spread of the new technology among 

different economic units. Many researchers belonging to different disciplines have defined 

the two concepts in relation to their own fields. Among others, the definition given by 

Rogers (1983) is widely used in several adoption and diffusion studies. Rogers (1983) 

made a distinction between adoption and diffusion. He defined diffusion (aggregate 

adoption) as the process by which a technology is communicated through certain channels 

over time among the members of a social system
1
. This definition recognize the following 

four elements: (1) the technology that represents the new idea, practice, or object being 

diffused, (2) communication channels which represent the way information about the new 

technology flows from change agents (extension, technology suppliers) to final users or 

adopters (e.g., farmers), (3) the time period over which a social system adopts a 

technology, and (4) the social system. Rogers (1983) then defined adoption as use or non-

use of a new technology by a farmer at a given period of time. This definition can be 

extended to all economic units in the social system. 

 

Feder et al. (1985) distinguished individual adoption (farm level) from aggregate adoption. 

Individual (farm level) adoption was defined as the degree of use of a new technology 

(innovation)
2
 in a long-run equilibrium when the farmer has full information about the new 

technology and its potential. Aggregate adoption (diffusion) was defined as the process of 

spread of a technology within a region. This definition implies that aggregate adoption is 

measured by the aggregate level of use of a given technology within a given geographical 

area. Similarly, Thirtle and Ruttan (1987) defined aggregate adoption as the spread of a 

new technique within a population. The distinction between adoption and diffusion is 

                     
1
 The social system refers to a set of interrelated units that share common problems and are 

engaged in joint problem solving to accomplish a common goal (Rogers, 1983). A social system 

encompasses individuals, organizations, or agencies and their adopting strategies (Knudson, 

1991). 

2
 A technology is any idea, object or practice that is perceived as new by the members of a            

social system (Mahajan and Peterson, 1985). Innovations are classified into process and          

product innovation. A process innovation is an input to a production process, while                  

product innovation is an end product for consumption. The agricultural technologies                

considered in this study fall in the first category. In this study the terms innovation and            

technology are interchangeably used. 
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important for theoretical and empirical analyses of the levels of the two economic 

phenomena. 

 

The adoption decision also involves the choice of how much resource (i.e. land) to be 

allocated to the new and the old technologies if the technology is not divisible (e.g. 

mechanization, irrigation). However, if the technology is divisible (e.g., improved seed, 

fertilizer and herbicide), the decision process involves area allocations as well as level of 

use or rate of application (Feder et al., 1985). Thus, the process of adoption decision 

includes the simultaneous choice of whether to adopt a technology or not and the intensity 

of its use.  Besides, before adoption choices are made a farmer makes a set of several 

interdependent decisions (Hassan, 1996). 

 

A distinction has to be made between technologies that are divisible and that are not 

divisible with regard to the measurement of intensity of adoption. The intensity of adoption 

of divisible technologies can be measured at the individual level in a given period of time 

by the share of farm area under the new technology or quantity of input used per hectare in 

relation to the research recommendations (Feder et al., 1985).  This measure can also be 

applied to the aggregate level of adoption in a region. On the other hand, the extent of 

adoption of non-divisible agricultural technologies such as tractors and combine harvesters 

at the farm level at a given period of time is dichotomous (use or no use), and the 

aggregate measure becomes continuous. In the latter case, aggregate adoption of a lumpy 

technology can be measured by calculating the percentage of farmers using the new 

technology within a given area.  

 

3.2.1 Adoption, diffusion and abandonment of new technology   

 

The introduction of a new technology consists of two phases. In the first phase, the new 

technology is introduced to farmers through for instance, demonstrations plots or other 

means and the new technology will be adopted when found beneficial. The second phase is 

characterized by declining use of the new technology over time until abandonment (Dinar 

and Yaron, 1992). Abandonment (discontinue use) of a new technology is a reflection of 

either a loss of profitability due to increasing costs of inputs, falling yields or the results of 
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a switch to another more profitable technology. In the case of new improved seeds, 

abandonment is stopping the use of new variety any more. On the other hand, replacement 

of the existing improved variety with recently released new one is considered a 

continuation of use of the improved seed, because the new varieties are substitutes for each 

other. With this background, technology diffusion is presented next. 

 

The concept of early and late adopters provided the basic hypothesis for explaining the S-

shape nature of the adoption path. Studies by Mosher (1979), Rogers (1983), Mahajan and 

Peterson (1985), and Bera and Kelley (1990) provided explanations related to the process 

of acquiring information and the time lags that creates in terms of the speed of adoption 

among various members of the community in question to become adopters. In other words, 

the S-shaped curve results from the fact that only a few members of the social systems 

(farmers) adopt a new technology in the early stage of the diffusion process. At the early 

stages of introduction of a new technology, only few farmers obtain full information about 

the potential economic benefits of the technology and hence the adoption speed is slow. 

Moreover, even if they get full information about the potential economic benefits of the 

technology at the early stage, most farmers fear the possible risks associated with the new 

technology and hence do not opt to adopt. However, in subsequent time periods potential 

adopters acquire more information about the benefits of the technology and the degree of 

riskiness associated with it. Then adoption accelerates until it reaches an inflection point 

after which it increases gradually at a decreasing rate and begins to level off, ultimately 

reaching an upper ceiling. Studies by Griliches (1957) and Mansfield (1961) attributed the 

S-shaped diffusion curve to the spread of information as well as economic factors. Their 

studies showed that the rate of adoption of a technology is a function of the extent of 

economic merits (profitability) of the technology, the amount of investment required to 

adopt the technology and the degree of uncertainty associated with it and availability of the 

technology. Another study by Gutkind and Zilberman (1985) also revealed that the S-

shaped diffusion curve can be explained by the profit maximization behavior, learning by 

doing and subjective evaluations of decision makers. The Gutkind and Zilberman’s (1985) 

study also indicated that the tendency of large firms to be early adopters of new 

technologies explains the S-shape curve, based on the assumption that large farmers have 

advantages over smaller farmers in most of the determining factors listed above, e.g., better 
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access to information, education, capital and credit.   

 

Theoretical and empirical adoption studies also investigated factors determining the long-

run ceilings of the S-shaped diffusion curve. The long-run upper limit or ceiling of the S-

shaped curve is determined by the economic characteristics of the new technology in the 

aggregate adoption. A study by Griliches (1980) showed that aggregate adoption ceiling is 

a function of economic variables (e.g. profitability) that determine the rate of acceptance of 

a technology. Differences in profitability of a technology in different regions result in 

different adoption ceilings.  

 

3.2.2 Speed of technology adoption 

 

Many adoption studies indicated that there is a great variation in the speed of technology 

diffusion. It has been argued that potential adopters' perceptions of the attributes of the new 

technology affect the speed with which that technology is adopted. A study by Rogers 

(1983) identified five characteristics of innovations that have an impact on the speed of 

adoption. Those characteristics of innovations included: relative advantage, compatibility, 

complexity, divisibility, and observability. Another study by Supe (1983) added two more 

attributes that affect the rate of adoption: variations in the cost of adoption and group 

action requirements of the technology. For example, technologies such as drainage and 

watershed management require group actions for adoption compared to technologies that 

are taken up on an entirely individual basis such as improved seed and fertilizer. The later 

group of technologies are adopted faster than those technologies that require group actions, 

as all farmers may not be equally interested in these technologies.  

 

 Of the technological characteristics mentioned above, relative advantage is regarded as the 

one with the strongest effect on the rate of adoption. The relative advantage can be 

subdivided into economic and non-economic categories. The economic categories are 

related to the profitability of the technology while the non-economic features are a function 

of variables including saving of time (leisure) and increase in comfort (Ratz, 1995). The 

higher the relative advantages the higher the rates of adoption. The compatibility of a 

technology indicates the degree to which that technology is consistent with the existing 
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social values, cultural norms, experiences and needs of the potential adopters. This 

attribute also plays a key role in influencing the speed of adoption. 

 

A study by Byerlee and Hesse de Polanco (1986) examined the relationship between rates 

(speed) of adoption of technologies and various economic factors. Their study showed that 

the adoption pattern of a particular technology is a function of five characteristics 

(profitability, riskiness, divisibility or initial capital requirement, complexity, and 

availability). Their study further indicated that profitability and riskiness of a given 

technology are a function of agro-climatic and socio-economic environments, such as 

rainfall and prices. In other words, rainfall and prices indirectly influence the rate of 

adoption. Interactions between technological components will also affects the rate of 

adoption. The benefits of using improved seed (hybrid) for instance, are enhanced by 

fertilizer application especially under favourable environmental conditions, e.g. in high 

potential areas (Feder, 1982; Byerlee and Hesse de Polanco, 1986; Hassan et al., 1998). 

 

The rate and speed of improved technology adoption depends on the availability of 

improved technologies, which involve the generation and dissemination of these 

technologies to users (e.g., farmers). Generation of improved technologies is a time-

intensive process and the technologies also depreciate (Alston et al., 1998). More time is 

also required for adoption to take place i.e. the time that passed from the introduction of 

the improved technology until the decision is made to use it.  Figure 3.1 depicts the time 

taken to generate and disseminate improved technology and the adoption process. A 

generic adoption profile includes the technology development lag ending with a release of 

new technology (A) and the initially increasing adoption rate, which reflects the growing 

number of farmers in the target area who are using the technology (B). An adoption plateau 

occurs when most target farmers have been exposed to the technology and have decided 

whether or not to adopt it (C). Adoption then declines as the technology becomes obsolete 

(D). Together, these components determine the speed with which adoption of yield 

increasing technologies have impacts on farmers’ production (Mills et al., 1998).  

 

The other important reason for the length of time needed for technology generation, 

dissemination and adoption is how fast results are achieved as an indicator of the greater 

 
  



 

    

53 

 

potential economic returns. Benefits received today worth more than those received 

tomorrow because they can be reinvested sooner to earn additional returns (Alston et al., 

1998). 

 

Figure 3.1. Technology generation and adoption profile 
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 Source: Adapted from Mills et al (1998) 

 

3.2.3 Categories of adopters and stages of adoption 
 

Adoption studies also identified and described five categories of adopters in a social 

system. The categories included innovators, early adopters, early majority, late majority, 

and laggards (Mosher, 1979; Rogers, 1983). Describing the characteristics of these groups 

a study by Rogers (1983) indicated that the majority of early adopters are expected to be 

younger, more educated, venturesome, and willing to take risk. In contrary to this group, 

the late adopters are expected to be older, less educated, conservative, and not willing to 

take risks. However, a study by Runquist (1984) noted that the practical aspect of the 

classification of adopters into five categories is relevant to deliberate or planned 

introduction of innovation. The usefulness of this categorization is restricted as there is 

evidence indicating a movement from one category to the other, depending on the 

technology introduced. 

 

Considerable efforts were made to identify the various stages of the adoption decision 
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process. Studies by Rogers and Shoemaker (1971) and Rogers (1983) described the 

innovation adoption decision process, as the mental process from the first knowledge of an 

innovation to the decision to adopt or reject. The study further indicated that the innovation 

adoption decision process is different from the diffusion process. The former takes place 

within the mind of an individual while the latter occurs among the units in a social system 

or within a region. Based on this theoretical background the study identified five stages in 

the adoption process. These are (1) awareness or the initial knowledge of the innovation 

(2) interest and persuasion toward the innovation, (3) evaluation or the decision whether or 

not adopt the innovation (4) trial and confirmation sought about the decision made, and (5) 

adoption. These stages in the diffusion process imply a time lag between awareness and 

adoption. It is usually measured from first knowledge until the decision is made whether to 

adopt or not. Hence, adoption is not a random behaviour, but is the result of sequence of 

events passing through these adoption stages (Rogers, 1983). 

 

3.2.4 Mode and sequence of agricultural technology adoption 
 

Attentions have also been given to explaining the mode (approach) and sequence of 

agricultural technology adoption. Two approaches are common in the agricultural 

technology adoption literature. The first approach emphasises the adoption of the whole 

package while the second one stresses step-wise or sequential adoption of components of a 

package. Technical scientists often recommend the former approach while field 

practitioners specifically farming system and participatory research groups advance the 

latter. There is a great tendency in agricultural extension programmes of developing 

countries to promote technologies as a package and farmers are expected to adopt the 

whole package.  

 

Opponents of the whole package approach strongly argue that farmers do not adopt 

technologies as a package, but rather adopt a single component or a few suitable 

technologies (Mann, 1978; Byerlee and Hesse de Polanco, 1986). Several adoption studies 

reviewed by Nagy and Sanders (1990) and Leather and Smale (1991) concluded that 

farmers choose to adopt inputs sequentially. Initially, adopting only one component of the 

package and subsequently adding components over time, one at a time. The major reasons 
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often given for sequential adoption of a package of technologies are profitability, riskiness, 

uncertainty, lumpiness of investment and institutional constraints (Byerlee and Hesse de 

Polanco, 1986; Leather and Smale, 1991). A farmer first selects the technology that best 

exhibits these attributes. Another study by Ryan and Subrahmanyam (1975) revealed that 

farmers might look upon each part of the technological package as a less risky activity than 

the complete package in terms of what the farmer could lose if crop failure occurs in that 

season. Their study concluded that sequential adoption of components of technological 

package is a rational choice for farmers with limited cash. As cash is accumulated from 

previous adoption of a component of a package, farmers will add another component based 

on the relative advantage and its compatibility under their condition. This process will 

continue until the whole package is fully adopted. 

 

A study by Rauniyar and Goode (1996) defined patterns of technology adoption based on 

the relationship between the technological components adopted. First, the study termed the 

adoption pattern independent, if the technologies (practices) are independent of one 

another. Under such conditions the adoption pattern of a farmer will be largely random 

(Rauniyar and Goode, 1996). This assertion is not in agreement with a study by Rogers 

(1983), which showed that farmers’ adoption decision is not random. Farmers make 

rational decisions taking into account the environment under which they operate. The 

probability of adopting a given technology is not conditioned by the adoption of the other 

technology. Secondly, if farmers adopt technologies in a specific order, the adoption 

pattern is sequential. This implies that the probability of adopting a technology is 

conditional on adopting technologies that precede it in the sequence. Thirdly, the adoption 

pattern becomes simultaneous if more than one technology is adopted as a package and no 

specific adoption of a technology precedes or follows the adoption of another technology.  

 

3.2.5 Risk and adoption of a new technology 
 

As indicated above adoption decisions depend on farmers’ attitude toward risk (risk aversion 

or risk neutrality) and riskiness of the new technology. The impact of the new technology is 

not known and farmers have to make subjective judgments about the possible risks they will 

face. Farmer’s risk attitude is analyzed by direct utility elicitation (DUE), observed economic 
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behaviour and experimental methods (Binswagner, 1980). The Von-Neuman Morgenstern 

(VNM), the modified NVM and the Ramsey methods are among the DUE methods. 

However, the Ramsey method is less severely affected by preferences to probabilities and 

gambling (Anderson, Dillon and Hardaker, 1977).  

 

For instance, the impact of risk on the optimal level of fertilizer use is illustrated in Figure 

3.2. The type of risk analyzed here is the uncertainty about possible weather outcomes: 

“good weather” or “bad weather”. If “good weather” occurs the best crop yield will be 

obtained and if “bad weather” occurs crop yield will be poor. The total value product 

(TVP) received in response to applying fertilizer for the “good and bad weather” and 

farmers’ expected total value product (ETVP), based on the subjective probability of the 

weather, are represented by TVP1, TVP2 and E(TVP),  respectively. A total factor cost 

(TFC) line shows total production cost associated with an increase in fertilizer use. 

 

The demand for fertilizer depends on its contribution to the value of output. Two elements 

determine returns to fertilizer use. The first is its technical relationship between the 

different levels of fertilizer and the quantity of output produced holding all other factors 

constant. Second, based on profit maximization assumptions of the theory of the firm, an 

optimum level of fertilizer is achieved at the point where the value of additional output 

(TVP) from an extra unit of fertilizer is equal to its cost (price of fertilizer).  

 

For instance, three alternatives fertilizer levels: (F1), (F2) and (FE) were chosen, the 

rationality of which depend on the risk preferences of farmers. A risk averse farmer is 

assumed to operate at D on (TVP2), while a risk loving farmer operates at A on (TVP1) 

and a risk neutral farmer operates at G on E(TVP). An application rate of (F1) represents 

an efficient allocation if a “good weather” occurs (TVP1), and provides the largest profit of 

AB. On the other hand, if (F1) is chosen and a “bad weather” occurs (TVP2), a farmer 

incurs a loss of (BJ). If a “bad weather” occurs, application of (F2) level of fertilizer is 

efficient on (TVP2). At application level (F2), if it turns out to be a “good weather” a profit 

of (CE) is obtained. But if it turns out to be a “bad weather” the farmer still makes a profit 

of (DE) albeit it will be small. Finally, a fertilizer application rate of (FE) represents an 

optimal level of a balanced assessment of the average outcome of a “good and bad 
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weather”. A profit of (GI) is obtained if (FE) is chosen, which is less than the largest 

possible profit (FI) on (TVP1) if it turns out to be a “good weather”. On the other hand, if a 

“bad weather” occurs there will be a loss of (GH) which is less than the largest possible 

loss (FH) on (TVP2). 

 

 Figure 3.2. Decisions under Production risk. 

 

 

 

 

 

 

 

                                               0                F2       FE            F1                  Fertilizer, kg/ha 

Source: Ellis, 1993. 

 

3.2.6 Distribution of benefits obtained from adoption of innovations 

 

Adoption of a new production technology increases production and shifts the supply curve 

to the right from earlier position (Figure 3.3). This shift shows the effect of adoption on a 

number of other variables in addition to the quantity produced (example, the price paid by 

consumers and the price received by producers). For instance, using economic surplus 

measures (consumer and producer surplus) the shift can be used to measure the distribution 

of benefits between producers and consumers as well as to identify the effects on industry 

revenue and to measure total increases in economic efficiency and total social benefits 

(Alston et al., 1998).  

 

As Figure 3.3 depicts the adoption of new technology results in shifting of the supply 

curve from s to r, which increases both the consumers and producers surpluses. Consumers 

receive area (DAP1) whereas producers receive area (P1AB) in surplus before adoption of 

the new technology. After adoptions of the new technology consumers receive area of (DA 

FP2) where as producers receive area of (P2FG). The supply shift then results in output 
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price decrease from P1 to P2, which affects both consumer and producer surpluses. The 

total gain from the adoption of the new technology is represented by area (ABGF). 

  

Figure 3.3. Economic benefits from adoption of new production technology 
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The impacts of the technology adoption induced supply shift on consumers and producers 

are complex. As it is clearly depicted, both producers and consumers benefit from the 

supply shift, but who benefits more depends on the relative elasticity of both demand and 

supply (Gujarati, 1992). When demand is inelastic than supply, a positive (negative) shift 

in supply increases (reduces) consumer surplus more than reduction (increase) in producer 

surplus. With more elastic demand curve, a positive (negative) shift in supply result in 

smaller increases (reduce) in consumer surpluses than producer surpluses.  Similar results 

are obtained with price inelastic and elastic supply curves, and holding supply price 

inelastic (elastic). 

 

3.3. Approaches to analysing technology adoption and diffusion 

 

Several analytical frameworks have been developed to analyse adoption and diffusion of 

agricultural innovations. Some were more suited and applied to adoption decisions while 

others did model diffusion better. This section provides a review of the various analytical 

models developed for studying adoption and diffusion of agricultural technologies.  
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3.3.1. Models explaining technology diffusion 

 

As explained earlier in this chapter, the diffusion process has been commonly modelled to 

follow an S-shaped curve describing how technology as a new innovation spreads within 

adopting communities over space and time. Several models (static and dynamic) have been 

used to analyse this process.  

 

3.3.1.1 Static diffusion model 

 

The logistic function and its variants were commonly used to capture the nature of an S-

shaped diffusion curve as discussed below.  

 

3.3.1.1.1 The basic logistic model 

A logistic function was specified to model the diffusion process as follows: 

∂ ∂N t g N Nt t

M

t= −( )                 (1) 

where ∂ ∂N tt  is the rate of changes in adoption over time t and gt is the coefficient of 

diffusion, which measures how fast adoption occurs. Nt is the cumulative frequency of 

adopters at time t and N
M

 is the maximum number of adopters in a social system over time. 

The number of potential adopters not joining at time t is N
M

 - Nt.  

 

Griliches (1957) used the above model to estimate the diffusion of hybrid corn in the 

United States (U.S.). The percentage area planted to hybrid seed was estimated using the 

ceiling, the time variable and the rate of growth coefficients. This study also used the 

logistic function to estimate the relationship between the rate of adoption and profitability 

variables. Differences in profitability of technology in different regions or districts resulted 

in different adoption rates. The study showed that the diffusion rate of hybrid seeds in 

different farming areas was positively related to the increased profit achieved by the farmers 

introducing the new seed. However, the study did not reveal why producers did not adopt the 

new technology immediately, even if it was profitable.  
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Past studies on the path of technology adoption measured diffusion in terms of the 

distribution of adopters (frequency) over time (Rundquist, 1984; Thirtle and Ruttan, 1987). 

When the cumulative frequency of adoption is plotted against time, the result 

approximated an S-shaped (sigmoid) diffusion curve. Although the diffusion pattern of 

most innovations can be derived in terms of a general S-shaped curve, the exact form of 

each curve including the slope may vary depending on the analytical models used to 

describe the adoption-diffusion process (Sahal, 1981). For instance, the logistic function, 

the Gompertz function, the modified exponential function, the cumulative normal 

distribution function, and the cumulative log normal distribution function all provide S-

shaped curves. The logistic distribution function, which is the simplest to estimate and 

interpret, is more widely used in most adoption and diffusion studies.  

 

Studies by Gore and Lavaraj (1987), Doessel and Strong (1991) and Knudson (1991) 

questioned some of the assumptions of the basic logistic model.  The studies attempted to 

improve the relevance of the logistic function by relaxing some of its stringent 

assumptions. For example, Doessel and Strong (1991) relaxed the assumption of constant 

population and incorporated population variability (unknown population) in investigating 

the diffusion of new pharmaceutical drugs. It was assumed that the intercept and diffusion 

rate are not affected by the size of the population. The modified logistic model produced 

valid estimates if the members of any size of a population have the same behavioural 

characteristics.  

 

In the study of semi-dwarf wheat varieties in the U.S. by Knudson (1991), the assumption 

of a fixed adoption ceiling of the logistic model was relaxed to allow for the possibility of 

non-adoption and changes in complementary technology. The study by Knudson (1991) 

applied the modified logistic model on semi-dwarf wheat varieties and showed that the 

modified logistic model better fitted the data compared to the standard logistic model that 

is commonly based on the assumption of constant ceilings. Another study by Gore and 

Lavaraj (1987) also relaxed the assumption of homogeneous population and estimated the 

standard and modified logistic models to describe diffusion of crossbred goats in a 

spatially heterogeneous population (within town and outside town) in a village in Pune of 

west India. The study revealed that diffusion in a village within the town follows the 
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logistic model while diffusion in a village outside town was a function of information 

received from adopters within a village. The modified logistic model resulted in a marginal 

improvement over the standard logistic model. 

 

3.3.1.1.2 The distinction between innovators and imitators in models of diffusion  

   analyses 

The basic logistic model was based on imitation theory, which assumes that the adopting 

population consists of homogeneous imitators (Feder et al., 1985; Knudson, 1991; Weir 

and Knight, 2000). While this approach clearly describes how innovation diffuses, 

communication channels are not explicitly modelled. Their effect is implicitly captured in 

the diffusion coefficient, gt (equation 1). 

 

The diffusion model that disaggregates adopters into innovators and imitators measures the 

value of the constant relating the number of new adopters to potential adopters as a 

function of the specific technology, the social system, the channel and change agents used 

to diffuse the technology and economic factors (Mahajan and Peterson, 1978; Akinola, 

1986). The said constant can also be expressed as a function of previous adopters if higher 

order terms are dropped. Modifying the basic logistic diffusion model to provide for these 

concepts yield (Mahajan and Peterson, 1978):  

(1) The coefficient of innovation or the rate of adoption of the proportion of the 

population whose adoption decision is influenced by exogenous information, and  

(2) The coefficient of imitation or the rate of adoption of the population whose 

adoption is based on internal interactions. 

 

The coefficient of imitation takes into account the interaction between adopters and non-

adopters. This modified model is similar to the new-product growth model (Bass, 1969)
3
, 

which was further developed by Mahajan and Peterson (1978).   

 

 

                     
3
Bass (1969) model assumes that the adoption coefficients of imitators and innovators are          

constant. This assumption is unreasonable as a general case, since socio-economic, institutional, 

and the supply conditions of the innovation influence these variables.  
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The theory of imitation on which the standard logistic models were based has been 

questioned in many diffusion studies. In the standard logistic model the population or 

social system is assumed to be homogeneous and imitators. Hence, new users imitate 

adopters. However, adopters do not only influence potential users in the social system as 

they are also influenced by external information sources such as extension agents and mass 

media. To estimate such effect, models that account for influences from the internal and 

external sources of information have been developed. Such models classify the population 

into two categories, the innovators and imitators. It is assumed that the innovators adopt 

the new technology independent of others in the social system (Feder and Umali, 1993). 

Their adoption decision is influenced by external information sources such as extension 

agents, technology suppliers and mass media. However, the adoption decisions of imitators 

depend on the number of adopters in the social system. The roles of agricultural extension 

services and inputs suppliers represent the external information sources while interaction 

among farmers themselves represents internal information sources (Rogers, 1983).  

 

One problem with the logistic model is that it imposes a symmetric diffusion trend with a 

maximum diffusion rate occurring when 50% of the potential cumulative adopters have 

adopted (Thirtle and Rutan, 1987). It is based on the premise that diffusion occurs through 

interpersonal contacts among a group of homogenous adopters (Mansfield, 1961). But not all 

diffusion models require symmetry around 50% inflection point. For instance, the Gomptez 

model (equation 2) imposes an asymmetric trend with the maximum diffusion rate 

occurring when 37% of the potential cumulative adopters have adopted. 

∂ ∂N t g N Nt t

M

t= −log         (2) 

The assumption here is that although adopters are homogeneous, early adopters are 

relatively more cohesive than middle and late adopters and hence they adopt at a faster 

pace.  

 

Concerning the symmetric nature of the logistic curve, the symmetry of the logistic curve 

does not always fit observed data. Alternative non-symmetric diffusion models were 

developed to fill this gap. The inflection point and degree of symmetry of these flexible 

logistic models are determined by the observed data sets and not imposed a priori (Bewley 

and Fiebig, 1988).  
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The above static diffusion models work best when the adoption process modelled satisfies 

certain assumptions. According to Mahjan and Peterson (1985), six basic assumptions 

underlie static diffusion models:  

1) The adoption decision is binary (an individual adopts or does not adopt);  

2) A fixed, finite ceiling exists;  

3) The coefficient of diffusion is fixed over time;  

4) The innovation is not modified once introduced, and its diffusion is independent 

from the diffusion of other innovations;  

5) One adoption is permitted per adopting unit and this decision cannot be annulled; 

and  

6) Geographical boundaries of a social system stay constant over a diffusion process.   

 

However, for many applications the static diffusion model is open to two objections. First, 

there will be no rationale ex ante for assuming that diffusion follows a particular trend in 

many cases. Second, in most economic contexts the assumption of a fixed ceiling on the 

adopting population is unrealistic. For instance, the potential number adopters of a 

biological innovation will vary depending upon the availability of innovations, which itself 

is a result of the profit-maximizing efforts of firms. This calls for models that allow more 

flexibility with regard to inflection and symmetry points (Mahajan and Peterson, 1985 

Knudson, 1991). 

 

3.3.1.2 Dynamic diffusion models 

  

Dynamic diffusion models allow the determinants of diffusion to change every time period 

and, hence, measure the rate of adoption more accurately than the static model. For 

instance, as the real price of an innovation decreases and stabilizes, an innovation becomes 

more attractive and is adopted more rapidly. A dynamic model could capture this change 

whereas a static model could not. Moreover, a dynamic model can include more variables 

that affect diffusion as a result of its flexible form and hence measure more directly the 

impact of these factors (Mahajan and Peterson, 1978, 1985, Knudson, 1991). 
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Studies by Mahajan and Peterson (1978) and Metcalfe and Gibbons (1983) used the 

dynamic model relaxing some of the assumptions (adoption ceiling, changes in the 

technology, disadoption) of the static model. Unfortunately, their model, although 

theoretically appealing, it is difficult to estimate because data required for the profit 

equations are virtually impossible to obtain.  

 

A model overcoming these data limitations was developed by Knudson (1991) to estimate 

the diffusion of semi-dwarf wheat varieties across the U.S. In this model, the maximum 

numbers of adopters were considered to be a function of a wheat supply, wheat prices 

farmers’ received and paid, and the price paid for fertilizers at a given time. All mentioned 

prices were lagged one year. Two factors accounted for this: First, the model used price 

variables lagged only for one year because producers’ expectations were based on 

relatively recent experiences used. Second, a common deflator does not deflate the price 

variables; rather the price variable that would have been the deflector is used as 

explanatory variable to measure its impact (Tomek and Robinson, 1981). Comparison of 

results of static and dynamic diffusion models show that the dynamic model provides a 

better fit to the data as well as offering additional insights into the economic determinants 

of wheat adoption (Knudson, 1991). In particular, the pattern of adoption of improved 

varieties was affected by changes in fertilizer prices (Knudson, 1991). 

 

3.3.2 Models analysing adoption of innovations 

 

Generally, it is assumed that farmers’ decisions in a given period of time and space are 

derived from maximization of expected utility or expected profit subject to resources 

constraints. Therefore, adoption depends on farmers’ discrete choice of a new technology 

from a mix including the traditional technology and a set of components of the new 

technology (Feder et al., 1985). To answer the question of what determines whether a 

particular technology is adopted or not and intensity of adoption, most of the adoption of 

agricultural innovations studies used static rather than dynamic models.  
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3.3.2.1 Static adoption models 

 

A static model refers to farmers’ decisions to adopt an improved technology at a specific 

place and a specific period of time. This model attempts to answer the question of what 

determines whether a particular technology is adopted or not and what determines the 

pattern of adoption at a particular point in time. The results of these studies are often 

contradictory regarding the importance and influence of certain variables (Ghadim and 

Pannell, 1999). One limitation of the static model is that it does not account for time in the 

adoption process nor for the farmers’ ability to learn to improve their technical efficiency 

in growing and marketing the crop. These weaknesses are addressed in dynamic adoption 

models. 

 

The majority of adoption studies continue to be in the static binary setting of logit or probit 

models (Jansen, 1992; Shields et al., 1993; Polsen and Spencer, 1991). In these models the 

adoption decision is merely dichotomous (whether or not to adopt) where a functional 

relationship between the probability of adoption and a set of explanatory variables is 

estimated econometrically using logistic distribution for the Logit procedures and the 

normal distribution for the Probit procedures. The Logit/Probit methods investigate the 

effects of regressors on the choice to use or not use, but it does not measure the degree or 

intensity of adoption (Feder et al., 1985). For instance, if a Probit model is used to analyse 

data on fertilizer adoption, a farmer who adopts the recommended level of fertilizer is 

treated the same as a farmer who applies one tenth of the recommendation (Ghosh, 1991). 

But the alternative static econometric procedures such as the Tobit (Tobin, 1958) are used 

to analyze quantitative adoption decisions when information on the intensity of adoption is 

available (e.g., data on percentage of area planted to improved varieties, amount of 

fertilizer/herbicide applied, etc.). However, in working with continuously measured 

dependent variables such as quantity or area, some of the data points will have a zero value 

(i.e., for non-users). In this case the dependent variable is censored where information is 

missing for some range of the sample. If information on the dependent variable is available 

only if the independent variable is observable, the dependent variable is described as 

truncated (Kennedy, 1992). The Tobit model provides coefficients that can be further 

disaggregated to determine the effect of a change in the i
th 

variable on changes in the 
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probability of adopting the new technology and the expected intensity of use of the 

technology. However, a study by Dong and Saha (1998) indicated that a Tobit model 

imposes restrictions that the variables and coefficients determining whether and how much 

to adopt decisions are identical.  

 

The alternatives to analyse farmers’ adoption decisions include the use of double hurdle 

models, which take into account zero observations (Cragg, 1971; Heckman, 1976). The 

choice of a model is important because it influences the empirical results obtained (Jones 

and Yen, 1994). Inappropriate handling of non-users also can result in biased and 

inconsistent estimates (Amemiya, 1984). For instance, the Tobit model assumes that 

decisions regarding adoption and intensity of use are related. However, studies by Cragg 

(1971) on the demand for durable goods and Coady (1995) on fertilizer use indicated that 

such decisions might not be intimately related. The Heckman (1976) model is the most 

restrictive of the double hurdle models available because it assumes that none of the zeros 

for the non-adopters are generated by the adoption decision (i.e., first hurdle dominance) so 

that standard Tobit censoring is irrelevant (Jones, 1989).  

 

Another study by Saha et al (1994) also modelled adoption as a mixed dichotomous-

continuous framework with non-random sample selection, where producers’ adoption 

intensity was conditional on their knowledge about the new technology. They argued that 

producers’ choices are significantly affected by their exposure to information about the 

new technology. The model is comprised of three equations with correlated errors. The 

first two are the sample selection and the adoption versus non-adoption equations, both of 

which have dichotomous dependent variables. The third equation explains adoption 

intensity, a continuous variable. With this model their study showed that including sample 

selection and adoption intensity in the model specification yields substantially different 

results and inferences compared to the traditional dichotomous specification. 

 

A study by Dong and Saha (1998) proposed the more general framework of a double-limit 

hurdle model that incorporates Tobit and probit models as testable special cases. The study 

departs from the existing adoption studies in that actual adoption occurs when the 

innovation is perceived as more profitable, on average, than the traditional technology 
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(Feder et al, 1985). The study by Dong and Saha (1998) argues that adoption may not 

occur even when the new technology is expected to be more profitable, because the value 

of the alternative course of action, waiting and adopting only if one is certain about the 

return from the new technology, may be higher. 

 

Hassan et al (1998) also used a two-stage decision process to study farmer’s adoption of 

modern maize varieties in Kenya. Both decisions of whether or not to adopt improved 

maize seed, and whether to plant hybrids or open pollinated varieties (OPVs) were 

modelled as binary choices. This procedure was selected because only a negligible number 

of farmers mix maize types and there is no need to investigate area allocated to each. In 

this model farmers choose between local cultivars and two types of improved seed (hybrid 

and improved OPVs). Thus, the decision problem is separated into two stages, with each 

stage represented by a separate equation. One equation models farmers’ choice between 

local and improved maize varieties. The second equation analyses adoption decision about 

which type of improved variety to use: hybrid or improved OPVs (non-adopters are 

excluded from the second equation).  

 

Other study by Hassan (1996) showed that a fairly comprehensive range of plating choices 

made by maize farmers in Kenya, including discrete endogenous variables creating self-

selectivity, is modelled and estimated as one system of interrelated decisions. Two-stage 

and three-stage probit procedures are used to handle the simultaneity and self-selectivity 

problems. It is common that although some elements of farmers' planting decisions are 

observed as qualitative endogenous choices (whether or not to double crop) they are 

usually treated as exogenous variables. Few examples of simultaneous estimation of 

qualitative adoption decisions are found in the agricultural technology adoption (Smale et 

al., 1995; Saha et al., 1994). 

  

A study by Workeneh and Parikh (1999) used Probit and ordered Probit to examine both 

the significance of the impact of farmers’ perceptions in adoption decisions of new 

technology and how perceptions are influenced by the decision to adopt new technology. 

The Probit approach was used to analyse the adoption decision, while farmers’ perception 

variables were modelled using the ordered Probit methodology since there is an ordering to 
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the categories associated with the dependent variable. The ordered Probit model assumes 

that there are cut-off points which define the relationship between the observed and 

unobserved dependent variables (Pindyck and Rubinfeld, 1981). A simultaneous equations 

model combining the Probit and ordered Probit approaches provided a useful approach to 

modelling the two-way relationship between perception and adoption. 

 

For jointly determined dependent variables simultaneous equations systems of discrete and 

continuous endogenous variables such as Heckman (1978) and Nelson and Olson (1978) 

were proposed. However, systems estimation by conventional two or three stage least 

square Generalized Probit model estimates would not eliminate simultaneous equation 

bias. Therefore, Heckman (1978) used a reduced form of parameter estimates as 

instruments to overcome the problem of estimating systems of equations with discrete and 

continuous endogenous variables. These instruments result in consistent parameter 

estimates and are asymptotically more efficient than the Generalized Probit estimates. 

Hence, each structural equation can be estimated with the instruments included as one of 

the explanatory variables with the appropriate discrete or continuous variable estimation 

procedures. 

 

3.3.2.2 Dynamic adoption models  

 

Dynamic adoption models allow for changes in farmers’ adoption decisions as farmers 

gain skills in growing or marketing the improved seed from year to year. In a dynamic 

model, at the beginning of each period the type of technology the farmer uses in that 

period, his allocation of land to different crops, and use of other variables are determined. 

At the end of each period, the actual yields, revenues and profits/losses realized, 

information and the experiences accumulated during the period by the farmer, and 

information from other farmers are used to update decision making in the next period 

(Ghadim and Pannell, 1999).   

 

A few studies used dynamic models to explain adoption decisions.  O’Mara (1971) was 

among the first to employ a Bayesian approach in explaining the evolution of a decision-

makers’ perception about a new technology. Linder et al (1979), Stoneman (1980), Linder 
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and Fischer (1981) followed O’Mara’s work where a common theme of these studies is 

that the producer collects information about actual profits derived by other producers from 

the innovation and updates prior perceptions about the expected return from the new 

technology. 

 

Studies by Beseley and Case (1993b), and Foster and Rosenzweig (1995) established the 

importance of learning in the dynamic adoption process. The study by Beseley and Case 

(1993b) modelled farmers as being uncertain about the profitability of the new seed 

relative to the old ones. The said study simulated the sub-game perfect number of plots to 

be planted to the new seed, given that farmers learn about the profitability of the new seeds 

through experience and compared this with the pattern found in their data. In contrast, 

Foster and Rosenzweig (1995) modelled the optimum input use as being unknown and 

stochastic. Farmers learn about the optimal combination through their experience and from 

the experience of their neighbours.  

 

A study by Carletto et al (1996) modelled adoption and abandonment as combination of 

two processes which are unfolding over time, but with different origins.  The first is the 

historical time where market and institutional conditions were highly favourable to 

adoption. The other is the human time, which is composed of two opposite forces (positive 

and negative). A positive force for adoption and retention is the accumulation of 

knowledge associated with the passage of time before adoption (learning from others) and 

years of production after adoption of new technology (learning by doing). A negative force 

is associated with the passage of time after adoption caused by yield loss. The various time 

structural factors are unlikely to affect all farmers in equal manner, creating biases capable 

of offsetting the initial competitiveness of small farmers in growing new technologies over 

time. This study modeled adoption not as one time behavioral choice within specified time 

intervals, but as processes of choices of when to adopt and when to abandon using Weibull 

duration model based on the semi-log functional form. 

 

A study by Cameron (1999) examined the dynamic adoption process of learning using 

panel data in the adoption of new high-yielding variety. This study used average profit 

differential between the new and the old seed that has been experienced by the farmer as 
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the dynamic learning term. 

 

3.4 Empirical studies of technology adoption and diffusion 

 

Adoption is a behavioral choice at a particular time and space while diffusion is the 

adoption pattern over time. Agricultural technology adoption has long been of interest to 

social scientist because of its importance in increasing productivity and efficiency. The 

agricultural sector in developing countries has its own special characteristics (seasonality 

of production and heavy dependence of production on natural phenomena). Because of 

these special characteristics of agriculture the following reviews were made only for 

developing counties.  

 

3.4.1 Adoption studies in developing countries 

 

In developing countries, adoption studies started about four decades ago following the 

Green Revolution in Asian countries. Since then, several studies have been undertaken in 

Asia and Latin America to assess the rate, intensity and determinants of adoption. Most of 

these studies focused on the Asian countries where the Green Revolution took place and 

was successful.  

 

A review by Ruttan (1977) on several empirical studies on the adoption of Green 

Revolution technologies revealed the following generalizations: 

1. The new High Yielding Varieties (HYVs) of wheat and rice were adopted at a  

rapid rate in those areas where they were technically and economically superior  

to local varieties. 

2. Farm size and farm tenure have not been serious constraints on the adoption of  

new HYVs, and were not important sources of differential growth in  

productivity. This was mainly because productivity of HYVs was  

approximately the same on small and large farmers' fields. 

3. The introduction of the new high yielding wheat and rice technology has 

resulted in an increase demand for labour. 

4. Landowners have gained relatively more than tenants and labourers from the  

 
  



 

    

71 

 

adoption of high yielding varieties of wheat and rice. 

However, the review indicated that there are many exceptions to the generalizations made. 

These exceptions occurred due to the fact that the technologies have been introduced to 

environments with different economic, social, institutional, political and agro-climatic 

settings.  A study by Perrin and Winkelman (1976) also summarized adoption studies done 

by the Centro International de Mejoramieto de Maiz Y Trigo (CIMMYT) on maize and 

wheat in six countries (Kenya, Tunisia, Colombia, El-Salvador, Mexico, and Turkey). The 

study concluded that the differences in adoption rates among those countries were 

explained by differences in information acquired, agro-climatic and physical environments, 

availability of inputs, differences in market opportunities for the crops, and differences in 

farm size and farmers' risk aversion characteristics. A comprehensive survey of 

agricultural technology adoption studies in developing countries by Feder et al. (1985) and 

Feder and Umali (1993) also found that farm size, risk, human capital, labour availability, 

access to credit and land tenure systems were the most important factors in influencing 

farmers' decision of technology adoption.   

 

A study by Jarvis (1981) indicated that the diffusion of fertilized grass-legume pastures in 

Uruguay followed the logistic path during the first years following its introduction. The study 

considered the number of ranchers borrowing money from the bank for pasture development 

each year as a proxy for new adopters of improved pastures. Credit recipients also received 

good technical assistance form livestock development coordination project. The information 

on borrowers provides a good estimate of total adopters and the rate of new adopters over 

time. The adoption of improved pastures by Uruguayan ranchers was estimated by varying 

the ceiling from 10% to 100% of the total potential adopters. The logistic function with the 

highest coefficient of determination (R
2
) was considered as the best estimates of the ceiling 

and the rate of diffusion. In this study, the rate of diffusion (hectares planted) was expressed 

as a function of beef and fertilizer prices. Both the rate and limit of diffusion were found 

positively related to changes in the profitability of the technology when beef and fertilizer 

prices were included. 

 

Using panel data, studies by Beseley and Case (1993b), and Foster and Rosenzweig (1995) 

revealed that learning from own experience and learning from neighbours’ experience are 
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both important determinants of adoption. These findings are in contrast to earlier 

investigation by McGuirk and Mundlak (1991) that showed that adoption was constrained 

by insufficient fertilizer and irrigation, not by insufficient information. An other study by 

Cameron (1999), using panel data confirmed that learning is an important variable in the 

adoption process, cross-sectional estimates of a dynamic process are biased but the extent 

of this bias may be small, and illustrated methods to estimate the unobserved household 

heterogeneity in a dynamic model. 

 

3.4.2 Adoption and diffusion research in Africa 
 

In Africa, new agricultural technologies have been introduced in the mid 1970. The 

success story achieved in Asia was not duplicated in African countries except for hybrid 

maize in Kenya (Gerhart, 1975; Blackie, 1989; Roy, 1990; Byerlee, 1994a) and Zimbabwe 

(Rukuni, 1994), thus the literature on technology adoption in Africa is relatively limited. 

 

Akinola (1986a) applied Bass's (1969) innovator-imitator model in the diffusion of cocoa 

spraying chemicals among Nigerian cocoa farmers. The model employed includes the 

internal and external information sources that exist in agricultural technology diffusion 

process. The result indicated that the Bass (1969) model is only slightly better than the 

standard logistic model. Another study by Akinola (1986b) relaxed the assumption of 

constant adoption coefficient of innovators; the coefficient of imitators and the equilibrium 

number of potential adopters remain constant with time. The said study tested the diffusion 

patterns of cocoa spraying chemicals in Nigeria and indicated that the data on the diffusion 

of cocoa spraying chemicals among Nigerian farmers fitted the model fairly well.  

 

Rauniyar and Goode (1996) estimated the interrelationships among technologies already 

adopted by maize farmers in Swaziland. By applying factor analysis the study showed that 

farmers adopted the technologies investigated in three independent packages: (1) improved 

maize variety, basal fertilizer, and tractor ploughing, (2) topdressing fertilizer, and 

chemicals, and (3) planting date, and plant population (density).  However, the empirical 

findings did not support sequential adoption. The study explained that farmers in 

Swaziland tend to adopt packages rather than individual technology component or practice. 
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In contrary to these findings there are a number of empirical studies supporting sequential 

adoption pattern (Ryan and Sabrahamanym, 1975; Byerlee and Hesse de Polanco, 1986; 

and Leather and Smale, 1991). 

 

3.5 Analyses of technology adoption and diffusion in Ethiopia:  

      Current status and research gaps 

 

This section reviews adoption studies in Ethiopia and presents methodological approaches 

used, important variables identified by the previous studies, and their limitations.  

 

Since the end of 1960, a number of institutions have been attempting to generate and 

disseminate improved agricultural technologies to smallholders in Ethiopia. Adoption 

studies started in the mid 1970. Some of these studies were carried out in areas where 

integrated rural development projects had been undertaken following the introduction of 

integrated rural development pilot projects and minimum package programmes in some 

parts of the country (Tesfai, 1975; Cohen, 1975; Bisrat 1980; Aragay, 1980). These studies 

focused on evaluating the performance of the pilot projects and on examining the rate of 

adoption of technologies promoted by these projects. A study by Cohen (1975) did go 

beyond determining the rate of adoption and assessed the economic and social impacts of 

the new technologies in the Chilalo Agricultural Development Unit (CADU) area. 

 

Research conducted in the 1980s and onwards in Ethiopia assessed the status of 

agricultural technology adoption using descriptive statistics and found out that the rate of 

adoption of improved varieties, fertilizer, herbicide, and other agronomic practices were 

low (Mulugetta et al., 1992). The amounts of fertilizer and herbicide applied by most 

farmers in Ethiopia were below the recommended levels (Hailu et al., 1992; Legesse et al., 

1992; Legesse, 1992). Some of the research conducted during this period also focused on 

the impact of centrally planned economic policies (i.e., state farm formation, 

collectivization, resettlement, villagization, price control and inter regional trade 

regulations) on the technology adoption process.  

 

Formal adoption studies using econometric models were carried out after the mid 1980. 
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These studies provided information on the use of improved inputs including seed, fertilizer, 

herbicides, extent of adoption and factors that limit adoption decisions of smallholders in 

Ethiopia. Although these studies provided useful information on the rate of adoption and 

factors influencing adoption, the intensity of adoption was not adequately addressed. In 

general, the adoption studies had some limitations in their analyses and, thus, did not 

adequately explain farmers’ adoption decisions. 

 

Most of the adoption studies conducted in Ethiopia used conventional static adoption 

models (e.g., Logit and Probit) for dichotomous dependent variables. In a few cases, the 

Tobit molel was used to study farmers’ extent and intensity of adoption of improved 

technologies. Moreover, some of these studies had methodological limitations (Aragay, 

1980; Yohannes et al, 1990), while others have data limitation (Bisrat, 1980). The study by 

Aragay (1980) had two methodological limitations. First, the study had used a linear 

regression model to analyze the adoption behaviour of farmers. This model determines the 

probability that an individual with a given set of attributes makes one choice rather than 

the alternative (Pindyck and Rubinfeld, 1981). Thus, the study did not include non-

adopters in the analysis and therefore creates sample selection bias. Second, to identify 

factors affecting adoption the study drew conclusions from a correlation analysis, which 

does not control for the effect of other variables simultaneously.  

 

Most empirical adoption studies in Ethiopia actually examined the relationship between 

observed explanatory variables and actual decisions made by individual decision makers in 

acceptance of a technology. However, the study by Yohannes et al (1990) used intended 

(planned) adoption for some of sample farmers as the dependent variable. The said study 

considered those farmers who have expressed their intention to adopt the technology in the 

following years as adopters. Although it is often valuable to obtain farmers’ opinions about 

the feasibility of using a technology and identify its merits and drawbacks, this information 

cannot be used to assess adoption decisions. Statements about what a farmer would like to 

do or hopes to do are not substitutes for data on actual technology adoption (CIMMYT, 

1993). Those farmers who have a plan to adopt a technology may or may not adopt it.  

 

Using a two-step regression model, a study by Bisrat (1980) investigated patterns and 
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determinants of fertilizer adoption in the Bako and Jima areas. In the first step, the study 

estimated the rate of adoption using a Logit model, then regressed rate of acceptance on a 

number of explanatory variables. The limitation of this study was that the number of 

observations for each study area was small (only four per area). As a result, the two 

parameters, (the intercept and slope or rate of adoption) were estimated with only two 

degrees of freedom.  

 

Some of the studies were conducted more than two decades ago (Cohen, 1975; Tesfai, 

1975; Bisrat, 1980; Aragay, 1980) and since then, a number of changes have taken place in 

the structure of the rural economy of the country. For instance, the landlord-tenant 

relationship was abolished and extension strategy and policies related to rural development 

and rural organizational structures have been changed. As a result, the findings of these 

studies may not reflect critical factors currently underlying adoption patterns. There were 

also a few adoption studies after the economic reforms in the post-socialist system. Most of 

these reviewed studies used a component approach neglecting the fact that farmers often 

choose to adopt components of a technology package sequentially. All of the reviewed 

adoption studies except Bisrat (1980) and Chilot et al. (1986) did not examine profit, 

whereas only Yohannes Kebede (1990) and Abinet and Dillon (1992) addressed risk in 

adoption decisions. Moreover, only Asfaw et al. (1997) and Negatu and Parikh (1999) 

considered farmers’ perception of improved varieties. Surprisingly, none of the adoption 

studies in Ethiopia considered the value of straw in farmers’ adoption decisions.  

 

With regard to analytical models, all reviewed adoption studies except Legesse (1998) 

used the conventional static models in farmers’ adoption decisions. As indicated earlier 

static models do not capture changes in adoption decisions over time. Studies on the extent 

and intensity of adoption, which are important for increasing food production and 

achieving food security, were limited (e.g., Legesse, 1992; Mulugetta et al., 1995; Chilot et 

al., 1996; Asfaw et al., 1997; AD Alene et al., 2000). In the latter years, there were also 

improvements in using better models such as discriminate analysis (Getachew et al., 2000, 

Tesfaye et al., 2001), duration models (Legesse, 1998), and Probit and ordered Probit 

models (Negatu and Parikh, 1999), double hurdle two-stage models (Berhanau and 

Swinton, 2003) to explain farmers’ adoption decisions.  However, none used panel data in 
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a dynamic adoption process such as learning 

 

The above summary indicates that there are still research gaps that should be addressed in 

order to explain farmers’ adoption decisions adequately. For instance, adoption is a 

dynamic process, which results from learning about the new technology overtime. To 

better understand farmers’ adoption decisions, one needs to particularly study farmers who 

have used the new technology over time. Although the dynamic process of adoption is 

recognized in the theoretical literature (O'Mara, 1971; Linder et al., 1979), almost all the 

reviewed studies used cross-sectional data due to the scarcity of micro-level data over time. 

Thus, the studies have been unable to explore the dynamic nature of the process of 

adoption. However, studies by Besley and Case (1993b), Foster and Rosenzweig (1995) 

and Cameron (1999) used panel data and established the importance of learning in the 

adoption process. Information on the importance of learning, extent of adoption, impact of 

profit and risk, which are key factors in influencing farmers’ adoption decisions over time 

are not available in Ethiopia and not adequate elsewhere. Moreover, all of these reviewed 

adoption studies except Traxler and Byerlee (1993) had not examined the impact of profit 

and risk by including the straw yield. Excluding the straw yield of an improved variety 

underestimates the profit from the adoption of improved seed. This study, therefore, 

attempted to fill these gaps by providing further evidence on the importance of learning in 

the dynamic adoption of improved technologies. A component or a package approach was 

employed to a sub-sample of tef and wheat producers who have been using these 

technologies overtime after exposure. The Xtprobit and Xttobit panel data models were 

used to examine the dynamic adoption process. The study included the value of tef and 

wheat straw in the estimation of profit and risk from the improved varieties. The 

information obtained will be useful to researchers and policy makers in the generation and 

dissemination of new technologies in order to raise agricultural productivity and food 

security.  
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