
Chapter 5

Nonstandard Finite Difference

Methods for Solutions of

Hamilton-Jacobi Equations and

Conservation Laws

5.1 Introduction

A major difficulty in the study of partial differential equations is, in general, the lack of

exact analytical solutions. One way to proceed is to use numerical integration techniques

to obtain useful information on the possible solution behaviors. A popular and important

method is one based on the use of finite differences to construct discrete models of the

differential equations of interest [54], [108].

A relevant question concerns stability. For problems with smooth solutions, usually a

linear stability analysis is adequate. For problems with discontinuous solutions or discon-

tinuous derivatives of solutions, a stronger measure of stability is usually required.

Almost all of the standard procedures yield schemes which are convergent with restriction

on the step size. One response to this situation was the initiation by Mickens [103] of

a research program for the investigation of new methods for constructing finite differ-

ence schemes which are convergent for any step size. These new procedures are called

nonstandard difference methods, [101, 102, 104].
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Throughout this chapter, we shall be concerned with two initial value problems. The fist

problem is a Cauchy problem for Hamilton-Jacobi equation in the form

ut(x, t) + H(Du(x, t)) = 0, (x, t) ∈ Rn × (0, +∞) (5.1.1)

u(x, 0) = u0(x), x ∈ Rn. (5.1.2)

The second problem is a Cauchy problem for conservation laws in the form

vt(x, t) + (f(v(x, t))x = 0, (x, t) ∈ R× (0,∞) (5.1.3)

v(x, 0) = v0, x ∈ R, (5.1.4)

where f(v) is the nonlinear flux function.

Note that the equation (5.1.1) is closely related to equation (5.1.3), in fact in one dimension

space, they are equivalent if one takes v = ux. Thus the solution v to conservation laws

is the derivative of a solution u to a Hamilton-Jacobi equations. Conversely, the solution

u to a Hamilton-Jacobi equation is the integral of a solution v to conservation laws, see

[77].

As typical for partial differential equations, problem (5.1.1)-(5.1.2) or (5.1.3)-(5.1.4) can-

not be completely solved by analytic techniques. Consequently, numerical simulations

are of fundamental importance in gaining some useful insights on the solutions. More

precisely, it is crucial to design numerical methods, which replicate essential physical

properties of the solutions, see [103], [104].

The precise way in which the properties are preserved is contained in the following defi-

nition of qualitative stability [8].

Definition 5.1.1 Assume that the solution of (5.1.1)-(5.1.2) (resp. (5.1.3)-(5.1.4)) satis-

fies some property (P). A numerical method approximating (5.1.1)-(5.1.2) (resp. (5.1.3)-

(5.1.4)) is called qualitatively stable with respect to (P) or P-stable if the numerical solu-

tions for (5.1.1)-(5.1.2) (resp. (5.1.3)-(5.1.4)) satisfy property (P) for all values of the

involved step sizes.

It should be noted that standard finite difference schemes are generally not qualitatively

stable with respect to essential physical properties of solution of interested problem [96].
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The nonstandard finite difference methods introduced by R. E. Mickens in the late 1980s

appear to be powerful in designing qualitatively stable schemes.

A formal definition is as follows [8]:

Definition 5.1.2 A finite difference method for (5.1.1)-(5.1.2) or (5.1.3)-(5.1.4) is called

nonstandard if at least one of the following is met

(i) in the discrete derivatives the traditional denominator ∆t or ∆x is replaced by a

nonnegative function ψ(∆t) or ψ(∆x) such that

ψ(z) = z + o(z2), as 0 < z → 0; (5.1.5)

(ii) nonlinear terms are approximated in a nonlocal way, i.e., by a suitable function of

several points of the mesh.

Note that Mickens [103] set five rules for the construction of discrete models that have

the capability to replicate the properties of the exact solution. The general rules for

constructing such schemes are not precisely known at the present time, consequently,

there exists a certain level of ambiguity in the practical implementation of nonstandard

procedures to the formulation of finite difference schemes of differential equations. Here,

Definition 5.1.2 of a nonstandard finite difference scheme is stated unambiguously making

use of only two of Mickens rules. There: the renormalization of the denominator of the

discrete derivative (part (i)) and the nonlocal approximation of nonlinear terms in the

data (part (ii)). The other rules are expressed in terms of Definition 5.1.1.

One of the main advantages of the nonstandard finite difference method that in addition to

the usual properties of consistency, stability and hence convergence, it produces numerical

solutions which also exhibit essential properties of solution.

The following properties have received extensive attention in the design of qualitatively

stable nonstandard finite difference schemes: fixed points and their stability [103], [8],

oscillatory, conservation of energy, positivity and boundedness [104], [7], dissipation or

dispersion, [105], etc.

This chapter is concerned with two physical properties, namely, monotonicity property

and total variation diminishing property. The total variation diminishing property has not

yet exploited in the context of the nonstandard finite difference method by the authors’

best knowledge.

71

 
 
 



It is well known, see e.g. [40], that the solution of problem (5.1.1)-(5.1.2) depends mono-

tonically on the initial value, that is, for any two solutions u1(x, t), u2(x, t) of (5.1.1),

u1(x, 0) ≤ u2(x, 0), ∀x ⇒ u1(x, t) ≤ u2(x, t), ∀ t > 0, ∀x. (5.1.6)

The property (5.1.6) is important from the physical point of view. One of the purposes

of this chapter is to design monotone numerical schemes, that is, those that replicate

this property. In [40], Crandall and Lions first studied the convergence of monotone

scheme for Hamilton-Jacobi equation (5.1.1). They presented finite difference schemes on

rectangular meshes. These methods are difficult to apply for complicated geometry where

adaptive mesh refinement is often required. Finite volume and finite element schemes

based on arbitrary triangulation, are thus attractive such cases. Monotone schemes on

unstructured meshes for Hamilton-Jacobi equations were studied by Abgrall [1], Barth and

Sethian [25], Kossioris et al. [80] and Li et al. [91]. Our general approach is along the lines

of the many works, and specifically [91], where the finite element scheme discretization

is coupled with the finite difference time discretization. However, we use the Mickens’

nonstandard variant of the difference approach. The schemes employing standard finite

difference technique are monotone under restrictive conditions on the time step size. On

the contrary, the nonstandard finite difference scheme presented in this chapter preserves

the monotonicity property unconditionally, improving therefore the results of [91].

In Section 5.2, firstly, we consider a space discretization of equation (5.1.1) using the

finite element method. Secondly, we construct a nonstandard finite difference scheme for

obtained system of ordinary differential equations. Finally, the convergence of this new

scheme is proved and numerical results supporting the theory are presented.

The entropy solution v(x, t) of (5.1.3)-(5.1.4) satisfies the property that the total variation

with respect to x does not increase as t increases [123, Chapter 16], [69, Chapter 2]:

TV (v(x, t1)) ≥ TV (v(x, t2)) for 0 < t1 ≤ t2, (5.1.7)

where the total variation of a function v(x, t) with respect to an one dimensional variable

x is defined as

TV (v(., t)) = lim
h→0

1

h

∫ +∞

−∞
|v(x + h, t)− v(x, t)| dx.

It is clear that TV (v) is finite for any bounded increasing or decreasing function with

respect to x, including functions with jump discontinuities. Moreover, if v is differentiable,

then TV (v) reduces to TV (v) =
∫ +∞
−∞ |vx| dx.

72

 
 
 



We discuss here finite difference schemes which produce numerical solutions with dimin-

ishing total variation. The importance of schemes preserving the property (5.1.7) can

not be overemphasized since it is an essential physical characteristic of the exact solu-

tion. Furthermore, it has been shown that schemes with such qualitative stability have

the advantage of high-order accuracy in smooth regions while resolving discontinuities in

the solutions without spurious oscillations which are often displayed by numerical solu-

tions [124], [125, 126]. In [124], they are called total variation diminishing schemes. The

preservation of the diminishing total variation property is also discussed in [61] within

the context of the more general concept of strong stability.

One problem associated with the explicit total variation diminishing methods is a restric-

tion on the time step-size which in some cases could be rather severe. This is particulary

pronounced in high order methods, e.g., methods of Runge-Kutta type [60], [48]. On the

other hand, the computational complexity of total variation diminishing implicit methods

is significantly higher particularly when nonlinear functions are involved.

Following space discretization and time discretization, respectively, we impose our nu-

merical method for (5.1.3) to be in conservation form. Our approach is to use the tools

of the nonstandard finite difference method in constructing total variation diminishing

schemes which have the advantages of being computationally simpler (in the case of im-

plicit schemes) and have no step size restriction (in the case of explicit schemes).

Section 5.3 deals with total variation diminishing nonstandard finite difference schemes for

conservation laws. We formulate an implicit nonstandard finite difference scheme using

nonlocal approximations of nonlinear terms and explicit nonstandard finite difference

schemes where renormalization of the denominator is used. Numerical results by both the

implicit and explicit methods are presented in this section. At the end of this section, we

use a discontinuous Galerkin finite difference method proposed by Hu and Shu [70] to solve

the one dimensional Hamilton-Jacobi equation. They use the fact that the derivatives of

the solution u of Hamilton-Jacobi equation satisfy a conservation laws, and apply the

usual discontinuous Galerkin method on this conservation laws to advance the derivatives

of u. Here, the solution u is recovered from these derivatives computed using nonstandard

TVD method for conservation laws developed in Subsection 5.3.4. This will determine u

up to a constant. The missing constant is obtained using combination of two ways given

in [70].
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5.2 A Monotone Scheme for Hamilton-Jacobi Equa-

tions via the Nonstandard Finite Difference Method

For simplicity, we consider the problem (5.1.1)-(5.1.2) in two space dimensions although

a generalization to arbitrary space dimension is possible. It is well known that a problem

(5.1.1)-(5.1.2) does not have classical solutions. Various kind of generalized solutions have

been considered but may have discontinuous derivatives regardless of the smoothness of

the initial condition u0(x). Here, we consider its continuous viscosity solution, which

under the condition H ∈ C0,1(R2) and u0 ∈ C0,1(R2) that we assume henceforth, is the

uniform limit as ε → 0+ of the (classical) solutions of

ut + H(5u)− ε∇2u = 0, (x, y, t) ∈ R2 × (0, +∞), (5.2.1)

where ε > 0 is a small parameter.

Due to the stated convergence, an approximation to the viscosity solution of (5.1.1) can

be obtained by numerical schemes for (5.2.1), where ε is sufficiently small. We will use

a finite element space discretization for equation (5.2.1) coupled with nonstandard finite

difference time discretization for the obtained system of ordinary differential equations

for constructing scheme which is qualitatively stable to respect the monotonicity property

(5.1.6).

In the next subsection we consider a finite difference space discretization of equation

(5.2.1), while Subsection 5.2.3 is devoted to a nonstandard finite difference scheme for the

obtained system of differential equation. The convergence of this new scheme is proved

in Subsection 5.2.4. Numerical results supporting the theory are presented in Subsection

5.2.5.

5.2.1 Finite element space discretization

In this subsection we refer essentially to [91]. Let Th be a triangulation of R2 consisting of

a countable set of triangles which satisfy the usual compatibility conditions. The generic

triangle of Th is denoted by T , hT is the diameter (the largest side) of T , h = sup
T∈Th

T and

ρT is the diameter of the largest ball in T .
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The triangulation is assumed to be regular, that is, there exists a constant γ > 0, inde-

pendent of h, such that we have

hT

ρT

≤ γ (5.2.2)

for all T on Th. The condition (5.2.2) is equivalent to Zlámal’s condition [138] that there

exists a constant θ0 > 0 such that

∀T, θT ≥ θ0,

where for each triangle T, θT denotes the smallest angle of T . Let {Xi : i = 1, 2, ...} be

the set of nodes on Th. The edge connecting Xi and Xk is denoted by Eik and its length

is denoted by |Eik| . For any node Xi, Ii is the index set of the triangles with common

vertex Xi while Ni is the index set of the neighbor vertexes (vertexes connected to Xi by

an edge). With each node Xi, we associate the basis function φi defined as a continuous

piecewise linear function on R2 such that φi(Xi) = 1 and φi(Xk) = 0, k 6= i. Note that φi

has ”small” support in the sense that supp φi = Vi = ∪j∈Ii
Tj, as shown in Figure 5.1.

Figure 5.1: The structure of Vi.
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We denote by Vh the finite element space which is spanned by the basis functions (φi)i.

An approximation vh(x, y, t) to the solution of (5.2.1) is sought such that vh(., ., t) ∈ Vh,

i.e.,

vh(x, y, t) =
∞∑
i=1

vh,i(t)φi(x, y),

where vh,i(t) = vh(Xi, t) and vh satisfies the variational equation

d

dt

∫∫

R2

vhw dx dy +

∫∫

R2

H(∇vh)w dx dy − ε

∫∫

R2

∇2vhw dx dy = 0, (5.2.3)

for all functions w(x, y) ∈ Vh. In the sequel vh,i(t) is abbreviated to vi(t). Replacing the

test function w by the basis functions φi(x, y), i = 1, 2, ..., in (5.2.3) and using that φi = 0

in exterior of Vi, we have

d

dt

∫∫

Vi

vhφi dx dy +

∫∫

Vi

H(∇vh)φi dx dy − ε

∫∫

Vi

∇2vhφi dx dy = 0.

Using Green’s formula and the fact that φi vanishes on ∂Vi, we have

d

dt

∫∫

Vi

vhφi dx dy +

∫∫

Vi

H(∇vh)φi dx dy = −ε

∫∫

Vi

∇vh∇φi dx dy. (5.2.4)

Approximating the integral in the first term of (5.2.4) by the ”mass lumping” quadrature

we obtain

d

dt
vi(t)

∫∫

Vi

φi dx dy +

∫ ∫

Vi

H(∇vh)φidxdy = −ε

∫∫

Vi

∇vh∇φi dx dy. (5.2.5)

Moreover, let

∫∫

Ti

φi dx dy =
1

3
µ(Tj), j ∈ Ii,

∫∫

Vi

φi dx dy =
1

3
µ(Vi),

γij =
µ(Tj)

µ(Vi)
,

where µ denotes the area. It is clear that 0 < γij < 1 and
∑
j∈Ii

γij = 1.
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Lemma 5.2.1 Let T1 and T2 be triangles with common edge Eik on Vi; θT1
ik and θT2

ik are

angles of the triangles T1 and T2 opposite to the edge Eik, respectively, as shown in

Figure 5.1. We have the following formulation

∫∫

Vi

∇vh∇φi dx dy = −
∑

k∈Ni

aik(vk − vi), (5.2.6)

where

aik = aT1
ik + aT2

ik , aT1
ik =

1

2
cot θT1

ik , aT2
ik =

1

2
cot θT2

ik .

Proof. Since φi +
∑

k∈Ni

vkφk = 1, by computation we have

∫∫

Vi

∇vh∇φi dx dy =

∫∫

Vi

∇(
∑

k∈Ni

vkφk + viφi).∇φi dx dy

=

∫∫

Vi

(∑

k∈Ni

vk∇φk + vi(−
∑

k∈Ni

∇φk)

)
.∇φi dx dy

=
∑

k∈Ni

(
(vk − vi)

∫∫

Vi

∇φk.∇φi dx dy

)
. (5.2.7)

It remains to prove that

∫∫

Vi

∇φk.∇φi dx dy = −aik. (5.2.8)

Since φk = 0 on any triangle of Vi which do not contain Xk, we have

∫∫

Vi

∇φk.∇φi dx dy =

∫∫

T1

∇φk.∇φi dx dy +

∫∫

T2

∇φk.∇φi dx dy.

Let Xk1, Xk2 be the two nodes opposite to Eik in triangle T1 and T2, respectively, see

Figure 5.1.

∫∫

T1

∇φk.∇φi dx dy =
|Ei k1|
2µ(T1)

.
|Ek1 k|
2µ(T1)

cos(1800 − θT1
ik ).µ(T1)

= − |Ei k1|
4µ(T1)

.|Ek1 k| cos(θT1
ik )

= − |Ei k1|.|Ek1 k| cos(θT1
ik )

4.1
2
|Ei k1|.|Ek1 k| sin(θT1

ik )
= −1

2
cot(θT1

ik ) = −aT1
ik .

Similarly, ∫∫

T2

∇ϕk.∇ϕi dx dy = −1

2
cot(θT2

ik ) = −aT2
ik .

Thus (5.2.8) is proved. Substituting (5.2.8) into (5.2.7), we have (5.2.6).¥
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Substituting (5.2.6) into (5.2.5), and using that H(∇vh|Tj
) is a constant, the equation

(5.2.5) can be written in the following equivalent form

d

dt
vi = −

∑
j∈Ii

H(∇vh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(vk − vi). (5.2.9)

In [91], it is shown that the scheme (5.2.9) is consistent.

For the monotonicity of the scheme discussed in the next subsection the coefficients aik

need to be bounded away from zero, that is, we have the following Lemma containing the

additional assumption on the triangulation Th.

Lemma 5.2.2 [91] If the triangulation Th is such that there exists a constant c1,

(0 < c1 < π
2
), independent of h such that

θT1
ik + θT2

ik ≤ π − c1, (5.2.10)

for every edge Eik on Th, then there exists a positive constant C0 such that for the scheme

defined by (5.2.9) we have

aik ≥ C0, i = 1, 2, ..., and k ∈ Ni. (5.2.11)

5.2.2 A nonstandard finite difference scheme

We consider a mesh {tn, n = 0, 1, 2, ...} in the time dimension with constant time step

∆t, that is we have {tn = n∆t}. As usual vn = (vn
i )∞i=1 denotes the approximation of the

solution of (5.2.9) at t = tn.

Our aim in this subsection is to design a scheme for (5.2.9) that is qualitatively stable

with respect to the monotonicity on initial values, as stated in the following definition:

Definition 5.2.1 A finite difference scheme (5.2.9) is monotone if

v0
i ≤ w0

i =⇒ vn
i ≤ wn

i ,

where vn and wn are discrete solutions initiated at v0 and w0, respectively.

For simplicity, we ignore for the moment the space index i and we assume that we are

dealing with a scalar problem the discrete solution of which is given by an explicit scheme

of the form

vn+1 = g(∆t; vn). (5.2.12)
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The following result is proved in [9].

Theorem 5.2.1 The difference scheme (5.2.12) is qualitatively stable with respect to the

monotonicity on initial values if and only if

∂vn+1

∂vn
≡ ∂g(∆t; v)

∂v
≥ 0, ∆t > 0, v ∈ R. (5.2.13)

Since we are reduced to checking the positivity condition (5.2.13), we will in what follows

adapt and exploit the favorable situation described in the following theorem:

Theorem 5.2.2 Let w be the solution of the problem

Lw = f(w),

where L is either the differential operator Lz = z′ or the identity operator Lz = z. Assume

that the solution w is nonnegative and that the function f admits the decomposition

f(z) = p(z)− q(z)z,

where p(z) ≥ 0 and q(z) ≥ 0. Then the difference scheme

wn+1 − wn

∆t
= p(wn)− q(wn)wn+1 (5.2.14)

for Lz = z′ or

wn+1 = p(wn)− q(wn)wn+1 (5.2.15)

for Lz = z is qualitatively stable with respect to the positivity property of the solution w.

Proof. Obvious by re-writing (5.2.14) and (5.2.15) as

wn+1 =
wn + ∆t p(wn)

1 + ∆t q(wn)
and wn+1 =

p(wn)

1 + q(wn)
,

respectively.¥

Remark 5.2.1 The situation described in Theorem 5.2.2 was introduced in a more specific

form by the authors in [7] in order to design schemes that preserve the positivity property

of the solutions of reaction diffusion equations. The idea is also exploited for the approxi-

mation of differential models in population biology and mathematical epidemiology where

the positivity of the involved species is essential (see, for instance, [63, 106, 105]). The

underlining point of these schemes is, as it can be seen from (5.2.14) and (5.2.15), that

one of Mickens’ rules of constructing nonstandard finite difference schemes is reinforced:

the nonlinear term q(w)w is approximated in a nonlocal way, i.e., by q(wn)wn+1 and not

by q(wn)wn or q(wn+1)wn+1.
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Coming back to the problem (5.2.9). In view of the form of the right-hand side of (5.2.9)

and of Theorem 5.2.1, which requires to show the positivity condition ∂vn+1

∂vn ≥ 0, we

propose in the spirit of the nonlocal approximation in Theorem 5.2.2, the following non-

standard finite difference scheme for the system of equations (5.2.9):

vn+1
i = vn

i −∆t
∑
j∈Ii

H(∇vn
h |Tj

)γij +
3ε∆t

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn+1

i ). (5.2.16)

Observe that the last sum in (5.2.16) is approximated in a nonlocal way.

Theorem 5.2.3 Let the triangulation Th be regular and satisfy the condition (5.2.11).

Let H ∈ C0,1(R2). Then there exist a constant C independent of ∆t and h such that if

ε ≥ Ch, (5.2.17)

the scheme (5.2.16) is monotone.

proof. Let m ∈ Ni and let Xm′ and Xm′′ be the nodes opposite to Eim in the two adjacent

triangles T ′ and T ′′ containing Eim. We have

∂vn+1
i

∂vn
m

= −∆t

[
∇H.∇φm|T ′ µ(T ′)

µ(Vi)
+∇H.∇φm|T ′′ µ(T ′′)

µ(Vi)

]

+
3ε∆t

µ(Vi)
aim − 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
m

.

Hence
(

1 +
3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
m

≥ ∆t

µ(Vi)

[
3εaim − 1

2
|H| 1,∞(|Eim′|+ |Eim′′ |)

]

≥ ∆t

µ(Vi)
[3εC0 − h|H| 1,∞].

Setting C = |H| 1,∞
3C0

, we obtain
∂vn+1

i

∂vn
m
≥ 0 whenever ε ≥ Ch.

In similar way

∂vn+1
i

∂vn
i

= 1−∆t
∑
j∈Ii

∇H.∇φi|Tj

µ(Tj)

µ(Vi)
− 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
i

.

Hence
(

1 +
3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
i

= 1− ∆t

µ(Vi)
∇H .

∑
j∈Ii

∇φi|Tj
µ(Tj). (5.2.18)
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It is easy to see that in any triangulation Th we have

∑
j∈Ii

∇φi|Tj
µ(Tj) = ~0. (5.2.19)

Indeed, for any constant vector in z = (z1, z2) ∈ R2 we have

z
∑
j∈Ii

∇φi|Tj
µ(Tj) =

∫∫

Vi

z∇φi dx dy = −
∫∫

Vi

∇zφi dx dy = ~0,

which implies (5.2.19). Substituting (5.2.19) in (5.2.18) we obtain
∂vn+1

i

∂vn
i

> 0. This com-

pletes the proof. ¥

Remark 5.2.2 With the notations of the proof of Theorem 5.2.3 in mind, we assume

that the second term in the right hand side of (5.2.16) is increasing with respect to vn
m.

In this case, Theorem 5.2.3 is a straightforward consequence of Theorem 5.2.2 and the

monotonicity of the scheme (5.2.16) occurs then without the relation ε ≥ Ch. This re-

lation is essential in the general setting of Theorem 5.2.3 where the monotonicity of the

mentioned term cannot be monitored.

Mickens’rule of nonlocal approximation is normally applied to nonlinear terms, see [103],

[9]. Here we apply it to a linear term. Usually, the two conditions in Definition 5.1.2

are considered independently. It is interesting that in our case the scheme formulated

in (5.2.16) through nonlocal approximations admits an equivalent formulation using a

renormalization of the denominator of the discrete derivative. More precisely, (5.2.16) is

equivalent to

vn+1
i − vn

i

ψi(∆t)
= −

∑
j∈Ii

H(∇vn
h |Tj

)γij +
3ε

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn

i ), (5.2.20)

where

ψi(∆t) =
∆t

1 + 3ε∆t
µ(Vi)

∑
k∈Ni

aik

.

Observe that the denominator function ψi(∆t) has the following asymptotic behavior

stated in (5.1.5).
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Remark 5.2.3 The more complex denominator function ψi(∆t) captures the intrinsic

property of the solution of the problem (5.2.16) of being monotone dependent on initial

values under the condition (5.2.17) stated in Theorem 5.2.3. It would be interesting to

investigate whether there are other physical properties of (5.2.16) that are captured by

ψi(∆t). For instance, when H = 0, can we say that the scheme (5.2.16) preserves the

Lyapunov stability properties of the differential equation (5.2.16)?

Remark 5.2.4 At every t = tn the solution of the problem (5.1.1)-(5.1.2) is approximated

by the function vn
h =

∞∑
i

vn
i φi(x, y) ∈ Vh. Hence the scheme (5.2.16) can equivalently be

considered as a mapping G(∆t, .) from Vh such that vn+1
h = G(vn

h). Due to the explicit

formulation (5.2.20) of (5.2.16), the mapping G can also be given in an explicit form.

More precisely, for any wh =
∞∑
i=1

wiφi ∈ Vh, we have

G(∆t, wh) =
∞∑
i=1

αiφi(x, y), (5.2.21)

where

αi = wi − ψi(∆t)
∑
j∈Ii

H(∇wh|Tj
)γij

+ψi(∆t)
3ε

µ(Vi)

∑

k∈Ni

aik(wk − wi), i = 1, 2, .... (5.2.22)

It is clear that under the conditions in Theorem 5.2.3 the mapping G(∆t, .) is monotone

with respect to the usually point-wise partial order on Vh.

Remark 5.2.5 Numerical schemes using the standard finite difference method are typi-

cally monotone only under a restriction on the time step size. This might be disadvantage

in applications. For example in [91] the restriction is

∆t ≤ C
min
j∈Ni

µ(Tj)

ε
.

Since the bound of ∆t involves the size of the smallest triangle in the triangulation the

above inequality implies that even when the triangulation is refined only locally, ∆t need to

be adjusted as well. Through the nonstandard approach the scheme (5.2.16) is monotone

for any time step size, because in (5.2.17) the time step size ∆t is not involved.

82

 
 
 



5.2.3 Convergence

The convergence of the scheme is obtained through an abstract convergence result of

Barles and Souganidis, [22], which is detailed in its consequences in [80] for the equation

(5.1.1) as stated below. The function spaces and notations are defined in these references.

For τ > 0, let a mapping S(τ) : L∞(R2) → L∞(R2) be given. The following conditions

are considered in connection with the mapping S(τ):

• monotonicity, i.e., u ≤ v =⇒ S(τ)u ≤ S(τ)v, (5.2.23)

• invariance under translation, i.e., S(τ)(u + k) = S(τ)(u) + k, k ∈ R,(5.2.24)

• consistency, i.e.,
S(τ)ϕ− ϕ

τ
+ H(∇ϕ) → 0, as τ → 0,∀ϕ ∈ C∞

0 (R2),(5.2.25)

• rate of approximation:

|S(τ)ϕ− ϕ

τ
+ H(∇ϕ)| ≤ o(τ(|ϕ| 1,∞ + |ϕ| 2,∞)), ∀ϕ ∈ C∞

0 (R2). (5.2.26)

An approximation u∆t to the solution of (5.1.1)-(5.1.2) in two space dimension is con-

structed by using a grid tn = n∆t in time as follows:

u∆t(x, y, t) =

{
S(t− tn)u∆t(., ., tn)(x, y) , t ∈ (tn, tn+1], n = 0, 1, ...

u0(x) , t = 0.

The following conclusion holds.

Theorem 5.2.4 [22] If a mapping S(τ) satisfies (5.2.23), (5.2.24) and (5.2.25) and

H ∈ C0,1(R2), u0 ∈ C0,1(R2), then for any t′ > 0 we have u∆t → u uniformly on

R2 × [0, t′] as ∆t → 0. Furthermore, if S(τ) satisfies also (5.2.26) then there exists a

positive constant C3 independent of ∆t such that

||u∆t − u||∞ ≤ C3

√
∆t.

Let Ih denote the piece-wise interpolation operator at the nodes of the triangulation Th,

that is, for any real function ϕ on R2 the function Ihϕ is linear on any triangle T ∈ Th and

(Ihϕ)(Xi) = ϕ(Xi) at every node Xi of Th. Note that we have Ihϕ ∈ Vh. We consider the

mapping S(τ) : L∞(R2) → L∞(R2) defined as a composition of the operator Ih and the

scheme (5.2.16). More precisely using the mapping G given in (5.2.21)-(5.2.22) we have

S(τ)ϕ = G(τ, Ihϕ). (5.2.27)
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Then the numerical scheme (5.2.16) is equivalent to the scheme (5.2.27) where the nu-

merical solution is evaluated only at the points of the mesh. Therefore the convergence

of the scheme (5.2.16) can be obtained through Theorem 5.2.4, where the mapping S(τ)

is given by (5.2.27). To this end we only need to verify the conditions (5.2.23)-(5.2.26)

for S(τ) given by (5.2.27). The essential property of the monotonicity of S(τ) follows

from the monotonicity of G and Ih. The condition (5.2.24) follows trivially from the form

(5.2.21)-(5.2.22) of the mapping G. Now we consider condition (5.2.25) and its stronger

form (5.2.26).

By the polynomial approximation theory [31], there exist a positive constant K such that

for all ϕ ∈ C∞
0 (R2),

|Ihϕ− ϕ| 1,∞ ≤ Kh|ϕ| 2,∞. (5.2.28)

Substituting ϕ into scheme (5.2.16), we have

S(∆t)ϕ|(x,y)=Xi
− ϕi

∆t
= −

∑
j∈Ii

H(∇ϕh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi). (5.2.29)

In view of the fact that
∑
j∈Ii

γij = 1 and (5.2.28)

∣∣∣∣∣H(∇ϕ(Xi))−
∑
j∈Ii

H(∇ϕh|Tj
)γij

∣∣∣∣∣ = 0(h). (5.2.30)

By Lemma 5.1.1, for a polynomial vh of degree ≤ 1, ∇vh =
→
C and we have

3ε

µ(Vi)

∑

k∈Ni

aik(vk − vi) = − 3ε

µ(Vi)

∫ ∫

Vi

∇vh∇ϕi dx dy

= − 3ε

µ(Vi)

∫ ∫

Vi

→
C.∇ϕi dx dy

= 0.

Thus the bilinear form vanishes other the space of polynomial of degree ≤ 1. Therefore,

using Bramble-Hilbert Theorem [31] and the fact that ε = o(h), see (5.2.17), we obtain

the conclusion that for ϕ ∈ C∞
0 (R2)

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi) = 0(h). (5.2.31)
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Combining (5.2.29) with (5.2.30) and (5.2.31), we have

∣∣∣∣∣
[
S(∆t)ϕ− ϕ

∆t
+ H(∇ϕ)

]

(x,y)=Xi

∣∣∣∣∣

≤
∣∣∣∣∣
∑
j∈Ii

H(∇ϕh|Tj
)γij +

3ε

µ(Vi)

∑

k∈Ni

aik(ϕk − ϕi) + H(∇ϕ)

∣∣∣∣∣
(x,y)=Xi

(5.2.32)

≤ 0(h(|ϕ| 1,∞ + |ϕ| 2,∞)).

For convergence we assume that both ∆t and h approach to zero. Hence the consistent

condition (5.2.25) follows from (5.2.32). Moreover, if we assume that ∆t = o(h) and

h = o(∆t) the estimate (5.2.32) implies (5.2.26). Hence we have the following convergence

result.

Theorem 5.2.5 Let the family of triangulation (Th) be regular and satisfy the condition

(5.2.11). Let H ∈ C0,1(R2) and u0 ∈ C0,1(R2). Then the numerical solution vn
h obtained

by (5.2.16) with ε ≥ Ch and ε = o(h) converges to the exact solution u of the problem

(5.1.1)-(5.1.2) , i.e., for any t′ > 0 we have

sup
i,n≤t′/∆t

|u(Xi, tn)− vn
i | → 0, as ∆t → 0, h → 0.

Moreover, if 0 < inf ∆t
h
≤ sup ∆t

h
< ∞, then there exists a positive constant C3 indepen-

dent of ∆t and h such that

sup
i,n≤t′/∆t

|u(Xi, tn)− vn
i | ≤ C3

√
h.

Remark 5.2.6 As Xu and Zikatanov [136] have shown that a formulation similar to

(5.2.6) holds in higher dimensional space and Theorem 5.2.5 also holds for arbitrary spatial

dimension, the generalization to higher dimensional space is straight forward.
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5.2.4 Numerical results

We present the results of our numerical experiments for the nonstandard monotone

schemes for Hamilton-Jacobi equations with convex and nonconvex Hamiltonians and

with smooth and discontinuous initial conditions. We compare them with the standard

techniques.

Example 5.2.1 We consider the combustion equation, where the Hamiltonian is convex

function, which is often used in testing numerical methods, [129], [91]:

∂v

∂t
−

√
1 + v2

x + v2
y = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.33)

v(x, y, 0) = cos(2πy)− cos(2πx), (x, y) ∈ (0, 1)× (0, 1) (5.2.34)

with periodic boundary conditions.

We use a triangulation with 6240 elements on [0, 1] × [0, 1], which satisfies condition

(5.2.10). The numerical solution obtained with ε = 0.01 and ∆t = 0.01 is presented

on Figure 5.2. For comparison we consider the standard Euler scheme for the equation

(5.2.9) which is monotone only for sufficiently small values of ∆t, see [91] for details.

The numerical solution obtained for the same value of the parameters, that is, ε = 0.01

and ∆t = 0.01, is presented on Figure 5.3. The advantage of the considered nonstandard

method with regard to preserving the qualitative behavior of the solution apparent. One

observes, for instance, that the nonstandard scheme is stable with respect to the mono-

tonicity of solution contrary to the standard scheme.

86

 
 
 



0

0.5

1

0

0.5

1

−1

0

1

2

3

xy

v

Figure 5.2: Numerical solution of (5.2.33)-(5.2.34) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Figure 5.3: Numerical solution of (5.2.33)-(5.2.34) using the standard Euler time dis-

cretization to (5.2.9) with ε = 0.01, ∆t = 0.01.
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Example 5.2.2 We consider the same equation as in Example 5.2.1 but with discontin-

uous initial condition where y ∈ [0, 1]:

∂v

∂t
−

√
1 + v2

x + v2
y = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.35)

v(x, y, 0) =

{
(1− 0.1x(1− x))(cos(2πy)− cos(2πy)) , 0 ≤ x < 0.5

(1− 0.1x(1− x))(cos(2πy)− cos(2πy)) + 0.1 , 0.5 < x ≤ 1.
(5.2.36)

with periodic boundary conditions.

We consider the same triangulation as in Example 5.2.1. The numerical solution obtained

by nonstandard technique with ε = 0.01 and ∆t = 0.01 is presented n Figure 5.4. It is

also clear that the monotonicity of numerical solution with respect to the initial value is

preserved.
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Figure 5.4: Numerical solution of (5.2.35)-(5.2.36) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Example 5.2.3 We consider the following equation, where the Hamiltonian is nonconvex

function:

∂v

∂t
+ cos(vx + vy + 1) = 0, (x, y) ∈ (0, 1)× (0, 1), t > 0 (5.2.37)

v(x, y, 0) = cos(2πy)− cos(2πx), (x, y) ∈ (0, 1)× (0, 1) (5.2.38)

with periodic boundary conditions.

Once again we consider the same triangulation as an example 5.2.1. The numerical

solution obtained by nonstandard technique with ε = 0.01 and ∆t = 0.01 is presented

n Figure 5.5. The numerical solution obtained by the standard method with the same

value of parameters ε and ∆t is presented on Figure 5.6. We can observe that the result

by nonstandard scheme has a good resolution.
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Figure 5.5: Numerical solution of (5.2.37)-(5.2.38) using the nonstandard method (5.2.16)

with ε = 0.01, ∆t = 0.01.
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Figure 5.6: Numerical solution of (5.2.37)-(5.2.38) using the standard Euler time dis-

cretization to (5.2.9) with ε = 0.01, ∆t = 0.01.
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5.3 Total Variation Diminishing Nonstandard Finite

Difference Schemes for Conservation Laws

In this section, we consider the Cauchy problem (5.1.3)-(5.1.4) for conservation laws. The

equation (5.1.3) describe the behavior of many different physical phenomena including

traffic flow [135]. It is well known [90] that the solution of (5.1.3) may become discon-

tinuous as time evolves, even for smooth v0(x) given in (5.1.4). Thus it turn requires

an entropy condition to select the physical relevant discontinuous solutions, called the

entropy solutions.

Here, we assume that the data functions f and v0 are such that equations (5.1.3)-(5.1.4)

has unique entropy solution, e.g., f smooth and uniformly convex and v0 ∈ L∞(R), see

[46, Section 3.4]. There is a well known theory regarding the existence and uniqueness

of an entropy solution, using special integral structure of the equation (5.1.3), [88].

A very successful class of schemes for solving (5.1.3)-(5.1.4) is the class of total variation

diminishing conservative schemes which resolve discontinuities in the solutions without

spurious oscillations displayed by numerical solutions. We construct nonstandard implicit

and explicit conservative schemes, including Runge-Kutta higher order schemes, which

are total variation diminishing without a restriction on the time step size. Moreover, the

implicit schemes have the advantages of being computationally simpler.

In Subsection 5.3.1 we give some preliminaries settings and results including the Harten’s

lemma. In Subsection 5.3.2 we formulate an implicit nonstandard finite difference scheme

using nonlocal approximation of nonlinear terms. Subsection 5.3.3 deals with explicit and

Runge-Kutta nonstandard finite difference schemes where renormalization of the denom-

inator is used. Numerical results by both implicit and the explicit methods are presented

in Subsection 5.3.4. The numerical solution of Hamilton-Jacobi equation in one space

dimension obtained using a discontinuous Galerkin method approximating its derivatives

using nonstandard TVD method is given in Section 5.3.5.
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5.3.1 Preliminaries

For simplicity, we assume that the grid points {xj}∞j=1 are uniformly distributed with the

cell size xj+1 − xj = ∆x.

Following this space discretization, the equation for conservation laws (5.1.3) is written

as a system of ordinary differential equations of the form

wt = L(w), (5.3.1)

where w = (wj) and wj(t) ≈ v(xj, t). The operator L in (5.3.1) is obtained from the

following spacial discretization

(L(w))j = − 1

∆x
(
∧
f j+ 1

2
−

∧
f j− 1

2
),

where
∧
f j+ 1

2
=

∧
f(wj, wj+1) is a numerical flux function which is nondecreasing in the first

argument and nonincreasing in the second; Lipschitz continuous in all its arguments, and

satisfies the consistency condition

∧
f(w̃, w̃,) = f(w̃).

Conservative scheme for equation (5.1.3) has the form

d

dt
wj = − 1

∆x
(
∧
f j+ 1

2
−

∧
f j− 1

2
). (5.3.2)

For choices of numerical flux, we refer to, e.g., [111]. Notice that (5.3.2) is written in

a semidiscrete method of lines form, while in practice the time variable t must also be

discretized.

Let a mesh tn = n∆t, n = 0, 1, 2, ..., in the time direction be given. As usual wn denotes

an approximation of w at t = tn. Below we propose a scheme of explicit Euler-type, which

is the familiar form of conservative scheme

wn+1
j = wn

j −
∆t

∆x

(∧
f(wn

j , wn
j+1)−

∧
f(wn

j−1, w
n
j )

)
. (5.3.3)

Conservative schemes are especially suitable for computing entropy solutions with shocks,

because of the important Lax-Wendroff Theorem [89], which states that solutions to

conservative schemes if convergent, would converge to a weak solution of (5.1.3).
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The Lax-Wendroff Theorem does not say anything about whether the method converges,

only that if a sequence of approximations converges then the limit is a weak solution of

(5.1.3). For that, we need some form of strong stability to guarantee convergence. A very

successful method which guarantees convergence is total variation diminishing method.

Definition 5.3.1 A numerical scheme (5.3.3) is called total variation diminishing (TVD)

if TV (wn) is decreasing with respect to n, that is,

TV (wn+1) ≤ TV (wn), n = 0, 1, 2, ...,

where the total variation of a grid function wn is defined by

TV (wn) =
+∞∑

j=−∞
|wn

j+1 − wn
j |.

The TVD property of numerical methods is often proved by using the Harten’s Lemma.

We give below a version dealing with both the explicit and the implicit cases [64], [61].

Lemma 5.3.1 (Harten) Consider the explicit scheme

wn+1
j = wn

j −
(
−Cj+ 1

2
(wn

j+1 − wn
j ) + Dj− 1

2
(wn

j − wn
j−1)

)
, (5.3.4)

and the implicit scheme

wn+1
j = wn

j −
(
−Cj+ 1

2
(wn+1

j+1 − wn+1
j ) + Dj− 1

2
(wn+1

j − wn+1
j−1 )

)
, (5.3.5)

where Cj+ 1
2

and Dj− 1
2

are functions of wn and /or wn+1 at various (usually neighboring)

grid points. If Cj+ 1
2
≥ 0 and Dj− 1

2
≥ 0, then the scheme (5.3.5) is TVD. If in addition

to these conditions we have Cj+ 1
2
+ Dj+ 1

2
≤ 1, then the scheme (5.3.4) is TVD.

5.3.2 Implicit nonstandard schemes by nonlocal approximation

Here, we design nonstandard schemes by exploiting the nonlocal approximation of non-

linear terms as stated in (ii) of Definition 5.1.2. We consider nonlocal approximation

of the function L, given in (5.3.1), for deriving nonstandard total variation diminishing

schemes for equation (5.1.3). The next stated techniques are discussed in the case when

L is obtained from spacial discretization using Lax-Friedrichs numerical flux [90]

∧
f j+ 1

2
=

1

2
(f(wj+1) + f(wj)− α(wj+1 − wj)) , (5.3.6)

α = max
w
|f ′(w)|, (5.3.7)

the maximum being taken over the relevant range of w.
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We consider nonlocal approximation of the function L for deriving nonstandard TVD

schemes for equation (5.1.3). Below, we propose an implicit scheme of Euler type

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− (wn+1
j+1 − wn+1

j−1 )
f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
. (5.3.8)

We should note that the linear terms in (5.3.1) are evaluated at t = tn+1. The expression

f(wj+1) − f(wj−1) is multiplied and divided by wn
j+1 − wn

j−1, where the multiplier is

evaluated at t = tn+1 and the remaining part of the expression evaluated at t = tn.

One of our main result in this section is the following theorem:

Theorem 5.3.1 The scheme (5.3.8) is qualitatively stable with respect to the total varia-

tion diminishing property (5.1.7).

Proof. The scheme (5.3.8) can be written as

wn+1
j = wn

j +
∆t

2∆x

(
α− f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
(wn+1

j+1 − wn+1
j )

− ∆t

2∆x

(
α +

f(wn
j+1)− f(wn

j−1)

wn
j+1 − wn

j−1

)
(wn+1

j − wn+1
j−1 ).

Therefore the scheme (5.3.8) can be represented in the form (5.3.5) with

Cj+ 1
2

=
∆t

2∆x

(
α− f(wn

j+1)− f(wn
j−1)

wn
j+1 − wn

j−1

)
, Dj− 1

2
=

∆t

2∆x

(
α +

f(wn
j+1)− f(wn

j−1)

wn
j+1 − wn

j−1

)
.

Using (5.3.7), we obtain that Cj+1 ≥ 0 and Dj− 1
2
≥ 0 for all j. Hence it follows from

Lemma 5.3.1 that the scheme (5.3.8) is TVD. ¥

Using standard techniques of numerical analysis [90], one can easily obtain that for lin-

ear systems the scheme (5.3.8) is consistent and unconditionally stable. Moreover, the

qualitative stability of the scheme (5.3.8) also does not impose any condition on ∆x and

/or ∆t.

We should note that one step in the time dimension requires the solutions of a tridiagonal

linear system. Hence the computation effort is similar to the one for explicit methods.

Furthermore, the suggested scheme is not unique. One may use a different kind of nonlocal

approximation to obtain a TVD scheme. For example, the scheme

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− (wn+1
j+1 − wn+1

j )
f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)

− ∆t

2∆x

(
(wn+1

j − wn+1
j−1 )

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)

is also TVD.
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5.3.3 Explicit nonstandard schemes by renormalization

The schemes in this subsection are based on the renormalization of the denominator of

the discrete derivatives, see Definition 5.1.2 (i). This means that the denominator ∆t

in the discrete time derivative is replaced by a function ψ(∆t) satisfying (5.1.5). In

order to obtain elementary stable schemes, that is, schemes which are qualitatively stable

with respect to fixed points of the differential equations and their stability, the following

renormalization was considered, [103], [8]:

ψ(∆t) =
φ(q∆t)

q
, (5.3.9)

where the function φ is such that

φ(z) = z + o(z2) as z → 0, (5.3.10)

0 < φ(z) < 1 for z > 0, (5.3.11)

and q = max{|λ|}, λ tracing the eigenvalues of the Jacobian J(ṽ) of the right hand side of

equation (5.3.1) at the fixed points ṽ of the equation. The choice of the number q is not

so critial. In practice, one may take q = max ||J(ṽ)||∞, where ||.||∞ is the matrix norm

associated with the supremum norm on Rn. We will show that similar renormalization

also ensures the TVD property of the scheme. We consider function ψ as given by (5.3.9)

where the value of q is suitably determined by the function L.

Let us consider first the Euler scheme

wn+1 − wn

ψ(∆t)
= L(wn), (5.3.12)

where L is also obtained from special discretization using Lax-Friedrichs numerical flux

given in (5.3.6)

The second main result in this section is the following theorem.

Theorem 5.3.2 The scheme (5.3.12) where

ψ(z) =
φ( αz

∆x
)

α
∆x

, z > 0,

and φ satisfies conditions (5.3.10)-(5.3.11) is qualitatively stable with respect to total

variation diminishing property (5.1.7).
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Proof. The scheme (5.3.12) can be written in the form

wn+1
j = wn

j +
ψ(∆t)

2∆x

(
α(wn

j+1 − 2wn
j + wn

j−1)− f(wn
j+1) + f(wn

j−1)
)

= wn
j +

ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)
(wn

j+1 − wn
j )

−ψ(∆t)

2∆x

(
α +

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)
(wn

j − wn
j−1).

Therefore (5.3.12) can be represented in the form (5.3.4) with

Cj+ 1
2

=
ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)

Dj− 1
2

=
ψ(∆t)

2∆x

(
α +

f(wn
j )− f(wn

j−1)

wn
j − wn

j−1

)
.

Using the definition of α, see (5.3.7), it is easy to see that Cj+1 ≥ 0, and Dj− 1
2
≥ 0.

Furthermore, we have

Cj+1 + Dj+ 1
2

=
ψ(∆t)

2∆x

(
α− f(wn

j+1)− f(wn
j )

wn
j+1 − wn

j

)
+

ψ(∆t)

2∆x

(
α +

f(wn
j+1)− f(wn

j )

wn
j+1 − wn

j

)

=
φ(α∆t

∆x
)

α
∆x

2∆x
(2α) = φ(

α∆t

∆x
).

Then it follows from (5.3.11) that Cj+1 + Dj+ 1
2
≤ 1. Hence we can apply the Harten’s

Lemma, see Lemma 5.3.2, and obtain that the scheme (5.3.12) is TVD. ¥

Renormalization can also be used in higher order methods, e.g., Runge-Kutta methods.

For investigation of TVD properties a Runge-Kutta method is typically written in the so

called Shu-Osher form, [48], namely

y(0) = wn

y(i) =
i−1∑
j=1

(λijy
(j) + ∆tµijL(y(j))), i = 1, 2, ...,m

wn+1 = y(m).

By consistency
i−1∑
j=0

λij = 1, i = 1, ..., m.

Therefore in each intermediate step of the method y(i) is a convex combination of Euler

forward operators:

y(i) =
i−1∑
j=1

λij

(
y(j) + ∆t

µij

λij

L(y(j))

)
.
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If these operators are TVD then the Runge-Kutta method is also TVD [48]. Following

the result of Theorem 5.3.2 we will obtain a TVD scheme if the Euler operator involving

y(j) above is renormalized by

ψij(∆t) =
φ(

αµij∆t

λij∆x
)

αµij

λij∆x

,

where the function φ satisfies conditions (5.3.10)-(5.3.11). Note that this function might

have to satisfy additional conditions for the scheme to be accurate of particular order.

We will illustrate this by an example.

Following the discussion above, the following two stage scheme is TVD:

y(1) = wn + φ

(
α∆t

∆x

)
∆x

α
L(wn) (5.3.13)

wn+1 =
1

2
wn +

1

2
y(1) +

1

2
φ

(
α∆t

∆x

)
∆x

α
L(y(1)). (5.3.14)

Using standard techniques one can also obtain that it is of order two provided

φ(z) = z + o(z3).

Remark 5.3.1 Since the schemes (5.3.8) and (5.3.12) are TVD, the convergence follows

from [90, Theorem 15.2].

5.3.4 Numerical results

We present the results of our numerical experiments for the implicit and explicit nonstan-

dard total variation diminishing schemes considered in Subsection 5.3.2 and Subsection

5.3.3, respectively, to Burger’s equation. We compare them with the standard techniques

given in [60].

Example 5.3.1 We apply the schemes considered in Subsection 5.3.2 and Subsection

5.3.3 to the Burger’s equation

vt +

(
1

2
v2

)

x

= 0, −1 ≤ x ≤ 9, t > 0. (5.3.15)

Here the flux is f(v) = 1
2
v2.
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It is well known [90] that the entropy solution of equation (5.3.15) develops discontinuities

(shocks) even for smooth initial condition. To simplify the matters we take the Riemann

initial data

v(x, 0) =

{
1.2, − 1 ≤ x < 0

0, 0 ≤ x ≤ 9.
(5.3.16)

The entropy solution of the problem (5.3.15)-(5.3.16) is given by

v(x, t) =

{
1.2 , x < 0.6t

0 , x ≥ 0.6t.

For the considered problem (5.3.15)-(5.3.16), after some obvious transformations, the

scheme (5.3.8) can be written in the form

wn+1
j = wn

j +
∆t

2∆x

(
α(wn+1

j+1 − 2wn+1
j + wn+1

j−1 )− 1

2
(wn+1

j+1 − wn+1
j−1 )(wn

j+1 + wn
j−1)

)
. (5.3.17)

Below, the solid line is the exact solution v(x, t), the points joined by a dashed line are

numerical solutions. It was shown in [61] that non TVD methods typically produce oscil-

lations around the points of discontinuity. Figure 5.7 shows such oscillations around the

point x = 0 produced by the standard Euler method applied to problem (5.3.15)-(5.3.16).

Figures 5.8, 5.9 and 5.10 show the numerical solution of (5.3.15)-(5.3.16) obtained by

nonstandard implicit scheme (5.3.17) for various time steps ∆t. One can observe that

while an increase in ∆t affects the accuracy of the solution it nevertheless remains TVD

and free of spurious oscillations.
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Figure 5.7: Numerical solution of (5.3.15)-(5.3.16) by the standard explicit Euler method

(5.3.3) with ∆x = ∆t = 0.2.

Similar results are obtained using the explicit schemes (5.3.12). For the considered problem

(5.3.15)-(5.3.16), Euler’s method (5.3.12) can be written as

wn+1
j = wn

j +
1

2α
φ

(
α∆t

∆x

) (
α(wn

j+1 − 2wn
j + wn

j−1)− (wn
j+1)

2 + (wn
j−1)

2
)
, (5.3.18)

where we take φ(z) = 1 − e−z. The numerical solution given by the scheme (5.3.18)

computed with ∆x = ∆t = 0.2 is presented on Figure 5.11. Figure 5.12 represents

the solution produced by the Runge-Kutta method (5.3.13)-(5.3.14) with renormalizing

function φ(z) = 1−e−z2

z
so that the method is of order two. Let us note that since the

exact solution is discontinuous, a higher order method does not necessarily give a better

approximation. Naturally, the accuracy can be improved by decreasing the step sizes.

However, the major point here is that irrespective of the step sizes the numerical solutions

is free of spurious oscillations and its total variation does not increase with time, for this

particular equation it is in fact constant.
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Figure 5.8: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = ∆t = 0.2.
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Figure 5.9: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = 0.2, ∆t = 0.5.
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Figure 5.10: Numerical solution of (5.3.15)-(5.3.16) by the implicit nonstandard scheme

(5.3.17) with ∆x = 0.2, ∆t = 1.0.
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Figure 5.11: Numerical solution of (5.3.15)-(5.3.16) by the explicit nonstandard scheme

(5.3.18) with ∆x = ∆t = 0.2.
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Figure 5.12: Numerical solution of (5.3.15)-(5.3.16) by the Runge-Kutta nonstandard

method (5.3.13)-(5.3.14) with ∆x=∆t = 0.2
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5.3.5 Numerical solution of Hamilton-Jacobi equation

via TVD method for conservation laws

Consider the one-space dimensional Dirichlet problem for Hamilton-Jacobi equation:

ut + H(ux) = 0 (5.3.19)

u(x, 0) = u0(x), (5.3.20)

where H is smooth function of ux. Differentiate (5.3.19) with respect to x and let v = ux.

Then a problem (5.3.19)-(5.3.20) is equivalent to the following problem for conservation

laws:

vt + H(v)x = 0 (5.3.21)

v(x, 0) =
d

dx
u0(x). (5.3.22)

Thus, the question of viscosity solution of (5.3.19) is equivalent to the question of entropy

solution of (5.3.21). More precisely, if u is the unique viscosity solution of (5.3.19) satis-

fying (5.3.20), then v = ux is the unique entropy solution of (5.3.21) satisfying (5.3.22).

Conversely, if v is the unique entropy solution of (5.3.21) satisfying (5.3.22), then u defined

by

u(x, t) =

∫ x

v(y, t)dy

is the unique viscosity solution of (5.3.19) satisfying (5.3.20). Furthermore, if u0 is

bounded uniformly continuous function in R, then ux(x, t) = v(x, t) is satisfied almost

everywhere [77].

We recall that this equivalence has been exploited by many authors trying to translate

successful numerical methods for conservation laws to methods for the Hamilton-Jacobi

equations.

If we want to solve the problem (5.3.19)-(5.3.20) on the finite interval [a, b], first we divide

it into N cells as follows:

a = x 1
2

< x 3
2

< ... < xN+ 1
2

= b.

We denote

Ij = (xj− 1
2
, xj+ 1

2
), xj =

1

2
(xj− 1

2
+ xj+ 1

2
), ∆xj = xj+ 1

2
− xj− 1

2
, h = max

j
∆xj, j = 1, 2, ..., N.
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Now, we define the following approximation space

V k
h = {w : w|Ij

∈ P k(Ij), j = 1, ..., N},

where P k(Ij) is the set of all polynomials of degree ≤ k on the cell Ij.

A kth-order discontinuous Galerkin scheme for the problem (5.3.19)-(5.3.20) can be de-

fined as follows [70]: find u ∈ V k
h , such that

∫

Ij

d

dt
(ux)f dx−

∫

Ij

H(ux)fx dx +
∧
Hj+ 1

2
f−

j+ 1
2

−
∧
Hj− 1

2
f+

j− 1
2

= 0, j = 1, ..., N (5.3.23)

holds for any f ∈ V k−1
h . Here

∧
Hj+ 1

2
=

∧
H

(
(ux)

−
j+ 1

2

, (ux)
+
j+ 1

2

)

is a monotone flux, (ux)
±
j+ 1

2

and f± are the numerical approximations, respectively, to the

point values of ux(xj+ 1
2
, t), and f(xj+ 1

2
) from left and right and α = maxv |H ′(v)| with

maximum taken over the range covered by (ux)
−
j+ 1

2

and (ux)
+
j+ 1

2

. We will mainly use the

Lax-Friedrichs flux

∧
H

(
(ux)

−
j+ 1

2

, (ux)
+
j+ 1

2

)
=

1

2

(
H((ux)

−
j+ 1

2

) + H((ux)
+
j+ 1

2

)− α
(
(ux)

+
j+ 1

2

− (ux)
−
j+ 1

2

))
.(5.3.24)

Notice that the method described above is exactly the discontinuous Galerkin method for

the conservation law equation (5.3.21) satisfied by the derivative v = ux, see [70]. This

only determines u for each element up to a constant, since it is only a scheme for ux. In

[70], the missing constant can be obtained in one of the following two ways:

The first way is to require that

∫

Ij

(ut + H(ux))f dx = 0, j = 1, ..., N,

for all f ∈ V 0
h , that is

∫

Ij

(ut + H(ux)) dx = 0, j = 1, ..., N. (5.3.25)

The second one is to use

u(xj, t) = u(x1, t) +

∫ xj

x1

ux(x, t) dx (5.3.26)

to determine the missing constant for the cell Ij.
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About the stability of the method proposed above, we can quote the following result of

Jiang and Shu [73]. Here we assume compact support or periodic boundary condition for

the solution u.

Lemma 5.3.2 [73] The following L2−stability result for the derivative ux holds for the

discontinuous Galerkin method (5.3.23), for any order of accuracy k applied to problem

(5.3.19)-(5.3.20):

d

dt

∫ b

a

u2
x dx ≤ 0. (5.3.27)

It is clear that the function ϕ(t) =
∫ b

a
u2

x(x, t)dx is non-increasing in t. The relation

(5.3.27) implies total variation bounded (TVB) property for the numerical solution of u:

TV (u) =

∫ b

a

|ux(x, t)| dx ≤
√

b− a

√∫ b

a

(ux(x, t))2 dx

≤
√

b− a

√∫ b

a

(
d

dx
u0(x)

)2

dx.

This is a rather strong stability result, considering that it applies even if the derivative of

the solution ux develops discontinuities, and the scheme (5.3.23) can be of arbitrary high

order in accuracy. It also implies convergence of at least a subsequences of the numerical

solution u when h → 0. However, this stability result is not strong enough to imply that

the limit solution is the viscosity solution of (5.3.19). However, in case when k = 1, the

scheme (5.3.23) becomes

d

dt
ux(xj, t) = − 1

∆xj

( ∧
Hj+ 1

2
−

∧
Hj− 1

2

)
(5.3.28)

which is the conservative scheme for v = ux. We know [89] that solutions of such schemes,

if convergent, would converge to an entropy solutions of (5.3.21). Moreover, the numerical

solution for u obtained from the relation v = ux would converge to a viscosity solution of

(5.3.19). Here we consider only the case when k = 1.

We adopt a local orthogonal basis of V 1
h over Ij, namely, {φ(j)

0 , φ
(j)
1 }, where φ

(j)
0 (x) = 1

and φ
(j)
1 = x− xj, x ∈ Ij. The solution u(x, t) ∈ V 1

h of (5.3.19)-(5.3.20) can be written as

u(x, t) = wj(t) + vj(t)(x− xj), x ∈ Ij, j = 1, ..., N. (5.3.29)
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From (5.3.29), it is clear that

∂

∂x
u(x, t) = vj(t) (5.3.30)

and

u(xj, t) = wj(t).

Substituting u given by (5.3.29) into (5.3.28) and remember (5.3.30) and (5.3.24), we have

the following scheme

d

dt
vj(t) = − 1

2∆xj

(H(vj+1(t))−H(vj−1(t))− α(vj+1(t)− 2vj(t) + vj−1(t))) . (5.3.31)

The scheme (5.3.31) is the same as scheme given by (5.3.2) in Subsection 5.3.2 with

Lax-Friedrichs flux given by (5.3.24) for the conservation law (5.3.21) satisfied by the

derivatives v = ux.

The function wj(t) (missing constant) is obtained from (5.3.25) as follows

∫

Ij

(
d

dt
(wj(t) + vj(t)(x− xj)) + H(vj(t)))

)
dx = 0, j = 1, ..., N.

Since
∫

Ij
(x− xj) dx = 0, the above equation gives

d

dt
wj(t) = −H(vj(t)). (5.3.32)

For the time discretization, let ∆t be the constant time step and vn
j , wn

j , denote, respec-

tively, the approximation solutions vj and wj at time t = n∆t. The way for finding the

function u(x, t) can be carried out in the following steps:

Firstly, we evaluate vn
j in every Ij, using the nonstandard total variation diminishing

methods for (5.3.21)-(5.3.22) developed in Section 5.5.4, namely

vn+1
j = vn

j −
1

2α
φ

(
α∆t

∆xj

) (
H(vn

j+1)−H(vn
j−1)− α(vn

j+1 − 2vn
j + vn

j−1)
)
,

where φ(z) = 1− e−z.

Secondly, wn
j is given by average of two solutions given by (5.3.32) and (5.3.26).

Finally, we update u(x, n∆t) = wn
j + vn

j (x− xj), x ∈ Ij.
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Next, we provide numerical experimental result to demonstrate the behavior of our

scheme.

Example 5.3.2 Consider the initial-boundary value problem.





ut + (ux)2

2
= 0 , 0 ≤ x ≤ 2π, t > 0

u(x, 0) = sin(x) , 0 ≤ x ≤ 2π

u(0, t) = u(2π, t) , t ≥ 0.

(5.3.33)

Here, the Lax-Friedrichs flux given by (5.3.6) and uniform meshes of N = 70 elements are

used. The exact solution when u is still smooth is obtained by the characteristic methods.

First solve x0 from x = x0 +cos(x0)t then get u as u(x, t) = sin(x0)+ (cos(x0))2

2
t. In Figure

5.13, the asterisks joined by lines is numerical solution at t = 2 with

∆t = 0.01, ∆x = 2π/70 for the P 1 case while the solid line is exact solution. It is clear

that at t = 2 the exact solution develops a discontinuous derivative and the numerical

solution approximates the viscosity solution very well.
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t=2

x

u

Figure 5.13: Numerical solution of (5.3.33) with ∆x = 2π
70

and ∆t = 0.01.
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Chapter 6

Conclusion

The Hausdorff continuous functions, being a particular class of interval valued functions,

belong to what is usually called Interval Analysis, see [107]. Nevertheless, recent results

have shown that they can provide exact solutions to problems formulated in terms of point

valued functions [2]. A long outstanding problem related to the Dedekind order completion

of spaces C(X) of real valued continuous functions on rather arbitrary topological spaces

X was solved through Hausdorff continuous [4]. Following this breakthrough, a significant

improvement of the regularity properties of the solutions of large classes of nonlinear

partial differential equations obtained through the Dedekind order completion method,

see [109], was discussed in [12, 13]. Namely, it was shown that these solutions can be

assimilated with the class of Hausdorff continuous functions on the open domains Ω. The

applications of the class of Hausdorff continuous functions [12, 13, 10] show that this class

may play an important role in what is typically called Real Analysis. In particular, one

may note that one of the main engines behind the development of the various spaces

in Real and Abstract Analysis are the partial differential equations with the need to

assimilate the various types of ”weak” solutions. Moreover, the set of Hausdorff continuous

functions might be a viable alternative to some of the presently used functions (e.g.

Lebesgue spaces, Sobolev spaces) with the advantage of being both more regular and

universal.

In this work, the Hausdorff continuous functions are linked with the concept of discontin-

uous viscosity solutions. As shown in the Chapter 1 the definition of viscosity solution,

see Definition 1.3.3, has an implicit interval character since it places requirements only

on the upper semicontinuous envelope S(u) and the lower semicontinuous envelope I(u).
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For a Hausdorff continuous viscosity solution u, the functions I(u) and S(u) are as

close as they can be in the sense of the distance ρ defined by (2.3.6), namely, we have

ρ(I(u), S(u)) = 0.

Hence, the requirements that a viscosity solution is Hausdorff continuous has a direct

interpretation, which we find clearer than the requirements related to other concepts of

discontinuous viscosity solutions, e.g., envelope solutions.

In the theoretical study of this thesis, we come up with the following main results. First,

we define the concept of viscosity solution for interval valued functions in H(Ω). We

proved an existence theorem for Hausdorff continuous viscosity solution using Perron’s

method. The solution is constructed as a supremum of a subset of viscosity subsolu-

tions in the set of Hausdorff continuous functions. It is shown that there is the relation

between the Hausdorff continuous viscosity solutions and the existing theory of discon-

tinuous viscosity solutions. Namely, any H-continuous viscosity solution is discontinuous

viscosity solution as defined by Ishii, and it is typically also an envelope viscosity solu-

tion. Moreover, the H-continuous viscosity solutions is stronger concept than the concept

of discontinuous viscosity solution given by Ishii and as well as under wild the concept of

envelope viscosity solution. Uniqueness result have been shown using comparison prin-

ciple between H-continuous viscosity subsolutions and supersolutions. This comparison

principle is stronger than comparison principle used in connection with the lower semi-

continuous viscosity supersolutions and upper semicontinuous viscosity subsolutions in

the sense that the existence result holds under the same conditions. Sufficient conditions

for a weaker form of this comparison principle are given. However, it could be interesting

to give sufficient conditions for a strong comparison principle for Hausdorff continuous

viscosity subsolutions and supersolutions. Finally, we expressed the Hausdorff viscosity

solution of Hamilton-Jacobi equations as solutions to an operator equation involving the

extended a Hamiltonian operator in the same way as the classical solution of Hamilton-

Jacobi equations are solutions of operator equation associated of this Hamilton-Jacobi

equations. It is shown also that the value function of discounted minimum time problem

is an envelope viscosity solution of associated Hamilton-Jacobi-Bellman equation.

Numerical study deals with two approaches to numerical solutions for Hamilton-Jacobi

equations. First approach is a finite difference space discretization coupled with a non-

standard difference time discretization for constructing monotone scheme for any time

step size, see Section 5.2.
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This is motivated by the paper [91], where a severe restriction on the time step size is

imposed for the numerical scheme for Hamilton-Jacobi equations obtained through the

coupling of the finite difference method (in space) and the finite difference method (in

time) to be monotone.

We have relaxed this restriction by using Micken’s nonstandard finite difference method

[103]. More precisely, Micken’s rule of nonlocal approximation is exploited and this leads

to a nonstandard scheme that replicates the monotonicity property of the Hamilton-Jacobi

equations for all positive step sizes. Furthermore, the superiority of the nonstandard

method to the standard one is confirmed by numerical results.

The second approach is on total variation diminishing scheme for conservation laws. The

schemes preserving the essential physical property of diminishing total variation for con-

servation laws are studied in Section 5.3. Such schemes are free of spurious oscillations

around discontinuities. We have discussed nonstandard finite difference schemes, which

have this qualitative stability property. We used Micken’s rules of approximating nonlin-

ear terms in a nonlocal way and of renormalizing denominators. The obtained schemes

are computationally simple. Furthermore, the require no restriction on the time step-size

as typical for qualitatively stable nonstandard schemes.

We exploited the fact that in one space dimension the derivatives of the solutions u

of Hamilton-Jacobi equations satisfy conservation laws and applied the discontinuous

Galerkin method of Hu and Shu [70] to get the scheme for ux. This determines u for

each element up to a constant, since it is only the scheme for ux. The missing constant is

obtained combining two ways developed in [70].

We think that the results presented in this thesis provide a foundation for future research

in the following areas:

• Discontinuous viscosity solution of second order Hamilton-Jacobi equation in the sense

of Hausdorff continuous function;

• the validity of Theorem 3.6.4 in Rn, n ≥ 2;

• TVD property for conservation laws in higher dimensional space;

• conditions implying strong comparison principle between H-continuous viscosity subso-

lutions and supersolutions.

111

 
 
 


	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	CHAPTER 5
	5.1 Introduction
	5.2 A Monotone Scheme for Hamilton-Jacobi Equationsvia the Nonstandard Finite Difference Method
	5.3 Total Variation Diminishing Nonstandard FiniteDifference Schemes for Conservation Laws

	CHAPTER 6
	Bibliography



