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Abstract

The theory of viscosity solutions was developed for certain types of nonlinear first-order

and second-order partial differential equations. It has been particularly useful in de-

scribing the solutions of partial differential equations associated with deterministic and

stochastic optimal control problems [16], [53]. In its classical formulation, see [16], the

theory deals with solutions which are continuous functions. The concept of continuous vis-

cosity solutions was further generalized in various ways to include discontinuous solutions

with the definition of Ishii given in [71] playing a pivotal role. In this thesis we propose a

new approach for the treatment of discontinuous solutions of first-order Hamilton-Jacobi

equations, namely, by involving Hausdorff continuous interval valued functions.

The advantages of the proposed approach are justified by demonstrating that the main

ideas within the classical theory of continuous viscosity solutions can be extended almost

unchanged to the wider space of Hausdorff continuous functions and the existing theory

of discontinuous viscosity solutions is a particular case of that developed in this thesis in

terms of Hausdorff continuous interval valued functions.
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Two approaches to numerical solutions for Hamilton-Jacobi equations are presented. The

first one is a monotone scheme for Hamilton-Jacobi equations while the second is based

on preserving total variation diminishing property for conservation laws.

In the first approach, we couple the finite element method with the nonstandard finite

difference method which is based on the Mickens’ rule of nonlocal approximation [9]. The

scheme obtained in this way is unconditionally monotone.

In the second approach, computationally simple implicit schemes are derived by using

nonlocal approximation of nonlinear terms. Renormalization of the denominator of the

discrete derivative is used for deriving explicit schemes of first or higher order. Unlike the

standard explicit methods, the solutions of these schemes have diminishing total variation

for any time step size.
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Chapter 1

Introduction

1.1 The Hamilton-Jacobi Equations

The theory of viscosity solutions was developed for certain types of first and second order

partial differential equations. It has been particularly useful in describing the solutions of

partial differential equations associated with deterministic and stochastic optimal control

problems [16], [53]. In this thesis, we are interested in the theory of viscosity solutions of

first-order Hamilton-Jacobi equation in its general form associated with boundary condi-

tion, namely

H(x, u(x), Du(x)) = 0, x ∈ Ω, (1.1.1)

u(x) = g(x), x ∈ ∂Ω. (1.1.2)

Here,

Ω is an arbitrary nonempty open subset of Rn

H : Ω× R× Rn → R (Hamiltonian) is jointly continuous function in all its arguments,

g : ∂Ω → R is a given (not necessarily continuous) function,

u : Ω → R is the unknown function, and

Du(x) is the gradient of the function u at a point x = (x1, ..., xn) ∈ Ω.

The evolutionary Hamilton-Jacobi equations of the form

ut(y, t) + H(y, t, u(y, t), Dyu(y, t)) = 0, (y, t) ∈ D × (0, T ), (1.1.3)
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where D ⊂ Rn, the t subscript denotes a temporal partial derivatives in the time variable

t, and Dyu is the gradient of u with respect to y, are reduced to the form (1.1.1) by the

substitutions

x = (y, t) ∈ Ω = D × (0, T ) ⊆ Rn+1, H̃(x, r, q) = H(x, r, q1, ..., qn) + qn+1

with

q = (q1, ..., qn, qn+1) ∈ Rn+1.

The Hamilton-Jacobi equations play an important role in many fields of mathematics and

physics, as for instance, calculus of variations [29], combustion [18], computer graphics

[117], optimal control theory [93], differential games [55], image processing [122], quan-

tum mechanics [114], and geometric optics [26]. For this reason, many theoretical and

numerical studies have been devoted to solving the Hamilton-Jacobi equations.

Let us remark that the equation (1.1.1) is global nonlinear equation. Classical approach

to the study of the problem (1.1.1)-(1.1.2) is the method of characteristics. This technique

gives an elementary way a local existence result for smooth solutions, and at the same

time shows that no global smooth solution exists in general.

By a classical solution of the problem (1.1.1)-(1.1.2), we mean a function u ∈ C1(Ω)∩C(Ω)

satisfying (1.1.1) and (1.1.2). Nonlinear partial differential equations of the form (1.1.1)

do not, in general, possess classical solutions as can be seen in the following example.

Example 1.1.1 Consider the following Dirichlet problem

(ux(x))2 = 1, x ∈ (0, 1), (1.1.4)

u(0) = u(1) = 0. (1.1.5)

There cannot exist a classical solution of (1.1.4) which satisfies (1.1.5). Indeed, assume

there is u ∈ C1((0, 1)) ∩ C([0, 1]) satisfying (1.1.5). Then there exists x0 ∈ (0, 1) such

that ux(x0) = 0. This is a contradiction to (1.1.4).

For more general results about the method of characteristics applied to first-order Hamilton-

Jacobi equations, we refer to R. Courant and D. Hilbert [35], L. C. Evans [46], F. John

[75, 76], P. D. Lax [88] and H. Rund [118].
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The equation (1.1.1) has been approached by looking for generalized solutions.

Definition 1.1.1 A function u : Ω → R is said to be a generalized solution of equa-

tion (1.1.1) if u is locally Lipschitz in Ω, continuous on Ω, and satisfies (1.1.1) almost

everywhere on Ω.

The generalized solution is almost everywhere differentiable by the well-known classical

Rademacher’s Theorem, see [47], on the almost everywhere differentiability of Lipschitz

continuous functions, and (1.1.1)-(1.1.2) are to be understood as to hold almost every-

where. The existence results have been obtained by several authors, see for examples A.

Douglis [43, 44], S. N. Kruzkov [82, 83, 84], W. H. Fleming [49, 50, 51], Hopf [68], E. D.

Conway and Hopf [34], and A. Friedman [56]. For more complete references, we refer to

some recent monographs by Benton [27] and P. -L. Lions [93].

The reader can also find an extensive presentation of the results on the solvability of the

problem (1.1.1)-(1.1.2) in the books by Gilbarg and Trudinger [58, 59] and Ladyzhenskaya

and Uraltseva [86].

The difficulty with the above concept of generalized solutions is that the equation (1.1.1),

together with the boundary condition (1.1.2), typically has many generalized solutions.

This is shown by Example 1.1.1. Obviously, the function

u1(x) =

{
x , 0 ≤ x ≤ 1

2

1− x , 1
2
≤ x ≤ 1

satisfies (1.1.5) and solves the equation (1.1.4) almost everywhere, in fact everywhere

except on the point x = 1
2
. But u1 is not unique and there exist infinitely many generalized

solutions. In particular, we may build a sequence of generalized solutions as follows : for

m ≥ 2

um(x) =





x− 2j
2m , 2j

2m ≤ x ≤ 2j+1
2m

2j+2
2m − x , 2j+1

2m ≤ x ≤ 2j+2
2m ,

(1.1.6)

for j = 0, 1, ..., 2m−1 − 1 and x ∈ (0, 1).

It is evident that um(0) = um(1) = 0 and ((um)x(x))2 = 1 everywhere on (0, 1) except at

the corners of its graph. The function um is bounded, Lipschitz continuous and piecewise

analytic. Thus um is a generalized solution of (1.1.4) and satisfies (1.1.5).
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One sees immediately that one has

0 ≤ um(x) ≤ 1

2m
, x ∈ [0, 1], ∀m ≥ 1. (1.1.7)

Thus, um converges to 0 uniformly as m → +∞, but u ≡ 0 does not satisfy (1.1.4)

anywhere on (0, 1). Therefore, a stability property is false for generalized solutions.

Similarly, consider the equation ut + (uy)
2 = 0 for y ∈ R, t > 0, coupled with the initial

condition u(y, 0) = 0. The function

v(y, t) =

{
0 , |y| ≥ t > 0

−t + |y| , t ≥ |y|

satisfies the initial condition, is continuous and has all the regularity one desires off the

lines y = 0, t = |y|, and satisfies the equation off these lines. Thus u ≡ 0 and v are distinct

generalized solutions of the above Cauchy problem and satisfy the initial condition.

The above two examples show that the notion of generalized solution, in terms of Defini-

tion 1.1.1, is too weak and in order to obtain an uniqueness result one needs to restrict

the class of solutions by adding some suitable admissibility condition.
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1.2 The Classical Theory of Viscosity Solutions

To solve uniqueness (and stability) question given in Section 1.1, in the early 1980s,

M. G. Crandall and P.-L. Lions [38, 39] introduced a class of continuous generalized

solutions of (1.1.1), called viscosity solutions (for reasons detailed below) which need not

be differentiable anywhere, as the only regularity required in the definition is continuity.

To motivate the definition of continuous viscosity solution of equation (1.1.1), let us

consider the approximate equation for (1.1.1), namely,

H(x, uε(x), Duε(x))− ε∇2uε(x) = 0, x ∈ Ω, (1.2.1)

were ε > 0 is a small parameter. The equations (1.2.1) are quasilinear elliptic and have

been studied for a long time (see in particular O. Ladyzenskaya and N. N. Uraltseva [87],

D. Gilbarg and N. S. Trudinger [58], J. Serrin [121]). It is shown in [59, 85] that the

equation (1.2.1) together with boundary condition has a unique classical solution. We

hope that as ε → 0 the solution uε ∈ C2(Ω) of (1.2.1) will converge to some sort of weak

solution of (1.1.1). This technique is the method of vanishing viscosity. It comes from

a well known method in fluid dynamics where the coefficient ε represents physically the

viscosity of the fluid and explains the name of solutions.

The vanishing viscosity method works as follows. Suppose that the family of solutions

of (1.2.1), namely, {uε}ε>0, is uniformly bounded and equicontinuous on compact set Ω.

Consequently, the Arzela-Ascoli’s [79] compactness criterion, ensures that there exists a

function

u ∈ C(Ω) and a subsequence {uεj
}∞j=1 of {uε}ε> 0 such that

uεj
→ u uniformly on Ω, as εj → 0. (1.2.2)

Fix any ϕ ∈ C1(Ω) and suppose

u− ϕ has a local maximum at some point x0 ∈ Ω. (1.2.3)

For δ > 0, consider the function ψ ∈ C(Ω) defined by ψ(x) := ϕ(x) + δ(|x− x0|2). Then

we have ψ ∈ C1(Ω) and Dψ(x0) = Dϕ(x0).

Obviously, the function

u− ψ has a strict local maximum at x0. (1.2.4)

5

 
 
 



By (1.2.2) and (1.2.4), for each sufficiently small εj > 0, there exists a point xεj
∈ Ω such

that xεj
→ x0 as εj → 0 and

uεj
− ψ has a local maximum at xεj

. (1.2.5)

Now owing to (1.2.5), by elementary calculus,

Duεj
(xεj

) = Dψ(xεj
) (1.2.6)

and

∇2(uεj
− ψ)(xεj

) ≤ 0 (1.2.7)

hold. We consequently can calculate

H(xεj
, u(xεj

), Dψ(xεj
)) = H(xεj

, u(xεj
), Duεj

(xεj
)) by (1.2.6)

= εj∇2uεj
(xεj

) by (1.2.1)

≤ εj∇2ψ(xεj
) by (1.2.7). (1.2.8)

Since xεj
→ x0 as εj → 0, we can pass to the limit in (1.2.8) using that uεj

(xεj
) → u(x0),

Dψ(xεj
) → Dψ(x0) = Dϕ(x0), εj∇2ϕ(xεj

) → 0, and H is continuous to have

H(x0, u(x0), Dϕ(x0)) ≤ 0. (1.2.9)

Consequently, condition (1.2.3) implies inequality (1.2.9). Similarly, we deduce the reverse

inequality

H(x0, u(x0), Dϕ(x0)) ≥ 0 (1.2.10)

provided

u− ϕ has a local minimum at x0. (1.2.11)

The proof is exactly similar to that mentioned before, except that the inequalities (1.2.7)

and thus in (1.2.8), are reversed. In summary, for any x0 ∈ Ω and ϕ ∈ C1(Ω) such that

inequality (1.2.9) follows from (1.2.3), and (1.2.10) from (1.2.11). We have in effect put

the derivatives onto ϕ, at the expense of certain inequalities holding.
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The properties (1.2.9) and (1.2.10) of the limit u of the subsequence uεj
motivate the

following concept of weak solution [36].

Definition 1.2.1 A function u ∈ C(Ω) is a viscosity subsolution of (1.1.1) in Ω if, for

any ϕ ∈ C1(Ω), we have

H(x0, u(x0), Dϕ(x0)) ≤ 0 (1.2.12)

at any local maximum point x0 ∈ Ω of u− ϕ.

Similarly, u ∈ C(Ω) is a viscosity supersolution of (1.1.1) in Ω if, for any ϕ ∈ C1(Ω), we

have

H(x0, u(x0), Dϕ(x0)) ≥ 0 (1.2.13)

at any local minimum point x0 ∈ Ω of u− ϕ.

Finally, u ∈ C(Ω) is a viscosity solution of (1.1.1) if it is both a viscosity subsolution and

a viscosity supersolution of (1.1.1) in Ω.

The notion of viscosity solution is a notion of ”weak ” solution of Hamilton-Jacobi equa-

tion, since u is assumed to be only continuous and the existence of Du is not necessary.

But, in some sense, at a point of maximum of u−ϕ, where ϕ ∈ C1(Ω), a good candidate

to replace Du is Dϕ.

Remark 1.2.1 In the definition of viscosity subsolution one can always assume that u−ϕ

has a local strict maximum at x0 (otherwise, replace ϕ(x) by ϕ(x)+ |x−x0|2). Moreover,

since (1.2.12) depends only on the value of Dϕ at x0, it is not restrictive to assume

that u(x0) = ϕ(x0). Similar remarks apply of course to the definition of supersolution.

Geometrically, this means that the validity of the subsolution condition (1.2.12) for u is

tested on smooth functions ”touching from above ” the graph of u at x0 and the validity

of the supersolution condition (1.2.13) for u is tested on smooth functions ”touching from

below” the graph of u at x0.

There is an alternative way of defining viscosity solutions of (1.1.1) which is equivalent of

Definition 1.2.1. Let us associate with a function u ∈ C(Ω) and x ∈ Ω the sets

D+u(x) := {p ∈ Rn : lim
y→x,

sup
y∈Ω

u(y)− u(x)− p.(y − x)

|x− y| ≤ 0},

D−u(x) := {p ∈ Rn : lim
y→x,

inf
y∈Ω

u(y)− u(x)− p.(y − x)

|x− y| ≥ 0}.

These sets are called, respectively, the superdifferential and the subdifferential (or semid-

ifferentials) of a function u at a point x.
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From the definition of subdifferentials and superdifferentials it follows that, for any x ∈ Ω,

D−(−u)(x) = −D+u(x).

Some properties of semidifferentials are collected in the following lemma.

Lemma 1.2.1 [16] Let u ∈ C(Ω) and x ∈ Ω. Then,

(a) D+u(x) and D−u(x) are closed convex (possibly empty) subsets of Rn;

(b) if u is differentiable at x, then D+u(x) = D−u(x) = {Du(x)};
(c) if for x both D+u(x), D−u(x) are nonempty, then D+u(x) = D−u(x) = {Du(x)}.

The following new definition of continuous viscosity solution of (1.1.1) is equivalent of

Definition 1.2.1, see [16].

Definition 1.2.2 A function u ∈ C(Ω) is a viscosity subsolution of (1.1.1) in Ω if, for

any x ∈ Ω, it satisfies

H(x, u(x), p) ≤ 0, ∀p ∈ D+u(x). (1.2.14)

A function u ∈ C(Ω) is a viscosity supersolution of (1.1.1) in Ω if, for any x ∈ Ω, we

have

H(x, u(x), p) ≥ 0, ∀p ∈ D−u(x). (1.2.15)

A function u ∈ C(Ω) is a viscosity solution of (1.1.1) if it is a viscosity subsolution and

supersolution.

Example 1.2.1 Consider the following equation

(ux(x))2 − 1 = 0, x ∈ (−1, 1). (1.2.16)

Then, the function u(x) = 1 − |x| is a continuous viscosity solution of (1.2.16) but the

function v(x) = −u(x) = |x|−1 is a viscosity subsolution but not a viscosity supersolution

of (1.2.16). To check this, notice first that if x 6= 0, u and v are classical solutions of

(1.2.16). Therefore, at those points both the supersolution and the subsolution conditions

(1.2.15) and (1.2.14), respectively, are trivially satisfied.
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However, D+u(0) = [−1, 1] and D−u(0) = ∅; thus, the requirement in (1.2.15) is empty,

while (1.2.14) holds since p2 − 1 ≤ 0 for all p ∈ D+u(0). So u is a continuous viscosity

solution of (1.2.16). On the other hand, since p = 0 belongs to D−v(0) = [−1, 1], then

the condition of supersolution (1.2.15) is not satisfied at x = 0 and v is not a continuous

viscosity solution of (1.2.16).

Note that viscosity solutions are not preserved by changing the sign in the equation.

Indeed, v(x) = |x| − 1 is a viscosity solution of −(ux(x))2 + 1 = 0 in (−1, 1) but in

Example 1.2.1, v is not a continuous viscosity solution of ((ux(x))2 − 1 = 0 in (−1, 1).

In general, if H(x, r, p) is nondecreasing in r, a function u is a viscosity subsolution of

H(x, u, Du) = 0 if and only if v = −u is a viscosity supersolution of −H(x,−v,−Dv) = 0

in Ω; similarly, u is a viscosity supersolution of H(x, u, Du) = 0 if and only if v = −u is

a viscosity subsolution of −H(x,−v,−Dv) = 0 in Ω.

The following theorem, given in [16], establishes the consistency of the notion of continuous

viscosity solutions and classical solutions.

Theorem 1.2.1 (i) If u ∈ C1(Ω) is a classical solution of (1.1.1), then u is a viscosity

solution of (1.1.1).

(ii) If u ∈ C(Ω) is a viscosity solution of (1.1.1), then H(x0, u(x0), Du(x0)) = 0 at any

point x0 ∈ Ω where u is differentiable.

(iii) If u ∈ C(Ω) is locally Lipschitz continuous and it is a viscosity solution of (1.1.1),

then H(x, u(x), Du(x)) = 0 almost everywhere in Ω, and thus u is a generalized solution

of (1.1.1) in terms of Definition 1.1.1.

The converse of property (iii) in Theorem 1.2.1 is false in general. There are many

generalized solutions which are not viscosity solutions. As an example, observe that

v(x) = |x| − 1 is a generalized solution of equation (vx(x))2 = 1 in (−1, 1), because it

satisfies the equation in (−1, 1) except at x = 0, but it is shown in Example 1.2.1 that v

is not a viscosity supersolution of the same equation in (−1, 1).
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The next theorem is a stability result for viscosity solutions.

Theorem 1.2.2 [16] Let for every m ∈ N the function um ∈ C(Ω) be a viscosity solution

of an equation of the form

Hm(x, u(x), Du(x)) = 0, x ∈ Ω,

where {Hm}m≥1 is the sequence of Hamiltonians . If

um → u locally uniformly in Ω,

Hm(x, r, p) → H(x, r, p) locally uniformly in Ω× R× Rn,

then u is a continuous viscosity solution of (1.1.1).

Theorem 1.2.2 does not hold for generalized solutions in general. As an example, the

property (1.1.7) implies that the uniform limit of the sequence {um}, given in (1.1.6) for

m ≥ 2, is identically zero and does not satisfy the equation (1.1.4) at any point of (0, 1).

Therefore, the functions um, m ≥ 2, are not viscosity solutions of (1.1.4).

The following theorem, given in [40], gives very general existence, uniqueness and contin-

uous dependence results for viscosity solutions of the problem of the form (1.1.3)-(1.1.2).

Theorem 1.2.3 Consider the equation

ut + H(Du) = 0, (x, t) ∈ Rn × (0,∞) (1.2.17)

with initial conditions

u(x, 0) = u0(x), x ∈ Rn. (1.2.18)

Let H ∈ C(Rn) and u0 be uniformly continuous in Rn. Then there is a unique continuous

function u : Rn× [0, +∞) → R with the following properties: u is uniformly continuous in

x uniformly in t, u is a continuous viscosity solution of (1.2.17) and u satisfies (1.2.18).

The following theorem, given in [36], shows that continuous viscosity solution of the

problem (1.2.17)-(1.2.18) depends monotonically on the initial value.

Theorem 1.2.4 Let 0 < T < ∞ and let u, v be bounded and uniformly continuous real

functions in (Rn× [0, T ]). If u and v are continuous viscosity solutions of the equation

(1.2.17), with initial conditions u0 and v0, respectively, then

sup
Rn×[0,T ]

(max(u− v, 0)) ≤ sup
Rn

(max(u0 − v0, 0)) .
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In general, for any given Hamilton-Jacobi equation of the form (1.1.3), where the Hamil-

tonian H(y, t, u, Du) is continuous, nondecreasing in u, there exists a unique uniformly

continuous viscosity solution if the initial data is bounded and uniformly continuous [128].

The theory of continuous viscosity solutions has been extensively studied in many relevant

articles such as Crandall-Lions [39], Crandall-Evans-Lions [36]. For more complete refer-

ences, we refer to some monographs by Lions [93], Bardi-Capuzzo-Dolcetta [16], Fleming-

Soner [53], and Barles [19]. In [93], existence and uniqueness results for many classes of

Hamilton-Jacobi equations are given . The existence and uniqueness of continuous vis-

cosity solution of Hamilton-Jacobi equation in infinite dimensions are given in [41] and

[42].
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1.3 Discontinuous Viscosity Solutions

According to definition of viscosity solution, introduced by Crandall and Lions, when the

value function of optimal control problem is uniformly continuous, it is then a viscosity

solution of the associated partial differential equation [93].

However, many optimal control problems, such as the exit time problems, have discontin-

uous value functions [16]. For this reason, the concept of classical viscosity solutions was

further generalized to include solutions that are not necessarily continuous.

The notion of viscosity solutions in the context of semicontinuous solutions has been

introduced first by Ishii [71].

We recall that a function u : Ω → R is upper (respectively, lower) semicontinuous if for any

x ∈ Ω and ε > 0 there is δ > 0 such that u(y) < u(x) + ε (respectively, u(y) > u(x)− ε)

for all y ∈ Ω ∩ Bδ(x); Weierstrass’ Theorem on the existence of maxima (respectively,

minima) on compact sets holds for upper (respectively, lower) semicontinuous functions.

The definition of continuous viscosity subsolution and supersolution of (1.1.1) extends

naturally to semicontinuous functions as follows [16].

Definition 1.3.1 A function u ∈ USC(Ω) is called a viscosity subsolution of the Hamilton-

Jacobi equation (1.1.1) if for any ϕ ∈ C1(Ω) we have

H(x, u(x), Dϕ(x)) ≤ 0

at any local maximum point x of u− ϕ.

A function u ∈ LSC(Ω) is called a viscosity supersolution of the Hamilton-Jacobi equation

(1.1.1) if for any ϕ ∈ C1(Ω) we have

H(x, u(x), Dϕ(x)) ≥ 0

at any local minimum point x of u− ϕ.

Notice that for any ϕ ∈ C1(Ω) and u ∈ USC(Ω) the difference u− ϕ ∈ USC(Ω). Hence,

u − ϕ attains its maximum on Ω. This is an indication that the upper semicontinuous

function is used in the definition of a viscosity subsolution. Similarly, if u ∈ LSC(Ω)

then u− ϕ ∈ LSC(Ω) attains its minimum on Ω, and thus this explains the use of lower

semicontinuous function in the definition of a viscosity supersolution.
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Since D+u(x) and D−u(x) make sense for any real valued function u, see [14], we have

the following result.

Lemma 1.3.1 [14] (i) Let u ∈ USC(Ω). p ∈ D+u(x) ⇔ there exists ϕ ∈ C1(Ω) such

that Dϕ(x) = p and u− ϕ has a local maximum at a point x ∈ Ω.

(ii) Let v ∈ LSC(Ω). p ∈ D−v(x) ⇔ there exists ϕ ∈ C1(Ω) such that Dϕ(x) = p and

v − ϕ has a local minimum at a point x ∈ Ω.

As for continuous viscosity subsolutions and supersolutions, there is an equivalent defini-

tion by means of semidifferentials of u instead of test functions.

Definition 1.3.2 [16] A function u ∈ USC(Ω) is a viscosity subsolution of (1.1.1) in Ω

if, for any x ∈ Ω, it satisfies

H(x, u(x), p) ≤ 0, ∀p ∈ D+u(x).

A function u ∈ LSC(Ω) is a viscosity supersolution of (1.1.1) in Ω if, for any x ∈ Ω, we

have

H(x, u(x), p) ≥ 0, ∀p ∈ D−u(x).

Naturally, a solution should be required somehow to incorporate the properties of both

a subsolution and a supersolution. In the classical viscosity solutions theory, a viscosity

solution is a function u which is both a subsolution and a supersolution.

Since USC(Ω) ∩ LSC(Ω) = C(Ω) this clearly implies that the viscosity solutions defined

in this way are all continuous functions.

The concept of viscosity solution for functions which are not necessarily continuous is

introduced by using the upper and lower semicontinuous envelopes, see [71]. Let us recall

that the upper semicontinuous envelope of a function u which we denote by S(u) is the

least upper semicontinuous function which is greater than or equal to u. In a similar way,

the lower semicontinuous envelope of a function u, denoted by I(u), is the largest lower

semicontinuous function not greater than u.
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For a locally bounded function u : Ω → R, we have the following representations of S(u)

and I(u) :

S(u)(x) = min{f(x) : f ∈ USC(Ω), u ≤ f } = inf
δ>0

sup{u(y) : y ∈ Bδ(x)}, (1.3.1)

I(u)(x) = max{f(x) : f ∈ LSC(Ω), u ≥ f} = sup
δ>0

inf{u(y) : y ∈ Bδ(x)}. (1.3.2)

It is clear that I(u) ≤ u ≤ S(u) in Ω. Note that

u ∈ USC(Ω) iff u = S(u) and u ∈ LSC(Ω) iff u = I(u) in Ω.

Using the fact that for any locally bounded function u : Ω → R, the functions S(u) and

I(u) are always, respectively, upper semicontinuous and lower semicontinuous, see (2.2.15)

and (2.2.14), a viscosity solution for u can be defined as follows, see [16].

Definition 1.3.3 A locally bounded function u : Ω → R is a (discontinuous) viscosity so-

lution of the Hamilton-Jacobi equation (1.1.1) if S(u) is a viscosity subsolution of (1.1.1)

and I(u) is a viscosity supersolution of (1.1.1).

Note that the definition of viscosity subsolution and viscosity supersolution for semicon-

tinuous functions is consistent with the concept of continuous viscosity solutions, because

a function that is simultaneously a viscosity subsolution and viscosity supersolution is

automatically continuous. Thus, if u ∈ C(Ω), then I(u) = S(u) = u and Definition 1.2.1

coincides with Definition 1.3.3. From now on the expressions viscosity subsolution and

supersolution are used in the sense of Definition 1.3.1 and viscosity solution is used in the

sense of Definition 1.3.3.

The direct method of proving the existence of viscosity solutions of the Hamilton-Jacobi

equation (1.1.1) is the Perron’s method [71]. The idea is to build a viscosity solution as the

supremum of viscosity subsolutions. This is an analogue for Hamilton-Jacobi equations

to the well-known method of finding solutions of the Laplace equation due to O. Perron

[113]. The Perron method is the following:

Let U be a nonempty set of viscosity subsolutions of (1.1.1) having the following two

properties:

(i) if v ∈ U is not a viscosity solution of (1.1.1), then there is a function w ∈ U such

that w(y) > v(y) for some y ∈ Ω,

(ii) if u(x) = sup{v(x) : v ∈ U} for x ∈ Ω, then u ∈ U .

Set u(x) = sup{v(x) : v ∈ U} for x ∈ Ω. Then u is a viscosity solution of (1.1.1).

Moreover, if S(u) ≤ I(u) on Ω, then u ∈ C(Ω).
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Thus the existence problem of viscosity solutions is reduced to that of finding an appro-

priate set U of viscosity subsolutions of (1.1.1) which satisfies (i) and (ii), depending on

boundary conditions, assumptions on Hamiltonians H and so on. Also, the continuity of

viscosity solutions may follow from the special structure of (1.1.1) or from the comparison

principle between viscosity subsolutions and supersolutions.

We will use the following result which was provided in [16].

Theorem 1.3.1 (a) Let U be a set of functions such that S(w) is a viscosity subsolution

of (1.1.1) for all w ∈ U , and define

u(x) := sup
w∈U

w(x), x ∈ Ω.

If u is locally bounded, then S(u) is a viscosity subsolution of (1.1.1).

(b) Let Z be a set of functions such that I(w) is a viscosity supersolution of (1.1.1) for

all w ∈ Z, and define

v(x) := inf
w∈Z

w(x), x ∈ Ω.

If v is locally bounded, then I(v) is a viscosity supersolution of (1.1.1).

The following general existence theorem for equation (1.1.1) using Perron’s method is

given in [16].

Theorem 1.3.2 Assume there exists a viscosity subsolution u1 and a viscosity superso-

lution u2 of the Hamilton-Jacobi equation (1.1.1) such that u1 ≤ u2. Then the functions

(a) u(x) := sup{w(x) : u1 ≤ w ≤ u2, S(w) viscosity subsolution of (1.1.1)},

(b) v(x) := inf{w(x) : u1 ≤ w ≤ u2, I(w) viscosity supersolution of (1.1.1)},

are (discontinuous ) viscosity solutions of (1.1.1).

Since we deal, in some sense, with two functions I(u) and S(u), it is not immediately

clear how to interpret uniqueness with discontinuous viscosity solutions. For example, if

u is equal to 1 in Ω except at x0 where is equal to 0, then S(u) ≡ 1 and the subsolution

condition does not differentiate between the function u and a function constantly equal

to f ≡ 1. The usual way to get an uniqueness result is to obtain a comparison principle

between viscosity supersolutions and viscosity subsolutions [21].
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For uniqueness of viscosity solutions, let us specify what is meant by comparison principle

for semicontinuous functions.

Definition 1.3.4 We say that the Dirichlet problem for equation (1.1.1) satisfies the

comparison principle or the comparison principle holds for Hamiltonians H if for any

function u ∈ BUSC(Ω) and any function v ∈ BLSC(Ω) which are, respectively, a vis-

cosity subsolution and a viscosity supersolution of (1.1.1) such that u ≤ v on ∂Ω, we have

u ≤ v in Ω.

The next theorem shows that the comparison principle between viscosity subsolutions and

viscosity supersolutions, given in Definition 1.3.4, implies the continuity of the unique

viscosity solution.

Theorem 1.3.3 [16] Assume that the Dirichlet problem for (1.1.1) satisfies a comparison

principle. If u : Ω → R is a viscosity solution of (1.1.1) which is bounded on Ω and

continuous at all x ∈ ∂Ω, then u ∈ C(Ω). In particular, for any g ∈ C(∂Ω) in (1.1.2),

there is at most one such viscosity solution of (1.1.1) satisfying u = g on ∂Ω.

Let u be a viscosity solution of (1.1.1) which is bounded on Ω and u ∈ C(∂Ω). Then S(u) ∈
BUSC(Ω) is a viscosity subsolution and I(u) ∈ BLSC(Ω) is a viscosity supersolution of

(1.1.1). Since u is continuous at ∂Ω , we have S(u)(x) = I(u)(x) = u(x), x ∈ ∂Ω.

Therefore, by the comparison principle, we have S(u) ≤ I(u) in Ω. Since by construction

I(u) ≤ S(u), we have S(u) = I(u) = u is a continuous viscosity solution, but it is a

too restrictive conclusion since a lot of applications has naturally discontinuous solutions.

Therefore, the above comparison principle adds nothing to the problem of uniqueness of

discontinuous viscosity solution.

Next we give some simple examples showing that the notion of viscosity solution, given

in Definition 1.3.3, is rather weak. The first one shows that nowhere continuous functions

can be solutions, in terms of Definition 1.3.3, of very simple equations such as

ux = 0 x ∈ R. (1.3.3)

Example 1.3.1 Let u be function defined by

u(x) =

{
1 , x ∈ Q
0 , x ∈ R \Q.

Then S(u) ≡ 1 and I(u) ≡ 0, so u is a viscosity solution of (1.3.3).
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The second example explains the nonuniqueness of Ishii’s results, namely a boundary value

problem satisfying comparison principle, given in Definition 1.3.4, may have infinitely

many discontinuous viscosity solutions satisfying boundary conditions.

Example 1.3.2 The Dirichlet problem

ux(x) = 1, x ∈ (0, 1) (1.3.4)

u(0) = 1, u(1) = 2 (1.3.5)

has the continuous viscosity solution u(x) = x+1 by Theorem 1.3.3 and u satisfies (1.3.5).

In addition, for any dense subset X of [0, 1] such that 0 and 1 belong to X, the function

v(x) =

{
x , x ∈ [0, 1]\X
x + 1, x ∈ [0, 1] ∩X

is also a viscosity solution because S(v)(x) = x + 1 and I(v)(x) = x are both classical

solutions of the equation (1.3.4). Moreover, v satisfies the boundary conditions (1.3.5).

Refer to Theorem 1.3.3, if we require continuity at all boundary points, then any function

which is viscosity solution in the sense of Definition 1.3.3 is automatically continuous in

Ω and this rules out many interesting problems.

Then for Hamiltonians satisfying the structural assumptions of any comparison theorems,

a viscosity solution of (1.1.1) may be a discontinuous function only if it is discontinuous

at some boundary point. This fact is a general property of Hamilton-Jacobi equations.

Due to the nonuniqueness in Ishii’s result, see Example 1.3.2, other notions of discontin-

uous solutions were proposed by various authors. Barles and Perthame [20], Barron and

Jensen [23], Subbotin [131] made efforts in studying the discontinuous solutions. Their

notions are in the context of semicontinuous solutions. But the definition of Ishii, given

in [71], played a pivotal role. Other notions of discontinuous solutions are also introduced

by Giga Sato [57], C. Guiqiang and S. Bo [62], Siconolfi [127], etc.

For presentation of discontinuous viscosity solution, the reader can consult Crandall-Ishii-

Lions [37], Fleming-Soner [53], Bardi-Capuzzo-Dolcetta [16], Bardi et al. [17], and Barles

[19] and the references there in.

The application of Perron’s method for establishing an existence result for Lp−viscosity

solutions of fully nonlinear second-order elliptic equations is given in [78].
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1.4 Objectives of this Thesis

The first main goal of this thesis is to propose a new approach to the treatment of

discontinuous solutions for first-order Hamilton-Jacobi equations by involving Hausdorff

continuous interval valued functions. The only assumption is a continuity of Hamiltonian.

Applications of Hausdorff continuous functions are relevant because it has been shown

recently by R. Anguelov and E. E. Rosinger [12] that the solutions of large classes of non-

linear partial differential equations can be assimilated with Hausdorff continuous functions

on the open domains.

To reach this goal, the following objectives are identified:

• to show that interval valued functions can be considered as discontinuous viscosity

solutions;

• to prove that the main ideas within the classical theory of continuous viscosity solutions

can be extended almost unchanged to the wider space of Hausdorff continuous functions;

• to prove that the Hausdorff continuous viscosity solutions have a more clear interpreta-

tion than the existing concepts of discontinuous solutions, e.g., envelope solutions;

• to show that the value function of optimal control problem as solution of associated

Hamilton-Jacobi-Bellman equation typically belongs to the wider space of Hausdorff con-

tinuous functions.

The second main goal is the design of numerical schemes for Hamilton-Jacobi equations

and for conservation laws which preserve essential properties of the exact solutions. This

is typically expressed through the concept of qualitative stability. To achieve this we use

the nonstandard finite difference method to design

• a scheme for Hamilton-Jacobi equation which is qualitatively stable with respect to

monotonicity property;

• schemes for conservation laws which are qualitatively stable to respect to total variation

diminishing property.
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1.5 Outline of this Thesis

From Definition 1.3.3, interval valued functions appear naturally in the context of dis-

continuous viscosity solutions. Indeed, Definition 1.3.3 places requirements not on the

function u itself but on its lower and upper semicontinuous envelopes or, in other words,

on the interval valued function

F (u)(x) = [I(u)(x), S(u)(x)], x ∈ Ω,

which is called the graph completion of u, see [15]. Clearly, Definition 1.3.3 treats functions

which have the same upper and lower semicontinuous envelopes, that is, have the same

graph completion, as identical functions. On the other hand, since different functions

can have the same graph completion, a function can not in general be identified from its

graph completion, that is, functions with the same graph completion are indistinguishable.

Therefore, no generality will be lost if only interval valued functions representing graph

completions are considered.

The second chapter introduces the concept of Hausdorff continuous (H-continuous) in-

terval valued functions and discusses their properties. The applications of H-continuous

functions to problems in Analysis [5] and to nonlinear partial differential equation [13] are

based on the quite extraordinary fact that the set of all Hausdorff continuous functions

on open domains is Dedekind order complete. This property is given in this chapter.

In Chapter 3, which contains the first main result of this thesis, we discuss Hausdorff con-

tinuous viscosity solutions of Hamilton-Jacobi equations and we prove that the notion of

Hausdorff continuous viscosity solution is stronger than the notion of (discontinuous) vis-

cosity solution, see Section 3.2. In the second place, we show that when the H-continuous

viscosity solution is a supremum of viscosity subsolutions or infimum of viscosity superso-

lutions, it can be linked to an envelope viscosity solution. This is given in Section 3.3. In

Section 3.4, we begin with some properties of Hausdorff continuous viscosity subsolutions

and supersolutions. Moreover, we formulate and prove an existence theorem for Hamilton-

Jacobi equations using Perron’s method for H-continuous viscosity solutions. Section 3.5

deals with uniqueness of H-continuous viscosity solution. We formulate the comparison

principle for Hausdorff continuous functions and give sufficient conditions implying it in

a weaker form. The uniqueness result, see Theorem 3.5.1, is given under the assumption

that comparison principle, given in Definition 3.5.1, is satisfied.
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Finally we express the H-continuous viscosity solutions of Hamilton-Jacobi equation as

solutions to an operator equation involving the extended Hamiltonian operator in the

same way as the classical solutions of Hamilton-Jacobi equation are solutions of operator

equation associated of this Hamilton-Jacobi equation.

In Chapter 4, the theory of Hausdorff continuous viscosity solutions is applied to optimal

control problem in particular discounted minimum time problem. We show that the value

function of discounted minimum time problem is an envelope viscosity solution of an

associated Hamilton-Jacobi-Bellman equation. This is illustrated by a Zermelo navigation

problem given in Section 4.3.

The second main result is given in Chapter 5. We consider two approaches to numerical

solutions for Hamilton-Jacobi equations. The first one, given in Section 5.2, is a monotone

scheme for Hamilton-Jacobi equation. The study of numerical approximation to multi-

dimensional Hamilton-Jacobi equations was started by Crandall and Lions [40]. They

presented monotone finite difference schemes on rectangular domains. The numerical

solutions in [40, Theorem 1] indicate convergence to the viscosity solutions of Hamilton-

Jacobi equations. Finite difference methods were developed for solving Hamilton-Jacobi

equations [128, 92, 111]. However, the schemes applying standard finite difference tech-

niques are typically monotone under some restriction on the time step sizes. We motivate

by the paper [91] where a severe restriction on the time step size is imposed for the

numerical scheme for Hamilton-Jacobi equations obtained through the coupling of the

finite difference method (in space) and the finite element method (in time) to be mono-

tone. In Section 5.2, we relax this restriction by using Micken’s nonstandard finite differ-

ence method [103]. More precisely, Micken’s rule of nonlocal approximation is exploited

and this leads to a nonstandard scheme that replicates the monotonicity property of the

Hamilton-Jacobi equations for all positive time step sizes. Furthermore, the superiority

of the nonstandard method to the standard one is confirmed by numerical results at the

end of this section.

The second approach is based on preserving total variation diminishing property of con-

servation laws. It has been shown that schemes with such qualitative stability resolve

discontinuities in the solution without spurious oscillations which are often displayed by

numerical solutions [124], [125]. These schemes are called total variation diminishing

(TVD).
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One problem associated with the explicit total variation diminishing methods is a restric-

tion on the time step-size which in some cases could be rather severe. This is particularly

pronounced in high-order methods, e.g., methods of Runge-Kutta type [60, 61]. On the

other hand, the computational complexity of total variation diminishing implicit methods

is significantly higher particularly when nonlinear functions are involved.

In Section 5.3, we construct (i) an implicit nonstandard finite difference scheme using

nonlocal approximation of nonlinear terms and (ii) explicit nonstandard finite difference

schemes where renormalization of the denominator is used. Numerical results demon-

strating the properties of the methods are presented.

It is well known that the Hamilton-Jacobi equations are closely related to conservation

laws [77], hence successful numerical methods for conservation laws are adapted for solv-

ing the Hamilton-Jacobi equations. A long this line, we mention the early work of Os-

her and Sethian [110] and Osher and Shu [111] in constructing high-order essentially

non-oscillatory (ENO) schemes for solving the Hamilton-Jacobi equations. These ENO

schemes for solving the Hamilton-Jacobi equations were based on ENO schemes for solv-

ing hyperbolic conservation laws in [65, 125, 126]. We mention also the weighted (ENO)

(WENO) schemes for solving the Hamilton-Jacobi equations by Zhang and Shu [137]

and by Jiang and Peng [72], based on the WENO schemes for solving conservation laws

[95, 74]. Adapted from the discontinuous Galerkin methods for solving hyperbolic conser-

vation laws [33], a discontinuous Galerkin method for solving Hamilton-Jacobi equations

was developed by Hu and Shu in [70].

At the end of Section 5.3, we use a discontinuous Galerkin finite element method of Hu

and Shu [70] to solve the one dimensional Hamilton-Jacobi equation which applies the

discontinuous Galerkin framework on the conservations laws. Namely, since the derivative

of the solution u of Hamilton-Jacobi equation satisfies a conservation law, we apply the

usual discontinuous Galerkin method on this conservation law to advance the derivative of

u. The solution u itself is then recovered from this derivative computed using nonstandard

total variation diminishing method.

Finally, Chapter 6 summarizes the results that have been done in the thesis, highlights

the most outstanding results and gives some directions for future research.
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1.6 Summary of Contributions

The main contributions of this thesis are:

• The concept of Hausdorff continuous viscosity solution is given in Section 3.2, see

Definition 3.2.1.

• Existence theorem for H-continuous viscosity solutions using Perron’s method. The

solution is constructed as a supremum of a set of viscosity subsolutions in the set of

Hausdorff continuous functions, Theorem 3.4.2.

• The relation between the H-continuous viscosity solution and the existing theory of

discontinuous viscosity solutions. Namely, any H-continuous viscosity solution is discon-

tinuous viscosity solution as defined by Ishii, and it is typically also an envelope viscosity

solution. The H-continuous viscosity solution is a stronger concept than the concept of

discontinuous viscosity solution given by Ishii and as well as the concept of envelope vis-

cosity solution. Yet, the existence is proved under the same assumptions, see Sections 3.2

and 3.3.

• In Section 3.5, the Hausdorff continuous viscosity solutions of Hamilton-Jacobi equations

are expressed as the solutions to an operator equation involving the extended operator in

the same way as the classical solutions of Hamilton-Jacobi equations are solutions of this

operator equation.

• The value function of the optimal control problem can be considered as H-continuous

viscosity solution of associated Hamilton-Jacobi-Bellman equation, see Chapter 4.

• The design of nonstandard finite difference scheme for Hamilton-Jacobi equation pre-

serving the monotonicity property for any time step size is given in Section 5.2.

• The design of nonstandard finite difference schemes for conservation laws preserving the

total variation diminishing property for all positive time step sizes is given in Section 5.3.
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Chapter 2

The Space of Hausdorff Continuous

Interval Valued Functions

2.1 Introduction

Historically, the interval analysis, or the analysis of interval valued functions, is associated

with the so called validated computing where algorithms generating validated bounds

for the exact solutions of mathematical problems are designed and investigated, see [2]

and [81]. The Hausdorff continuous functions, being a particular class of interval valued

functions, belong to interval analysis, see Moore [107]. However, interest in the interval

valued functions comes also from other branches of mathematics such as nonlinear partial

differential equations, see [13] which strengthens the results in [109], and approximation

theory. In fact, Hausdorff continuous functions of one variable were introduced first by

Sendov in connection with Hausdorff approximations of real functions of real argument, see

[120]. The concept was further developed in [10] as part of the analysis of interval valued

functions and extended to interval valued functions defined on a topological space [4].

The name Hausdorff continuous is due to a characterization of these functions in terms of

the Hausdorff distance between the graphs of real functions as defined in [119]. Recently,

it is shown by Anguelov and Rosinger [12] that very large classes of nonlinear partial

differential equations have solutions which can be assimilated with Hausdorff continuous

functions. Further applications of the concept of Hausdorff continuity are presented in

[10]. For recent advances in theory of Hausdorff approximations, see [3] and the references

therein.
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This chapter will serve as an introduction to the Hausdorff continuous functions and the

stated results will be used in the sequel. The Baire operators and the graph completion

operator which are instrumental for the definition and the properties of Hausdorff contin-

uous functions are discussed in Section 2.2. Section 2.3 deals with Hausdorff continuous

functions. Two very important theorems are presented. The first theorem shows how

to construct Hausdorff continuous functions, and the second gives useful necessary and

sufficient conditions for an interval valued function to be Hausdorff continuous function.

In Section 2.4, Theorem 2.4.1 shows that the set of Hausdorff continuous functions is

Dedekind order complete while Theorem 2.4.2 gives a useful representation of supremum

of a subset of a set of all Hausdorff continuous functions. The generalized lower, upper

Baire and graph completion operators are given in Section 2.5.

2.2 Baire Operators and Graph Completion

Operator

In this section, we recall the upper Baire operator S, lower Baire operator I and the graph

completion operator F for interval valued function. Some properties of I, S, and F are

given in this section.

Let X be an arbitrary topological space.

Identifying a ∈ R with the point interval [a, a] ∈ IR, we consider R as a subset of IR.

From this, it follows that the set A(X) contains the set of functions with real A(X).

Hence,

C(X) ⊆ A(X) ⊆A(X).

A partial order which extends the total order on R can be defined on IR in more than

one way. However, it will prove useful to consider on IR the partial order ≤ defined by

[a, a] ≤ [b, b] ⇐⇒ a ≤ b, a ≤ b. (2.2.1)

The partial order, given in (2.2.1), is introduced and studied by Markov, see [99, 100].

The inclusion in A(X) is defined by

[a, a] ⊆ [b, b] ⇐⇒ b ≤ a ≤ a ≤ b. (2.2.2)
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The partial order induced in A(X) by (2.2.1) in a point-wise way, i.e., for u, v ∈ A(X),

u ≤ v ⇐⇒ u(x) ≤ v(x), x ∈ X, (2.2.3)

is an extension of the usual point-wise order in the set of real valued functions A(X).

Let u ∈ A(X). For every x ∈ X, the value of u is interval [u(x), u(x)] ∈ IR. Hence, the

function u can be written in the form u = [u, u], where u, u ∈ A(X) and u(x) ≤ u(x).

The inclusion induced in A(X) by (2.2.2) in a point-wise way is given by

u ⊆ v ⇔ v(x) ≤ u(x) ≤ u(x) ≤ v(x), x ∈ X, (2.2.4)

where u = [u, u] ∈ A(X) and v = [v, v] ∈ A(X).

The definition of upper semicontinuous envelope, the lower semicontinuous envelope given

in (1.3.1) and (1.3.2), respectively, for u ∈ A(X), can be extended to functions

u = [u, u] ∈ A(X) as follows [4]:

Definition 2.2.1 The mappings S, I : A(X) → A(X), defined by

S(u)(x) = inf
δ>0

sup{z ∈ u(y) : y ∈ Bδ(x) ∩X}, x ∈ X, (2.2.5)

I(u)(x) = sup
δ>0

inf{z ∈ u(y) : y ∈ Bδ(x) ∩X}, x ∈ X, (2.2.6)

are called upper Baire and lower Baire operators, respectively.

In [15], the mappings (2.2.5) and (2.2.6) were defined and studied in the particular case

of functions u ∈ A(X) when X is a subset of R.

The lower and upper Baire operators of u = [u, u] ∈ A(X) can be conveniently represented

in terms of the functions u and u. Indeed, from (2.2.5) and (2.2.6), it is easy to see that

I(u) = I(u), S(u) = S(u). (2.2.7)

Clearly, for every u ∈ A(X), we have

I(u)(x) ≤ u(x) ≤ S(u)(x), x ∈ X. (2.2.8)
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Hence, the graph completion operator is defined on A(X) as follows [4]:

Definition 2.2.2 The mapping

F : A(X) → A(X),

defined by

F (u)(x) := [I(u)(x), S(u)(x)], u ∈ A(X), x ∈ X,

is called a graph completion operator.

The name of this operator, given by Sendov [119], is derived from the fact that, considering

the graphs of u and F (u) as subsets of the topological space X × R, the graph of F (u)

is the minimal closed set, which is a graph of interval valued function on X and contains

the graph of u.

For every u = [u, u] ∈ A(X), the property (2.2.7) implies that F (u) can be written in the

form

F (u) = [I(u), S(u)], (2.2.9)

thus

F (u) = u ⇔ u = I(u), u = S(u)].

In other words, u = [u, u] is a fixed point of the operator F if and only if u is a fixed point

of the operator I, while u is a fixed point of the operator S.

By (2.2.9) and (2.2.8), we have

u(x) ⊆ F (u)(x), x ∈ X.

There is an alternative characterization of lower and upper semicontinuity that involves

the fixed points of the lower and upper Baire operators for u ∈ A(X). Indeed, we have

u ∈ LSC(X) ⇔ I(u) = u, (2.2.10)

u ∈ USC(X) ⇔ S(u) = u. (2.2.11)
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In the sequel, we will use the following properties of operators I, S, and F, which were

proved in [4].

Theorem 2.2.1 (a) The operators I, S, and F are all monotone increasing with respect

to the partial order (2.2.3), that is, for any two functions u, v ∈ A(X),

u ≤ v =⇒ I(u) ≤ I(v), S(u) ≤ S(v), F (u) ≤ F (v). (2.2.12)

(b) The operator F is monotone with respect to the relation inclusion (2.2.4), that is, for

any two functions u, v ∈ A(X),

u(x) ⊆ v(x), x ∈ X ⇒ F (u)(x) ⊆ F (v)(x), x ∈ X.

(c) The operators I, S and F are all idempotent, that is, for any function u ∈ A(X), we

have

I(I(u)) = I(u), S(S(u)) = S(u), F (F (u)) = F (u). (2.2.13)

The property (c) of Theorem 2.2.1 and the properties (2.2.10) and (2.2.11) imply that for

u ∈ A(X), we have

I(u) ∈ LSC(X), (2.2.14)

S(u) ∈ USC(X). (2.2.15)

Upon an obvious extension of the respective result in [15] we have the following lemma

about semicontinuous functions.

Lemma 2.2.1 We have the following:

(i) Let L ⊂ LSC(X), L 6= ∅ be bounded from above at each x ∈ Ω. Then the function l

defined by

l(x) = sup{v(x) : v ∈ L}

is lower semicontinuous.

(ii) Let U ⊂ USC(X), U 6= ∅ be bounded from below at each x ∈ Ω. Then the function u

defined by

u(x) = inf{v(x) : v ∈ U}

is upper semicontinuous.
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2.3 Hausdorff Continuous Functions

This section introduces the concept of Hausdorff continuous interval valued functions and

discusses their properties.

Definition 2.3.1 A function u ∈ A(X) is called Hausdorff continuous, or for short,

H-continuous, if and only if for every function v ∈ A(X), we have satisfied the following

minimality condition on u

v(x) ⊆ u(x), x ∈ X ⇒ F (v)(x) = u(x), x ∈ X. (2.3.1)

The minimality condition in (2.3.1) with respect to their graph completion operator F

plays a fundamental role. At first it may appear that it applies to each individual point

x of X, not involving neighborhoods. However, the graph completion operator F does

appear in this condition and this operator according to definition of F and therefore to

definition of I and S does certainly refer to neighborhoods of points in X, a situation

typical, among others, for the concept of continuity.

We recall here the concept of segment continuity associated with the graph completion

operator, [120].

Definition 2.3.2 A function u ∈ A(X) is called segment continuous, or S-continuous, if

F (u) = u.

It follows from the idempotence of a function F , see (2.2.13), that for any function

u ∈ A(X)

F (u) is an S-continuous function. (2.3.2)

Furthermore,

u is S-continuous ⇔ F (u) = u. (2.3.3)

It is easy to see that on the set A(X)

H-continuity ⇒ S-continuity. (2.3.4)

Indeed, if u is H-continuous from the inclusion u(x) ⊆ u(x), x ∈ X, and Definition 2.3.1,

it follows that F (u)(x) = u(x), x ∈ X. Thus u is S-continuous on X.
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The inverse implication in (2.3.4) is not true. Indeed, consider the example

when X = [0, 1]. Then, the function u, defined by

u(x) =

{
[−1, 1], x = 0

1 , 0 < x ≤ 1,

is S-continuous on [0, 1], but it is not H-continuous on [0, 1]. Indeed, it is clear that

F (u)(x) = u(x), x ∈ [0, 1]. Now consider interval valued function v defined on [0, 1] by

v(x) =

{
[0, 1], x = 0

1 , 0 < x ≤ 1.

Clearly, the inclusion v(x) ⊆ u(x) holds for every x ∈ [0, 1] and v is S-continuous on [0, 1]

because F (v)(x) = v(x), x ∈ [0, 1]. But F (v)(0) 6= u(0) so u cannot be H-continuous

function on [0, 1].

However, through the concept of S-continuity, H-continuous functions can be characterized

in the following way, [120].

Theorem 2.3.1 A function u ∈ A(X) is H-continuous if and only if u satisfies the

following two conditions:

(i) u is S-continuous on X,

(ii) for every S-continuous function v, the inclusion v(x) ⊆ u(x), x ∈ X implies

v(x) = u(x), x ∈ X.

In general, H-continuity is not preserved on subsets of the domain X. Precisely, if K ⊂ X

and u ∈ H(X), then we cannot conclude that u|K ∈ H(K), where u|K is the restriction

of u to K. For example, consider X = R, K = [0, +∞), and u defined by

u(x) =





−1 , x < 0

[−1, 1], x = 0

1 , x > 0.

(2.3.5)

Obviously, u ∈ H(R) and u|K is defined on K by

u|K(x) =

{
[−1, 1], x = 0

1 , x > 0.

To prove that u|K 6∈ H(K), we consider the interval valued function w defined on K by

w(x) =

{
[0, 1], x = 0

1 , x > 0.
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Clearly, the inclusion w(x) ⊆ u|K(x) holds for every x ∈ K and w is S-continuous on K.

Therefore F (w)(x) = w(x), x ∈ K. But w(0) 6= u|K(0), so u|K cannot be H-continuous

function in K although K ⊂ X.

We know that every S-continuous function is defined in terms of a lower semicontinuous

function and an upper semicontinuous function, but there is more.

The following theorem shows how to construct an H-continuous function.

Theorem 2.3.2 [4] Every pair of a lower semicontinuous function u and an upper semi-

continuous function u such that u ≤ u on X defines an S-continuous function

u(x) = [u(x), u(x)], x ∈ X. Furthermore, if the set

{ϕ ∈ A(X) : u ≤ ϕ ≤ u}

does not contain any lower or upper semicontinuous functions, except for u, respectively

u, then the function u is H-continuous.

The minimality condition given in the above theorem associated with the Hausdorff con-

tinuous functions can also be formulated in terms of semicontinuous functions, namely, if

u = [u, u] is S-continuous, then u is H-continuous if and only if

{ϕ ∈ A(Ω) : ϕ is semicontinuous, u ≤ ϕ ≤ u} = {u, u}.

Theorem 2.3.2 and property (2.3.4) imply that

C(X) = USC(X) ∩ LSC(X) ⊂ H(X) ⊂ F(X).

Let us note that the set H(X) is certainly wider than C(X). An example of H-continuous

function which is not continuous is given in (2.3.5).

The concept of H-continuity can be considered as a generalization of the concept of con-

tinuity of real functions in the sense that the only real (point valued) functions contained

in H(X) are the continuous functions, that is,

u ∈ A(X) ∩H(X) ⇒ u ∈ C(X).

The following theorem, proved in [4], generalizes some results discussed in [120] to the

case when X ⊆ R. It gives useful necessary and sufficient conditions for an interval valued

function to be H-continuous.
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Theorem 2.3.3 Let u = [u, u] ∈ A(X). The following conditions are equivalent :

(a) u ∈ H(X),

(b) F (u) = F (u) = u,

(c) S(u) = u, I(u) = u, and u ∈ F(X).

With every interval function u one can associate H-continuous functions as stated in the

next theorem which is proved in [4].

Theorem 2.3.4 Let u ∈ A(X). Both functions F (S(I(u))) and F (I(S(u))) are Hausdorff

continuous and we have

F (S(I(u))) ≤ F (I(S(u))).

This theorem is illustrated by the following example.

Example 2.3.1 Consider the function u ∈ A(R) given by

u(x) =





[−1, 1] , x ∈ Z
0 , x ∈ (−∞, 0) \ Z

[0, 1] , x ∈ (0, +∞) \ Z,

where Z denotes the set of integers. We have F (u) = u meaning that u is S-continuous.

We have the H-continuous functions

F (S(I(u)))(x) = 0, x ∈ R

and

F (I(S(u)))(x) =





0 , x ∈ (−∞, 0)

[0, 1], x = 0

1 , x ∈ (0, +∞).
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It is quite interesting that pairing a lower semicontinuous function u with an upper semi-

continuous function u such that u ≤ u produces a completely new concept from both

algebraic and topological points of view, namely the concept of S-continuous interval

functions. The concept of Hausdorff continuity is closely connected with the Hausdorff

distance between functions as introduced by Sendov [120]. The Hausdorff distance ρ(u, v)

between two functions u, v ∈ A(X) is defined as the Hausdorff distance between the

graphs of the functions F (u) and F (v) considered as subsets of Rn+1. More precisely, we

have

ρ(u, v) = max{ sup
x1∈X

sup
y1∈F (u)(x1 )

inf
x2∈X

inf
y2∈F (v)(x2)

||(x1 − x2, y1 − y2)||,

sup
x2∈X

sup
y2∈F (v)(x2)

inf
x1∈X

inf
y1∈F (u)(x1)

||(x1 − x2, y1 − y2)||}, (2.3.6)

where ||.|| is a given norm in Rn+1.

Condition (b) in Theorem 2.3.3 implies that for any H-continuous function u = [u, u], the

Hausdorff distance between the functions u and u is zero. More precisely, we have

u = [u, u] ∈ H(X) ⇔
{

u ∈ F(X)

ρ(u, u) = 0.

We should note that any Hausdorff continuous function is ”essentially” point valued in the

sense that it assumes point values everywhere except on a small set. The next theorem

shows that this set is a set of first Baire category, that is, a countable union of closed and

nowhere dense sets.

Theorem 2.3.5 [4] Let u = [u, u] be an H-continuous function on X. The set

Wu = {x ∈ X : u(x)− u(x) > 0} (2.3.7)

is of first Baire category.

Through an application of the Baire category theorem [132], the above theorem implies

that the complement of Wu in X is a set of second category. Hence,

Du = X \Wu = {x ∈ X : u(x) = u(x)} is dense in X.
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Since a finite or countable union of sets of first Baire category is also a set of first Baire

category [130], we have that for every finite or countable set F of Hausdorff continuous

functions, the set

DF = {x ∈ X : u(x) = u(x), u = [u, u] ∈ F}

= X \
( ⋃

u∈F
Wu

)

is dense in X.

In the following theorem, it is shown that for H-continuous functions interval values are

used in an ’economical’ way, namely only at points of discontinuity.

Theorem 2.3.6 [5] Let u = [u, u] be an H-continuous function on X.

(a) If u or u is continuous at a point a ∈ X, then u(a) = u(a).

(b) If u(a) = u(a) for some a ∈ X, then both u and u are continuous at a.

The above theorem implies that for every u ∈ A(X) the set Wu defined by (2.3.7) has the

following representations:

Wu = {x ∈ X : I(u) is discontinuous at x}
= {x ∈ X : S(u) is discontinuous at x}.

In important similarity between continuous, and on other hand, H-continuous functions

is that both of them are determined uniquely if they are known a dense subset of their do-

mains. This property comes in spite of the fact that, as seen above, H-continuous functions

can have discontinuities on sets of first Baire category, and such sets can have arbitrary

large positive Lebesgue measure, see [112]. Indeed we have the following Theorem [5].

Theorem 2.3.7 Let u, v ∈ H(X) and let D be a dense subset of X. Then

(a) u(x) ≤ v(x), x ∈ D ⇒ u(x) ≤ v(x), x ∈ X, (2.3.8)

and

(b) u(x) = v(x), x ∈ D ⇒ u(x) = v(x), x ∈ X.
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2.4 The Set H(X) is Dedekind Order Complete

One of the most surprising and useful properties of the set H(X) of all H-continuous func-

tions is its Dedekind order completeness with respect to the partial order given in (2.2.3).

What makes this property so significant is the fact that, with very few exceptions, the

usual spaces in Real Analysis or Functional Analysis, e.g., space of continuous functions,

is not Dedekind order complete. In this way, the class of Hausdorff continuous functions

can provide solutions to open problems or improve earlier results related to order. This

section discusses Dedekind order completeness of H(X). The representation of supremum

(resp. infimum) in H(X) trough the point-wise supremum (resp. infimum) is given.

Let us recall the concept of Dedekind order completeness [109].

Definition 2.4.1 A partial ordered set (X,≤) is called Dedekind order complete, if and

only if every nonempty subset A of X which is bounded from above has a supremum in X

and every nonempty subset B of X which is bounded from below has an infimum in X.

A general result on Dedekind order completion of partially ordered sets was established

by MacNeille in 1937, see [98]. The problem of order completion of C(X) is particulary

addressed in [97].

The following theorem states one of the most amazing properties of the set H(X), namely

its Dedekind order completeness.

Theorem 2.4.1 [5] (a) For every nonempty subset F of H(X) which is bounded from

above there exist u ∈ H(X) such that

u = supF . (2.4.1)

(b) For every nonempty subset Z of H(X) which is bounded from below there exists

v ∈ H(X) such that

v = inf Z. (2.4.2)

The supremum in (2.4.1) and infimum in (2.4.2) are not taken point-wise but according

the partial order (2.2.3). This result indicates that indeed the partial order (2.2.3) induced

point-wise by (2.2.1) is an appropriate partial order to be associated with the Hausdorff

continuous interval valued function.
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Remark 2.4.1 The concept of viscosity solution is defined through order. Hence the

order properties of H(X), in particular its Dedekind completeness, play an important

role. Topological structures have been defined on H(X) in different ways. For example,

in [6] there is a convergence structure defined through the partial order (2.2.3) on the set

H(X) which is generally not a topology. The supremum norm was considered in [11] on

the set of bounded H-continuous functions.

The following theorem gives useful representation of supremum (resp. infimum) of a

subset of H(X) in terms of the point-wise supremum (resp. infimum).

Theorem 2.4.2 [5] (a) Let the set F ⊆ H(X) be bounded from above and let the function

ψ ∈ A(X) be defined by

ψ(x) := sup{f(x) : f = [f, f ] ∈ F }, x ∈ X.

Then

supF = F (S(ψ)) = [I(S(ψ)), S(ψ)].

(b) Let the set Z ⊆ H(X) be bounded from below and let the function ϕ ∈ A(X) be defined

by

ϕ(x) := inf{f(x) : f = [f, f ] ∈ Z }, x ∈ X.

Then

inf Z = F (I(ϕ)) = [I(ϕ), S(I(ϕ))].

Theorem 2.4.1 establishes a close connection between the supremum (resp. infimum)

in H(X) about the partial order (2.2.3) and the point-wise supremum (resp. infimum).

These two functions are not the same, that is, for a set F ⊆H(X), in general, there exists

x ∈ X such that

(inf F)(x) = ( inf
f∈F

f)(x) 6= inf
f∈F

(f(x)),

(supF)(x) = (sup
f∈F

f)(x) 6= sup
f∈F

(f(x)).

Example 2.4.1 Let X = Rn. Consider the set F = {fδ : δ > 0}, where

fδ(x) =

{
1− |x|

δ
, |x| ≤ δ

0 , otherwise.
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The point-wise infimum of F is

ϕ(x) =

{
1 if x = 0

0 if x 6= 0.

The function ϕ is not an H-continuous function on Rn. Indeed, consider the continuous

function v(x) = 0, x ∈ Rn. Obviously, we have ϕ(x) ⊇ v(x), x ∈ Rn and v(0) 6= ϕ(0) so ϕ

cannot be H-continuous function in Rn. The infimum of F in H(Rn) is u(x) = 0, x ∈ Rn.

Example 2.4.2 Let X = R. Consider the set F = {gn : n ∈ N}, where

gn(x) =

{
x−2n−1 , x 6= 0

[−∞, +∞] , x = 0.

The point-wise supremum of F is

ψ(x) =





0 , x < −1

x−1 , −1 ≤ x < 0

∞ , 0 ≤ x < 1

x−1 , x ≥ 0.

Hence

(supF)(x) =





0 , x < −1

[−1, 0] , x = −1

x−1 , −1 < x < 0

[−∞, +∞] , x = 0

∞ , 0 < x < 1

[1,∞] , x = 1

x−1 , x > 1.

We will use the following theorem given in [4].

Theorem 2.4.3 Let D be dense subset of X, we have the following:

u ∈ H(D) ⇒ F (u) ∈ H(X).

Since X is always dense in X, we have the following corollary.

Corollary 2.4.1 Let u ∈ A(X). Then

u ∈ H(X) ⇒ F (u) ∈ H(X).

Further properties of the H-continuous functions are discussed in [120], [10], [4], where it

is shown, among others, that they retain some of the essential characteristics of the usual

continuous functions.
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2.5 Generalized Baire Operators and Graph

Completion Operator

Let D be a dense subset of X. For any u ∈ A(D) we can consider the following general-

ization of the upper and lower Baire operators as well as the graph completion operator,

given in Section 2.2.

Definition 2.5.1 The mapping S(D, X, .), I(D,X, .) : A(D) → A(X) defined for A(D)

by

S(D, X, u)(x) = inf
δ>0

sup{z ∈ u(y) : y ∈ Bδ(x) ∩D}, x ∈ X,

I(D,X, u)(x) = sup
δ>0

inf{z ∈ u(y) : y ∈ Bδ(x) ∩D}, x ∈ X,

are called generalized upper Baire and generalized lower Baire operators, respectively.

Clearly, for every u ∈ A(D), we have

I(D,X, u)(x) ≤ S(D, X, u)(x), x ∈ X (2.5.1)

and

I(D, X, u)(x) ≤ u(x) ≤ S(D,X, u)(x), x ∈ D.

Definition 2.5.2 The mapping F (D, X, .) : A(D) → A(X), defined for u ∈ A(D) by

F (D, X, u)(x) = [I(D,X, u)(x), S(D,X, u)(x)], x ∈ D,

is called generalized graph completion operator.

Note that the usual Baire operators and graph completion operator obtained from the

above definitions using D = X, i.e., if u ∈ A(X) then

I(u) = I(X,X, u), S(u) = S(X, X, u), F (u) = F (X,X, u).

The generalized lower and upper Baire operators as well as the graph completion operator

of an interval valued function u = [u, u] ∈ A(D) can be conveniently represented in terms

of the functions u and u :

I(D, X, u) = I(D,X, u), S(D,X, u) = S(D, X, u), F (D, X, u) = [I(D,X, u), S(D, X, u)].
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In the sequel, we will use the following properties of operators I(D,X, .), S(D,X,.), and

F(D,X,.), which were proved in [4].

Theorem 2.5.1 (i) Let D be a dense subset of X. Then

I(D, X, u) ∈ LSC(X) and S(D, X, u) ∈ USC(X). (2.5.2)

(ii) If u, v ∈ A(D), where D is dense in X, then

u(x) ≤ v(x), x ∈ D ⇒ I(D, X, u)(x) ≤ I(D, X, u)(x), x ∈ X; (2.5.3)

u(x) ≤ v(x), x ∈ D ⇒ S(D, X, u)(x) ≤ S(D, X, u)(x), x ∈ X; (2.5.4)

u(x) ≤ v(x), x ∈ D ⇒ F (D, X, u)(x) ≤ F (D,X, u)(x), x ∈ X. (2.5.5)

(iii) The generalized graph completion operator is monotone about inclusion with respect

to the functional argument, that is, if u, v ∈ A(D), where D is dense in X then

u(x) ⊆ v(x), x ∈ X ⇒ F (D, X, u)(x) ⊆ F (D, X, v)(x), x ∈ X.

(iv) If D1 and D2 are dense subsets of X and u ∈ A(D1 ∪D2), then

D1 ⊆ D2 ⇒ I(D2, X, u)(x) ≤ I(D1, X, u)(x), x ∈ X, (2.5.6)

D1 ⊆ D2 ⇒ S(D1, X, u)(x) ≤ S(D2, X, u)(x), x ∈ X. (2.5.7)

The generalized lower and upper Baire operators have the following optimality property.

Theorem 2.5.2 [4] Let D be a dense subset of X. For any function u ∈ A(D) we have

(i) v ∈ LSC(X), v(x) ≤ u(x), x ∈ D ⇒ v(x) ≤ I(D, X, u)(x), x ∈ X, (2.5.8)

(ii) v ∈ USC(X), u(x) ≤ v(x), x ∈ D ⇒ S(D, X, u)(x) ≤ v(x), x ∈ X. (2.5.9)

The above theorem explains why I(D,X, .), S(D,X, .) are called, respectively, lower and

upper semicontinuous envelope of the function u.

We will use the following Theorem [4]:

Theorem 2.5.4 Let D be a dense subset of X. If u ∈ C(D), then

F (D, X, u) ∈ H(X)

and

F (D, X, u)(x) = u(x), x ∈ D.
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Chapter 3

Hausdorff Continuous Viscosity

Solutions of Hamilton-Jacobi

Equations

3.1 Introduction

Consider again the problem (1.1.1)-(1.1.2). As shown in the introduction the concept of

viscosity solution, see Definition 1.3.3, has an implicit interval character. Clearly Defini-

tion 1.3.3 treats functions which have the same upper and lower semicontinuous envelopes,

that is, have the same graph completion, as identical functions. On the other hand, since

different functions can have the same graph completion, a function can not in general

be identified from its graph completion, that is, functions with the same graph comple-

tion are indistinguishable. Using the properties of the lower and upper semicontinuous

envelopes one can easily see that the graph completion operator maps A(Ω) into F(Ω).

Following the above discussion we define the concept of viscosity solutions for the interval

valued functions in F(Ω) as follows.

Definition 3.1.1 A function u = [u, u] ∈ F(Ω) is called a viscosity solution of (1.1.1) if

u is a viscosity subsolution of (1.1.1) and u is a viscosity supersolution of (1.1.1).
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Definition 3.1.1 shows that a local bounded function u ∈ A(Ω) is a viscosity solution of

(1.1.1) in the sense of Definition 1.3.3 if and only if the interval valued function F (u) is

a viscosity solution of (1.1.1) in the sense of Definition 3.1.1. In this way the level of the

regularity of a solution u is manifested through the width of the interval valued function

F (u).

It is well known that without any additional restrictions the concept of viscosity solution

given in Definition 1.3.3 and by implication the concept of viscosity solution given in

Definition 3.1.1 is rather weak, [16]. This is demonstrated by the following example.

Example 3.1.1 Consider the following equation

ux(x) = 1, x ∈ (0, 1). (3.1.1)

Then the functions

v(x) =

{
x + 1 if x ∈ (0, 1) ∩Q

x if x ∈ (0, 1) \Q
and

w(x) =

{
x if x ∈ (0, 1) ∩Q

x + 1 if x ∈ (0, 1) \Q
are both viscosity solutions of equation (3.1.1) in terms of Definition 1.3.3, because

S(v)(x) = S(w)(x) = x + 1 and I(v)(x) = I(w)(x) = x are classical solutions of equation

(3.1.1).

The interval valued function

z = F (v) = F (w) (3.1.2)

given by

z(x) = [x, x + 1], x ∈ (0, 1)

is a viscosity solution of (3.1.1) in terms of Definition 3.1.1.

With the interval approach adopted here it becomes apparent that the distance between

I(u) and S(u) is an essential measure of the regularity of any solution u, irrespective

of whether it is given as a point valued function or as an interval valued function. If

no restriction is placed on the distance between I(u) and S(u) we will have some quite

meaningless solutions like the solutions in Example 3.1.1. On the other hand, a strong

restriction like I(u) = S(u) gives only solutions which are continuous.
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3.2 Hausdorff Continuous Viscosity Solution of Hamilton-

Jacobi Equations

In this section, we consider solutions u in the sense of Definition 3.1.1 for which the

Hausdorff distance, as defined by (2.3.6), between the functions I(u) and S(u) is zero, a

condition represented through the concept of Hausdorff continuity.

Definition 3.2.1 Let u = [u, u] ∈ H(Ω). Then u is called a Hausdorff continuous, or H-

continuous, viscosity subsolution of the Hamilton-Jacobi equation (1.1.1) if u is a viscosity

subsolution of (1.1.1).

Similarly u is called a Hausdorff continuous, or H-continuous, viscosity supersolution of

the Hamilton-Jacobi equation (1.1.1) if u is a viscosity supersolution of (1.1.1).

Finally, u is called a Hausdorff continuous or H-continuous viscosity solution of (1.1.1)

if it is simultaneously an H-continuous viscosity subsolution and H-continuous viscosity

supersolution of (1.1.1).

One of the advantages of the method in this thesis is that the notion of H-continuous

viscosity solution is stronger than the notion of viscosity solution in the sense of Definition

3.1.1 and by implication the notion of viscosity solution in the sense of Definition 1.3.3.

This is shown by the following theorem.

Theorem 3.2.1 Let u ∈ A(Ω) be locally bounded. If u is an H-continuous viscosity

solution of (1.1.1), then u is a viscosity solution of (1.1.1) in terms of Definition 1.3.3.

Proof. Since u is H-continuous viscosity solution of (1.1.1), by Definition 3.2.1, u = S(u)

is a viscosity subsolution and u = I(u) is a viscosity supersolution of (1.1.1). Thus u is

a viscosity solution of (1.1.1) in terms of Definition 1.3.3. ¥

Remark 3.2.1 The converse of Theorem 3.2.1 is false in general. Indeed, consider the

Example 3.1.1. The function z given in (3.1.2) is a viscosity solution of (3.1.1) in terms

of Definition 3.1.1 because S(v)(x) = x+1 and I(v)(x) = x are both classical solutions of

equation (3.1.1). But z is not an H-continuous function and thus it is not an H-continuous

viscosity solution of the equation (3.1.1). Hence, the requirement that a viscosity solution

is Hausdorff continuous function has a direct interpretation which we find clearer than

the requirements related to some other concepts of discontinuous viscosity solutions.
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3.3 The Envelope Viscosity Solutions and Hausdorff

Continuous Viscosity Solutions

Recognizing that the concept of viscosity solution given in Definition 1.3.3 is rather weak,

the authors of [16] introduce the concept of envelope viscosity solution. The concept

is defined in [16] for the equation (1.1.1) with Dirichlet boundary conditions. In order

to keep the exposition as general as possible we give the definition without explicitly

involving the boundary condition.

Definition 3.3.2 A function u ∈ A(Ω) is called envelope viscosity solution of the

Hamilton-Jacobi equation (1.1.1) if there exists a nonempty set Z1(u) of viscosity sub-

solutions of (1.1.1) and a nonempty set Z2(u) of viscosity supersolutions of (1.1.1) such

that

u(x) = sup
f∈Z1(u)

f(x) = inf
f∈Z2(u)

f(x), x ∈ Ω.

Remark 3.3.1 Let u ∈ A(Ω) be an envelope viscosity solution of (1.1.1). Then u is

also a viscosity solution of (1.1.1). Indeed, observe that S(u) is a viscosity subsolution of

(1.1.1) by Theorem 1.3.1(a) and I(u) is a viscosity supersolution of (1.1.1) by Theorem

1.3.1(b). Therefore, u is a viscosity solution of (1.1.1).

Considering the concept from geometrical point of view, one can expect that by ’squeezing’

the envelope viscosity solution u between a set of viscosity subsolutions and a set of

viscosity supersolutions the gap between I(u) and S(u) would be small. But under some

strong condition on u, namely,

I(S(u)) = I(u), S(I(u)) = S(u)

the Hausdorff distance between I(u) and S(u) is zero. However, in general this is not the

case. The following example shows that the concept of envelope viscosity solution does

not address the problem of the distance between I(u) and S(u). Hence one can have an

envelope viscosity solution of little practical meaning similar to the viscosity solution in

Example 3.1.1.
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Example 3.3.1 Consider the following equation on Ω = (0, 1)

−u(x)(ux(x))2 = 0, x ∈ Ω. (3.3.1)

For every α ∈ Ω we define the functions

φα(x) =

{
1 , x = α

0 , x ∈ Ω \ {α}

and

ψα(x) =

{
0 , x = α

1 , x ∈ Ω \ {α}.

We have

φα ∈ USC(Ω), ψα ∈ LSC(Ω), α ∈ Ω.

Furthermore, for every α ∈ (0, 1) the functions φα is a viscosity subsolution of (3.3.1)

while ψα is a viscosity supersolution of (3.3.1). Indeed, both functions satisfy the equation

(3.3.1) for all x ∈ Ω \ {α} and at x = α we have

−φα(α)p2 = −p2 ≤ 0 for all p ∈ D+φα(α) = (−∞, +∞),

−ψα(α)p2 = 0 ≥ 0 for all p ∈ D−ψα(α) = (−∞, +∞).

We will show that the function

u(x) =

{
1 , x ∈ Ω \Q
0 , x ∈ Q ∩ Ω

is an envelope viscosity solution of (3.3.1). Define

Z1 = {φα : α ∈ Ω \Q}
Z2 = {ψα : α ∈ Ω ∩Q}.

Then u satisfies

u(x) = sup
w∈Z1

w(x) = inf
w∈Z2

w(x)

which implies that it is an envelope viscosity solution of (3.3.1). Clearly neither u nor

F (u) is a Hausdorff continuous function. In fact we have F (u)(x) = [0, 1], x ∈ Ω. Thus,

u and F (u) are not H-continuous viscosity solutions of (3.3.1).
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The next interesting question is whether every H-continuous viscosity solution is an en-

velope viscosity solution. Since the concept of envelope viscosity solutions requires the

existence of sets of viscosity subsolutions and viscosity supersolutions, respectively, below

and above an envelope viscosity solution then an H-continuous viscosity solution is not in

general an envelope viscosity solution, e.g., when the Hausdorff continuous viscosity solu-

tions does not have any other viscosity subsolutions and viscosity supersolutions around

it. However in the essential case when the H-continuous viscosity solution is a supremum

of viscosity subsolutions or infimum of viscosity supersolutions it can be linked to an

envelope viscosity solution as stated in the next theorem.

Theorem 3.3.1 Let u = [u, u] be an H-continuous viscosity solution of (1.1.1) and let

Z1 = {w ∈ USC(Ω) : w − viscosity subsolution of (1.1.1), w ≤ u},
Z2 = {w ∈ LSC(Ω) : w − viscosity supersolution of (1.1.1), w ≥ u}.

(a) If Z1 6= ∅ and u(x) = sup
w∈Z1

w(x), then u is an envelope viscosity solution of (1.1.1).

(b) If Z2 6= ∅ and u(x) = inf
w∈Z2

w(x), then u is an envelope viscosity solution of (1.1.1).

Proof. (a) We choose the sets Z1(u) and Z2(u) required in Definition 3.2.1 as follows

Z1(u) = Z1, Z2(u) = {u}.

Then we have

u(x) = sup
w∈Z1(u)

w(x) = inf
w∈Z2(u)

w(x)

which implies that u is an envelope viscosity solution of (1.1.1).

The proof of (b) is done in a similar way. ¥

Let us note that if the conditions (a) and (b) in the above theorem are satisfied the both

u and u are envelope viscosity solutions and in this case it makes even more sense to

consider instead the H-continuous function u = [u, u]. More precisely, if conditions (a)

and (b) are satisfied, an envelope viscosity solution can be considered as a particular case

of Hausdorff continuous viscosity solution.
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3.4 Existence of Hausdorff Continuous Viscosity So-

lutions

One of the primary virtues of the theory of viscosity solutions is that it provides very

general existence and uniqueness theorems, [37]. In this section we will formulate and

prove existence theorems for H-continuous viscosity solutions in a similar form to Theorem

1.3.1 and Theorem 1.3.2 given in Chapter 1.

Theorem 3.4.1 (Properties of H-continuous viscosity solutions)

(a) Let U ⊂ H(Ω) be a set of H-continuous viscosity subsolutions of the Hamilton-Jacobi

equation (1.1.1) which is bounded from above. Then

u = supU

is an H-continuous viscosity subsolution of (1.1.1).

(b) Let Z ⊂ H(Ω) be a set of H-continuous viscosity supersolutions of the Hamilton-Jacobi

equation (1.1.1) which is bounded from below. Then

v = inf Z

is an H-continuous viscosity supersolution of (1.1.1).

(Both the supremum and the infimum are in the sense of the partial order (2.2.3) on

H(Ω)).

Proof . We will prove (a). The proof of (b) can be done in a similar way. Since u is

bounded from above, according to Theorem 2.4.1 (a), u = supU ∈ H(Ω) and by

Theorem 2.4.2 (a), we have

u = [I(S(ψ), S(ψ)],

where

ψ(x) := sup{w(x) : w = [w,w] ∈ U}, x ∈ Ω.

Using that S(w) = w is a viscosity subsolution of (1.1.1) for all w = [w,w] ∈ U , it follows

from Theorem 1.3.1 (a), that u = S(ψ) is a viscosity subsolution of (1.1.1).

By Definition 3.2.1, the function u is Hausdorff continuous viscosity subsolution of (1.1.1).

¥
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Since the partially ordered set H(Ω) is Dedekind order complete, it is an appropriate

medium for such an application of Perron’s method.

The technical lemma, sometimes called the Bump Lemma [16], showing that in some cases

the supremum of viscosity subsolution or the infimum of viscosity supersolution are indeed

viscosity solutions, can be formulated for Hausdorff continuous functions as follows.

Lemma 3.4.1 Let u = [u, u] ∈ H(Ω) be such that u is a viscosity subsolution of (1.1.1)

and u fails to be a viscosity supersolution of (1.1.1) at some point y ∈ Ω. Then, for any

δ > 0 there exists τ > 0 such that, for all r < τ, there exists a function w = [w,w] ∈ H(Ω)

with the following properties:

(i) w is a viscosity subsolution of (1.1.1),

(ii) w ≥ u in Ω,

(iii) w 6= u,

(iv) w(x) = u(x), x ∈ Ω\Br(y),

(v) w(x) ≤ max{u(x), u(y) + δ}, x ∈ Br(y).

Proof. Since u fails to be a viscosity supersolution of (1.1.1) at y ∈ Ω, there exists

ϕ ∈ C1(Ω) such that

h := H(y, u(y), Dϕ(y)) < 0, u(y) = ϕ(y), ϕ(x) ≤ u(x), x ∈ Br(y) and some r > 0.

For ε > 0, consider the function v ∈ C1(Ω) defined by

v(x) := ϕ(x) + ε− |x− y|2.

We can choose r small enough to have, in addition,

v(x) ≤ u(y) +
δ

2
+ ε, x ∈ Br(y). (3.4.1)

Note that (v − u)(x) ≤ (v − ϕ)(x) = −|x− y|2 + ε ≤ 0, |x− y| ≥ √
ε, and thus

v(x) ≤ u(x), for |x− y| ≥ r

2
(3.4.2)

if we choose ε < r2

4
. Moreover, if xn → y is such that u(xn) → u(y), we have

limn→∞(v − u)(xn) = ε > 0, so, for all r > 0,

sup
Br(y)

(v − u) > 0. (3.4.3)
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Let us prove that v is a classical viscosity subsolution of equation H(x, v, Dv) = 0 in

Br(y), i.e., H(x, v(x), Dv(x)) ≤ 0 , x ∈ Br(y), for sufficiently small ε, r > 0. For this

purpose, a local uniform continuity argument shows that

|v(x)− v(y)| = |ϕ(x)− |x− y|2 − ϕ(y)| ≤ ω1(r) + r2,

|Dv(x)−Dv(y)| = |Dϕ(x)− 2|x− y| −Dϕ(y)| ≤ ω2(r) + 2r

for any x ∈ Br(y), where ωi(i = 1, 2), are the moduli of continuity of ϕ and Dϕ.

We recall that if ϕ ∈ C(Ω), then the function ω : [0, +∞) → [0, +∞), defined by,

ω(δ) = sup{|ϕ(s)−ϕ(t)|, s, t ∈ Ω, |s−t| ≤ δ} for δ ≥ 0, is called a modulus of continuity of

ϕ. Now, H(x, v(x), Dv(x)) = h+H (x, v(x), Dϕ(x)− 2(x− y))−H(x, v(x), Dϕ(x)). If ω

is a modulus of continuity for H, then H(x, v(x), Dv(x)) ≤ h+ω(r, ω1(r)+r2, ω2(r)+2r),

for all x ∈ Br(y). Since h < 0, the proceeding proves that H(x, v(x), Dv(x)) ≤ 0, x ∈
Br(y).

Now we define the interval valued function

w(x) =

{
max(u(x), v(x)), x ∈ Br(y)

u(x) , x ∈ Ω\Br(y).

It is clear that w ∈ H(Ω) since u and v are Hausdorff continuous functions in Ω and we

can apply Theorem 2.4.1.

We claim that w has the desired properties. In fact, w(x) = u(x) for |x − y| ≥ r/2 by

(3.4.2) and w(x) ≥ u(x), x ∈ Ω. Then (iv) holds and w is an H-continuous viscosity

subsolution of (1.1.1), because it coincides with u for |x − y| > r
2
, while for x ∈ Br(y)

we can apply Theorem 3.4.1. Moreover, (iii) follows from (3.4.3), and (v) follows from

(3.4.1) if we choose ε ≤ δ
2
. ¥

Note that the proof of lemma 3.4.1 is similar to the proof of the Bump lemma

in [16, Lemma V.2.12] for real function with some obvious changes due to interval char-

acter of the functions u and w.

Remark 3.4.1 There is an analogue of Lemma 3.4.1 for the case when I(u) is a viscosity

supersolution and S(u) fails to be a viscosity subsolution of (1.1.1).

For a consequence of Theorem 3.4.1 and Lemma 3.4.1, we obtain the following very general

existence theorem for equation (1.1.1).
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Theorem 3.4.2 (Existence of H-continuous viscosity solutions by Perron’s method)

Assume that there exist Hausdorff continuous functions u1 = [u1, u1] and u2 = [u2, u2]

such that u1 is a Hausdorff continuous viscosity subsolution of the Hamilton-Jacobi equa-

tion (1.1.1), u2 is a Hausdorff continuous viscosity supersolution of (1.1.1) and u1 ≤ u2.

Then there exists a Hausdorff continuous viscosity solution u of (1.1.1) satisfying the

inequalities

u1 ≤ u ≤ u2.

Proof . Consider the set

F ={w = [w,w] ∈ H(Ω) : w ≤ u2, w is a viscosity subsolution of (1.1.1)}.

Clearly the set F is not empty since u1 ∈ F . Let u = supF , where the supremum is

taken in the set H(Ω), i.e., u ∈ H(Ω). We will show that u is the required Hausdorff

continuous viscosity solution of (1.1.1). Obviously, we have the inequalities

u1 ≤ u ≤ u2. (3.4.4)

Furthermore, according to Theorem 2.4.1 (a) and Theorem 2.4.2 (a), u is given by

u = supF = [I(S(ψ)), S(ψ)] ∈ H(Ω),

where

ψ(x) := sup{w(x) : w = [w, w] ∈ F}, x ∈ Ω.

Using that F is the set of H-continuous viscosity subsolutions of (1.1.1) and F is bounded

from above it follows by Theorem 3.4.1(a) that u is an H-continuous viscosity subsolution

of (1.1.1). It remains to show that u is H-continuous viscosity supersolution of (1.1.1),

i.e., u = I(S(ψ))) is a viscosity supersolution of (1.1.1). To this end, let us fix y ∈ Ω.

Consider first the case when

u(y) = u2(y).

Let ϕ ∈ C1(Ω) be such that u− ϕ has a local minimum at y and u(y) = ϕ(y). Then, for

x in a neighborhood of y, we have

(u2 − ϕ)(x) ≥ (u− ϕ)(x) ≥ (u− ϕ)(y) = (u2 − ϕ)(y).

Therefore, the function u2 − ϕ also has a local minimum at y.
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Using that u2 is a viscosity supersolution of (1.1.1), we obtain

H(y, u2(y), Dϕ(y)) ≥ 0.

Since u(y) = u2(y), the above inequality shows that the function u satisfies at the point

y the conditions of supersolutions as stated in Definition 1.3.1. Consider now the case

when u(y) 6= u2(y). In view of (3.4.4), the only other possible case is

u(y) < u2(y).

In this situation, there exists δ > 0 such that

u(y) + δ ≤ u2(y)− δ. (3.4.5)

Assume that u fails to be a supersolution of (1.1.1) at the point y. Then, according to

Lemma 3.4.1, there exists an H-continuous function w = [w,w] with the properties (i)-(v).

Moreover, since u2 is lower semicontinuous, we can choose r > 0 small enough such that

u2(y)− δ ≤ u2(x), x ∈ Br(y). (3.4.6)

Using (3.4.5) and (3.4.6), we obtain

u(y) + δ ≤ u2(y)− δ ≤ u2(x), x ∈ Br(y).

Hence, from property (v) of Lemma 3.4.1, for x ∈ Br(y), we have

w(x) ≤ max{u(x), u(y) + δ} ≤ u2(x). (3.4.7)

Due to property (iv) of Lemma 3.4.1, the inequality (3.4.7) can be extended to all x ∈ Ω

and we have

w ≤ u2. (3.4.8)

Using Theorem 2.3.3 (b) and the monotonicity of a graph completion function F , see

(2.2.12), the inequality (3.4.8) can be transferred over to the Hausdorff continuous func-

tions w and u2 as follows

w = F (w) ≤ F (u2) = u2.

Then

w ≤ u2.

This implies that w ∈ F . Then u = supF ≥ w which contradicts conditions (ii) and

(iii) in Lemma 3.4.1. The obtain contradiction shows that u is a viscosity supersolution

of (1.1.1). Therefore u is Hausdorff continuous viscosity solution of (1.1.1). ¥
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3.5 Uniqueness of H-Continuous Viscosity Solution

As in the traditional theory of viscosity solutions, uniqueness results can be proved under

the assumption that a comparison principle is satisfied. Here we formulate the com-

parison principle between H-continuous viscosity subsolutions and H-continuous viscosity

supersolutions of Hamilton-Jacobi equations.

Definition 3.5.1 We say that the Dirichlet problem (1.1.1)-(1.1.2) satisfies the compar-

ison principle if for any u ∈ H(Ω) and v ∈ H(Ω) which are bounded and, respectively,

H-continuous viscosity subsolution and supersolution of (1.1.1) and u ≤ v on ∂Ω, we have

u ≤ v in Ω.

The following theorem of uniqueness of solution shows that if H-continuous viscosity

subsolution and H-continuous viscosity supersolution of (1.1.1) are equal on the boundary

∂Ω and g given in (1.1.2) is assumed to be H-continuous function on Ω, then there exists

a unique an H-continuous solution of (1.1.1) satisfying (1.1.2).

Theorem 3.5.1 Assume that there exist Hausdorff continuous viscosity subsolution ϕ

and Hausdorff continuous viscosity supersolution ψ of (1.1.1) on Ω and assume that the

definition of both functions is extended on ∂Ω in such a way that the obtained functions

are H-continuous on Ω. Suppose that (1.1.1) satisfies the comparison principle and that

ϕ(x) = ψ(x) = g(x), x ∈ ∂Ω, (3.5.1)

where the function g may assume interval values. Then, there exists a unique Hausdorff

continuous viscosity solution u of (1.1.1) such that

u(x) = g(x), x ∈ ∂Ω.

Proof. We extend ϕ and ψ by setting ϕ = ψ = g on ∂Ω. We can apply Theorem 3.4.2

to get an H-continuous viscosity solution u of (1.1.1) such that ϕ ≤ u ≤ ψ in Ω.

By monotonicity of a graph completion F, see (2.2.12) , we have

F (ϕ) ≤ F (u) ≤ F (ψ) in Ω. (3.5.2)

By Corollary 2.4.1, we have that all functions F (ϕ), F (u), F (ψ) belong to H(Ω). There-

fore, by property (2.3.8) in Theorem 2.3.7, the inequalities in (3.5.2) imply that

F (ϕ) ≤ F (u) ≤ F (ψ) on Ω. By the virtue of Theorem 2.3.3, we have ϕ ≤ u ≤ ψ on Ω.

In particular, ϕ ≤ u ≤ ψ on ∂Ω. Since (3.5.1) holds, we have g(x) = u(x), x ∈ ∂Ω.

Assume there exist two H-continuous viscosity solutions u1, u2 of (1.1.1).
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Since u1 is an H-continuous viscosity subsolution and u2 is an H-continuous viscosity

supersolution of (1.1.1), and u1(x) = u2(x) = g(x), x ∈ ∂Ω, by comparison principle, we

have

u1 ≤ u2 in Ω. (3.5.3)

Since u2 is an H-continuous viscosity subsolution and u1 is an H-continuous supersolution,

and u2(x) = u1(x) = g(x), x ∈ ∂Ω, by comparison principle, we have

u2 ≤ u1 in Ω. (3.5.4)

Combining (3.5.3) and (3.5.4), we obtain u1 = u2 in Ω. ¥

The comparison principle, given by Definition 3.5.1, is stronger than the comparison

principle used in connection with upper semicontinuous viscosity subsolutions and lower

semicontinuous viscosity supersolutions because it gives the existence of solutions under

conditions as same as for existence of discontinuous solutions.

The following theorem gives sufficient conditions for a weaker form of the comparison

principle given by Definition 3.5.1.

Theorem 3.5.2 Let Ω be a bounded open subset of Rn, H ∈ C(Ω×R×Rn) be such that

H(x, r, p) ≤ H(x, s, p) whenever r ≤ s and the following two assumptions hold:

∃ γ > 0 : γ(r − s) ≤ H(x, r, p)−H(x, s, p),∀r ≥ s, (x, p) ∈ Ω× Rn (3.5.5)

and there exists ω : [0, +∞] → [0, +∞] such that ω(0+) = 0 and

H(y, r, α(x− y))−H(x, r, α(x− y)) ≤ ω(α|x− y|2 + |x− y|), (3.5.6)

whenever x, y ∈ Ω, r ∈ R, α > 0.

Let u = [u, u] ∈ H(Ω) and v = [v, v] ∈ H(Ω) be respectively, H-continuous viscosity

subsolution and H-continuous viscosity supersolution of (1.1.1) in Ω and

u ≤ v on ∂Ω.

Then u ≤ v in Ω.
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For the proof of Theorem 3.5.2, we need the following lemma given in [37].

Lemma 3.5.1 Let X be a subset of Rn, u ∈ USC(X), v ∈ LSC(X) and

Mα = sup
X×X

(
u(x)− v(y)− α

2
|x− y|2

)

for α > 0. Let Mα < ∞ for large α and (xα, yα) be such that

lim
α→∞

(
Mα − (u(xα)− v(yα)− α

2
|xα − yα|2)

)
= 0.

Then the following hold:

lim
α→∞

α|xα − yα|2 = 0 (3.5.7)

and

lim
α→∞

Mα = u(z)− v(z) = sup
x∈X

(u(x)− v(x)) (3.5.8)

whenever z ∈ X is a limit point of xα as α →∞.

Proof of Theorem 3.5.2. Define for α > 0, an upper semicontinuous function φα on a

set Ω×Ω by setting φα(x, y) = u(x)−u(y)− α
2
|x−y|2 and let (xα, yα) be a maximum point

for φα on Ω×Ω (the maximum is achieved in view of upper semicontinuity and compact-

ness). Then Mα = sup
Ω×Ω

φα(x, y) =
(
u(xα)− v(yα)− α

2
|xα − yα|2

)
is finite. It follows from

properties (3.5.7) and (3.5.8) of Lemma 3.5.1 and u ≤ v on ∂Ω that (xα, yα) ∈ Ω×Ω for

α large.

Since we seek to prove that u ≤ v in Ω, we assume to the contrary that u(z) > v(z) for

some z ∈ Ω, it follows that

Mα ≥ u(z)− v(z) = δ > 0 for α > 0. (3.5.9)

Writing (x′, y′) in place of (xα, yα) for simplicity and set ϕ1(x) = v(y′)− α
2
|x− y′|2,

ϕ2(y) = u(x′)− α
2
|x′−y|2. It is clear that ϕi ∈ C2(Ω)(i = 1, 2). Since (x′, y′) is a maximum

point of φα, then it is clear that x′ is a local maximum point for u− ϕ2, whereas, y′ is a

local maximum point for u−ϕ1. Moreover, Dϕ1(x
′) = α(x′−y′) = Dϕ2(y

′). Then we can

exploit the fact that u is an H-continuous viscosity subsolution of (1.1.1) and we obtain

H(x′, u(x′), α(x′ − y′)) ≤ 0 (3.5.10)

Similar, since u is an H-continuous viscosity supersolution of (1.1.1), we obtain

H(x′, v(x′), α(x′ − y′)) ≥ 0. (3.5.11)
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Combining (3.5.10) and (3.5.11) we obtain

H(x′, u(x′), α(x′ − y′)) ≤ 0 ≤ H(x′, v(x′), α(x′ − y′)). (3.5.12)

The next step is to use the assumption (3.5.5) and (3.5.6) and the condition (3.5.12) to

estimate Mα and contradict (3.5.9) for large α.

Using the definition of δ, see (3.5.9), and the fact that (x′, y′) is a maximum point for φα,

we have

γδ ≤ γ(u(z)− v(z)) ≤ γ(u(x′)− v(y′)). (3.5.13)

Proceeding, we deduce from (3.5.13), (3.5.5) and (3.5.6) that

0 ≤ γδ ≤ γ(u(x′)− v(y′))

≤ H(x′, u(x′), α(x′ − y′))−H(x′, v(x′), α(x′ − y′))

= H(x′, u(x′), α(x′ − y′))−H(y′, v(x′), α(x′ − y′))

+ H(y′, v(x′), α(x′ − y′))−H(x′, v(x′), α(x′ − y′))

≤ ω(α|x′ − y′|2 + |x′ − y′|).

Here we used (3.5.12) to estimate the first term on the right by 0 and (3.5.6) on the second

term.

Since ω(α|x′ − y′|2 + |x′ − y′|) → 0 as α → ∞ by (3.5.7), we have a contradiction with

(3.5.9). ¥
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3.6 Extending the Hamiltonian Operator over the

Set H(Ω)

In this section, we consider the equation (1.1.1) in the following more general form

H(x, u(x), Du(x)) = f(x), x ∈ Ω, (3.6.1)

where f ∈ C0(Ω). We call the mapping H : C1(Ω) → C0(Ω) given by

H(u)(x) = H(x, u(x), Du(x)), x ∈ Ω

a Hamiltonian operator. Then, equation (3.6.1) can be written as

H(u) = f. (3.6.2)

It is well known that the mappingH is in general not surjective. This means of course, that

there exists f ∈ C0(Ω) in (3.6.2) such that the set H−1(f) = {u ∈ C1(Ω) : H(u) = f} = ∅
which implies that (3.6.1) does not have classical solution, as illustrated by a variety of

well known examples, some of them rather simple ones, see [109, Chapter 6]. Clearly, the

function u is a classical solution of (3.6.1) iff u ∈ H−1(f). Hence, the need for generalized

solutions like the viscosity solutions considered here.

Let us note that equation (3.6.1) does not really generalize equation (1.1.1). Since function

f can always be moved to the left hand side reducing the equation to the form (1.1.1).

The usual way of defining generalized solutions is by extending the operator H to a larger

domain. This extension can be done in different ways: functional analytic method [46],

algebraic method [116], order completion method [109].

Here, we extend the operator H to the set of Hausdorff continuous functions using the

viscosity approach. Our aim is to express the H-continuous viscosity solutions of (3.6.1)

as solutions to an operator equation involving the extended operator in the same way

as the classical solutions of (3.6.1) are solutions of (3.6.2). We use subdifferentials and

superdifferentials.

For u = [u, u] ∈ H(Ω), consider the sets

G+(u) = {x ∈ Ω : D+u(x) 6= ∅} and G−(u) = {x ∈ Ω : D−u(x) 6= ∅}.

For u ∈ C(Ω), it was proved in [16] that the sets G+(u) and G−(u) are each dense in Ω.

This result can be extended to Hausdorff continuous functions using a similar argument

and is given in the following lemma.
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Lemma 3.6.1 Let u = [u, u] ∈ H(Ω). The sets G+(u) and G−(u) are each dense in Ω

Proof. Let y ∈ Ω and let δ > 0 be such that Bδ(y) = {z ∈ Rn : |z−y| ≤ δ} ⊂ Ω. Consider

the smooth function ϕε(x) = 1
2ε
|x − y|2, ε > 0. Since u − ϕε is an upper semicontinuous

function on Ω, it attains its maximum over B = Bδ(y) at some point xε. Then we have

(u− ϕε)(xε) ≥ (u− ϕε)(y). (3.6.3)

From the inequality (3.6.3), for all ε > 0, we get

|xε − y|2 ≤ 2ε(u(xε)− u(y)) ≤ 4ε sup
x∈B

|u(x)|.

Thus xε is not on the boundary of B for ε small enough, and by Lemma 1.3.1 (i),

Dϕε(xε) = 1
2
(xε − y) belong to D+(u(xε)). This proves that G+(u) is dense in Ω, and

similar argument shows that G−(u) is dense in Ω too. ¥

Now, for u = [u, u] ∈ H(Ω), define the following two functions

ψ(x) = sup
p∈D+u(x)

H(x, u(x), p), x ∈ G+(u), (3.6.4)

ϕ(x) = inf
p∈D−u(x)

H(x, u(x), p), x ∈ G−(u). (3.6.5)

For the extension of the operator H, we need the following operators:

T+ : H(Ω) → USC(Ω), T− : H(Ω) → LSC(Ω) defined by

T+u(x) = S(G+(u), Ω, ψ)(x), x ∈ Ω, (3.6.6)

T−u(x) = I(G−(u), Ω, ϕ)(x), x ∈ Ω. (3.6.7)

Since G+(u) and G−(u) are dense in Ω for every u ∈ H(Ω) , the operators T+ and

T−, defined by (3.6.6) and (3.6.7), respectively, are well defined on H(Ω) and by (2.5.2)

T+u ∈ USC(Ω) and T−u ∈ LSC(Ω). The following theorem gives a new characterization

of H-continuous viscosity subsolution and H-continuous viscosity supersolution of (3.6.1)

in terms of the operators T+ and T−.

Theorem 3.6.1 Let u = [u, u] ∈ H(Ω). Then

(a) u is an H-continuous viscosity subsolution of (3.6.1) if and only if

T+u ≤ f in Ω; (3.6.8)

(b) u is an H-continuous viscosity supersolution of (3.6.1) if and only if

T−u ≥ f in Ω. (3.6.9)
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Proof. We will prove only point (a). Point (b) is proved in a similar way. By Definition

3.2.1, u is an H-continuous viscosity subsolution of (3.6.1) if and only if

H(x, u(x), p) ≤ f(x), p ∈ D+u(x), x ∈ Ω. (3.6.10)

In view of definition of ψ, see (3.6.4), the inequality (3.6.10) is equivalent to

ψ(x) ≤ f(x), x ∈ G+(u). (3.6.11)

Since f ∈ C0(Ω) ⊂ USC(Ω), using the minimality property of upper semicontinuous

envelopes, see (2.5.9), the inequality (3.6.11) implies that

S(G+(u), Ω, ψ)(x) ≤ f(x), x ∈ Ω. (3.6.12)

To complete the proof, we show that (3.6.12) implies (3.6.11). Indeed, since S(G+(u), Ω, ψ)

is an upper bound of ψ on G+(u), we have

ψ(x) ≤ S(G+(u), Ω, ψ)(x) ≤ f(x), x ∈ G+(u).

¥

As a consequence of Theorem 3.6.1, we obtain the following.

Theorem 3.6.2 Let u = [u, u] ∈ H(Ω). Then there exists f ∈ C0(Ω) such that u is an

H-continuous viscosity solution of (3.6.1) if and only if

T+u ≤ T−u in Ω. (3.6.13)

Proof. Let there exists f ∈ C0(Ω) such that u is an H-continuous viscosity solution of

(3.6.1). Combining (3.6.8) and (3.6.9) we have the inequality (3.6.13). In order to prove

the inverse implication, we use a well known Theorem of Hahn [130] which states that if

a lower semicontinuous function majorates an upper semicontinuous function then there

exists a continuous function between them. Since T+u ∈ USC(Ω), T−u ∈ LSC(Ω) and

T+(u) ≤ T−(u) in Ω, then there exists f ∈ C0(Ω) such that T+(u) ≤ f ≤ T−(u) in Ω.

Therefore, u is an H-continuous viscosity solution of (3.6.1). ¥

There is an interesting question here. Is the function f in Theorem 3.6.2 unique? If f

is not unique, then this means that two functions can be viscosity solutions of (3.6.1)

for two different right hand terms and from practical consideration this is an undesirable

situation. This issue has not been addressed in the existence theory of viscosity solutions,

since the Hamilton-Jacobi equation is not considered in the operator form (3.6.2).
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In view of Theorem 3.6.2, consider the operator
∧
H : H(Ω) → P(C0(Ω)), defined by

∧
H(u) = {f ∈ C0(Ω) : T+u(x) ≤ f(x) ≤ T−u(x), x ∈ Ω}, (3.6.14)

where P(C0(Ω)) is the set of all subsets of C0(Ω). We can reformulate Theorem 3.6.2 as

follows.

Theorem 3.6.3 A function u ∈ H(Ω) is an H-continuous viscosity solution of (3.6.1) if

and only if

f ∈
∧
H(u).

Then, the earlier question can be equivalently formulated as:

Can the set
∧
H(u) contain more than one element?

In general, this is an open problem. However, when Ω is an open interval of R we obtained

an answer, namely that
∧
H(u) contains one element as shown by the following theorem.

Theorem 3.6.4 Let Ω be a nonvoid open interval of R and u = [u, u] ∈ H(Ω). Then

T−u(x) ≤ T+u(x), x ∈ Ω. (3.6.15)

The following three lemmas will be instrument in the proof of Theorem 3.6.4.

Lemma 3.6.2 Let Ω be a nonvoid open interval of R and u = [u, u] ∈ H(Ω). If there

exists a dense subset G0 of Ω such that G0 ⊆ G+(u)
⋂

G−(u), then (3.6.15) holds.

Proof. Since G0 ⊂ G+(u), by the monotonicity of the generalized upper Baire operator

about inclusion with respect to the dense subset of Ω, see (2.5.7), and property (2.5.1),

we have

T+u = S(G+(u), Ω, ψ) ≥ S(G0, Ω, ψ) ≥ I(G0, Ω, ψ). (3.6.16)

In view of the fact that ψ ≥ ϕ, x ∈ G0, by monotonicity of I(G0, Ω, .), see (2.5.3), the

inequality (3.6.16) implies that

T+u ≥ I(G0, Ω, ϕ). (3.6.17)

Since G0 ⊂ G−(u), by monotonicity of generalized lower Baire operator about inclusion

to respect to the dense subset of Ω, see (2.5.6), from inequality (3.6.17) we have

T+u ≥ I(G0, Ω, ϕ) ≥ I(G−(u), Ω, ϕ) = T−u. (3.6.18)
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The property (3.6.18) implies that (3.6.15) holds. ¥

Lemma 3.6.3 Let u = [u, u] ∈ H(Ω), Ω = (a, b) ⊂ R. If u has no local maximum at any

point of Ω and u has no local minimum at any point of Ω, then u is monotone on Ω, i.e,

the function u and u are increasing or decreasing on Ω.

Proof. Let D = {x ∈ Ω : u(x) = u(x) = u(x)}. It was shown in [132] that u is continuous

on D and that D is dense in Ω. We will show that the function u is monotone on D.

Indeed, if u(x) = u(y), x, y ∈ D, then u is a constant function on D.

Let there exists p, q ∈ D, p < q such that u(p) 6= u(q). Then either u(p) > u(q) or

u(p) < u(q).

Suppose that u(p) > u(q). Since u has no local maximum on (a, b), we have

sup
x∈[p,q]∩D

u(x) ≤ max
x∈[p,q]∩D

u(x) = u(p) = u(p).

Therefore, the maximum of u on [p, q] ∩D exists and

max
x∈[p,q]∩D

u(x) = u(x) = u(p).

Similarly, the maximum of u on [p, q] ∩D exists and

min
x∈[p,q]∩D

u(x) = u(x) = u(q).

Next we prove that u is strictly decreasing function on D ∩ (a, b). For that, it suffices to

show that u is strictly decreasing on (a, p) ∩D, on [p, q] ∩D, and on (q, b) ∩D.

Let x, y ∈ (a, p) ∩D such that x < y. If max(a,p)∩D u(z) = u(p) = u(p), then p ∈ (x, q) is

a local maximum of u and this contradicts that u has no local maximum on (a,b). Then

max(a,p)∩D u(z) = u(x). Since y ∈ (x, p ∩D), we have u(x) > u(y) and thus u is strictly

decreasing on (a, p) ∩D.

Now, let x, y ∈ [p, q] ∩D such that x < y. Then u(x) > u(y), since if u(x) < u(y), then

x ∈ (p, y) is a local maximum of u and this contradicts the fact that u has a no local

minimum on (a, b). Thus u is a decreasing function on [p, q] ∩D.

Finally, let x, y ∈ (q, b) ∩D such that x < y. Then u(q) > u(p), otherwise if u(q) < u(x),

then q ∈ (p, x) is a local minimum of u and this contradicts that u has no local minimum

on (a,b). If u(x) < u(y), then x is a local minimum for u and this is a contradiction of

assumption. Then u(q) > u(x) > u(y) and u is a decreasing function on (q, b) ∩D.
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In summary, u is a decreasing function on D, i.e.,

∀x, y ∈ D, x < y ⇒ u(x) > u(y). (3.6.19)

By monotonicity of F (D, Ω, .), see (2.5.5), and the fact that u ∈ H(Ω), (3.6.19) implies

that for x, y ∈ Ω such that x < y, we have u(x) = F (D, Ω, u)(x) > F (D, Ω, u)(y) = u(y)

and thus u is a decreasing function on Ω.

Similarly, if u(p) < u(q), then the function u is increasing on D and by the monotonicity

of F (D, Ω, .), the function u is increasing on (a, b). ¥

Lemma 3.6.4 Let u = [u, u] ∈ H(V ), where V is an open subset of R. If u is not

monotone on any interval (α, β) ⊂ V, then the sets

D1 = {x ∈ V : u has a local maximum at x}

and

D2 = {x ∈ V : u has a local minimum at x}

are dense in V.

Proof. We need to show that for any interval (a, b) ⊂ V, we have (a, b) ∩ D1 6= ∅ and

(a, b) ∩D2 6= ∅.

Let (a, b) ⊂ V . It is given that u is not monotone on (a, b). Therefore, by Lemma 3.6.3,

there exists either local maximum of u at any interior point of (a, b). Let u has a local

maximum at c ∈ (a, b). We have c ∈ (a, b)∩D1. Therefore (a, b)∩D1 6= ∅. The case when

u has a local minimum on (a, b) is treated similarly.

Now consider intervals (a, c) and (c, b). Using the same argument in each one, either u has

a local maximum or u has a local minimum. If u has a local minimum, then D2∩(a, b) 6= ∅.
Let u has a local maximum at d ∈ (c, b). Without loss of generality, we can consider

u(c) ≤ u(d).

Since c is a local maximum of u, there exists δ > 0 such that

u(p) < u(c), x ∈ (c− δ, c + δ) ∩D,

where D = {x ∈ V : u(x) = u(x) = u(x)} which is dense in V , see [130]. There exists

p ∈ (c + δ
2
, c + δ) ∩D such that

u(p) < u(c), (3.6.20)
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otherwise u is a constant on (c + δ/2, c + δ) and this contradicts the fact that u is not

monotone on any interval of V . Now, there exists q ∈ (c− δ/2, c+ δ/2)∩D which implies

u(c) ≥ u(p) contradicting (3.6.20). Then we have

u(d) ≥ u(c) > u(q) > u(p). (3.6.21)

There exists r ∈ (p, b) ∩D such that u(r) > u(p), otherwise if u(r) ≤ u(p), r ∈ (p, b) ∩D,

then u(x) ≤ u(p), x ∈ (p, b) ∩D. In particular u(d) ≤ u(p) which contradicts (3.6.21).

Consider an interval [r, q]. We have

min
x∈[q,r]

u(x) ≤ u(p) < min{u(q), u(r)}.

Therefore, there exists s ∈ (q, r) such that u(s) = minx∈[q,r] u(x). Hence s ∈ D2 ∩ (a, b)

and this implies that D2 ∩ (a, b) 6= ∅. ¥

Proof of Theorem 3.6.3 Let u = [u, u] ∈ H(Ω). Consider W−the union of all intervals

of Ω, where the function u is monotone. Then by the theorem for differentiability of

monotone real functions [115], u and u are differentiable almost everywhere in W and

therefore u is differentiable on a dense subset W1 of W and u is differentiable on a dense

subset W2 of W , where W1,W2 are sets of full measure (i.e., their complements are null

sets). Let W0 = W1

⋂
W2. Then by Lemma 3.6.2, inequality (3.6.15) holds in W .

We have two cases: either the set W = Ω or W 6= Ω. If W = Ω, then the proof is

completed. Now suppose that W 6= Ω. Let V = Ω\W. It is clear that V is nonempty open

subset of Ω. Let D1 = {x ∈ V : u has a local maximum at x} and

D2 = {x ∈ V : u has a local minimum at x}. Since u is not monotone on any subinterval

of V , by Lemma 3.6.4, D1, D2 are each dense in V .

Suppose that y ∈ D1. Then 0 ∈ D+u(y). Hence D1 ⊆ G+(u) and we have

ψ(y) = sup
p∈D+u(y)

H(y, u(y), p) ≥ H(y, u(y), 0). (3.6.22)

Let D = {x ∈ Ω : u(x) = u(x) = u(x)}. It was shown in [132] that D is dense in Ω, hence

it is dense in V as well. Let limy→x u(y) = limy→x u(y) = u(x) and inequality (3.6.22)

implies that

T+u(x) = S(D1, V, ψ)(x)

≥ S(D1, V,H(., u(.), 0))(x)

= lim
y→x

H(y, u(y), 0)

= H(x, u(x), 0). (3.6.23)
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Similarly, we have ϕ(y) ≤ H(y, u(y), 0) for y ∈ D2 which implies

T+u(x) ≥ H(x, u(x), 0), x ∈ D ∩ V. (3.6.24)

Combining (3.6.23) and (3.6.24), we get

T−u(x) ≤ T+u(x), x ∈ D ∩ V.

Let x ∈ V . Then by the monotonicity of generalized lower Baire operator with respect

to the first argument and with respect to the last argument and by the inequality between

lower Baire and upper Baire operators, see (2.5.6) and (2.5.3), we have

T−u(x) = I(Ω, Ω, T−u)(x)

≤ I(D, Ω, T−u)(x)

≤ I(D, Ω, T+u)(x)

≤ S(D, Ω, T+u)(x)

= T+u(x), x ∈ V.

Hence (3.6.15) holds on V . Since (3.6.15) holds also in W , then it holds on Ω = V
⋃

W.

¥

We prove next that the operator
∧
H, given in (3.6.14), is an extension of a Hamiltonian

operator H defined by (3.6.2). Indeed, let u ∈ C1(Ω). It suffices to prove that
∧
H(u) =

H(u), since C1(Ω) ⊂ C(Ω) ⊂ H(Ω). By Lemma 1.2.1 (b), we have D+u(x) = D−u(x), x ∈
Ω and this implies that G+(u) = G−(u) = Ω and the functions ψ and ϕ defined by (3.6.4)

and (3.6.5), respectively, are identical. Therefore we have

T+u(x) = T−u(x), x ∈ Ω. (3.6.25)

The property (3.6.25) implies that

∧
H(u) = {f}, f ∈ C0(Ω). (3.6.26)

In view of (3.6.2), if we identify a singleton by an element, (3.6.26) implies that

∧
H(u) = f = H(u).

Hence
∧
H is an extension of H.
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Chapter 4

The Value Functions of Optimal

Control Problem as Envelope

Viscosity Solutions

By the classical Hamilton-Jacobi theory, if the value function (i.e. the optimal value

function associated with the optimal control problems as a function of the initial time and

state) is smooth, then it is a classical solution of the Hamilton-Jacobi-Bellman equation.

In general, however, the value function is nonsmooth and therefore can not satisfy the

Hamilton-Jacobi-Bellman equation in the classical sense. In the control theory literature,

several approaches have been developed to cope with this difficulty. Boltyanski [28] (see

also [52]) restricted the class of controls so that the value function becomes piecewise

smooth. Vinter and Lewis [133] characterized optimality through a sequence of continu-

ously differentiable subsolutions of the Hamilton-Jacobi equation. If the value function

is Lipschitz continuous, Havelock [66] and Clarke [32] characterized the value function as

a generalized solutions of the Hamilton-Jacobi equation involving the Clarke generalized

gradient.

Many of the works on viscosity solutions were devoted to application in the Dynamic

Programming approach to deterministic optimal control problems, e.g, [94], [45], [16],

[30]. According to Definition 1.2.1, introduced by Crandall and Lions, when the value

function is uniformly continuous, it is then a viscosity solution of the Hamilton-Jacobi-

Bellman equation [16].

62

 
 
 



According to Definition 1.3.3, introduced by Ishii, the value function is characterized as a

viscosity solution through its lower and upper semicontinuous envelopes. The reader can

also refer to [24], [53], and [67].

In this chapter, we study a particular optimal control problem, namely discounted mini-

mum time problem. Since an envelope viscosity solution is typically Hausdorff continuous

viscosity solution, we will show that the value functions associated with this problem are

the envelope viscosity solutions of associated Hamilton-Jacobi-Bellman equation.

4.1 Discounted Minimum Time Problem

Consider the optimal control problem with the state equation

{
y′(t) = f(y(t), a(t)), t > 0

y(0) = x ∈ Rn.
(4.1.1)

Here, the control a(.) ∈ A:={a : [0,∞) → A measurable}, where A is the set of admissible

controls, A ⊂ Rm is a given control space.

We now list some basic assumptions on our control system which are made for most of

the results of this chapter. We will assume:

A is compact metric space (4.1.2)

and the dynamics f : Rn × A → Rn satisfies

f(x, a) is continuous on Rn × A, (4.1.3)

|f(x, a)| ≤ L, ∀x ∈ Rn, a ∈ A, (4.1.4)

|f(x, a)− f(y, a)| ≤ C|x− y|, ∀ x, y ∈ Rn, a ∈ A. (4.1.5)

for some constants L > 0 and C > 0.

It is well known [134] from the theory of ordinary differential equations that assumptions

(4.1.3), (4.1.4), and (4.1.5), ensure that for each continuous control a and x ∈ Rn, the

state equation (4.1.1) has a unique solution yx(t, a), existing for t ≥ 0.
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Given

T ⊆ Rn nonempty closed target with compact boundary ∂T , (4.1.6)

as usual we denote by tx(a) the first time the trajectory associated with a ∈ A and

starting at x hits T , i.e., the exit time of the trajectory, that is

tx(a) =

{
min{s ≥ 0 : yx(s, a) ∈ T } if {s : yx(s, a) ∈ T } 6= ∅
+∞ otherwise.

If tx(a) < +∞, then yx(tx(a)) denotes the point where the trajectory reaches the target

T . We denote by R the set of all x such that tx(a) < +∞ for some control a and call R
the controllable set. Thus,

R = {x ∈ Rn : tx(a) < +∞}.

We are concerned with the following optimal control problem called discounted minimum

time problem:

inf
a∈A

{ ∫ tx(a)

0
e−sds if tx(a) < +∞

1 otherwise.
(4.1.7)

The value function associated with the problem (4.1.7) is defined by

u(x) =

{
1− e−T (x) if T (x) < +∞
1 if T (x) = +∞,

(4.1.8)

where the function T is the minimum time function and is defined by

T (x) = inf
a∈A

tx(a), x ∈ R. (4.1.9)

If f(x,A) = {f(x, a) : a ∈ A} is a convex set for all x ∈ Rn, then T is lower semicontinuous

function (see e.g. [67]), and so u is lower semicontinuous.

It is well known [16] that, the Hamilton-Jacobi-Bellman equation associated to value

function given in (4.1.8) is

u(x) + H(x,Du(x))− 1 = 0, x ∈ R, (4.1.10)

with

H(x, p) = sup
a(t)∈A

{−f(x, a).p)}. (4.1.11)
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The following theorem, given in [16], gives the dynamic programming property.

Theorem 4.1.1 For all s > 0 the function u define by (4.1.8) is

u(x) = inf
a(.)∈A

{
∫ s

0

e−t dt + u(yx(s, a))e−s}, if s ≤ T (x), x ∈ R. (4.1.12)

Remark 4.1.1 The above dynamic programming property implies that the function

s 7−→
∫ s

0

e−t dt + u(yx(s, a))e−s, s ∈ [0, tx(a)]

is nondecreasing.

4.2 The Value Function as an Envelope Viscosity

Solution

In this section we prove that the value function u, given in (4.1.12), is an envelope viscosity

solution of associated Hamilton-Jacobi-Bellman equation (4.1.10).

Our main results are stated in the next theorems.

Theorem 4.2.1 Assume that (4.1.2), (4.1.3), (4.1.4), (4.1.5), and (4.1.6) hold and the

set f(x,A) is convex for all x ∈ Rn. Assume that we have u : Ω → R is locally bounded

in open set Ω ⊂ Rn and that for all x there exists τ > 0 such that for 0 < t < τ, we have

u(x) = inf
a∈A

(∫ t

0

e−s ds + u(yx(t, a))e−t

)
. (4.2.1)

Then u is an envelope viscosity solution of the equation

u + H(x,Du)− 1 = 0 in Ω = Rn\T , (4.2.2)

with Hamiltonian H is defined in (4.1.11).

Before we prove Theorem 4.2.1, let us remark that the minimum time function does not

change if we add the null vector field to the system (4.1.1).

Theorem 4.2.2 [16] Let
s
A = A∪ {sa}, sa /∈ A,

s
f(x, a) = f(x, a) if a ∈ A,

s
f(x,

s
a) = 0 for

all x. Then the minimum time function
s
T associated with the system

{
y′ = f̃(y, α) + hβ, h > 0,

y(0) = x,
(4.2.3)

coincides with the minimum time function T given in (4.1.9) associated with (4.1.1).
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We approximate the system (4.1.1) with the controllable system (4.2.3). The control

functions are (α, β) ∈ Ã × B, where B := {β : [0,∞) → B1(0) measurable}, and the

trajectories are denoted by yh
x(., α, β).

The value functions are

Th(x) = infeA×B thx

and

uh(x) : = infeA×B
∫ thx

0

e−t dt = 1− e−Th(x), (4.2.4)

where thx = thx(α, β) is the entry time in T of the trajectory of (4.2.3).

For the proof of Theorem 4.2.1, we will also use a representation of a value function as

supremum of viscosity subsolutions as stated in the next theorem.

Theorem 4.2.3 [16] Under the assumptions (4.1.2), (4.1.3), (4.1.4), (4.1.5), and (4.1.6),

for all h > 0, a function uh, given in (4.2.4), is bounded continuous on Rn and it is

continuous viscosity solution of (4.2.2). Moreover, we have the representation formula

for the function u given in (4.2.1)

u(x) = sup
h>0

uh(x) for all x ∈ Rn. (4.2.5)

Proof of Theorem 4.2.1. Prove that u given by (4.2.1) is an envelope viscosity so-

lution of (4.2.2). Indeed, by Theorem 4.2.3, the function u is a supremum of viscosity

subsolutions of (4.2.2). It is enough to prove that u is viscosity supersolution of (4.2.2).

For that, we take ϕ ∈ C1(Ω) and z ∈ Ω such that u(z) = ϕ(z) and u(x) ≥ ϕ(x) for all x

in a neighborhood of z. We used that u is lower semicontinuous, i.e., u(x) = u(x), x ∈ Ω

We assume by contradiction ϕ(z) + H(z, Dϕ(z))− 1 < 0. Then for some ε > 0

ϕ(x) + H(x,Dϕ(x))− 1 ≤ −ε for all x ∈ Bε(z) ⊆ Ω.

By the assumption on f in (4.1.3)-(4.1.5) and A is compact, see (4.1.2), there is t ∈]0, τ [

such that yx(s, α) ∈ Bε(z) for all x ∈ Bε/2(z), 0 < s ≤ t, and all α ∈ A. We fix such a t

and set

δ := ε(1− e−t)/2. (4.2.6)

By the inequality ≥ in (4.2.1), for any x there is α ∈ A such that

u(x) > −δ +

∫ t

0

e−s ds + u(yx(t, s))e
−t.
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Since u ≥ ϕ and

d

ds

(
ϕ(yx(s))e

−s
)

= e−s (−ϕ(yx) + Dϕ(yx).y
′
x) ,

a.e., we get, for x ∈ Bε/2(z),

u(x)− ϕ(x) > −δ +

∫ t

0

e−s[1− ϕ(yx) + Dϕ(yx).f(yx, α)](s) ds

≥ −δ −
∫ t

0

e−s[−1 + ϕ(yx) + H(yx, Dϕ(yx)](s) ds

≥ −δ +

∫ t

0

εe−s ds = δ,

where in the last inequality, we used (4.2.6) and the choice of t. Then

u(z) = lim
x→z

inf u(x) ≥ ϕ(z) + δ.

Thus

u(z) ≥ ϕ(z) + δ.

This is a contradiction to the choice of ϕ because δ > 0. Thus, since u is supremum of

viscosity subsolutions, see (4.2.5) and it is a viscosity supersolution of (4.2.2), then u is

an envelope viscosity solution of (4.2.2). ¥

To illustrate the above results, we consider the following optimal control problem.

4.3 Zermelo Navigation Problem

One of the most classical problems in optimal control theory, namely, Zermelo navigation

problem, gives an example of discontinuous viscosity solution of an Hamilton-Jacobi-

Bellman equation.

Example 4.3.1 (Zermelo Navigation Problem) [16]

Consider a boat moving with velocity of constant magnitude, which we normalize to 1,

relative to a stream of constant velocity σ ≥ 1. We want to reach in minimum time a

given compact target T = {0}.
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We choose the axes in R2 so that the stream velocity is (σ, 0). Then, the dynamic system

is

{
y′1 = σ + a1,

y′2 = a2,

with a2
1 + a2

2 = 1, a1, a2 belong to R.

By an elementary geometrical argument, the reachable set R={x : T (x) < +∞} is

R = {x : x1 < 0 or x1 = x2 = 0} if σ = 1

R = {x : x1 ≤ 0, |x2| ≤ −x1(σ
2 − 1)−1/2} if σ > 1.

By standard control-theoretic methods we get

T (x) =





− |x|2
2x1

if σ = 1,

−x1σ−[x2
2(1−σ2)+x2

1]1/2

σ2−1
if σ > 1.

An explicit form of Hamiltonian is given by

H(x, Du) = sup
a∈A

{−f(x, a).Du}, (4.3.1)

where f(x, a) = (σ + a1, a2) and a = (a1, a2) ∈ A = {(y1, y2) : y2
1 + y2

2 = 1}.

By calculation, (4.3.1) becomes

H(x, Du) = |Du| − σux1 .

By Theorem 4.2.1, the value function

u(x) = 1− e−T (x)

is an envelope viscosity solution of the associated Hamilton-Jacobi-Bellman equation

u(x) + |Du| − σux1 − 1 = 0, x = (x1, x2) ∈ R2 \ T .
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Chapter 5

Nonstandard Finite Difference

Methods for Solutions of

Hamilton-Jacobi Equations and

Conservation Laws

5.1 Introduction

A major difficulty in the study of partial differential equations is, in general, the lack of

exact analytical solutions. One way to proceed is to use numerical integration techniques

to obtain useful information on the possible solution behaviors. A popular and important

method is one based on the use of finite differences to construct discrete models of the

differential equations of interest [54], [108].

A relevant question concerns stability. For problems with smooth solutions, usually a

linear stability analysis is adequate. For problems with discontinuous solutions or discon-

tinuous derivatives of solutions, a stronger measure of stability is usually required.

Almost all of the standard procedures yield schemes which are convergent with restriction

on the step size. One response to this situation was the initiation by Mickens [103] of

a research program for the investigation of new methods for constructing finite differ-

ence schemes which are convergent for any step size. These new procedures are called

nonstandard difference methods, [101, 102, 104].

69

 
 
 



Throughout this chapter, we shall be concerned with two initial value problems. The fist

problem is a Cauchy problem for Hamilton-Jacobi equation in the form

ut(x, t) + H(Du(x, t)) = 0, (x, t) ∈ Rn × (0, +∞) (5.1.1)

u(x, 0) = u0(x), x ∈ Rn. (5.1.2)

The second problem is a Cauchy problem for conservation laws in the form

vt(x, t) + (f(v(x, t))x = 0, (x, t) ∈ R× (0,∞) (5.1.3)

v(x, 0) = v0, x ∈ R, (5.1.4)

where f(v) is the nonlinear flux function.

Note that the equation (5.1.1) is closely related to equation (5.1.3), in fact in one dimension

space, they are equivalent if one takes v = ux. Thus the solution v to conservation laws

is the derivative of a solution u to a Hamilton-Jacobi equations. Conversely, the solution

u to a Hamilton-Jacobi equation is the integral of a solution v to conservation laws, see

[77].

As typical for partial differential equations, problem (5.1.1)-(5.1.2) or (5.1.3)-(5.1.4) can-

not be completely solved by analytic techniques. Consequently, numerical simulations

are of fundamental importance in gaining some useful insights on the solutions. More

precisely, it is crucial to design numerical methods, which replicate essential physical

properties of the solutions, see [103], [104].

The precise way in which the properties are preserved is contained in the following defi-

nition of qualitative stability [8].

Definition 5.1.1 Assume that the solution of (5.1.1)-(5.1.2) (resp. (5.1.3)-(5.1.4)) satis-

fies some property (P). A numerical method approximating (5.1.1)-(5.1.2) (resp. (5.1.3)-

(5.1.4)) is called qualitatively stable with respect to (P) or P-stable if the numerical solu-

tions for (5.1.1)-(5.1.2) (resp. (5.1.3)-(5.1.4)) satisfy property (P) for all values of the

involved step sizes.

It should be noted that standard finite difference schemes are generally not qualitatively

stable with respect to essential physical properties of solution of interested problem [96].
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The nonstandard finite difference methods introduced by R. E. Mickens in the late 1980s

appear to be powerful in designing qualitatively stable schemes.

A formal definition is as follows [8]:

Definition 5.1.2 A finite difference method for (5.1.1)-(5.1.2) or (5.1.3)-(5.1.4) is called

nonstandard if at least one of the following is met

(i) in the discrete derivatives the traditional denominator ∆t or ∆x is replaced by a

nonnegative function ψ(∆t) or ψ(∆x) such that

ψ(z) = z + o(z2), as 0 < z → 0; (5.1.5)

(ii) nonlinear terms are approximated in a nonlocal way, i.e., by a suitable function of

several points of the mesh.

Note that Mickens [103] set five rules for the construction of discrete models that have

the capability to replicate the properties of the exact solution. The general rules for

constructing such schemes are not precisely known at the present time, consequently,

there exists a certain level of ambiguity in the practical implementation of nonstandard

procedures to the formulation of finite difference schemes of differential equations. Here,

Definition 5.1.2 of a nonstandard finite difference scheme is stated unambiguously making

use of only two of Mickens rules. There: the renormalization of the denominator of the

discrete derivative (part (i)) and the nonlocal approximation of nonlinear terms in the

data (part (ii)). The other rules are expressed in terms of Definition 5.1.1.

One of the main advantages of the nonstandard finite difference method that in addition to

the usual properties of consistency, stability and hence convergence, it produces numerical

solutions which also exhibit essential properties of solution.

The following properties have received extensive attention in the design of qualitatively

stable nonstandard finite difference schemes: fixed points and their stability [103], [8],

oscillatory, conservation of energy, positivity and boundedness [104], [7], dissipation or

dispersion, [105], etc.

This chapter is concerned with two physical properties, namely, monotonicity property

and total variation diminishing property. The total variation diminishing property has not

yet exploited in the context of the nonstandard finite difference method by the authors’

best knowledge.
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It is well known, see e.g. [40], that the solution of problem (5.1.1)-(5.1.2) depends mono-

tonically on the initial value, that is, for any two solutions u1(x, t), u2(x, t) of (5.1.1),

u1(x, 0) ≤ u2(x, 0), ∀x ⇒ u1(x, t) ≤ u2(x, t), ∀ t > 0, ∀x. (5.1.6)

The property (5.1.6) is important from the physical point of view. One of the purposes

of this chapter is to design monotone numerical schemes, that is, those that replicate

this property. In [40], Crandall and Lions first studied the convergence of monotone

scheme for Hamilton-Jacobi equation (5.1.1). They presented finite difference schemes on

rectangular meshes. These methods are difficult to apply for complicated geometry where

adaptive mesh refinement is often required. Finite volume and finite element schemes

based on arbitrary triangulation, are thus attractive such cases. Monotone schemes on

unstructured meshes for Hamilton-Jacobi equations were studied by Abgrall [1], Barth and

Sethian [25], Kossioris et al. [80] and Li et al. [91]. Our general approach is along the lines

of the many works, and specifically [91], where the finite element scheme discretization

is coupled with the finite difference time discretization. However, we use the Mickens’

nonstandard variant of the difference approach. The schemes employing standard finite

difference technique are monotone under restrictive conditions on the time step size. On

the contrary, the nonstandard finite difference scheme presented in this chapter preserves

the monotonicity property unconditionally, improving therefore the results of [91].

In Section 5.2, firstly, we consider a space discretization of equation (5.1.1) using the

finite element method. Secondly, we construct a nonstandard finite difference scheme for

obtained system of ordinary differential equations. Finally, the convergence of this new

scheme is proved and numerical results supporting the theory are presented.

The entropy solution v(x, t) of (5.1.3)-(5.1.4) satisfies the property that the total variation

with respect to x does not increase as t increases [123, Chapter 16], [69, Chapter 2]:

TV (v(x, t1)) ≥ TV (v(x, t2)) for 0 < t1 ≤ t2, (5.1.7)

where the total variation of a function v(x, t) with respect to an one dimensional variable

x is defined as

TV (v(., t)) = lim
h→0

1

h

∫ +∞

−∞
|v(x + h, t)− v(x, t)| dx.

It is clear that TV (v) is finite for any bounded increasing or decreasing function with

respect to x, including functions with jump discontinuities. Moreover, if v is differentiable,

then TV (v) reduces to TV (v) =
∫ +∞
−∞ |vx| dx.
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We discuss here finite difference schemes which produce numerical solutions with dimin-

ishing total variation. The importance of schemes preserving the property (5.1.7) can

not be overemphasized since it is an essential physical characteristic of the exact solu-

tion. Furthermore, it has been shown that schemes with such qualitative stability have

the advantage of high-order accuracy in smooth regions while resolving discontinuities in

the solutions without spurious oscillations which are often displayed by numerical solu-

tions [124], [125, 126]. In [124], they are called total variation diminishing schemes. The

preservation of the diminishing total variation property is also discussed in [61] within

the context of the more general concept of strong stability.

One problem associated with the explicit total variation diminishing methods is a restric-

tion on the time step-size which in some cases could be rather severe. This is particulary

pronounced in high order methods, e.g., methods of Runge-Kutta type [60], [48]. On the

other hand, the computational complexity of total variation diminishing implicit methods

is significantly higher particularly when nonlinear functions are involved.

Following space discretization and time discretization, respectively, we impose our nu-

merical method for (5.1.3) to be in conservation form. Our approach is to use the tools

of the nonstandard finite difference method in constructing total variation diminishing

schemes which have the advantages of being computationally simpler (in the case of im-

plicit schemes) and have no step size restriction (in the case of explicit schemes).

Section 5.3 deals with total variation diminishing nonstandard finite difference schemes for

conservation laws. We formulate an implicit nonstandard finite difference scheme using

nonlocal approximations of nonlinear terms and explicit nonstandard finite difference

schemes where renormalization of the denominator is used. Numerical results by both the

implicit and explicit methods are presented in this section. At the end of this section, we

use a discontinuous Galerkin finite difference method proposed by Hu and Shu [70] to solve

the one dimensional Hamilton-Jacobi equation. They use the fact that the derivatives of

the solution u of Hamilton-Jacobi equation satisfy a conservation laws, and apply the

usual discontinuous Galerkin method on this conservation laws to advance the derivatives

of u. Here, the solution u is recovered from these derivatives computed using nonstandard

TVD method for conservation laws developed in Subsection 5.3.4. This will determine u

up to a constant. The missing constant is obtained using combination of two ways given

in [70].
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5.2 A Monotone Scheme for Hamilton-Jacobi Equa-

tions via the Nonstandard Finite Difference Method

For simplicity, we consider the problem (5.1.1)-(5.1.2) in two space dimensions although

a generalization to arbitrary space dimension is possible. It is well known that a problem

(5.1.1)-(5.1.2) does not have classical solutions. Various kind of generalized solutions have

been considered but may have discontinuous derivatives regardless of the smoothness of

the initial condition u0(x). Here, we consider its continuous viscosity solution, which

under the condition H ∈ C0,1(R2) and u0 ∈ C0,1(R2) that we assume henceforth, is the

uniform limit as ε → 0+ of the (classical) solutions of

ut + H(5u)− ε∇2u = 0, (x, y, t) ∈ R2 × (0, +∞), (5.2.1)

where ε > 0 is a small parameter.

Due to the stated convergence, an approximation to the viscosity solution of (5.1.1) can

be obtained by numerical schemes for (5.2.1), where ε is sufficiently small. We will use

a finite element space discretization for equation (5.2.1) coupled with nonstandard finite

difference time discretization for the obtained system of ordinary differential equations

for constructing scheme which is qualitatively stable to respect the monotonicity property

(5.1.6).

In the next subsection we consider a finite difference space discretization of equation

(5.2.1), while Subsection 5.2.3 is devoted to a nonstandard finite difference scheme for the

obtained system of differential equation. The convergence of this new scheme is proved

in Subsection 5.2.4. Numerical results supporting the theory are presented in Subsection

5.2.5.

5.2.1 Finite element space discretization

In this subsection we refer essentially to [91]. Let Th be a triangulation of R2 consisting of

a countable set of triangles which satisfy the usual compatibility conditions. The generic

triangle of Th is denoted by T , hT is the diameter (the largest side) of T , h = sup
T∈Th

T and

ρT is the diameter of the largest ball in T .
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The triangulation is assumed to be regular, that is, there exists a constant γ > 0, inde-

pendent of h, such that we have

hT

ρT

≤ γ (5.2.2)

for all T on Th. The condition (5.2.2) is equivalent to Zlámal’s condition [138] that there

exists a constant θ0 > 0 such that

∀T, θT ≥ θ0,

where for each triangle T, θT denotes the smallest angle of T . Let {Xi : i = 1, 2, ...} be

the set of nodes on Th. The edge connecting Xi and Xk is denoted by Eik and its length

is denoted by |Eik| . For any node Xi, Ii is the index set of the triangles with common

vertex Xi while Ni is the index set of the neighbor vertexes (vertexes connected to Xi by

an edge). With each node Xi, we associate the basis function φi defined as a continuous

piecewise linear function on R2 such that φi(Xi) = 1 and φi(Xk) = 0, k 6= i. Note that φi

has ”small” support in the sense that supp φi = Vi = ∪j∈Ii
Tj, as shown in Figure 5.1.

Figure 5.1: The structure of Vi.

75

 
 
 



We denote by Vh the finite element space which is spanned by the basis functions (φi)i.

An approximation vh(x, y, t) to the solution of (5.2.1) is sought such that vh(., ., t) ∈ Vh,

i.e.,

vh(x, y, t) =
∞∑
i=1

vh,i(t)φi(x, y),

where vh,i(t) = vh(Xi, t) and vh satisfies the variational equation

d

dt

∫∫

R2

vhw dx dy +

∫∫

R2

H(∇vh)w dx dy − ε

∫∫

R2

∇2vhw dx dy = 0, (5.2.3)

for all functions w(x, y) ∈ Vh. In the sequel vh,i(t) is abbreviated to vi(t). Replacing the

test function w by the basis functions φi(x, y), i = 1, 2, ..., in (5.2.3) and using that φi = 0

in exterior of Vi, we have

d

dt

∫∫

Vi

vhφi dx dy +

∫∫

Vi

H(∇vh)φi dx dy − ε

∫∫

Vi

∇2vhφi dx dy = 0.

Using Green’s formula and the fact that φi vanishes on ∂Vi, we have

d

dt

∫∫

Vi

vhφi dx dy +

∫∫

Vi

H(∇vh)φi dx dy = −ε

∫∫

Vi

∇vh∇φi dx dy. (5.2.4)

Approximating the integral in the first term of (5.2.4) by the ”mass lumping” quadrature

we obtain

d

dt
vi(t)

∫∫

Vi

φi dx dy +

∫ ∫

Vi

H(∇vh)φidxdy = −ε

∫∫

Vi

∇vh∇φi dx dy. (5.2.5)

Moreover, let

∫∫

Ti

φi dx dy =
1

3
µ(Tj), j ∈ Ii,

∫∫

Vi

φi dx dy =
1

3
µ(Vi),

γij =
µ(Tj)

µ(Vi)
,

where µ denotes the area. It is clear that 0 < γij < 1 and
∑
j∈Ii

γij = 1.
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Lemma 5.2.1 Let T1 and T2 be triangles with common edge Eik on Vi; θT1
ik and θT2

ik are

angles of the triangles T1 and T2 opposite to the edge Eik, respectively, as shown in

Figure 5.1. We have the following formulation

∫∫

Vi

∇vh∇φi dx dy = −
∑

k∈Ni

aik(vk − vi), (5.2.6)

where

aik = aT1
ik + aT2

ik , aT1
ik =

1

2
cot θT1

ik , aT2
ik =

1

2
cot θT2

ik .

Proof. Since φi +
∑

k∈Ni

vkφk = 1, by computation we have

∫∫

Vi

∇vh∇φi dx dy =

∫∫

Vi

∇(
∑

k∈Ni

vkφk + viφi).∇φi dx dy

=

∫∫

Vi

(∑

k∈Ni

vk∇φk + vi(−
∑

k∈Ni

∇φk)

)
.∇φi dx dy

=
∑

k∈Ni

(
(vk − vi)

∫∫

Vi

∇φk.∇φi dx dy

)
. (5.2.7)

It remains to prove that

∫∫

Vi

∇φk.∇φi dx dy = −aik. (5.2.8)

Since φk = 0 on any triangle of Vi which do not contain Xk, we have

∫∫

Vi

∇φk.∇φi dx dy =

∫∫

T1

∇φk.∇φi dx dy +

∫∫

T2

∇φk.∇φi dx dy.

Let Xk1, Xk2 be the two nodes opposite to Eik in triangle T1 and T2, respectively, see

Figure 5.1.

∫∫

T1

∇φk.∇φi dx dy =
|Ei k1|
2µ(T1)

.
|Ek1 k|
2µ(T1)

cos(1800 − θT1
ik ).µ(T1)

= − |Ei k1|
4µ(T1)

.|Ek1 k| cos(θT1
ik )

= − |Ei k1|.|Ek1 k| cos(θT1
ik )

4.1
2
|Ei k1|.|Ek1 k| sin(θT1

ik )
= −1

2
cot(θT1

ik ) = −aT1
ik .

Similarly, ∫∫

T2

∇ϕk.∇ϕi dx dy = −1

2
cot(θT2

ik ) = −aT2
ik .

Thus (5.2.8) is proved. Substituting (5.2.8) into (5.2.7), we have (5.2.6).¥
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Substituting (5.2.6) into (5.2.5), and using that H(∇vh|Tj
) is a constant, the equation

(5.2.5) can be written in the following equivalent form

d

dt
vi = −

∑
j∈Ii

H(∇vh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(vk − vi). (5.2.9)

In [91], it is shown that the scheme (5.2.9) is consistent.

For the monotonicity of the scheme discussed in the next subsection the coefficients aik

need to be bounded away from zero, that is, we have the following Lemma containing the

additional assumption on the triangulation Th.

Lemma 5.2.2 [91] If the triangulation Th is such that there exists a constant c1,

(0 < c1 < π
2
), independent of h such that

θT1
ik + θT2

ik ≤ π − c1, (5.2.10)

for every edge Eik on Th, then there exists a positive constant C0 such that for the scheme

defined by (5.2.9) we have

aik ≥ C0, i = 1, 2, ..., and k ∈ Ni. (5.2.11)

5.2.2 A nonstandard finite difference scheme

We consider a mesh {tn, n = 0, 1, 2, ...} in the time dimension with constant time step

∆t, that is we have {tn = n∆t}. As usual vn = (vn
i )∞i=1 denotes the approximation of the

solution of (5.2.9) at t = tn.

Our aim in this subsection is to design a scheme for (5.2.9) that is qualitatively stable

with respect to the monotonicity on initial values, as stated in the following definition:

Definition 5.2.1 A finite difference scheme (5.2.9) is monotone if

v0
i ≤ w0

i =⇒ vn
i ≤ wn

i ,

where vn and wn are discrete solutions initiated at v0 and w0, respectively.

For simplicity, we ignore for the moment the space index i and we assume that we are

dealing with a scalar problem the discrete solution of which is given by an explicit scheme

of the form

vn+1 = g(∆t; vn). (5.2.12)
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The following result is proved in [9].

Theorem 5.2.1 The difference scheme (5.2.12) is qualitatively stable with respect to the

monotonicity on initial values if and only if

∂vn+1

∂vn
≡ ∂g(∆t; v)

∂v
≥ 0, ∆t > 0, v ∈ R. (5.2.13)

Since we are reduced to checking the positivity condition (5.2.13), we will in what follows

adapt and exploit the favorable situation described in the following theorem:

Theorem 5.2.2 Let w be the solution of the problem

Lw = f(w),

where L is either the differential operator Lz = z′ or the identity operator Lz = z. Assume

that the solution w is nonnegative and that the function f admits the decomposition

f(z) = p(z)− q(z)z,

where p(z) ≥ 0 and q(z) ≥ 0. Then the difference scheme

wn+1 − wn

∆t
= p(wn)− q(wn)wn+1 (5.2.14)

for Lz = z′ or

wn+1 = p(wn)− q(wn)wn+1 (5.2.15)

for Lz = z is qualitatively stable with respect to the positivity property of the solution w.

Proof. Obvious by re-writing (5.2.14) and (5.2.15) as

wn+1 =
wn + ∆t p(wn)

1 + ∆t q(wn)
and wn+1 =

p(wn)

1 + q(wn)
,

respectively.¥

Remark 5.2.1 The situation described in Theorem 5.2.2 was introduced in a more specific

form by the authors in [7] in order to design schemes that preserve the positivity property

of the solutions of reaction diffusion equations. The idea is also exploited for the approxi-

mation of differential models in population biology and mathematical epidemiology where

the positivity of the involved species is essential (see, for instance, [63, 106, 105]). The

underlining point of these schemes is, as it can be seen from (5.2.14) and (5.2.15), that

one of Mickens’ rules of constructing nonstandard finite difference schemes is reinforced:

the nonlinear term q(w)w is approximated in a nonlocal way, i.e., by q(wn)wn+1 and not

by q(wn)wn or q(wn+1)wn+1.
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Coming back to the problem (5.2.9). In view of the form of the right-hand side of (5.2.9)

and of Theorem 5.2.1, which requires to show the positivity condition ∂vn+1

∂vn ≥ 0, we

propose in the spirit of the nonlocal approximation in Theorem 5.2.2, the following non-

standard finite difference scheme for the system of equations (5.2.9):

vn+1
i = vn

i −∆t
∑
j∈Ii

H(∇vn
h |Tj

)γij +
3ε∆t

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn+1

i ). (5.2.16)

Observe that the last sum in (5.2.16) is approximated in a nonlocal way.

Theorem 5.2.3 Let the triangulation Th be regular and satisfy the condition (5.2.11).

Let H ∈ C0,1(R2). Then there exist a constant C independent of ∆t and h such that if

ε ≥ Ch, (5.2.17)

the scheme (5.2.16) is monotone.

proof. Let m ∈ Ni and let Xm′ and Xm′′ be the nodes opposite to Eim in the two adjacent

triangles T ′ and T ′′ containing Eim. We have

∂vn+1
i

∂vn
m

= −∆t

[
∇H.∇φm|T ′ µ(T ′)

µ(Vi)
+∇H.∇φm|T ′′ µ(T ′′)

µ(Vi)

]

+
3ε∆t

µ(Vi)
aim − 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
m

.

Hence
(

1 +
3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
m

≥ ∆t

µ(Vi)

[
3εaim − 1

2
|H| 1,∞(|Eim′|+ |Eim′′ |)

]

≥ ∆t

µ(Vi)
[3εC0 − h|H| 1,∞].

Setting C = |H| 1,∞
3C0

, we obtain
∂vn+1

i

∂vn
m
≥ 0 whenever ε ≥ Ch.

In similar way

∂vn+1
i

∂vn
i

= 1−∆t
∑
j∈Ii

∇H.∇φi|Tj

µ(Tj)

µ(Vi)
− 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
i

.

Hence
(

1 +
3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
i

= 1− ∆t

µ(Vi)
∇H .

∑
j∈Ii

∇φi|Tj
µ(Tj). (5.2.18)
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It is easy to see that in any triangulation Th we have

∑
j∈Ii

∇φi|Tj
µ(Tj) = ~0. (5.2.19)

Indeed, for any constant vector in z = (z1, z2) ∈ R2 we have

z
∑
j∈Ii

∇φi|Tj
µ(Tj) =

∫∫

Vi

z∇φi dx dy = −
∫∫

Vi

∇zφi dx dy = ~0,

which implies (5.2.19). Substituting (5.2.19) in (5.2.18) we obtain
∂vn+1

i

∂vn
i

> 0. This com-

pletes the proof. ¥

Remark 5.2.2 With the notations of the proof of Theorem 5.2.3 in mind, we assume

that the second term in the right hand side of (5.2.16) is increasing with respect to vn
m.

In this case, Theorem 5.2.3 is a straightforward consequence of Theorem 5.2.2 and the

monotonicity of the scheme (5.2.16) occurs then without the relation ε ≥ Ch. This re-

lation is essential in the general setting of Theorem 5.2.3 where the monotonicity of the

mentioned term cannot be monitored.

Mickens’rule of nonlocal approximation is normally applied to nonlinear terms, see [103],

[9]. Here we apply it to a linear term. Usually, the two conditions in Definition 5.1.2

are considered independently. It is interesting that in our case the scheme formulated

in (5.2.16) through nonlocal approximations admits an equivalent formulation using a

renormalization of the denominator of the discrete derivative. More precisely, (5.2.16) is

equivalent to

vn+1
i − vn

i

ψi(∆t)
= −

∑
j∈Ii

H(∇vn
h |Tj

)γij +
3ε

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn

i ), (5.2.20)

where

ψi(∆t) =
∆t

1 + 3ε∆t
µ(Vi)

∑
k∈Ni

aik

.

Observe that the denominator function ψi(∆t) has the following asymptotic behavior

stated in (5.1.5).
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Remark 5.2.3 The more complex denominator function ψi(∆t) captures the intrinsic

property of the solution of the problem (5.2.16) of being monotone dependent on initial

values under the condition (5.2.17) stated in Theorem 5.2.3. It would be interesting to

investigate whether there are other physical properties of (5.2.16) that are captured by

ψi(∆t). For instance, when H = 0, can we say that the scheme (5.2.16) preserves the

Lyapunov stability properties of the differential equation (5.2.16)?

Remark 5.2.4 At every t = tn the solution of the problem (5.1.1)-(5.1.2) is approximated

by the function vn
h =

∞∑
i

vn
i φi(x, y) ∈ Vh. Hence the scheme (5.2.16) can equivalently be

considered as a mapping G(∆t, .) from Vh such that vn+1
h = G(vn

h). Due to the explicit

formulation (5.2.20) of (5.2.16), the mapping G can also be given in an explicit form.

More precisely, for any wh =
∞∑
i=1

wiφi ∈ Vh, we have

G(∆t, wh) =
∞∑
i=1

αiφi(x, y), (5.2.21)

where

αi = wi − ψi(∆t)
∑
j∈Ii

H(∇wh|Tj
)γij

+ψi(∆t)
3ε

µ(Vi)

∑

k∈Ni

aik(wk − wi), i = 1, 2, .... (5.2.22)

It is clear that under the conditions in Theorem 5.2.3 the mapping G(∆t, .) is monotone

with respect to the usually point-wise partial order on Vh.

Remark 5.2.5 Numerical schemes using the standard finite difference method are typi-

cally monotone only under a restriction on the time step size. This might be disadvantage

in applications. For example in [91] the restriction is

∆t ≤ C
min
j∈Ni

µ(Tj)

ε
.

Since the bound of ∆t involves the size of the smallest triangle in the triangulation the

above inequality implies that even when the triangulation is refined only locally, ∆t need to

be adjusted as well. Through the nonstandard approach the scheme (5.2.16) is monotone

for any time step size, because in (5.2.17) the time step size ∆t is not involved.
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5.2.3 Convergence

The convergence of the scheme is obtained through an abstract convergence result of

Barles and Souganidis, [22], which is detailed in its consequences in [80] for the equation

(5.1.1) as stated below. The function spaces and notations are defined in these references.

For τ > 0, let a mapping S(τ) : L∞(R2) → L∞(R2) be given. The following conditions

are considered in connection with the mapping S(τ):

• monotonicity, i.e., u ≤ v =⇒ S(τ)u ≤ S(τ)v, (5.2.23)

• invariance under translation, i.e., S(τ)(u + k) = S(τ)(u) + k, k ∈ R,(5.2.24)

• consistency, i.e.,
S(τ)ϕ− ϕ

τ
+ H(∇ϕ) → 0, as τ → 0,∀ϕ ∈ C∞

0 (R2),(5.2.25)

• rate of approximation:

|S(τ)ϕ− ϕ

τ
+ H(∇ϕ)| ≤ o(τ(|ϕ| 1,∞ + |ϕ| 2,∞)), ∀ϕ ∈ C∞

0 (R2). (5.2.26)

An approximation u∆t to the solution of (5.1.1)-(5.1.2) in two space dimension is con-

structed by using a grid tn = n∆t in time as follows:

u∆t(x, y, t) =

{
S(t− tn)u∆t(., ., tn)(x, y) , t ∈ (tn, tn+1], n = 0, 1, ...

u0(x) , t = 0.

The following conclusion holds.

Theorem 5.2.4 [22] If a mapping S(τ) satisfies (5.2.23), (5.2.24) and (5.2.25) and

H ∈ C0,1(R2), u0 ∈ C0,1(R2), then for any t′ > 0 we have u∆t → u uniformly on

R2 × [0, t′] as ∆t → 0. Furthermore, if S(τ) satisfies also (5.2.26) then there exists a

positive constant C3 independent of ∆t such that

||u∆t − u||∞ ≤ C3

√
∆t.

Let Ih denote the piece-wise interpolation operator at the nodes of the triangulation Th,

that is, for any real function ϕ on R2 the function Ihϕ is linear on any triangle T ∈ Th and

(Ihϕ)(Xi) = ϕ(Xi) at every node Xi of Th. Note that we have Ihϕ ∈ Vh. We consider the

mapping S(τ) : L∞(R2) → L∞(R2) defined as a composition of the operator Ih and the

scheme (5.2.16). More precisely using the mapping G given in (5.2.21)-(5.2.22) we have

S(τ)ϕ = G(τ, Ihϕ). (5.2.27)
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Then the numerical scheme (5.2.16) is equivalent to the scheme (5.2.27) where the nu-

merical solution is evaluated only at the points of the mesh. Therefore the convergence

of the scheme (5.2.16) can be obtained through Theorem 5.2.4, where the mapping S(τ)

is given by (5.2.27). To this end we only need to verify the conditions (5.2.23)-(5.2.26)

for S(τ) given by (5.2.27). The essential property of the monotonicity of S(τ) follows

from the monotonicity of G and Ih. The condition (5.2.24) follows trivially from the form

(5.2.21)-(5.2.22) of the mapping G. Now we consider condition (5.2.25) and its stronger

form (5.2.26).

By the polynomial approximation theory [31], there exist a positive constant K such that

for all ϕ ∈ C∞
0 (R2),

|Ihϕ− ϕ| 1,∞ ≤ Kh|ϕ| 2,∞. (5.2.28)

Substituting ϕ into scheme (5.2.16), we have

S(∆t)ϕ|(x,y)=Xi
− ϕi

∆t
= −

∑
j∈Ii

H(∇ϕh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi). (5.2.29)

In view of the fact that
∑
j∈Ii

γij = 1 and (5.2.28)

∣∣∣∣∣H(∇ϕ(Xi))−
∑
j∈Ii

H(∇ϕh|Tj
)γij

∣∣∣∣∣ = 0(h). (5.2.30)

By Lemma 5.1.1, for a polynomial vh of degree ≤ 1, ∇vh =
→
C and we have

3ε

µ(Vi)

∑

k∈Ni

aik(vk − vi) = − 3ε

µ(Vi)

∫ ∫

Vi

∇vh∇ϕi dx dy

= − 3ε

µ(Vi)

∫ ∫

Vi

→
C.∇ϕi dx dy

= 0.

Thus the bilinear form vanishes other the space of polynomial of degree ≤ 1. Therefore,

using Bramble-Hilbert Theorem [31] and the fact that ε = o(h), see (5.2.17), we obtain

the conclusion that for ϕ ∈ C∞
0 (R2)

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi) = 0(h). (5.2.31)
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Combining (5.2.29) with (5.2.30) and (5.2.31), we have

∣∣∣∣∣
[
S(∆t)ϕ− ϕ

∆t
+ H(∇ϕ)

]

(x,y)=Xi

∣∣∣∣∣

≤
∣∣∣∣∣
∑
j∈Ii

H(∇ϕh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi) + H(∇ϕ)

∣∣∣∣∣
(x,y)=Xi

(5.2.32)

≤ 0(h(|ϕ| 1,∞ + |ϕ| 2,∞)).

For convergence we assume that both ∆t and h approach to zero. Hence the consistent

condition (5.2.25) follows from (5.2.32). Moreover, if we assume that ∆t = o(h) and

h = o(∆t) the estimate (5.2.32) implies (5.2.26). Hence we have the following convergence

result.

Theorem 5.2.5 Let the family of triangulation (Th) be regular and satisfy the condition

(5.2.11). Let H ∈ C0,1(R2) and u0 ∈ C0,1(R2). Then the numerical solution vn
h obtained

by (5.2.16) with ε ≥ Ch and ε = o(h) converges to the exact solution u of the problem

(5.1.1)-(5.1.2) , i.e., for any t′ > 0 we have

sup
i,n≤t′/∆t

|u(Xi, tn)− vn
i | → 0, as ∆t → 0, h → 0.

Moreover, if 0 < inf ∆t
h
≤ sup ∆t

h
< ∞, then there exists a positive constant C3 indepen-

dent of ∆t and h such that

sup
i,n≤t′/∆t

|u(Xi, tn)− vn
i | ≤ C3

√
h.

Remark 5.2.6 As Xu and Zikatanov [136] have shown that a formulation similar to

(5.2.6) holds in higher dimensional space and Theorem 5.2.5 also holds for arbitrary spatial

dimension, the generalization to higher dimensional space is straight forward.
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5.2.4 Numerical results

We present the results of our numerical experiments for the nonstandard monotone

schemes for Hamilton-Jacobi equations with convex and nonconvex Hamiltonians and

with smooth and discontinuous initial conditions. We compare them with the standard

techniques.

Example 5.2.1 We consider the combustion equation, where the Hamiltonian is convex

function, which is often used in testing numerical methods, [129], [91]:

∂v

∂t
−

√
1 + v2

x + v2
y = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.33)

v(x, y, 0) = cos(2πy)− cos(2πx), (x, y) ∈ (0, 1)× (0, 1) (5.2.34)

with periodic boundary conditions.

We use a triangulation with 6240 elements on [0, 1] × [0, 1], which satisfies condition

(5.2.10). The numerical solution obtained with ε = 0.01 and ∆t = 0.01 is presented

on Figure 5.2. For comparison we consider the standard Euler scheme for the equation

(5.2.9) which is monotone only for sufficiently small values of ∆t, see [91] for details.

The numerical solution obtained for the same value of the parameters, that is, ε = 0.01

and ∆t = 0.01, is presented on Figure 5.3. The advantage of the considered nonstandard

method with regard to preserving the qualitative behavior of the solution apparent. One

observes, for instance, that the nonstandard scheme is stable with respect to the mono-

tonicity of solution contrary to the standard scheme.
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Figure 5.2: Numerical solution of (5.2.33)-(5.2.34) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Figure 5.3: Numerical solution of (5.2.33)-(5.2.34) using the standard Euler time dis-

cretization to (5.2.9) with ε = 0.01, ∆t = 0.01.
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Example 5.2.2 We consider the same equation as in Example 5.2.1 but with discontin-

uous initial condition where y ∈ [0, 1]:

∂v

∂t
−

√
1 + v2

x + v2
y = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.35)

v(x, y, 0) =

{
(1− 0.1x(1− x))(cos(2πy)− cos(2πy)) , 0 ≤ x < 0.5

(1− 0.1x(1− x))(cos(2πy)− cos(2πy)) + 0.1 , 0.5 < x ≤ 1.
(5.2.36)

with periodic boundary conditions.

We consider the same triangulation as in Example 5.2.1. The numerical solution obtained

by nonstandard technique with ε = 0.01 and ∆t = 0.01 is presented n Figure 5.4. It is

also clear that the monotonicity of numerical solution with respect to the initial value is

preserved.
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Figure 5.4: Numerical solution of (5.2.35)-(5.2.36) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Example 5.2.3 We consider the following equation, where the Hamiltonian is nonconvex

function:

∂v

∂t
+ cos(vx + vy + 1) = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.37)

v(x, y, 0) = cos(2πy)− cos(2πx), (x, y) ∈ (0, 1)× (0, 1) (5.2.38)

with periodic boundary conditions.

Once again we consider the same triangulation as an example 5.2.1. The numerical

solution obtained by nonstandard technique with ε = 0.01 and ∆t = 0.01 is presented

n Figure 5.5. The numerical solution obtained by the standard method with the same

value of parameters ε and ∆t is presented on Figure 5.6. We can observe that the result

by nonstandard scheme has a good resolution.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−3

−2

−1

0

1

2

3

Figure 5.5: Numerical solution of (5.2.37)-(5.2.38) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Figure 5.6: Numerical solution of (5.2.37)-(5.2.38) using the standard Euler time dis-

cretization to (5.2.9) with ε = 0.01, ∆t = 0.01.
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5.3 Total Variation Diminishing Nonstandard Finite

Difference Schemes for Conservation Laws

In this section, we consider the Cauchy problem (5.1.3)-(5.1.4) for conservation laws. The

equation (5.1.3) describe the behavior of many different physical phenomena including

traffic flow [135]. It is well known [90] that the solution of (5.1.3) may become discon-

tinuous as time evolves, even for smooth v0(x) given in (5.1.4). Thus it turn requires

an entropy condition to select the physical relevant discontinuous solutions, called the

entropy solutions.

Here, we assume that the data functions f and v0 are such that equations (5.1.3)-(5.1.4)

has unique entropy solution, e.g., f smooth and uniformly convex and v0 ∈ L∞(R), see

[46, Section 3.4]. There is a well known theory regarding the existence and uniqueness

of an entropy solution, using special integral structure of the equation (5.1.3), [88].

A very successful class of schemes for solving (5.1.3)-(5.1.4) is the class of total variation

diminishing conservative schemes which resolve discontinuities in the solutions without

spurious oscillations displayed by numerical solutions. We construct nonstandard implicit

and explicit conservative schemes, including Runge-Kutta higher order schemes, which

are total variation diminishing without a restriction on the time step size. Moreover, the

implicit schemes have the advantages of being computationally simpler.

In Subsection 5.3.1 we give some preliminaries settings and results including the Harten’s

lemma. In Subsection 5.3.2 we formulate an implicit nonstandard finite difference scheme

using nonlocal approximation of nonlinear terms. Subsection 5.3.3 deals with explicit and

Runge-Kutta nonstandard finite difference schemes where renormalization of the denom-

inator is used. Numerical results by both implicit and the explicit methods are presented

in Subsection 5.3.4. The numerical solution of Hamilton-Jacobi equation in one space

dimension obtained using a discontinuous Galerkin method approximating its derivatives

using nonstandard TVD method is given in Section 5.3.5.
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5.3.1 Preliminaries

For simplicity, we assume that the grid points {xj}∞j=1 are uniformly distributed with the

cell size xj+1 − xj = ∆x.

Following this space discretization, the equation for conservation laws (5.1.3) is written

as a system of ordinary differential equations of the form

wt = L(w), (5.3.1)

where w = (wj) and wj(t) ≈ v(xj, t). The operator L in (5.3.1) is obtained from the

following spacial discretization

(L(w))j = − 1

∆x
(
∧
f j+ 1

2
−

∧
f j− 1

2
),

where
∧
f j+ 1

2
=

∧
f(wj, wj+1) is a numerical flux function which is nondecreasing in the first

argument and nonincreasing in the second; Lipschitz continuous in all its arguments, and

satisfies the consistency condition

∧
f(w̃, w̃,) = f(w̃).

Conservative scheme for equation (5.1.3) has the form

d

dt
wj = − 1

∆x
(
∧
f j+ 1

2
−

∧
f j− 1

2
). (5.3.2)

For choices of numerical flux, we refer to, e.g., [111]. Notice that (5.3.2) is written in

a semidiscrete method of lines form, while in practice the time variable t must also be

discretized.

Let a mesh tn = n∆t, n = 0, 1, 2, ..., in the time direction be given. As usual wn denotes

an approximation of w at t = tn. Below we propose a scheme of explicit Euler-type, which

is the familiar form of conservative scheme

wn+1
j = wn

j −
∆t

∆x

(∧
f(wn

j , wn
j+1)−

∧
f(wn

j−1, w
n
j )

)
. (5.3.3)

Conservative schemes are especially suitable for computing entropy solutions with shocks,

because of the important Lax-Wendroff Theorem [89], which states that solutions to

conservative schemes if convergent, would converge to a weak solution of (5.1.3).
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The Lax-Wendroff Theorem does not say anything about whether the method converges,

only that if a sequence of approximations converges then the limit is a weak solution of

(5.1.3). For that, we need some form of strong stability to guarantee convergence. A very

successful method which guarantees convergence is total variation diminishing method.

Definition 5.3.1 A numerical scheme (5.3.3) is called total variation diminishing (TVD)

if TV (wn) is decreasing with respect to n, that is,

TV (wn+1) ≤ TV (wn), n = 0, 1, 2, ...,

where the total variation of a grid function wn is defined by

TV (wn) =
+∞∑

j=−∞
|wn

j+1 − wn
j |.

The TVD property of numerical methods is often proved by using the Harten’s Lemma.

We give below a version dealing with both the explicit and the implicit cases [64], [61].

Lemma 5.3.1 (Harten) Consider the explicit scheme

wn+1
j = wn

j −
(
−Cj+ 1

2
(wn

j+1 − wn
j ) + Dj− 1

2
(wn

j − wn
j−1)

)
, (5.3.4)

and the implicit scheme

wn+1
j = wn

j −
(
−Cj+ 1

2
(wn+1

j+1 − wn+1
j ) + Dj− 1

2
(wn+1

j − wn+1
j−1 )

)
, (5.3.5)

where Cj+ 1
2

and Dj− 1
2

are functions of wn and /or wn+1 at various (usually neighboring)

grid points. If Cj+ 1
2
≥ 0 and Dj− 1

2
≥ 0, then the scheme (5.3.5) is TVD. If in addition

to these conditions we have Cj+ 1
2
+ Dj+ 1

2
≤ 1, then the scheme (5.3.4) is TVD.

5.3.2 Implicit nonstandard schemes by nonlocal approximation

Here, we design nonstandard schemes by exploiting the nonlocal approximation of non-

linear terms as stated in (ii) of Definition 5.1.2. We consider nonlocal approximation

of the function L, given in (5.3.1), for deriving nonstandard total variation diminishing

schemes for equation (5.1.3). The next stated techniques are discussed in the case when

L is obtained from spacial discretization using Lax-Friedrichs numerical flux [90]

∧
f j+ 1

2
=

1

2
(f(wj+1) + f(wj)− α(wj+1 − wj)) , (5.3.6)

α = max
w
|f ′(w)|, (5.3.7)

the maximum being taken over the relevant range of w.
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We consider nonlocal approximation of the function L for deriving nonstandard TVD

schemes for equation (5.1.3). Below, we propose an implicit scheme of Euler type

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− (wn+1
j+1 − wn+1

j−1 )
f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
. (5.3.8)

We should note that the linear terms in (5.3.1) are evaluated at t = tn+1. The expression

f(wj+1) − f(wj−1) is multiplied and divided by wn
j+1 − wn

j−1, where the multiplier is

evaluated at t = tn+1 and the remaining part of the expression evaluated at t = tn.

One of our main result in this section is the following theorem:

Theorem 5.3.1 The scheme (5.3.8) is qualitatively stable with respect to the total varia-

tion diminishing property (5.1.7).

Proof. The scheme (5.3.8) can be written as

wn+1
j = wn

j +
∆t

2∆x

(
α− f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
(wn+1

j+1 − wn+1
j )

− ∆t

2∆x

(
α +

f(wn
j+1)− f(wn

j−1)

wn
j+1 − wn

j−1

)
(wn+1

j − wn+1
j−1 ).

Therefore the scheme (5.3.8) can be represented in the form (5.3.5) with

Cj+ 1
2

=
∆t

2∆x

(
α− f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
, Dj− 1

2
=

∆t

2∆x

(
α +

f(wn
j+1)− f(wn

j−1)

wn
j+1 − wn

j−1

)
.

Using (5.3.7), we obtain that Cj+1 ≥ 0 and Dj− 1
2
≥ 0 for all j. Hence it follows from

Lemma 5.3.1 that the scheme (5.3.8) is TVD. ¥

Using standard techniques of numerical analysis [90], one can easily obtain that for lin-

ear systems the scheme (5.3.8) is consistent and unconditionally stable. Moreover, the

qualitative stability of the scheme (5.3.8) also does not impose any condition on ∆x and

/or ∆t.

We should note that one step in the time dimension requires the solutions of a tridiagonal

linear system. Hence the computation effort is similar to the one for explicit methods.

Furthermore, the suggested scheme is not unique. One may use a different kind of nonlocal

approximation to obtain a TVD scheme. For example, the scheme

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− (wn+1
j+1 − wn+1

j )
f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)

− ∆t

2∆x

(
(wn+1

j − wn+1
j−1 )

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)

is also TVD.
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5.3.3 Explicit nonstandard schemes by renormalization

The schemes in this subsection are based on the renormalization of the denominator of

the discrete derivatives, see Definition 5.1.2 (i). This means that the denominator ∆t

in the discrete time derivative is replaced by a function ψ(∆t) satisfying (5.1.5). In

order to obtain elementary stable schemes, that is, schemes which are qualitatively stable

with respect to fixed points of the differential equations and their stability, the following

renormalization was considered, [103], [8]:

ψ(∆t) =
φ(q∆t)

q
, (5.3.9)

where the function φ is such that

φ(z) = z + o(z2) as z → 0, (5.3.10)

0 < φ(z) < 1 for z > 0, (5.3.11)

and q = max{|λ|}, λ tracing the eigenvalues of the Jacobian J(ṽ) of the right hand side of

equation (5.3.1) at the fixed points ṽ of the equation. The choice of the number q is not

so critial. In practice, one may take q = max ||J(ṽ)||∞, where ||.||∞ is the matrix norm

associated with the supremum norm on Rn. We will show that similar renormalization

also ensures the TVD property of the scheme. We consider function ψ as given by (5.3.9)

where the value of q is suitably determined by the function L.

Let us consider first the Euler scheme

wn+1 − wn

ψ(∆t)
= L(wn), (5.3.12)

where L is also obtained from special discretization using Lax-Friedrichs numerical flux

given in (5.3.6)

The second main result in this section is the following theorem.

Theorem 5.3.2 The scheme (5.3.12) where

ψ(z) =
φ( αz

∆x
)

α
∆x

, z > 0,

and φ satisfies conditions (5.3.10)-(5.3.11) is qualitatively stable with respect to total

variation diminishing property (5.1.7).
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Proof. The scheme (5.3.12) can be written in the form

wn+1
j = wn

j +
ψ(∆t)

2∆x

(
α(wn

j+1 − 2wn
j + wn

j−1)− f(wn
j+1) + f(wn

j−1)
)

= wn
j +

ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)
(wn

j+1 − wn
j )

−ψ(∆t)

2∆x

(
α +

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)
(wn

j − wn
j−1).

Therefore (5.3.12) can be represented in the form (5.3.4) with

Cj+ 1
2

=
ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)

Dj− 1
2

=
ψ(∆t)

2∆x

(
α +

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)
.

Using the definition of α, see (5.3.7), it is easy to see that Cj+1 ≥ 0, and Dj− 1
2
≥ 0.

Furthermore, we have

Cj+1 + Dj+ 1
2

=
ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)
+

ψ(∆t)

2∆x

(
α +

f(wn
j+1)− f(wn

j )

wn
j+1 − wn

j

)

=
φ(α∆t

∆x
)

α
∆x

2∆x
(2α) = φ(

α∆t

∆x
).

Then it follows from (5.3.11) that Cj+1 + Dj+ 1
2
≤ 1. Hence we can apply the Harten’s

Lemma, see Lemma 5.3.2, and obtain that the scheme (5.3.12) is TVD. ¥

Renormalization can also be used in higher order methods, e.g., Runge-Kutta methods.

For investigation of TVD properties a Runge-Kutta method is typically written in the so

called Shu-Osher form, [48], namely

y(0) = wn

y(i) =
i−1∑
j=1

(λijy
(j) + ∆tµijL(y(j))), i = 1, 2, ...,m

wn+1 = y(m).

By consistency
i−1∑
j=0

λij = 1, i = 1, ..., m.

Therefore in each intermediate step of the method y(i) is a convex combination of Euler

forward operators:

y(i) =
i−1∑
j=1

λij

(
y(j) + ∆t

µij

λij

L(y(j))

)
.
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If these operators are TVD then the Runge-Kutta method is also TVD [48]. Following

the result of Theorem 5.3.2 we will obtain a TVD scheme if the Euler operator involving

y(j) above is renormalized by

ψij(∆t) =
φ(

αµij∆t

λij∆x
)

αµij

λij∆x

,

where the function φ satisfies conditions (5.3.10)-(5.3.11). Note that this function might

have to satisfy additional conditions for the scheme to be accurate of particular order.

We will illustrate this by an example.

Following the discussion above, the following two stage scheme is TVD:

y(1) = wn + φ

(
α∆t

∆x

)
∆x

α
L(wn) (5.3.13)

wn+1 =
1

2
wn +

1

2
y(1) +

1

2
φ

(
α∆t

∆x

)
∆x

α
L(y(1)). (5.3.14)

Using standard techniques one can also obtain that it is of order two provided

φ(z) = z + o(z3).

Remark 5.3.1 Since the schemes (5.3.8) and (5.3.12) are TVD, the convergence follows

from [90, Theorem 15.2].

5.3.4 Numerical results

We present the results of our numerical experiments for the implicit and explicit nonstan-

dard total variation diminishing schemes considered in Subsection 5.3.2 and Subsection

5.3.3, respectively, to Burger’s equation. We compare them with the standard techniques

given in [60].

Example 5.3.1 We apply the schemes considered in Subsection 5.3.2 and Subsection

5.3.3 to the Burger’s equation

vt +

(
1

2
v2

)

x

= 0, −1 ≤ x ≤ 9, t > 0. (5.3.15)

Here the flux is f(v) = 1
2
v2.
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It is well known [90] that the entropy solution of equation (5.3.15) develops discontinuities

(shocks) even for smooth initial condition. To simplify the matters we take the Riemann

initial data

v(x, 0) =

{
1.2, − 1 ≤ x < 0

0, 0 ≤ x ≤ 9.
(5.3.16)

The entropy solution of the problem (5.3.15)-(5.3.16) is given by

v(x, t) =

{
1.2 , x < 0.6t

0 , x ≥ 0.6t.

For the considered problem (5.3.15)-(5.3.16), after some obvious transformations, the

scheme (5.3.8) can be written in the form

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− 1

2
(wn+1

j+1 − wn+1
j−1 )(wn

j+1 + wn
j−1)

)
. (5.3.17)

Below, the solid line is the exact solution v(x, t), the points joined by a dashed line are

numerical solutions. It was shown in [61] that non TVD methods typically produce oscil-

lations around the points of discontinuity. Figure 5.7 shows such oscillations around the

point x = 0 produced by the standard Euler method applied to problem (5.3.15)-(5.3.16).

Figures 5.8, 5.9 and 5.10 show the numerical solution of (5.3.15)-(5.3.16) obtained by

nonstandard implicit scheme (5.3.17) for various time steps ∆t. One can observe that

while an increase in ∆t affects the accuracy of the solution it nevertheless remains TVD

and free of spurious oscillations.
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Figure 5.7: Numerical solution of (5.3.15)-(5.3.16) by the standard explicit Euler method

(5.3.3) with ∆x = ∆t = 0.2.

Similar results are obtained using the explicit schemes (5.3.12). For the considered problem

(5.3.15)-(5.3.16), Euler’s method (5.3.12) can be written as

wn+1
j = wn

j +
1

2α
φ

(
α∆t

∆x

) (
α(wn

j+1 − 2wn
j + wn

j−1)− (wn
j+1)

2 + (wn
j−1)

2
)
, (5.3.18)

where we take φ(z) = 1 − e−z. The numerical solution given by the scheme (5.3.18)

computed with ∆x = ∆t = 0.2 is presented on Figure 5.11. Figure 5.12 represents

the solution produced by the Runge-Kutta method (5.3.13)-(5.3.14) with renormalizing

function φ(z) = 1−e−z2

z
so that the method is of order two. Let us note that since the

exact solution is discontinuous, a higher order method does not necessarily give a better

approximation. Naturally, the accuracy can be improved by decreasing the step sizes.

However, the major point here is that irrespective of the step sizes the numerical solutions

is free of spurious oscillations and its total variation does not increase with time, for this

particular equation it is in fact constant.
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Figure 5.8: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = ∆t = 0.2.
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Figure 5.9: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = 0.2, ∆t = 0.5.
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Figure 5.10: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = 0.2, ∆t = 1.0.

102

 
 
 



−1 0 1 2 3 4 5 6 7 8 9 
0  

0.2

0.4

0.6

0.8

1  

1.2

1.4

x

t=5 

Figure 5.11: Numerical solution of (5.3.15)-(5.3.16) by the explicit nonstandard scheme

(5.3.18) with ∆x = ∆t = 0.2.
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Figure 5.12: Numerical solution of (5.3.15)-(5.3.16) by the Runge-Kutta nonstandard

method (5.3.13)-(5.3.14) with ∆x=∆t = 0.2
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5.3.5 Numerical solution of Hamilton-Jacobi equation

via TVD method for conservation laws

Consider the one-space dimensional Dirichlet problem for Hamilton-Jacobi equation:

ut + H(ux) = 0 (5.3.19)

u(x, 0) = u0(x), (5.3.20)

where H is smooth function of ux. Differentiate (5.3.19) with respect to x and let v = ux.

Then a problem (5.3.19)-(5.3.20) is equivalent to the following problem for conservation

laws:

vt + H(v)x = 0 (5.3.21)

v(x, 0) =
d

dx
u0(x). (5.3.22)

Thus, the question of viscosity solution of (5.3.19) is equivalent to the question of entropy

solution of (5.3.21). More precisely, if u is the unique viscosity solution of (5.3.19) satis-

fying (5.3.20), then v = ux is the unique entropy solution of (5.3.21) satisfying (5.3.22).

Conversely, if v is the unique entropy solution of (5.3.21) satisfying (5.3.22), then u defined

by

u(x, t) =

∫ x

v(y, t)dy

is the unique viscosity solution of (5.3.19) satisfying (5.3.20). Furthermore, if u0 is

bounded uniformly continuous function in R, then ux(x, t) = v(x, t) is satisfied almost

everywhere [77].

We recall that this equivalence has been exploited by many authors trying to translate

successful numerical methods for conservation laws to methods for the Hamilton-Jacobi

equations.

If we want to solve the problem (5.3.19)-(5.3.20) on the finite interval [a, b], first we divide

it into N cells as follows:

a = x 1
2

< x 3
2

< ... < xN+ 1
2

= b.

We denote

Ij = (xj− 1
2
, xj+ 1

2
), xj =

1

2
(xj− 1

2
+ xj+ 1

2
), ∆xj = xj+ 1

2
− xj− 1

2
, h = max

j
∆xj, j = 1, 2, ..., N.

104

 
 
 



Now, we define the following approximation space

V k
h = {w : w|Ij

∈ P k(Ij), j = 1, ..., N},

where P k(Ij) is the set of all polynomials of degree ≤ k on the cell Ij.

A kth-order discontinuous Galerkin scheme for the problem (5.3.19)-(5.3.20) can be de-

fined as follows [70]: find u ∈ V k
h , such that

∫

Ij

d

dt
(ux)f dx−

∫

Ij

H(ux)fx dx +
∧
Hj+ 1

2
f−

j+ 1
2

−
∧
Hj− 1

2
f+

j− 1
2

= 0, j = 1, ..., N (5.3.23)

holds for any f ∈ V k−1
h . Here

∧
Hj+ 1

2
=

∧
H

(
(ux)

−
j+ 1

2

, (ux)
+
j+ 1

2

)

is a monotone flux, (ux)
±
j+ 1

2

and f± are the numerical approximations, respectively, to the

point values of ux(xj+ 1
2
, t), and f(xj+ 1

2
) from left and right and α = maxv |H ′(v)| with

maximum taken over the range covered by (ux)
−
j+ 1

2

and (ux)
+
j+ 1

2

. We will mainly use the

Lax-Friedrichs flux

∧
H

(
(ux)

−
j+ 1

2

, (ux)
+
j+ 1

2

)
=

1

2

(
H((ux)

−
j+ 1

2

) + H((ux)
+
j+ 1

2

)− α
(
(ux)

+
j+ 1

2

− (ux)
−
j+ 1

2

))
.(5.3.24)

Notice that the method described above is exactly the discontinuous Galerkin method for

the conservation law equation (5.3.21) satisfied by the derivative v = ux, see [70]. This

only determines u for each element up to a constant, since it is only a scheme for ux. In

[70], the missing constant can be obtained in one of the following two ways:

The first way is to require that

∫

Ij

(ut + H(ux))f dx = 0, j = 1, ..., N,

for all f ∈ V 0
h , that is

∫

Ij

(ut + H(ux)) dx = 0, j = 1, ..., N. (5.3.25)

The second one is to use

u(xj, t) = u(x1, t) +

∫ xj

x1

ux(x, t) dx (5.3.26)

to determine the missing constant for the cell Ij.
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About the stability of the method proposed above, we can quote the following result of

Jiang and Shu [73]. Here we assume compact support or periodic boundary condition for

the solution u.

Lemma 5.3.2 [73] The following L2−stability result for the derivative ux holds for the

discontinuous Galerkin method (5.3.23), for any order of accuracy k applied to problem

(5.3.19)-(5.3.20):

d

dt

∫ b

a

u2
x dx ≤ 0. (5.3.27)

It is clear that the function ϕ(t) =
∫ b

a
u2

x(x, t)dx is non-increasing in t. The relation

(5.3.27) implies total variation bounded (TVB) property for the numerical solution of u:

TV (u) =

∫ b

a

|ux(x, t)| dx ≤
√

b− a

√∫ b

a

(ux(x, t))2 dx

≤
√

b− a

√∫ b

a

(
d

dx
u0(x)

)2

dx.

This is a rather strong stability result, considering that it applies even if the derivative of

the solution ux develops discontinuities, and the scheme (5.3.23) can be of arbitrary high

order in accuracy. It also implies convergence of at least a subsequences of the numerical

solution u when h → 0. However, this stability result is not strong enough to imply that

the limit solution is the viscosity solution of (5.3.19). However, in case when k = 1, the

scheme (5.3.23) becomes

d

dt
ux(xj, t) = − 1

∆xj

( ∧
Hj+ 1

2
−

∧
Hj− 1

2

)
(5.3.28)

which is the conservative scheme for v = ux. We know [89] that solutions of such schemes,

if convergent, would converge to an entropy solutions of (5.3.21). Moreover, the numerical

solution for u obtained from the relation v = ux would converge to a viscosity solution of

(5.3.19). Here we consider only the case when k = 1.

We adopt a local orthogonal basis of V 1
h over Ij, namely, {φ(j)

0 , φ
(j)
1 }, where φ

(j)
0 (x) = 1

and φ
(j)
1 = x− xj, x ∈ Ij. The solution u(x, t) ∈ V 1

h of (5.3.19)-(5.3.20) can be written as

u(x, t) = wj(t) + vj(t)(x− xj), x ∈ Ij, j = 1, ..., N. (5.3.29)
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From (5.3.29), it is clear that

∂

∂x
u(x, t) = vj(t) (5.3.30)

and

u(xj, t) = wj(t).

Substituting u given by (5.3.29) into (5.3.28) and remember (5.3.30) and (5.3.24), we have

the following scheme

d

dt
vj(t) = − 1

2∆xj

(H(vj+1(t))−H(vj−1(t))− α(vj+1(t)− 2vj(t) + vj−1(t))) . (5.3.31)

The scheme (5.3.31) is the same as scheme given by (5.3.2) in Subsection 5.3.2 with

Lax-Friedrichs flux given by (5.3.24) for the conservation law (5.3.21) satisfied by the

derivatives v = ux.

The function wj(t) (missing constant) is obtained from (5.3.25) as follows

∫

Ij

(
d

dt
(wj(t) + vj(t)(x− xj)) + H(vj(t)))

)
dx = 0, j = 1, ..., N.

Since
∫

Ij
(x− xj) dx = 0, the above equation gives

d

dt
wj(t) = −H(vj(t)). (5.3.32)

For the time discretization, let ∆t be the constant time step and vn
j , wn

j , denote, respec-

tively, the approximation solutions vj and wj at time t = n∆t. The way for finding the

function u(x, t) can be carried out in the following steps:

Firstly, we evaluate vn
j in every Ij, using the nonstandard total variation diminishing

methods for (5.3.21)-(5.3.22) developed in Section 5.5.4, namely

vn+1
j = vn

j −
1

2α
φ

(
α∆t

∆xj

) (
H(vn

j+1)−H(vn
j−1)− α(vn

j+1 − 2vn
j + vn

j−1)
)
,

where φ(z) = 1− e−z.

Secondly, wn
j is given by average of two solutions given by (5.3.32) and (5.3.26).

Finally, we update u(x, n∆t) = wn
j + vn

j (x− xj), x ∈ Ij.
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Next, we provide numerical experimental result to demonstrate the behavior of our

scheme.

Example 5.3.2 Consider the initial-boundary value problem.





ut + (ux)2

2
= 0 , 0 ≤ x ≤ 2π, t > 0

u(x, 0) = sin(x) , 0 ≤ x ≤ 2π

u(0, t) = u(2π, t) , t ≥ 0.

(5.3.33)

Here, the Lax-Friedrichs flux given by (5.3.6) and uniform meshes of N = 70 elements are

used. The exact solution when u is still smooth is obtained by the characteristic methods.

First solve x0 from x = x0 +cos(x0)t then get u as u(x, t) = sin(x0)+ (cos(x0))2

2
t. In Figure

5.13, the asterisks joined by lines is numerical solution at t = 2 with

∆t = 0.01, ∆x = 2π/70 for the P 1 case while the solid line is exact solution. It is clear

that at t = 2 the exact solution develops a discontinuous derivative and the numerical

solution approximates the viscosity solution very well.

0 1 2 3 4 5 6 7
−1.2

−1

−0.8

−0.6
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0.2

0.4

0.6
t=2

x

u

Figure 5.13: Numerical solution of (5.3.33) with ∆x = 2π
70

and ∆t = 0.01.
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Chapter 6

Conclusion

The Hausdorff continuous functions, being a particular class of interval valued functions,

belong to what is usually called Interval Analysis, see [107]. Nevertheless, recent results

have shown that they can provide exact solutions to problems formulated in terms of point

valued functions [2]. A long outstanding problem related to the Dedekind order completion

of spaces C(X) of real valued continuous functions on rather arbitrary topological spaces

X was solved through Hausdorff continuous [4]. Following this breakthrough, a significant

improvement of the regularity properties of the solutions of large classes of nonlinear

partial differential equations obtained through the Dedekind order completion method,

see [109], was discussed in [12, 13]. Namely, it was shown that these solutions can be

assimilated with the class of Hausdorff continuous functions on the open domains Ω. The

applications of the class of Hausdorff continuous functions [12, 13, 10] show that this class

may play an important role in what is typically called Real Analysis. In particular, one

may note that one of the main engines behind the development of the various spaces

in Real and Abstract Analysis are the partial differential equations with the need to

assimilate the various types of ”weak” solutions. Moreover, the set of Hausdorff continuous

functions might be a viable alternative to some of the presently used functions (e.g.

Lebesgue spaces, Sobolev spaces) with the advantage of being both more regular and

universal.

In this work, the Hausdorff continuous functions are linked with the concept of discontin-

uous viscosity solutions. As shown in the Chapter 1 the definition of viscosity solution,

see Definition 1.3.3, has an implicit interval character since it places requirements only

on the upper semicontinuous envelope S(u) and the lower semicontinuous envelope I(u).
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For a Hausdorff continuous viscosity solution u, the functions I(u) and S(u) are as

close as they can be in the sense of the distance ρ defined by (2.3.6), namely, we have

ρ(I(u), S(u)) = 0.

Hence, the requirements that a viscosity solution is Hausdorff continuous has a direct

interpretation, which we find clearer than the requirements related to other concepts of

discontinuous viscosity solutions, e.g., envelope solutions.

In the theoretical study of this thesis, we come up with the following main results. First,

we define the concept of viscosity solution for interval valued functions in H(Ω). We

proved an existence theorem for Hausdorff continuous viscosity solution using Perron’s

method. The solution is constructed as a supremum of a subset of viscosity subsolu-

tions in the set of Hausdorff continuous functions. It is shown that there is the relation

between the Hausdorff continuous viscosity solutions and the existing theory of discon-

tinuous viscosity solutions. Namely, any H-continuous viscosity solution is discontinuous

viscosity solution as defined by Ishii, and it is typically also an envelope viscosity solu-

tion. Moreover, the H-continuous viscosity solutions is stronger concept than the concept

of discontinuous viscosity solution given by Ishii and as well as under wild the concept of

envelope viscosity solution. Uniqueness result have been shown using comparison prin-

ciple between H-continuous viscosity subsolutions and supersolutions. This comparison

principle is stronger than comparison principle used in connection with the lower semi-

continuous viscosity supersolutions and upper semicontinuous viscosity subsolutions in

the sense that the existence result holds under the same conditions. Sufficient conditions

for a weaker form of this comparison principle are given. However, it could be interesting

to give sufficient conditions for a strong comparison principle for Hausdorff continuous

viscosity subsolutions and supersolutions. Finally, we expressed the Hausdorff viscosity

solution of Hamilton-Jacobi equations as solutions to an operator equation involving the

extended a Hamiltonian operator in the same way as the classical solution of Hamilton-

Jacobi equations are solutions of operator equation associated of this Hamilton-Jacobi

equations. It is shown also that the value function of discounted minimum time problem

is an envelope viscosity solution of associated Hamilton-Jacobi-Bellman equation.

Numerical study deals with two approaches to numerical solutions for Hamilton-Jacobi

equations. First approach is a finite difference space discretization coupled with a non-

standard difference time discretization for constructing monotone scheme for any time

step size, see Section 5.2.
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This is motivated by the paper [91], where a severe restriction on the time step size is

imposed for the numerical scheme for Hamilton-Jacobi equations obtained through the

coupling of the finite difference method (in space) and the finite difference method (in

time) to be monotone.

We have relaxed this restriction by using Micken’s nonstandard finite difference method

[103]. More precisely, Micken’s rule of nonlocal approximation is exploited and this leads

to a nonstandard scheme that replicates the monotonicity property of the Hamilton-Jacobi

equations for all positive step sizes. Furthermore, the superiority of the nonstandard

method to the standard one is confirmed by numerical results.

The second approach is on total variation diminishing scheme for conservation laws. The

schemes preserving the essential physical property of diminishing total variation for con-

servation laws are studied in Section 5.3. Such schemes are free of spurious oscillations

around discontinuities. We have discussed nonstandard finite difference schemes, which

have this qualitative stability property. We used Micken’s rules of approximating nonlin-

ear terms in a nonlocal way and of renormalizing denominators. The obtained schemes

are computationally simple. Furthermore, the require no restriction on the time step-size

as typical for qualitatively stable nonstandard schemes.

We exploited the fact that in one space dimension the derivatives of the solutions u

of Hamilton-Jacobi equations satisfy conservation laws and applied the discontinuous

Galerkin method of Hu and Shu [70] to get the scheme for ux. This determines u for

each element up to a constant, since it is only the scheme for ux. The missing constant is

obtained combining two ways developed in [70].

We think that the results presented in this thesis provide a foundation for future research

in the following areas:

• Discontinuous viscosity solution of second order Hamilton-Jacobi equation in the sense

of Hausdorff continuous function;

• the validity of Theorem 3.6.4 in Rn, n ≥ 2;

• TVD property for conservation laws in higher dimensional space;

• conditions implying strong comparison principle between H-continuous viscosity subso-

lutions and supersolutions.
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