University of Pretoria etd — Joseph, G (2005)

DESIGN AND IMPLEMENTATION OF HIGH-SPEED
ALGORITHMS FORPUBLIC-KEY CRYPTOSYSTEMS

By

George Joseph

Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Electronics)

in the

Faculty of Engineering, Built Environment & Information Technology

-‘-ré‘)?—/n
&

UNIVERSITY OF PRETORIA

March 2005

University of Pretoria etd — Joseph, G (2005)

SUMMARY

DESIGN AND IMPLEMENTATION OF HIGH-SPEEDALGORITHMS FORPUBLIC-KEY

CRYPTOSYSTEMS

The aim of this dissertation is to improve computational efficiency of modular
exponentiation-based public-key cryptosystems. The operational speed of these public-key
cryptosystems is largely determined by the modular exponentiation operation of the form
A = g° mod m whereg is the baseg is the exponent and: is the modulus. The required

modular exponentiation is computed by a series of modular multiplications.

Optimized algorithms are required for various platforms, especially for lower-end
platforms. These require the algorithms to be efficient and consume as little resources as
possible. In these dissertation algorithms for integer multiplication, modular reduction
and modular exponentiation, was developed and implemented in software, as required for
public-key cryptography. A detailed analysis of these algorithms is given, as well as exact

measurement of the computational speed achieved by each algorithm.

This research shows that a total speed improvement of 13% can be achieved on
existing modular exponentiation based public-key cryptosystems, in particular for the
RSA cryptosystem. Three novel approaches are also presented for improving the decryption
speed efficiency of the RSA algorithm. These methods focus on the selection of the
decryption exponent by careful consideration of the difference between the two primes
andq. The resulting reduction of the decryption exponent improves the decryption speed by

approximately 45% .

Keywords: Public-key cryptosystems, RSA, modular exponentiation, modular multipli-
cation, modular reduction, RSA decryption, Montgomery reduction, Karatsuba-Ofman

multiplication, addition chains, Chinese remainder theorem.

University of Pretoria etd — Joseph, G (2005)

OPSOMMING

DESIGN AND IMPLEMENTATION OF HIGH-SPEEDALGORITHMS FORPUBLIC-KEY
CRYPTOSYSTEMS

The doel van hierdie verhandeling is om die verwerkingseffektiwiteit van néoeul
eksponeng&ringsgebaseerde publieke-sleutel kriptostelsels te verbeter. Die operasionele
spoed van sulke publieke-sleutel kriptostelsels word oorwegend bepaal deur di€raodul
eksponeng&rings operasie van die vormh = ¢¢ mod m waarg die basisg die eksponent

enm die modulus is. Die vereiste modue eksponengring word bereken deur 'n reeks

modukre vermenigvuldigings.

Optimale algoritmes word vereis vir verskeie platforms, spesifiek lae-skaal platforms
met beperkte rekenkundige vermoe. Die vereiste is dat algoritmes effektief moet wees
en so min hulpbronne moontlik gebruik. In hierdie verhandeling is algoritmes vir
heelgetal vermenigvuldiging, modare vereenvoudiging en modué eksponensiasie
ontwerp en in sagteware @eplementeer, soos vereis vir publieke-sleutel kriptografie.

'n Gedetaileerde analise van hierdie algoritmes word voorsien, asook presisie-metings
van die verwerkingspoed wat behaal word vir elke algoritme. Hierdie navorsing toon
dat 'n totale spoedverbetering van 13% verkry kan word teenoor huidige &redul
eksponensiasie-gebaseerde publieke-sleutel stelsels, spesifiek die RSA kriptostelsels. Drie
nuwe benaderings om die spoedeffektiwiteit van die RSA dekriptering te verbeter, word
ook voorgestel. Hierdie metodes fokus op die selektering van die dekripsie-eksponent
na deeglike inagneming van die verskil tussen twee priemgetalen ¢. Hierdie
vereenvoudiging van die dekripsie-eksponent verbeter die dekripsiespoed met ongeveer
45% .

Sleutelwoorde: Publieke-sleutel Kriptostelsels, M@ueal Eksponensiasie, Modue Ver-
menigvuldiging, Modwére Vereenvoudiging, RSA dekripsie, Montgomery vereenvoudiging,

Karatsuba-Ofman vermenigvuldiging, sommasie-skakels, Sjinese res-teorema.

University of Pretoria etd — Joseph, G (2005)

To Appa, Mama, Jikku and Jeff who supported me through my years of study and to God

Almighty for giving me talents, and the opportunities to use them.

University of Pretoria etd — Joseph, G (2005)

ACKNOWLEDGEMENT

"Tell me what company thou keepst, and I'll tell thee what thou art.”

MIGUEL DE CERVANTES, 1547-1616

First of all, | would like to express my gratitude to my promoter, Professor W.T. Penzhorn,
for giving me the opportunity to begin a dissertation in an exciting and moving domain like
cryptography, particularly in relation with public key cryptosystems. Without his guidance
and astute advice, this dissertation would not be possible.

| appreciate the support of my employer Telkom SA Ltd who provided funding during the
completion of this dissertation. | was deeply involved in a tremendous and successful Centre
of Excellence program that allowed me to present my research to fellow researchers from
various universities.

My deepest thanks go to my good friend Jacques van Wyk, who has always provided
me with the guidance, friendship, inspiration, to complete my research here at UP.

It is my privilege to acknowledge the support of my colleague, Cobus Potgieter for
collaborating with me on important aspects of this dissertation.

My close friend, Saurabh Sinha, must also be thanked. Saurabh, though you never
directly impacted my dissertation, you are an ever reliant friend whose patience, help, and
inspiration took me through my undergraduate study. | would never had this opportunity to
partake in a postgraduate study without you.

Finally 1 would particularly like to thank my family whose love and support has taken me
through the really difficult periods of my dissertation.

University of Pretoria etd — Joseph, G (2005)

CONTENTS
CHAPTERONE - INTRODUCTION 1
1.1 Cryptographic Background 1
1.2 Modular Exponentiation. Lo 2
1.3 Objectives. e 4
1.4 Research Contribution. 4
1.5 DissertationOutline 5
CHAPTERTWO - PuBLIC-KEY CRYPTOSYSTEMS 7
2.1 Diffie-Hellman Key Exchange.
211 TheAlgorithm
2.1.2 Security of the Algorithm 9
2.1.3 ApplicationsofDH. 0oL, 10
2.2 The ElGamal Algorithm 11
221 TheAlgorithm 11
2.2.2 Security of the Algorithm 14
2.2.3 Applicationsof ElIGamal 14
2.3 Digital Signature Standard (DSS) 14
2.3.1 TheAlgorithm 15
2.3.2 Security of the Algorithm 17
2.3.3 Applicationsof DSS. L oo 18
24 The RSAAlgorithm 18
241 TheAlgorithm 19
2.4.2 Security of the Algorithm 23
2.4.3 Applicationsof RSA. o 24
2.5 ChapterSummary 24

University of Pretoria etd — Joseph, G (2005)

CONTENTS
CHAPTER THREE - FAST MULTIPLICATION TECHNIQUES 26
3.1 TheClassicalMethod 27
3.1.1 Application to Multiplication 27
3.1.2 ApplicationtoSquaring. o0 28
3.2 TheCombaMethod 29
3.2.1 Application to Multiplication 29
3.2.2 ApplicationtoSquaring.0 0 31
3.3 The Karatsuba-OfmanMethod. 32
3.3.1 Application to Multiplication 32
3.3.2 The Computational Complexity of the Algorithm. 34
3.3.3 Recursive Properties of the Algorithm. 35
3.3.4 The Optimum Break-point 38
3.3.5 Applicationto Squaring. 39
3.4 ExperimentalResults 41
3.5 ChapterSummary. e 44
CHAPTERFOUR - FAST REDUCTION TECHNIQUES 45
4.1 ClassicalReduction 46
4.1.1 Description. 46
4.1.2 TheAlgorithm 47
4.1.3 Computational Improvements 48
4.2 BarrettReduction e 48
4.2.1 Description. e e 49
4.2.2 TheAlgorithm 49
4.2.3 Computational Improvement. 51
4.3 Montgomery Reductiono 52
4.3.1 Description. 52
4.3.2 TheAlgorithm o 53
4.3.3 Computational Improvements 56
4.4 ExperimentalResults 58
4.5 ChapterSummary e e 62
CHAPTERFIVE - FAST EXPONENTIATION TECHNIQUES 63
5.1 TheClassicalMethod, 64
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 11

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

UNIVERSITY OF PRETORIA

CONTENTS
5.2 TheBinaryMethad. 64
5.2.1 TheAlgorithm 64
5.2.2 Computational Efficiency., 65
53 TheK-aryMethod 66
5.3.1 TheAlgorithm 67
5.3.2 Computational Efficiency. 67
5.4 Sliding Window Methods 69
54.1 TheAlgorithm 70
5.5 Constant Length NonzeroWindows 71
5.5.1 TheAlgorithm 71
5.5.2 Computational Efficiency. 72
5.6 Variable Length Nonzero Windows. 73
5.6.1 TheAlgorithm 74
5.6.2 Computational Efficiency. 75
5.7 AdditionChains 77
5.7.1 Description. 77
5.7.2 _Addition Chain Heuristics. 77
5.7.3 TheAlgorithm 78
5.7.4 Practical Enumeration Lo L 83
9.7.5 Discussian. 86
5.8 TheoreticalLimits 88
5.9 ExperimentalResults 89
9.10 DISCUSSION e 93
5.11 Chapter SUMMary. o o e e 96
CHAPTERSIX - FAST EXPONENT TECHNIQUES 97
6.1 RSADecryption e 98
6.2 FastDecryptionusingCRT 98
6.2.1 The Chinese Remainder Theorem (CRT). 99
6.2.2 Computational Efficiency. 101
6.3 Fast Decryption by choosing the Decryption Exponent (Method I). . . 103
6.4 Fast Decryption by choosing the Decryption Exponent (Method 1l). . . 105
6.5 Fast Decryption by choosing the Decryption Exponent (Method I1l) . . 106
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 1l

University of Pretoria etd — Joseph, G (2005)

CONTENTS
6.6 Prime Generation 108
6.6.1 Low Hamming Weight Prime Difference 108
6.6.2 Small Prime Difference., 109
6.6.3 Low Hamming Weight Prime Sum. 110
6.7 ExperimentalResults 112
6.8 DISCUSSION e e 116
6.8.1 Performance Analysis, 116
6.8.2 Simple Factoring Attack on the Modulus 117
6.8.3 Wiener’s Attack on Short Decryption Exponents. 117
6.8.4 Fermatand Lehman Attacks. 118
6.8.5 Security Risk of Method/Il 118
6.9 ChapterSummary e 119
CHAPTERSEVEN - CONCLUSION 121
7.1 Assessmentofstudy. 121
7.2 Summary and furtherresearch. 125
REFERENCES 126
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE IV

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

ceren OINE

INTRODUCTION

"The design and evaluation of public-key cryptographic functions is a special topic on its own,
requiring advanced knowledge of combinatorial mathematics, number theory, abstract algebra,

and theoretical computer science.”

P.F. S*VERSON[1]

1.1 CRYPTOGRAPHICBACKGROUND

The need for information security has grown steadily over the years, paralleling growth
in the use and interconnectivity of computers. Users require protection of information
from unauthorized access and alteration. System experts have drawn on the discipline of

cryptography to meet the increasing needs for information secijity [

The word cryptography comes from the Greek worgs o (hidden or secret) and
vypaon (writing), hence cryptography is the art of secret writirg]. [More formally
cryptographyis the study of mathematical techniques related to the security services of
information security.

The ITU-T X.800 H] standard defines the security services provided by a system to
give a specific kind of protection to system resources. X.800 divides security services into
the following four categories:

e Confidentiality This is a service to protect the content of information from all but

those authorized to have it. Secrecy and privacy are synonymous with confidentiality.

1

University of Pretoria etd — Joseph, G (2005)

CHAPTERONE INTRODUCTION

e Data integrity This pertains to the unauthorized alteration of data. To ensure data
integrity, it must be possible to detect data manipulation by unauthorized parties. Data

manipulation includes operations such as insertion, deletion or substitution.

¢ Authentication This service applies to the communicating parties as well as the
information. Two parties involved in a communication should identify each other.
Information delivered over a channel should be authenticated regarding the origin,
date of origin, data content, time sent, etc. For these reasons this service is subdivided

into two major classes: entity authentication and data origin authentication.

e Non-repudiation This service prevents an entity from denying previous commitments
or actions. When disputes arise due to an entity denying that certain actions were
taken, a means to resolve the situation is necessary. A procedure involving a trusted

third party is needed to resolve the dispute.

Cryptographic techniques are fundamental to the implementation of these security services

and may be divided into two classes: symmetric-key and public-key cryptography.

Symmetric-key cryptography requires a single secret key that is used for both encryption
and decryption. The exchange of this secret key forms part of the key management problem,

that is concerned with the secure distribution of keys to the communicating parties.

A major advance in cryptography came in 1976 with the publication by Diffie and
Hellman of the concept of public-key cryptography (PKG)) [The primary feature of PKC

Is that it removes the need to use a single key for encryption as well as decryption. With
PKC, a pair of matched keys is used, termed "public” and "private” keys. The public part
of the key pair can be distributed publicly without compromising the security of the private
key, which must be kept secret by the receiver. A message encrypted with the public key
can only be decrypted with the corresponding private key. The key management problem is

greatly simplified by the use of public-key cryptosystems.

1.2 MODULAR EXPONENTIATION

Most public-key cryptosystems used today are based on the difficulty of factorizing large

integers as well as the difficulty to compute the discrete logarithm of a large integer. The

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 2
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERONE INTRODUCTION

implementation of these public-key cryptosystems requires modular exponentiations. In
Chaptel2 a detailed overview of public-key cryptosystems based on modular exponentiation
is given. These include the RSA algorith®],[the Diffie-Hellman key exchange scheme

[5], the ElGamal algorithm[4] and the Digital Signature Standar@l][The operational
speed of these public-key cryptosystems is largely determined by the speed of the modular

exponentiation operation, which may be stated as follows:

A= ¢°modm (1.1)

where g is the basee is the exponent and is the modulus. The required modular
exponentiation is computed by a series of modular multiplications. This is performed in
two steps: first an integer multiplication is done followed by a reduction by maduldhe
implementation of a public key cryptosystem can be modelled as a hierarchical structure that
reflects the various mathematical operations that are required, as shownIniFig.

Public key cryptosystem

Exponent coding

Modular exponentiation

Multiplication Reduction

,,

Figure 1.1:Graphical illustration of the PKC implementation

Fig.'1.1 depicts the following:

e Modular multiplication layer The lowest layer consists of a integer multiplication and

a modular reduction step. When combined they form a single modular multiplication.

e Themodular exponentiation layeronsists of a series of modular multiplications. The

number of modular multiplications depends on the exponent’s characteristics.

e Exponent coding layemvolves the modification or manipulation of the exponent,
which is applicable to fixed exponent public key cryptosystems such as the RSA

algorithm.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 3
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERONE INTRODUCTION

In this dissertation, we concentrate on the development of high-speed algorithms for
public-key cryptosystems. In this framework a complete study of the basic components
of a modular exponentiation, depicted in Fifi.1, which forms the core of the public-key

cryptosystem is performed.

1.3 OBJECTIVES

"The computational cost of software cryptography is a function of the underlying algorithm and

the quality of implementation of the algorithm

P. RoGAwAY AND D. COPPERSMITH[9]

Public key cryptographic functions require operations with elements of a large finite group,
and need to be optimized for the chosen platform for high-speed implementation. For
example, the RSA cryptosystem uses modular arithmetic algorithms with large integers,
usually in the range of 1024 to 2048 bits. Arithmetic with such large integers is time

consuming for most PKC application$(]. Other public-key cryptosystems, described in

Chaptel2, also require implementation of modular arithmetic algorithms with large integers.

Software implementations of these modular arithmetic algorithms are often desired
because of their flexibility and cost effectiveness. The layers depicted inlElgcan be

implemented in software. These software implementations need to be efficiently designed
to accommodate processing of large integer arithmetic efficiently. Hence the aim of this
dissertation is to develop and implement integer-arithmetic algorithms that will enhance the

speed of the public-key cryptosystem.

1.4 RESEARCHCONTRIBUTION

The contributions made by this dissertation:

e Various integer multiplication, modular reduction and modular exponentiation
algorithms are developed and implemented in software. The dissertation provides
a detailed analysis of these algorithms, as well as exact measurement of the

computational speed achieved by each algorithm.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 4
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERONE INTRODUCTION

¢ A thorough analysis of addition chains, and how each exponentiation method can be
expressed in terms of addition chains is investigated. The simulations were conducted

for various window sizes and various Hamming weight exponents.

e Three new methods for fast RSA decryption are proposed in Ch#éptefhese
techniques are implemented and exact simulation results are obtained. These methods
allow the reduction of the size of the decryption exponent from the industry standard

1024-bits to 412-bits, taking the necessary security considerations into account.

The publications and reports either emanated or benefited during the completion of this
dissertation arel1,/12,113,114,/15,/16,17].

1.5 DISSERTATIONOQUTLINE

This dissertation consists of seven chapters in which the high-speed integer arithmetic

aspects of public-key cryptosystems are discussed.

Chapter2 provides a review of public key cryptosystems that are based on modular
exponentiation. These include the RSA algorithBh fthe Diffie-Hellman key exchange
scheme%], the EIGamal algorithm] and the Digital Signature Standai8].] A concise

overview of the each cryptosystem’s algorithm, its security and applications is given.

Integer multiplication forms one part of the modular multiplication step. ChaBter
analyzes the different methods that implement this operation, namely the Cla$8jcti¢
Comba P] and the Karatsuba-Ofmaig] methods. A significant portion of the modular
exponentiation involves squarings. This chapter will adapt each of the above multiplication
methods to perform squaring. This chapter provides simulation results to compute the

computational speed of each one of the multiplication methods.

Considerable effort was invested in the design of efficient modular reduction methods.
Reducing the computational complexity of these methods is addressed in Chaftee
chapter provides a detailed analysis and implementation of the Clask8}aBprrett [20]

and Montgomery21] algorithms. The chapter concludes with a comparison of the three

methods and provides exact simulation results of each of method’s performance in a modular

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 5
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERONE INTRODUCTION

exponentiation.

Chapter3 and Chapted provide algorithms to reduce the time required for a modular
multiplication. Chapteb focuses on how to reduce the number of modular multiplications
required for a modular exponentiation. This chapter investigates the Bib@r\Fary [18],
Sliding window 2] and Addition chain methods. It conducts an addition chain length
analysis of the methods with various Hamming weights of the exponent. The chapter

provides exact simulation results for each method.

Further speed enhancements can be made by modifying or manipulating the exponent
of the modular exponentiation. However, this method only works on cryptosystems
where the exponent is fixed, eg. the RSA cryptosystem. For the RSA cryptosystem the
encryption is a fast operation, since the exponent is very short. However the decryption
procedure is very slow, due to the fact that the decryption exponent is generally very large.
This fact presents a problem in many applications of the RSA algorithm. Chépter
addition to analyzing the use of the Chinese Remainder Theorem method for faster RSA
decryption R3], proposes three novel methods for choosing the RSA decryption exponent.
The chapter gives a complete analysis, the security risks of such selections and exact

simulation results of each of the proposed methods.

Finally, Chapter7 summarizes the research that has been done in the dissertation, and
highlights the most outstanding results. Proposals for future research are made, based on the

results and topics discussed in this dissertation.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 6
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER TWO

PUBLIC-KEY CRYPTOSYSTEMS

"The 1976 publication of New Directions in Cryptography was epochal in cryptographic
history. Many regard it as the beginning of public-key cryptography, analogous to a first shot in
what has become an ongoing battle over privacy, civil liberties, and the meaning of sovereignty

in cyberspace.”

ALAN WESTROPE 1998

The concept of public-key cryptography was introduced by Diffie and Hellman in 1976.
Their contribution to cryptography was the notion that keys could come in pairs (an
encryption key and a decryption key) and that one could not generate one key from the
other. Since 1976, numerous public-key cryptosystems have been proposed. Many of these
were very insecure. Of those still considered secure, many were impractical (the key was
too large or the ciphertext was much larger than the plaintext). Only a few algorithms were

both secure and practici#4].

The chapter will focus on the following public-key cryptosystems:
e The Diffie-Hellman key exhange (DHBY],
e The ElGamal algorithn],
e The Digital Signature Standard (DS®8] pnd

e The Rivest Shamir Adleman algorithm (RSA) for both encryption and digital
signatures®).

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

This chapter will give a complete analysis of the above listed public-key cryptosystems. The
aim of this chapter is not to emphasize the security aspects of public-key cryptosystems, but
to give a comprehensive summary of the cryptosystems with respect to their applicability to
fast modular algorithms and their applications. For the sake of completeness, the security of

each public-key cryptosystem will be briefly discussed.

2.1 DIFFIE-HELLMAN KEY EXCHANGE

Diffie-Hellman (DH) was the first public-key algorithm invented in 1976. It provided
the first practical solution to the key management problem, allowing two parties, never
having met in advance or shared keying material, to establish a shared secret by exchanging

messages over an open chan28] [

DH is used in key distribution. However it cannot be used to encrypt and decrypt
messages in its basic form, due to its incapability to provide entity authentication. Bellovin
and Merritt 26] propose a modification to the basic DH algorithm that enables it to be used

for encryption and decryption.

2.1.1 The Algorithm

The objective of the key-exchange algorithm is that the communicating parties can securely
distribute the shared kel amongst themselves over an open channel. The following

algorithm describes the key-exchange operation between parties A and B.

ALGORITHM: DIFFIE HELLMAN KEY EXCHANGE

1. One-time setupAn appropriate primg and generatow is selected wher@ < o < p — 2)
2. Protocol messages
A— B:a*modp (1)
B— A:aYmodp (2)
3. Protocol actions Perform the following steps each time a shared key is required.
3.1 A chooses a random sectgtl < = < p — 2, and sends B message (1).
3.2 B chooses a random secyel < y < p — 2, and sends A message (2).
3.3 B receives” and computes the shared keykas: (a*)Y mod p.

3.4 A receivesy’ and computes the shared keykas: (a¥)” mod p.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 8
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

The algorithm is adapted fron2§]. Parties A and B computeél independently, hence
making DH suitable for creating keys over a public domain. Outsiders cannot compste
only p, a, &® mod p anda? mod p are publicly known. In order to recover, y andk, the

attacker must compute a discrete logarithm. The algorithm can be visualized R Fig.

Party A Party B
Choose appropriate Choose appropriate
p and o where p and a where
x0[L, p-2] yO[L p-2]
Send Send
a*mod p a’mod p
Computes shared key Computes shared key
k =(a¥ mod p)* mod p k =(a” mod p)’ mod p

Figure 2.1:Diffie Hellman key exchange between party A and B

A variant [27] of the algorithm provides mutual key authentication: k% mod p and

oY mod p as long-term public keys of the respective parties, then distribute them with the use
of signed certificates, thus fixing the long-term shared key for the user gai:ta™ mod p

[25].

2.1.2 Security of the Algorithm

DH’s security is based on the difficulty of calculating discrete logarithms in a finite field as
opposed to computing an exponentiation in the same field. It is based on exponentiation
modulo a large prime number Attacks to this cryptosystem are determined by a security

parameter that relates directly to the key size.

The current safekey-size of the length of the modulysin bits is 1024 bits. Another

1 Attacks based on Pollard’s methods and the General Number Field Sieve

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 9
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

security factor is the size of exponent used in the exponentiation. In DH the exponents are
usually the same size as the modujysut they can be reduced to between 160 and 256

bits. This is safe in certain conditions shown 2&].

The basic version provides protection in the form of secrecy of the resulting key from
passive adversaries, but not from active adversaries capable of intercepting, modifying, or
injecting messages (man-in-the-middle attacks). Neither party has assurance of the source
identity of the incoming message or the identity of the party that may know the resulting
key [25].

DH can be extended to work in communitive rings, as shown2@.[Shmuley B(Q]
and McCurley B]] discuss a variant of the algorithm where the modulus is a composite
number. Koblitz'B2] extended this algorithm to elliptic curves. ElGanid] {ises the basic

idea of DH to develop an encryption and digital signature algorithm.

Extensions of the DH algorithm allows key-exchange with more than two parties.
Hughes B3] proposes a variant to allow multiple parties. The advantage of this variant over
basic DH is that shared keycan be computed before any interaction. Party A can encrypt a
message using prior to contacting Party B. Party A then sends it to a variety of people and

interacts with them individually to exchange the k][

DH key-exchange is vulnerable to man-in-the-middle attacks. In order to prevent this
problem, both parties must sign their messages before sending it to each other. This is
referred to as STS (Station-to-Station Protocol) and is comprehensively explair@4].in [
This protocol assumes that Party A has a certificate with Party B’s public-key and vice versa.
These certificates are signed by a trusted authority outside the protocol. Other variants of

the DH algorithm that improve its security are shown35,136,37,26].

2.1.3 Applications of DH

For online communications such as web-browsing, it is possible to encrypt the
communications session with a key passed from one party to another. In the online case,

it is possible to achieve a property called forward secrecy where if either of the keys

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 10
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

are compromised then the past session key remains seg&jre [DH is suited for such

applications that require active exchange.

2.2 THE ELGAMAL ALGORITHM

In 1985 ElGamalf] proposed an alternative public-key cryptosystem. This algorithm, an
extension of the DH algorithm, depends on the difficulty of computing discrete logarithms
over finite fields. The ElGamal algorithm can be used for both encryption and digital

signatures.

2.2.1 The Algorithm

The ElGamal algorithm requires an initial key generation step. Each entity needs to create a

public key and a corresponding private key. Hence each party must do the following:

ALGORITHM: ELGAMAL KEY GENERATION

1. Generate a large random primand a generatax
2. Select arandom integer1 < a < p — 2, and compute® mod p.

3. The public key igp, o, «*) and the private key ita).

The encryption and decryption algorithms are similar to DH, differing in that it requires two
computed parametersandd to be sent to the other party. The encryption and decryption
procedures for Party A (who encrypts a messag#o Party B (who performs the decryption

on the ciphertext to obtaim) is as follows:

ALGORITHM: ELGAMAL PuUBLIC-KEY ENCRYPTION

1. Encryption Party A must do the following:
1.1 Obtain B’s authentic public key, o, a?).
1.2 Represent the message as an integar the rang€0, 1, ...,p — 1).
1.3 Select a random integkrsuch thatl < k < p — 2.
1.4 Computey = o* mod p ands = m - (a®)* mod p.
1.5 Send the ciphertext= (v,) to A.
2. Decryption To recover plaintext. from ¢, B must do the following:
2.1 Use the private key to computey? =1~ mod p note thaty?~1=¢ = y=¢ = o=,
2.2 Recovern by computing(y~?) - 6 mod p.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 11
UNIVERSITY OF PRETORIA

CHAPTERTWO

University of Pretoria etd — Joseph, G (2005)

PuBLIC-KEY CRYPTOSYSTEMS

The algorithm is adapted fror@F] and can be visualized in Fi@.2.

Party A

Party B

Obtain B’ s public-key:

(p.a.a%)

Represent message m
kO[L, p-2]
Compute:
y=a“mod p
o=ma*)*mod p

Send ciphertext
(.9)

Using B’ s private key
A to compute:

ya:a—ak
m=3J0/*mod p

Figure 2.2:EIGamal public-key encryption

The ElGamal signature scheme is a randomized signature mechanism. Party A signs a binary

messagen of arbitrary length. Any Party B can verify this signature by using A's public key

(in this casey = a* mod p andh(m) is the hash function).

ALGORITHM: ELGAMAL DIGITAL SIGNATURE GENERATION AND VERIFICATION

1. Signature generatiarParty A must do the following:

1.1 Select a random secret integett < k < p — 2, with ged(k,p — 1) = 1.

1.2 Compute: = oF mod p.
1.3 Computé:—! mod (p — 1).
1.4 Computes = k~1{h(m) — ar} mod (p — 1).

1.5 As signature fom is the pair(r, s).

2. Verification To verify Party A's signaturér, s) onm, Party B must do the following:

2.1 Obtain A's public key(p, «, y).

2.2 Verify thatl < r < p — 1; if not, then reject the signature.

2.3 Computey; = y"r° mod p.

2.4 Computéh(m) andvy = o™ mod p.

2.5 Accept the signature if and onlyuif = vs.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING

UNIVERSITY OF PRETORIA

PAGE 12

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

The algorithm generates digital signatures with appendix on binary messages of arbitrary
length, and requires a hash functibn {0, 1}* [25]. The DSA algorithm is a variant of the

ElGamal signature mechanism.

Signature generatioby ElGamal is relatively fast. It requires one modular exponentiation
(a* mod p), the extended Euclidean algorithri=¢ mod (p — 1)), and two modular
multiplications. The exponentiation and application of the extended Euclidean algorithm
can be done independently, in which case the signature generation (in instances where
precomputation is possible) requires only two modular multiplicati@8k [The signature

generation algorithm can be visualized in the left-hand side of EE).

Party A Party B
Verify that
1<r<p-1

Selectkin[1,p-2]
with
ged(k, p-1) =1 Obtain A’s public key
(a.p.y)
r=a"modp Compute
k=k™mod(p-1) v, =y'r*mod p
s=k(h(m)—ar)mod(p-1) v, =a"™ mod p
Send Verify that
(r,) Vi=V,

Figure 2.3:ElIGamal signature generation and verification

Signature verificatioms more costly, requiring three exponentiations. Signature verification
calculations are all performed modulo while signature generation calculations are done
modulop and modulo(p — 1) [25]. The verification algorithm can be visualized in the
right-hand side of Fig2.3

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 13
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

2.2.2 Security of the Algorithm

The ElGamal encryption comprises of a DH key-exchange to determine the sessigftt key
Hence the problem of recovering givenp, «, a“, § and~ is similar to the the DH problem
given in Sectior2.1.2 For this reason, the security of the EIGamal encryption algorithm is

also based on the discrete logarithm probl2&].[

A variant of ElIGamal for signatures is provided iB89]. Beth [40] proposes a variant
that enables ElIGamal to be used for proofs of identity. There are also variants for password
authentication41] and for key-exchangeédP]. EIGamal can also be modified to implement

encrypted key-exchange, as shown2g][

Parameter selection is critical for the security of the EIGamal signature algorithm. Incorrect
parameter selection results in index-calculus and Pohlig-Hellman attacks. According to
the latest progress of the discrete logarithm problem provide@5h 512-bit modulus
provides marginal security from concerted attack. As of 1996 a moguhisat least 768

bits is recommended. For long term security a 1024-bit or larger modulus must be used.

2.2.3 Applications of EIGamal

"In God we trust. Everybody else we verify using PGP’

TiMm NEWSOME, 1999

Pretty good privacy (PGP), the workhorse known throughout the world for encrypting and
signing e-mail and documents, uses the ElIGamal procedure for its key management. DSS

uses the ElGamal algorithm as its basis for its signature scheme.

2.3 DIGITAL SIGNATURE STANDARD (DSYS)

NIST, the U.S. National Institute of Standards and Technology, had proposed an algorithm
for digital signatures. The algorithm is known as Digital Signature Algorithm (DSA). As a
proposed standard it is known as the Digital Signature Standard (DSS). The DSA algorithm

Is due to Kravitz #3] and was proposed as a Federal Information Processing Standard in

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 14
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

August 1991 by NIST. It became the Digital Signature Standard (DSS) in May 1994, as
specified in FIPS 1868].

2.3.1 The Algorithm

The signature mechanism requires a hash function {0,1}* — Z, for an integerg,
more explicitly it requires use of the Secure Hash Algorithm (SHAH])[The following
algorithms are adapted frordg] and 24].

For the generation of DSA primes and ¢ in the algorithm below one must select the
prime ¢ first and then try to find a primg such that; divides(p — 1). Each party creates a
public key and corresponding private key. Each party must do the following:

ALGORITHM: DSA KEY GENERATION

1. Select a prime numbersuch tha!®® < ¢ < 2169,

2. Choosé so that) < ¢ < 8, and select a prime numbgmwhere2®!1+64t <) < 2512464
with the property thag divides(p — 1).

3. Select a generator of the unique cyclic group of orderin Z,,.
3.1 Select an elemepte Z* and computer = ¢»~1/? mod p.
3.2 If &« = 1 then go to above step.

4. Select arandom integersuch thatl < a < ¢ — 1.

5. Computey = a® mod p.

6. The public key ip, q, o, y); and the private key i&).

The above algorithm is an ElGamal extended digital signature scheme with appendix
deployed by Schnordp]. Performance is the main differences between DSA and ElGamal
algorithms. ElGamal computes all exponentiations in mogulherep is 512 to 1024 bit
prime), whereas DSA computes certain exponentiations in magd@ihere q is a 160-bit
prime). This makes DSA much faster than EIGamal. DSA is also slower than ElIGamal in
certain aspects, in particular the extra inverse calculation required by both the signer and
verifier using DSAB].

Party A can generate a signature on a binary messag# arbitrary length and any

party B can verify this signature by using A's public key. It proceeds as follows:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 15
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

ALGORITHM: DSA SIGNATURE GENERATION AND VERIFICATION

1. Signature generatiarParty A must do the following:
1.1 Select a random secret integed < k < g.
1.2 Compute’ = (o* mod p) mod gq.
1.3 Computés—! mod gq.
1.4 Computes = k=1 (h(m) + ar) mod q.
1.5 Party A's signature fom is the pair(r, s).
2. Verification To verify Party A's signaturér, s) onm, Party B must do the following:
2.1 Obtain As public key(p, q, «, y).
2.2 Verify that0 < r < g and0 < s < ¢; if not, then reject the signature.
2.3 Computav = s~ mod ¢ andh(m).
2.4 Computes; = w.h(m) mod ¢ andus = rw mod q.
2.5 Computey = (a“1y"2 mod p) mod gq.

2.6 Accept the signature if and onlyudf= r.

The visualization of the algorithm is shown in F@&14.

Party A Party B
Message m with :}_/ Ser rl%tgaé
private key a
hash function
h(m): {0,1} for q Obtain public key
_ (@, p.ay)
Selectk in[1,0-1]
Compute
Compute w=s"modq
r = (a*mod p)mod q u, = wlh(m) modq
k=k™ mod q u, = (r (v) modq
s=k(h(m) +ar)mod q v=(a*y*“ mod p)modq
Send Verify that
(r,s,m) V=r

Figure 2.4:DSA signature generation and verification

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 16
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

A detailed proof of the signature verification is shown&j [Signature generation requires

one modular exponentiation, one modular inverse (using a 160-bit modulus), two 160-bit
modular multiplications, and one addition. The 160-bit operations are relatively small
compared to the exponentiation operation. DSA has the advantage that the exponentiation

can be precompute@9).

Naccacheet al. [46] discusses techniques for improving the efficiency of the DSA
algorithm. They propose that the computationkof mod ¢ in step 1.3 of the signature
algorithm be replaced by the generation of an intedgeThe computation would hence
change tou = bk mod g ands = b - h(m)+ ar mod gq. The resulting signature then
containg(r, s, u). The verifier can then compute! mod ¢ andu~'s mod ¢ = 5. This type

of signature generation is beneficial in computationally constricted environments.

2.3.2 Security of the Algorithm

The security of the DSA has two distinct but related discrete logarithm problems. Firstly the
logarithm problem inZ, where the powerful index-calculus methods apply, and secondly
the logarithm problem in the cyclic subgroup of orgeA complete analysis of the security

of the DSA algorithm is shown irPd]. The size ofy is fixed at 160-bits, while can be any
multiple of 64 between 512 and 1024-bits inclusive. A 512-bit modplpsovides marginal
security against a concerted attack. However for long term security a modulus of 1024-bits

is recommended.

Yen [47] and McCurley #8] propose extensions to the DSA algorithm that improves
the computation speed of the verification procedure. The extension works as follows: To
sign a message:, party A generates a random numbetess thang. The signature is

then computed as = (a* mod p) mod ¢ ands = k - (h(m) + xr~1)~* mod ¢. Party B
verifies the signature by computing = (h(m) - s) mod g andus = (sr) mod ¢g. Now if

r = ((a™ -y"?) mod p) mod ¢, the signature is verified. Lim and Le4q] proposes another
variant that allows batch verification where party B can verify signatures in batches. For
additional information of this variant, refer td).

Naccacheet al. [46] also proposed the idea of "use-and-throw” coupons which eliminate

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGe 17
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

the computation ofr = (a* mod p) mod q. Since this exponentiation is the most
computationally intensive portion of DSA signature generation, "use-and-throw” coupons
can greatly its efficiency. Coupons require storage, and only one signature can be created
for each coupon. Since there is limited storage, only a fixed number of DSA signatures can
be created with this metho@4%].

2.3.3 Applications of DSS

There is one important application which will benefit from the DSA algorithm: smart card
signature generation. A smart card generally has a low performance processor. It will require
to perform a signature before the user can successfully login into a network. The time of the
signing operation is critical to the user. If DSA inverse operation is precomputed before the
signing operation is performed, the time required for signature generation will be greatly

decreased.

2.4 THE RSA ALGORITHM

The RSA cryptosysten®], named after its inventors Rivest, Shamir, and Adleman, is the
most widely used public-key cryptosystem. It may be used to provide both encryption
and digital signatures. Of all the public-key algorithms proposed thus far, RSA is by far
the easiest to understand and implement. Its security, unlike the public-key cryptosystems
presented before, is based on the difficulty of the integer factorization (recovering the
plaintext from the public key and the ciphertext is equivalent to factoring the product of two
primes) R5].

The algorithm can be briefly described as follows: etind ¢ be two distinct large
random prime integers. The moduhuss the product of these two primes & pq). Hence

Euler’s totient function of, ¢(n), is computed as

¢p(n)=(p—-1)(¢—1) (2.1)

Now select the encryption exponensuch that

ged(e, ¢(n)) =1 (2.2)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 18
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

The decryption exponent can be computed using the extended Euclidean algoriftén [

as.
d = e ' mod (¢(n)) (2.3)

It can be proven that andn are also relatively prime, the proof is shown#%]. The public
key is (e, n) and the private key i&l). The decryption exponertand the two primeg and
g must be kept secret.

Encryption is performed on a messagesuch that) < m < n.
c=m°mod n (2.4)

If the message is larger than the modulus, it can be broken into smaller pieces and encrypted
piece by piece. Usually one selects a small public exponent, for= 216 + 1 is a popular
choice BQ,25,24]. cis the ciphertext produced by EB.4.

The decryption is computed as follows:
m = ¢ mod n (2.5)

The correctness of Ed6.3 can be proven by Euler's theorem. A detailed explanation is
given [50]. The RSA algorithm can be used for signing and verifying. More information on

this is given in Sectio2.4.1.2

2.4.1 The Algorithm

The following algorithms are a generalization of what has been described already and are
adapted from25]. In order to implement the algorithms, each party creates an RSA public
key and a corresponding private key. Each party must do the following:

ALGORITHM: RSA KEY GENERATION

1. Generate two large random and distinct primesdg, of the same length.

2. Computen = pg and¢(n) = (p — 1)(¢ — 1).

3. Select a random integewherel < e < ¢(n), such thaycd(e; p(n)) = 1.

4. Use the extended Euclidean algorithm to compute the decryptios &egh thatl < d < ¢(n),
such thaked = 1(mod¢(n)).

5. The party’s public key i$n, e) and the private key i&l)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 19
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

2.4.1.1 The RSA Encryption Algorithm

The RSA encryption algorithm allows party A to encrypt a messader B, which only B
can decrypt. This procedure, using the key generation described in S2etidis done as

follows:

ALGORITHM: RSA ENCRYPTION

1. Encryption Party A must do the following:
1.1 Obtain party B’s public keyn, e).
1.2 Represent the message as an integer the intervall0, n — 1].
1.3 Compute ciphertext= m® mod n.
1.4 Send the ciphertextto party B.
2. Decryption To recover plaintextn from the ciphertext, party B should do the following:

2.1 Use the decryption exponehto recovern = ¢ mod n.

The RSA algorithm requires a fixed exponentiation that is essential to its security and speed.
The exponent is fixed and arbitrary choices of the baseare allowed. Encryption can be
sped up by selectingto be small or to have a low Hamming weight. The decryption can be
sped up by using the Chinese Remainder Theorem, as showi]in [

The encryption exponent = 65537 is often used in practice2B,50]. This integer has

only two 1's in its binary representation, hence the encryption operation requires 15 modular

squarings and 1 modular multiplicatrT his results in a very fast encryption operation.

2.4.1.2 The RSA Signature Algorithm

"Please, your Majesty,” said the Knave, "I didn’t write it, and they can’t prove that | did: there

is no name signed at the end”

LEwIs CARROLL, Alice’s Adventures in Wonderland

The messagen and ciphertextc for the RSA public-key encryption occurs i, =
0,1,2,....,n—1 wheren = pq is the product of two randomly chosen distinct prime
numbers. Digital signatures can be created by reversing the roles of encryption and

decryption. In essence Party A signs messadwy creating:

4 mod n (2.6)

m=m

2 Modular squarings and multiplications are done repeatedly in an modular exponentiation

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 20
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO

PuBLIC-KEY CRYPTOSYSTEMS

Party A

Party B

Obtain B’s public key
(en)

Represent message m
ininterval [0,n-1]

Compuite ciphertext
c=m°modn

Send c

y

Use B’s private key
(d,n)

Decipher cinto
message m
m=c® modn

Figure 2.5:RSA encryption and decryption

Party A sendgm, e¢), once Party B receivesn, e), it computes

= m° mod n

(2.7)

If m = m, then the signature has been successfully verified. However a more secure

algorithm than what is discussed in the above paragraph can be implemented. The algorithm

is as follows:

ALGORITHM: RSA SGNATURE GENERATION AND VERIFICATION

1. Signature generatiarParty A must do the following:

1.1 Computen = R(m), an integer in the rang®; n — 1].

1.2 Computes = m? mod n.

1.3 A's signature fom is s.

2. Verification To verify A's signatures and recover the message B must:
2.1 Obtain A's authentic public ke, e).

2.2 Computen = s mod n

2.3 Verify that/i € M if not, reject the signature.

2.4 Recovein = R~1(m).

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING

UNIVERSITY OF PRETORIA

PAGE 21

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

The RSA digital signature scheme was the first practical signature scheme based on
public-key techniques. It is a deterministic digital signature with appéntttiat can be
modified to provide message recoveBb|. m is the redundancy generated by A where
R(m) is the redundancy functionR(m) maps arbitrary messages of from a message

spacel into the Z,, domain.

The redundancy function is a better alternative to breaking the message blocks. The
blocks can be mixed up and counterfeiting of signatures can occur using the keys of one of

the messages to duplicate the other messages.

Signature generations a generalization of the RSA decryption procedure. The signature

generation is shown in the left-hand side of F2c6.

Party A Party B
Cresate , .
m= R(m) USGA(: g;:bhc key
where)
mofon= / Compute
Compute signature m=s°modn
s=m" modn Verify
mOM
Send If accepted recover
(S! €, n) m= R—l(r"ﬁ)

Figure 2.6:RSA signature generation and verification

Signature Verificatioran be much faster than signing if the public exponent is chosen to be

a small number, i.ee = 65537. The verification is shown in the right-hand side of F2g.

The RSA algorithm can be sped up utilizing software and hardware implementations.

3 Digital signatures that must be checked by a sperate transmission of messagalled digital signatures
with appendix

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 22
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

Good surveys of hardware implementations are describéiPjb3,54,55]. To speed up the
algorithm in software, efficient number-theoretical methods are required. Surveys of these

requirements are shown i6d,56,57].

2.4.2 Security of the Algorithm

The security of the RSA cryptosystem, as mentioned in Setdyrdepends on the problem

of factoring large numbers. The computational equivalence of computing the decryption
exponent and factoring the modulus, shown by Rietsl. [6], was based on earlier work
done by Miller Bg]. It has never been mathematically proven that in order to factor a large
integer, one must have at least one factor. It is conceivable that there might be an entirely
different way to break the RSA cryptosysteg4].

The RSA cryptosystem can be attacked using a forward search attack. If the message
space is small or predictable, an adversary can decrypt the ciphertext by simply encrypting
all possible plaintext messagesasiad 9] discusses the attacks associated with choosing
small encryption exponents. Recommendations to prevent attacks on RSA choosing a
small decryption exponent are addressed by Wie6€}. [Kaliski et al. [61] provides an
overview of the major attacks on RSA encryption and signatures, and the practical methods

of counteracting these threats.

Further attacks and recommendations on the RSA algorithm are sho68@, B3] 64, 65).
Rivestet al. [66] provides a set of recommendations to use strong primes in RSA key
generation. Shamir6[/] proposed a variant of the RSA encryption operation called
"unbalanced RSA” that makes it possible to enhance security by increasing the modulus

size without any deterioration in performance.

Given the latest progress in algorithtnfor factoring integers, a 512-bit modulus
offers only marginal security from concerted attack. For long term security, a 1024-bit or

larger modulus must be use2E].

4 The best attack known to RSA is the General Number Field Sieve (GNFS) which tries to factor the
modulus into its original primes

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 23
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

2.4.3 Applications of RSA

In practice, RSA encryption is most commonly used for the transport of symmetric keys. It

is also used for the encryption of small data items.

The RSA signature operation is ideally suited to situations where signature verification is
the predominant operation performed. For example, when a trusted third party creates a
public-key certificate for party A, this requires only one signature generation. This signature
may then be verified numerously by various other parties. ISO/IEC 98&6pfovides
criteria and examples based on the RSA signature operation. It became an international
standard in October 1991. The ANSI X9.31 stand##€] [defines a method for digital
signature and verification of messages using the RSA algorithm. The standard provides
criteria for generation of public and private keys required by the algorithm. The latest

version of this standard was revised in 1998.

Certification Authority (CA) key pairs are used for signing and verifying the signatures

on certificates and Certificate Revocation Lists (CRLs). The certificate is signed once
but requires to be verified nhumerous times. Since the predominant method is signature
verification, the RSA algorithm is best suited for this task. In order to send a secure email,
the message needs to be signed and encrypted. The signature must then be verified by each
recipient with the correct decryption key. Since RSA can be used for encryption and digital

signatures, it provides suitable backbone for secure endd]s [

2.5 CHAPTER SUMMARY

Once a cryptosystem has set up the modulus, the private and public exponents are determined
and the public components are published, the senders as well as the recipients perform a
single operation for signing, verification, encryption, and decryption. The RSA algorithm in

this respect is one of the simplest cryptosystehth. [

The operation most required is the computation of a modular exponentigtianod 7).
The modular exponentiation operation is a common operation for scrambling in each

of the public key cryptosystems. However, the modular exponentiation in certain

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 24
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTWO PuBLIC-KEY CRYPTOSYSTEMS

cryptosystems (i.e. DH, ElIGamal and DSS) is based on the discrete logarithm problem.
In these cryptosystems the bagand the modulus are known in advance. This type of
exponentiation is referred to as fixed base exponentiation. In the modular exponentiation
of the RSA algorithm the exponeatand the modulus are known in advance but not the

base, hence RSA relies on fixed exponent exponentig&i@in [

There is no "best” public-key cryptosystem, as each cryptosystem is better suited for
certain applications than the others. Comprehensive summaries of the discussed public-key
cryptosystems are shown ih1,/38]. A comparison of practical public key cryptosystems,

based on integer factorization and discrete logarithms, is giverQin [

This chapter gives a comprehensive outline of the popular types of cryptosystems used in
industry. These cryptosystems consist of the same subsystems. The following chapters will

review these subsystems and their effects on the performance of the cryptosystem.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 25
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

o L HR B

FAST MULTIPLICATION TECHNIQUES

"I don’t know if we have any real chance. He can multiply and all we can do is add. He

represents progress and | just drag my feet”

STEN NADOLNY, God of Impertinence

The modular multiplication operation is accomplished using two steps. It first computes
a large-integer multiplication step followed by a modular reduction step. This chapter is
concerned with the initial multiplication step, leaving the modular reduction step for the

subsequent chapter.

Modular multiplication

...

The chapter will focus on the following multiplication algorithms:
e The Classical method. g,
e The Comba metho@], and
e The Karatsuba-Ofman methotiq].

In public-key cryptography, a significant portion of the modular exponentiation operation
involves squarings. This chapter will also show how to adapt each of the above multiplication
algorithms to perform squaring. The chapter concludes with a comparison of the methods,

giving exact numerical results obtained by means of simulation.

26

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

3.1 THE CLASSICAL METHOD

3.1.1 Application to Multiplication

The product of two integers can be computed by means of the standard long-hand
multiplication algorithm that is taught in grade school. The algorithm requirés
single-precision multiplications for twe-digit inputs denoted as andb respectively. More

specifically for am andn digit input,m x n single precision multiplications are required.

A digit is defined as a&-bit integer. A single-precision multiplication is the multiplication
of two baseB digits, whereB is the base and can be any positive integer. In computer
implementations one basB digit is selected a®", wherew is the word-size of the
processor. Typical examples in practice inclugle= 8, 16, 32 [50].

Knuth [18] refers to the Classical method as a multi-precision multiplication, as it
computesn x m single-precision multiplications. Since multi-precision multiplication

requires multi-precision integers, multiplicandandb are defined as:

n—1
a=ap 10y _o...a1 = Y a; B’

T (3.1)
b == bm_lbm_g...bl == Z blBZ

i=1

A 3 x 3 digit multi-precision multiplication, where = asasa; andb = bsbsby, is depicted
in Fig.3.1.

as a2 a1

X b3 b2 bl

as-by ax-by a;-by
as-by az-by ap-by
as-bs az-bs a;-by

t6 Zf5 t4 tg t2 tl

Figure 3.1:(3 x 3) digit Classical multiplication

The Classical method multiplies each digitiofvith the entire numbet to obtain partial

productst;;. These partial products are then summed row-by-row to obtain the final product

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 27
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

t which comprises ofn + m)-digits, wheren andm are the respective digit sizes ©fand

b. The Classical multiplication algorithm, adapted frob&,25], is given as follows:

ALGORITHM: CLASSICAL MULTIPLICATION

Input a = (an_lan_Q....alao)B andb = (bm—lbm—2-~--b1bO)B

Output a x b =t = tp+m—1tn+m—2....t1to Of baseB

1. Initialize: Fori from 0 to (n + m — 1) do:¢; — 0.
2. Zero multiply If @ = 0 orb = 0 then returnt = 0
3. Multiply and add Fori from 0 to (n — 1) do the following:
3.1 Sete — 0 (c is the carry)
3.2 Forj from 0 to(m — 1) do the following:
Compute(ul)p = tiyj +a;j - b +c,and sel — t;;, u — c.
3.3u — tiym.

4. Final result Return(t,,+y,—1...t1to).

The computationally intensive part of the algorithm is step 3.2. Computing the inner product,
titj + a; - b; + ¢, will require two base5 digits to hold the carry and the remainder of the

inner product.

3.1.2 Application to Squaring

The first description of a multiple-precision squaring was due to Tuckeri@@n$quaring
Is a special case of multiplication where both multiplicands are equal 3Eigs an adaption

of Fig. 3.1 for the special case of squaring.

as a2 a1

X as as aq

as-ay Aag-ap ap-ay
asz-Qa QA2-0Ay A1+ a2
as-az ag-az dap-as

t6 t5 t4 tg t2 Z51

Figure 3.2:(3 x 3) digit Classical squaring

Squaring an integer is more efficiently performed by using a specialized squaring algorithm

than by using a multiplication algorithm. This is because in squaring there are many

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 28
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

cross-product terms that need to be computed only once, whereas a multiplication algorithm
would compute them twicé?].

It is can be seen from FigB.2 thatt,; = a; x a; = t;;. Hence half of the single-precision
multiplications can be avoided. Taking this characteristic into account, multi-precision

squaring can be formulated as:

n—2 n—1
t= Z a;a; B =2 Z Z a;a; B+ Z a? B* (3.2)
,7=0 i=0 j=i+1

The squaring algorithm, based on B2, is as follows:

ALGORITHM: CLASSICAL SQUARING

Input a= (an_lan_g....alao)g

Output a x a =t = to,_1toy_2....t1tg Of baseB

1. Initialize: Fori from0to (2n — 1) do: ¢; — 0.
2. Multiply and add Fori from 0 to (n — 1) do the following:
2.1 (ul)p = to; + a; - a;, and setl — t9;, u — c.
2.2 Forj from (i + 1) to (n — 1) do the following:
Compute(ul)p = tirj +2a; - aj +c,and set — t;,;, u — c.
2.3u — tiyn.

3. Final result Return(tg,—1...t1to).

The computationally intensive part of the algorithm is step 2. This step requitesn)/2
single-precision multiplications, discounting the multiplication by 2. This is significantly
lower than then? single-precision multiplications required by a Classical multiplication.

The multiplication by 2, in step 2.2, can be computed using a simple left-shift.

3.2 THE CoMBA METHOD

3.2.1 Application to Multiplication

The Classical method utilizes a double loop to compute each partial product and writes the

lower B-digit product to the final result. Experiments R] [dentified that the loops requires

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 29
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

a small portion of the execution time that can be avoided and the Classical method requires
three memory accesses to the intermediate results during each loop. These inefficiencies
were addressed Comti2][He described a way of reducing the number of memory accesses

and removing the looping required by the Classical method.

To fully understand the Comba method, convert Fig3.1 to a pyramid of partial

products as shown below:

asby
a3b2 asby asby
asbs asbs aibs arby ab

te s ty l3 to 151

Figure 3.3:Pyramid of partial products fa x 3 digit multiplication [72]

Comba unravelled both loops of the Classical method and computed the columns in Fig.
3.3 directly. Care must be taken with respect to the precision of eashere the column
answer is kept. Looking at column that computes Fig. 3.3 it is highly possible that the
entire sum of that column can exceed two b&sdigits. Hence an extra digit is required to

avoid an overflow.

The Comba algorithm is an in-line program, dependent on the number of Base
digits contained by each multiplicand. The algorithm is given as follows:

ALGORITHM: COMBA MULTIPLICATION

Input a = (an,lan,g....alao)B andb = (bnflbn,Q....blbo)B

OUtpUt axb=1t=ty,_1ton_s....t1tg of baseB

1. Compute with inline coding~ori from 0 to(2n — 1) without looping:

1.1 Compute the column directly
i+j=2n—1
1.1.1ti = Z ajbi
i=0

1.2 Compute the carries and produgt
1.2.1t541 = tip + | %]
1.2.2t; = t; mod B
2. Returnt = to,,_1...t1to

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 30
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

To compute step 1 sequentially, times, three registers are needed. The first register will
store the partial product, the second register will store the carry of the partial product. If
there is an overflow in the carry register, a third register will be incremented so as not to lose
the precision of the column. After each column has been computed, the result is written to
t;. If there is an overflow in the overflow register, a fourth register can be assigned and so
forth.

Fig. 3.3 and Fig. 13.4 show that the partial products of the column are equivalent to
the column number (i.e column 3 has 3 partial products). Since the column lengths vary,
first increasing and then decreasing, the required coding can become complicated and

time-consuming for larger integers.

3.2.2 Application to Squaring

Comba squaring is computed similarly to Classical squaring, as shown in S&ctiénTo

understand this fully, adapt Fi§.3 for squaring as shown below

asai
a3y Ag209 A2a7

azaz asaz a;asz a1z a1aq

te 15 t4 13 ty 3]

Figure 3.4:Pyramid of partial products fa x 3 digit squaring

Apart from the cross-product procedure, the optimization techniques that are applicable to
multiplication are essentially the same for squaring. For this reason, the discussions that
apply to Comba multiplication will also apply for Comba squarigg [

From Fig. 3.4 it follows thatt;; = a; x a; = tj, which is identical to Classical
squaring. The Comba squaring algorithm can thus be formulated in accordance with Eq.
3.2

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 31
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

ALGORITHM: COMBA SQUARING

Input a= (an_lan_g....alao)g

Output a x a =t = to,_1ton_2....t1tg Of baseB

1. Compute with inline coding~ori from 0 to(2n — 1) without looping:

1.1 Compute the column directly

n—2 n—1 n—1
111t =25 > aa+ Y a?
i=0 j=i+1 i=0

1.2 Compute the carries and produgt
1.2.1t541 = tip + | %]
1.2.2t; = t; mod B
2. Returnt = to,,_1...t1to

The explanation for the Comba multiplication algorithm, given in Se3i@n], also applies

to the above Comba squaring algorithm.

3.3 THE KARATSUBA-OFMAN METHOD

3.3.1 Application to Multiplication

This method was introduced by Russian mathematicians Karatsuba and Qhisn1[962.
This recursive method was the first method that computed a multiplication les©than

operations.

To explain the method, one must first decompose rtHat multiplicandsa and b into
two separate and equal parts.
a=2"2%a+a
P (3.3)
b == 2n/2b1 —|— b()
a; anday are the higher and lower/2 bits of a respectively, assumingis even. Therefore

from Eqg.3.3the classical form of the product is

t = axb
= (2"2ay + a,)(2"%by + by)
= 2"(ay - by) 4+ 2"%(ay - by + ag - by) + ag - by (3.4)
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 32

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

Eq.'3.4computes the multiplication of twe-bit integers by four. /2-bit multiplications and

an extra addition. This is illustrated in Fi@.5.

L a [& |
x| b [b |
’ a0y ‘
’ a4y ‘
’ G ‘
+’ a,b,
’ t=axb ‘

Figure 3.5:Classical multiplication computed as a produch@®-bit multiplicands [72]

Karatsuba and Ofman modified EB.4, using simple algebra, to formulate the following

equation

t=2"ay - br) + 2" ((a1 + ao)(bs + bo) — a1 - by — ag - by) + ag - by (3.5)

_oa [& |
x| b [b |
’ 3o ‘

’ 8Py ‘

| (@+a) (bth) |

’ ab, ‘

+’ ayb, ‘

| t=axb |

Figure 3.6:Karatsuba-Ofman multiplication computed as a produet/@fbit multiplicands
[72]

Although Eq. 3.5 appears more complicated than E8.4, Fig. 3.6 shows that can be

computed using 4 additions/subtractions but only three multiplications.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 33
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

3.3.2 The Computational Complexity of the Algorithm

The computational complexity of the Classical method can be determined by using
recurrence relations. EB.4 shows that multiplying two:-digit integers is accomplished
by performing fourn/2-digit multiplications and one addition. ThuS(n), the cost of

multiplying two n-digit integers, can be formulated as

C(n)=4xC(n/2)+a-n (3.6)

wherea denotes the number of bit operations required to compute the addition and shift
operations in EJ3.4 (« is constant)T3,50]. Forn = 2™ and using the initial condition that

C(1) = 1, the computational complexity of the Classical method is calculated as follows

C(n) = C2™) =4(4CE2™) +a-2" N +a 2™
= 42.C2"H +a-2"(1+2)
= 4. C(1)+a-2"(1+2+...4+2m1)
= a@2™)?=a-n? (3.7)
The above derivation is adapted froif8] and approximated byb[]. It is a simple proof to

show that the computational complexity of the Classical metha@?(is’) operations. Now

in case of the Karatsuba-Ofman method, using ES§,. the recurrence relation is

C(n)=3xC(n/2)+ B xn (3.8)

where 3 denotes the number of bit operations required to compute the addition and shift
operations in Eq3.5 (5 is constant) T3,50]. Again, forn = 2™ with the initial condition

C(1) = 1, the computational complexity is calculated as follows

C(n) = CQ™ =33T2™H+3-2" 1 +p.2™
= 302") +3-2"(1+2)
— 3O+ 8- 2"(1+ 34 ..+

_ B .3m — B . 2m-log23 _ B . n10g23 (39)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 34
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

The above derivation, adapted from3], shows that the computational complexity of a

Karatsuba-Ofman multiplication takéXn'-5%) operations to multiply twai-digit numbers.

3.3.3 Recursive Properties of the Algorithm

Many researchers7B, 50, 119, [72, [74] avoid describing the recursive nature of the
Karatsuba-Ofman algorithm in great detail. Knuth8][suggests that the recursive
algorithm can be implemented for largeibit integers. Ko¢/h0] explains that with current

implementations of the algorithm, it only starts to pay off once 250 bits.

A break-point is described by Scoif4], however it is not well reported. Geddes

al. [73] provide a recursive algorithm but do not comment on the break-point of the
algorithm. Welschenbach/4] explains the first recursion level and concludes that the
Karatsuba-Ofman algorithm has no real significance for his cryptographic applications.
This subsection will provide a detailed analysis and implementation of Karatsuba-Ofman

recursion.

Many complex problems are easier to solve if they are defined as simpler versions of
themselves. A recursive function, conceptually depicted in Big, calls on itself in order
to reduce the amount of code involved and to simplify the problem. It also requires a step to

terminate the recursion process i.e. a break-point.

J(x)

Figure 3.7:A recursive function

From Fig. 3.6 the Karatsuba-Ofman algorithm requires:Z2-bit products for twon-bit
integers. Each /2-bit product can be decomposed further into three mgrebit products.

Each of thesen/4-bit products can again be decomposed iny®-bit products and so

forth. This recursion evolves into a tree-type structure, each branch decomposing into three
additional branches. Fid3.8 shows one branch of the tree-like recursion implemented by

the Karatsuba-Ofman algorithm.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 35
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES
D048 | Level 0.
|
[I]
1024 1024 1024 |Levell
[!]
512 512 512 e Level 2.
[!]
256 256 oY S Level 3
I
[[]
128 128 [S Level 4.
[!]
64 64 T SRR Level 5.
I :
[[|
32 32 37 OSSOSO U1 1) X o}

Figure 3.8:The Karatsuba-Ofman algorithm implemented for 6 levels of recursion

From Fig. 3.&, the recursion levels are decomposed to the processor word-size of 32-bits.
The value in the box is the resulting bit-size of the multiplicands decomposed by the
algorithm. Each of the boxes can be expanded into a similar tree. The recursion level is

depicted on the right-hand side of the above figure.

The evolving tree requires a break-point to terminate its growth. This break-B6iit] is
denoted by the recursion level. At this level the Karatsuba-Ofman algorithm then applies

a conventional multiplication algorithm, using either the Classical or Comba methods, to

,‘

512 512 512

complete the multiplication.

[256 | [256 | 256 | [256 | [256 | [256 | [256 | [256 | 256 |

Figure 3.9:Two level recursive Karatsuba-Ofman algorithm

Fig. 3.9 is a visualization of 1024-bit Karatsuba-Ofman multiplication using 2 levels of

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 36
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

recursion, each branch terminated with a Classical or Comba multiplication. The algorithm
is initially applied recursively to the 1024-bit multiplicands decomposing them into half

its original size. After two recursion levels (where each decomposed multiplicand’s size is
256-bits), the decomposed multiplicands are multiplied using either the Classical or Comba

methods.

The Karatsuba-Ofman algorithm, adapted fraf]] is given as follows

ALGORITHM: KARATSUBA-OFMAN MULTIPLICATION

Input a = (ap—1ap—2....a1a9) g andb = (b,—1b,—2....b1b9) 5, and break-poin.

OUtpUt axb=t= ton—1ton—2....t1t0 of baseB.

Function Karatsuba-Ofmda, b, n)
1. Break point: If n = p
(tp—1..-t1to) = (ap—1...a1ap) x (bp—1...b1bg) [use a suitable multiplication]

2. Breaka into two: Setz; = ap—1....a, /2 @Ndzo = ay,/9_1----ao
3. Breakb into two: Sety; = by,—1....b, o @ndyo = by, /5_1.-..bo
4. Calculate(n/2)-bit multiplications

4.1mg = zoyo = Karatsuba-Ofmafy, yo, n/2)

4.2my = x1y; = Karatsuba-Ofmaey, y1,n/2)

4.3mg = (x1 + o) - (y1 — yo) = Karatsuba-Ofmaf(x; + x¢), (y1 + vo),n/2)
5. Final result Return(t = m;B" 4 (mg — my — mo)B™? + my).

The break-poing is the bit-size of the multiplicand at the terminating recursion level. This
algorithm, as developed for these simulations, applies the Karatsuba-Ofman recursion down

to the break-point, and then uses either the Classical or Comba multiplication.

When applying the Karatsuba-Ofman algorithm recursively on multiplicandsnd b
of n-bit length, generally: must be even. More specificallys length must be equal to an
integer factor of the processor word size i.ewif= 32-bits thenn € (32,64, 128, ...,32p)
wherep is a positive integer. Weimerskiradt al. [75] provides more efficient methods of

splitting up the multiplicands to be used in a Karatsuba-Ofman method.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 37
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

3.3.4 The Optimum Break-point

The advantage of the Karatsuba-Ofman method is that only 3 multiplications are needed
instead of the 4 multiplications required by the Classical method, as shown in3%g.

and Fig.3.6. However, this reduction in multiplications leads to more additions. The key
question is to determine the break-point at which it is no longer worth applying Karatsuba
recursively and it is faster to proceed with a multiplicati@g][

In order to find this optimum break-point, a simulation of random 2048-bit multiplicands

must be conducted for different recursion levels. RBdlOdepicts the optimal break-point

for the Karatsuba-Ofman method for the criteria shown in Se@&idn

900
800
700
600

500

Time per iteration [us]

400

300

200

1 2 3 4 5 6
Levelsof recursion

- Karatsuba-Ofman with Classical method
- Karatsuba-Ofman with Comba method

Figure 3.10:0ptimum break point for a 2048-bit Karatsuba-Ofman multiplication algorithm

The optimum break-point, shown in Fi@.10 occurs at level 3/(= 256-bits). Similar

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 38
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

simulations were conducted fdeg, 256,512 and 1024 bit multiplicands. These timing

results utilizing its specific optimum break-points are depicted in EiiZ.

The break-point depends on the processor used, specifically on the relative speed of
the MUL and ADD instructions of the processor. The slower the former with respect to the
latter, the deeper should the recursion proc@&l [The results obtained in recursion levels

5 and 6, in Fig:3.1Q shows the time taken to compute the Karatsuba-Ofman multiplication

Is larger than applying Classical multiplication (applying the Classical method is equivalent

to performing a 0O level Karatsuba-Ofman algorithm).

3.3.5 Application to Squaring

The Karatsuba-Ofman multiplication algorithm can also be used to implement a more
efficient squaring algorithm. In squaring the multiplicands are equal, hencé8Eqan

be modified as follows
t=axa=alB"— ((a1 +a)* — a} — a}) B"* + a] (3.10)

Inspection of Eq.'3.10 shows that only three/2-size squarings are required. As with
Karatsuba-Ofman multiplication, this algorithm can be applied recursively. The algorithm is

as follows

ALGORITHM: KARATSUBA-OFMAN SQUARING

Input a = (a,—1ay,—2....a1a0) g, break-point

Output a x a =t = to,_1ton_s....t1tg Of baseB

Function Karatsuba-Ofmaa, b, n)
1. Break point: If n =p
(tn—1.-t1tg) = (ap—1...a1a9) X (ap—1...a1ag) [use a suitable squaring algorithm]

2. Breaka into two: Setz; = ap—1....ay, /2 andzg = a,/9_1.---ao
3. Calculate(n/2)-bit multiplications

3.1mg = 23 = Karatsuba-Ofmalr, 29, n/2)

3.2m; = z? = Karatsuba-Ofmafr;, 1,n/2)

3.3mg = (z1 + 10)? = Karatsuba-Ofmaf(z1 + zo), (z1 + z0),n/2)

4. Final result Return(t = m1B" + (mg — m1 — mg)B™? + my).

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 39
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

The algorithm at break point, executes a Classical or Comba squaring to make the squaring

operation more efficient.

Fig. 3.11 depicts the optimal break-point for a 2048-bit Karatsuba-Ofman squaring,
under the conditions set in Secti8r for different recursion levels.

900

800

a1 o) ~
3 3 8

Time per iteration [us]

N
8

300

200

1 2 3 4 5 6
Levels of recursion

- Karatsuba-Of man with Classical method
- Karatsuba-Ofman with Comba method

Figure 3.11:0ptimum break point for a 2048-bit Karatsuba-Ofman squaring algorithm

The optimal break-point occurs at 2 levels of recursion. Similar simulations were conducted
for 128,256,512 and 1024 bit multiplicands. These timing results of its specific optimum
break-points are depicted in Fig3.132 Note that a squaring is almost twice as fast as
a multiplication, thus the cutoff point is higher. Hence, the Karatsuba-Ofman squaring

algorithm requires fewer recursion levels to obtain its optimal speed.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 40
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

3.4 EXPERIMENTAL RESULTS

In this section, timing analyzes of the multiplication methods discussed in the chapter are
given. In order to obtain exact numerical results for the methods, simulations were done on
a Pentium IIl processor running at 550 MHz with 256 Mbyte main memory under Windows
XP Home Edition platform using a Borland C Builder 6.0 compiler. The simulations were

performed under the following conditions:

Algorithms tested:

e The multiplication algorithms that were tested were the Classical method, the Comba
Method, The Karatsuba-Ofman method combined with either the Classical or the

Comba multiplications.

e The optimal break-point of the Karatsuba-Ofman methods was determined in advance,

using the simulations shown in Secti8rs.4
Programming conditions:
e Each multiplication algorithm was implemented using standard ANSI C coding.

e The multiplicands were randomly generated, using MIRACL'’s pseudo random number
generator, for bit size&28, 256, 512, 1024 and2048 bits.

e Though alot of effort has been done to remove the overhead generated by the compiler,

the test is still subjected to a little overhead generated by the platform and compiler.
Timing analysis parameters:
e One iteration consisted of a 1000 runs of each multiplication algorithm.
e The total time period of each test was 20 seconds.
e The iterations were incremented until the total time period had elapsed.

e The total number of runs was the product of the number of runs (1000) and the number

of iterations.

e The average time was calculated as a function of the total time divided by the total

number of runs.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 41
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

Fig. 3.12and Fig. 3.13 provide the time results of the various multiplication and squaring
methods. They depict the average time it takes each method to compute a multiplication or

a squaring over different bit sizes of the multiplicands.

400
—&— Classical Multiplication ’

350 —=- - Comba Multiplication /

300 Karatsuba-Ofman With Classica /
7 K aratsuba-Ofman with Comba /
5
= 250 Y
= /
p 200 /
o /
£ 150 .
= e

100 |

— =
50 A
-
0

0 256 512 768 1024 1280 1536 1792 2048

Size of multiplicands [bits]

Figure 3.12:Comparison of multiplication methods

250
—&— Classical Multiplication /‘
—& -Comba Multiplication ,//
200 7z
— Karatsuba-Ofman with Classica J,
=, Karatsuba-Ofman with Comba p 7 7
5 150 y 7
7
g %
o 100 /
£ //
= ///J‘
50 e
~
(/
0 |
0 256 512 768 1024 1280 1536 1792 2048
Size of multiplicand [bits]
Figure 3.13:Comparison of squaring methods
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 42

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

From Fig.3.12and Fig.3.13the Karatsuba-Ofman method gives the best results for larger
numbers, 512-bits and above. However for multiplicands less than 512-bits, the Comba

method provides the best results.

Mathematically the Comba method is identical to the Classical method as they both
require O(n?) operations. It improves on the Classical method by employing clever
programming optimizations. It unravels the loop to repeat the code in-line a number of times
and computes the partial products directly to reduce the number of memory writes required.
Hence difference in speed between the Comba and Classical methods is dependent on the
processor, specifically on the time the processor takes to execute a memory write and a loop

function.

For larger integers, the Comba method generates a large amount of in-line code, as it
requires additional overflow registers to keep each column’s precision, shown ii3.Ejg.

from overflowing and also requires additional control overhead to manage these registers.
This large amount of in-line coding can become impracticable for processors that have

insufficient internal memory.

In terms of n x n multiplication, the Karatsuba-Ofman algorithm, which requires
O(n'*®) bit operations, is asymptotically faster than the Classical algorithm which requires
O(n?) bit operations T3]. However, in practice the algorithm requires a number of
intermediate results that must be stored which adds unavoidable control overhead that

detracts from the algorithms efficiency for relatively small integers.

Fig. 13.13 shows that the squaring methods are essentially comparable in speed. This
is due to the fact that a squaring requires ofly + n)/2 operations compared to the
multiplication’s n? operations, hence the improvements of each method is applied to fewer

operations.

Menez et al. [25 states that squaring a positive integer(i.e., computinga?) can at
best be no more than twice as fast as multiplying distinct integarslb. To prove this, they
consider the identityb = ((a + b)? — (a — b)?/4) which shows that x b can be computed

with two squarings. Practically the difference between a squaring and a multiplication is

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 43
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERTHREE FAST MULTIPLICATION TECHNIQUES

due to the difference in the number of operations and the control overhead required by the
operations. Hence from Fi@.12and Fig.3.13 a squaring algorithm computes a squaring

in 65% of the time that is required by a multiplication to compute the same squaring.

3.5 CHAPTER SUMMARY

"How fast can we multiply”

DONALD E. KNUTH, [18]

The above quote describes the objective for this chapter. Three methods were discussed,
implemented using simulations, and modified to perform more efficient squarings. The goal
was to determine which is the fastest integer multiplication that one could use for a modular

exponentiation.

Each of the methods, except the Classical method, is optimal under certain circumstances.
Though the Classical method is asymptotically slower than the Karatsuba-Ofman method
and the Comba method, it is simpler to implement and for small numbers, gives better

performance than the Karatsuba-Ofman methods.

The Comba method is most suitable for integers less than 256-bits. However for
multiplication of large numbers, especially 512-bits and higher, Karatsuba-Ofman with

Comba method should be used.

There exists other methods (i.e. FFT and convolutional methods) that perform the
multiplication step. Though these methods are mathematically elegant, their improvement
in speed only starts paying off for multiplicands larger than 8196 B&25,76]. Thus,

these methods are not applicable for the size of integers of practical importance to public

key cryptosystems.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 44
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

s FOUR

FAST REDUCTION TECHNIQUES

"Your life is the sum of a remainder of an unbalanced equation inherent to the programming
of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts | have
been unable to eliminate from what is otherwise a harmony of mathematical precision. While it
remains a burden to sedulously avoid it, it is not unexpected, and thus not beyond a measure of

control”

THE ARCHITECT, Matrix Reloaded

Modular multiplication

The modular reduction operatiom,mod m, is conventionally accomplished by dividing

by m to obtain the remainder. The steps of the division algorithm can be modified in order
to speed up the process. Reducing the time and memory complexities of this operation is a
challenging problem on which relies the practical feasibility of the cryptosystem’s signature
and encryption method3T].

Three modular reduction methods are discussed in this chapter:

e The Classical methodLB]. The simplest implementations of large integer modular
reduction are computed utilizing this algorithm.

45

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

e The Barrett method20]. The Barrett method was the first approach to perform
modular reduction that utilized precomputation to remove the time-consuming
division step.

e The Montgomery method2fl]. Montgomery’s method is a ingenious technique
that performs efficient modular reduction utilizing simple shift operations which can
implemented on general processors.

The purpose of this chapter is to investigate the above mentioned methods for speeding up
modular reduction in various ways. This chapter will first describe these three algorithms
with their respective modifications developed to improve their speed. It will then present
implementation results of these algorithms to see their relative speed performance in a
modular exponentiation.

4.1 (QLASSICAL REDUCTION

"And marriage and death and division, make barren our lives”

ALGERNON CHARLES SWINBURNE, Dolores

The easiest method for performing modular reduction is to compute the remairmjer
division using the modulus: as the divisor. A standard division computes the quotient and
the remainder. However the quotient is of little concern, as one only needs the remainder.
Therefore, the steps of the standard division algorithm can be simplified to enhance the speed
of the reduction.

4.1.1 Description

Classical reduction is a formalization of the sequential division algorithm. Division is the
most complex of the four basic arithmetic operations. First of all, it has two results: the
guotient and the remainder. Given the dividendnd a divisorm, the quotienty and the

remainder- are calculated using

a=q-m+r (4.1)

If « andm are positive, then the andr will be positive. Classical reduction successively

shifts and subtracts: from « until », with the property) < r < m, is found. However, if

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 46
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

the subtraction of yields a negative, an addition ofn is required to restore as a positive
integer BQ].

The reduction method does not explicitly compute the quotient, but uses its estimate

¢ to calculate each digit of the remainder.

4.1.2 The Algorithm

The Classical reduction algorithm computes a remaindgy dividing an-bit a by at-bit

m, wheren <t < 1. The algorithm is as follows

ALGORITHM: CLASSICAL REDUCTION

Input a = (ap...a1a0)p @andm = (my...mimy) g

Output r = (r4...r170) g Wherea = gm +r (0 < r < m)

1. Copyator:r«a
2. While (r > mB"™™!) do the following:
r e r—mB"!
3. Fori from n down-to(t + 1) do the following:
3.11fr; =m;thenseff — B — 1elseq — (r;B +r;—1)/my
3.2 While(g(miB +m; —1) > r;B?> +r;_ 1B +1r; 5)do:g« G—1
33r«—r—g§-mB—t1
3.41fx <0thensetr «— r+m - Bt landj«— ¢ —1

4. Returnr = (r4...r170) B

The above algorithm, adapted frori7[25|, contains an integer division in its main
loop. An integer division requires many more machine cycles to compute than an integer

multiplication on a standard processor. Thus, the algorithm is computationally intensive.

The basis of the algorithm consists of estimating the quotient as accurately as possible and
in doing so, reduce the number of steps required to calculate the reduction. Dividing the two
most significant digits ofi by m, will result in the estimatg never being too small, and if

my > [£], ¢ is at most two in error. Using an additional digit ferandm (i.e., using the

three most significant digits af and the two most significant digits @f as shown in step

3.2), ¢ can be at most one in errar{]. Furthermore, this error occurs with approximate

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 47
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

probability 2 [18].

The initial formalization of the algorithm is due to Knuti§]. Koblitz [32] provides
a comprehensive description for the use of this method in a modular multiplication. Two
variations of the Classical reduction method with slightly different ways of quotient

estimation are shown iiYB,[79].

4.1.3 Computational Improvements

One can always guarantee that > [Z] by replacing the integers:, m) by (3a, 3m) for

a suitable choice ofl. The remainder ig times the remainder of divided byb. Since
the baseB is a power of 2, then the choice gfshould be a power of 2; multiplication by
G is achieved by simply left-shifting the binary representations a@ihd m. Multiplying
by a suitable choice of, to ensure that:, > [£], is callednormalization The resulting

normalized remainder requires a simple divisiondip obtain the actual remaindétq].

Step 3.2 can be modified ton; » > (r;B + ri-1 — qgqmy_1)B + r;_2. Sincer;B + r;_4
—gmy_1 < my, this step can be reduced to two multiplications. Thus the algorithm requires
k(k + 2) multiplications and: divisions for2k-bit dividend BQ].

A more involved kind of normalization is described by Walt8d][This normalization

fixes the modulus’ most significant digit in such a way that the most significant digit of
a is used as a first estimate fgy resulting in a faster reduction. However, this increases
the length of the modulus by at least one digit and all the intermediate results of a modular
exponentiation. Hence what is saved during the modular reductions, is lost again by

additional multiplications{7).

4.2 BARRETT REDUCTION

Barrett reduction2(] was inspired by fast division algorithms that multiply the reciprocal
of the divisor to emulate division. This reduction technique is advantageous in a modular
exponentiation where many reductions are performed with the same modulus. It was the

first approach to perform reduction without explicitly using the division step in the loop.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 48
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

4.2.1 Description

Barrett introduced the idea of estimating the quotientn | with operations that either are
less expensive in time than a division by or can be done as a precalculation for a giwven

(viz., p = B* /m wherey is a scaled estimate of ti¥é-digit modulus’ reciprocal)17].

The estimateg of = is obtained by replacing the floating point divisions in
q = |(a/B*~")(B* /m)/B| by integer divisions:

=31
q - B2kBt (4'2)

The number of multiplications and the resulting error is more or less independent loé
best choice fot, resulting in the least number of operations and the smallest maximal error,
isk+ 1.

The estimatej is at most two smaller than the corregt This can be shown using
the following inequality:

a _ 1 a B2k
w2l > g () (1)

a a BkF-1 1

S wm B Tm T
a B! 1
Z 4= BQk+ m _Bk+1+1
q>q > q—3 (4.3)

where the inequality? — 1 < L%J < ¥ was used. Therefore the remainder can be

computed by subtractingn mod B**! from a and then adjusting the result with at most
two subtractions ofn [80].

Naccacheet al. [82] provides mathematical correctness of the Barrett method and its
possible optimizations.

4.2.2 The Algorithm

Given the inputsz, m and the precomputation = [B?*/m], the method computes =

a mod m using the following steps:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 49
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

ALGORITHM: BARRETT REDUCTION

Precomputationy = [b?* /m)]

Input a = (a2k,1...a1a0)3 andm = (mk,l...mlmo)g

Ooutput 7 = (ry_1...r170) B

1. Compute the estimate quotient
11q — [a/B*]
12g —q x p
1.3 « [q2/B"*]

2. Compute the remainder
2.1r, « amod BFft! — ry
2.27r9 + (G x m) mod B¥*!
2.31r «—1r1 —19

3. Fix the remainder
3.11fr < 0thenr 4+ B*1 — r
3.2 Whiler > m do the following:r « r —m

4. Returnr = (rp_1...71170) B

The algorithm, adapted fror¥], requires 2 divisions by a power of the basend a partial

multiplication. All divisions performed, in base representation, are simple right-shifts.

Step 1 finds the estimate quotiepntand step 2 computes the remainder. If the computed
error does not fall in the limit® < r < m, a simple addition/subtraction by, will be
implemented to "fix” the remainder. Bosselaetsal. [77] state that for about 90% of the
values ofa < m? and modulusn, ¢ will be correct and 10% of the cases will it be two in

error.

The precomputation of: is based on a technique of emulating floating point data
types with fixed precision integers. Computihgn would generally result in a fraction.
Menezet al. [25] state that one can obtain the integer equivalent/of. using fixed point
arithmetic. It follows on the concept that if one sét¥ equivalent to one thel?* /m is
equivalent tol /m using basic arithmetic. Hence the integer equivalernit/of is truncated

to k + 1 digits (B?* is chosen instead d8* as B* /m will generate a 1-digit number).

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGe 50
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

4.2.3 Computational Improvement

Looking at step 1 of the algorithm, the subsections of step 1 can be depicted as follows:

Oy
i1 a ., a,
al 120, 011 L1 oo, 011 |
x
Hy Ho ‘
W[10T 001
1qzn<+1 Ok Yo "
R EEE 10 [10T 001
q

Figure 4.1:Computingg with Barrett reduction

Since thek + 1 least significant digits of, are not needed to determigeonly a partial
multiple-precision multiplication of; x u is necessary. The only influence of thet 1
least significant digits have on the higher order digits is the carry from podgitienl to
positionk + 2. Provided the bas® is sufficiently large with respect th, this carry can be
accurately computed by only calculating the digits at positioasdk + 1. Hence, thé: — 1
least significant digits of, need not be computed. Singeandq; have at mosk + 1 digits,
determiningj requires at mos} (k* + 5k + 2) single-precision multiplication2g].

Ok o
G120, 011
My Mg
M 122, 101
E ok i My Mo 1
Ko N 001! 202, 111
Iy

Figure 4.2:Computing the initial remainder with Barrett reduction

Step 2.2 can also be implemented using a similar type of modification implemented by step

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 51
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

1, however it only needs the bottdm- 1 bits. This can be depicted in Fid.2. In Fig. 4.2,

can also be computed by a partial multiple-precision multiplication which evaluates only the
least significankt + 1 digits of g3 x m. Sinceg andm arek-digit integers, this computation

can be done in at moét(k2 + 3k — 2) single-precision multiplications. Therefore, the total

number of single-precision multiplications required by the algorithm is at k{ést 4) [25].

4.3 MONTGOMERY REDUCTION

In 1985, P. L. Montgomery introduced an efficient algoritti][for modular multiplication
without explicitly carrying out the classical modular reduction step. This is done by
transforming the original integer into an ingenious representation in the residue class of

modulom to speed up the reduction operati@Q][.

4.3.1 Description

Montgomery reduction is a generalization of a much older technique due to H88kel [
Hensels observation is the following:rf is an odd positive integer less th2h(k a positive
integer) andl” is some integer such that < T < 2% thenR, = (T + ¢, - m)/2, where
qo = T mod 2 is an integer an®, = 727! mod m. More generallyR; = (R;_; + ¢;m)/2,
whereg; = R,_; mod 2 is an integer and?; = N2~ mod m. SinceT < 2%, it follows
that R, < 2m [25].

Mathematically, Montgomery reduction can be described as follows: Assuming that
the modulusn is ak-digit integer, i.e.B¥~! < m < B%, let R = B*. The Montgomery

reduction require$t andm to be relatively prime, that is

ged(R,m) = ged(B*,m) =1 (4.4)

In order for Eq.4.4t0 be satisfied, given that bagkin general processors is always a power
of 2, m has to be odd. Montgomer1] uses an ingenious transformation which converts

the original integer into itsn-residue form, before it can be utilized.

The m-residue with respect té& of an integera < n is denoted asi = aR mod m.

Hence the sefa - R mod m|0 < a < n — 1} is a complete residue system. Thus, there is a

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 52
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

one-to-one correspondence between the integdfsin— 1] and the integers in the set.
Montgomery exploits this property by introducing a routine which computes:thesidue
product of twom-residue integers5(0]. Given twom-residues; andb, the Montgomery
product is defined as the-residue

R=a-b-R'modm (4.5)

whereR~! is the inverse o mod m, i.e. R~' - R = 1 mod m since

b- R Y modn

myl
I
Y

= a-R-b-R-R 'modn
= a-b-Rmodn (4.6)

In order to describe the Montgomery reduction algorithm, an additional quaintiyith the
propertyR - R~ — m - 1h = 1 is defined. The integerB—! andr7 can be computed using

the extended Euclidean algorithm (sé&&][for more details).

The rationale behind the:-residue transformation is the ability to perform a Montgomery
reduction(a x b) - R~ modm for 0 < a x b < Rm in almost the same time as a

multi-precision multiplicationT7]. This is based on the following theorem:

The Montgomery Reduction Theorentet i = —m™' mod R. If ged(m,R) = 1,
then for all integerg’, (7" + Um)/R is an integer satisfying

T+ Um
R
wherelU = T mod R [77]. The justification, shown irid5], implies that the estimaté =

= TR '(modm) (4.7)

(T + Um)/R for TR~ mod m is never too small and the error is at most one. This means

that a Montgomery reduction is not more expensive than two multi-precision multiplications.

4.3.2 The Algorithm

Montgomery reduction requires the mathematical steps (i.e. the modular multiplication and

modular exponentiation steps shown in Figl) to be modified to implement the reduction

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 53
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

operation. This section will thus look at the following algorithms:

e Montgomery reductionThe core reduction that performs R~! mod m.
e Montgomery productThe crux procedure that computesb - R~* mod m.

e Montgomery exponentiatio® Montgomery modified modular exponentiation.

Montgomery reductian The algorithm computes the Montgomery reduction of integer
T, whereR = B¥ andT < mR, and requires thagcd(m, R) = 1. The algorithm
makes implicit use of the Montgomery theorem by computing quantities which have similar
properties td/ = T'm mod R andT + Um. The algorithm is as follows:

ALGORITHM: MONTGOMERY REDUCTION

Precomputationsn = —m ™! mod R

Input T' = (tQk—l---tltO)B andm = (mk_l...mlmo)B
OUtpUt T = (Ek_l...flfg)g
1.CopyT'toT.T « T

2. Perform the reduction

21U « T -1 -mmod R

22T «— (T+U-m)/R
3. Fix the remainderlf 7' > m thenT «— T —m
4. ReturnT = ({j_1...t1to) B

The most important feature of the Montgomery reduction algorithm is that the operations
involved are multiplications modul® and divisions byR, both of which are intrinsically

fast operations on general processors siiég usually a power 290].

It can be easily verified that:™ is an integer (substituté/ into Eq. 4.7). At step
3 a subtraction ofn is required which implies thaf < 2m. From step 2.Z" = T + Um,
butUm < Rm andT < Rm; hencel < 2m [25).

Montgomery product The Montgomery product algorithm can be used to compute
the product ofz andb modulon, wherea andb are them-residue transforms of andb

respectively. The algorithm is given below:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 54
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

ALGORITHM: MONTGOMERY PRODUCT

Precomputationrn = —m ™! mod R

Input a= (dk,l...&lao)g, B = (Bk;,l...i)lgo)g andm = (mk,l...mlmg)B

Output 7 = (74_1...7170) B

1. Multiply @ andb: £ = a x b

2. Perform the reduction
2.1u—t-1hmod R
227 — (F+u-m)/R

3. Fix the remainderlf 7 > m then7 «— 7 — m

4. Returnr = (7719—1--'7:17:0)3

Sincer is the product of twon-residues, the result is the-residue of the remainder, and
the remainder itself is obtained by applying one additional Montgomery reducfidn [
Using the Montgomery reduction algorithm shown above as an additional stepcémebe
transformed into'. This is easily shown since= r - R mod m which immediately implies
that7 - R~! mod m =r - R- R~! mod m = r mod m [50].

The initial transformation to then-residue domain, the precomputation@f and the
inverse transformation from the-residue domain (using an additional reduction step) are
fundamentally required, even for a one-digit reduction. Thus, the use of the Montgomery
product algorithm will be slower than the Classical and Barrett reduction methods when a

single modular multiplication has to be performed.

Montgomery exponentiation The Montgomery product and reduction algorithms are
more suitable when several modular multiplications with respect to the same modulus are
needed, i.e. a modular exponentiation. In the following algorithm a summary of the modular
exponentiation operation which makes use of the Montgomery product and reduction
functions is given.

For algorithmic reference, the notation that is given to the Montgomery product function
is MontProda, b)) wherea andb are m-residues. The Montgomery reduction function is
MontReda) wherea is in m-residue format. The modular exponentiation technique used is
the binary method (see Sectibt?).

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 55
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

ALGORITHM: MONTGOMERY EXPONENTIATION

Precomputationrn = —m ™! mod R

Input g = (gk,l...glgo)B, e = (6171...6160)2 andm = (mk,l...mlmo)g

Output A = (ag_1...a1a0)B

1. Transformg into m-residues g « g - R mod m
2. Represent the initial value of as am-residue A < 1- R mod m
3. ExponentiatiorFori from [— 1 down-to O do the following:
3.1Modular squaring4d — MontProd i,)
3.2Modular multiplicationif ¢; = 1 thenA — MontProd g, %)
4. Transform to normal form4 — MontRed A)

5. ReturnA = (aj_1...a1a0)B

The Montgomery algorithms can be modified similarly for the modular exponentiation
techniques shown in Chapt&rand is not specific to the binary method. The transformation

of g and A into their m-residues can be computed using a classical reduction, as it will
make a very small time difference (which can be neglected) when computing the modular
exponentiation. However, once the transformations have been completed, the inner-loop of
the binary exponentiation method uses the Montgomery product operations that perform
only multiplications modula? and divisions byR [50].

When the exponentiation method finishes, theresidue of A remains. The ordinary
residue number is obtained from theresidue by executing the MontRed function. Notice
that MontRedA) is equivalent to MontPrddi, 1). This is easily shown to be correct since
A = A-R mod m thatimmediately impliesthat = A-R~! mod m = A-1- R~ mod m =
MontProd A, 1) [50].

The above described Montgomery algorithms can be refined and made more efficient,
particularly when involved in multi-precision integer arithmetic. These improvements, due
to Dus® and Kaliski B1], are described in the following section.

4.3.3 Computational Improvements

The Montgomery reduction, described the previous section, is not more expensive than two

multi-precision multiplications. The following improvements due to [Buasd Kaliski[B1]

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 56
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

will almost be twice as fast. Hereto it is sufficient to observe that the basic idea of
Montgomery’s Theorem is to makea multiple of R by adding multiples ofn. Instead
of computing all ofu at once, one can compute one digjtat a time, add.;mB* to 7 and
repeat. This change allows one to comptite = —m ! mod B instead ofi [77]. The

resulting algorithm is as follows:

ALGORITHM: MODIFIED MONTGOMERY PRODUCT

Precomputationrng = —m~! mod B

Input a = (ak_l...alao)B, Z) = (bk—lmblbo)B andm = (mk_l...mlmg)B

Output r = (rk—l-'~Tlr0)B

1. Multiply the multiplicands7 = @ x b

2. Perform the reductionFor: from O to(k — 1) do the following:
2.1u; < r; - g mod B
227 «— F4u;-m- B’

3. Calculate intermediate remaindef < 7/B*

4. Fix the remainderlf 7 > m thenr «— 7 —m

5. Returni = (r_1...r170) B

Thus, a greatly simplified Montgomery product routine is developed by avoiding the full
computation ofrn and by using only single-precision multiplication to multiply and

mo [50]. As seen from the above algorithm, the number of single-precision multiplications
is reduced fron2k? to k(k + 1).

In Section4.3.1 it was noted that? andm had to be relatively prime, wherB = 2F
for general processors. Hence in order for one to implement the Montgomery reduction
step,m has to be odd. Ko&(] describes a method to implement the Montgomery reduction

for an even modulus by utilizing the Chinese remainder Theorem and operand scaling.

Bosselaerst al. [77] and Shand/84] discuss the generalization of Hensel's observation
that formed the basis of the Montgomery reduction. Numerous methods of hardware
implementations of the Montgomery reduction have been prop@&®84,87,54,88]. A
complete survey of how the Montgomery reduction can be applied to various cryptosystems
is described by Naccaclet al. [89)].

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 57
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

Koc et al.[90] provide an excellent reference for implementing multi-precision Montgomery
multiplication algorithms. Koc’s approach utilizes Montgomery reduction to provide
different implementations of the algorithm. The conventional algorithm, denoted by Koc
as the Separated Operand Scanning (SOS) method, multiplies the two multiplicands before
reducing the product (which is similar to the modified Montgomery product algorithm).
The cost of using the SOS method is the additional memory required to hokktbe
intermediate product. In addition, Koc also describes an interleaved multiply-and-reduce
modular multiplication denoted as the Coarsely Integrated Operand Scanning (CIOS)
method, which interleaves the multiplication in the modular reduction step. This technique
eliminates the need of additional memory space, however it does not allow the possibility to

utilize Karatsuba-Ofman multiplication and squaring optimizations.

4.4 EXPERIMENTAL RESULTS

In order to obtain practical times for the discussed reduction methods to be used in a
public-key environment, i.e. a modular exponentiatinmod m, specific simulations
must be performed. In order to obtain exact numerical results for the methods, simulations
were done on a Pentium Il processor running at 550 MHz with 256 Mbyte main memory
under Windows XP Home Edition platform using a Borland C Builder 6.0 compiler. The

simulations were performed under the following conditions:

Algorithms tested:

e The reduction algorithms that were tested were the Classical method, the Barrett

Method and the Montgomery method.

e The respective modifications and improvements for each method were taken into

account.

e The modular exponentiation algorithng® mod m, implemented was the Binary

method (for further details see Sectibr2).
e The multiplication method utilized in the simulation was the Classical method.

Programming conditions:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 58
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

e Each algorithm was implemented using standard ANSI C coding. The Basas

chosen ag??, hence used basic operations on integerssigned inttype.

e The basgy andm were randomly generated24 bit integers utilizing the MIRACL

pseudo random number generator.

e The simulations were conducted for randomly generated values for the expdoent
bit sizes256, 512, 1024 and2048.

e Though alot of effort has been done to remove the overhead generated by the compiler,

the test is still subjected to a little overhead generated by the platform and compiler.
Timing analysis parameters:

e One iteration consisted of a single run of the exponentiation algorithm for each
reduction algorithm. The total time period of each test was 20 seconds.

e Each simulation was run until the total time period had elapsed and the number of
iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

e The timing of the precomputations were not taken into account, however argument
transformations and postcomputations were taken, as they were computed within the

modular exponentiation.

Fig. 4.3 provides the time results of the three reduction methods implemented in a modular
exponentiation. It depicts the average time it takes to compute a modular exponentiation

over different bit sizes of the exponent.

The calculation ofg® mod m in the simulation used the standard binary method in
which various exponent bit sizes were used. Each of the three reduction algorithms are
used in this implementation resulting in three modular exponentiation functions. The
speed differences between the reduction functions are consequently reflected in the speed

differences between the exponentiation functions, as shown iEBg.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 59
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

1000

—&— Classical Reduction ;
900 || —¢—Barrett Reduction S R —
—#- Montgomery Reduction 3 \

800 -

700 -

600 -

500 ~

400 -

Average execution time [ms]

300 -

0 A S
256 512 768 1024 1280 1536 1792 2048
Size of exponent [bits]

Figure 4.3:Comparison of the discussed reduction methods

For the various sizes of the exponentor the modular exponentiation, the Montgomery
based exponentiation is slightly faster than the Barrett based exponentiation, which in turn

is slightly faster than the Classical technique.

The above observation can be explained with reference to Tafille An indication

of the performance of the different reduction methods can be given by the number of
single-precision multiplications and divisions required to reduce an integer twice as long as
the modulus. This approach is justified by the fact that a multiplication and a division are
the most time consuming operations in the inner loops of all three methods with respect to

which the others are negligibl&T].

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 60
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

Table 4.1:Complexity of the reduction methods in reducingkadigit integer [/ 7]

Method Classical Barrett Montgomery
Multiplications k(k+2) k(k+4) k(k+1)
Divisions k 0 0
Precomputations Normalizaton B*/m —m™! mod B
Argument transformation None None m-residue
Postcomputations Unnormalization None Reduction
Restrictions None a<B* a<mB*

The number of multiplications and divisions in Taldlel are only for the core reduction
operation (i.e. it does not include the multiplications and divisions of the precomputations,
the argument transformations and the postcomputations). The reference operation is the
multiplication of two k-digit integers which produce®k-digit « to be reduced by:-bit
modulusm [[77].

Table4.1 indicates that if only the core reduction operation is considered, the Montgomery
algorithm, in terms of single-precision multiplications, is clearly faster than both the Barrett
and the Classical reduction and is almost as fast as a Classical multiplication. However, this
is restricted to modulin whereged(m, B) = 1 is satisfied. The Barrett reduction, although
requires more single-precision multiplications than the Classical method, does not have the
time-consuming division step. This provides its slight time advantage over the Classical
method.

The precomputations, transformations and postcomputations introduce an overhead penalty
for using Montgomery reduction. The impact of this overhead varies greatly depending
on the application; in the case of modular exponentiation the overhead is subjected across
thousands of modular multiplications, effectively eliminating it altogether from any sort of
performance analysis. Whereas in the case of fewer modular multiplications, the overhead
can effectively double the execution time of the algorithm, making the Montgomery method

infeasible. Thus, it is better to use the Classical or Barrett method for such operations.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 61
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFOUR FAST REDUCTION TECHNIQUES

4.5 CHAPTER SUMMARY

In general all the methods implemented in industry thus far, are variations of the Classical,
Barrett, and Montgomery reduction method&7,[8C, 56]. A theoretical and practical
comparison has been made of three methods for the reduction of large numbers. The classical
reduction is the best choice for single modular multiplication. Modular exponentiation based
on Barrett’s reduction is superior to the others for a small number of modular multiplications.
For general modular exponentiations the exponentiation based on the Montgomery method

provides the best performance.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 62
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

sy O A YA O

FAST EXPONENTIATION TECHNIQUES

"Itis insufficient to protect ourselves with laws; we need to protect ourselves with mathematics”

ANONYMOUS

In previous chapters, the focus was on reducing the time required to perform a modular
multiplication utilized in a modular exponentiation. The focus of this chapter is to reduce
the number of modular multiplications in a modular exponentiation, thus also reducing the

time to perform a modular exponentiation.

Modular exponentiation

Modular Modular Modular
multiplication | multiplication multiplication

This chapter gives algorithmic descriptions of currently implemented methods that perform
the modular exponentiation operation ig. mod m. Hence the following algorithms will

be evaluated:
e The Binary metho{l19].

e The K-ary method18]. The K-ary method partitions the exponeninto words of
equal length and then performs as many modular multiplications as there are nonzero

words.

e The Sliding window method22]. Certain partitioning strategies to reduce the number

of nonzero words, and thus reduce the number of modular multiplications. Modular

63

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

exponentiation algorithms that use such partitioning strategies are termed sliding

window methods.

e Addition-chain heuristic§91,57,92]. Addition-chains are closely related to modular
exponentiation, since the optimal strategy to compute a modular exponentiation

corresponds to some minimum length addition-chain.

This chapter will provide a comparison of the above methods with respect to the number of

modular multiplications, the exponent’s Hamming weight and its time complexities.

5.1 THE CLASSICAL METHOD

The Classical method is the simplest method, derived straight from basic arithmetic.
The computation is simple fog¢ : multiply the basey by itself e times, wheree is the
exponent16].

In terms of modular exponentiation i.ed = ¢° mod m, first setA = ¢ then compute
A = A - gmodm and keep repeatingdd = A - g mod m until A = ¢° mod m. This
would requiree — 1 modular multiplications to compute the exponentiation. For example

computingg'® mod m would require computing all the powers gfintil 15. That is:

g_>92 _>93 _>g4 - _)915

This method would require 14 multiplicatiorsJ]. As can be seen, this method is extremely

inefficient. In the following sections we will describe more efficient methods.

5.2 THE BINARY METHOD

The Binary method is a substantial improvement on the Classical method. It dates back to

antiquity and is also known as the square-and-multiply metB6d [

5.2.1 The Algorithm

The left-to-right Binary method scans the bits of the exponent from the most significant bit

(MSB) to the least significant bit(LSB). A squaring is performed after each bit scan, and

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 64
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

depending on the scanned bit value, a subsequent multiplication is performed.

Let n be the number of bits in the exponeat i.e. n = |log,e|, and the binary

expansion ot is given as:

i=n—1

€ =€,-1€,_2...€1€0 — E 62‘2Z
=0

Hence the Binary algorithm that compuigsmod m can be stated as follows:

ALGORITHM: BINARY EXPONENTIATION

Input Baseg, modulusm and exponent = (e,_1€,—2....€1€0)2

Output A = ¢g° mod m

1. Initialize A SetA «— g

2. Loop functionFori from (n — 2) down to0 do the following:
2.1 SetA «— A% mod m.
2.2Ife; =1thensetd — A - g mod m.

3. Final result ReturnA.

The above algorithm, adapted froiB5], is the left-to-right Binary method. Knuthl§]|
provides a detailed description for the right-to-left version of the method. The right-to-left

method requires one extra variable to store the powegsloénce requires more memory.

5.2.2 Computational Efficiency

The total number of modular multiplicationd”) is a summation of three components.
Namely, precomputations before the algorithft), the squaringsS) and the multiplications
(M) that occur in the algorithm loop.

For an arbitraryn-bit exponent, the Binary method requireS(]:

e PrecomputationsP = 0. The Binary method requires no precomputations.

e Squarings S = n — 1. A squaring is computed for each bit of the exponent, except

for the most significant bit.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 65
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

e Multiplications M = 1(n — 1). A multiplication is performed each time = 1.
Hence the number of multiplications in the loop is equakht@) — 1, whereH (e) is
the Hamming weight of the exponent Therefore, for an even distribution of ones,

the number of multiplication is approximately equa%t(m —1).

Thus, the total number of modular multiplicatiofiss found as:

T:S—I—M:n—1+%(n—1):%(n—1) (5.1)

where it is assumed that_; = 1.

Table 5.1 tabulates the total number of multiplications required by the Binary method

and the Classical method for typicalbit values ofe.

Table 5.1: The computational efficiency of the Classical and Binary methods fotb#
exponent

Classical Binary

n T S M T

128 | 2128 —1 | 127 64 | 191

256 | 2%6 -1 | 255 128 | 383

512 | 2°12 -1 | 511 256 | 767
—1
—1

1024 | 21024 1023 512 1535
2048 | 22048 2047 1024| 3071

From the above table one can see the practical efficiency of the Binary method over
its Classical counterpart. Cohe@3] provides a more comprehensive treatment of the
practicality of the Binary method.

5.3 THE K-ARY METHOD

e=1234567= |100((101||101|/011||010||000{|{111

Y A

window size = 3 hits

The K-ary method builds on the idea of the Binary method, but instead of breaking the

exponent into single bits the K-ary methods breaks the exponerit-itovindows, and then

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 66
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

performs as many multiplications as there are nonzero windows. An illustrative example
(e = 1234567) of the formalization of the:-bit windows, wherek = 3, is shown on the

previous page.

5.3.1 The Algorithm

The K-ary method first computes the valuesgéfnod m for i = 2,3,...,2 — 1. The
method then partitions the binary expansion of the exponentgie. (e,_1€,_s...€1€0)2,
into s blocks of bit-lengtht (note thats x £ = n). The actuak-bit windows are then defined

as.

k-1
fi = (Cikth—1€ikth—2.--€ik) = Z Cik+;2 (5.2)
§=0

In a series of steps, the partial result is raised tethgower and multiplied withy;, mod m

wheref; is the current nonzero windovg(]. The algorithm is shown as follows:

ALGORITHM: K-ARY EXPONENTIATION

PrecomputationCompute and storg; mod m for j = 2,3,4,...,2% — 1
Breake into f; words ofk-bit length fori = 0,1,2,...s — 1

Input Baseg, modulusm and partitioned exponeant

Output A = ¢ mod m

1. Initialize A SetA « g;,_, mod m

2. Loop functionFori from (s — 2) down to0 do the following:
2.1 Setd — A2" mod m.
2.21f f; # 0thensetd — A - gy, mod m.

3. Final result ReturnA.

This algorithm, unlike the Binary method, contains a certain amount of precomputations
which if used effectively, will reduce the total number of operations needed by the modular
exponentiation. Knuthl8] explains the K-ary method in great detail. An analysis in also
found in Kog B(].

5.3.2 Computational Efficiency

Since the K-ary method is the generalization of the Binary method, the exponent can be

represented by more than two states. The drawback, however, is that it requires a certain

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 67
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

degree of precomputation. Thus, for an arbitrarpit exponente with e = Zf;é fi, the

K-ary method require<oq):
e PrecomputationsP = 2% — 2,

e Squarings S = k(s — 1). This is simplified to(? — 1)k = n — k, wheres is the

number of windows ire.

e Multiplications M = (% —1)(1—27%). Amultiplication is performed iff; # 0, since
(2% — 1) out of 2* values off; are nonzero, that is the probability fif# 0is 1 — 27*.

Therefore the total average number of modular multiplications is
T=2-24k—r+(2-1)1-27% (5.3)

There exists an optimurh (denoted:*) for a givenn-bit exponent length that will reducg

in Eg.5.3to be a minimum. These values can be calculated by enumeragpn [

2100 ~
1900 -
1700 -
1500 +

1300 -

Total number of multiplications (T)

1100 :
1 2 3 4 5 6 7 8 9 10
Size of window (k)

Figure 5.1:Enumeration graph fat = 1024 using the K-ary method

Utilizing Eq. 5.3 for 1024-bit exponent, the enumeration graph shown in Fg.1 is
established. From Figh.1, one can see dsgets largerl’ decreases until a specific window
size. At that specific window size, i.e. the optimal window SizeT" will be at minimum.
From Fig. 5.1, the lowest number of modular multiplicatio(is246) is obtained ak = 5,

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 68
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

hencek* = 5. Similar enumeration graphs were computedifee 128, 256, 512 and2048,

and the results are tabulated below.

Table 5.2:The computational efficiency of the Binary and K-ary methods

Binary K-ary

n T k* | P S M T
128 | 191 |3,4|6,14 125,124 36,29 167
256 | 383 | 4 | 14 252 59 | 325

512 | 767 5 | 30 507 98 | 635
1024 1535 | 5 | 30 1019 197 | 1246
2048| 3071 | 6 | 62 2042 335 | 2439

Table5.2 tabulates each of the components required to compute both the Binary and
K-ary methods (using*) respectively for different.-bit values ofe. The average number
of modular multiplications can be found by substituting= 1 into Eq. 5.3, which gives
3(n—1).

The use of the K-ary method over the Binary method results in an average saving of
13% to 21%, with respect to the bit-size of the exponent. Ksfi} §hows an asymptotic
value of savings offered by the K-ary method over the Binary method is 33% as the

bit-lengthn tends to infinity.

5.4 S.IDING WINDOW METHODS

The sliding window methods are adaptive K-ary techniques which modify their structure
according to the exponet These adaptive methods partition the exponent into a series
of variable zero and nonzero windows in order to decrease the total number of nonzero
windows B0]. The main aims of the sliding window methods are to reduce the number of

nonzero windows and to reduce the number of precomputations.

In step 2.2 of the K-ary method, a loop multiplication is skipped if a zero window is

encountered. Thus, the total number of modular multiplications is decreased by decreasing

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 69
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

the number of nonzero windows. The sliding window methods also attempt to half the
number of precomputations required by the K-ary by partitioning the exponent in such a

way that only odd nonzero windows are created.

5.4.1 The Algorithm

A sliding window exponentiation algorithm first decomposes expoaémnb zero windows
(ZW) and nonzero windows (NZW}; of length L.(f;). The number of windows may not
be necessarily equal to/k, wheren is the bit-length ofe and & is the window size. In

general, it is not required that the length of the windows be equal.

The decomposition of the exponent is structured such that the LSB of each NZW
equals 1, i.e. the NZW is odd. Consequently, the number of precomputations is halved,
since only odd powers of needs to be precomputeB(]. The generic sliding window
method is as follows:

ALGORITHM: SLIDING WINDOW EXPONENTIATION

PrecomputationCompute and storg; mod n for j = 2,3,5,7,...,2" — 1
Breake into f; words of L(f;)-bit length fori = 0,1,2,..s — 1

Input Baseg, modulusm and partitioned exponent

Output A = ¢g° mod m

1. Initialize A SetA < gy, mod m

2. Loop functionFori from (s — 2) down to0 do the following:
2.1Setd — A2 mod m.
2.21f f; #0thensetd — A - gy, mod m.

3. Final result ReturnA.

The above algorithm is adapted froB0]. The actual difference between the sliding window
method and the K-ary method comes in the partitioning of the expen&g [22] provides

two partitioning strategies to decompose the exponent. These strategies were initially
proposed by Knuth18] and Boset al.[91]. The methods, though very similar in structure,
differ in whether the length of a nonzero window must be consitarft{ = k), or can it be
variable C(f;) < k), wherer is the maximum length of the NZW, i.e.= max(L(f;)) for
i=0,1,2,...s — 1 forall f; > 0. In the following sections, algorithmic descriptions of these

two partitioning strategies will be given.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 70
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

55 CONSTANTLENGTHNONZEROWINDOWS

e=1234567 = | 1001 || O || 1011 || O || 1101 || 000 || 0111
t 1

window size = 4 bits

[] nonzero windows

The constant length nonzero window (CLNW) is a partitioning strategy that scans the bits of
the exponent from the least significant to the most significanBjt [During scanning, it

decomposes into either a ZW or a NZW. The technique is described below:

e Making ZW Check the incoming single bit: if it is a 0 then stay in ZW, else go to NW.

e Making NZW Stay in NZW until all% bits are collected, wherk is the maximum
window size, then check the incoming single bit. Ifitis a 0 then go to ZW, else create
a new NZW.

The CLNW technique produces zero windows of arbitrary length, and nonzero windows of
lengthk. No adjacent ZW may occur, since adjacent zero windows are concatenated, while
two NZW may be adjacent. An illustrative exampte= 1234567) of the formalization of
thek-bit CLNW windows, where: = 4, is shown above. The CLNW state diagram is shown

in Fig.5.2.

scanned bit is0
2W scanned hit is 1
l collect k bits
T NZW

NZW isfull &

scanned bit is0 £
NZW isfull &
scanned bit is1

Figure 5.2:CLNW state diagram

5.5.1 The Algorithm

Given exponent of n-bits, the window sizé:, an algorithm is established to create NZW

and ZW f; of length L(f;). The CLNW partitioning algorithm is shown as follows:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 71
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

ALGORITHM: CREATING CONSTANT LENGTH NONZEROWINDOWS

Input Exponent of n bits, and window sizé

Output Partitionf; of length L(f;) of exponente fori =1,2,...,s — 1

Search the exponefbri from 0 ton do the following
1. Create ZWIf ¢; = 0

11f;—0,L(f;) < landset =i+ 1.

1.2 Whilee; = 0 setL(f;) « L(f;) + 1andi =i + 1.
2. Create NZWIf ¢; = 1

21fi—e +ejip1+ ... + ek

2.2 SetL(f;) «— kand set =i + k.
3. Final result Returnf; andL(f;).

5.5.2 Computational Efficiency

In order to compute the minimum number of modular multiplications required by the CLNW
partitioning strategy, a practical enumeration of the CLNW sliding window methodhod

m) must be performed Tabke 3 tabulates the simulation results in terms of the number of
multiplications, squarings and precomputations required by the K-ary and CLNW sliding

window methods.

Table 5.3:The computational efficiency of the K-ary and CLNW sliding window methods

K-ary CLNW sliding window

n T k*| P S M T
128 | 167 | 4 | 8 125 25| 157
256 | 325 | 4 | 8 253 50| 311
512 | 635 | 5 |16 509 84| 609
1024| 1246 | 6 | 32 1020 145 1197
2048 | 2439 | 7 | 64 2044 255 2363

The simulations for Tabl®&.3 were setup such that 1000 random exporesamples were
generated for the following-bit sizes: 128, 256, 512, 1024, 2048. The basey and modulus
m were randomly generat@d48 bit integers utilizing the MIRACL pseudo random number

generator. Counters were implemented in the precomputation, squaring and multiplication

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 72
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

steps of the sliding window algorithm. In order to compute the optimal window/sizéhe
simulations were configured to test each window <ize the range2 < k < 32 for the

1000 generated exponent values. The tests were repeated for each exponent bit-size.

Kog¢ [22] calculates the above results by modelling the CLNW partitioning strategy as
a Markov chain. He states that for an arbitrarpit exponent (e = Ef;& fi wheres is the

number of windows), the sliding window with CLNW technique requires:
e PrecomputationsP = (2% —2)/2 = 2¢1,
e Squarings S = k(s — 1). This is simplified to(} — 1)k = n — k.

e Multiplications M. A multiplication is performed iff; is a NZW. Ko¢ computes the
number of nonzero windows statistically by a Markov chain process. The statistically

computed multiplications are comparable to the multiplications shown in EaBle

As shown in Tables.3 the number of squarings are not equivalent to Kog¢’s theoretical
value ofn — k. This is because the number of windogs is not necessarily equivalent to
n/k. From the practical analysis performed, it was found that the number of squarings is
dependent on the size of the most significant NZW in the exponent. Thus, the number of
squaringsS = n — L(fs_1), which is often less thah.

The CLNW sliding window reduces the total number of multiplications required by
the K-ary method by 3-7 % foi28 < k < 2048. These improvements are due to the
reduction of precomputations (odd NZWs) and multiplications (fewer NZWs) required by
the CLNW sliding window algorithm.

5.6 VARIABLE LENGTHNONZEROWINDOWS

e=1234567 = 00 E 1011 E 1101|{0000{|111

q= 2 bits k=4bits L] nonzerowindows

The CLNW technique starts with NZW when a one is encountered. Although the incoming
k — 1 bits may be zero, the algorithm appends them into the current NZW. The variable

length nonzero window (VLNW) technique prevents such a NZW to eR@t [In order to

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 73
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

do this it requires two pivotal integer parameters: the maximum nonzero window lgngth

and the minimum number of zergsequired to switch to the ZW.

The partitioning strategy is described as follows:

e Create ZWCheck the incoming single bit: if it is a 0 then stay in ZW, else go to NZW.

e Create NZW Check the incoming bits: if they are all zero then go to ZW; else stay

in NZW. If not, add bits to nonzero window, and repeat process until eithérlatis

are collected or until zeros are encountered. Afbits are collected then check the

incoming single bit: if the bit is zero create a new ZW, else create a new NZW.

VLNW produces nonzero windows which start with a 1 and end with a 1. Two nonzero

windows may be adjacent; however, the one in the least significant position will necessarily

have £ bits. Two zero windows will not be adjacent since they are concatenated.

illustrative exampled = 1234567) of the formalization of th&-bit VLNW windows, where

k = 4 andq = 2, is shown above. The VLNW state diagram is shown in Bi§.

scanned bitis 0
scanned bitis 1
ZW
l scan g hits
T NZW
NZW isfull &
scanned bitisOor g)
scanned zeros
NZW isfull &
scanned g bits> 0

Figure 5.3:VLNW state diagram

5.6.1 The Algorithm

Given exponent of n-bits, the window sizé& and the minimum number of zergsequired
to switch to the ZW, an algorithm is established to create NZW andfZ@f length L(f;).
The VLNW partitioning algorithm is shown as follows:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 74
UNIVERSITY OF PRETORIA

An

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

ALGORITHM: CREATING VARIABLE LENGTH NONZEROWINDOWS

Input Exponent of n bits, and window sizé& and minimum number of zeras

Output Partition f; of length L(f;) of exponene fori =1,2,...,s — 1

Search the exponefRbri from 0 ton do the following
1. Create ZWif ¢; = 0
11f < 0,L(f;) < landset =i+ 1.
1.2 Whilee; = 0 setL(f;) « L(f;) + 1andi =i + 1.
2. Create NZWIf ¢; = 1
2.1 SetL(f;) < landf; < 1.
2.2 Check incoming bits:
2.2.1 If allq bits zero then go to step 1
2.2.2 Else seL(f;) = L(f;) + ¢ and addy bits to f;
2.2.3Repeat 2.2 iL(f;) < k
2.3 Check iff; has any leading zerosié the number of leading zeros).
2.3.1 Eliminate leading zerogi(f;) < L(f;) — (.
2.4Seti =i+ L(f;).
3. Final result Returnf; andL(f;).

5.6.2 Computational Efficiency

For an arbitraryn-bit exponente (e = Zf;; fi; wheres is the number of windows), the

sliding window with VLNW technique requires:
e PrecomputationsP = (2% —2)/2 = 2k,

e Squarings A squaring is performed for each bit of the exponent except for the most
significant NZW.

e Multiplications A multiplication is performed iff; is a NZW.

The number of squarings and multiplications depend on the conditions set by5Hg.

Koc¢ [22] models these processes by a three state Markov chain. He provides a detailed
analysis of this model and states that the optimal valuesat between 1 and 3 and the
optimal window sizé: is between 4 and 6 far28 < k£ < 2048.

In order to verify statistical analysis stated i22], a practical enumeration of the

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 75
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

VLNW sliding window method(¢¢ mod m) was performed. The simulations were setup

for the VLNW partitioning technique using the same configuration shown in SeSttof

To compute the optimak* and optimal¢*, the simulations were configured to test
each window sizé& in the range < k < 32 and eachy in the rangel < ¢ < k — 1. The
tests were repeated for each exponent bit-size and the data collected was averaged over 1000

runs. The summarized results of the simulations are tabulated in3able

Table 5.4:The computational efficiency of the CLNW and VLNW sliding window methods

CLNW VLNW sliding window
n T |k|lg¢|P S M| T
128 157 41 3|8 125 25| 157
256 | 311 | 4| 3|8 253 50| 311
512 | 609 | 5|4 |16 509 84| 609
1024| 1197 | 6 | 5|32 1020 145 1197
2048 | 2363 | 7 | 6 | 64 2041 258 2363

Koc¢ stated in/22] that VLNW technique would reduce the number of NZWs, thus being

more computation efficient than the CLNW technique. From the practical enumeration
performed, the VLNW technique decomposed the exponent into larger ZWs and shorter
NZWs than the CLNW technique. However, the number of NZWs did not decrease. In fact

for simulations where < k£ — 1, more NZWs were created.

If the VLNW technique is set tq = k£ — 1, it decomposes the exponent identically to the
CLNW technique. Thus, the number of precomputations, squarings and multiplications

shown in Tablé.4 are identical to Tablg.3.

The summarized results in Tak¥e4 show that wheny = k& — 1, the total number of
modular multiplications required by the modular exponentiation is at a minimum. Thus, the

CLNW method is the better partitioning strategy to use in the sliding window method.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 76
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

5.7 ADDITION CHAINS

The optimal strategy to obtain the minimum number of modular multiplications in a modular
exponentiation corresponds to a shortest path to the exponent value. This leads to the study

of addition chains which is a research area for more than 100 year84pld [

5.7.1 Description

Consider a sequence of integets aq, as, ..., a,_1,a, whereay, = 1 anda, = e. If the

sequence is constructed in such a way that fok #flere exist indices, j < k such that

arp = a; + Q; (54)

then the sequence is an addition chain dorThe addition chain length is the number of

elements in the addition chain.

An addition chain can be represented by a directed graph, where the vertices are labelled
for 0 < k < r. Arcs are drawn frona; to a;, and froma; to a;, as a representation of each
stepay, = a; + a; in Eq.’5.4 For example, the addition chaln2, 3,6, 12, 15,27, 39, 78, 79

corresponds to the following directed graph:

5.7.2 Addition Chain Heuristics

In terms of modular exponentiation, the addition chain method for an expersecdomputed

as follows: Start withg! mod m, and proceed to computg®* mod m using the two
previously computed valueg mod m andg® mod m asg® mod m = g% - g% mod m

[5Q]. The number of modular multiplications required is equal to the length of the addition
chain. Thus, the task of minimizing the number of modular multiplications is equivalent to

finding the minimal addition chain length.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 77
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

The methods introduced so far, namely, the Binary method, the K-ary method and the
sliding window methods are in fact methods of generating addition chains for the given
exponent$0]. Consider for example = 55, the addition chains generated by the discussed

methods are shown below:

Table 5.5:Addition chain of exponentiation methods ok 55

Method Window

Binary method k=1 |1 2 3 6 12 13 26 27 54 55
K-ary method k=2 |1 2 3 6 12 13 26 52 55
CLNW sliding window method £#=2 |1 2 3 6 12 13 26 52 55
VLNW sliding window method] k=3 |1 2 3 5 6 7 12 24 48 55

Heuristics are practical methods that create addition chains for a particular integer. However,
they do not guarantee the shortest addition chain length for that particular integer. The
methods shown in Tab.Sare all heuristics for generating short addition chains. However,
creating minimum length addition chains for very large integers (512-bits and above) is
extremely difficult B1,95]. Through heuristics, methods to compute an addition chain for

very large integers is feasible.

The heuristics, thus far, implemented a basic exponentiation step (square-and-multiply) and
a window decomposition step to reduce the computation of the addition chain for a large
exponente to the computation of an addition sequence by choosing an appropriate set of
integers which are much smaller than The computation of short addition chain lengths

can be further improved by producing a short addition chain sequence for those integers. A

proposed heuristic applying this additional steps is described in the following section.

5.7.3 The Algorithm

The addition chain algorithm consists of three steps:

e Window decompositioThis step partitions the exponeninto smaller windowsu;.

e Make sequencelhis step creates an addition sequence for a set of integers utilizing a

specialized algorithm proposed by Bos and Co$éy}. [

¢ Addition chain methodA modified binary exponentiation step for addition chains.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 78
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

5.7.3.1 Window Decomposition

There are three different techniques to decompose the experiatd smaller windows.
These windowing techniques are the fixed window decomposition, constant length nonzero

window decomposition and variable length nonzero window decomposition.

100|110 | 100 | 100 | OO0 | 010 | 001 | 101 | 00O | 111

Fixed window decompositionThe exponent is decomposed into windows of fixedit

length, as shown above. For further details, refer to Se&ién

1| 0011 | O |1001|000|0001| 00O | 1101 | 00| 0111

Constant length nonzero window decompositibhe CLNW decomposition produces zero
windows of arbitrary length, and nonzero windows of length~or further details, refer to

Sectiors.5.

1/00/1101| 00 | 1 |0O0000| 1 | 00O (1101|000 |111

Variable length nonzero window decompositidrhe VLNW decomposition produces zero
windows of arbitrary length, and nonzero windows of a maximum leigti his creates

larger ZWs and smaller NZWs. For further details, refer to Sed@ién

5.7.3.2 Make Sequence

The initial addition chain sequence, the proto-sequence, consists of 1 and 2 and the
decomposed window values in ascending order. The sequence is then increased with

insertions of intermediate values required to obtain the required window values.

Bos et al. [9]] describe four algorithms to create the addition sequence: Approximation,
Division, Halving and Lucas algorithms. Good sequences can be found utilizing the
Division and Lucas algorithms. However, implementing these algorithms is much more

time consuming and complex, sometimes infeasible to impler@dht [

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 79
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

A combination of the Halving and Approximation algorithms provides a faster, less complex
solution to creating the addition sequence. ThusMa&e sequencalgorithm is as follows
[57):

ALGORITHM: CREATE ADDITION CHAIN SEQUENCE

Input Decomposed exponent windows

Output Addition chain (AC)a; with verticesv;, anduv;,

1. Create Initial set a; consists of 1,2, and the ascending window valuges
2. Set ElemenkE to largest value in initial set.
3. While £ > 2 do the following:
3.1 SetS to the next smaller element aftér.
3.2Halving. If E — S > S then do the following:
3.2.1If E odd then increase the set with — 1).
Add verticesy;, = 1 andv;, = F — 1to AC
3.2.2 If E even then increase set with'/2). Add verticesy;, = v;, = E/2to AC
3.3 Approximation Else if £ — S < S then do the following:
3.3.1 Letd(x,y) € Set. Ifz + y = F, add vertices;, = x andv;, = y to AC.
3.3.2 Else increase set witly — .S). Add verticesv;, = S v;, = F — S to AC.
3.4 Set Element to next smaller element inBet- S

4. Return addition chain; with verticesy; andv;

Verticesv;, andv;, are computed in correlation with addition chain elementsuch that
during the precomputation phase of the exponentiatigh:mod m can be computed as

follows:
g% mod m = ¢g"1 - ¢g"2 mod m (5.5)

The vertices);, andv;, for their respectiver; may contain values less thap so that Eq5.5
holds true. The following figure depicts the use of the above algorithm for the uncompleted
addition chaim = 1, 2, 6, 42.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 80
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES
STEP | ADDITION CHAIN (AC) | OPERATION MoDIFIED AC

1 1,2,6,42 Halving: Insert 21 1,2,6,21,42
2 1,2,6,21 42 Halving: Insert 20 1,2,6,20,21,42
3 |1,2,6,20,21,42 Halving: Insert 10 1,2,6,10,20,21,42
4 1,2,6, 10,20, 21,42 Approx: 6 +4 = 10, insert 4| 1,2, 4,6, 10, 20, 21, 42
5 1,2,4,6,10,20,21,42 Approx: 2+ 4 =6, noinsert| 1,2,4,6, 10, 20, 21, 42
6 1,2,4,6,10,20,21,42 Approx: 2+ 2 =4, noinsert| 1,2,4,6,10, 20, 21, 42
7 1,2,4,6,10,20,21,42 Terminate algorithm

Figure 5.4:Approximation and Halving for proto-sequengk 2, 6, 42}

5.7.3.3 Addition Chain Exponentiation

After the exponent has been decomposed into smaller windows and the make sequence
algorithm creates the required addition chain sequence, the addition elements can be utilized

in @ modular exponentiation. The algorithm for the modular exponentiation is as follows:

ALGORITHM: ADDITION CHAIN EXPONENTIATION

Window decompositiorBreake into w; words of L(w;)-bit length fori = 0,1,2,...s — 1
Make sequenceMake addition chain sequenagwith verticesy;, andv;, from w;.

PrecomputationCompute and storg,, mod m = gy, - gv,, mod mfora; =1,2,...,a,

ig

Input Baseg, modulusm and partitioned exponeant

Output A = ¢g° mod m

1. Initialize A SetA « g, , mod m

2. Loop functionFori from (s — 2) down to0 do the following:
2.1 Setd — A2 mod m.
2.2 Ifw; # 0thensetd — A - g,,, mod m.

3. Final result ReturnA.

To analyze the addition chain method, an exponentiation graph of the expenent
192000470 is shown in Figh5.5.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 81
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

000 || 111 ||100101||0000| 100

L7] 37 |
(18] 7] [o]

window binary value
window numeric value
window position

O OAEn

intermediate value

Figure 5.5:Exponentiation graph far = 192000470 [57]

There are two chains in Fip.5. The left chain is the addition sequence created to compute
the required window values tabulated at the top of the figure. The right chain is the actual
exponentiation flow that occurs. The numbers between the boxes on the right chain are the
amount of squarings that occur between each window, which is determined by the position
of the window. The number of modular multiplications required to compute exponent

e = 192000470 are 28 squarings, 5 multiplications and 8 precomputations. The total is
41 operations, whilst the Binary method would require 45 operations to compute the same
number.

In general, it is the case that using addition sequences instead of precomputed tables
allows one to use bigger window sizes, giving shorter addition chains for the original
exponent. The larger the window, the greater the amount of precomputations and thus fewer
main-loop multiplications. The following section will provide practical enumeration of the
variations of the addition chain heuristic namely the fixed window, CLNW and VLNW

decompositions.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 82
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

5.7.4 Practical Enumeration

In order to compute minimum number of modular multiplications required by the addition
chain heuristic, a practical enumeration must be performed. The enumerations were

performed under the following conditions:

Algorithms tested:

e The modular exponentiation algorithm¢ mod m, implemented was the addition

chain exponentiation method shown in Secton.3.3

e Each enumeration utilized a different window decomposition technique: fixed window

decomposition, CLNW decomposition and VLNW decomposition.

e The multiplication method utilized in the enumeration was the Karatsuba-Ofman with

Comba method
e The reduction method utilized in the enumeration was the Montgomery method.
Programming conditions:

e Each algorithm was implemented using standard ANSI C coding. The Basas

chosen ag3?, hence used basic operations on integersnsigned inttype.

e The basg; andm were randomly generatexd48 bit integers utilizing the MIRACL

pseudo random number generator.

e The enumerations were conducted for 1000 randomly generated samples of the

exponent.

e Counters were implemented in the precomputation, squaring and multiplication steps

of the exponentiation algorithm.

¢ In order to compute the optimal window sikg& the enumerations were configured to
test each window sizg in the range2 < k£ < 32 for the 1000 generated exponent

values.

e The tests were repeated for each exponent bit-3&:256, 512, 1024 and2048.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 83
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

The results collected was averaged over 1000 iterations and the respective enumeration

graphs and summary tables are presented for each window decomposition technique.

Fixed window decomposition The enumeration graph, shown in Fig5.6, depicts
the average number of modular multiplications against the various window sizes. The
shaded bar is the optimal window size that provides the minimum number of modular

multiplications.

1400
1380 -
1360 -
1340 -
1320 A
1300 -
1280 -
1260 -
1240 -

=TT TDHHHDHHHDHHHDH

window size

Total number of multiplications

Figure 5.6: Enumeration graph for the fixed window addition chain method for 1024-bit
exponent

Table 5.€ tabulates the results of the above enumeration in terms of the number of

multiplications, squarings and precomputations requireafbit exponent.

Table 5.6:Computational efficiency of the fixed window addition chain method

n |k P S M T
128 |16 41 112 7 160
256 |16 59 240 15 314
512 |16 92 496 31 619
1024| 16 147 1008 62 1217
2048 | 16 230 2032 127 2389

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 84
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

Constant length nonzero window decompositiomhe enumeration graph, shown in Fig.
5.7, depicts the average number of modular multiplications against the various window sizes.
The shaded bar is the optimal window size that provides the minimum number of modular

multiplications.

1350 1
1330
1310
1290
1270 { | —
1250 -

1230

1210 ~

1190 | HHF
1170 .-
6

Total number of multiplications

T

window size

10 26 30

Figure 5.7: Enumeration graph for the constant length nonzero window addition chain
method for 1024-bit exponent

Table 5.7 tabulates the results of the above enumeration in terms of the number of
multiplications, squarings and precomputations requireafbit exponent.

Table 5.7:Computational efficiency of the constant length nonzero window addition chain
method

n |k P S M T
128 | 4 8 125 25 157
256 | 5 15 253 42 310
512 | 5 16 509 84 609

1024 6 31 1020 145 1196
2048 7 63 2044 255 2362

Variable length nonzero window decompositioriThe enumeration graph, shown in Fig.

5.8, depicts the average number of modular multiplications against the various window sizes.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 85
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

The shaded bar is the optimal window size that provides the minimum number of modular

multiplications.

1350 1+
1330 A
1310 A
1290 A
1270

1250 A

1230

1210 A

st

Total number of multiplications

22 26 30

I

window size

14

Figure 5.8: Enumeration graph for the variable length nonzero window addition chain
method for 1024-bit exponent

Table 5.8 tabulates the results of the above enumeration in terms of the number of
multiplications, squarings and precomputations requiredfbit exponent.

Table 5.8:Computational efficiency of the variable length nonzero window addition chain
method

n |k* ¢ P S M T
128 | 4 3 8 124 24 156
256 | 5 4 15 253 41 309
512 | 5 4 16 509 84 609

1024 6 5 31 1020 146 1197
2048 7 6 61 2044 256 2361

5.7.5 Discussion

The addition chain methods discussed in this section determine the total number of
precomputations. In comparison to the sliding window methods for larger window sizes, the

addition chain method requires significantly fewer precomputations. However, the addition

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 86
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

chain methods do not improve on the sliding window methods in terms of the total number
of modular multiplications, i.e. at its optimum window size it requires the same number of

modular multiplications as the sliding window methods.

Fig. 5.6 to Fig. 5.8 shows a distinct minimum fofl. This is due to the fact that

with increasing window sizes the number of windows decrease while the size of the most
significant window increases. This results in fewer multiplications and squar@gjs [
However, when increasing the window sizes further, the addition chain for creating the
window elements becomes longer, hence increasing the number of precomputations. The
addition chains created, for these larger window sizes, are not the optimum because the
make sequence algorithm employed is inefficient to identify short sequences out of larger
integers.

The sequence algorithm has the following effects:

¢ It depends on the structure of the exponent, more specifically on the decomposed
window values(w;), as it creates the addition chain with respect to these values. The

fewer number of different window values, the smaller the addition chain created.

e The values in the addition chain can only be twice their previous number (Halving
operation) or the sum of two previous numbers (Approximation operation) in the

sequence.

e Though the algorithm does not provide the shortest addition chain length, it provides

a practical solution to find a shortish addition chain for the exponent.

From Fig. 5.6, it is noticed that though the optimal window size = 16) produces a
distinct minimum of 1217 total multiplications, it requires 147 precomputations. Since
the relationship between performance and memory usage is important to the efficient
implementation of the modular exponentiation algorithm, especially in resource-constrained
environment, this high number of precomputations would require a large amount of stored
memory compared to the sliding window methods. Hence, the fixed window addition chain

method is inefficient in this regard.

Kunihiro and Yamamoto 96, 97, 98] proposed further systematic algorithms which

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 87
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

create short addition chains for large Hamming weight exponents using smaller window

sizes.

Understanding the relationship between performance and memory usage is vital in
implementing the modular exponentiation in a resource constrained environment. The
addition chain methods can require a large number of precomputations, hence memory.
Certain of the precomputations are temporarily required and may be removed once it is
utilized, and some are required for the majority of the chain. Sauer@®ypfovides

methods to reutilize memory space for storage of many precomputations.

5.8 THEORETICAL LIMITS

The computation of the shortest addition chain for a positive integisr known to be
an NP-complete problen®§]. This implies that all possible chains leadingdanust be
computed in order to obtain the shortest one. Since addition chains were introduced by

Scholz [L8] in 1937, its bounding properties have been established:

The upper bound on the length of the shortest addition chainifequal to:

L(e) <logye+ H(e) — 1 (5.6)

whereH (e) is the Hamming weight andi(e) is the length of the addition chain. This upper
bound corresponds to the number of operations required by the Binary method as long as the
H(e) is not small. Though the Classical exponentiation method has a much larger addition
chain than the Binary method, anything worse than the Binary method is simply ignored by
cryptographers.

The lower bound was established by 8ohage99):

L(e) > logy e+ logaH(e) — 2.13 (5.7)

Theoretical analysis and the asymptotic bounds of addition chains are defir@4)/100,
101,102,10395].

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 88
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

5.9 EXPERIMENTAL RESULTS

To obtain a practical comparison for the discussed exponentiation methods to be used in a

public-key environment, two tests must be performed:

e Hamming weight analysis

e Timing analysis
The simulations were done on a Pentium IIl processor running at 550 MHz with 256 Mbyte
main memory under Windows XP Home Edition platform using a Borland C Builder 6.0
compiler. The simulations were performed under the following conditions:

Algorithms tested:

e The exponentiation algorithms that were tested were the Binary method, the K-ary
method, the Sliding window method (utilizing CLNW decomposition) and the
Addition-chain method (utilizing CLNW decomposition).

e Each method is configured to utilize its optimal window-size.

e The multiplication method utilized in the simulations was the Karatsuba-Ofman with
Comba method

e The reduction method utilized in the simulations was the Montgomery method.
Programming conditions:

e Each algorithm was implemented using standard ANSI C coding. The Basas
chosen ag??, hence used basic operations on integerssigned inttype.

e The basgy andm were randomly generated?24 bit integers utilizing the MIRACL

pseudo random number generator.
Hamming weight analysis parameters:

e 1000 samples of the exponent was generated for specific Hamming weight
probabilities:0.05, 0.5 and0.95.

e The tests were repeated for each exponent bit-3&:256, 512, 1024 and2048.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 89
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

e A counter (C'), representing the addition chain length of the algorithm, was
incremented each time a precomputation, squaring or multiplication step occurred in

the exponentiation algorithm.

e The respective normalized addition chain lengths of each of the exponentiation
methods were calculated using the averaged valué€' @iver 1000 iterations. A
normalized addition chain length is the ratio of the addition lengtle t§ the bit

size ofe, i.e. L(e) = €.

Timing analysis parameters:

e The simulations were conducted for 1000 random exponsamples for the specified
bit size. 128, 256, 512, 1024 and2048.

e One iteration consisted of a single run of the exponentiation algorithm for each

exponentiation algorithm. The total time period of each test was 20 seconds.

e Each simulation was run until the total time period had elapsed and the number of
iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

e The timing of the once-off precalculations were not taken into account (i.e. window
decomposition, addition-chain sequence creation, calculatiom)f However,
argument transformations, precomputations and postcomputations were taken in the

run-time, as they were computed within the modular exponentiation operation.

Fig. 5.9 to Fig. 5.11 plots a normalized addition chain length of each exponentiation
method against bit-length of the exponent for different Hamming weight probabilities. Fig.
5.12gives the average run-time of the various exponentiation methods utilizing the optimal
window-size over an even distribution of ones in the exponent. The graphs below have the

following parameters:

e Size of the exponent: the length of the exponent in bits.

e Normalized addition-chain length: The averaged normalized addition chain length

over 1000 iterations for the specific exponent bit-size.
e Schronhage’s limit: the lower bound of the shortest possible addition chain length.

e Time: The averaged run-time for one iteration of the exponentiation method.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 90
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES
1.12 -
—®- Binary method —&— K-ary method
—o— Sliding window method —&— Addition chain method
—i- Schonhage's Limit
1.1 : : :
ey
D
k5
c
'@
ey
(&)
c
©
=
®
B
£
O
pd
1.02 : : : : : :
S S m— i —

256 512 768 1024 1280 1536 1792 2048
Size of the exponent[bits]

Figure 5.9:Normalized addition chain lengths for 5%b(e) exponent

1.6

—@— Binary method —- K-ary method
—&— Sliding window method —&— Addition chain method
—i- Schonhage's Limit
15 gt ; * : 1 1 ?
= : : : : : :
S)
i
c 1.4’
'®
<
[S]
c
3=
£
kS
=
£
o
Z I I I I I I
R B e e e e
1] L — 1 1 u

256 512 768 1024 1280 1536 1792 2048
Size of the exponent[bits]

Figure 5.10:Normalized addition chain lengths for 508f(¢) exponent

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 91
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

22

—@— Binary method —— K -ary method
—o— Sliding window method —&— Addition chain method
— Schonhage's Limit

2 1 : : : : : :
s 0 ¢t | 1
D
3
- 18-
‘3
=
[&]
c
S
2164 [AT breees S E—
®
B 14 -
£
(@]
e
—
= —— -— l l o

256 512 768 1024 1280 1536 1792 2048
Size of the exponent[bits]

Figure 5.11:Normalized addition chain lengths for 958f(¢) exponent

800

8- Binary method
700 |/ ®K-aymehod

—&— Sliding window method
—A— Addition Chain method

L e

500 ~
400 -

o ==

Average execution time [mg]

200 ~

100 A

0 T i i i T T T
256 512 768 1024 1280 1536 1792 2048
Size of the exponent [bits]

Figure 5.12:Time analysis of the exponentiation methods

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 92
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

5.10 DISCUSSION

It is shown in Fig/5.C€ that the Addition-chain and the Binary methods give favorable results
when the exponent has low Hamming weight. In F&gl0the Addition-chain method and
Sliding window provides the best results for an even distribution of ones in the exponent.
Fig.5.11shows that when the Hamming weight of the exponent is large the Addition chain

method gives the shortest chain, whilst the Binary method gives the longest.

The Hamming weight of the exponent generally affects the number of multiplications
(M) and squarings$sS) that occur in a modular exponentiation. The larger the Hamming
weight of the exponent the greater the number of multiplications. This is due to a smaller
probability of zero windows in large Hamming weight exponents. However, the number
of precomputations play an important role in the total number of modular multiplications
(T'). The K-ary and Sliding window methods have a fixed amount of precomputations
which is independent to the Hamming weight of the exponent. The Binary method has no

precomputations and depends entirely on the Hamming weight of the exponent.

The Addition-chain method utilizes its Make-sequence algorithm to adapt itself to the
Hamming weight of the exponent to create a low number of precomputations. In terms of
larger Hamming-weight exponents, the Make-sequence algorithm creates an addition-chain
sequence of very large window values and very small window values. This is due to
the large amount of large valued windows, that are numerically close to each other,
created by the window decomposition employed. In low Hamming weight exponents, the

Make-sequence algorithm needs only to create an addition chain sequence to a smaller value.

The methods analyzed all fall, on average, 10-20% short of @ge’s lower bound.

The normalized addition chain length indicates that as the exponent size increases, the
Schrohage limit tends to one. This is expected as lihg e term of Eq. 5.7 becomes
dominant. This is directly related to the number of squarings that occur in the modular
exponentiation. The 10-20% difference of the exponentiation methods is attributed to the
number of multiplications and precomputations. For low Hamming weight exponents, the
required number of precomputations and multiplications is reduced due to greater amount

of zeros in the exponent.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 93
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

The effect of each of the exponentiation methods on the number of modular multiplications

can be attributed to the following:

e The length of the exponent approximately determines the number of squarings that

OcCcur.

e The length of the most significant window is the only factor that influences the number

of squarings.

e The number of nonzero windows determined the number of loop multiplications that

occur.

e The precomputations are determined by the window size and its respective value, i.e.
the length of the addition sequence required to compute the different window values.

Whilst the Binary method is generally the slowest method, in special cases this method can
provide shorter or at least comparable addition chains, especially for low Hamming weight
exponents. The two additional advantages the Binary method has over its exponentiation
counterparts is that it is most simple algorithm to implement and secondly it makes use of

the least memory resources as it requires no precomputations.

It is also interesting to note that for a chosen exporent65537, the Binary method would
provide the shortest addition chain. This choice for the exponent is popular for the public
exponent of the RSA encryption scheme, since the computation is relatively efficient and

large enough to make trivial attacks infeasible.

The window methods introduce an additional step whereby the exponent is decomposed
into windows of a certain bit length. It may be thought of takinbit windows in the binary
representation of the exponent, calculating the powers in the windows one by one, squaring
them k times to shift them over, and then multiplying by the power in the next window.
The window decomposition, however, requires a precomputation of all the possible window
values that may occur. The techniques for defining windows have a great effect on the

modular multiplication count.

The basic window method, i.e. the K-ary method, decomposes the exponent intb-fixed

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 94
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

windows. This decomposition creates window values in the range of w; < 2% — 1,

which would require@* — 1 precomputations.

To further reduce the number of precomputations, the window decomposition can be
performed such that only odd window values can exist, i.e. creating windows where the
LSB is one. Also by decomposing the exponent in such a way to decrease the number
of nonzero windows, the number of multiplications are also decreased. The CLNW and
VLNW window decomposition techniques decompose the exponent into zero windows of
any length and nonzero windows of a fixed of maximum bit-length. It was shown in Section
5.6.2that the CLNW decomposition was a more efficient window decomposition technique.
The K-ary method is 8% better the Binary method, whilst the Sliding window methods are
5-7% better than the K-ary method. The sliding window algorithms are easy to program,
introducing negligible overhead.

The Addition-chain method introduces an additional step which tries to reduce the
number of precomputations that occur by creating an addition chain sequence that from
the decomposed window values. This step, due to Bos and Cé4lecfeates a sequence
starting from the largest window value, then finding the next smallest value by either halving
its value or finding whether two previous window values’ sum adds to the desired value.
The process is repeated until the sequence contains all the required values. However, this
sequence-building step becomes inefficient to find short sequences at larger integers, hence
for a random distribution of ones in the exponent it does not improve on the sliding-window
methods.

Moreover, since the sliding window method is effectively an “on-the-fly” window

method, the use of the Addition chain method may not be a necessity for evenly distributed
exponents. The addition chain method provides the shortest addition chain lengths for
exponents with very low or very large Hamming weights, as the sequence-building algorithm

provides "shortish” addition sequences for these window values.

The sequence building step is complex and time-consuming to compute. However,
this step would not effect the performance of a fixed-exponent exponentiation algorithms

where the precalculations are done before the actual modular exponentiation. Though it

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 95
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERFIVE FAST EXPONENTIATION TECHNIQUES

was shown that the Addition chain method was the better method to utilize for exponents
of low and large Hamming weight exponents, considering that Addition chain method are
on average 1-10% better than other methods, it seems perfectly reasonable to use the other

methods to its simplicity.

The chapter results show that the addition chain length is dependent on the method
chosen and the method is which the exponent is decomposed. Certain methods are optimal
for certain exponents, hence it is unlikely that will be single method to generate the shortest

addition chain.

5.11 HAPTER SUMMARY

Different methods for modular exponentiation were examined, implemented and evaluated
in this chapter. These methods are compared with respect to the average number of
modular multiplications needed to accomplish exponentiation for various Hamming weight
exponents. The main factors influencing the modular multiplication count have been
stated. The Addition-chain method discussed provides the the best or comparable short
addition chain lengths for different Hamming weight exponents. However, its complex
sequence-building step is inefficient in identifying short sequences for evenly distributed
exponents. The CLNW Sliding window method provides similar performances to the
Addition chain method and should be used in these cases.5HEg.confirms the research

obtained in this chapter.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 96
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

crren D L X

FAST EXPONENT TECHNIQUES

PR — e LR

A CHINESE PROVERB!

The techniques described thus far are applicable to all the public-key cryptosystems
discussed in Chapte?. Further speed enhancements can be made by modifying or
manipulating the exponent of the modular exponentiation. This, however, only works in

cryptosystems where the exponent is fixed, i.e. the RSA cryptosystem.

The RSA encryption is a very fast operation, as the encryption expomgns (ften
chosen to be a small prime with a low Hamming weight (typically: 65537). However,
the decryption procedure is very slow, due to the fact the decryption exponent is generally a

very large integer. This fact remains a problem in many applications of the RSA algorithm.

Constructive work in this area of cryptography has provided some significant speed
enhancements to the decryption process, most notably the use of the Chinese Remainder
Theorem (CRT) in the decryption process by Quisquaeral. [23]. However, the
applicability of choosing a suitable decryption exponent will further enhance the speed of
the RSA decryption. This chapter will look at three novel ways of choosing the decryption
exponent (with specific prime generation techniques) that will lead to a substantial reduction
in the RSA decryption time.

1 Translated in English: "An inch of time is worth an inch of gold, but it's hard to buy one inch of time
with one inch of gold”

97

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

The chapter will implement and evaluate the various improvements performed on the
exponent. It will also provide a security analysis of selecting a certain decryption exponent

and conclude with a summary of the work done.

6.1 RSA DECRYPTION

The RSA algorithm generates two distinct large primesdg to create the modulus i.e.
m = pq. Utilizing Euler’s totient function ofm, ¢(m) = (p — 1)(¢ — 1), the encryption
exponent is then chosen such that

ged(e, ¢(m)) =1 (6.1)

The decryption exponeitis computed using the extended Euclidean algorithéj [
d = e ' mod (¢(m)) (6.2)

whered andm are relatively prime25]. The decryption of the messagé is computed as

follows:

M = C% mod m (6.3)

where(C' is the ciphertext generated froéh = M mod m. The correctness of E6.3is
shown in BQ]. In order to compute the number of operations required byeEs) let the size
of p andq be k/2-bits. Sincem = pq, thenm andd arek-bit integers. Thus, the required
number of operations required by E®13is calculated as

6.2 FAST DECRYPTION USINGCRT

When the modulusn is the product of two prime® and ¢, a significant performance
improvement can be achieved through the using the Chinese Remainder Theorem (CRT).
This method, proposed by Quisquater and Convreg}, [only works whenp and ¢ are

factors of the modulus:. The CRT enables the computation of the modular exponentiation

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 98
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

modulom to be performed using two modular exponentiations mogandg, which is half
the size ofim:

M, = C?mod p (6.4)
M, =C%mod q

After Eq. 6.4 is computed, the messagdé is computed by the application of the Chinese

Remainder Theorem. There are two algorithms that computes the CRT: Gauss1E]RT |

and Garner’'s CRT (GCRT1D4]. The following subsection discusses the Chinese remainder

theorem and its properties.

6.2.1 The Chinese Remainder Theorem (CRT)

If the integerspy, ps, ..., pi, are pairwise relatively prime (that jg.d(p;, p;) = 1), then the
system of simultaneous congruences

r = up mod py

T = us mod po

(6.5)
T = u mod pyg

has a unigue solution moduto= pp,...px [25]. Using Gauss’s algorithm, the solutianto
the simultaneous congruences in Bk may be computed as

k
Z u;c; Pi(modp) (6.6)
i=1

whereP; = p1ps...pi_1Pit1---Pr = pﬂi andc; is the multiplicative inverse aP; modulop;, i.e.
c; = P, mod p;. Applying Fermat's theorenilD5 to RSA decryption, the computation of
Eq.6.4becomes

M, = C% mod p

(6.7)
M, = C% mod q
where
d,=dmod (p—1
P (p) (6.8)
dy, =dmod (¢ — 1)
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 99

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

d, andd, are half the size of, which reduces the time required by the decryption process.
In order to obtainV/, utilizing Eq.6.6 and Eq.6.7 the following is obtained

M = Mpcp@ + chq@ mod m = M,c,q + Myc,p mod m (6.9)
P q

wherec, = ¢~! mod p andc, = p~! mod ¢. This simplified to

M =M, (¢ modp)-q+ M, (p~' mod q) - p (modm) (6.10)

Garner’'s CRT algorithm (GCRT)D4], on the other hand, computes the final integday

first computing a triangular table of values:

U1
U1 U2

U3zr U3z U33

Ukl Ur2 Uk3 - Ukk

where the first column of the values, are the given values af;. The values in the
remaining columns are computed sequentially using the values from the previous columns
using recursion

Ui j+1 = (uij — ujj>cji mod P (611)
wherec;; is the multiplicative inverse gf; modulop;, i.e.
CjiPj = 1 mod Di (612)

For exampleuss is computed as3, = (u3; — u11)c13 mod ps Wherecysp; = 1 mod ps. The

final value ofu is computed as

U = Uyy + UeP1 + U3zP1P2 + ..+ UkkP1P2---Di

which does not require a final modulaeduction bQ].

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 100
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

Applying the GCRT algorithm to the RSA decryption, first compute Ef.7 and Eq.
6.8 The triangular table becomes

where

Mll = Ml
M21 - M2 (613)
M22 = (M21 — Mll)(p_l mod Q) mod q

Therefore the RSA decryption using GCRT is computed as
M = M + [(My— M) - (p~" mod q) modq]-p (6.14)

The GCRT method is more advantageous than the standard CRT computation for RSA
decryption. This is due to two reasons:

e The GCRT method requires a single inverse computatiodnmod ¢, which can be
precomputed and saved.

e The GCRT method does not require a final reductiop.by

6.2.2 Computational Efficiency

In order to compute the total number of operations required by the RSA decryption

C? mod m) using the CRT, the following assumptions are made:

e The size of the primeg andq is k/2-bits respectively, where: = pq.
e The modulusn and the decryption exponeddtarek-bits in length.

e d,,d,andp~! mod ¢ are precomputed.

To constructC? mod (pq) by GCRT, initially requires computation of E6.7 and Eq.6.8
Hence, each exponentiation (i.&l; andM,) requires%k: - frack2) operations.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 101
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

The total computation ofdM/ (including the combination ofM/; and M, by GCRT)
will consist of onek/2-bit subtraction, twak/2-bit multiplications and oné-bit addition.

Hence, the total number of operations is

S 0 WY R
2 \2 2 2 8 2

The RSA decryption without CRT require%3 operations. Thus, just considering the

higher-order terms, the decryption using CRT will be approximately four times faster.

A comparison of the relative performance in Fig.1 shows that the respective times of
performing an RSA decryption with CRT will improve the decryption speed as theoretically
expected. Figh.1was implemented utilizing the algorithmic and programming conditions
shown in Sectioi®.7.

1600

—=— RSA Decryption without CRT

1400 | ——RSA decryption with CRT

[EEN
N
o
o

1000

Time per iteration [mg]
[}
o
o

256 512 /68 1024 1280 1536 1792 2048

Size of decryption exponent [bits]

Figure 6.1:Comparison of RSA decryption with and without CRT

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 102
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

6.3 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT(METHOD I)

Conventional RSA prime generation chooses the encryption exponent and then utilizes
the extended Euclidean algorithm to compute the decryption exponent. In general, the
encryption operation is very fast, since the publicly-known encryption exponent can be
chosen to be a small integer with low Hamming weight (a popular choicgSis- 1).

However, the decryption is very slow, even with the application of the Chinese Remainder

Theorem, due to the fact that the decryption exponent is very large.

In this chapter three novel techniques are introduced where instead of choosing the
encryption exponent, the decryption exponent is chosen. In this section, the first of the new

methods for choosing the decryption exponent is presented:

Let p and ¢ be two distinct primes where < ¢. The differencer is represented

as

r=q—p (6.15)

The decryption exponent is chosen as follows

d = (p* - q) mod ¢(m) (6.16)

where¢(m) = (p — 1)(¢ — 1). The encryption exponentis then computed as the inverse

of the decryption exponent (using the extended Euclidean algoritB [

e =d ! mod ¢(m) (6.17)

Note that, in general, the size ofvill be approximately the same as the size of the modulus
m. Reformulating Eq. 6.8 the decryption exponents for the half exponentiations are

expressed as:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 103
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

d, = dmod (p—1)
= p’-qmod (p—1) (¢ — 1) mod (p — 1)
= gmod (p—1)
= (r+p)mod (p—1)
— (r+p+1-1)mod(p—1)
= (r+1)mod (p—1) (6.18)

and similarly

d;, = dmod (¢—1)

= p*-qmod (p—1)(¢—1) mod (¢ — 1)

— Pmod (¢—1)

= (¢—r)’mod (¢ —1)

= (g+1—1-7r)’mod (¢ —1)

= (1—-7)>mod (¢ 1)

= (r—1)>mod (¢ — 1) (6.19)

With the above formulations, one can compute

C’modp = C%modp
_ C(r+1) mod (p—1) mod P

= C"*Ymod p (6.20)
and similarly
C?modq = (€% modgq
— r=1?mod (¢-1) 1) 4 q
= " mod q (6.21)
The decrypted message is finally obtained by applying the Chinese Remainder Theorem to

Eq.l6.20and Eq.6.21. Note that since + 1 is smaller tharp, Eq./6.18can be expressed as
d,=7r+1.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGeE 104
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

Analyzing the Eg. 6.20 and Eq. 6.2], the speed of the decryption lies in the size of
decryption exponent, i.ex — 1 andr + 1. By choosing the difference between the two
primesp andq to be small, it is possible to obtain a very short exponent, which would lead

to a substantial reduction in decryption time.

Note that if the Hamming weight of + 1 is chosen to be low, assumings approximately
the same size gs andq, the modular exponentiations in E®.20 and Eqg. 6.21 can be
improved. Sectioib.€ will describe these methods whereby the difference of the primes is

chosen to either have a low Hamming weight or a small numerical difference.

6.4 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT (METHOD |I)

The second method proposed is similar to the method proposed SédioHowever, in
this case the sumis defined as:
r=p-+gq (6.22)

The decryption exponent is chosen to be
d = (p-q) mod ¢(m) =m mod ¢(m) (6.23)

wherep(m) = (p — 1)(¢ — 1). The encryption exponernt is then computed using the
extended Euclidean algorithm = d~! mod ¢(m). Utilizing Eq. 6.8 for this case, the

decryption exponents for the half exponentiations is then calculated as:

d, = dmod (p—1)
= p-qmod (p—1)(¢—1) mod (p— 1)
= gqmod (p—1)
= (r—p)mod (p—1)
= (r—=p—141)mod (p—1)
= (r—1)mod (p—1)
= r—1 (6.24)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 105
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

and similarly

d, = dmod (qg—1)
= p-qmod (p—1)(¢—1) mod (¢ — 1)
= pmod (¢ —1)
= (r—gq)mod (¢ —1)
— (r—g—1+1)mod (q—1)
— (r—1)mod (g — 1)
r—1 (6.25)

With the above formulations, one can compute

C?modp = C% modp
= C" Ymodp (6.26)

and similarly

C?modq = C%mod g
= C" Y modygq (6.27)
The Chinese remainder theorem is applied to &@6and Eq.6.27to obtain the message
M. Sincer is the sum of the two primes, it would be favorable to choosel with a low

Hamming weight exponent in order to reduce the decryption time. A method to crasi®

low Hamming weight integer is described in Seci@6.

6.5 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT (METHOD III)

The third method of choosing the decryption exponent is to com@was the sum op
and an integer multiple af. In this section, the third of the new methods for choosing the

decryption exponent is presented.
Let p andq be two distinct primes whene < ¢. The difference in primesis represented as
r=q-—p (6.28)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 106
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

Now choose the decryption exponent as follows
d = (ng+r) mod ¢(m) (6.29)

where ¢(m) = (p — 1)(¢ — 1), wheren is the odd multiple ofg. Hence, the half

exponentiations are expressed as:

d, = dmod (p—1)
— (ng+7) mod (p—1)(g— 1) mod (p— 1)
= n(p+r)+rmod(p—1)
= nlp+1—1+7r)+rmod(p—1)
= r(n+1)+nmod(p—1) (6.30)

and similarly

d, = dmod (qg—1)
= (ng+r)mod (p—1)(¢—1) mod (¢ — 1)
= n(¢+1—1)+rmod(¢—1)
— (r+n)mod (g —1) (6.31)

With the above formulations, one can compute

C'modp = C% modp

C(r(n+1)+n) mod (p—1) mod p

= "D pod p (6.32)
and similarly

C?modgq = C% modgq

_ Cr-i—n mod (g—1) mod q

= C"" mod q (6.33)

The messagé@/ is obtained applying the Chinese remainder theorem to@&8¢ and Eq.
6.32 In order to satisfyl, whered = nq + r, n has to be odd. This is due to the fact that
r, the difference of primeg andq, will always be even. Hence in order for the condition
ged(e, ¢(m)) to be satisfiedd andn has to be odd. The generation of the differends

shown in Sectioi®.E.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 107
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

6.6 PRIME GENERATION

The prime generation techniques focuses on creationfmm the generated primegsand
q. Three methods, derived for the proposed methods shown in SécEtmSectior6.5, are

described in the following subsections.

6.6.1 Low Hamming Weight Prime Difference

In order to create to have a low Hamming weight, wheras the difference between primes

p andg, the following steps are taken:

e Creater such that the MSB is always one and the LSB is zero with a bit-length
approximately the same size as Note thatr will always be even since andg

are primes.

e Randomly disperséi(r) ones through the length of where H(r) is the desired
Hamming weight of-.

e Generate prime and add it to- to obtaing.

e If ¢ is not a prime, the process has to repeated until a pgireéound.
The algorithm for the above method is given as follows:

ALGORITHM: PRIME GENERATION - LOW HAMMING WEIGHT PRIME DIFFERENCE

Input Random integep = (px, Pk—1, ---, P1, Po)2 Of k-bits length

Output Primep andq with differencer

1. Create primep.
lllifpisevenp — p+ 1.
1.2 Whilep is not prime:p «— p + 2.
2. Create primez. While ¢ is not prime do the following:
2.1 Initializer < 0
2.2 Create difference. Forifrom 1 untili < (k — 1) do the following:
2.2.15 = R(l).
2.2.21j4; < 1 wherer;; is the(i + j)th binary position in
223i—i+].
2.3 Computey — p+ .
3. Returnp, g andr.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 108
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

The algorithm employd?(/) which is a random number generator to insert approximately
k/l binary ones intor, hence determine the Hamming weight-ofA low Hamming weight
r is favorable since it would imply that and ¢ may be Hamming weight close but not

necessarily numerically close.

The visualization of the algorithm is shown in Fig&1.2.

Pk-1 Po
P | 1 [111001....cciiiiiiiiieeeie e, 011110| 1
irkl rl I" fi I’1 I‘0
NN
2 b 0/ 1 [00] 1 0.0 1 [Ouv 0/ 0
I:I§+j i=i+]j i=i+]j i=i+j=i+randk)
iqk-l - Yo i
g | 1 |101101....cccniiiiiiee e, 100111| 1

Shaded region is not required

Figure 6.2:Creation of a low Hamming weight prime difference

6.6.2 Small Prime Difference

To create the small difference betwegrand ¢: they need to numerically close. Their
Hamming weight will be identical except that for their least signifidapits, in which they

can differ significantly.
The method first creates a primeand then utilizing a random generat@(r) creates
r that is/ bits long. Prime; is then computed by the sum pfandr. If ¢ is not prime, then

the process is repeated until a prigis found.

The algorithm for the method is given as follows:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 109
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

ALGORITHM: PRIME GENERATION - SMALL PRIME DIFFERENCE

Input Random integep = (pk, px—1, ---, P1, Po)2 Of k-bits length

Output Primep andg with differencer

1. Create primep.
llifpisevenp «— p+ 1.
1.2 Whilep is not prime:p <« p + 2.

2. Create primeg. While ¢ is not prime do the following:
2.1Creater. r — R(r) of [-bits length.
2.2Ensurer is even If rqg = 1 then setg < 0.
2.3Computeg. g =p + .

3. Returnp, ¢ andr.

The visualization of the algorithm is shown in FigL2

I-bits

Py-1 Po |
p|1110......ccccevvnnennnn. 10 O I 0 001
R(u)
V-1 "o |
O 5 111| O
‘qk-l qoviv
q|1110....ccccieenns 1011 | 200....ccciiciieeiieeeeeie e 111

Figure 6.3:Creation of a small difference

6.6.3 Low Hamming Weight Prime Sum

Given thatp + ¢ = r, it can be noticed that the sumis larger tharp andq. However, since
Eqg.6.26and Eqg.6.24requires(r — 1) to have a low Hamming weight, the method creates
(r — 1) such that the MSB is always one and the LSB is zero. The bit-lengthsoélways
one bit larger than the size pfand is randomly populated witH (r) ones, wherd{ (r) is

the desired Hamming weight of The generated primeis then subtracted fromto obtain

q. If g is not a prime, the process has to repeated until pgimdéound. Hence, the following

algorithm can be formulated:

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 110
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

ALGORITHM: PRIME GENERATION - LOW HAMMING WEIGHT PRIME SUM

Input Random integep = (pk, px—1, ---, P1, Po)2 Of k-bits length

Output Primep andg with sumr

1. Create primep.
l.1lIifpisevenp < p+ 1.
1.2 Whilep is not prime:p « p + 2.
2. Create primeg. While ¢ is not prime do the following:
2.1 Initializer «— Owith r, — 1
2.2Create(r — 1). Fori from (k — 1) down-to 0 do the following:
2.2.15 = R(l).
2.2.2r;_; < 1 wherer;_; is the(i — j)th binary position in-
2.2.3i —i—j.
2.3Set(r — 1) to be low Hamming weightg « 1.
2.4Computeg. Computeg «— r+ 1 — p.
3. Returnp, g andr < r + 1.

The algorithm employs?(l) which is a random number generator to ingeft binary ones
into , hence determines the Hamming weight-ofThe algorithm can be visualized in Fig.
6.4.

(r-1)| 1 (0.0 1 |0........ O 1 (0....0] 1 |0.cceeeeeenns 0| 1
i=i+j i=i+]j i=i+j i=i+j=i+R()
Il L [2200 1001| O
i Pr1 Po i
P | 1 |112001.....cciiiiiiiiieeeeeiieeeei e 011110| 1
3 Ui Yo 3
o I 0 Tt 100111 1

Figure 6.4:Creation of a low Hamming weight prime sum

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 111
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

6.7 EXPERIMENTAL RESULTS

In order to obtain practical times for the discussed decryption methods, specific simulations
must be performed. Simulations were performed on a Pentium Il processor running at
550 MHz with 256 Mbyte main memory under Windows XP Home Edition platform using
a Borland C Builder 6.0 compiler. The simulations were performed under the following

conditions:

Decryption algorithms tested:

e The RSA decryption algorithm utilizing the Chinese remainder theorem, proposed by

Quisquater and Convrel23].

e The proposed RSA decryption method choosing p*q mod ¢(m) utilizing the low

Hamming weight prime difference shown in Sect@6.1.

e The proposed RSA decryption method choosihg= p*q mod ¢(m) utilizing the

small prime difference shown in Sectiérb.2.

e The proposed RSA decryption method choosing m mod ¢(m) utilizing the low

Hamming weight prime sum shown in Secti616.3

e The proposed RSA decryption method choosing 3¢ + r mod ¢(m) utilizing the

small prime difference shown in Sectiérb.2.
Algorithm basis:

e The exponentiation algorithms utilized the Sliding window method(utilizing VLNW

decomposition).

e Each exponentiation algorithm was configured as to utilize its optimal window-size

for the respective exponent bit-length.

e The multiplication method utilized in the simulations was the Karatsuba-Ofman with

Comba method

e The reduction method utilized in the simulations was the Montgomery method.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 112
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

Programming conditions:

e Each algorithm was implemented using standard ANSI C coding. The Bagas

chosen ag??, hence used basic operations on integersnsigned inttype.

e The messag@d/ was a randomly generat@d48 bit integer which was encrypted by

the respective public exponent utilized.

¢ In addition, the exponent was created by the prime generation method implemented

for the test case.

e For verification that decryption process was successful, the decrypted message was
compared to the original message.

e Though alot of effort has been done to remove the overhead generated by the compiler,
the test is still subjected to a little overhead generated by the platform and compiler.

Timing analysis parameters:

e One iteration consisted of a single run of the two decryption algorithms. The total

time period of each test was 20 seconds.

e Each simulation was run until the total time period had elapsed and the number of
iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

e The timing of the precomputations were not taken into account, however argument
transformations and postcomputations were taken, as they were computed within the

modular exponentiation.

Fig. 6.5to Fig. 6.8 plots the average time against either the Hamming weight or bit-length
of r depending on the prime generation technique utilized for the simulation. The dotted
line shown in each of the figures is the average time required by a standard RSA decryption
using the CRT (with the conventional selection for the public exponeard the private

exponent]).

The RSA encryption time for the new methods had an average timihglaf23ms.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 113
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

460

450 — — T - -0 0T 0000773

5

430

420

Time per iteration [mg]

410

400
64 128 192 256 320 384 448 512

Hamming weight of r [bitg]

\—-— Proposed method — — RSA decryption with CRT

Figure 6.5:Time analysis of Method | shown in SectiérBapplying prime generation shown
in Fig. 6.2 (average RSA encryption time12.23ms)

500
450

S
S

350
300
250
200
150
100
50
0

Time per iteration [ms]

0 128 256 384 512 640 768 896 1024
Length of r [bits]
\—-— Proposed method — —RSA decryption with CRT

Figure 6.6:Time analysis of Method | shown in SectiérBapplying prime generation shown
in Fig. 6.3 (average RSA encryption timi12.23m.s)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 114
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

460
450 —— " —————— = - =

5

430
420
410
400
390
380

370
64 128 192 256 320 384 448 512

Hamming weight of r [bits]

Time per iteration [ms]

\—-— Proposed method — — RSA decryption with CRT

Figure 6.7: Time analysis of Method Il shown in Sectid&h4 applying prime generation
shown in Fig.6.4 (average RSA encryption timie12.23m.s)

500
450

N
(@]
o

350
300
250
200
150
100
50
0

Time per iteration [ms]

0 128 256 384 512 640 768 896 1024
length of r [bitg]

\—-— Proposed method — — RSA decryption with CRT

Figure 6.8: Time analysis of Method Ill shown in Secti@5 applying prime generation
shown in Fig.6.3 (average RSA encryption timi&12.23m.s)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 115
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

6.8 DISCUSSION

6.8.1 Performance Analysis

Fig. 6.5 shows the decryption times for the RSA method described in Seét®by
applying the low Hamming weight prime generation shown in Sedfiégnl. Method I,
when utilizing a low Hamming weight, provides a maximum improvement of 10% against
the RSA decryption (as the Hamming weight-ahcreases, the improvement of the method

decreases).

The low Hamming weightr — 1) is only advantageous for one of the half exponentiations,
i.e. M, = C"'modp. The exponent in the second half exponentiation, i.e.
(r — 1)>mod (¢ — 1), will not necessarily produce a low Hamming weight exponent.

Thus, the speed improvement of Method | relies on the computatidn,of

Fig. 6.6 shows the timing results for Method | if the prime generation method created
primes with a small difference between them (shown in Se@&i6étf2 The times shown in

Fig. 6.6 show a greater improvement than the times shown in/€.i§. By creating a small
difference between the primes, the decryption exponent utilized in the half exponentiations
in Fig. 6.6 varied from 64-bits to 1024-bits whilst the exponent in FégE exponent was of

a constant 1024-bit length.

The timing results utilizing Method Il are shown in Fig6.7. Comparing Fig. 6.5

and Fig.6.7, it can be seen Method Il is faster than Method | when a low Hamming weight
exponent is generated. Utilizing Method I, the derivatior{rof- 1)? mod (¢ — 1) did not
always achieve a low Hamming weight. However utilizing Method II, the derived exponent
for the half exponentiations was- 1, which is chosen to be a low Hamming weight integer.
Thus, a speed improvement of Method Il was obtained on both half exponentiations.

Though Method Il is faster than Method | when utilizing low Hamming weight exponents,
the security of this system can be easily compromised. This security risk is shown in the

Sectiorn6.8.5

Method Ill chose the exponent such that= ng + r wherebyn had to odd. For the

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 116
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

most efficient generation of, n was chosen as 3. Thus, Fi§.8 shows the timing results
for Method IIl wherebyd = 3¢ + r. The Method IlI's derived exponents, i.é: + 3) and
4r + 3, are approximately half the size of exponént— 1)? and similar in bit-length to
r + 1 that are created by Method I. Thus, the times shown in Bi§ are better than those
obtained in Figl6.6 by 25%.

One drawback of the proposed methods is that the encryption speed has decreased due to
a much larger public exponent Althoughe is much larger than what is conventionally
used (i.ee = 65537), it is assumed the encryption is done by faster processors, whereas the

decryption is done on applications with limited resources i.e. smart cards.

Choosing the decryption exponent poses certain security risks. These risks are analyzed in
the following subsections.

6.8.2 Simple Factoring Attack on the Modulus

There is a simple algorithm for factoring the modulus when the difference between the two

prime factors is small. Consider the following identity:

(152) = (55

The term((q + p)/2)? can be found in a linear search through all the perfect squares,
starting from the modulus = pq. The correct square is found when the difference between
the square and the modulus is itself a perfect square. Once the two (ierms)/2 and

(¢ — p)/2 have been found, it is easy to factor the modulus.

Suppose the difference between the two prime factors, i.ep + r = ¢ is chosen to
be a 64-bit number. Then the exhaustive linear search to find the required perfect squares

has the computational complexity 6f(25%).

6.8.3 Wiener’s Attack on Short Decryption Exponents

Wiener has previously considered the situation when the decryption exponent for RSA is
chosen too "small”6C]. We give a brief review of his attack. One tries to fiddknowing

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 117
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

that
de =1 mod (lem(p — 1)(q — 1)) (6.35)

whene andn = pq are known. Of course, neithgror ¢ are known. Expressing

de:1—1—%(1)—1)((]—1):1+%(n—p—q—1) (6.36)

wherek andh are integers witlged(k, h) = 1. Now divide dydn:

k e k(1 1 1 1
— = -4+ -==) - — 6.37
hd n hd (p * q n) ()
If r is small, therp andq are not far fromy/n. If d is too small (of the order of1, k, h andd
can be recovered frorfr, which is continued fraction approximation of the known number

<. However, in our case, the decryption exponent will not be small, and so Wiener’s attack

will not be possible.

6.8.4 Fermat and Lehman Attacks

The small difference betweenand g is often attacked by factoring algorithms. Namely,
the Fermat factoring technique and Lehman attacks may be applied. However, the question
remains how small may the difference between the primes be in order to guarantee security

against these attacks.

The ANSI X9.31 standard6f] defines a method for digital signature and verification
of message using reversible public key cryptosystems with message recovery, i.e. RSA. The
standard provides criteria for the generation of public and private keys required for secure

use of the algorithm.

The standard states that in order to prevent Fermat factoring and Lehman attacks, the
difference betweep andg must be larger thaa*'2. The mathematical details of this can be

read in [LO€] and its applications ir107. Hencer should have a length of at least 412-bits.

6.8.5 Security Risk of Method Il

At first glance Method Il seems to provide secure decryption, however closer examination

of the decryption exponemtsuggests otherwise. From E6.22the decryption exponent

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 118
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

can be expressed in termsroés follows:

d = mmod ¢(m)
= p-qmod (p—1)(¢g—1)
= p-(¢—1+1)mod(p—1)(¢—1)

= pmod (¢ —1)
= (r—¢g)mod(¢—1)
= r—1 (6.38)

In order to computé/ = C¢ mod m whereC, m andd = r — 1 is known, it becomes very
easy for an intruder to compute Since(r — 1) is chosen to have a low Hamming weight

(D), the total number of possibilities thétmay be for a-bit number is

2 k!
;] T k=) (6.39)

From Eq. 6.39it is shown the number of possibilities thathas significantly decreased
compared to the possibilities required by a conventional RSA implement&tipn $ince
d is a low Hamming weight integer, it is prone to Hamming weight attacks i.e. Baby-step

Giant-step attacks. Hence this method, though faster, is insufficient for security applications.

6.9 CHAPTER SUMMARY

The chapter gives a brief description of the conventional RSA decryption. Utilizing the
Chinese Remainder Theorem, the RSA decryption performance is dramatically increased.
This chapter describes and implements three novel ways to select the decryption exponent

to further improve the decryption speed.

Method |, implemented for low Hamming weight or small exponents, provided an
improvement on the conventional RSA decryption utilizing the CRT. Method II, although
an improvement on the speed from methods discussed in S&cfiamd Sectiorb.2, was
insecure to be used in security applications. Method IIl, however, described in Séd&ion

employing prime generation that created a smaltovided exceptional timing results. The

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 119
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTER SIX FAST EXPONENT TECHNIQUES

security of the proposed methods were tested against various attacks and can implemented

in various security applications.

By carefully choosing the difference between the two primes that form the modulus,
it is possible to obtain a decryption exponehivhose size can be substantially reduced.
When applying the Chinese Remainder Theorem for the decryption algorithm, this results

in a dramatic reduction of the decryption time.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGeE 120
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

S DAVA DI\

CONCLUSION

"Everything that has a beginning has an end.”

THE ORACLE, Matrix Revolutions

The main objective of this dissertation is to improve the implementation efficiency of widely
used modular exponentiation-based public-key cryptosystems. The execution time of the
these cryptosystems are based on specific mathematical algorithms. These algorithms have
to be optimized for platforms ranging from super-computers to smart cards. It is especially
the lower-end platforms that require algorithms to be efficient and consume as little resources
as possible. Throughout this dissertation specific attention was paid to the properties of these

mathematical algorithms, specifically their performance characteristics.

7.1 ASSESSMENT OF STUDY

In order to demonstrate the improvements recommended by the dissertation on the
implementation efficiency of the public-key cryptosystems, a case study must be undertaken
whereby these improvements can be compared against an industry-standard multi-precision
integer library. MIRACL! was chosen as the case study of this dissertation, though other
libraries such as GMP, LIP and OpenSSL have multiple precision integer arithmetic routines,
due to that fact that all its routines have been thoroughly optimized for speed and efficiency

in terms of standard portable C.

1 The MIRACL library (Multi-precision Integer and Rational Arithmetic C Library) was created by Michael
Scott and consists of well over 100 routines that cover all aspects of multi-precision arithmetic required
for public-key cryptosystems.

121

University of Pretoria etd — Joseph, G (2005)

CHAPTERSEVEN CONCLUSION

Table 7.1 shows a summary of the list of algorithms utilized by an "out-of-the-box”
built MIRACL to perform a modular exponentiation. This table also illustrates the
recommendations of the dissertation for each step introduced i1 Hig.

Table 7.1:Summary of algorithms used by Miracl and Proposed methods

MIRACL Proposed
Multiplication ClassicalllLg] 3 level Karatsuba-Ofman
with Comba[L9]
Reduction Montgomery P1,52] Montgomery P1,52]
Exponentiation 5-bit VLNW 5,6,7-bit CLNW
sliding window(¢* = 2) [22] sliding window 22]

Table7.2 shows a summary of the results obtained by MIRACL as well as the recommended
optimal results for512, 1024, 2048-bit modular exponentiations. The last row of Table
7.2 shows the time required by the respective methods to perfo2t4&-bit modular
multiplication. The last column of Tablé.2 shows the percentage improvement of the
timing results obtained by the proposed method compared to MIRACL.

The results of Table7.2 were obtained on a Pentium Il processor running at 550
MHz with 256 Mbyte main memory under Windows XP Home Edition platform using a
Borland C Builder 6.0 compiler. Fig7.1 shows the speed improvement of the proposed
method compared to MIRACL.

Table 7.2:Summary of results by Miracl and Proposed methods

Exponent(e) MIRACL Proposed Improvement
Bit-size Time #mult Time #mult %
512 444.13ms | 622 | 387.58ms | 609 12.73
1024 827.20ms | 1229 | 759.10ms | 1200 8.23
2048 1729.00ms | 2444 | 1496.85ms | 2365 13.43
Mod. mult. | 941.36us - 758.93 s - 19.37
DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAGE 122

UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERSEVEN CONCLUSION

1800

-= MIRACL -e- Proposed

1600

=
N
(@]
o

1200

1000

800

600

400

PK C exponentiation execution time [ms]

200

512 768 1024 1280 1536 1792 2048
Size of exponent [bits]

Figure 7.1:MIRACL and Proposed methods results

In general, the execution time of public-key cryptosystems used in industry are based on the
MIRACL algorithms shown in Tabl&.1. Thus, depending on the processor and memory
requirements, the optimized method can provide improvements up to 13%.

From the results shown in Tablé.2 it is evident that multiplication is one of the
most important factors influencing performance. Simulation results in Chapbowed

that the Classical multiplication algorithm was slow compared to the Karatsuba-Ofman
algorithm. The dissertation shows that by applying the Karatsuba-Ofman algorithm
recursively to an optimal recursion depth, significant performance gains up to 20% can be
achieved. From the simulation results shown in Chagtat has been have verified that

the Montgomery reduction algorithm provides superior performance over the Classical and

Barrett reduction algorithms.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 123
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERSEVEN CONCLUSION

The speed improvements of the proposed method can be attributed to the fewer number
of modular multiplications required by the chosen exponentiation method. An invaluable
contribution of our dissertation, shown in chaprefFastExponentiationTechniques, describes
the windowing algorithms that utilize different techniques of breaking the exponent structure
into unique windows to compute shorter addition chain sequences. These improvements
are gained by utilizing two sliding-window algorithms, the CLNW and VLNW techniques,
which depends greatly on the exponent, and in particular its weight. The research of these
two sliding-window methods, backed up with mathematical and simulation results, showed

that the optimal choice of the windowing-strategy is the CLNW method.

An alternative approach was investigated to directly find the shortest addition chain
leading to a particular exponent by utilizing a heuristic by Bbal.[91] that approximates

the shortest chain to the exponent. This heuristic, when used in conjunction with a
windowing-strategy, did not produce much better approximations to the shortest addition
chain than the sliding-window exponentiation algorithms. Thus the heuristic, though
it promises significant improvements in theory, finds similar addition chains to the

sliding-window algorithms. In future significant improvements might still be made here.

The main goal of the dissertation was extended even further in Ché@ptdren three

novel approaches were implemented for improving the decryption efficiency of the RSA
algorithm. The three novel methods, by carefully choosing the difference between the two
primes that form the modulus, obtains a decryption exponent whose size can be substantially
reduced. When applying the Chinese Remainder Theorem to the RSA decryption algorithm,
a dramatic reduction of the decryption time is obtained. However these improvements are

done at the expense of some increase in the encryption complexity.

Security tests have shown that Method Il is not secure, and should not be used in practice.
The other two methods were tested against various known attacks, and resisted these
well. Methods | and 1l represent a noteworthy contribution to the field of cryptography
and provides up to a 45% improvement on the decryption speed for 1024-bit modular

exponentiation when ANSI X9-31 security considerations are taken into account.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 124
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERSEVEN CONCLUSION

7.2 SJMMARY AND FURTHER RESEARCH

This research has uncovered some areas where further research is required. It would result
in a large improvement in the performance of any exponentiation-based algorithm if the
processes of multiplication and reduction can be combined into a single step. An efficient
algorithm for calculating the shortest addition chain for a given exponent still has to be
found. More work on the security of methods | and Ill can be carried out. These novel
methods represent a whole new family of potential improvements to RSA decryption. More
work can be done on exploring these new opportunities, and finding the optimal combination
of encryption and decryption efficiency. Design and development of suitable hardware
solutions for these mathematical algorithms evaluated in this dissertation is left as a possible
research project.

It can be said that the optimal algorithm performance for modular exponentiation-based
public-key cryptosystems has not been found yet, but our work should be in itself a
contribution to the field of cryptography and serve as a valuable platform for further

research.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGE 125
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[1] P.F. Syverson, “Limitations on design principles for public-key protocols,”
Proceedings of the 1996 IEEE Symposium on Security and Pripac$2—73, 1996.

[2] P.G. Comba, “Exponentiation on the IBM PCBM Systems JournaVol. 29, no. 4,
pp. 526-538, 1990.

[3] C. Kaufman, R.Perlman and M. Specinletwork Security: Private communication
in a public world Prentice Hall, 1995.

[4] ITU-T Recommendation X.800, “Security Architecture For Open Systems
Interconnection For CCITT Applications3/91, Geneval991.

[5] W. Diffie, M.E. Hellman, “New directions in cryptographyEEE Transactions on
Computersvol. IT-22, pp. 644—-654, June 1976.

[6] R.L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystemsCACM, vol. 21, pp. 120-126, 1978.

[7] T. ElGamal, “A public-key cryptosystem and a signature scheme based on
discrete logarithms,IEEE Transactions on Information Thegryol. IT-31, no. 4,
pp. 469-472, 1985.

[8] FIBS 186 Federal Information Processing Standards Publication 186, “Digital
Signature Standard,U.S. Department of Commerce/N.I.S.T., National Technical
Information Servicel994.

[9] P. Rogaway, D. Coppersmith, “A software-optimised encryption algorithm,”
Proceedings of Fast Software Encrypti@p. 56-61, December 1993.

[10] T. Azar, High-Speed Algorithms & Architectures For Number-Theoretic Cryptosys-
tems PhD thesis, Oregon State University, 1997.

[11] G.Joseph, W.T. Penzhorn, “Implementation and design of fast multiplication
techniques for public-key cryptosystems in smart car8&TNAC 2003 Conference
at George, South Africa, 7-10 September 2088 172-175, 2003.

[12] G. Joseph, W.T. Penzhorn, “High-speed algorithms for public-key cryptosystems,”
Proceedings to AFRICON 2004 Conference at Gabarone, Botswana, 16-19 September
2004 vol. 1, pp. 945-952, 2004.

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[13] G. Joseph, W.T. Penzhorn, “High-speed algorithms for public-key cryptosystems in an
e-commerce environmentSATNAC 2004 Conference at Stellenbosch, South Africa,
8-11 September 2008p. 121-126, 2004.

[14] G. Joseph, W.T. Penzhorn, “High-speed Algorithms for the RSA Cryptosystem,”
submitted to IEEE Transactions on Comput@@05.

[15] G. Joseph, W.T. Penzhorn, “Fast RSA decryption methadymitted to South African
Computer Journal (SAC,J2005.

[16] N. Joubert, “The Design, Implementation and Testing of a Fast Exponentiation
Algorithm for RSA,” Internal Report, Department of Electrical, Electronic and
Computer Engineering, University of Pretoria, November 2003.

[17] W.T. Penzhorn, “Fast decryption Algorithms for the RSA cryptosyst&rgteedings
to AFRICON 2004 Conference at Gabarone, Botswana, 16-19 SeptemberaD04
pp. 361-364, 2004.

[18] D.E. Knuth,The Art of Computer Programming - Seminumerical Algorithwas. 2.
Massachusetts: Addision-Wesley, 2 ed., 1981.

[19] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,”
Soviet Physics - Dokladyol. 7, pp. 595-596, 1963.

[20] P.D. Barrett, “Implementing the Rivest Shamir Adleman public-key encryption
algorithm on a standard digital signal processévances in Cryptology - CRYTO
'86 (LNCS 263)pp. 311-323, 1987.

[21] P.L. Montgomery, “Modular multiplication without trial divisionMathematics of
Computationvol. 44, pp. 519-521, 1985.

[22] C.K. Koc, “Analysis of Sliding Window Techniques for Exponentiatio@8mputers
and Mathematics with Applicationgol. 30, no. 10, pp. 17-24, 1995.

[23] J.J. Quisquater, “A digital signature scheme with extended recovery.” preprint, 1995.

[24] B. SchneierApplied Cryptography: Protocols, Algorithms and Source Code .in C
John Wiley and Sons, Second ed., 1996.

[25] A. Menezes, P. van Oorschot, S. Vanstddandbook of Applied Cryptograph RC
Press, First ed., 1997.

[26] S.M. Bellovin, M.Merritt, “Encrypted key exchange: Password-based protocols
secure against Dictionary attack®roceedings of the 1992 IEEE Computer Society
Conference on Research in Security and Privagy 72—84, 1992.

[27] K.C. Goss, “Cryptographic method and apparatus for public key exchange with
authentication,'U.S. Patentt, 956, 863, September 1990.

[28] P. van Oorschot and M. Wiener, “On Diffie-Hellman key agreement with short
exponents,Advances in Cryptology - EUROCRYPT '96 (LNCS 10pp) 332—-343.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 127
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[29] S.C. Pohlig, M.E. Hellman, “An Improved Algorithm for Computing Logarithms
in GF(p) and Its Cryptographic SignificancdEEE Transactions on Information
Theory vol. 24, pp. 106-111, January 1978.

[30] Z. Shmuley, “Composite Diffie-Hellman public-key generating systems are hard to
break,” Technical Report 356, Computer Science Department, Technicon, Haifa,
Israel, February 1985.

[31] K.S. McCurley, “A key distribution system equivalent to factoringburnal of
Cryptographyvol. 1, no. 2, pp. 95-106, 1988.

[32] N. Koblitz, A course in Number Theory and CryptographyGraduate Texts in
Mathematics, Springer-Verlag, 1987.

[33] E. Hughes, “An encrypted key transmission protoc@dvances in Cryptology -
CRYPTO '94 (LNCS 456August 1994.

[34] W. Diffie, P.C. van Oorschot, M.J. Wiener, “Authentication and authenticated key
exchanges,Designs, Codes and Cryptograpiwl. 2, pp. 107-125, 1992.

[35] R.A Rueppel, “Key agreements based on function compositidxgvances in
Cryptology - CRYPTO '88 (LNCS 33@p. 3—-10, 1988.

[36] C.P.Waldvogel, J.L. Massey, “The probability distribution of the Diffie-Hellman key,”
Advances in Cryptology AUSCRYPT '92 (LNCS 7p8) 492-504, 1993.

[37] Y.Yacobi, “A key distribution paradox,’Advances in Cryptology - CRYPTO 90
(LNCS 537)pp. 268-273, 1991.

[38] M.J. Wiener, “Performance comparison of public-key cryptosystemR3A
Laboratories Cryptobytewol. 4(1), pp. 1-5, 1998.

[39] S.Saryazdi, “An extension to ElIGamal public-key cryptosystem with a new signature
scheme,Proceedings of the 1990 Bilkent International Conference on New Trends in
Communication Control and Signal Processipg. 195-198, 1990.

[40] T. Beth, “Efficient Zero-Knowledge scheme for smart cardslVances in Cryptology
- EUROCRYPT '86 (LNCS 341)p. 77-84, 1988.

[41] C.C. Chang, S.J. Hwang, “Cryptographic authentication of passwdPdsgeedings
of the 25th Annual 1991 IEEE International Carnahan Conference on Security
Technologypp. 126—-130, October 1991.

[42] W.J. Jaburek, “A generalisation of EIGamal’s public-key cryptosystédyances in
Cryptology - EUROCRYPTO '8§9p. 23-28, 1990.

[43] D.W. Kravitz, “Digital Signature Algorithm,U.S. Patent no. 5, 231, 668uly 1993.

[44] FIPS 180, “Secure hash functionfederal Information Processing Standards
Publication 180, U.S. Department of Commerce/N.l.S.T National Technical
Information Service, Springfield, VirginidMay 1993.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PAaGE 128
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[45] C.P. Schnorr, “Efficient signature generation by smart cadajinal of Cryptology
vol. 4, no. 3, pp. 161-174, 1991.

[46] D. Naccache, D. M’Raihi, S.Vaudenay, D. Raphaeli, “Can DSA be improved?
Complexity trade-offs with the digital signature standamigdvances in Cryptology
EUROCRYPT '94 (LNCS 95Q)p. 77-85, 1995.

[47] S.M. Yen,Design and computation of public-key cryptosysteRtsD thesis, National
Cheng Hung University, April 1994.

[48] K.S. McCurley, “Open letter from the Sandia National Laboratorieson the DSA/”
N.I.S.T

[49] C.H. Lim, P.J. Lee, “Security of interactive DSA batch verificatioilectronics
Letters vol. 30, pp. 1592-1593, September 1994.

[50] C.K. Koc, “High-speed RSA implementation,” Version 2.0, RSA Laboratories,
November 1994.

[51] J.J. Quisquater, C.Couvreur, “Fast decipherment algorithm for RSA public-key
cryptosystem,Electronics Letterspp. 905-907, October 1982.

[52] S.R. Dusse, B.S. Kaliski , “A cryptographic library for the Motorola DSP 56000,”
Advances in Cryptology - EUROCRYPT '90 (LNCS 4pg) 230-244, 1991.

[53] E.F. Brickell, “Survey of hardware implementations of RSAdvances in Cryptology
CRYPTO '89 (LNCS 435pp. 368-370, 1989.

[54] C. Koc, “RSA Hardware Implementation,” TR-801, RSA Laboratories, 1996.

[55] R.L. Rivest, “RSA chips (Past/Present/Future;tlvances in Cryptology EURO-
CRYPT 84 LNCS(209), Springer-Ver)agp. 159-165, 1984.

[56] J.F. Dhem,Design of an efficient public-key cryptographic library for RISC-based
smart cards PhD thesis, Univerdit Catholique de Louvain, Facaldes Sciences
Appliguées, Laboratoire de Mir&bectronique, Louvain-la-Neuve, Beligique, May
1998.

[57] J. Sauerbrey, angzahl-Modulo-Arithmetikii kryptographische VerfahrenWiesba-
hen: DUV Informatik, Dt. Univ. -Verl., 1993.

[58] G.L. Miller, “Riemann’s hypothesis and tests for primalitygurnal of Computer and
System Sciencegol. 13, pp. 300-317, 1976.

[59] J. Hastad, “Solving simultaneous modular exponentiations of low deg@&&M
Journal of Computingvol. 17, pp. 336-341, 1988.

[60] M.J. Wiener, “Cryptanalysis of short RSA secret exponehEEE Trans. Information
Theory vol. IT-36, no. 3, pp. 553-558, 1990.

[61] B.S. Kaliski, M. Robshaw, “The secure use of RS&fyptoBytespp. 7-13, 1995.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 129
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[62] D. Coppersmith, “Finding a small root of a univariate modular exponentiation,”
Advances in Cryptology EUROCRYPT '96 (LNCS 10@f) 155-165, 1996.

[63] G.I. Davida, “Chosen signature cryptanalysis of the RSA (MIT)
public-key-cryptosystem,” Technical Report TR-CS-82-2, Department of Electrical
Engineering and Computer Science, University of Wisconsin, Milwaukee, WI, 1982.

[64] J.M. DelLaurentis, “A further weakness in the common modulus protocol for the RSA
cryptoalgorithm,”Cryptologia vol. 8, pp. 253-259, 1984.

[65] G.J. Simmons, M.J. Norris, “Preliminary comments on the M.L.T. public-key
cryptosystem,Cryptologia vol. 1, pp. 406—-414, 1977.

[66] R.L. Rivest, R.D. Silverman, “Are 'strong’ primes needed for RSA?.” November
1999.

[67] A. Shamir, “RSA for paranoidsCryptobytesvol. 1, pp. 1-4, 1995.

[68] ISO/IEC 9796, ed.|nformation Technology security techniques - Digital signature
scheme giving message recovgi@eneva, Switzerland), International Organization
for Standardization, First ed., 1991.

[69] ANSI X9.31-1998Digital signatures using reversible public key cryptography for the
finicial service industry (rDSA)American National Standards Institute, 1998.

[70] P.C. van Oorschot, “A comparison of practical public key cryptosystems based on
integer factorization and discrete logarithm&gntempary Cryptology: The Science
of Information Integrity pp. 289-322, 1992.

[71] B.Tuckerman, “The 24th Mersenne Primd&Jtoceedings to National Academy of
Sciencevol. 68, pp. 2319-2330, 1970.

[72] M. Scott, “Comparison of methods for modular exponentiation on 32-bit Intel 80x86
processors.” Informal draft, School of Computer Applications, Dublin City University,
June 1996.

[73] K. Geddes, S. Czapor and G. Labakigorithms for Computer AlgebraKluwer
Academic Publishers, Boston, 1992.

[74] M. Welschenbach, Cryptography in C and C++ Apress Publications,
Springer-Verlag, 2001.

[75] A. Weimerskirch and C.Paar, “Generalizations of the Karatsuba algorithm for efficient
implementations,”

[76] C.K. Koc, C.Hung, “Fast algorithm for modular reductioffEE Proc.: Computers
and Digital Techniquesvol. 145(4), 1998.

[77] A.Bosselaers, R. Govaerts, J. Vandewalle, “Comparison of three modular reductions,”
Advances in Cryptology - Crypto '93 (LNCS 773), Springer-Verlag. 175186,
1994,

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGce 130
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

REFERENCES

[78] H. Morita, C.H. Yang, “A modular multiplication algorithm using lookahead
determination,lIEICE Trans. Fundamentalsol. E76-A, no. 1, 1993.

[79] N. Takagi, “A modular multiplication algorithm with triangle additiong,1th Symp.
on Computer Arithmetic, IEEE Computer Society Pregs 272—-276, 1993.

[80] C.H.Lim, H.S. Hwang, P.J. Lee, “Fast modular reduction with precomputaftvag.
of Korea-Japan Joint Workshop on Information Security and Cryptol@gtober
1998.

[81] C.D. Walter, “Faster modular multiplication by operand scalingfdvances in
Cryptology - CRYPTO '91 (LNCS 576)p. 313-323, 1992,

[82] D. Naccache, D. M'Stilti, “A new modulo computation algorithmRecherche
Operationelle - Operations Research (RAIRO-QOR). 24, pp. 307-313, 1990.

[83] K. Hensel, “Theorie der algebraischen Zahldrgipzig 1908.

[84] M. Shand, J. Vuillemin, “Fast implementation of RSA cryptograpf®r@ceedings of
the 11th IEEE Symposium on Computer Arthimetjc 252—-259, 1993.

[85] J.C. Bajard, L.S. Didier, P. Komerup, “An RNS Montgomery modular multiplication
algorithm,”|IEEE Transaction on Computergol. 47, pp. 766—776, July 1998.

[86] T.Blum, C.Paar, “Montgomery modular exponentiation on reconfigurable hardware,”
14th IEEE Symposium on Computer Arithmgpip. 70—77, 1999.

[87] P. Behrooz, Computer arithmetic algorithms and hardware designsOxford
University Press Inc., 2000.

[88] C.D. Walter, S.E. Elridge, “Hardware implementation of Montgomery modular
multiplication algorithm,”IEEE Trans. Compvol. 42, pp. 693—699, 1993.

[89] D. Naccache, D. M'Raihi, “Montgomery-suitable cryptosystermddgebraic Coding
Lecture Notes in Computer Sciengel. 781, 1994.

[90] C. Koc, T. Acar, B.S. Kaliski, “Analyzing and comparing Montgomery multiplication
algorithms,”IEEE Micro, no. 16, pp. 26—-33, 1996.

[91] J. Bos, M. Coster, “Addition-chain heuristics,Advances in Cryptology -
EUROCRYPT '89 (LNCS 435), Springer-Verlag. 400-407, 1990.

[92] J. Sauerbrey, A. Dietel, “Resource requirements for the application of addition chains
in modulo exponentiation Advances in Cryptology - EUROCRYPT '94 (LNCS 513)
pp. 174-182, 1994.

[93] H. Cohen,A Course in Computational Algebraic Number TheoBpringer Verlag,
Berlin, 1993.

[94] A.G. Thurbur, “Efficient generation of minimal length addition chairf®AM Journal
of Computingvol. 28, no. 4, pp. 1247-1263, 1999.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING Pace 131
UNIVERSITY OF PRETORIA

University of Pretoria etd — Joseph, G (2005)

CHAPTERSEVEN CONCLUSION

[95] P.Downey, B. Leony and R.Sethi, “Computing sequences with addtion chSidgyi
Journal of Computingvol. 3, pp. 638—696, 1981.

[96] N. Kinohiro, H. Yamamoto, “Window and extended window methods for addition
chain and addition-subtraction chainEICE Trans. Fundamentalsvol. E81-A,
pp. 72—-81, January 1998.

[97] N. Kinohiro, H. Yamamoto, “New methods for generating short addition chains,”
IEICE Trans. Fundamentalsol. E83-A, pp. 60—67, January 2000.

[98] N. Kinohiro, H. Yamamoto, “Optimal addition chains classified by Hamming weight,”
IEICE Technical Report ISEC96-74997.

[99] A. Schbnhage, “The lower bound on the length of addition chairidjeoretical
Computer Scienceol. 1, pp. 1-12, 1975.

[100] E.G. Thurbur, “On addtion chairiémn) < {(n) — b and lower bounds fof(r),” Duke
Mathematics Journalol. 40, pp. 907-913, 1973.

[101] E.G. Thurbur, “The Scholz-Braurer problem on addition chaif®gtific Journal
Mathematicsvol. 49, pp. 229-242, 1973.

[102] E.G. Thurbur, “Addition chains and solutions §fn) = [(n) and{(2" — 1) = n +
[(n) — 1,” Discrete Mathematicssol. 16, pp. 279-289, 1976.

[103] A. Brauer, “On addition chainsBull. Mathematics Societyol. 45, pp. 736—739,
1939.

[104] H.L. Garner, “The residue number system3$RE Transactions on Electronic
Computersvol. 8, pp. 140-147, June 1959.

[105] W. Stallings, Cryptography and Network Security Prentice Hall, New Jersey,
Second ed., 1999.

[106] R.D. Silvermanfast generation of random strong RSA primé&se 1998 RSA Data
Security Conference Proceedings, Cryptographers Track, 1998.

[107] B. de Weger, “Cryptanalysis of RSA with small prime differendsgjplicable Algebra
in Engineering Communication and Computing, Springer Venad, 13, pp. 17-28,
2002.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTERENGINEERING PaGeE 132
UNIVERSITY OF PRETORIA

	FRONT
	Title page
	Summary
	Keywords:
	Opsomming
	Sleutelwoorde:
	Dedication
	Acknowledgement
	Contents

	CHAPTER ONE
	1.1 CRYPTOGRAPHIC BACKGROUND
	1.2 MODULAR EXPONENTIATION
	1.3 OBJECTIVES
	1.4 RESEARCH CONTRIBUTION
	1.5 DISSERTATION OUTLINE

	CHAPTER TWO
	2.1 DIFFIE-HELLMAN KEY EXCHANGE
	2.2 THE ELGAMAL ALGORITHM
	2.3 DIGITAL SIGNATURE STANDARD (DSS)
	2.4 THE RSA ALGORITHM
	2.5 CHAPTER SUMMARY

	CHAPTER THREE
	3.1 THE CLASSICAL METHOD
	3.2 THE COMBA METHOD
	3.3 THE KARATSUBA-OFMAN METHOD
	3.4 EXPERIMENTAL RESULTS
	3.5 CHAPTER SUMMARY

	CHAPTER FOUR
	4.1 CLASSICAL REDUCTION
	4.2 BARRETT REDUCTION
	4.3 MONTGOMERY REDUCTION
	4.4 EXPERIMENTAL RESULTS
	4.5 CHAPTER SUMMARY

	CHAPTER FIVE
	5.1 THE CLASSICAL METHOD
	5.2 THE BINARY METHOD
	5.3 THE K-ARY METHOD
	5.4 SLIDING WINDOW METHODS
	5.5 CONSTANT LENGTH NONZERO WINDOWS
	5.6 VARIABLE LENGTH NONZERO WINDOWS
	5.7 ADDITION CHAINS
	5.8 THEORETICAL LIMITS
	5.9 EXPERIMENTAL RESULTS
	5.10 DISCUSSION
	5.11 CHAPTER SUMMARY

	CHAPTER SIX
	6.1 RSA DECRYPTION
	6.2 FAST DECRYPTION USING CRT
	6.3 FAST DECRYPTION BY CHOOSING THE DECRYPTION
	6.4 FAST DECRYPTION BY CHOOSING THE DECRYPTION
	6.5 FAST DECRYPTION BY CHOOSING THE DECRYPTION
	6.6 PRIME GENERATION
	6.7 EXPERIMENTAL RESULTS
	6.8 DISCUSSION
	6.9 CHAPTER SUMMARY

	CHAPTER SEVEN
	7.1 ASSESSMENT OF STUDY
	7.2 SUMMARY AND FURTHER RESEARCH

	REFERENCES

