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Abstract

This dissertation deals with the control, guidance and stabilisation of nonlinear, non-

holonomic systems. It is shown that the kinematics of the system can be separated

from the dynamics of the system by using successively two inverse dynamics type of

transformations. This leads to a linear decoupled kinematical system, control strategies

can then be developed that directly control the motion of the system. The method is

applied to a system which is composed of a disk rolling on a plane, a controlled slender

rod that is pivoted through its center of mass about the disk's center and two overhead

rotors with their axes fixed in the upper part of the rod. Control strategies are de-

signed under which the disk's inclination is stabilised about its vertical position and the

disk's motion i!, able to asymptotically track any given smooth ground trajectory. The

control strategy is shown to be stable in the presence parametric uncertainties. It was

furthermore shown that the system is path controllable. Finally an extended inverse

dynamics control law is introduced which deals directly with underactuated systems.

An example of an articulated crane is solved using extended inverse dynamics control.

Feasible control is used to ensure that the internal dynamics of the system remains

bounded and that the crane reach its desired final position in a given time interval

[0, tf].

Keywords: nonlinear systems, nonholonomic systems, rolling disk, inverse dynamics

control, path controllability, stabilisation, feasible control.

 
 
 



Uittreksel

Hierdie proefskrif gee aandag aan die beheer, bestuur en stabilisering van nie-lineere,

nie-holonomiese stelsels. Dit word aangetoon dat die kinematika van die stelsel geskei

kan work van die dinamika deur van twee opeenvolgende inverse dinamiese transfor-

masies gebruik te maak. Hierdie metode lei tot 'n ontkoppelde lineere kinematiese

stelsel wat gebruik kan word in die ontwerp van beheerstelsels wat direk die beweging

van die stelsel beheer. Die met ode is toegepas op 'n stelsel wat bestaan uit 'n skyf wat

rol op 'n plat vlak, 'n beheerde staaf wat verbind is deur sy massa middelpunt rondom

die middel van die skyf en twee oorhoofse rotors met asse wat vas is aan die boonste

deel van die staaf. Beheerstelsels is ontwerp wat die beweging van die skyf stabiliseer

om sy vertikale posisie en die skyf instaatstel om enige nominaaltrajek te volg. Daar

word aangetoon dat die beheerstelsel stabiel is tydens parametriese variasies. Daar

word verder gewys dat die stelsel baanbeheerbaar is. Die konsep van inverse dinamiese

beheer word uitgebrei om onder-geakstueerde stelsels in te sluit. 'n Voorbeeld van 'n

hyskraan word opgelos en uitvoerbare beheer word toegepas om te verseker dat die in-

terne dinamika van die stelsel gebonde bly terwyl die hyskraan sy finale posisie bereik

in 'n gegewe tydsinterval [0, tf].

Sleutelwoorde: nie-lineere stelsels, nie-holonomiese stelsels, roUende skyf, inverse

dinamiese beheer, baan-beheerbaarheid, stabilisasie, uitvoerbare beheer.
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Chapter 1

Introduction

This work deals with the analysis and design of nonlinear and nonholonomic control

systems. The first four sections of this chapter provide an overview of control systems

in general and in particular it discusses the behaviour and importance of nonlinear and

nonholonomic systems. The final two sections introduce the specific problems dealt

with in this work and provide an overview of the organization of the dissertation.

1.1 Nonlinear systems

The control systems treated in this work are nonlinear multivariable systems with

dynamics which can be represented in state space by a system of ordinary differential

equations of the form

where x = (Xl, .,. , xnf is the state vector of the system , xED where D is an

open set in lRn , f and gi , i = 1 , ... , m are vector functions D -----+ lRn . The system

is assumed here to have m inputs UI , '" , Um which will be referred to as the control

 
 
 



The class of systems described by equation (1.1) is sufficiently large that most physical

systems of practical interest are included. The class of linear systems are obviously also

included and are obtained when f(x) is a linear function of x and Yl(X), ... , Ym(x)

are constant functions. Linear control theory is a mature field which has been proven

successful in industrial applications with many methods available for the analysis and

design of linear control systems, see for example [1] and [2].

Most systems encountered in practical engineering problems are nonlinear in nature.

The application of linear control theory to nonlinear systems has been traditionally

based on the following assumptions:

2. The system will remain within a small operation range about the operating point

around which the linearisation was performed.

However, if both these conditions do not hold then a high performance control sys-

tem can only be obtained by applying nonlinear control techniques. Some of these

techniques will be discussed in more detail in section 1.3 .

1.2 Nonholonomic systems

In practice a system described by equation (1.1) will be subject to various constraints

placed on the system which depends on the particular problem under consideration.

The discussion in this section is restricted to constraints on the dynamical model of the

system, as opposed to constraints which arise from control objectives. The following

notation will be used here and throughout the rest of the work. Denote by q =

(ql , .,. , qn)T the vector of generalized coordinates and let p = (ql , ... , qn)T . In

 
 
 



the notation of the previous section the vectors q and p together form the state vector

x. The generalized coordinates are defined as the smallest number of coordinates

needed to completely describe the position of all the constituents of the system, i.e.

the generalized coordinates ql , ... , qn are independent for an unconstrained system.

A constraint is called holonomic [3] if the constraint can be expressed by an equation

of the form

If a constraint cannot be written in the form of equation (1.2) then the constraint is

called nonholonomic. From the general form (1.2) of holonomic constraints it follows

that each holonomic constraint imposed on the system can be used to eliminate one of

the generalized coordinates, with the remaining coordinates still being independent.

n

ajD dt +Laji dqi = 0
i=l

where it is assumed that r kinematic constraints are present. If it is possible to integrate

any of the nonholonomic constraints given by equation (1.3) a holonomic constraint will

result, integrable kinematic constraints are therefore holonomic constraints. The set of

r nonholonomic constraints imposed on the system is assumed here to be independent

and non integrable.

Kinematical constraints commonly arise in finite dimensional mechanical systems such

as a wheel rolling without slipping [5] , a sphere rolling without slipping [6] , wheeled

 
 
 



vehicles including a tractor with trailers [7]. See also [8] and the references cited therein

for more examples of nonholonomic systems.

Kinematic constraints are in effect a condition placed upon the velocities of the system,

and not on the coordinates. The number of generalized coordinates can therefore not

be reduced in the presence of kinematic constraints. However, the set of constraints

given by equation (1.3) introduces a dependence between the generalized coordinates.

An arbitrary infinitesimal displacement is no longer possible in the presence of non-

holonomic constraints, and as a result, an arbitrary path in state space is no longer

possible since the path the system follows in state space must also satisfy the r kine-

matic constraints placed on the system. The difficulties these conditions introduce on

the control of nonholonomic systems are discussed in section 1.4 .

1.3 Nonlinear control strategies

It is very difficult, often impossible, to deal with nonlinear systems directly due to the

intuitively complex and varied behavior caused by the nonlinearities in the system. For

these reasons it is desirable to simplify the form the system's model is described by.

The desired form for the system model is usually linear since well established control

strategies exist for the control of linear control systems.

A typical approach of linear control theory has been to linearise the dynamical model

around a desired operating point making use of Jacobian linearisation to obtain an ap-

proximate linear model of the system. The approximate model can then be analyzed

and controlled via linear control theory, [9] . As already stated in section 1.1 this ap-

proach has the disadvantage that the model, and therefore the controller, only perform

properly in a small region around the operating point. One method of overcoming the

problem of a small operating region has been to use gain scheduling, [10], in which

the model is linearised around a number of operating points and linear controllers are

 
 
 



designed for each linearisation. Gain scheduling refers to the interpolation between

the different controllers. This method, although intuitively simple, is difficult to verify

theoretically and is computationally expensive to implement, [10] .

Modern nonlinear control theory has for the most part followed the approach of sim-

plifying the system dynamics by using exact state transformations and feedback. The

resultant form of the system model is therefore equivalent to the original system model

and is not an approximation. Many different methods have been developed which

transforms a nonlinear system into a linear system. In [11] necessary and sufficient

conditions are given under which a coordinate transformation can be used to trans-

form a nonlinear system into a linear system. A fundamental result which derives

sufficient conditions under which a nonlinear system can be transformed to a linear

system using a global transformation is given in [12]. The analysis and control of non-

linear systems is discussed in detail in [13] and [14]. Related work using an alternative

approach has been given for example in [15] in which a nonlinear system is transformed

to a linearised model around a set of operating points and in [16] an extension to gain

scheduling is made using dynamic feedback.

The use of Lyapunov functions in the design of nonlinear control laws has recently

experienced renewed interest. A number of algorithms and universal formulas are

now available for the construction of control laws using Lyapunov functions. In [17]

the computational complexity for Lyapunov stability analysis is examined for systems

which are nonlinear in only a few variables.

The class of systems dealt with in the above mentioned methods is restrictive and

excludes many problems encountered in practice. The above mentioned works make

heavy use of differential geometric techniques. The computation of the Lie algebraic

structure for nonlinear systems of high order is difficult and time consuming. Further-

more most of the theory deals only with the controllability of nonlinear systems and are

difficult to use in the design of practical controllers. The theory is also not applicable

to constrained control problems.

 
 
 



The approach of this work, as will discussed later in this chapter, is to use a kind

of inverse dynamics control. Decoupling theory, see for example [13], also deals with

similar problems and does not use differential geometric techniques. It could therefore

also be applied to the problems dealt with in this work. Inverse dynamics control was

chosen because it is naturally suitable to be directly applied to the form and structure of

dynamical models which result from using the Lagrangian method. Decoupling theory

(problem of noninteracting control) are not used in this work nor are its similarities

with inverse dynamics control discussed.

1.4 Nonholonomic control strategies

Nonholonomic control systems have been researched extensively (see [8] and references

therein) in resent years, largely due to the importance of nonholonomic systems in

a variety of practical problems. Linear control theory and standard transformation

methods do not apply well to nonholonomic systems and fundamentally nonlinear

methods are necessary to solve nonholonomic problems.

The theoretical framework for dealing with nonholonomic control systems is dealt with

for example in [18]. The algorithm presented in [18] for the calculation of control laws

makes extensive use of differential geometric techniques which is used to rewrite the

dynamics of the system. The nonholonomic constraints are subsequently used to obtain

reduced-order state equations. The procedure is restricted to the class of nonholonomic

systems for which m 2: n - r where m is the number of control inputs, n is the number

of generalized coordinates and r is the number of nonholonomic constraints.

Recently there has been interest in the control of chain form systems and power form

systems. See for example [19] which deals with the calculation of both open loop and

closed loop control laws for chain form systems. In [20] an exponentially convergent

control law is designed for power form systems. Both papers makes use of differen-

 
 
 



tial geometric techniques to obtain the desired form and subsequently makes use of

Lyapunov control design to obtain the desired control strategy. There are however

computational difficulties in transforming a system to chain or power form.

Mobile car-like robots have been studied extensively largely due to the practical appli-

cability of such systems. Reeds and Shepp showed in [21] that the shortest unobstucted

path between two points for a car that goes both forwards and backwards consists of

line segments and arcs of circles with the minimal turning radius of the car. This type

of optimal path has been used by other authors, in [22] an algorithm is given to cal-

culate a near optimal path when obstructions are present. First, a collision free path

ignoring the nonholonomic constraints are calculated, the path is then divided into dis-

crete points which is connected by paths of the Reeds and Shepp type. An exponential

tracking control law for a car-like robot is developed in [23] which also assumes that

the desired path is a Reeds and Shepp type path. Car-like mobile robots are however a

highly restricted and low dimensional example of nonholonomic systems and the meth-

ods mentioned here cannot be applied in their current form to nonholonomic systems

in general.

In order to obtain a general theory of nonholonomic control systems attempts have

been made to redefine the fundamental dynamics of nonholonomic systems in terms

of topologies instead of treating them as Lagrangian systems, see for example [24].

Although the resulting structure appears to be more natural in this form the compu-

tational difficulties imposed does not make it suited for solving realistic problems.

1.5 Nonholonomic control problems

This work deals with the control of nonholonomic systems. The theory and methods

used are presented by means of two examples, namely a disk with two overhead rotors,

and an articulated crane. The methods used to solve these control problems are appli-

 
 
 



cable to a large variety of control problems dealing with systems which are subject to

kinematical constraints.

The main part of this work deals with the control of a disk with two overhead rotors.

The system is composed of a disk rolling on a horizontal plane, a controlled slender

rod pivoted through its center of mass about the center of the disk and two overhead

rotors attached to the rod with their axis fixed in the upper part of the rod (see figures

1.1 and 1.2 ). The rod is controlled in such a manner that it is always aligned along

the line OC where 0 is the center of the disk and C is the point of contact between the

disk and the surface. The rotors are attached in such a manner that they are rotating

in mutually perpendicular planes, perpendicular to the plane of the disk, the upper

rotor rotates in the plane spanned by the axis of the disk and the rod, whereas the

lower rotor rotates in a plane that is perpendicular to the rod (see figures 1.1 and 1.2).

The control and guidance of a disk rolling on a horizontal plane, controlled by a tilting

moment, a directional moment and a pedalling moment is dealt with in [5] and [25]. In

[26] a single rotor is mounted on the upper end of a rod pivoted through its center of

mass about a disk's center, and in [27] a rotor is placed on the axis of the disk. In both

cases it was shown that the applied torque to the rotor induces a "side inclination"

moment or a "tilting moment" on the motion of the disk. In [28] a similar configuration

as in [26] is used but the rotor is mounted perpendicular the setup used there, and

subsequently it was shown in [28] that the rotor induces a "directional moment" on

the motion of the disk.

It is assumed in this work that the disk is rolling without slipping on the horizontal

(X, Y) - plane. This condition leads to the presence of nonholonomic constraints, [4],

on the motion of the disk. It will be shown in the chapter 2 that the system has 7

independent coordinates, 2 nonholonomic constraints, and 3 control inputs. Most of

the methods discussed in section 1.4 can therefore not be applied.
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Figure 1.2: Front view of the system
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for the above mentioned system. Inverse dynamics control is capable of dealing with

the nonlinear and nonholonomic nature of the system and leads directly to a control

strategy. It also surcumvents dealing with the Lie algebraic structure of the system.

Different control strategies for the disk-rod-rotors system is designed in this work using

inverse dynamics control as basis.

The disk with two overhead rotors was solved by using a kind of inverse dynamics

control. An extension to the basic theory of inverse dynamics control is introduced

which deals directly with underactuated systems. Feasible control is introduced as a

means of solving constrained nonholonomic control problems. An example involving an

articulated two dimensional crane is described and solved in chapter 6 using extended

inverse dynamics control together with feasible control.

1.6 Organization

Chapter 2: The dynamical model of the disk-rod-rotors system is derived using the

Lagrangian method. The equations of motion and the nonholonomic constraints

of the system are given.

Chapter 3: A kind of inverse dynamics control is used to design a feedback control law

for the disk-rod-rotors system such that the disk will be able to asymptotically

track any given smooth ground trajectory.

Chapter 4: Deals with a stabilisation and guidance problem of the disk-rod-rotors

system. It is shown using a kind of inverse dynamics control that the system is

path controllable.

Chapter 5: The robustness of the feedback controller designed in chapter 3 is exam-

ined under parameter variations.

Chapter 6: The theory of inverse dynamics control is extended to include a larger

class of problems. Extended inverse dynamics control is subsequently used to

 
 
 



solve a constrained control problem dealing with an articulated crane.

Chapter 7: Conclusion

 
 
 



Chapter 2

Dynamical Model

A dynamical model is derived in this chapter for the system given by figures 1.1 and

1.2 with applied torques acting on the rotors and a pedalling torque acting directly on

the disk. The effects of motor dynamics on the system is ignored here (see for example

[29] for the effects of motor dynamics on the dynamical model) and it is assumed that

the torques are controlled directly. It is also shown that the torque applied to the

upper rotor (rotor 1) induces a "tilting moment" on the motion of the disk, whereas

the torque applied to the lower rotor (rotor 2) induces a "directional moment" on the

motion of the disk. The stabilisation, control and guidance of this system is dealt with

in the following chapters.

Note that in this work it is assumed that the disk is rolling without slipping on the hori-

zontal (X, Y) - plane. This condition leads to the presence of nonholonomic contraints,

[4], on the motion of the disk.

 
 
 



(I, J , K) = unit vectors along the inertial
(X, Y, Z) - coordinate system

(x , y, z) = coordinates of the center of
mass of both the disk and
the rod

()= leaning angle of disk
cP = direction of disk

'l/Jl = angle of rotation of the
disk about its axis

'l/J2 = angle of rotation of the rod
about the center of the disk

al = angle of rotation of rotor
1 about its own axis

a2 = angle of rotation of rotor
2 about its own axis

k = unit vector along the axis
of the disk

il , jl = unit vectors in the plane
of the disk

(il , jl , k) = body fixed coordinate
system used to describe
the disk

kol = unit vector along rotor 1
jol = unit vector in plane of

rotation of rotor 1
perpendicular to kol

rl = center of mass of rotor 1
IDj = moment of inertia of the

disk about the (il , jl , k)
axes respectively (j = 1,2,3)

Ig] = moment of inertia of rotor 1
about the (jol, - i¢ , kol)
axes respectively (j = 1,2,3)

m D = mass of the disk
mR = mass of the rod

mOl = mass of rotor 1
mQ2 = mass of rotor 2
L12 = distance between the center

of mass of the disk and the
center of mass of rotor 1

L13 = distance between the center
of mass of the disk and the
center of mass of rotor 2

Lll = length of rod below its
center of mass

LOi = length of rotor i, (i = 1,2)
a = radius of the disk
io = unit vector in the plane of the disk
i¢ = unit vector in the plane of the

disk perpendicular to io and k
i2 , j2 = unit vectors in the plane

of the disk
(i2, j2 , k) = body fixed coordinate

system used to describe
the rod

k02 = unit vector along rotor 2
j02 = unit vector in plane of

rotation of rotor 2
perpendicular to k02

r2 = center of mass of rotor 2
IRj = moment of inertia of the

rod about the (i2, j2 , k)
axes respectively (j = 1,2,3)

Ig] = moment of inertia of rotor 2
about the (- io , k02 , j02) axes
respectively (j = 1,2,3)

 
 
 



2.2 Body coordinate system

a unit vector along the axis of the disk. Furthermore, the vector k describes here the

orientation of the disk's axis, and by this the vector k defines the orientation of the

disk in the (X, Y, Z) - space. The unit vectors in and if/> , given by in = ok / o()
and if/> = (1/ sin ()) ok/oe/> , are always in plane of the disk, that is, in , if/> and k are

orthonormal and as a result constitute a basis in ~a . Note that this basis is chosen

with the attached rod along the vector - in , which according to the configuration

described in the previous chapter implies that the axis of rotor 1 is aligned along - if/>

whereas the axis of rotor 2 is aligned along - in . Thus (k , in , if/» is the body fixed

coordinate system which will be used here for describing the disk.

be a unit vector perpendicular to ko1, both of them in the (-in, k) - plane. Thus, it is

assumed that rotor 1 rotates in the (-in, k) - plane, with its axis always aligned along

 
 
 



the -it/> direction, with the center of mass of rotor 1 fixed at a point denoted here by

the vector rl ,

be a unit vector perpendicular to ko2 , both of them in the (it/>, k) - plane. Thus, it is

assumed that rotor 2 rotates in the (it/>, k) - plane, with its axis always aligned along

the -in direction, with the center of mass of rotor 2 fixed at a point denoted here by

the vector r2 ,

Thus, () , cP, 'If;l , 'If;2 , O!l and 0!2 have the following roles here: () is the leaning angle of

the disk, that is, the angle between the axis of the disk and the Z-axis where for

()= 1r /2 the plane of the disk is perpendicular to the (X , Y) - plane; - it/> is a vector

in the (X , Y) - plane which represents the direction of the disk, cP = 0 indicates that

the motion of the disk is in the direction of -J and cP = 1r /2 indicates a motion in the

direction of I. In this work it is assumed that the rod is controlled in such a manner

that it is always aligned along - io , that is, 'If;2(t) = 1r/2 and d'lf;2(t)/dt = 0 , for all

t 2: 0 . This control problem is dealt with in [30].

 
 
 



2.3 Angular velocities

The problem considered here has four angular velocity vectors involved in the motion

of the system which are given by:

(1) _ (1). (1) (_. ) (1) k
Wo - W01 J01 + W02 't¢ + W03 01,

(2) _ (2) (_. ) (2) k (2) •
Wo - W01 'to +W02 02 +W03 J02'

The vectors W D and W R can be calculated, in the body fixed coordinate system, using

the following procedure. Denote by Waj , j = 1, 2, 3 the components of W D and W R in

the (iv, j v , k) - coordinate system, where a = D implies v = 1 and a = R implies

v = 2 and also 'ljJ2 (t) = 1r/2 and d 'ljJ2 (t) / dt = 0 for all t 2: O. This notation will be used

throughout the rest of the section.

Firstly, the rate of change of a given vector in a rotating coordinate system, see for

example [4] and [3], is given by the cross-product of the angular velocity of the base

vectors of the coordinate system with the given vector, i.e.

 
 
 



dill .
dt = Wa X 'tll

'tll JII k

dill . k
dt = - Wa3 'tll + Wal .

dio Dio de Dio d¢
di = 7iii dt + D¢ dt

de d¢ .
= - - k + - cas e 't¢>

dt dt '
di¢> d¢. d¢ .
- = - - sm e k - - cas e 'to .
dt dt dt

The time derivatives of equations (2.2) and (2.3) can be calculated directly. Substitut-

ing equations (2.18) and (2.19) yields

dill _ (d'l/JII d¢ e).
dt - dt + dt cas J II

(
de d¢..)- dt cas 'l/JII+ dt sm e sm 'l/JII k,

 
 
 



djv = _ (d'l/Jv + de/>cos 0) i
dt dt dt v

+ (~~sin 'l/Jv - ~~ sin 0 cos 'l/Jv) k .

Finally, the components of the angular velocity vectors in the body fixed coordinate

system are found by comparing (2.20) with (2.14) and (2.21) with (2.15) and observing

that the vectors iv, jv and k are orthonormal (v = 1, 2) . The components are given

d() . 0/' de/>. () 0/'
Wal = dt sm ,/-,v - dt sm cos ,/-,v ,

d() de/>..
Wa2 = dt cos'l/Jv + dt sm()sm'l/Jv ,

d'l/Jv de/>
Wa3 = ----;It + dt cos () .

In order to obtain the representations (WDx, WDy, WDz) and (WRx , WRy, WRz) of the

vectors W D and W R in the orthonormal inertial basis (1, J , K) , the transformation

between the (iv, j v , k) basis and the (1, J , K) basis is used. Since the (iv, j v , k)

basis and the (1 , J , K) basis are both orthonormal the transformation can simply

be given as a rotation.

 
 
 



Chapter 2 DYNAMICAL MODEL

cos ()cos <P cos 7/Jv cos ()sin <p cos 7/Jv
- sin ()cos 7/Jv

- sin <p sin 7/Jv + cos <p sin 7/Jv

Ev= - cos ()cos <p sin 7/Jv - cos ()sin <p sin 7/Jv
sin ()sin 7/Jv

- sin <p cos 7/Jv + cos <p cos 7/Jv (2.26)

sin ()cos <p sin ()sin <p cos ()

Ev = Ev ((), <p, 7/Jv) is the matrix representation of the Euler angle transformation,

[4,31]. Above and in the remainder of the derivation, v can take on the values 1 and

2 , where E1 ((), <p, 7/Jl) denotes the transformation between (iI, j 1 , k) basis and the

(1 , J , K) basis and E2 ((), <p, 7/J2) denotes the transformation between (i2 , j 2 , k)

basis and the (1 , J , K) basis.

The Euler matrix Ev can be used to transform any given vector in }R3from its repre-

sentation r in the (1 , J , K) basis to its representation r' in the (iv, j v , k) basis.

This can be written as

It should be noted that the view taken here is that of a coordinate transformation in

}R3between two orthonormal coordinate systems. Thus, rand r' are different repre-

sentations in different coordinate systems of the same vector in}R3 . The Euler matrix

can however, given a coordinate system in }R3, transform one vector into a different

vector via a rotation defined by the Euler angles. In such a case only one coordinate

system is used but the vectors are no longer the same - this type of transformation is

not used in this work.

Furthermore the matrix Ev is orthogonal (E~ = E;;l) , [31] , which implies that the

inverse of equation (2.27) is given by

 
 
 



WAy = E~ WA2

d'IjJll. . d(}
WAy = & sm ()sm ¢J+ dt cos ¢J ,

d¢J d'IjJll
WAz = dt + & cos () ,

where, as above, A = D implies II = 1 and A = R implies II = 2 and also 'ljJ2(t) = 7f/2

and d'IjJ2(t)/dt = 0 for all t ~ O.

The angular velocities of the rotors can be calculated as the sum between the rotor's

rotation around its own axis and the angular velocity of the rod, W R . The components

used to describe the angular velocity of rotor 1 are given by (w~~), w~;) , w~~)) in the

(j01 , -i</J , k01) coordinate system, and the components used to describe the angular

velocity of rotor 2 are given by (w~i) , w~;) , w~;)) in the (-i(} , k02, j02) coordinate

system. Using equations (2.22) to (2.24) together with equations (2.2) and (2.3) , WR

d(} , d¢J. ()( .) d¢J () k
W R = dt't</J + dt sm -'t(} + dt cos .

The components of W R in the basis (j01 , -i</J, kod fixed to rotor 1, can be calculated

using the innerproduct, for example

(1) ,
W01 =WR')01

; ICOC"6 ?;,I'f 4l.::. 4
b15~ "'7 ~L4 0 ~

 
 
 



The other components can be calculated similarly. Note that the rotation of the ro-

tors around their own axis is given for rotor 1 by (dad dt) i¢ , and for rotor 2 by

(da2/dt) (-in) . All the components of the angular velocity vectors of the rotors can

be calculated using the above mentioned procedure, this yields

(1) _ d¢> (
wo1 - - dt cos 0 + ad ,

(1) __ (da1 dO)
W02 - dt + dt '

(2) (dO d¢> . )
W02 = - dt cos a2 + dt sm a2 cos 0 ,

(2) dO. d¢>
W 03 = dt sm a2 - dt cos a2 cos 0 ,

The moments of inertia of the system are obtained by making use of the "thin wheel"

and "slender rod" approximations: 1m= 1m = O.25mDa2, 1m = O.5mDa2; lRl =
I - (m L2 + m L2 )/3 I - O' 1(1) - 1(1) - m L2 /12 1(1) - O' 1(2) - 1(2) -R3 - Rl 11 R2 12 , R2 - , 01 - 02 - 01 01 , 03 - , 01 - 03 -

m02L~2/12, 1~;)= 0 .

2.4 The Lagrangian

In the sequel the Lagrangian method [4] , is used in order to obtain the equations of

motion of the disk-rod-rotors system. The Lagrangian function can be expressed as

 
 
 



+ ~mD [ ( ~: )' + (~;) , + (~:)'] ,

1 [ ( dO) 2 ( d¢) 2 2]KR = 21Rl dt + dt cas 0

1 [(dX) 2 (dY) 2 (dZ) 2]+ 2mR dt + dt + dt '

[( )2 () 2]1 (1) d¢ 2 da1 dOKo1 = 2101 dt cas (0 + ad + dt + dt

+ ~mOl[(Li' + 2aLl') ( (~~)' + (~;)' cos' 9) ]
d¢ d'IjJ1

+ mol a L12 dt dt cas 0

1 [(dX)2 (dy)2 (dZ)2]+ 2mo1 dt + dt + dt '

1 [(dX) 2 (dY) 2 (dZ) 2]+ 2m02 dt + dt + dt '

 
 
 



In this work it is assumed that the motion of the disk on the plane involves rolling

without slipping. This implies that the condition

must hold at the contact point between the disk and the plane, where Va = :i; I +
i; J + z K and WD = WDx I + WDy J + WDz K. From equations (2.1)-(2.3) it follows

that 'ljJl = 0 at the contact point between the disk and the plane, this implies that

i1 = i(J and j 1 = i¢> at the contact point, therefore, the point of contact is given by

TD = ai(J. Hence, from equation (2.47) the following nonholonomic constraints are

obtained

[
dO . d¢. d'ljJl.] dx

a dt sm 0 cos ¢ + dt cos 0 sm ¢ + dt sm ¢ - dt = 0 ,

[
dO. . d¢ d'ljJl] dya - sm 0 sm ¢ - - cos 0 cos ¢ - - cos ¢ - - = 0
dt dt dt dt'

dO dz
a - cos 0 - - = 0 .

dt dt

Hence, the Lagrange equations, [4] , with the nonholonomic constraints given by equa-

tions (2.48)-(2.50) , are given by

d (o£') o£' . .dt OPl - OQl = Al a sin 0 cos ¢ + A2 a sm 0 sm ¢ + A3 a cos 0 ,

 
 
 



and r 'lj;1 , r 01 and r 02 are the respective applied moments. That is, r 'lj;1 is the disk's

applied "pedalling" moment, r01 is the applied moment of rotor 1 and r02 is the

applied moment of rotor 2. By differentiating the nonholonomic contraints, equations

(2.48)-(2.50), with respect to time and using equations (2.56) , expressions for the

Lagrange multipliers are obtained. Hence, the (generalized) constraint forces, denoted

by ro , r:t>and r~l , reduce to

ro = Ala sin ()cos ¢ + A2a sin ()sin ¢ + A3a cos ()

2 [d2
() d¢. (d'l/J1 d¢ )]

= -ma dt2 + dt sm() ili + dt cos() ,

 
 
 



2.5 Equations of motion

Define r = (0,0, r7jJ1, raI, r(2)T. Hence, by inserting equations (2.57)-(2.59) into

equations (2.51)-(2.53) the following equation is obtained

1 1 1(1) 1(2). 2 2mn = 1 + D1 + 01 + 01 sm (}:2 + ma

1(2) ()'m12 = - 01 cos sm (}:2 cos (}:2,

m22 = (IDl + 1~i)) sin2 ()+ (II + 1m+ 1~i)cos2 (}:2+ ma2) cos2 ()

+ 1~i)cos2 (() + (}:1),

- 1(2). ()m25 - - 01 sIn ,

(2)m55 = 101,

where h = 1Rl+ mol (L~2 + 2aL12) + m02(L~3 + 2aL13). The components of the vector

h(q,p) are given in Appendix A.

In the rest of the work control strategies will be developed to control the motion of the

disk, the coordinates which describe only the disk are given by

 
 
 



0 m23 m33

n= ,
0-mll -m12

m12 m' ~~
sinO sinO sinO

, - 1(1)
mll - mll - 01 ,

, _ 1(2) . 2 ()
m22 - m22 - 01 sm .

(2.68)

(2.69)

furthermore it can be shown that m~l D1 + D2 < 0 and it follows that n is invertible

if sin () =J. 0, that is if () =J. mf , n = 0, 1, 2, . .. .

 
 
 



Let r e = Xc I + Ye J be the point of contact between the disk and the plane and let r

denote the center of mass of the disk, then

Hence, the nonholonomic constrainsts in terms of the point of contact between the disk

and the plane are given by

dXe = a d'I/Jl sin ¢
dt dt

dYe d'I/Jl
- = - a-cos¢
dt dt

A system configuration concerning a disk, a controlled rod and two overhead rotors

was given. Coordinate systems were defined in which the motion of the system was

derived and transformations between the different coordinate systems were considered.

It was shown that the disk is subject to nonholonomic contraints which result from the

condition that the disk is rolling without slipping. The Lagrangian method was then

used together with the nonholonomic constraints to derive the equations of motion of

the system.

Finally, the dynamical model of the system dealt with here was given in terms of the

motion of the disk, equation (2.62) , together with the dynamics of the rotors given

by equations (2.70) and (2.71). From the nonholonomic constraints the motion of the

point of contact between the disk and the horizontal (X , Y) - plane was derived in

terms of the coordinates describing the disk, equation (2.73). Together, these equations

completely describe the system dealt with here.

 
 
 



It should be noted that it also follows from equation (2.62) that the torque applied to

the upper rotor (rotor 1) induces a "tilting moment" on the motion ofthe disk, whereas

the torque applied to the lower rotor (rotor 2) induces a "directional moment" on the

motion of the disk.

 
 
 



Chapter 3

Feedback Control

In this chapter a kind of inverse dynamics control is used to design feedback control

laws for the applied torques on the disk and for both of the rotors such that the motion

of the disk will be stabilised and the disk will be able to asymptotically track any given

smooth ground trajectory. This problem is also dealt with in [32].

In this work "stabilising the motion of the disk" implies that the inclination of disk will

be stabilised about its vertical position, i.e. the leaning angle, () , will be controlled in

such a manner that () -t 7f/2 as t -t 00 .

The notion of asymptotic tracking as used here is as follows. Let the point of contact

between the disk and the (X , Y) - plane be denoted by (xc, Yc). Furthermore, let

(Xdr(t) , Ydr(t)) , t :?: 0 , denote the coordinates, in the (X , Y) - plane, of a given

smooth ground trajectory. Denote

 
 
 



If the disk is said to asymptotically track a given smooth ground trajectory,

(Xdr(t) , Ydr(t)) , t 2: 0 , it implies that

lim (11 ( t) - 11dr ( t)) = 0 .
t-. 00

3.2 Inverse dynamics control

where the vector JL will be defined later, such that the motion of the disk will be sta-

bilised by forcing the disk to move asymptotically at 0 = 7r /2 while also asymptotically

tracking a given smooth reference path on the plane.

which is defined in any region (q,p) which excludes sinO = 0 , and where

u = (Ul , U2 , u3f . It then follows from equation (2.62) that

d2(J
Uldt2

~ U2 (3.2)dt2
~ U3dt2

 
 
 



is Hurwitz (all the roots of h (s) are in the left hand side of the s - domain). For this

case it then follows, [33], that

7r dk()
()(t) -+"2 and dtk -+ 0 as t -+ 00 , k = 1,2

( )

2d¢ d'l/Jl d¢ .
9 1 = 2U3 - cas A.. - - - sm A..

C dt If' dt dt If' ,

( )

2d¢ . d'l/Jl d¢
gc2 = 2U3 dt sm ¢+ ill dt cas ¢ ,

where from equation (3.2) it follows that, U3 = d2'l/Jddt2. By calculating d3xc/dt3 and

d3Yc/dt3 from equation (2.73) and using the auxiliary functions gel and gc2 defined by

equations (3.4) and (3.5) it follows that

(?) = a ( sin ¢ 13Jl c~s ¢)
!!::..:u.£ - cas A.. ~ sm A..
dt3 If' dt If'

where from equation (3.2) it follows that, U2 = d2¢/dt2 , and dU3/dt = d3'l/Jddt3 .

Denote

(

sin ¢ d'lP1 cas ¢)
A = dt

- cas ¢ 13Jl sin ¢ ,

and note that det A = d'l/Jd dt. That is, A is inverteble if the disk is rolling,

d'l/Jddt =I- 0 .

 
 
 



which is valid in all regions of (q,p) which excludes d'l/JI/dt = O. Using equation (3.6)

yields

Let {(Xdr(t)'Ydr(t)),t 2: O} be a representation of a given smooth ground reference

trajectory in the (X , Y) - plane. The functions Vi and V2 are chosen in the following

form

V _ d3xdr _ (d2xe _ d2Xdr) _ (dxe _ dXdr)
1 - dt3 /'1 dt2 dt2 /'2 dt dt

-/'3(Xe - Xdr)

V _ d
3
Ydr _ (d2Ye _ d2Ydr) _ (dYe _ dYdr)

2 - dt3 /'1 dt2 dt2 /'2 dt dt

-/'3(Ye - Ydr)

It can thus be seen that Vi and V2 are determined from equations (3.10) and (3.11)

respectively. U2 and dU3/dt can then be determined from equation (3.8), and by taking

U3(0) = 0 , U3 is obtained. Ul can be directly calculated from equation (3.3), and

 
 
 



finally, once the vector u is known, the required applied torques r'lj;1 , r0:1 and r0:2 are

determined using equation (3.1).

Finally it should be noted that the control law defined by equations (3.3), (3.10) and

(3.11) is an exponentially convergent control law, i.e. the error decreases exponentially

to zero, and if the system initially has a zero error it will remain zero for all time. The

rate of convergenge is determinded by the values of k1 , k2 , '"Y1 , '"Y2 , '"Y3. In the next

chapter a method is decribed which obtains an exact position in a finte time.

3.3 Numerical study

The control strategy developed above was used in a simulation of the disk-rod-rotors

system. The parameters used were as follows

 
 
 



mD = 10 kg mRl = 0.75 kg mR2 = 0.25 kg

mol = m02 = 0.5 kg a = 0.4 m L12 = 0.75 m

L13 = 0.5 m Lu = 0.25 m Lo1 = L02 = 0.3 m

k1 = 10 k2 = 24 1"1 = 15

1"2 = 75 1"3 = 125

0(0) = 607r rad
180

d¢(O)----;It = 0 rad/ see

ai(O) = 0 rad

U3(0) = 0 rad/ see2

dO(O)
~ = 0 rad/see

?jJ1 (0) = 0 rad

da·(O)
~t = 0 rad/ see

xc(O) = 0 m

7r
¢(O) = 2" rad

d?jJ1 (0)
-d-t - = 4 rad/ see

Using equation (2.73) the parameters and initial conditions yield the following condi-

tions

dxc(O)
dt = 1.6 m/ see dyc(O) = 0 m/ see

dt

The simulation was performed using a Runge-Kutta order 4 algoritm with a timestep

of 10-5 see and the data was stored at intervals of 0.002 sec. Some of the results are
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In this chapter a stabilisation and control problem is dealt with concerning the motion

of the disk - rod - rotors system which was described in the previous chapter. A kind

of inverse dynamics control was used to obtain a feedback control law for the torques

applied to the pedalling mechanism of the disk and to each of the rotors. The proposed

feedback control law was designed such that the motion of the disk will be stabilised (the

disk's plane will be vertical to the horizontal plane), while simultaneously controlling

the speed and direction of the disk in such a manner that the disk will be able to

asymptotically track any given smooth ground trajectory.

In section 3.2 the auxilary control functions UI , U2 , U3 are introduced via an inverse

dynamics control law. These controls, as can be seen from equation (3.2), are directly

related to the kinematics of the system. The control law given by equation (3.1)

seperates the kinematics from the dynamics of the system. It is therefore possible

to control the kinematics of the system directly, for example the control of () and

dk() / dt , k = 1,2 , using the auxilary control variable UI , equation (3.3) .

In section 3.2 a procedure is developed to obtain tracking control of the disk. This

is done by relating Xc and Yc and three of their time derivatives to U2 and dU3/ dt.

Aditional auxilary control functions VI and V2 are introduced by using an inverse

control law, equation (3.8). This enables the direct control of the kinematics of

dkxc/dt and dkYc/dt , k = 0,1,2,3 through the auxilary controls VI and V2 . The

control law (3.1) therefore seperates the dynamics from the kinematics of the system.

Similarly the control law (3.8) seperates the kinematics from the kinematical constraints

placed on the system which results from the condition that the disk is rolling without

slipping which was placed on the system. The design of the controller was therefore

done directly on the kinematics of the system. It should be noted that, though the

feedback controller uses Xc and Yc and their derivatives, these states are not observed

directly but rather ca1culted using equation (2.73) together with the states observed,

 
 
 



Finally, an example was solved involving the tracking of a given smooth trajectory. The

same reference trajectory and initial condition ofthe disk was used in [34] , the system

considered there involved only a disk, without the rod and rotors. The kinematics

obtained in both examples was however the same. This is due to the method used in

section 3.2 , as discused previously here.

 
 
 



Chapter 4

Path Controllability

In this chapter the concept of path-controllability is introduced, and, together with the

use of inverse dynamics control, the stabilisation and guidance of the disk-rod-rotors

system is considered. In particular, control laws will be derived under which the motion

of the disk is stabilised and the disk is steered from a point PI to a point P2 , both in

the (X, Y) - plane, during a given finite time interval [0, t f]'

The control problem dealt with in this chapter can be stated as follows: Given two

points PI and P2 in the (X, Y) - plane and let [0, tf] be a time interval where tf > a is

a given number. As before denote by r c the point of contact between the disk and the

(X, Y) - plane. The problem considered here is to find torques applied to the pedalling

mechanism of the disk, and to each of the rotors, such that the disk will be stabilised

(the disk's plane will be vertical to the horizontal plane), while simultaneously the

speed and direction of the disk will be controlled such that r c will move from PI to

P2 during the interval [0, tf].

 
 
 



Furthermore, let QI and Q2 be any two points in R6 , and let [0, tf) be any given

finite time interval. If torques to the pedalling mechanism and to each of the rotors

can be found on [O,tf) such that "1(.) will move from "1(0) = QI to"1(tf) = Q2,

then the disk-rod-rotors system is said to be path controllable. More specifically,

Qi = (Xpi, CIi, C2i, Ypi, C3i, C4i)T , where the points PI and P2 in the (X , Y) - plane

are denoted by Pi = (Xpi , Ypi) , i = 1,2 and Cki , k = 1,2,3,4, and i = 1,2 are real

numbers to be specified later.

4.2 Inverse dynamics control

In this section the same inverse dynamics control law used in the previous chapter

is applied to the dynamical model, equation (2.62), of the system derived in chapter

2. This leads to a decoupled double integrater system relating the kinematics of the

system with the control inputs. This is used in the next section to derive control laws

under which the path controllability of the system is proved.

The control law defined by equation (3.1) is used to obtain the decoupled double

integrater system (3.2) which is again stated here

d2(} UI(Ji2
rf..!I!.

U2 (4.2)
dt2

fr U3dt2

The same stabilisation criteria as in the previous chapter is placed on the disk, as a

result the control law for UI is again chosen as equation (3.3) given by

 
 
 



7r dk(}
()(t) -+"2 and dtk -+ 0 as t -+ 00 , k = 1, 2 .

4.3 Point to point control

In this section the functions U2 and U3 are determined such that "1 ( .) will move in such

a manner that "1(0) = Q1 and "1(tj) = Q2 , where Q1 and Q2 are given points in IR6
.

The procedure used in the previous chapter of equations (3.4) to (3.7) can be followed,

together with the control law (3.8) given by

which is valid in all regions of (q, p) which excludes d'l/Jd dt = O. Finally equation

(3.9) is obtained as

(::) ,

 
 
 



d:;t) = A1](t) + Bv(t) , (4.6)

1] = {1](t) = (TJl(t) , TJ2(t) , TJ3(t) , TJ4(t) , TJ5(t) , TJ6(t))T , t E [0, tf]} ,

v = {V(t) = (Vl(t) , V2(t))T , t E [0, tf]} ,

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0
(4.7)A= B=

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

The system given by equations (4.6) and (4.7) is controllable, [1]. That is, given any

two points Ql and Q2 in R6 , and any finite time interval [0, tf) , a control function

v(t) , t E [0, tf) , exists such that 1] will move from 1](0) = Q1 to 1](tf) = Q2'

 
 
 



Hence, the point PI together with the coefficients Cll , C21 , C31 , C41 specify the initial

conditions ofthe system. Note that equation (2.73) can also be used to relate the initial

conditions of ¢ , d¢ / dt , d7jJ/ dt and d27jJ/ dt to the coefficients Cll , C21 , C31 , C41 •

The point P2 will depend on the problem under consideration and the coefficients

C12 , C22 , C32 , C42 are design parameters and can be chosen by the designer.

yC(t) = (exp ((t f - t) A) B) T C-1
( "., (t f) - exp (t fA) ".,(0)) ,

t E [0, tf) ,

14 T
C = 0 exp ((t f - t) A) B (exp ((tf - t) A) B) dt,

If the points Ql and Q2 are specified in ]R6 then the control law y = yC(t) given by

(4.10) and (4.11) can be calculated analytically as a function of time. In this section

an analytic expression is obtained for the control law yC(t) , t E [0, tf) in terms of the

parameters Xpi , Ypi and Cki where i = 1,2 and k = 1,2,3,4 , together with the final

time, tf > 0 .

It should be noted that equation (4.5) constitutes a decoupled system, as a result vf(t)

and v2(t) can be treated seperately with respect to control laws of the form (4.10) and

(4.11). In this section, however, yC(t) is treated as a vector, and equation (4.10) as a

 
 
 



matrix equation. In the following derivation the decoupled nature of the equation is

clearly visible in the diagonal nature of the matrices.

From equation (4.7) it follows directly that A3 = 0, the exponent terms then reduce

to

exp(tjA) = (: :) ,

t2

1 tf
':..L
2

Q= 0 1 tf

0 0 1

(
C1

C=
o

 
 
 



(C')-I = t~
f

240

-120tf

20t}

-120tf

64t2f
12t3- f

20t2f

12t3- f

3t4
f

can be written as

Xpl

vf(t) = ,(C')-I - Q Cll

C2I

and

Yp2 Ypl

vHt) = ,(C')-I C32 - Q C3I

C42 C4I

VI and V2 are given by equations (4.16) and (4.17) respectively, as functions of time,

dependant on the initial condition QI , the end point constraint Q2 and the final time

tf. U2 and dU3/dt can then be determined from equation (4.4), and taking U3(0) = 0 ,

U3 is obtained. UI can be directly calculated from equation (4.3). Finally the required

applied torques r'lf> , fed and fel<2 are determined using equation (3.1).

It should be noted that the control law for VC(t) defined by equations (4.10) and (4.11)

is an open loop control strategy. As a consequence, the control variables U2 and U3

will be functions of time only, and, dependant only on the initial and final points

QI and Q2 respectively, and the final time tf . The control law for UI is given by

(4.3) , which is a closed loop feedback control law which is dependant on the value of

O(t) and dO(t)/dt , t E [0, tf] . As a result the required control law is denoted by

 
 
 



Thus, the control law rC (1-£, t) constitutes the solution to the stabilisation and guidance

problem posed in section 1. Furthermore, the calculation of the applied torques require

the use of both the control law given by equation (4.4) , which is valid in any region

excluding d'l/Jddt = 0 , and also the control law given by equation (3.1) which is valid

for all regions excluding sin () = 0 . The control law rC (1-£ , t) is therefore valid in all

regions excluding d'l/Jl(t)/dt = 0 or sin ()(t) = 0, V t E [0, tf] .

4.5 Numerical study

The control strategy developed above was used in a simulation of the disk-rod-rotors

system. The parameters used were as follows

601f
()(O) = 180 rad

dcjJ(O)----;[-"t = 0 rad/ sec

ai(O) = 0 rad

d()(O)
~ = 0 rad/sec

'l/Jl(O) = 0 rad

da·(O)
~t = 0 rad/ sec

xc(O) = 0 m

1f
cjJ(O) = 2" rad

d'l/Jl(O)
dt = 4 rad/ sec

 
 
 



Using equation (2.73) the parameters and initial conditions yield the following condi-

tions

dxc(O)
dt = 1.6 m/ see dY~;O) = 0 m/ sec.

The simulation was performed using a Runge-Kutta order 4 algoritm with a timestep

of 10-5 see and the data was stored at intervals of 0.002 sec. Some of the results are
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In this chapter a stabilisation and guidance problem is dealt with concerning the disk -

rod - rotors system as described above. It was shown that the inverse dynamics control

law, as discused in chapter 3 , yields a double integrator system. This system was used

directly to obtain a control law such that the motion of the disk will be stabilised (the

disk's plane will be vertical with respect to the horizontal plane).

In order to discuss the path controllability of the system the nonholonomic contraints

involved with the motion of the disk were used to obtain a linear relationship between

the point of contact between the disk and the (X , Y) - plane. Subsequently, this

relationship was used to obtain a linear control problem in]R6 . It was shown that the

linear control problem is controllable and as a result that the disk - rod - rotors system

is path controllable.

A controller was developed for the linear system and finally a control law was proposed

for the applied torques on the pedalling mechanism and to each of the rotors such that

the motion of the disk will be stabilised and such that the speed and direction of the

motion of the disk will be controlled in such a manner that the point of contact between

the disk and the horizontal plane will move from one given point to another during a

given time interval. Furthermore it was shown that the above mentioned control law

is valid in all regions provided that the trajectory of the system never enters a region

where d'lj;l(t)/dt = 0 or sinB(t) = 0 , V t E [0, tf] . This condition does not pose any

difficulty for well posed initial conditions since the stabilisation of the disk ensures that

sin B =1= 0 as t ---+ 00 .

Finally it should be noted that the control law governing the point to point control

of the disk is an open loop control strategy and the controller does not compensate

for any model uncertainties, variations in the initial conditions or any external distur-

bances. The control strategy could however be used to generate a path in lR6 describing

xc(t) and yc(t) and three of their derivatives on the time interval [0, tf] . A feedback

 
 
 



tracking controller could then be used to track the path in a similar fashion as described

in the previous chapter. Other methods for tracking the desired path could also be

used, see for example [36] . A different approach using a piecewise smooth feedback

control law in which the path to be tracked is given by a series of points can be found

in [23] .

 
 
 



Chapter 5

Robustness

This chapter deals with the robustness of the the tracking controller developed in chap-

ter 3. The term robustness is used here to describe the compensation and/or invariance

of the controller in the face of uncertainties in the system parameters. Feedback lin-

earization strategies and inverse dynamics control laws such as given by equations (3.1)

and (3.8) do not guarantee robustness, nor does the theory of these methods attempt

to directly compensate for any parametric uncertainty.

Various robust control strategies have been developed in which the controller design

compensates directly for possible uncertainties in dynamic systems. See for example

[37] for the use of switching surfaces with min-max controllers and [38] for the use

of continuous state feedback. Sliding control methods can also be used for uncertain

nonlinear systems, see [39] for a development of control strategies for multivariable

systems in the presence of disturbances and time-dependent parameter variations.

Another method to obtain robustness is to use adaptive control strategies. Adaptive

control systems make use of on-line parameter estimation, see for example [40] and

 
 
 



[41]. Adaptive controllers have the advantage of improved performance over time and

are highly useful in practical problems.

Implementing the above mentioned methods of robust control are beyond the scope of

this work. The existing controller developed previously will instead be studied under

the influence of parametric variations.

5.2 Tracking controller

The nature of the tracking controller developed in chapter 3 will be examined more

closely in this section under the assumption that parametric uncertainties are present.

The controller designed in chapter 3 was obtained by applying two successive inverse

dynamics control laws which will be restated here but under the assumption that the

system parameters differ from the controller parameters.

The parameters which are considered as uncertain are the size of the system (i.e. the

lenght of the rod, the rotors and the radius of the disk) and the mass of the various

components. In the rest of the chapter functions and constants concerning the system

will be denoted in the same way as in chapters 2 and 3 , while in the case of the

controller the functions and constants will be denoted by adding (' ) to the symbols

d2if!
n(q) dt2 + F(q,p) = r' ,

where the matrix n(q) and the vector F(q,p) both depend on the system parameters

used. The control law given by equation (3.1) is assumed here to use a different set of

parameters and can thus be stated as

 
 
 



where the matrix n/(q) and the vector F'(q,p) differ from n(q) and F(q,p) only

due to the difference in the parameters used. Using equations (5.1) and (5.2) gives the

relation

d2if!
dt2 = n-1 n I u + n-1 (F' - F) .

The decoupled linear relation given by equation (3.2) are therefore not valid if the

controller has parameters which differ from the actual system parameters.

The dynamics for the point of contact between the disk and the horizontal plane is

given by equation (3.6) ,

(&) (~) (a g(7/J))dt3 A dt3 cl=a +
d3yc d2¢ (7/J)'
dt3 dt2 a gc2

This is similar to the functions (3.4) and (3.5) but d2'ljJdde was not substituted by U3'

The inverse dynamics control law given by equation (3.8) can now be written as

Equations (5.4) and (5.7) can be used in order to obtain the dynamics of the point of

contact between the disk and the plane,

(
2a~ cos cP) (d2~1 _ U3) .
2a d¢ sin A. dt

dt 'f'

 
 
 



dB ( 7r)
Ul = - k1 dt - k2 0 - 2"

1/ _ d3Xdr _ (d2xe _ d2xdr) _ (dxe _ dXdr)
1 - dt3 11 dt2 dt2 12 dt dt

- 13(Xe - Xdr)

1/ _ d
3
Ydr _ (d2Ye _ d2ydr) _ (dYe _ dYdr)

2 - dt3 11 dt2 dt2 12 dt dt

-,3(Ye - Ydr)

The feedback control laws given by equations (5.9) , (5.10) and (5.11) are designed

to achieve asymptotic tracking for the case when there is no parameter uncertainty

present. In the presence of parametric uncertainty these feedback control laws will still

attempt to obtain the desired values for Ul , 1/1 and 1/2, However, the effect that these

control laws will subsequently have on the dynamics of the system given by equations

(5.7) and (5.2) is uncertain. The next section deals with the study of the robustness

of the system through a numerical study.

5.3 Numerical study

It was shown in the previous section that robustness of the control strategy developed

in chapter 3 is not guaranteed. The linear decoupled nature of the control law is not

valid in the presence of parametric uncertainty. In this section the robustness of the

control strategy is examined via simulation.

The parameters used in the simulations are presented in table 5.1 . In each simula-

tion the same set of parameters was used for the controller and a different set was

used for the simulation of the motion of the system. At each timestep of a simu-

 
 
 



Controller System values

values Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

mD 10 kg 8 kg 12 kg 10 kg 10 kg 10 kg 10 kg

mRl 0.75 kg 0.6 kg 0.9 kg 0.75 kg 0.75 kg 0.75 kg 0.75 kg

mR2 0.25 kg 0.25 kg 0.25 kg 0.25 kg 0.25 kg 0.25 kg 0.25 kg

mol 0.5 kg 0.4 kg 0.6 kg 0.5 kg 0.5 kg 0.5 kg 0.5 kg

m02 0.5 kg 0.4 kg 0.6 kg 0.5 kg 0.5 kg 0.5 kg 0.5 kg

a 0.4 m 0.4 m 0.4 m 0.4 m 0.4 m 0.36 m 0.44 m

L11 0.25 m 0.25 m 0.25 m 0.2 m 0.3 m 0.25 m 0.25 m

L12 0.75 m 0.75 m 0.75 m 0.6 m 0.9 m 0.75 m 0.75 m

L13 0.5 m 0.5 m 0.5 m 0.41 m 0.6 m 0.5 m 0.5 m

Lol 0.3 m 0.3 m 0.3 m 0.24 m 0.36 m 0.3 m 0.3 m

L02 0.3 m 0.3 m 0.3 m 0.24 m 0.36 m 0.3 m 0.3 m

lation the controller calculates the applied torque based upon the current position

q = (e, </J, '¢l , O!l , 0!2) and velocity p = dq/dt together with the controller parame-

ters, the motion of the system for that timestep is then simulated by using the torque

calculated by the controller together with the parameter values of the system.

 
 
 



0(0) = 607r rad
180

d¢(O)~ = 0 rad/sec

ai(O) = 0 rad

U3(0) = 0 rad/ sec2

dxc(O)
dt = 1.6 m/ sec

dO(O)
~ = 0 rad/sec

?/Jl(O) = 0 rad

da·(O)
~t = 0 rad/ sec

xc(O) = 0 m

dyc(O) = 0
dt

7r
¢(O) = "2 rad

d?/J~iO) = 4 rad/ sec

k1 = 10

"/2 = 75

were used in all the simulations. The simulations were performed using a Runge-Kutta

order 4 algoritm with a timestep of 10-5 sec and the data was stored at intervals of

0.002 sec.

Some of the results of the system parameters given by case 1 and case 2 are displayed in

figures (5.1) - (5.7) . In each ofthe graphs the plot denoted by 'Controller' displays the

result obtained if the system had the same parameters as the controller. Results which

are not displayed are due to the fact that there was no noticeble difference between the

results. Case 1 and case 2 represent changes only in the mass of the system components.

Case 1 has a 20 % decrease and case 2 a 20 % increase in each parameter concerned.

It should also be noted that mR2 was left unchanged - this causes the center mass of

the rod not to coinside with the center mass of the disk, an assumption used in the

derivation of the dynamical model. The results shows that the feedback nature of the

control strategy ensures that the motion of the system converges to a specific path in

state space. For example O(t) - 7r/2 stabilize at around 3° and _4° for case 1 and 2

respectively, instead of the intended 0°. The point of contact also tracks a path which

is virtually the same as the intended path. Although a large change was made to the

parameters the results show only small deviations from the intended performance.

 
 
 



Similar results are displayed in figures (5.8) - (5.12) for case 3 and case 4. Here the

size of the components of the system, excluding the radius of the disk, was varied with

± 20 %. The results resembles the case with no parametric difference better than case

1 and 2, for example, O(t) differs with less than 10 from the intended value of 7f /2 .

Finally, the radius of the disk was varied with ± 10 % in case 5 and 6. Some of the

results are displayed in figures (5.13) - (5.19) . The change in the value of O(t) is similar

to that obtained in case 1 and 2. However, a large change in the values of xc(t) and

yc(t) was observed. The reason for this is due to fact that the observed quantities used

in the feedback control law does not include xc(t) and yc(t) or their derivatives, instead

the controller calculates the coordinates for the point of contact between the disk and

the plane indirectly. Any changes in the dinamics of xc(t) and Yc(t) due to a change in

the radius of the disk will therefore go unnoticed by the controller.

An estimate for the path tracked by xc(t) and yc(t) can be obtained as follows: From

the results obtained we conclude the following relations

a' (~) = (VI) ,a t!:..Jk V
dt3 2

which is a linear decoupled system with the values of xc(t) and yc(t) being scaled by a

factor (a' / a) from the desired value.

Jx~(t) + y~(t) = 8 meters,

 
 
 



a'Jx~(t) + y~(t) = - 8 meters,
a

which yields 7.2 m for case 5 and 8.8 m for case 6 , this is in fact very close to values

obtained - see figures (5.18) and (5.19) . Similarly, for case 1 to case 4, there is no

uncertainty in the radius of the disk and the results shows very little deviation from

the desired values.

Controller -
Case 1 -----
Case2 -----

0_2
r \,

0,1 : \~ : ...._--------------------------------------------

~ -o_~! ..----------------------------------------------------- ----
"-~ -0_2,.:

I ! ,/
,----. -0.3.:::...
<:J:>

-0_6
o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.1: The values of ()(t) -1r/2, t E

[0, tf] in radians. Variation of system

mass considered - comparison of Case 1

.
Controller -

Case 1 ---_.
Case 2 _. ~..

'------------- ------- -----------------------------.

\,/". "---- -- -- -- _._.- .... - _._ ... -- -- -- --.- -- --- _._---_ .. _._- .."

8 10 12 14 16 18 20

t[sec]

Figure 5.3: The values of da2(t)/dt, t E

[0, tf] in x1000 rad/ sec. Variation of

system mass considered - comparison of

Case 1 and Case 2.

{l -120"-,----..:::...

4
10 12

t[sec]

Figure 5.2: The values of dal(t)/dt, t E

[O,tf] in x1000 rad/sec. Variation of

system mass considered - comparison of

Case 1 and Case 2.

Controller -
Case 1 -----
Case 2 -----

5 ,:',

'.' _-- .---- ---_ ------_ _-----_ _-----_ .

,------ ------- ------- ------------- ------- ------
/. '

'\ ,I
-5

:f
,I

",/
-10 o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.4: The values of Ul(t) , t E

[0, tf] in rad/ sec2. Variation of system

mass considered - comparison of Case 1

and Case 2.

 
 
 



120

100

N 80
u
Q) 60en-....

'"0 40o:l...!::...
"....... 20.::::..

M 0;::l

-20

Controller -
Case 1 ----.
Case2 .....

2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.5: The values of U3(t) , t E

[0, tf] in rad/ sec2. Variation of system

mass considered - comparison of Case 1

and Case 2.

9

8 r~ 7

"....... 6.::::..
"''' 5;::"

+ 4
".......

3.::::..
"'''~ 2

Controller -
Case 1 ----.
Case 2 .

0
,

0 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.7: The values of

Jx~(t) + y~(t) , t E [0, tf] III m.

Variation of system mass considered -

comparison of Case 1 and Case 2.

300

200

100

~
0

-100
~

-200"........::::.. -300
'0 -400~

-500

-600

-700
0

Controller -
Case 1 ----.
Case 2 .

2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.6: The values of r01 (t) , t E

[0, t f] in N ·m. Variation of system mass

considered - comparison of Case 1 and

Case 2.

0.3

0.2

0.1
~ ro.o:l 0...!::... !('
C'l -0.1-....
~ ·0.2
I

-0.3"....... ,.::::.. ,
Q:> -0.4

-0.5 "

-0.6
0 2 4 6

Controller -
Case 3 ----.
Case 4 .

, ,
8 10 12 14 16 18 20

t[sec]

Figure 5.8: The values of O(t) -7f /2, t E

[0, tf] in radians. Variation of system

size considered - comparison of Case 3

 
 
 



Controller -
Case 3 -----
Case4 .....

g -100
o,...;
X

{l---2: -200

~
10 12 14

t[sec]

Figure 5.9: The values of dal (t) / dt , t E

[O,tf] in x1000 rad/sec. Variation of

system size considered - comparison of

Case 3 and Case 4.

120

100

80
N
u 60(l)

'"--- 40
"0
cd 20..!:...

---- 0.:::...
'" -20;:l

-40 ~!

-60
0

Controller -
Case 3 -----
Case4 .....

2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.11: The values of U3(t) , t E

[0, tf] in rad/ sec2. Variation of system

Controller -
Case 3 -----
Case4 .....

10

o
-10

-20
o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.10: The values of da2(t)/dt, t E

[O,tf] in x1000 rad/sec. Variation of

system size considered - comparison of

Case 3 and Case 4.

9

8

~ 7

---- 6.:::...
NU 5

."+ 4

---- 3.:::...
NU

f-'l 2

Controller -
Case 3 -----
Case 4 ._...

o
o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.12:

Jx~(t) + y~(t)

size considered - comparison of Case 3 Variation of system size considered -

and Case 4. comparison of Case 3 and Case 4.

 
 
 



Controller -
(\, Case 5 -----

0.1 '\ Case 6 -----.~ ! ".._--------------------------------------------
~ -o_~ r -----------------------------------------------------------
~ -0.2 :,.('_'

~ -0.3
~
<::t>

-0.5

-0.6
o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.13: The values ofB(t)-7r/2, t E

[0, tf] in radians. Variation of radius of

disk considered - comparison of Case 5

and Case 6.

50

U 45
Q)en

40.....•..•.
'"0~ 35....
0 30
0
0 25,......
X 20

.....,
15"':l.....•..•..---. 10.....,

'-'N 5Ci
"':l 0

',:
0 2 4 6

,
Controller -

Case 5 -----
Case6 -----

10 12

t[sec]

,

14 16 18 20

Figure 5.15: The values of da2(t)/dt, t E

[O,tf] in x1000 rad/sec. Variation of

radius of disk considered - comparison

of Case 5 and Case 6.

u
Q)

~ -50
'"0~....

Controller -
Case 5 -----
Case 6 -----

o -100oo,......
X

{l.....•..•.

S -200

.g
8 10 12 14 16 18 20

t[sec]

Figure 5.14: Thevaluesofdal(t)/dt,t E

[O,tf] in x1000 rad/sec. Variation of

radius of disk considered - comparison

14

12

10

8
6

, "
4

2 V \ .._.__---------------------------.-.--------------------------
o

Controller -
Case 5 -----
Case6 -----

:~; \ (----------------------------------------------

-6 \1
"

4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.16: The values of Ul(t) , t E

[0, t f] in rad/ sec2. Variation of radius

of disk considered - comparison of Case

5 and Case 6.

 
 
 



100

0

-100

Y -200 Controller -

~ Case 5 -----
-300 Case 6·····

------~ -400'2t:-. -500

-600

-700
0 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.17: The values of fa1(t) , t E

[0, tf] in N·m. Variation ofradius of disk

considered - comparison of Case 5 and

Case 6.

10

8

6

4

~ 2

~ 0
<.l

~ -2'---"<.l;::", -4

-6

-8

-10
-10 -5

ROBUSTNESS

: 1"-------- ----------------------- -- ----- ---------

Controller -
Case 5 -----
Case 6 .....

o
o 2 4 6 8 10 12 14 16 18 20

t[sec]

Figure 5.18:

Jx~(t) + y~(t)
Variation of radius of disk considered -

comparison of Case 5 and Case 6.

Controller -
Case 5 -
Case 6 .

5

Xc [m]

Figure 5.19: The values of Yc as a function of

Xc. Variation of radius of disk considered - com-

 
 
 



In this chapter the tracking controller designed in chapter 3 was examined for the effects

that parametric uncertainties have on the performance of the controller. It was shown

that the fundamental design of the controller does not take parametric uncertainties

into account. The system obtained after applying the inverse dynamics control laws is

neither linear nor is it decoupled as was the case in the absence of all uncerties.

The presence of the feedback control laws (5.9) - (5.11) was shown in a numerical study

to improve the performance of the overall control strategy. The results obtained show

that large uncertainties in the parameters result in relatively small deviations from the

desired behavior of the system. Variations in the radius of the disk was shown (equation

(5.14)) to cause proportional variations in the path followed by the point of contact

between the disk and the plane. This was also demonstrated by the numerical study

where very small deviations from the desired path was observed when the controller

and the system had the same radius.

In practice the size and mass of the components can be expected to be measured to

a high degree of accuracy. The results of this chapter shows that in the presence of

small uncerties the controller will result in stable operation of the system and that the

resultant behavior of the system will be close to the desired behavior. However, if the

control strategy has to be implemented on different systems with different dimensions

it will be necessary to change the parameters in each case to obtain results of high

accuracy.

 
 
 



Chapter 6

Extended Inverse Dynamics

Control

In the previous chapters of this work inverse dynamics control has been used to create

the control laws for the applied torques on the given system. The importance of inverse

dynamics control for solving nonlinear control problems was discussed in chapter 1. In

this chapter an extended inverse dynamics control is introduced, (see also [42] , which

introduces the notion of extended inverse dynamics control) which is an extension of

the basic theory of inverse dynamics control and is applicable to a larger class of control

problems. An example concerning the constrained motion of an articulated crane is

also solved here using extended inverse dynamics control.

d2q
M(q) dt2 + /(q,p) = u ,

 
 
 



open set in ~n and the inverse dynamics control will subsequently be defined on the

set D . f :D x D ---+ ~n is a given vector function, and u = (UI , ... , un? represents

the control vector of the system.

Note for example that equation (2.62) has this form and equation (3.6) has a form

similar to (6.1) but higher order derivatives are present. See also for example [6] for

inverse dynamics control applied to a different system also of the general form given

by equation (6.1).

d2q' ,
N(q) dt2 + f(q,p) = E(q) u ,

where, in equation (6.2) , q = (ql , , qn? is a vector of generalized coordinates;

p = dq/dt ; q' = (ql , ... , qm? , m ~ n. N(q) is is a given m x m matrix

with det N(q) > 0 , V q E D where D is a given open set in ~n ; E(q') is a given

m x m matrix with det E( q') i= 0 , V q' E Do where Do is a given open set in

~m . f : D x D ---+ ~m is a given vector function , and u = (UI , ... , um)T is the

vector of applied generalized forces on the system. Furthermore, in equation (6.3),

q" = (qm+l , ... , qn? ; Hi , i = 1 , ... , m , and G are given vector functions in

~n-m .

where v = (VI , ... , vm? is an auxilary control vector. The above control law will

be referred to here as an extended inverse dynamics control law. From equations (6.2)

and (6.4) it follows that

 
 
 



which is called a double integrator system. Furthermore, equations (6.3) and (6.5)

yield

In conclusion, a dynamical system given by equations (6.2) and (6.3) , can be par-

tially linearized by using an extended inverse dynamics control law of the form given

by equation (6.4). This leads to a representation of the system which consists of a

double integrator system, equation (6.5) and a complementory nonlinear system given

by equation (6.6). Furthermore, equation (6.5) is a decoupled linear system (double

integrator system) which is completely controllable, [1].

Equation (6.6) can also be considered as representing the internal dynamics of the

system given by equations (6.2) and (6.3). The internal dynamics of the system rep-

resents the part of the system which cannot be seen from the external input-output

relationship given in this case by (6.5). The presence of an "unobservable" part of the

system occurs when the number of controls, m , is less than the number of generalized

coordinates, n. Different approaches have been used to handle the problem of internal

dynamics, see for example [43] in which the internal dynamics of a system is shown to

be bounded. The question of feedback stabilization of underactuated systems is exam-

ined in [44] using topological methods and general feedback design methods, explicit

feedback laws are derived to stabilize a spacecraft with only two independent controls

around an attractor.

However, in this chapter a different, and much simpler approach is taken. For a given

control problem with a given a time interval [0, tf] , tf > ° , the control objectives is to

choose the auxilary control vector v(·) in such a manner that the following conditions

 
 
 



(i) q'(t) E Do for all t E [0, tf]

(ii) q(t) E D for all t E [0, tf]

(iii) The components of q(.) will satisfy all the goals and constraints placed upon it

for the specific problem under consideration.

Once these specifications and goals are met, then, by using the control law (6.4) ,

the values of the control vector u(·) can be calculated from the values of v(·) . The

constraints mentioned in point (iii) can be used to place bounds on q"(t) and its

derivatives on the interval [0, t f] , resulting in the stabilisation of the internal dynamics

of the system.

6.2 Example

In this section a physical system is described which can be represented by equations

(6.2) and (6.3) stated in the previous section. The dynamical model of the system is

derived in the next section and the rest of the chapter deals with the control of this

system, using extended inverse dynamics control.

The system (see figure 6.1 and also [45]) is composed of two identical uniform links of

lenght l and mass m = ml = m2. The upper ends of the links are freely pivoted at a

joint 0 of mass mo. The lower end of each link is freely pivoted to a disk which acts

as a wheel. The two wheels, denoted by WI and W2 respectively, are identical, with

radius a and mass mD. The controls are via the driving torques on the wheels, it is

assumed that a torque UI is acting on wheel WI and a torque U2 is acting on wheel

W2• A mass M is hanging from the point 0 on a rod of lenght L , L < l , which is

freely pivoted from the point O. It is assumed in this work that the mass of this rod

is negligible with respect to M. The motion of the system is confined to the (X , Z) -

plane, and it is furthermore assumed here that the motion of the wheels involves rolling

 
 
 



 
 
 



6.3 Dynamical model

Let (1 , J , K) be an inertial frame of reference with the system constrained to move

in the (1, K) - plane. The inertial frame of reference is furthermore chosen with the

center of the wheels on the 1 - axis. The axis of both wheels is thus along the unit

vector J.

Denote by (x, z) the position of the point 0 in the (1, K) - plane. The coordinate z

is given in terms of the angle between the two links, (), by

()
z = l cos"2 .

T D1 = (x - l sin ~) 1 ,

T D2 = (x + l sin ~) 1 .

Tl = (x - lOl sin~) 1 + lOl COS ~ K ,

T2 = (x + lOl sin ~) I + lOl cos ~ K ,

TO = x 1+ z K
()

= x 1 + l cos "2K .

 
 
 



The angular velocity of wheel W1 is denoted by d'l/Jd dt and the angular velocity of

wheel W2 is denoted by d'l/Jd dt.

The condition that the motion of the wheels on the plane involves rolling without

slipping leads to the following kinematical constraints

dx dO 0 d'l/Jl
- - lO1- cos - - a- = 0
dt dt 2 dt

dx dO 0 d'l/J2- + lO1- cos - - a- = 0 .
dt dt 2 dt

Let ID denote the moment of inertia of each of the wheels about its axis and let IR

denote the moment of inertia of each of the links about a vector in the J - direction

1[ 0 0£ = 4 4 9 L M cos 0: - 8 9 lOl m cos 2 - 8 9 lO1 M cos 2

o (d )2- 8 9 lOl mo cos 2 + 2 (2 m + M + 2 mD + mo) d~

dx do: 2 (dO:) 2 0 do: dO+ 4 L M cos 0: - -- + 2 L M - - 4 L lOl M sin 0: sin - - -
dt dt dt 2 dt dt

(
dO) 2 ( dO) 2 ( dO ) 2 ( dO ) 2

+IR dt +l01
2
m dt +l01

2
M dt +2l~lmD dt

(
dO) 2 ( dO) 2 ( dO ) 2+ l~l mo dt - l~l M COS 0 dt + 2l~1 mD cos 0 dt

(
dO)2 (d'l/J )2 (d'l/J )2]

-l~l mo cosO dt + 2ID dt
1 + 2ID d/

By applying the Lagrangian method, [4] , to the Lagrangian, £ , together with the

kinematical constraints, equations (6.13), the following dynamical model of the system

was obtained after some algebraic manipulations. Note that the constraints given by

equations (6.13) are integrable, but was used in kinematical form to simplify calcula-

tions.

 
 
 



d2q' ,
N(q) dt2 + f(q,p) = E(q )u ,

. 2 Iv
Nu =mo+2m+2mv+Msm a+22"" 'a

o
N12 = N2I = Mlol sin "2sin a cas a ,

2 2 ( Iv) 2 2 0 2. 2 0 2. 2 0 2N22 = - m lOl + 2 mv + 2"" lOl cas - + mo lOlsm - + Mlol sm -2 cas a,
3 a 2 2

lOl 0E2I = - E22 = - - cas - .
a 2

f h h lOl . 0 .
2 = 2 + 3 L sm "2sm a ,

hI = - M L ( ~~ ) 2 sin a ,

( ) ( )

2mo M I v dO . 0 0
h2 = lOl - + - - mv - - - sm - cas -

2 2 a2 dt 2 2

o (d)2 0-glOl(M+m+mo)sin"2-MLlOl d~ sin"2casa,

[ ( )
2 ]lOl dO 0 .

h3 = - M L 2 dt cas "2- 9 sm a .

 
 
 



1 ZOl • () .
HI = - L cos a , H 2 = L sm 2" sm a

G = [l~l(~~)'cos; _ g] Si~" .

ZOl ()
det E(q') = 22"" cos - .

a 2

L = {(2k + 1) 7r : k = 0, ± 1 , ± 2, ... } ,

The physical nature of the system also constitutes certain constraints on the system.

The angle () is constrained to remain between

where the minimum angle ()s is the angle where the wheels touch and the maximum

angle ()o is the angle where the suspended mass is touching the surface. These angles

are given by the followng relations

() 2' -1 as = sIn l L-a
()o = 2 cos-1 -Z- .

 
 
 



6.4 Inverse dynamics control

The control law given by equation (6.4) is now applied to the system described by

equations (6.15) and (6.16). Equations (6.4) - (6.6) then reduce, for the system under

(
Ul) (!ill.. cos !l.

= D-1 a 2
U !ill..COS!l.

2 a 2

lOl ()
D = 2- COS-.

a2 2

The extended inverse dynamics control law, equation (6.20) enables the system given

by equations (6.15) and (6.16) to be represented by a double integrator system given by

equation (6.21) and a complementary nonlinear equation, equation (6.22) , together

with (6.20) with which the applied torques can be calculated. In the rest ofthe chapter

a constrained control problem is solved which illustrates the advantage of having the

system representation in the form given by equations (6.20) - (6.22) .

6.5 Constrained control problem

In this section a constrained control problem for the system given by equations (6.15)

and (6.16) is dealt with. As mentioned before, the solution of the problem will be

carried out via equations (6.20) - (6.22). A command function 8 = (01, (2) is introduced

such that

 
 
 



6i(t) - Vi(t)

/3i

where /31 and /32 are positive real numbers to be specified later. The command functions

61 and 62 defined by equation (6.23) are added to equations (6.20) - (6.22) to ensure

that the behaviour of v(·) is smooth, and subsequently, that the behaviour of u(·) is

smooth, which in turn represent the torques applied to wheels. Define the vector 1] as

(
dx(t) d()(t) da(t) )

1](t) = x(t), ~ , ()(t) , ~ , a(t) , -----;It , VI (t) , V2(t) ,

The control problem dealt with here can now be stated as follows: Given a final time

tf , 0 < tf < 00 , and an initial state of the system, 1](0) E IR8 , find a command

function d(t) , t E [0, tf] such that

(1) 1](tf) = 1]f ' where 1]f is a given point in IR8 .

(2) During the time interval [0, tf] the motion of the system is subject to the following

contraints ()min ~ ()(t) ~ ()max la(t)1 ~ ')'1 Id~;t)1 ~ ')'2 , (6.24)

where ()max > ()min > 0 , ')'1 > 0 and ')'2 > 0 are given numbers, and [()min, ()max] C

The contrained control problem posed above is solved here using the method of feasible

command strategies, see for example [5] , [46] or [47]. Henceforward, we will only be

interested in the motion of the system, during a time interval [0, t f] where t f > 0 is a

given number.

Let 0 = TO < Tl < T2 < < TN-l = tf be a partition of the interval [0, tf] such that

Ti+l - Ti = ~ , i = 0, , N - 2 . Denote by A the class of all command functions

de = (61 , 62) : [O,tf] -+ IR2 such that

 
 
 



Chapter 6

That is, if 6 E A then 6i(t) , i = 1,2, is piecewise linear on the given partition {Ti}~(;I.

Furthermore, the partition {Ti}~(;I , together with the 2N numbers {co, ... , C2N-l}

completely define 6 via equations (6.25) - (6.27).

Let 6c be an element of A and denote by ((t , "10 ; 6c) , t 2: 0 the solution to equa-

tions (6.21) and (6.22), together with equation (6.23), whenever it exists, such that

((0, "10 ; 6c) = "10 , "10 E ]R8.

Ap = {"I E ]R8 : ()min ::; T/3 ::; ()max , IT/51::; 1'1 , 1T/61::; 1'2} , (6.28)

Af = {"I E ]R8 : IT/I - xfl ::; El , 1T/21::; E2, 1T/41::; E4} , (6.29)

where ()min , ()max , 1'1 , 1'2 , Ei , i = 1, 2, 4 are given positive numbers and x f is a given

real number and the notation "I = (T/l , T/2 , ... , T/8? was used.

Given a fixed time tf > 0 ; a partition {Ti}~Ol and an initial state "10 E Ap . The

problem dealt with here is to find a command strategy 6c E A such that

 
 
 



Equation (6.30) represents the path contraints placed upon the system during the time

interval [0, tf] and equation (6.31) represents the boundary condition on system at the

final time t = tf . A command strategy 6c E A for which equations (6.30) and (6.31)

are satisfied will be called here a feasible command strategy.

6.6 Solution of the problem

G(z, A) = [max(z - A , 0) + min(z + A , 0)]2 , A > 0 , (6.32)

for all z E ]R. Let c = (co, Cl , ... , cN-d E ]R2N , and let 6c E A be defined

by equations (6.25), (6.26) and (6.27). Note that the notation used here to describe

the motion of the system is given by: (l(t, "10; 6c) = x(t) , (2(t, "10; 6c) = dx(t)jdt

, (3(t, "10; 6c) = O(t) , (4(t, "10; 6c) = dO(t)jdt , (5(t, "10; 6c) = a(t) , (6(t, "10; 6c) =

da(t)jdt , (7(t, "10; 6c) = Vl(t) , (s(t, "10; 6c) = V2(t) .

where Pk, k = 1,2,4,9,10 are given positive numbers and the desired state at the final

time is give by

 
 
 



In the problem dealt with here the numbers Of , a f , adf , Vw and V2D are unspecified.

However, Of , af and adf must still satisfy equation (6.24) , that is "1f E Ap , which

follows from equation (6.34) .

The functional F( c) is a sum of penalty functions which incorporates all the control

and state constraints together with the required goals. An element CO E ]R2N for which

F( CO) = 0 will be called here a feasible command vector. A command strategy dO

which is the solution of equations (6.25) and (6.26) using c = CO will be called a

feasible command strategy.

Thus, if a feasible command strategy, induced by a feasible command vector, is applied

to the system, the solution of equations (6.20) - (6.22) and (6.23) , given by '(t, "10; dO) ,

will be such that equations (6.30) and (6.31) are satisfied. All the specifications and

goals of the control problem posed here are then satisfied.

In this section the control problem considered can then be stated as follows: Find an

element CO E ]R2N such that F( CO) = 0 . The computations of CO was conducted by

solving an unconstrained minimisation problem for F(c) on ]R2N . The minimisation

of the functional F(c) was done by using the gradient method described in [48] and

[49] and subsequently applying the gradient method described in [50](p. 104). At each

step during the minimis at ion process the command function d (.) was computed using

equations (6.25) and (6.26) after which F( c) was calculated by solving equations (6.20)

- (6.23) on [0, tf]. Finally, once CO has been calculated then u(·) can be calculated using

equation (6.20) .

 
 
 



6.7 Numerical study

In this section an example is solved using the control strategy proposed in the previous

section. The following set of parameters has been used

mo = 50 kg

L = 2.5 m

x(O) = 0 m

dO(O)
~ = Orad/see

VI (0) = 0 m/see2

dx(O)
-- = Om/see

dt

a(O) = 0 rad

0(0) = 1.45 rad

da(O)
-- = 0 rad/see

dt

xf = 20 m Cl = 0.1 m C2 = 0.1 m/see

C4 = 7f /60 rad Omin = 0.3 rad Omax = 2.0 rad

1'1 = 6 deg 1'2 = 6 deg /see Pt = P4 = 10

P2 = 102 Pg = 5 X 103 PlO = 5 X 102

The calculation of equations (6.21) , (6.22) and (6.23) was done by using a Runge -

Kutta order four algoritm with a stepsize ~ = 10-5 sec. Some of the results obtained

are shown in figures (6.2) - (6.11)
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This chapter introduced the concept of extended inverse dynamics control and its

application to systems of the form given by equations (6.2) and (6.3). It was shown

that such a system can be represented by a double integrator system, equation (6.5),

together with a complementory nonlinear part given by equation (6.6).

A problem concerning the constrained motion of an articulated crane is solved to

demonstrate the effectiveness of extended inverse dynamics control. A feasible control

strategy is developed to solve the problem by calculating a feasible open-loop trajectory

in state space under which the internal dynamics of the system remains bounded and

the motion of the crane reach its desired final position in the pre-specified time interval

[0, tf] .

Any gradient method, or search method can be applied for the solution of F(c) =

o , c E }R2N . However, each step of the minimisation process involves the solution of

the dynamics of the system on the interval [0, t f]. This calculation takes most of the

computation time. Using equations (6.5) and (6.6) is much less time consuming than

using equations (6.2) and (6.3) directly.

 
 
 



Chapter 7

Conclusion

This work dealt with the control of nonlinear, nonholonomic systems. Inverse dynamics

control formed the basis of the all the control strategies which were designed.

First a system configuration concerning a disk, a controlled rod and two overhead

rotors was considered. It was shown that by applying two successive inverse dynamics

control laws it is possible to separate the kinematics of the system from the dynamics

of the system. This enables the design of control strategies which directly controls the

motion of the system.

A feedback tracking controller was designed which stabilised the motion of the disk

and asymptotically track any given smooth reference path. It was later shown that

the controller was robust under small parametric variations. It was also shown that

the system is path controllable and a controller was designed which stabilised the disk

while moving it from any initial point to any final point in a given finite time interval.

Extended inverse dynamics control was introduced and an example concerning an ar-

ticulated crane was solved. The crane system is underactuated and by applying an

extended inverse dynamics control law the system was split into a completely control-

lable linear decoupled system together with a complementary nonlinear part which is

 
 
 



not independently controllable. A feasible control strategy was then used to calculate

the control inputs which moved the crane from an initial to a final position in a given

finite time interval while insuring that the uncontrollable variable remains within the

problem specifications during the motion of the crane.

Three publications has resulted from this work. The tracking controller designed in

chapter 3 was also dealt with in [32]. The work on path controllability presented in

chapter 4 was described in more detail in [35]. The articulated crane as an application

of extended inverse dynamics control (chapter 6) was dealt with in [45].

It was thus found that inverse dynamics control is a very effective method for the

control of nonlinear, nonholonomic systems. Furthermore the method is theoretically

simple and easy to apply and also works well on underactuated systems where only

part of the system can be controlled.
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Appendix A

(
(2) 2) dcfy dO .h2(q,p) = 2 1m + 101 - II- 103 - ma dt dt smOcosO

( )
d'ljJl dO .

- 103+ molaL12 + m02aL13 dt dt sm 0

(1) dcfy (dO dO'.l) .
- 2101 dt dt + ----;It cos(O + ad sm(O + 0'.1)

( )

2(2) dO d0'.2 2 (2) dO . .
- 2101 dt ----;It cas 0 cas 0'.2 + 101 dt sm 0 sm 0'.2 cas 0'.2

(2) dcfy (d0'.2 2 . dO . 2 )
- 2101 dt ----;It cas 0 sm 0'.2 cas 0'.2 + dt sm 0 cas 0 cas 0'.2 ,

( ( 2) dcfy dO .
h3 q,p) = - 103 + molaL12 + m02aL13 + 2ma dt dt smO,

 
 
 



Disk-rod-rotors

(2) dcjJdO
h5(q,p) = -101 dt dt cosO

(2) (dO . dcjJ )- 101 dt sm a2 - dt cos a2 cos 0

(
dO dcjJ )

x dt cos a2 + dt sin a2 cos 0 ,

8£ (dcjJ) 2 .
80 = (IDl - II) dt sm 0 cos 0

dcjJ. (d~1 dcjJ )- I D3 - sm 0 - + - cos 0
dt dt dt

dcjJd~1 .
- (molaLl2 + m02aL13) dt -;It sm 0

(1) (dcjJ) 2 .- 101 dt sm(O + al) cos(O + al)

(2) dcjJ (da2 dcjJ. )- I 1 - COS 0 - - - sm 0
a dt dt dt

(2) dcjJ . (dO . dcjJ )+ 101 dt sm 0 cos a2 dt sm a2 - dt cos 0 cos a2
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