
Chapter 3

Hausdorff Continuous Viscosity

Solutions of Hamilton-Jacobi

Equations

3.1 Introduction

Consider again the problem (1.1.1)-(1.1.2). As shown in the introduction the concept of

viscosity solution, see Definition 1.3.3, has an implicit interval character. Clearly Defini-

tion 1.3.3 treats functions which have the same upper and lower semicontinuous envelopes,

that is, have the same graph completion, as identical functions. On the other hand, since

different functions can have the same graph completion, a function can not in general

be identified from its graph completion, that is, functions with the same graph comple-

tion are indistinguishable. Using the properties of the lower and upper semicontinuous

envelopes one can easily see that the graph completion operator maps A(Ω) into F(Ω).

Following the above discussion we define the concept of viscosity solutions for the interval

valued functions in F(Ω) as follows.

Definition 3.1.1 A function u = [u, u] ∈ F(Ω) is called a viscosity solution of (1.1.1) if

u is a viscosity subsolution of (1.1.1) and u is a viscosity supersolution of (1.1.1).
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Definition 3.1.1 shows that a local bounded function u ∈ A(Ω) is a viscosity solution of

(1.1.1) in the sense of Definition 1.3.3 if and only if the interval valued function F (u) is

a viscosity solution of (1.1.1) in the sense of Definition 3.1.1. In this way the level of the

regularity of a solution u is manifested through the width of the interval valued function

F (u).

It is well known that without any additional restrictions the concept of viscosity solution

given in Definition 1.3.3 and by implication the concept of viscosity solution given in

Definition 3.1.1 is rather weak, [16]. This is demonstrated by the following example.

Example 3.1.1 Consider the following equation

ux(x) = 1, x ∈ (0, 1). (3.1.1)

Then the functions

v(x) =

{
x + 1 if x ∈ (0, 1) ∩Q

x if x ∈ (0, 1) \Q
and

w(x) =

{
x if x ∈ (0, 1) ∩Q

x + 1 if x ∈ (0, 1) \Q
are both viscosity solutions of equation (3.1.1) in terms of Definition 1.3.3, because

S(v)(x) = S(w)(x) = x + 1 and I(v)(x) = I(w)(x) = x are classical solutions of equation

(3.1.1).

The interval valued function

z = F (v) = F (w) (3.1.2)

given by

z(x) = [x, x + 1], x ∈ (0, 1)

is a viscosity solution of (3.1.1) in terms of Definition 3.1.1.

With the interval approach adopted here it becomes apparent that the distance between

I(u) and S(u) is an essential measure of the regularity of any solution u, irrespective

of whether it is given as a point valued function or as an interval valued function. If

no restriction is placed on the distance between I(u) and S(u) we will have some quite

meaningless solutions like the solutions in Example 3.1.1. On the other hand, a strong

restriction like I(u) = S(u) gives only solutions which are continuous.
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3.2 Hausdorff Continuous Viscosity Solution of Hamilton-

Jacobi Equations

In this section, we consider solutions u in the sense of Definition 3.1.1 for which the

Hausdorff distance, as defined by (2.3.6), between the functions I(u) and S(u) is zero, a

condition represented through the concept of Hausdorff continuity.

Definition 3.2.1 Let u = [u, u] ∈ H(Ω). Then u is called a Hausdorff continuous, or H-

continuous, viscosity subsolution of the Hamilton-Jacobi equation (1.1.1) if u is a viscosity

subsolution of (1.1.1).

Similarly u is called a Hausdorff continuous, or H-continuous, viscosity supersolution of

the Hamilton-Jacobi equation (1.1.1) if u is a viscosity supersolution of (1.1.1).

Finally, u is called a Hausdorff continuous or H-continuous viscosity solution of (1.1.1)

if it is simultaneously an H-continuous viscosity subsolution and H-continuous viscosity

supersolution of (1.1.1).

One of the advantages of the method in this thesis is that the notion of H-continuous

viscosity solution is stronger than the notion of viscosity solution in the sense of Definition

3.1.1 and by implication the notion of viscosity solution in the sense of Definition 1.3.3.

This is shown by the following theorem.

Theorem 3.2.1 Let u ∈ A(Ω) be locally bounded. If u is an H-continuous viscosity

solution of (1.1.1), then u is a viscosity solution of (1.1.1) in terms of Definition 1.3.3.

Proof. Since u is H-continuous viscosity solution of (1.1.1), by Definition 3.2.1, u = S(u)

is a viscosity subsolution and u = I(u) is a viscosity supersolution of (1.1.1). Thus u is

a viscosity solution of (1.1.1) in terms of Definition 1.3.3. ¥

Remark 3.2.1 The converse of Theorem 3.2.1 is false in general. Indeed, consider the

Example 3.1.1. The function z given in (3.1.2) is a viscosity solution of (3.1.1) in terms

of Definition 3.1.1 because S(v)(x) = x+1 and I(v)(x) = x are both classical solutions of

equation (3.1.1). But z is not an H-continuous function and thus it is not an H-continuous

viscosity solution of the equation (3.1.1). Hence, the requirement that a viscosity solution

is Hausdorff continuous function has a direct interpretation which we find clearer than

the requirements related to some other concepts of discontinuous viscosity solutions.
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3.3 The Envelope Viscosity Solutions and Hausdorff

Continuous Viscosity Solutions

Recognizing that the concept of viscosity solution given in Definition 1.3.3 is rather weak,

the authors of [16] introduce the concept of envelope viscosity solution. The concept

is defined in [16] for the equation (1.1.1) with Dirichlet boundary conditions. In order

to keep the exposition as general as possible we give the definition without explicitly

involving the boundary condition.

Definition 3.3.2 A function u ∈ A(Ω) is called envelope viscosity solution of the

Hamilton-Jacobi equation (1.1.1) if there exists a nonempty set Z1(u) of viscosity sub-

solutions of (1.1.1) and a nonempty set Z2(u) of viscosity supersolutions of (1.1.1) such

that

u(x) = sup
f∈Z1(u)

f(x) = inf
f∈Z2(u)

f(x), x ∈ Ω.

Remark 3.3.1 Let u ∈ A(Ω) be an envelope viscosity solution of (1.1.1). Then u is

also a viscosity solution of (1.1.1). Indeed, observe that S(u) is a viscosity subsolution of

(1.1.1) by Theorem 1.3.1(a) and I(u) is a viscosity supersolution of (1.1.1) by Theorem

1.3.1(b). Therefore, u is a viscosity solution of (1.1.1).

Considering the concept from geometrical point of view, one can expect that by ’squeezing’

the envelope viscosity solution u between a set of viscosity subsolutions and a set of

viscosity supersolutions the gap between I(u) and S(u) would be small. But under some

strong condition on u, namely,

I(S(u)) = I(u), S(I(u)) = S(u)

the Hausdorff distance between I(u) and S(u) is zero. However, in general this is not the

case. The following example shows that the concept of envelope viscosity solution does

not address the problem of the distance between I(u) and S(u). Hence one can have an

envelope viscosity solution of little practical meaning similar to the viscosity solution in

Example 3.1.1.
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Example 3.3.1 Consider the following equation on Ω = (0, 1)

−u(x)(ux(x))2 = 0, x ∈ Ω. (3.3.1)

For every α ∈ Ω we define the functions

φα(x) =

{
1 , x = α

0 , x ∈ Ω \ {α}

and

ψα(x) =

{
0 , x = α

1 , x ∈ Ω \ {α}.

We have

φα ∈ USC(Ω), ψα ∈ LSC(Ω), α ∈ Ω.

Furthermore, for every α ∈ (0, 1) the functions φα is a viscosity subsolution of (3.3.1)

while ψα is a viscosity supersolution of (3.3.1). Indeed, both functions satisfy the equation

(3.3.1) for all x ∈ Ω \ {α} and at x = α we have

−φα(α)p2 = −p2 ≤ 0 for all p ∈ D+φα(α) = (−∞, +∞),

−ψα(α)p2 = 0 ≥ 0 for all p ∈ D−ψα(α) = (−∞, +∞).

We will show that the function

u(x) =

{
1 , x ∈ Ω \Q
0 , x ∈ Q ∩ Ω

is an envelope viscosity solution of (3.3.1). Define

Z1 = {φα : α ∈ Ω \Q}
Z2 = {ψα : α ∈ Ω ∩Q}.

Then u satisfies

u(x) = sup
w∈Z1

w(x) = inf
w∈Z2

w(x)

which implies that it is an envelope viscosity solution of (3.3.1). Clearly neither u nor

F (u) is a Hausdorff continuous function. In fact we have F (u)(x) = [0, 1], x ∈ Ω. Thus,

u and F (u) are not H-continuous viscosity solutions of (3.3.1).
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The next interesting question is whether every H-continuous viscosity solution is an en-

velope viscosity solution. Since the concept of envelope viscosity solutions requires the

existence of sets of viscosity subsolutions and viscosity supersolutions, respectively, below

and above an envelope viscosity solution then an H-continuous viscosity solution is not in

general an envelope viscosity solution, e.g., when the Hausdorff continuous viscosity solu-

tions does not have any other viscosity subsolutions and viscosity supersolutions around

it. However in the essential case when the H-continuous viscosity solution is a supremum

of viscosity subsolutions or infimum of viscosity supersolutions it can be linked to an

envelope viscosity solution as stated in the next theorem.

Theorem 3.3.1 Let u = [u, u] be an H-continuous viscosity solution of (1.1.1) and let

Z1 = {w ∈ USC(Ω) : w − viscosity subsolution of (1.1.1), w ≤ u},
Z2 = {w ∈ LSC(Ω) : w − viscosity supersolution of (1.1.1), w ≥ u}.

(a) If Z1 6= ∅ and u(x) = sup
w∈Z1

w(x), then u is an envelope viscosity solution of (1.1.1).

(b) If Z2 6= ∅ and u(x) = inf
w∈Z2

w(x), then u is an envelope viscosity solution of (1.1.1).

Proof. (a) We choose the sets Z1(u) and Z2(u) required in Definition 3.2.1 as follows

Z1(u) = Z1, Z2(u) = {u}.

Then we have

u(x) = sup
w∈Z1(u)

w(x) = inf
w∈Z2(u)

w(x)

which implies that u is an envelope viscosity solution of (1.1.1).

The proof of (b) is done in a similar way. ¥

Let us note that if the conditions (a) and (b) in the above theorem are satisfied the both

u and u are envelope viscosity solutions and in this case it makes even more sense to

consider instead the H-continuous function u = [u, u]. More precisely, if conditions (a)

and (b) are satisfied, an envelope viscosity solution can be considered as a particular case

of Hausdorff continuous viscosity solution.
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3.4 Existence of Hausdorff Continuous Viscosity So-

lutions

One of the primary virtues of the theory of viscosity solutions is that it provides very

general existence and uniqueness theorems, [37]. In this section we will formulate and

prove existence theorems for H-continuous viscosity solutions in a similar form to Theorem

1.3.1 and Theorem 1.3.2 given in Chapter 1.

Theorem 3.4.1 (Properties of H-continuous viscosity solutions)

(a) Let U ⊂ H(Ω) be a set of H-continuous viscosity subsolutions of the Hamilton-Jacobi

equation (1.1.1) which is bounded from above. Then

u = supU

is an H-continuous viscosity subsolution of (1.1.1).

(b) Let Z ⊂ H(Ω) be a set of H-continuous viscosity supersolutions of the Hamilton-Jacobi

equation (1.1.1) which is bounded from below. Then

v = inf Z

is an H-continuous viscosity supersolution of (1.1.1).

(Both the supremum and the infimum are in the sense of the partial order (2.2.3) on

H(Ω)).

Proof . We will prove (a). The proof of (b) can be done in a similar way. Since u is

bounded from above, according to Theorem 2.4.1 (a), u = supU ∈ H(Ω) and by

Theorem 2.4.2 (a), we have

u = [I(S(ψ), S(ψ)],

where

ψ(x) := sup{w(x) : w = [w,w] ∈ U}, x ∈ Ω.

Using that S(w) = w is a viscosity subsolution of (1.1.1) for all w = [w,w] ∈ U , it follows

from Theorem 1.3.1 (a), that u = S(ψ) is a viscosity subsolution of (1.1.1).

By Definition 3.2.1, the function u is Hausdorff continuous viscosity subsolution of (1.1.1).

¥
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Since the partially ordered set H(Ω) is Dedekind order complete, it is an appropriate

medium for such an application of Perron’s method.

The technical lemma, sometimes called the Bump Lemma [16], showing that in some cases

the supremum of viscosity subsolution or the infimum of viscosity supersolution are indeed

viscosity solutions, can be formulated for Hausdorff continuous functions as follows.

Lemma 3.4.1 Let u = [u, u] ∈ H(Ω) be such that u is a viscosity subsolution of (1.1.1)

and u fails to be a viscosity supersolution of (1.1.1) at some point y ∈ Ω. Then, for any

δ > 0 there exists τ > 0 such that, for all r < τ, there exists a function w = [w,w] ∈ H(Ω)

with the following properties:

(i) w is a viscosity subsolution of (1.1.1),

(ii) w ≥ u in Ω,

(iii) w 6= u,

(iv) w(x) = u(x), x ∈ Ω\Br(y),

(v) w(x) ≤ max{u(x), u(y) + δ}, x ∈ Br(y).

Proof. Since u fails to be a viscosity supersolution of (1.1.1) at y ∈ Ω, there exists

ϕ ∈ C1(Ω) such that

h := H(y, u(y), Dϕ(y)) < 0, u(y) = ϕ(y), ϕ(x) ≤ u(x), x ∈ Br(y) and some r > 0.

For ε > 0, consider the function v ∈ C1(Ω) defined by

v(x) := ϕ(x) + ε− |x− y|2.

We can choose r small enough to have, in addition,

v(x) ≤ u(y) +
δ

2
+ ε, x ∈ Br(y). (3.4.1)

Note that (v − u)(x) ≤ (v − ϕ)(x) = −|x− y|2 + ε ≤ 0, |x− y| ≥ √
ε, and thus

v(x) ≤ u(x), for |x− y| ≥ r

2
(3.4.2)

if we choose ε < r2

4
. Moreover, if xn → y is such that u(xn) → u(y), we have

limn→∞(v − u)(xn) = ε > 0, so, for all r > 0,

sup
Br(y)

(v − u) > 0. (3.4.3)
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Let us prove that v is a classical viscosity subsolution of equation H(x, v, Dv) = 0 in

Br(y), i.e., H(x, v(x), Dv(x)) ≤ 0 , x ∈ Br(y), for sufficiently small ε, r > 0. For this

purpose, a local uniform continuity argument shows that

|v(x)− v(y)| = |ϕ(x)− |x− y|2 − ϕ(y)| ≤ ω1(r) + r2,

|Dv(x)−Dv(y)| = |Dϕ(x)− 2|x− y| −Dϕ(y)| ≤ ω2(r) + 2r

for any x ∈ Br(y), where ωi(i = 1, 2), are the moduli of continuity of ϕ and Dϕ.

We recall that if ϕ ∈ C(Ω), then the function ω : [0, +∞) → [0, +∞), defined by,

ω(δ) = sup{|ϕ(s)−ϕ(t)|, s, t ∈ Ω, |s−t| ≤ δ} for δ ≥ 0, is called a modulus of continuity of

ϕ. Now, H(x, v(x), Dv(x)) = h+H (x, v(x), Dϕ(x)− 2(x− y))−H(x, v(x), Dϕ(x)). If ω

is a modulus of continuity for H, then H(x, v(x), Dv(x)) ≤ h+ω(r, ω1(r)+r2, ω2(r)+2r),

for all x ∈ Br(y). Since h < 0, the proceeding proves that H(x, v(x), Dv(x)) ≤ 0, x ∈
Br(y).

Now we define the interval valued function

w(x) =

{
max(u(x), v(x)), x ∈ Br(y)

u(x) , x ∈ Ω\Br(y).

It is clear that w ∈ H(Ω) since u and v are Hausdorff continuous functions in Ω and we

can apply Theorem 2.4.1.

We claim that w has the desired properties. In fact, w(x) = u(x) for |x − y| ≥ r/2 by

(3.4.2) and w(x) ≥ u(x), x ∈ Ω. Then (iv) holds and w is an H-continuous viscosity

subsolution of (1.1.1), because it coincides with u for |x − y| > r
2
, while for x ∈ Br(y)

we can apply Theorem 3.4.1. Moreover, (iii) follows from (3.4.3), and (v) follows from

(3.4.1) if we choose ε ≤ δ
2
. ¥

Note that the proof of lemma 3.4.1 is similar to the proof of the Bump lemma

in [16, Lemma V.2.12] for real function with some obvious changes due to interval char-

acter of the functions u and w.

Remark 3.4.1 There is an analogue of Lemma 3.4.1 for the case when I(u) is a viscosity

supersolution and S(u) fails to be a viscosity subsolution of (1.1.1).

For a consequence of Theorem 3.4.1 and Lemma 3.4.1, we obtain the following very general

existence theorem for equation (1.1.1).
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Theorem 3.4.2 (Existence of H-continuous viscosity solutions by Perron’s method)

Assume that there exist Hausdorff continuous functions u1 = [u1, u1] and u2 = [u2, u2]

such that u1 is a Hausdorff continuous viscosity subsolution of the Hamilton-Jacobi equa-

tion (1.1.1), u2 is a Hausdorff continuous viscosity supersolution of (1.1.1) and u1 ≤ u2.

Then there exists a Hausdorff continuous viscosity solution u of (1.1.1) satisfying the

inequalities

u1 ≤ u ≤ u2.

Proof . Consider the set

F ={w = [w,w] ∈ H(Ω) : w ≤ u2, w is a viscosity subsolution of (1.1.1)}.

Clearly the set F is not empty since u1 ∈ F . Let u = supF , where the supremum is

taken in the set H(Ω), i.e., u ∈ H(Ω). We will show that u is the required Hausdorff

continuous viscosity solution of (1.1.1). Obviously, we have the inequalities

u1 ≤ u ≤ u2. (3.4.4)

Furthermore, according to Theorem 2.4.1 (a) and Theorem 2.4.2 (a), u is given by

u = supF = [I(S(ψ)), S(ψ)] ∈ H(Ω),

where

ψ(x) := sup{w(x) : w = [w, w] ∈ F}, x ∈ Ω.

Using that F is the set of H-continuous viscosity subsolutions of (1.1.1) and F is bounded

from above it follows by Theorem 3.4.1(a) that u is an H-continuous viscosity subsolution

of (1.1.1). It remains to show that u is H-continuous viscosity supersolution of (1.1.1),

i.e., u = I(S(ψ))) is a viscosity supersolution of (1.1.1). To this end, let us fix y ∈ Ω.

Consider first the case when

u(y) = u2(y).

Let ϕ ∈ C1(Ω) be such that u− ϕ has a local minimum at y and u(y) = ϕ(y). Then, for

x in a neighborhood of y, we have

(u2 − ϕ)(x) ≥ (u− ϕ)(x) ≥ (u− ϕ)(y) = (u2 − ϕ)(y).

Therefore, the function u2 − ϕ also has a local minimum at y.
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Using that u2 is a viscosity supersolution of (1.1.1), we obtain

H(y, u2(y), Dϕ(y)) ≥ 0.

Since u(y) = u2(y), the above inequality shows that the function u satisfies at the point

y the conditions of supersolutions as stated in Definition 1.3.1. Consider now the case

when u(y) 6= u2(y). In view of (3.4.4), the only other possible case is

u(y) < u2(y).

In this situation, there exists δ > 0 such that

u(y) + δ ≤ u2(y)− δ. (3.4.5)

Assume that u fails to be a supersolution of (1.1.1) at the point y. Then, according to

Lemma 3.4.1, there exists an H-continuous function w = [w,w] with the properties (i)-(v).

Moreover, since u2 is lower semicontinuous, we can choose r > 0 small enough such that

u2(y)− δ ≤ u2(x), x ∈ Br(y). (3.4.6)

Using (3.4.5) and (3.4.6), we obtain

u(y) + δ ≤ u2(y)− δ ≤ u2(x), x ∈ Br(y).

Hence, from property (v) of Lemma 3.4.1, for x ∈ Br(y), we have

w(x) ≤ max{u(x), u(y) + δ} ≤ u2(x). (3.4.7)

Due to property (iv) of Lemma 3.4.1, the inequality (3.4.7) can be extended to all x ∈ Ω

and we have

w ≤ u2. (3.4.8)

Using Theorem 2.3.3 (b) and the monotonicity of a graph completion function F , see

(2.2.12), the inequality (3.4.8) can be transferred over to the Hausdorff continuous func-

tions w and u2 as follows

w = F (w) ≤ F (u2) = u2.

Then

w ≤ u2.

This implies that w ∈ F . Then u = supF ≥ w which contradicts conditions (ii) and

(iii) in Lemma 3.4.1. The obtain contradiction shows that u is a viscosity supersolution

of (1.1.1). Therefore u is Hausdorff continuous viscosity solution of (1.1.1). ¥
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3.5 Uniqueness of H-Continuous Viscosity Solution

As in the traditional theory of viscosity solutions, uniqueness results can be proved under

the assumption that a comparison principle is satisfied. Here we formulate the com-

parison principle between H-continuous viscosity subsolutions and H-continuous viscosity

supersolutions of Hamilton-Jacobi equations.

Definition 3.5.1 We say that the Dirichlet problem (1.1.1)-(1.1.2) satisfies the compar-

ison principle if for any u ∈ H(Ω) and v ∈ H(Ω) which are bounded and, respectively,

H-continuous viscosity subsolution and supersolution of (1.1.1) and u ≤ v on ∂Ω, we have

u ≤ v in Ω.

The following theorem of uniqueness of solution shows that if H-continuous viscosity

subsolution and H-continuous viscosity supersolution of (1.1.1) are equal on the boundary

∂Ω and g given in (1.1.2) is assumed to be H-continuous function on Ω, then there exists

a unique an H-continuous solution of (1.1.1) satisfying (1.1.2).

Theorem 3.5.1 Assume that there exist Hausdorff continuous viscosity subsolution ϕ

and Hausdorff continuous viscosity supersolution ψ of (1.1.1) on Ω and assume that the

definition of both functions is extended on ∂Ω in such a way that the obtained functions

are H-continuous on Ω. Suppose that (1.1.1) satisfies the comparison principle and that

ϕ(x) = ψ(x) = g(x), x ∈ ∂Ω, (3.5.1)

where the function g may assume interval values. Then, there exists a unique Hausdorff

continuous viscosity solution u of (1.1.1) such that

u(x) = g(x), x ∈ ∂Ω.

Proof. We extend ϕ and ψ by setting ϕ = ψ = g on ∂Ω. We can apply Theorem 3.4.2

to get an H-continuous viscosity solution u of (1.1.1) such that ϕ ≤ u ≤ ψ in Ω.

By monotonicity of a graph completion F, see (2.2.12) , we have

F (ϕ) ≤ F (u) ≤ F (ψ) in Ω. (3.5.2)

By Corollary 2.4.1, we have that all functions F (ϕ), F (u), F (ψ) belong to H(Ω). There-

fore, by property (2.3.8) in Theorem 2.3.7, the inequalities in (3.5.2) imply that

F (ϕ) ≤ F (u) ≤ F (ψ) on Ω. By the virtue of Theorem 2.3.3, we have ϕ ≤ u ≤ ψ on Ω.

In particular, ϕ ≤ u ≤ ψ on ∂Ω. Since (3.5.1) holds, we have g(x) = u(x), x ∈ ∂Ω.

Assume there exist two H-continuous viscosity solutions u1, u2 of (1.1.1).
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Since u1 is an H-continuous viscosity subsolution and u2 is an H-continuous viscosity

supersolution of (1.1.1), and u1(x) = u2(x) = g(x), x ∈ ∂Ω, by comparison principle, we

have

u1 ≤ u2 in Ω. (3.5.3)

Since u2 is an H-continuous viscosity subsolution and u1 is an H-continuous supersolution,

and u2(x) = u1(x) = g(x), x ∈ ∂Ω, by comparison principle, we have

u2 ≤ u1 in Ω. (3.5.4)

Combining (3.5.3) and (3.5.4), we obtain u1 = u2 in Ω. ¥

The comparison principle, given by Definition 3.5.1, is stronger than the comparison

principle used in connection with upper semicontinuous viscosity subsolutions and lower

semicontinuous viscosity supersolutions because it gives the existence of solutions under

conditions as same as for existence of discontinuous solutions.

The following theorem gives sufficient conditions for a weaker form of the comparison

principle given by Definition 3.5.1.

Theorem 3.5.2 Let Ω be a bounded open subset of Rn, H ∈ C(Ω×R×Rn) be such that

H(x, r, p) ≤ H(x, s, p) whenever r ≤ s and the following two assumptions hold:

∃ γ > 0 : γ(r − s) ≤ H(x, r, p)−H(x, s, p),∀r ≥ s, (x, p) ∈ Ω× Rn (3.5.5)

and there exists ω : [0, +∞] → [0, +∞] such that ω(0+) = 0 and

H(y, r, α(x− y))−H(x, r, α(x− y)) ≤ ω(α|x− y|2 + |x− y|), (3.5.6)

whenever x, y ∈ Ω, r ∈ R, α > 0.

Let u = [u, u] ∈ H(Ω) and v = [v, v] ∈ H(Ω) be respectively, H-continuous viscosity

subsolution and H-continuous viscosity supersolution of (1.1.1) in Ω and

u ≤ v on ∂Ω.

Then u ≤ v in Ω.
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For the proof of Theorem 3.5.2, we need the following lemma given in [37].

Lemma 3.5.1 Let X be a subset of Rn, u ∈ USC(X), v ∈ LSC(X) and

Mα = sup
X×X

(
u(x)− v(y)− α

2
|x− y|2

)

for α > 0. Let Mα < ∞ for large α and (xα, yα) be such that

lim
α→∞

(
Mα − (u(xα)− v(yα)− α

2
|xα − yα|2)

)
= 0.

Then the following hold:

lim
α→∞

α|xα − yα|2 = 0 (3.5.7)

and

lim
α→∞

Mα = u(z)− v(z) = sup
x∈X

(u(x)− v(x)) (3.5.8)

whenever z ∈ X is a limit point of xα as α →∞.

Proof of Theorem 3.5.2. Define for α > 0, an upper semicontinuous function φα on a

set Ω×Ω by setting φα(x, y) = u(x)−u(y)− α
2
|x−y|2 and let (xα, yα) be a maximum point

for φα on Ω×Ω (the maximum is achieved in view of upper semicontinuity and compact-

ness). Then Mα = sup
Ω×Ω

φα(x, y) =
(
u(xα)− v(yα)− α

2
|xα − yα|2

)
is finite. It follows from

properties (3.5.7) and (3.5.8) of Lemma 3.5.1 and u ≤ v on ∂Ω that (xα, yα) ∈ Ω×Ω for

α large.

Since we seek to prove that u ≤ v in Ω, we assume to the contrary that u(z) > v(z) for

some z ∈ Ω, it follows that

Mα ≥ u(z)− v(z) = δ > 0 for α > 0. (3.5.9)

Writing (x′, y′) in place of (xα, yα) for simplicity and set ϕ1(x) = v(y′)− α
2
|x− y′|2,

ϕ2(y) = u(x′)− α
2
|x′−y|2. It is clear that ϕi ∈ C2(Ω)(i = 1, 2). Since (x′, y′) is a maximum

point of φα, then it is clear that x′ is a local maximum point for u− ϕ2, whereas, y′ is a

local maximum point for u−ϕ1. Moreover, Dϕ1(x
′) = α(x′−y′) = Dϕ2(y

′). Then we can

exploit the fact that u is an H-continuous viscosity subsolution of (1.1.1) and we obtain

H(x′, u(x′), α(x′ − y′)) ≤ 0 (3.5.10)

Similar, since u is an H-continuous viscosity supersolution of (1.1.1), we obtain

H(x′, v(x′), α(x′ − y′)) ≥ 0. (3.5.11)
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Combining (3.5.10) and (3.5.11) we obtain

H(x′, u(x′), α(x′ − y′)) ≤ 0 ≤ H(x′, v(x′), α(x′ − y′)). (3.5.12)

The next step is to use the assumption (3.5.5) and (3.5.6) and the condition (3.5.12) to

estimate Mα and contradict (3.5.9) for large α.

Using the definition of δ, see (3.5.9), and the fact that (x′, y′) is a maximum point for φα,

we have

γδ ≤ γ(u(z)− v(z)) ≤ γ(u(x′)− v(y′)). (3.5.13)

Proceeding, we deduce from (3.5.13), (3.5.5) and (3.5.6) that

0 ≤ γδ ≤ γ(u(x′)− v(y′))

≤ H(x′, u(x′), α(x′ − y′))−H(x′, v(x′), α(x′ − y′))

= H(x′, u(x′), α(x′ − y′))−H(y′, v(x′), α(x′ − y′))

+ H(y′, v(x′), α(x′ − y′))−H(x′, v(x′), α(x′ − y′))

≤ ω(α|x′ − y′|2 + |x′ − y′|).

Here we used (3.5.12) to estimate the first term on the right by 0 and (3.5.6) on the second

term.

Since ω(α|x′ − y′|2 + |x′ − y′|) → 0 as α → ∞ by (3.5.7), we have a contradiction with

(3.5.9). ¥
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3.6 Extending the Hamiltonian Operator over the

Set H(Ω)

In this section, we consider the equation (1.1.1) in the following more general form

H(x, u(x), Du(x)) = f(x), x ∈ Ω, (3.6.1)

where f ∈ C0(Ω). We call the mapping H : C1(Ω) → C0(Ω) given by

H(u)(x) = H(x, u(x), Du(x)), x ∈ Ω

a Hamiltonian operator. Then, equation (3.6.1) can be written as

H(u) = f. (3.6.2)

It is well known that the mappingH is in general not surjective. This means of course, that

there exists f ∈ C0(Ω) in (3.6.2) such that the set H−1(f) = {u ∈ C1(Ω) : H(u) = f} = ∅
which implies that (3.6.1) does not have classical solution, as illustrated by a variety of

well known examples, some of them rather simple ones, see [109, Chapter 6]. Clearly, the

function u is a classical solution of (3.6.1) iff u ∈ H−1(f). Hence, the need for generalized

solutions like the viscosity solutions considered here.

Let us note that equation (3.6.1) does not really generalize equation (1.1.1). Since function

f can always be moved to the left hand side reducing the equation to the form (1.1.1).

The usual way of defining generalized solutions is by extending the operator H to a larger

domain. This extension can be done in different ways: functional analytic method [46],

algebraic method [116], order completion method [109].

Here, we extend the operator H to the set of Hausdorff continuous functions using the

viscosity approach. Our aim is to express the H-continuous viscosity solutions of (3.6.1)

as solutions to an operator equation involving the extended operator in the same way

as the classical solutions of (3.6.1) are solutions of (3.6.2). We use subdifferentials and

superdifferentials.

For u = [u, u] ∈ H(Ω), consider the sets

G+(u) = {x ∈ Ω : D+u(x) 6= ∅} and G−(u) = {x ∈ Ω : D−u(x) 6= ∅}.

For u ∈ C(Ω), it was proved in [16] that the sets G+(u) and G−(u) are each dense in Ω.

This result can be extended to Hausdorff continuous functions using a similar argument

and is given in the following lemma.
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Lemma 3.6.1 Let u = [u, u] ∈ H(Ω). The sets G+(u) and G−(u) are each dense in Ω

Proof. Let y ∈ Ω and let δ > 0 be such that Bδ(y) = {z ∈ Rn : |z−y| ≤ δ} ⊂ Ω. Consider

the smooth function ϕε(x) = 1
2ε
|x − y|2, ε > 0. Since u − ϕε is an upper semicontinuous

function on Ω, it attains its maximum over B = Bδ(y) at some point xε. Then we have

(u− ϕε)(xε) ≥ (u− ϕε)(y). (3.6.3)

From the inequality (3.6.3), for all ε > 0, we get

|xε − y|2 ≤ 2ε(u(xε)− u(y)) ≤ 4ε sup
x∈B

|u(x)|.

Thus xε is not on the boundary of B for ε small enough, and by Lemma 1.3.1 (i),

Dϕε(xε) = 1
2
(xε − y) belong to D+(u(xε)). This proves that G+(u) is dense in Ω, and

similar argument shows that G−(u) is dense in Ω too. ¥

Now, for u = [u, u] ∈ H(Ω), define the following two functions

ψ(x) = sup
p∈D+u(x)

H(x, u(x), p), x ∈ G+(u), (3.6.4)

ϕ(x) = inf
p∈D−u(x)

H(x, u(x), p), x ∈ G−(u). (3.6.5)

For the extension of the operator H, we need the following operators:

T+ : H(Ω) → USC(Ω), T− : H(Ω) → LSC(Ω) defined by

T+u(x) = S(G+(u), Ω, ψ)(x), x ∈ Ω, (3.6.6)

T−u(x) = I(G−(u), Ω, ϕ)(x), x ∈ Ω. (3.6.7)

Since G+(u) and G−(u) are dense in Ω for every u ∈ H(Ω) , the operators T+ and

T−, defined by (3.6.6) and (3.6.7), respectively, are well defined on H(Ω) and by (2.5.2)

T+u ∈ USC(Ω) and T−u ∈ LSC(Ω). The following theorem gives a new characterization

of H-continuous viscosity subsolution and H-continuous viscosity supersolution of (3.6.1)

in terms of the operators T+ and T−.

Theorem 3.6.1 Let u = [u, u] ∈ H(Ω). Then

(a) u is an H-continuous viscosity subsolution of (3.6.1) if and only if

T+u ≤ f in Ω; (3.6.8)

(b) u is an H-continuous viscosity supersolution of (3.6.1) if and only if

T−u ≥ f in Ω. (3.6.9)
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Proof. We will prove only point (a). Point (b) is proved in a similar way. By Definition

3.2.1, u is an H-continuous viscosity subsolution of (3.6.1) if and only if

H(x, u(x), p) ≤ f(x), p ∈ D+u(x), x ∈ Ω. (3.6.10)

In view of definition of ψ, see (3.6.4), the inequality (3.6.10) is equivalent to

ψ(x) ≤ f(x), x ∈ G+(u). (3.6.11)

Since f ∈ C0(Ω) ⊂ USC(Ω), using the minimality property of upper semicontinuous

envelopes, see (2.5.9), the inequality (3.6.11) implies that

S(G+(u), Ω, ψ)(x) ≤ f(x), x ∈ Ω. (3.6.12)

To complete the proof, we show that (3.6.12) implies (3.6.11). Indeed, since S(G+(u), Ω, ψ)

is an upper bound of ψ on G+(u), we have

ψ(x) ≤ S(G+(u), Ω, ψ)(x) ≤ f(x), x ∈ G+(u).

¥

As a consequence of Theorem 3.6.1, we obtain the following.

Theorem 3.6.2 Let u = [u, u] ∈ H(Ω). Then there exists f ∈ C0(Ω) such that u is an

H-continuous viscosity solution of (3.6.1) if and only if

T+u ≤ T−u in Ω. (3.6.13)

Proof. Let there exists f ∈ C0(Ω) such that u is an H-continuous viscosity solution of

(3.6.1). Combining (3.6.8) and (3.6.9) we have the inequality (3.6.13). In order to prove

the inverse implication, we use a well known Theorem of Hahn [130] which states that if

a lower semicontinuous function majorates an upper semicontinuous function then there

exists a continuous function between them. Since T+u ∈ USC(Ω), T−u ∈ LSC(Ω) and

T+(u) ≤ T−(u) in Ω, then there exists f ∈ C0(Ω) such that T+(u) ≤ f ≤ T−(u) in Ω.

Therefore, u is an H-continuous viscosity solution of (3.6.1). ¥

There is an interesting question here. Is the function f in Theorem 3.6.2 unique? If f

is not unique, then this means that two functions can be viscosity solutions of (3.6.1)

for two different right hand terms and from practical consideration this is an undesirable

situation. This issue has not been addressed in the existence theory of viscosity solutions,

since the Hamilton-Jacobi equation is not considered in the operator form (3.6.2).
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In view of Theorem 3.6.2, consider the operator
∧
H : H(Ω) → P(C0(Ω)), defined by

∧
H(u) = {f ∈ C0(Ω) : T+u(x) ≤ f(x) ≤ T−u(x), x ∈ Ω}, (3.6.14)

where P(C0(Ω)) is the set of all subsets of C0(Ω). We can reformulate Theorem 3.6.2 as

follows.

Theorem 3.6.3 A function u ∈ H(Ω) is an H-continuous viscosity solution of (3.6.1) if

and only if

f ∈
∧
H(u).

Then, the earlier question can be equivalently formulated as:

Can the set
∧
H(u) contain more than one element?

In general, this is an open problem. However, when Ω is an open interval of R we obtained

an answer, namely that
∧
H(u) contains one element as shown by the following theorem.

Theorem 3.6.4 Let Ω be a nonvoid open interval of R and u = [u, u] ∈ H(Ω). Then

T−u(x) ≤ T+u(x), x ∈ Ω. (3.6.15)

The following three lemmas will be instrument in the proof of Theorem 3.6.4.

Lemma 3.6.2 Let Ω be a nonvoid open interval of R and u = [u, u] ∈ H(Ω). If there

exists a dense subset G0 of Ω such that G0 ⊆ G+(u)
⋂

G−(u), then (3.6.15) holds.

Proof. Since G0 ⊂ G+(u), by the monotonicity of the generalized upper Baire operator

about inclusion with respect to the dense subset of Ω, see (2.5.7), and property (2.5.1),

we have

T+u = S(G+(u), Ω, ψ) ≥ S(G0, Ω, ψ) ≥ I(G0, Ω, ψ). (3.6.16)

In view of the fact that ψ ≥ ϕ, x ∈ G0, by monotonicity of I(G0, Ω, .), see (2.5.3), the

inequality (3.6.16) implies that

T+u ≥ I(G0, Ω, ϕ). (3.6.17)

Since G0 ⊂ G−(u), by monotonicity of generalized lower Baire operator about inclusion

to respect to the dense subset of Ω, see (2.5.6), from inequality (3.6.17) we have

T+u ≥ I(G0, Ω, ϕ) ≥ I(G−(u), Ω, ϕ) = T−u. (3.6.18)
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The property (3.6.18) implies that (3.6.15) holds. ¥

Lemma 3.6.3 Let u = [u, u] ∈ H(Ω), Ω = (a, b) ⊂ R. If u has no local maximum at any

point of Ω and u has no local minimum at any point of Ω, then u is monotone on Ω, i.e,

the function u and u are increasing or decreasing on Ω.

Proof. Let D = {x ∈ Ω : u(x) = u(x) = u(x)}. It was shown in [132] that u is continuous

on D and that D is dense in Ω. We will show that the function u is monotone on D.

Indeed, if u(x) = u(y), x, y ∈ D, then u is a constant function on D.

Let there exists p, q ∈ D, p < q such that u(p) 6= u(q). Then either u(p) > u(q) or

u(p) < u(q).

Suppose that u(p) > u(q). Since u has no local maximum on (a, b), we have

sup
x∈[p,q]∩D

u(x) ≤ max
x∈[p,q]∩D

u(x) = u(p) = u(p).

Therefore, the maximum of u on [p, q] ∩D exists and

max
x∈[p,q]∩D

u(x) = u(x) = u(p).

Similarly, the maximum of u on [p, q] ∩D exists and

min
x∈[p,q]∩D

u(x) = u(x) = u(q).

Next we prove that u is strictly decreasing function on D ∩ (a, b). For that, it suffices to

show that u is strictly decreasing on (a, p) ∩D, on [p, q] ∩D, and on (q, b) ∩D.

Let x, y ∈ (a, p) ∩D such that x < y. If max(a,p)∩D u(z) = u(p) = u(p), then p ∈ (x, q) is

a local maximum of u and this contradicts that u has no local maximum on (a,b). Then

max(a,p)∩D u(z) = u(x). Since y ∈ (x, p ∩D), we have u(x) > u(y) and thus u is strictly

decreasing on (a, p) ∩D.

Now, let x, y ∈ [p, q] ∩D such that x < y. Then u(x) > u(y), since if u(x) < u(y), then

x ∈ (p, y) is a local maximum of u and this contradicts the fact that u has a no local

minimum on (a, b). Thus u is a decreasing function on [p, q] ∩D.

Finally, let x, y ∈ (q, b) ∩D such that x < y. Then u(q) > u(p), otherwise if u(q) < u(x),

then q ∈ (p, x) is a local minimum of u and this contradicts that u has no local minimum

on (a,b). If u(x) < u(y), then x is a local minimum for u and this is a contradiction of

assumption. Then u(q) > u(x) > u(y) and u is a decreasing function on (q, b) ∩D.
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In summary, u is a decreasing function on D, i.e.,

∀x, y ∈ D, x < y ⇒ u(x) > u(y). (3.6.19)

By monotonicity of F (D, Ω, .), see (2.5.5), and the fact that u ∈ H(Ω), (3.6.19) implies

that for x, y ∈ Ω such that x < y, we have u(x) = F (D, Ω, u)(x) > F (D, Ω, u)(y) = u(y)

and thus u is a decreasing function on Ω.

Similarly, if u(p) < u(q), then the function u is increasing on D and by the monotonicity

of F (D, Ω, .), the function u is increasing on (a, b). ¥

Lemma 3.6.4 Let u = [u, u] ∈ H(V ), where V is an open subset of R. If u is not

monotone on any interval (α, β) ⊂ V, then the sets

D1 = {x ∈ V : u has a local maximum at x}

and

D2 = {x ∈ V : u has a local minimum at x}

are dense in V.

Proof. We need to show that for any interval (a, b) ⊂ V, we have (a, b) ∩ D1 6= ∅ and

(a, b) ∩D2 6= ∅.

Let (a, b) ⊂ V . It is given that u is not monotone on (a, b). Therefore, by Lemma 3.6.3,

there exists either local maximum of u at any interior point of (a, b). Let u has a local

maximum at c ∈ (a, b). We have c ∈ (a, b)∩D1. Therefore (a, b)∩D1 6= ∅. The case when

u has a local minimum on (a, b) is treated similarly.

Now consider intervals (a, c) and (c, b). Using the same argument in each one, either u has

a local maximum or u has a local minimum. If u has a local minimum, then D2∩(a, b) 6= ∅.
Let u has a local maximum at d ∈ (c, b). Without loss of generality, we can consider

u(c) ≤ u(d).

Since c is a local maximum of u, there exists δ > 0 such that

u(p) < u(c), x ∈ (c− δ, c + δ) ∩D,

where D = {x ∈ V : u(x) = u(x) = u(x)} which is dense in V , see [130]. There exists

p ∈ (c + δ
2
, c + δ) ∩D such that

u(p) < u(c), (3.6.20)
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otherwise u is a constant on (c + δ/2, c + δ) and this contradicts the fact that u is not

monotone on any interval of V . Now, there exists q ∈ (c− δ/2, c+ δ/2)∩D which implies

u(c) ≥ u(p) contradicting (3.6.20). Then we have

u(d) ≥ u(c) > u(q) > u(p). (3.6.21)

There exists r ∈ (p, b) ∩D such that u(r) > u(p), otherwise if u(r) ≤ u(p), r ∈ (p, b) ∩D,

then u(x) ≤ u(p), x ∈ (p, b) ∩D. In particular u(d) ≤ u(p) which contradicts (3.6.21).

Consider an interval [r, q]. We have

min
x∈[q,r]

u(x) ≤ u(p) < min{u(q), u(r)}.

Therefore, there exists s ∈ (q, r) such that u(s) = minx∈[q,r] u(x). Hence s ∈ D2 ∩ (a, b)

and this implies that D2 ∩ (a, b) 6= ∅. ¥

Proof of Theorem 3.6.3 Let u = [u, u] ∈ H(Ω). Consider W−the union of all intervals

of Ω, where the function u is monotone. Then by the theorem for differentiability of

monotone real functions [115], u and u are differentiable almost everywhere in W and

therefore u is differentiable on a dense subset W1 of W and u is differentiable on a dense

subset W2 of W , where W1,W2 are sets of full measure (i.e., their complements are null

sets). Let W0 = W1

⋂
W2. Then by Lemma 3.6.2, inequality (3.6.15) holds in W .

We have two cases: either the set W = Ω or W 6= Ω. If W = Ω, then the proof is

completed. Now suppose that W 6= Ω. Let V = Ω\W. It is clear that V is nonempty open

subset of Ω. Let D1 = {x ∈ V : u has a local maximum at x} and

D2 = {x ∈ V : u has a local minimum at x}. Since u is not monotone on any subinterval

of V , by Lemma 3.6.4, D1, D2 are each dense in V .

Suppose that y ∈ D1. Then 0 ∈ D+u(y). Hence D1 ⊆ G+(u) and we have

ψ(y) = sup
p∈D+u(y)

H(y, u(y), p) ≥ H(y, u(y), 0). (3.6.22)

Let D = {x ∈ Ω : u(x) = u(x) = u(x)}. It was shown in [132] that D is dense in Ω, hence

it is dense in V as well. Let limy→x u(y) = limy→x u(y) = u(x) and inequality (3.6.22)

implies that

T+u(x) = S(D1, V, ψ)(x)

≥ S(D1, V,H(., u(.), 0))(x)

= lim
y→x

H(y, u(y), 0)

= H(x, u(x), 0). (3.6.23)
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Similarly, we have ϕ(y) ≤ H(y, u(y), 0) for y ∈ D2 which implies

T+u(x) ≥ H(x, u(x), 0), x ∈ D ∩ V. (3.6.24)

Combining (3.6.23) and (3.6.24), we get

T−u(x) ≤ T+u(x), x ∈ D ∩ V.

Let x ∈ V . Then by the monotonicity of generalized lower Baire operator with respect

to the first argument and with respect to the last argument and by the inequality between

lower Baire and upper Baire operators, see (2.5.6) and (2.5.3), we have

T−u(x) = I(Ω, Ω, T−u)(x)

≤ I(D, Ω, T−u)(x)

≤ I(D, Ω, T+u)(x)

≤ S(D, Ω, T+u)(x)

= T+u(x), x ∈ V.

Hence (3.6.15) holds on V . Since (3.6.15) holds also in W , then it holds on Ω = V
⋃

W.

¥

We prove next that the operator
∧
H, given in (3.6.14), is an extension of a Hamiltonian

operator H defined by (3.6.2). Indeed, let u ∈ C1(Ω). It suffices to prove that
∧
H(u) =

H(u), since C1(Ω) ⊂ C(Ω) ⊂ H(Ω). By Lemma 1.2.1 (b), we have D+u(x) = D−u(x), x ∈
Ω and this implies that G+(u) = G−(u) = Ω and the functions ψ and ϕ defined by (3.6.4)

and (3.6.5), respectively, are identical. Therefore we have

T+u(x) = T−u(x), x ∈ Ω. (3.6.25)

The property (3.6.25) implies that

∧
H(u) = {f}, f ∈ C0(Ω). (3.6.26)

In view of (3.6.2), if we identify a singleton by an element, (3.6.26) implies that

∧
H(u) = f = H(u).

Hence
∧
H is an extension of H.
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