
THE OPTIMIZATION OF GESTURE

RECOGNITION TECHNIQUES FOR

RESOURCE-CONSTRAINED DEVICES

by

Gerrit Niezen

Submitted in partial fulfillment of the requirements for the degree

Master of Engineering (Computer Engineering)

in the

Faculty of Engineering, the Built Environment and Information

Technology

UNIVERSITY OF PRETORIA

April 2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Summary

THE OPTIMIZATION OF GESTURE RECOGNITION TECHNIQUES

FOR RESOURCE-CONSTRAINED DEVICES

by

Gerrit Niezen

Supervisor: Prof. G.P. Hancke

Department: Electrical, Electronic and Computer Engineering

UNIVERSITY OF PRETORIA

Degree: M.Eng. Computer Engineering

Gesture recognition is becoming increasingly popular as an input mechanism for human-

computer interfaces. The availability of MEMS (Micro-Electromechanical System) 3-axis

linear accelerometers allows for the design of an inexpensive mobile gesture recognition

system. Wearable inertial sensors are a low-cost, low-power solution to recognize gestures

and, more generally, track the movements of a person.

Gesture recognition algorithms have traditionally only been implemented in cases where

ample system resources are available, i.e. on desktop computers with fast processors and

large amounts of memory. In the cases where a gesture recognition algorithm has been

implemented on a resource-constrained device, only the simplest algorithms were imple-

mented to recognize only a small set of gestures.

Current gesture recognition technology can be improved by making algorithms faster,

i

more robust, and more accurate. The most dramatic results in optimization are obtained

by completely changing an algorithm to decrease the number of computations. Algorithms

can also be optimized by profiling or timing the different sections of the algorithm to iden-

tify problem areas.

Gestures have two aspects of signal characteristics that make them difficult to recog-

nize: segmentation ambiguity and spatio-temporal variability. Segmentation ambiguity

refers to not knowing the gesture boundaries, and therefore reference patterns have to be

matched with all possible segments of input signals. Spatio-temporal variability refers to

the fact that each repetition of the same gesture varies dynamically in shape and duration,

even for the same gesturer.

The objective of this study was to evaluate the various gesture recognition algorithms

currently in use, after which the most suitable algorithm was optimized in order to im-

plement it on a mobile device. Gesture recognition techniques studied include hidden

Markov models, artificial neural networks and dynamic time warping. A dataset for eval-

uating the gesture recognition algorithms was gathered using a mobile device’s embedded

accelerometer. The algorithms were evaluated based on computational efficiency, recogni-

tion accuracy and storage efficiency. The optimized algorithm was implemented in a user

application on the mobile device to test the empirical validity of the study.

Keywords: gesture recognition, linear accelerometer, neural networks, hidden Markov

models, dynamic time warping, mobile devices, optimization, human-computer interfaces,

wearable computing

ii

Opsomming

DIE OPTIMALISERING VAN GEBAARHERKENNINGSTEGNIEKE VIR

HULPBRON-BEPERKTE TOESTELLE

deur

Gerrit Niezen

Studieleier: Prof. G.P. Hancke

Departement: Elektriese, Elektroniese en Rekenaaringenieurswese

UNIVERSITEIT VAN PRETORIA

Degree: M.Ing. Rekenaaringenieurswese

Gebaarherkenning is besig om meer en meer populêr te word as ’n inset-meganisme vir

mens-rekenaar koppelvlakke. Die beskikbaarheid van MEMS (Mikro-elektromeganiese

Stelsel) 3-as lineêre versnellingsmeters maak dit moontlik om ’n goedkoop draagbare

gebaarherkenningstelsel te ontwerp. Draagbare inersie-sensors is ’n goedkoop, lae krag-

verbruiksoplossing om gebare te herken en in die algemeen, die bewegings van ’n persoon

te kan bespeur.

Gebaarherkenningsalgoritmes is tradisioneel net gëımplementeer in gevalle waar volop

stelselhulpbronne beskikbaar is, d.w.s. op tafelrekenaars met vinnige verwerkers en groot

hoeveelhede geheue. In die gevalle waar ’n gebaarherkenningstelsel op ’n hulpbron-beperkte

toestel gëımplementeer is, is net die eenvoudigste algoritmes gebruik om net ’n klein ho-

eveelheid gebare te herken.

iii

Huidige gebaarherkenningstegnologie kan verbeter word deur die algoritmes vinniger, meer

robuus en meer akkuraat te maak. Die mees dramatiese resultate in optimalisering kan

verkry word deur die algoritme heeltemal te verander om die hoeveelheid bewerkings te

verminder. Algoritmes kan ook geoptimaliseer word deur die profielsamestelling of die

tydmeting van die verskillende onderafdelings van die algoritme te bepaal, om moontlike

probleemareas te identifiseer.

Gebare beskik oor twee aspekte van sein-karakteristieke wat hulle moeilik maak om te

kan herken: segmentasie-dubbelsinnigheid en tydruimtelike veranderlikheid. Segmentasie-

dubbelsinnigheid verwys daarna om nie te weet waar die gebaar se grense is nie en daarom

moet verwysingspatrone met elke moontlike segment van die insetseine gepas word. Tyd-

ruimtelike veranderlikheid verwys na die feit dat elke herhaling van dieselfde gebaar di-

namies verskil in vorm en duur, selfs as dit dieselfde persoon is wat die gebaar uitvoer.

Die doel van hierdie studie was om die verskillende gebaarherkenningsalgoritmes wat

huidiglik in gebruik is te evalueer. Daarna is die mees geskikte algoritme geoptimaliseer

om dit op ’n draagbare toestel te implementeer. Gebaarherkenningstegnieke wat bestudeer

is, sluit verskuilde Markov-modelle, kunsmatige neurale netwerke en dinamiese tydsver-

buiging in. ’n Datastel om die gebaarherkenningsalgoritmes te evalueer is versamel deur

van ’n draagbare toestel se ingebedde versnellingsmeter gebruik te maak. Die algoritmes

is geëvalueer op grond van hulle berekeningsdoeltreffendheid, herkenningsdoeltreffendheid

asook bergingsdoeltreffendheid. Die geoptimaliseerde algoritme is in ’n gebruikerstoepass-

ing gëımplementeer op die draagbare toestel om die empiriese geldigheid van die studie

te toets.

Sleutelwoorde: gebaarherkenning, lineêre versnellingsmeters, neurale netwerke, ver-

skuilde Markov-modelle, dinamiese tydsverbuiging, draagbare toestelle, optimalisering,

mens-rekenaar koppelvlak, draagbare rekenaarstelsels

iv

Acknowledgements

I would like to thank Professor G.P. Hancke, who kept me motivated to complete my

studies and allowed me the opportunity to study under him.

A special thanks to my parents who supported me throughout my studies and provided

the necessary encouragement. I would also like to thank my girlfriend, Lize, who had to

cope with me during the more difficult times. I also thank all my friends, including my

brother Riaan, who provided support and guidance when needed.

I would like to thank Tracy Westeyn at the Georgia University of Technology, who helped

me to master the gesture recognition toolkit they developed.

I would like to give my deepest thanks to God - I would not be able to do anything

without Him.

v

Contents

1 Introduction 1

1.1 Overview of current literature . 3

1.2 Research problem and objectives . 5

1.3 Research design and methodology . 7

1.4 Contribution . 9

1.5 Challenges . 10

2 Pattern recognition 11

2.1 Background on pattern recognition . 11

2.2 Preprocessing . 13

2.2.1 Peak-based feature extraction . 14

2.2.2 Feature extraction method for the ReachMedia system 15

2.2.3 Principal component analysis (PCA) and wavelet transforms 15

2.3 Classifiers . 17

2.4 Current implementations . 17

3 Designing a gesture recognition system 24

3.1 Bayesian networks . 24

3.2 Neural networks . 26

3.3 Hidden Markov models . 29

3.4 Support vector machines . 31

3.5 k-Nearest neighbours . 31

vi

3.6 Dynamic time warping . 32

4 Implementation 33

4.1 Gathering of sensor data . 33

4.2 Hidden Markov model . 36

4.2.1 Preprocessing . 36

4.2.2 The algorithm . 37

4.3 Neural network . 38

4.3.1 Preprocessing . 38

4.3.2 The algorithm . 41

4.4 Dynamic time warping . 43

4.4.1 Preprocessing . 43

4.4.2 The algorithm . 43

5 Optimizing gesture recognition algorithms 49

5.1 Floating point conversion . 50

5.2 Optimization considerations . 51

5.3 Algorithmic optimization . 54

5.3.1 Hidden Markov models . 54

5.3.2 Neural networks . 54

5.4 Performance measurement . 55

5.5 Other optimization techniques . 56

6 Results 57

6.1 Comparing the gesture recognition algorithms 57

6.1.1 Hidden Markov model . 57

6.1.2 Neural network . 59

6.1.3 Dynamic time warping . 59

6.1.4 Measuring execution time . 60

6.2 Profiling the gesture recognition algorithm on the mobile device 64

vii

6.3 Porting the gesture recognition algorithm to Symbian OS 65

6.4 Optimizing the gesture recognition algorithm on the mobile device 66

6.5 Implementation of a user application utilizing gesture recognition on a mo-

bile device . 70

7 Conclusion 73

7.1 Summary of the work . 73

7.2 Critical evaluation of own work . 74

7.3 Future work . 75

viii

List of Abbreviations

ANN Artificial Neural Network

API Application Programming Interface

AR Auto-Regressive

ASCII American Standard Code for Information Interchange

BN Bayesian Network

CAD Computer Aided Design

CTRNN Continuous Time Recurrent Neural Network

CPU Central Processing Unit

DAG Directed Acyclic Graph

DCE Dead Code Elimination

DTW Dynamic Time Warping

EM Expectation-Maximization

FANN Fast Artificial Neural Network

FFT Fast Fourier Transform

FP Feature Pack

FPU Floating Point Unit

FSM Finite State Machine

FWL Fractional Word-Length

GCCE GNU Compiler Collection for Embedded

GT2K Georgia Tech Gesture recognition Toolkit

HCI Human Computer Interface

HMM Hidden Markov Model

HPF High Pass Filter

HTK Hidden Markov Model Toolkit

IDE Integrated Development Environment

IIR Infinite Impulse Response

IWL Integer Word-Length

ix

LPF Low Pass Filter

MEMS Micro-Electromechanical Systems

MIPS Million Instructions Per Second

PCA Principal Component Analysis

PDA Personal Digital Assistant

POSIX Portable Operating System Interface

RAM Random Access Memory

RBF Radial Basis Function

RFID Radio Frequency Identification

RNN Recurrent Neural Network

RPROP Resilient Backpropagation

SBS Sequential Backward Selection

SDK Software Development Kit

SFS Sequential Forward Selection

SOM Self-Organizing Map

SPG Self-Propelled Gun

SVM Support Vector Machine

VQ Vector Quantization

x

Chapter 1

Introduction

People are highly skilled in using gestures to communicate, yet few applications let them

use gestures to control objects in the real world [1]. Using free-hand gestures allows the

user to interact directly with an object in a natural way that is easy to learn. It allows for

higher power of expression, with a single gesture being used to specify both a command

and its parameters. In [2] it is argued that the most interesting devices will be those that

integrate enough processing power to perform the software functions of gesture recogni-

tion and matching on the device itself.

While some research projects [3, 4, 5] do collect gesture data wirelessly using small sensor

nodes, gesture recognition is still performed on a desktop computer. Gesture recognition

algorithms have large processing and memory requirements that can usually not be per-

formed on a resource-constrained device such as a microcontroller.

The most popular technique for recognizing gestures is by using visual gesture data

from a camera-based sensor. This method is fairly precise, but also the most demand-

ing in terms of setting up the infrastructure, maintaining the hardware and algorithm

complexity [19]. This has consequences for the applicability of such systems: motion

capture and tracking platforms are rarely used beyond CAD animation or medical pur-

poses. Image-based gesture recognition techniques have resource demands that can make

1

Chapter 1 Introduction

gesture recognition particularly difficult on PDAs and other resource-constrained devices

[6]. The requirements for pre-positioned cameras and good lighting conditions make this

approach unsuitable for mobile systems [4].

Other options include magnetometers that can be used to determine the orientation of a

device, but they are prone to noise generated by electrical equipment such as televisions,

speakers and mobile phones. Gyroscopes, or angular rate sensors, can prove costly when

implemented on the three orthogonal axes, i.e. one sensor per axis.

The availability of MEMS (Micro-Electromechanical System) 3-axis linear accelerome-

ters allows for the design of an inexpensive mobile gesture recognition system. A single

integrated tri-axial accelerometer provides better accuracy than traditional orthogonally

mounted accelerometers, and reduces re-calibration frequency [5]. Wearable inertial sen-

sors are a low-cost, low-power solution to track gestures and, more generally, movements

of a person.

By utilizing accelerometer-based gesture recognition techniques and optimizing the ges-

ture recognition algorithms for resource-constrained devices, truly mobile applications in

the field of Human-Computer Interaction (HCI) can be created by performing gesture

recognition on-board a mobile device. Users will be able to manipulate objects on the

mobile device directly using hand gestures, or use gestures to issue specific commands [1].

Sensor-based techniques have the advantage that computationally intensive calculations

are not required for accurate movement information as measurements are directly provided

by the sensors. Many researchers working with image-based sensors argue that cameras

are unobtrusive compared to the often cumbersome sensor devices. Sensor-based tech-

niques, however, have the advantage in that they can be used in much less constrained

conditions and are not reliant on lighting conditions or camera calibration [27].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2

Chapter 1 Introduction

1.1 Overview of current literature

Gesture recognition techniques can be defined into two classes: discrete gesture recog-

nition and continuous gesture recognition. Discrete gesture recognition is performed one

gesture at a time, while continuous gesture recognition is performed on a sequence of ges-

tures within a contiguous block of data [3]. Discrete gesture recognition uses an explicit

command from the user to indicate the start and stop of the gesture, e.g. with a but-

ton. With continuous gesture recognition, the recognition is performed on a continuous

flow of gestural input data [7].

Classical Bayes decision theory links a recognition task to the problem of distribution

estimation. For pattern recognition, the approach is to do statistical pattern classification

based on a discriminant function. For a given family of discriminant functions, optimal

classifier/recognizer design involves finding a set of parameters which minimize the em-

pirical pattern recognition error rate [8].

A classic gesture recognition system matches a sequence of hand positions over time to a

number of prototype gesture sequences, each of which are learned from a set of examples

[9]. Dynamic time warping is one technique that can be used to handle variations in the

temporal behaviour of a gesture, i.e. the variation in the time it takes to perform the same

gesture.

The basic tool for recognizing sequences of variable length is the Hidden Markov Model

(HMM). HMMs have been successfully applied to both speech recognition and visual ges-

ture recognition. Sequential data, as found in accelerometer-based gesture data, arise in

other real world applications such as speech recognition and on-line handwriting recog-

nition. Sequential pattern recognition has, therefore, become a very important topic in

pattern recognition. HMMs have been a popular statistical tool for modelling and recog-

nizing sequential data, particularly speech data. HMMs are probabilistic models used to

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

Chapter 1 Introduction

represent non-deterministic processes in a partially observable domain, and are defined

over a set of states, transitions, and observations [3]. The gesture recognition task corre-

sponds to what is known as the evaluation problem, i.e. given the observation sequences

and a model, what is the probability that the observed sequence was generated by the

model? This is usually solved using the forward-backward algorithm, but the Viterbi

algorithm can be used instead. During the training phase known examples of the gestures

are used to estimate the HMM parameters. This is known as the estimation problem

and is solved by the Baum-Welch reestimation procedure, which is computationally in-

tensive. The Baum-Welch form of the expectation-maximization (EM) algorithm is used

to update the parameters such that the probability that the HMM would produce the

training set is maximized [9].

A Bayesian classifier is another technique that can be used for gesture recognition. Bayesian

classifiers assign the most likely class to a given example described by its feature vector. A

näıve Bayesian classifier is a greatly simplified version of the classical Bayes classifier, as-

suming that features are independent given class, that is P (X|C) =
∏n

i=1 P (Xi|C), where

X = (X1, . . . , Xn) is a feature vector and C is a class. The advantages of the näıve

Bayes classifier are computational efficiency, simple implementation and reliability. Un-

fortunately, extracting the features from the raw sensor data is computationally expensive

and increases the amount of preprocessing time required.

The Kalman filer is an efficient recursive filter which estimates the state of a dynamic

system from a series of incomplete and noisy measurements. They are commonly used

in control theory and control systems engineering e.g. to provide information about the

position and velocity of an object given only a sequence of observations of its position,

each of which includes some error. Kalman filters can be compared to a HMM where the

hidden states are continuous, as opposed to a HMM’s discrete hidden states.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

Chapter 1 Introduction

1.2 Research problem and objectives

Gesture recognition algorithms have traditionally only been implemented in cases where

ample system resources are available, i.e. on desktop computers with fast processors and

large amounts of memory. In the cases where a gesture recognition has been implemented

on a resource-constrained device, only the simplest algorithms were considered and im-

plemented to recognize only a small set of gestures; for example in [7], only three different

gestures were recognised.

A resource-constrained device can be defined as a device with a microprocessor having

a low memory footprint, small program memory and low operating frequency. Resource-

constrained devices usually do not have a floating point unit (FPU) and can therefore only

perform integer mathematical operations. If a hardware multiplier is not available, multi-

plication routines have to be implemented in software. The device used in this study was

the Nokia N95 cell phone. While usually not regarded as a resource-constrained device, it

does have the same limitations as other resource-constrained devices, i.e. limited amount

of memory, limited processing power and a small stack and heap size. The objective was

to optimize the gesture recognition algorithm such that it only requires a small amount

of the device’s resources. The algorithm may then be used as a user interface to a larger

piece of software that will require the majority of the device’s resources.

For a mobile device, the amount of power consumed during operation is of utmost im-

portance. Vision-based algorithms require a camera-based sensor which is deemed power-

hungry and resource-intensive. Inertial sensors, such as accelerometers and gyroscopes,

provide a low-cost, low-power alternative for wearable application where energy resources

are at a minimum. In the case of camera-based computer vision algorithms, the necessary

image processing can be slow, which creates unacceptable latency for fast-moving video

games and other applications [6]. Vision-based methods can also be expensive, and the

sensor methods employed are restricted when used outside; whether by light levels, up-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

Chapter 1 Introduction

date rates, or the need for an external source [4]. Vision-based gesture recognition does

not work when the line of sight is obstructed, and it is unsuitable for mobile or wearable

applications [17].

A user must know the set of gestures that a system recognizes and gestures requiring

high precision over a long period of time can cause fatigue. Therefore the gestures must

be designed to be simple, natural and consistent. When inertial sensing is used, the lack

of an absolute reference frame makes it impossible to track orientation relative to a fixed

frame for longer than approximately five seconds [2]. Fortunately, the acceleration vectors

can be used directly as input to the gesture recognition algorithm and tracking the exact

orientation is not necessary. This simplifies the calibration procedure to setting the initial

values of the sensor to zero, when the sensor is in a static state.

Gestures have two aspects of signal characteristics that make them difficult to recog-

nize: segmentation ambiguity and spatio-temporal variability [10]. Segmentation ambigu-

ity refers to not knowing the gesture boundaries, and therefore reference patterns have to

be matched with all possible segments of input signals. Spatio-temporal variability refers

to the fact that each repetition of the same gesture varies dynamically in shape and du-

ration, even for the same gesturer.

The research objective of this study was to optimize a selected gesture recognition al-

gorithm for a resource-constrained device. The various gesture recognition algorithms

currently available were studied and evaluated, after which the most suitable algorithm

was optimized and implemented on a resource-constrained device.

For this study, the following gesture recognition techniques (as described in chapter 4)

were studied and evaluated:

• Hidden Markov Models (HMMs),

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

Chapter 1 Introduction

• Artificial Neural networks (ANNs), and

• Dynamic Time Warping (DTW).

1.3 Research design and methodology

The preferred research design for studies in engineering is theory-, model- or method-

building, -testing and -application empirical research [11]. Related research designs that

can also be considered are statistical modelling and computer simulation studies. Although

these could be complete studies in their own right, it is preferred that they be used as

data-gathering and data-analysis techniques for theory-, model- or method-building, -

testing and -application studies.

For this study, a computer simulation study approach was initially used to evaluate and

study the different gesture recognition algorithms. In the field of gesture recognition, the

number of publicly available datasets based on accelerometer-based gesture data is very

limited. The AcceleGlove dataset distributed with the Georgia Tech Gesture Recognition

Toolkit [3] is one example of such a dataset, but consists of data obtained from multi-

ple accelerometers, deemed too complex for this study. The dataset used in this study

was gathered by making use of the Nokia N95 cell phone’s built-in accelerometer. For

further information on the gathering of sensor data for the dataset, see section 4.1. The

dataset was used to study the performance and memory requirements of the different ges-

ture recognition algorithms. While a gesture recognition algorithm is in itself a statistical

modelling approach, the outputs of the computer simulation was used to obtain empirical

data during performance analysis.

For a computer simulation study it has to be ensured that the quality of the data used

and the complexity of the different gestures will still allow for a good specification of the

model. Assumptions made during the design of the model must be plausible and correctly

specified. For this study, the software packages that were used as a starting point for

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

7

Chapter 1 Introduction

Table 1.1: Software packages used

Algorithm Software package

Hidden Markov Model Georgia Tech Gesture Recognition Toolkit v. 0.1a [51]

Artificial Neural Network Fast Artificial Neural Network v. 2.0.0 [50]

Dynamic Time Warping Custom source code developed at Oxford University [46]

developing the gesture recognition algorithms is shown in table 1.1.

Timers and profilers are tools used to measure performance and determine if optimiza-

tions help or hinder performance [12]. A timer is a function, subroutine or program that

can be used to return the amount of time spent in a section of code. It is important to

make multiple measurements to ensure that results are consistent. A profiler is a tool that

automatically inserts timer calls into applications. By using an profiler on an application,

information is generated that summarizes timings about subroutines, functions, or even

loops that were used. For further information on timers and profilers, see section 5.4.

Timers and profilers can be used to evaluate and analyze the different gesture recogni-

tion algorithms and gain deeper understanding into the performance and memory issues

associated with these algorithms. Possible problem areas in the design of the different

algorithms can be identified, and it can be determined which algorithms can possibly be

implemented on a resource-constrained device.

The results of the computer simulation study was used to construct a model of a ges-

ture recognition algorithm that is optimized for a resource-constrained device. This was

done by selecting the algorithm that performed optimally during the computer simulation

study, and optimizing each section of the algorithm with regards to processor and memory

requirements. For this study a new model will not be constructed, but the existing theory

and models will be refined.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

8

Chapter 1 Introduction

To optimize the algorithm, both processor and memory requirements were studied. This

was necessary as code with a larger memory footprint can sometimes be executed faster

than code with a small memory footprint. Code executed sequentially is usually faster

than loop-based code. As an example, consider the case where we want to multiply a vari-

able with a constant. We can partially evaluate the multiplication routine, and generate a

straight line code that multiplies by just that constant. Partial evaluation creates a tradeoff

between the speed of execution, and the amount of memory required for the program [13].

The generated model was then used to implement an optimized gesture recognition al-

gorithm on a typical real world resource-constrained device to test the feasibility of the

study. This was done to ensure that no over-abstract formulations were made during the

construction of the model and to empirically validate the model [14]. For details of the

user application implemented on the device, see section 6.5.

1.4 Contribution

Current gesture recognition technology can be improved by making algorithms faster,

more robust, and more accurate [6]. The most dramatic results in optimization are ob-

tained by completely changing an algorithm to decrease the number of computations

[12]. Algorithms can also be optimized through techniques such as partial evaluation and

by profiling or timing the different sections of the algorithm to identify problem areas.

The main contribution of this study is to analyze and evaluate the different gesture

recognition algorithms, to choose the one most appropriate to implement on a resource-

constrained device, and then to optimize the algorithm with regards to performance and

memory requirements. This was carried out through computer simulation studies and by

refining a model of a gesture recognition algorithm that can be optimized for a resource-

constrained device. The algorithm was then implemented on a resource-constrained device

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

Chapter 1 Introduction

to empirically verify the model.

1.5 Challenges

The main difficulty when translating raw sensor data into recognized gestures, is the

presence of noise. [18] differentiates between three types of noise:

• Sensor noise - distortion of what the actual source looks like in the signal that the

sensor produces

• Sensor distance noise - distance from the actual sensor to the body part making the

gesture

• Time-domain noise - sampling of sensor data may fluctuate in time, resulting in

noise in the time dimension

The algorithms that process the acceleration data become slower and less effective as

the number of accelerometers increases. This problem is generally known as the “curse

of dimensionality” and is a common obstacle for multi-sensor systems [18]. In this study

only a single-sensor system is considered.

The difficulty of implementing the algorithm on a resource-constrained device is another

challenge. First the source code has to be ported to the device’s operating system, while

keeping in mind the limited amount of resources on the device, as well as the small stack

and heap size.

Accurately comparing the different gesture recognition algorithms presents another dif-

ficulty. It has to be ensured that the testing environment is the same for the different

algorithms being profiled. All the algorithms have to be written in the same program-

ming language, to ensure that performance differences cannot be attributed to compiler

or language differences. For this study, all the algorithms were implemented in the C

programming language.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

10

Chapter 2

Pattern recognition

2.1 Background on pattern recognition

According to [15], when designing a recognition system careful attention has to be paid

to pattern representation, feature extraction and selection, classifier design and learning,

selection of training and test samples, and performance evaluation. Pattern recognition

can be one of two tasks [60]:

• supervised classification, in which the input pattern is identified as a member of a

predefined class, and

• unsupervised classification, in which the pattern is assigned to a hitherto unknown

class.

For this study only supervised classification is considered, as gesture recognition allows

for the identification of predefined classes. The design of a pattern recognition system

involves the following aspects:

• data acquisition and preprocessing

• data representation

• decision making

11

Chapter 2 Pattern recognition

A well-defined and sufficiently constrained recognition problem (small intraclass variations

and large interclass variations) will lead to a compact pattern recognition representation

and a simple decision making strategy. It is therefore of importance that the gestures to

be recognized are sufficiently different from one another in order to create large interclass

variations.

According to [15], the four best known approaches to pattern recognition are:

• template matching

• statistical classification

• syntactic or structural matching

• neural networks

With template matching, the pattern to be recognized is matched against a stored tem-

plate, while taking into account any temporal or spatial differences. With statistical clas-

sification, each pattern is represented as features in an n-dimensional space. The decision

boundaries are determined by the probability distributions of the patterns. The goal is

to have pattern vectors occupy compact and disjoint regions in the n-dimensional feature

space.

With the syntactic approach, patterns are viewed as being composed of simple sub pat-

terns, which are themselves built from yet simpler sub patterns. Neural networks consist

of a network of weighted directed graphs in which the nodes are artificial neurons and

directed edges (with weights) are connections between neuron inputs and neuron out-

puts. The most commonly used family of neural networks is the feed-forward network,

which includes the multilayer perceptron and Radial-Basis Function (RBF) networks.

Another popular network is the Self-Organizing Map (SOM), or Kohonen-Network, which

is used mainly for unsupervised learning. Most of the well-known neural network models

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

12

Chapter 2 Pattern recognition

are implicitly equivalent or similar to classical statistical pattern recognition methods. For

example, a multilayer perceptron neural network can be viewed as nonlinear discriminant

analysis.

2.2 Preprocessing

The role of preprocessing is to segment the pattern of interest from the background,

remove noise, normalize the pattern, and any other operation which will contribute in

defining a compact representation of the pattern [15]. By using a limited feature set that

still contains all the variations in the data, the pattern representation and its classifier

are simplified. This results in a faster classifier, which uses less memory. Unfortunately,

performing preprocessing to determine a compact feature set is computationally expensive.

In this study the amount of preprocessing done is limited to where absolutely neces-

sary, in order to minimize the amount of computations required. This trade-off between

the computational complexity and the quality of the results should always be evaluated.

The quality of the results is deemed sufficient for this specific type of problem, where the

size of the feature set is compact enough not to require a large amount of preprocessing.

Feature extraction methods determine an appropriate subspace of dimensionality m in

the original feature space of dimensionality d, such that m ≤ d. One of the more popular

linear feature extractors is principal component analysis (PCA) or Karhunen-Loève ex-

pansion. PCA computes the m largest eigenvectors of the d× d covariance matrix of the

n d-dimensional patterns. Since PCA uses the most expressive features (eigenvectors with

the largest eigenvalue), it effectively approximates the data by a linear subspace using the

mean squared error criterion [15].

A feedforward neural network offers an integrated procedure for feature extraction and

classification; the output of each hidden layer may be interpreted as a set of new, often

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

13

Chapter 2 Pattern recognition

nonlinear, features presented to the output layer for classification [16]. SOMs or Kohonen

maps, can also be used for nonlinear feature extraction. When a multilayer feed-forward

network is used for pattern classification, then the node-pruning method simultaneously

determines both the optimal feature subset and the optimal network classifier.

The problem of feature selection is as follows: given a set of d features, select a sub-

set of size m that leads to the smallest classification error. It has been argued that since

feature selection is typically done in an off-line manner, the execution time of a particular

algorithm is not as critical as the optimality of the feature subset it generates [15]. Most

feature selection methods use the classification error of a feature subset to evaluate its

effectiveness. This could be done, for example, by a classifier using the leave-one-out

method of error estimation. Common feature selection methods include Sequential For-

ward Selection (SFS) and Sequential Backward Selection (SBS).

2.2.1 Peak-based feature extraction

Basic statistics, such as the minimum, maximum, average or covariance over a certain

interval make ideal descriptors for acceleration data [18]. Peaks in the signals of the ac-

celerometer signals can be expected to reveal even more than the basic statistics. The

peaks can be detected and characterized as they occur, by making use of an activity re-

gion (defined by thresholding the size and length of a running variance).

Peak-based feature extraction [18] used a two-step algorithm that first detects an area of

activity in the data, and analyzes the peaks per sensor. Unfortunately the time frame for

the area of activity is relatively short, and it is not possible to track peaks over multiple

dimensions. It is deemed more useful for activity recognition, e.g. recognizing whether a

person is sitting, standing or walking.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

14

Chapter 2 Pattern recognition

2.2.2 Feature extraction method for the ReachMedia system

In this subsection the feature extraction method of the ReachMedia system [7], as de-

scribed in section 2.4, is presented. For each gesture with n samples, where each sample

is a vector of length 3, and each element in it represents an axis, 25 features were extracted:

• Length (1) - the number of raw signal vector samples included in the gesture, i.e. n

• Power (2-4) - the energy in each axis is calculated according to Parseval’s theorem,

i.e. P (a) = 1
n

∑n−1
i=0 a2

i

• Cross correlation (5-7) - the pairwise similarity of the signal on two different axes,

as measured using the correlation coefficients that are calculated for a given gesture

as:

r(A, B) =
Cov(A, B)√

V ar(A)
√

V ar(B)
(2.1)

r was calculated for all pairwise combinations of the axes, i.e. xy, xz and yz.

• Inflections (8-25) - the rest of the features are the result of a signal-processing

algorithm designed to find the three most significant inflections in the signal. This

is done by selecting the maximal peaks in the signal.

It is interesting to note that the feature extraction method described for the ReachMe-

dia system also makes use of peak-based feature extraction as described in the previous

subsection.

2.2.3 Principal component analysis (PCA) and wavelet trans-

forms

Mäntyjärvi et al. [23] used principal component analysis (PCA) with wavelet transforms

to generate features, in order to recognize human motion with multiple acceleration sen-

sors. Recognition was done using a multilayer perceptron classifier. PCA is commonly

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

15

Chapter 2 Pattern recognition

used to find features, or interesting directions, in terms of statistical criteria. It can be

seen as an attempt to computationally find such new directions and scales for the sensors

that the signals would be more discriminative.

PCA is a classical linear feature extraction method. It is based on the second order

statistics of the data, in particular the eigenvalue analysis of the covariance matrix [30].

Let x =
[
x1, x2 . . . xn

]T
be an n-dimensional random vector having zero mean. The task is

to find an orthonormal matrix V of size n×k, k ≤ n so that the reduced k-dimensional pro-

jection x′ = Vx retains as much of the variance of x as possible. The matrix V defines the

principal directions of the projection. In practice, the principal directions and components

can be calculated using the eigendecomposition C = EΛET of the sample covariance ma-

trix C = E(xxT). The eigenvalues Λ = diag(λ1, λ2, . . . , λn) determine the variance that

each principal component captures. The n principal components x′ =
[
x′

1, x
′
2 . . . x′

n

]T
are

computed by projecting the original data to the principal directions x′ = ETx [23].

Mäntyjärvi’s study used PCA for whitening or decorrelation of the signals. Whiten-

ing is a procedure where the principal components are scaled to have unit variance

x∗ = Λ−1
2ETx. The data is decorrelated since E(x∗x∗T) = I.

The wavelet transform (WT) divides the original signal into wavelet coefficients c cor-

responding to different frequency content, thus enabling the signal to be analyzed with a

resolution matched to the scale of the coefficient. In Mäntyjärvi’s study, a wavelet trans-

form utilizing a Daubechies mother wavelet order of 8 was used, which was selected for

computational reasons [23].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

16

Chapter 2 Pattern recognition

2.3 Classifiers

The generalization ability of a classifier refers to its performance in classifying test pat-

terns which were not used during the training stage. It is generally accepted that using at

least ten times as many training samples per class as the number of features (n/d > 10)

is a good practice to follow in classifier design [15].

The support vector classifier, or support vector machine (SVM), developed by Vapnik

[52] and his colleagues at AT&T, uses the width of the margin between classes as an

optimization criterion. The empty area around the decision boundary defined by the dis-

tance to the nearest training patterns, called the support vector, define the classification

function.

A classifier is trained during a number of epochs. One epoch means going through the en-

tire training data once. The classification error or simply the error rate, P , is the ultimate

measure of the performance of a classifier. Performance, in this instance, is the ability of

the classifier to correctly classify a pattern into a class, and not its computational per-

formance. The error rate is estimated by dividing all the available data samples into a

training set and a test set. The training and test sets should be sufficiently large in order

to predict future classifier performance, and must be independent. Various methods are

used here, including the leave-one-out method and the cross-validation method.

2.4 Current implementations

Choi et al. [17] used accelerometer data acquired from a mobile phone’s built-in accelerom-

eter. They were able to recognize digits from 1 to 9 and five symbols written in the

air. During their experimental study, they were able to achieve a 97.01% average recog-

nition rate for a set of eleven gestures. The recognition rate was cross-validated from a

data set of 3082 gestures from 100 users. This was done using a BN-based approach, with

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

17

Chapter 2 Pattern recognition

gesture recognition done on a PC connected to the mobile phone.

ReachMedia [7] is a system for providing information about everyday objects. It makes

use of an RFID reader to detect objects that the user is interacting with. Continuous

gesture data is then used as input to interact with the system. Gestures were used for the

project because they can be made quite minimal and therefore socially acceptable, while

retaining ease of use. A discretized Näıve Bayes classifier was used that showed equivalent

results to a HMM approach. A simple axis-by-axis variance window with preset thresh-

olds, introduced by [2], was used to detect when a gesture begins and ends. A 16-sample

window with a start threshold and a stop threshold was used. When the variance of one

ore more axis passed the start variance threshold, the gesture was recorded. Recording

was stopped once the magnitude of all the axes went below the stop variance threshold.

Huang et al. [21] have developed a Mandarin-language speech recognizer that can dis-

tinguish between about 400 000 words, running on a Compaq iPaq 3600 PDA with a

SA-1110 206MHz StrongARM (2.1 MIPS) processor, with a HMM-based classifier. It

takes up about 200KB of memory, and the models and tables take about 2MB. While it

is performing speech recognition it uses an additional 1MB RAM. Nearly all the speech

recognition engines on the market today are based on HMMs, which are used to repre-

sent how phonemes and allophones are pronounced and how fast they are spoken. Neural

network-based engines tend to be better than HMMs for picking out discrete words, but

extensive training is required up front. For recognizing continuous speech, HMMs are

deemed to perform better than neural networks [21].

The Nintendo Wii games console has received a lot of press recently, and is currently one

of the most popular games consoles in the world. It makes use of an accelerometer-based

remote control to generate gesture data that can be used as input to a video game. AiLive

Inc., who develops the gesture recognition technology for the Wii, state that their real

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

Chapter 2 Pattern recognition

challenge was to get it working in real-time using around 5% of a modest CPU and using

no more than a few hundred kilobytes of memory [53]. The feature space was defined

with duration (how long a motion lasts) on the X-axis and maximum amplitude (the

maximum magnitude of the motion sensor data) on a two-dimensional graph. Values are

plotted for measurements in a three-dimensional space. This is similar to other feature

extraction methods, which use peaks in the accelerometer data as features. They use a

technique they call Context Learning to create and evaluate a large collection of nonlinear

separators. Other features for a specific class include the maximum and minimum time

for a gesture, the initial orientation of the controller and the initial impulse (e.g. going

up, level or going down).

Researchers at Georgia Tech University [22] have developed a system using a vision-

based sensor and multiple accelerometers for mobile sign language recognition. The ac-

celerometer feature vector consist of x, y and z values for accelerometers on the left wrist,

right wrist and torso. Gestures in the vocabulary were represented by two different HMM

topologies. Short words (e.g. my, me, talk, exit, calibrate) were represented with a 5-state

left-to-right HMM with self-transitions and 1 skip-state. Longer words (e.g. computer,

helps) were represented with a 10-state left-to-right HMM with self-transition and 2 skip-

states. They made use of the leave-one-out testing mode and collected statistics for the

training and testing runs. Gesture recognition was performed on a PC and not on a

resource-constrained device.

Pylvänäinen has employed an accelerometer-based gesture recognition algorithm using

continuous HMMs, with movements recorded using a 3D accelerometer embedded in a

handheld device [25]. The data was recorded on a mobile device running the Symbian

platform, but gesture recognition was performed on a desktop PC. The data polling was

timed using Symbian methods and was subject to variability due to the multitasking na-

ture of the operating system. The actual sampling rate was approximate and variable, but

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

19

Chapter 2 Pattern recognition

in the neighbourhood of 30Hz. A left-to-right HMM with continuous normal output dis-

tributions was used. The output distributions were assumed to have diagonal covariance

matrices. The performance of the recognizer was tested on a set of 10 gestures, 20 gesture

samples from 7 different persons, resulting in a total of 1400 gesture samples. Every model

for each of the 10 gestures had 8 states. The data was normalized by rotating the data so

the estimate of the gravitational constant, g, is pointing to the negative y-axis. 99.76%

accuracy was obtained with user-independent testing. Pylvänäinen argued that an exten-

sive set of gestures (i.e. more than 10) becomes impractical due to users having to learn

all the different gestures.

Mäntylä et al. made use of a self-organizing Kohonen mapping scheme for recognizing

static gestures, and a HMM used to recognize dynamic gestures. During preprocessing

each vector component was filtered and normalized separately. Low-pass filtering was car-

ried out with a fourth-order IIR Butterworth filter. A 3-dB cut-off frequency of 2.5 Hz

was used for dynamic gestures. The variance of each component was normalized to one,

and the mean to zero [26]. They made use of of the Baum-Welch and Viterbi algorithms

for the training and recognition tasks respectively. Acceleration data was collected at a

sampling rate of 100 Hz and recognition was performed on a laptop PC. They noted the

following factors causing errors when more than one user is involved:

• Dynamical differences (intensive vs. phlegmatic)

• Temporal differences (slow vs. fast)

• Physical dimensions of the testee (length of body and reach of the hands)

• Standing pose of the testee

They did note, however, that temporal variations were handled well by the HMM models.

Westeyn et al. developed a system to recognize mimicked autistic self-stimulatory be-

haviours using HMMs. Data was sampled using three wireless sensors, each with two

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

Chapter 2 Pattern recognition

perpendicularly mounted dual-axis accelerometers, at a rate of 100 Hz. An hour of data

collection produced approximately 36 MB of ASCII text data. They made use of left-to-

right topologies for the HMM models, with self transitions and a single loop back to a

previous state, as well as one allowable skip at each state. At each state, a nine-element

vector, representing the 3-axis readings from each of the three sensors can be observed

[28]. They defined the accuracy of the system as follows:

Accuracy =
N − S −D − I

N
(2.2)

where substitution errors (S) occur when the system incorrectly classifies a behaviour,

insertion errors (I) occur when the system recognizes an instance of a behaviour that did

not occur, deletion errors (D) arise when the system fails to recognize the occurrence of a

behaviour within the stream of data, and N represents the total number of examples. It

should be noted that insertion and deletion errors only occur during continuous recogni-

tion [28].

Bailador et al. made use of continuous time recurrent neural networks (CTRNN) for

real-time gesture recognition [29]. CTRNNs exhibit rich dynamic behaviour that is useful

in gesture recognition, but also have a relatively low computational cost that is required

for real time systems. Accelerometer data was captured on a desktop PC connected to

a tri-axial sensor module via Bluetooth. For these types of neural networks, a global op-

timization of the network parameters using genetic algorithms can be performed. The

gestures were isolated by resting the hand in the same position between gestures. The

gestures used to analyze the performance of the method was also used in this study and

can be seen in figure 4.2 in section 4.1.

Murakami et al. used a discrete-time recurrent neural network for gesture recognition

[35]. Absolute as well as relative hand position were relied on for gesture recognition, re-

quiring an expensive data glove for gesture input. An Elman recurrent neural network was

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

Chapter 2 Pattern recognition

used to process the time-series data. The network architecture makes use of a hidden layer

that feeds back on itself through a context layer. The neural network was trained using

the backpropagation algorithm. The input layer consisted of 16 nodes - 10 for bending

data, 3 for coordinate angles and 3 for positional data. The hidden layer consisted of 150

nodes and the output layer of 10 nodes. Each of the output nodes corresponded to a word

- the node in the output layer with the greatest value was recognized as that specific word.

D. Xu made use of a data glove and a neural network to recognize hand gestures, as

input to a virtual reality based driving training system for a Self-Propelled Gun (SPG)

[36]. A feed-forward neural network can represent an arbitrary functional mapping, so it

is possible to map raw data directly to the required hand gestures. A feed-forward neural

network with a single hidden layer was used to recognize various hand gestures. A back-

propagation method with a variable learning rate was used for training, due to inherent

characteristics like:

• simplicity,

• robustness, and

• minimal memory requirements.

These factors are also very important when selecting a gesture recognition algorithm for

a resource-constrained device. An adaptive learning rate was selected to compensate for

the slow training times associated with back propagation networks. The learning rate was

initially set to be very small, and then dynamically increased every training epoch. If the

error rate increased, the last epoch was discarded and the learning rate decreased.

The number of nodes in the hidden layer was selected empirically. Similar to determining

the learning rate, the number of nodes in the hidden layer was initially set to be small,

and then increased after every epoch, until the network was trained to an acceptable

error level. Unfortunately, the system only recognizes static hand gestures, and dynamic

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

22

Chapter 2 Pattern recognition

gestures were left as future work.

Ko et al. [45] implemented a system to perform context recognition in multisensor systems

using DTW [45]. The systems uses DTW to recognize multimodal sequences of different

lengths, embedded in continuous data streams. Context recognition is the extracting, fus-

ing and converting of relevant data from multiple sensors for situation awareness. The

system was able to recognise multimodal sequences of different lengths generated from

multiple sensors with both discrete and continuous outputs. They found that DTW com-

plexity is linear with respect to the number of dimensions in the data and hence can deal

with high dimensional time varying data.

The implementation that inspired this study was the ReachMedia system developed by

[7], indicating that performing gesture recognition on-board a resource-constrained device

is feasible. The implementations by [22], [25], [26] and [28] all indicated that an HMM is

well suited to accelerometer-based gesture recognition and was consequently included in

the evaluations done in this study. The neural network implementations by [29], [35] and

[36] also indicated that ANNs should form part of the evaluations done in this study. DTW

has not been widely used for gesture recognition in the past, but the context recognition

implementation by [45] showed promising results. It was decided to include DTW as part

of the evaluation to see if it will be feasible to use in a gesture recognition algorithm.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23

Chapter 3

Designing a gesture recognition

system

Designing a real-time gesture recognition system is a complex task that involves many

issues such as algorithm design, processing speed, and system architecture [20]. During

the design phase, simulation tools are used to measure the performance of different algo-

rithm elements and optimize the algorithm to improve processing speed. In the following

sections, the various pattern recognition techniques are considered for designing a gesture

recognition system.

3.1 Bayesian networks

Bayesian networks are directed acyclic graphs (DAGs) where the nodes are random vari-

ables, and certain independence assumptions hold [32]. The arcs in a Bayesian net-

work specify the independence assumptions that must hold between the random vari-

ables. These independence assumptions determine what probability information is re-

quired to specify the probability distribution among the random variables in the net-

work. A causal graph of a Bayesian network is shown in figure 3.1. The nodes denote the

different states, while the arcs are the causal connections. A recognition algorithm based

on Bayesian networks (BNs) has been applied to recognize trajectories on a 2-dimensional

plane [54], by making use of both acceleration and angular velocity signals. Choi et al. sug-

24

Chapter 3 Designing a gesture recognition system

Figure 3.1: Causal graph of a Bayesian network

gested a simple attitude estimation technique to estimate the trajectories of hand signals

by making use of acceleration signals only [17]. It was also found that it is possible to rec-

ognize gestures from a tri-axis accelerometer without making use of trajectory estimation.

Gesture recognition using BN models was implemented by [17] as follows:

• The raw signal is normalized by removing gravity acceleration components and by

rescaling the signal’s amplitudes.

• Feature points in the signal are detected, where feature points are defined as local

minima or local maxima points where the signal values are minimal or maximal

within a predefined time interval. This is done to minimize temporal differences

among different users.

• The normalized feature sequence is matched to gesture models.

• BN-based recognition models are trained with the collected data. The model param-

eters are estimated from the data in the criteria of maximum likelihood estimation

(MLE).

The gesture model is composed of basic primitive models with their dependencies,

where the primitive models represent the portion of sample points between feature points

which have a similar trend. Examples of such trends are monotonic increasing and de-

creasing [17]. Their dependencies are represented by a conditional Gaussian model.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

Chapter 3 Designing a gesture recognition system

3.2 Neural networks

Artificial Neural Networks (ANNs) are mathematical functions and, as such, naturally

take continuous or discrete numeric data as inputs. The standard forms of ANNs should

be presented with the smallest set of inputs that contain relevant information. Although

ANNs have some capability to distinguish relevant from irrelevant inputs, this can only

be done reliably with large volumes of data consisting of thousands of samples [33]. Most

standard forms of ANN cannot cope with missing inputs, and an ANN is usually applied

in such a way that all the required information is always available. ANNs generally fall

into one of two categories:

• those that create a model by memorizing some part of the data they learn from,

• and those that, like the Multilayer Perceptron (MLP), create a model by building

an abstract representation of it.

The former network typically have a high computational efficiency while learning, while

the latter networks tend to have extremely low computational efficiency while learn-

ing. The space required to store the latter ANN is very small, but the storage requirements

of that work by memorizing can be large. As an example of typical storage and compu-

tational requirements, an MLP with six inputs and one output will require less than 1

kilobyte of storage, the execution of six exponential and reciprocal functions to query,

and the execution of perhaps 100 million exponential and reciprocal functions to learn.

A neural network such as an MLP is essentially a complex nonlinear function with a

number of adjustable parameters that can be changed to control its shape. The process of

training the network is one of adjusting its parameters so that the function it represents

takes on a desired shape. Input selection is the most labour-intensive part of developing

a neural network application, and finding a small set of inputs that is rich in relevant

information is crucial to success [39].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

26

Chapter 3 Designing a gesture recognition system

In Mäntyjärvi’s activity recognition study (also described in section 2.2.3) three mul-

tilayer perceptron (MLP) neural networks using backpropagation learning were used for

classification [23]. The MLP networks were three-layer networks consisting of 24 input

neurons, 43 hidden neurons and 4 output neurons. All neurons used logistic scaling func-

tions. The initial parameters set the learning rate to 0.1 and the momentum to 0.1. A

momentum-based weight update was used in training.

Neural networks should be designed to be invariant to various transformations of the

input data. The structure of the neural net can be designed such that its output is always

invariant to certain transformations [24]. The number of required connections will be pro-

hibitively large for implementation on a resource-constrained device. Alternatively, the

neural net can learn all the different transformations by presenting these transformations

during the learning phase. This would require a vast amount of training data during the

learning phase. Another option is to present input features to the neural net which are

invariant to the transformations themselves. By making use of feature extraction methods

the input features can be made invariant to the transformations, for example spatial or

temporal changes.

The main disadvantage of using invariant feature spaces is the need to first calculate

the features before the classifier can be employed [24]. Invariant feature spaces that are

computationally expensive to calculate are problematic for implementation on a resource-

constrained device. Invariant feature spaces which have been used with neural networks

include wedge-ring samples of the magnitude of the Fourier transform, the magnitude of

the Fourier transform in log-polar coordinates and moments [24]. Moments are problem-

atic when there is noise in the system, while Fourier transforms are not invariant to all

possible transformations.

Accelerometer-based gesture recognition is similar in nature to speech recognition. Both

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

Chapter 3 Designing a gesture recognition system

Figure 3.2: Binary Hopfield network architecture

consist of time-series dynamic signals. Traditionally speech recognition algorithms make

use of hidden Markov models, Bayes decision theory, vector quantization (VQ), and auto-

regressive (AR) modelling [30]. It is necessary to investigate these techniques to see if

they can be applied to accelerometer-based gesture recognition as well. A specific type

of neural network, called a recurrent neural network (RNN) has been used in the speech

recognition field, and is suited to the modelling of the temporal structure of accelerometer

signals. A continuous-time RNN gesture recognition implementation is described in sec-

tion 2.4. With an HMM the temporal information of the signal is memorized using a state

model, whereas with a RNN the information is modelled in a data-recurrent structure.

A Hopfield network is a type of recurrent neural network that is defined as a feedback

dynamical system. A Hopfield network consists of an input vector, a weight matrix, a

threshold node and an output vector. A recurrent network is considered stable when it

converges to a fixed point. When a fixed point is input into a dynamical system, the same

point results as output. Hopfield networks are considered stable, but usually there will

be more than one fixed point. The architecture of a binary Hopfield network is shown in

figure 3.2. Depending on the input vector, the Hopfield network can give as output one

of the fixed points in the output vector [31].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

28

Chapter 3 Designing a gesture recognition system

One must always consider how much data needs to be collected. In practice, provided

that the number of hidden neurons is kept small, good performance can be achieved with

as few as 10I training samples for a network with I inputs. Although the gradient descent

optimization algorithm is typically used to fit an MLP to the training samples, a rarely

applied technique called the perturbation search can also be used [39]. The perturbation

search does not require gradient information, is easier to program, easier to understand

and easier to apply (for example, it is guaranteed to be stable). It allows integer versions

of networks (that are applicable to resource-constrained devices) to be optimized directly,

avoiding problems that can result from the conversion of floating-point networks to inte-

ger form.

The basic perturbation search can be summarized as follows:

• Measure the performance of the MLP

• Perturb the MLP’s parameters by adding a small amount of random noise to each

one, and remeasure its performance

• If the performance of the MLP deteriorated, restore the parameters to their original

values

• Repeat this process until some stopping criterion is met

3.3 Hidden Markov models

Noisy processes can be successfully estimated using stochastic techniques. Hidden Markov

Models (HMMs), in particular, have been successfully used to track finite-state processes

based on noisy evidence. For example, in speech recognition, HMMs track the production

of words as movement through a space of phonemes and sounds, based on very noisy evi-

dence but very concrete transition rules. In general, a Markov model can be visualized as

a a Finite State Machine (FSM) with probabilistic edges. In a hidden Markov model, the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

29

Chapter 3 Designing a gesture recognition system

state of the process is not directly observable, so one can never be sure of the current state

of the process. Instead, the HMM includes a probability function that matches states with

some type of observable evidence - this allows one to estimate the current state based on

a history of evidence observations.

HMMs have been applied successfully to speech recognition and visual gesture recog-

nition. These methods translate almost directly to accelerometer-based gestures [25]. In

speech recognition, feature extraction is performed by transforming the speech data into

the frequency domain and then decorrelating the data. Feature extraction reduces the

amount of information, both in terms of time resolution and in terms of dimensional-

ity. As the computational complexity of HMM decoding is linearly dependent on the

number and dimension of feature vectors, feature extraction increases efficiency.

Gestures can be regarded as temporal feature trajectories with temporal and spatial vari-

ations which can be successfully recognized by HMMs, with the most common HMM

topology being the left-to-right topology [26]. In ergodic or fully connected HMMs ev-

ery state of the model can be reached (in a single step) from every other state of the

model [41]. The left-right type of HMM has the desirable property that it can readily

model signals whose properties change over time in a successive manner e.g. speech. The

fundamental property of all left-right HMMs is that the state-transition coefficients have

the property aij = 0, j < i. This implies that no transitions are allowed to states whose

indices are lower than that of the current state. The initial state probabilities have the

property π =(0, i <> 1 and 1, i = 1) because the state sequence must begin in state 1

(and end in state N).

A gesture is a specific, intentional action by a human in which part of the body is moved

in a predefined way, indicating a stochastic event. Chambers et al. [27] considers a ges-

ture as a stochastic process that exists at multiple levels in a hierarchy - simple, discrete

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

30

Chapter 3 Designing a gesture recognition system

movements correspond to gestures at one level, and combinations of these movements

as gestures at a higher level. By utilizing multi-layer HMMs to model complex gestures

as a hierarchy of sub-gestures, it was possible to recognize a sequence of sub-gestures,

without the need for learning separate HMMs for each sequence [27]. Designing an HMM

is considered more difficult than designing multilayer perceptron neural networks, but the

superior performance in some complex tasks may justify their use.

3.4 Support vector machines

A Support Vector Machine (SVM) is a type of neural network where a nonlinear transfor-

mation is performed on the input feature vector into a high-dimensional space, as a new

feature vector ϕ(x) = [ϕ1(x)ϕ2(x) . . . ϕp(x)] . If ϕ(x) is the nonlinear transformation, and

x is the input feature vector, the output y can be calculated as

y(x) =

p∑
k=1

wkϕk(x) + b = ϕ(x)wT + b, (3.1)

where w = [w1w2 . . . wp] is the 1× p weight vector and b is the bias term. Mapping a low-

dimensional feature into a higher-dimensional feature space is likely to make the resulting

feature vector linearly separable [30]. By using ϕ as a feature vector we should be able

to obtain better pattern recognition results. Commonly used kernel function for support

vector machines include radial basis functions and two-layer perceptrons. An example of

an SVM neural network structure can be seen in figure 3.3.

3.5 k-Nearest neighbours

The k-Nearest neighbours (kNN) algorithm is a statistical technique that learns by mem-

orizing the data it is presented, thereby using the data itself as a model of what it has

learned [33]. A kNN algorithm computes the Euclidean distance between the training

data and the input data. As the kNN algorithm does little more than store the data that

it is required to learn, it offers very high computational efficiency when learning. This

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

31

Chapter 3 Designing a gesture recognition system

Figure 3.3: An SVM neural network structure

advantage comes at the cost of increased computation during the query phase when the

new input must be compared to the data that has been learned. A realistic kNN would

operate on feature vectors rather than the raw data, but this requires an additional com-

putationally intensive preprocessing stage.

3.6 Dynamic time warping

Dynamic time warping is a general time alignment and similarity measure for two temporal

sequences, that was introduced by Sakoe and Chiba [47]. A distance matrix is computed

for the two sequences and a minimum cost path is determined along the diagonal of the

matrix. Similar to kNN, the dynamic time warping algorithm only has to store the data

that it is required to learn. The training and recognition procedures in dynamic time

warping are potentially much simpler and faster than HMMs [45]. Dynamic time warping

is described in more detail in section 4.4.2.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

32

Chapter 4

Implementation

4.1 Gathering of sensor data

Sensor data was collected using a Nokia N95’s embedded 3-axis STMicroelectronics LIS302DL

accelerometer. The Symbian 3rd Edition SDK’s Sensor API was used to gather raw sen-

sor data using an interrupt-driven sampling method. The data was filtered using both a

digital low-pass filter (LPF) and a high-pass filter (HPF). A LPF with a single pole of

K1 = 0.97 was applied to the x- and y-axis, with a single K2 = 0.9 pole applied to the

z-axis. A HPF with a single pole of K3 = 0.75 was also applied to the z-axis. In figure

4.1 the raw sensor data gathered from the mobile phone’s accelerometer is shown for all

the three axes.

The accelerometer was calibrated by placing the mobile phone on a flat surface and re-

setting all three axes to zero. The required amount of training samples was determined

empirically. A HMM was trained with two different gestures, starting with one training

sample each and increasing the amount of training samples until the HMM could dis-

tinguish between the two gestures. For the HMM to differentiate between two gestures,

at least three training samples per gesture were required. A total of 8 gestures with 10

training samples per gesture were collected. As the DTW algorithm is essentially a type

of template-matching technique, only one training sample per gesture was required for

33

Chapter 4 Implementation

 2
 1
 0
-1
-2

 0 10 20 30 40 50 60 70 80 90A
cc

el
er

at
io

n
(G

)

Sample number

X-axis

 2
 1
 0
-1
-2

 0 10 20 30 40 50 60 70 80 90A
cc

el
er

at
io

n
(G

)

Sample number

Y-axis

 2
 1
 0
-1
-2

 0 10 20 30 40 50 60 70 80 90A
cc

el
er

at
io

n
(G

)

Sample number

Z-axis

Figure 4.1: Raw sensor data of a Left Circle gesture sampled from the Nokia N95’s

accelerometer

the DTW algorithm to perform the gesture recognition correctly. The 8 gestures used in

this study can be observed in figure 4.2.

It is difficult for a person to memorize a large amount of gestures. Learning gestures

is analogous to learning a new language. For this reason only 8 different gestures were

utilized. The main application of this technology on mobile phones, where typically only

one built-in accelerometer is available, is considered to be for user interfaces and as gesture

input to mobile games. Where more gestures are required, for example in sign language

recognition, more sensors will be required and a different kind of approach will have

to be used. Most of the research in the field of gesture recognition use a limited set of

gestures, unless the gesture recognition technology is well established, as is the case with

HMM-based recognition using multiple sensors.

A comparison of two different data streams of the same gesture (Left Circle, item 1 in

figure 4.2), is shown in figure 4.3. At first glance there seems to be no similarity between

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

Chapter 4 Implementation

Figure 4.2: Gestures used in this study (obtained from [29])

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90

A
cc

el
er

at
io

n
(G

)

Sample number

Circle 1

X
Y
Z

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80 90

A
cc

el
er

at
io

n
(G

)

Sample number

Circle 2

X
Y
Z

Figure 4.3: Comparing two sensor data streams of the same gesture (Left Circle)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

Chapter 4 Implementation

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

A
cc

el
er

at
io

n
(G

)

Sample number

Square 1

X
Y
Z

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

A
cc

el
er

at
io

n
(G

)

Sample number

Square 2

X
Y
Z

Figure 4.4: Comparing two sensor data streams of the same gesture (Left Square)

the two data streams. On further inspection one can see that, although they differ in

length and amplitude, there is first a sharp increase and then a sharp decrease in the

acceleration values of both gestures. Figure 4.4 shows a comparison between two data

streams of the Left Square gesture (item 3 in figure 4.2). Once again, the length and

amplitude of the gestures differ, but a similar pattern can be distinguished in the data.

4.2 Hidden Markov model

4.2.1 Preprocessing

For the Hidden Markov model algorithm, a gesture recognition toolkit developed by the

Georgia University of Technology, called GT2K [3], was utilized. GT2K makes use of the

HTK Speech Recognition Toolkit developed at the University of Cambridge [42]. Recog-

nition was performed by the HVite utility in HTK that uses the Viterbi algorithm to

solve the decoding problem, i.e. given the observation sequence O and the model Mi, a

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

36

Chapter 4 Implementation

corresponding state sequence X must be chosen that is optimal in some sense. The input

to the HVite executable is the following:

• The list of commands that can be recognized

• The names of the gestures corresponding to the commands

• The trained HMM

• A word lattice generated by HTK which links the gestures to the HMM

• An -A parameter to print the current command line parameters

• A -T 1 parameter to enable tracing

The raw data was preprocessed by using a utility called standalone prepare in GT2K, that

transforms the raw sensor data into the format required by HTK.

4.2.2 The algorithm

A Hidden Markov Model with a feature vector length of 3 was used, where each feature

vector consists of the x-, y- and z-axis acceleration values. The feature vector length is the

number of elements in the feature vector. This is also called the number of observations

per state for the HMM.

A 4-state HMM with no skip states was used at first. When the HMM performed subop-

timally (see section 6.1.1), it was decided to make use of an 8-state HMM with no skip

states. The minimum variance allowed during training was 0.001. The validation used for

training and testing the algorithm was leave-one-out validation. This validation method

was also used to test the performance of the ANN and DTW algorithms.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37

Chapter 4 Implementation

4.3 Neural network

4.3.1 Preprocessing

Applying a Fourier or wavelet transform to the input data before feeding it into the

neural network classifier would create a compact representation of the pattern to be rec-

ognized. The increase in computational complexity is deemed unnecessary for a small

amount of gestures. Should a larger gesture set be used, this type of preprocessing tech-

nique can be considered for improving pattern representation.

The length of the data vector that is used as input to a discrete wavelet transform

(DWT) must be a power of two. The same constraint applies to fast Fourier transforms

(FFTs). With FFTs the individual sine and cosine functions are localized in frequency,

while with DWTs the individual wavelet functions are localized in both frequency and

space [48]. Resampling will still be required for these transforms, in order to make the

data vector length a power of two, further increasing the computational complexity of

the algorithm. For this study resampling will still be performed, in order to create a fixed

amount of inputs for the neural network, but without transformations on the data.

As a feedforward backpropagation neural network only operates on a fixed amount of

inputs, the data had to be resampled to be used as input to the neural network. A simple

resampling algorithm as described in [59] was implemented:

Let M be the original number of points in the path and N the required number of

points. To resample, one first calculates the total length of the M -point path. Dividing

this by (N − 1) results in the length of each increment I, between N new points. Then

the path is subsequently traversed so that when the distance covered exceeds I, a new

point is added through linear interpolation. At the end of this step, all gestures will have

exactly N points.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

38

Chapter 4 Implementation

The resampling algorithm resamples W points into n evenly spaced points. The pseudo

code for the resampling algorithm is as follows:

RESAMPLE(points, n)

1. I ← PATHLENGTH(points)
n−1

2. D ← 0

3. newPoints← points0

4. foreach point pi for i ≥ 1 in points do

5. d← DISTANCE(pi−1, pi)

6. if(D + d) ≥ I then

7. qx ← pi−1(x) +
(

I−D
d

)(
pi(x)− pi−1(x)

)
8. qy ← pi−1(y) +

(
I−D

d

)(
pi(y)− pi−1(y)

)
9. APPEND(newPoints, q)

10. INSERT (points, i, q) //q will be the next pi

11. D < 0

12. else D ← D + d

13. return newPoints

PATHLENGTH(W)

1. d← 0

2. for i from 1 to |W | step 1 do

3. d← d + DISTANCE(Wi−1, Wi)

4. return d

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

39

Chapter 4 Implementation

-2
-1.5

-1
-0.5

 0
 0.5

 1-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1

-0.5

 0

 0.5

 1

Z-axis acceleration (G)

X-axis acceleration (G)

Y-axis acceleration (G)

Z-axis acceleration (G)

Figure 4.5: 3-dimensional plot of raw sensor data

-2
-1.5

-1
-0.5

 0
 0.5

 1-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-1

-0.5

 0

 0.5

 1

Z-axis acceleration (G)

X-axis acceleration (G)

Y-axis acceleration (G)

Z-axis acceleration (G)

Figure 4.6: Sensor data resampled to N = 50 points

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

40

Chapter 4 Implementation

The original two-dimensional algorithm was rewritten in order to cater for the three-

dimensional nature of the accelerometer input data. Comparisons of the original raw

sensor data and resampled data can be seen in figures 4.5 and 4.6.

This algorithm can be used to either downsample or upsample the data, depending on the

requirements. Regarding the ANN used in this study, the sampled gestures were down-

sampled to 50 points per axis. With 50 points each for the three axes x, y and z, a total

of 150 points were used as input to the neural network.

4.3.2 The algorithm

Many practical problems require no more than one hidden layer in a neural network

[49]. Neural networks with one hidden layer can approximate arbitrarily with any func-

tions which contain a continuous mapping from one finite space to another.

Choosing the number of hidden neurons is a very important part of designing the overall

neural network architecture. Underfitting occurs when there are too few neurons in the

hidden layers to adequately detect the signals in a complicated data set [49]. Using too

many neurons in the hidden layers can result in overfitting, that occurs when the neural

network has so much information processing capacity. In this case the limited amount of

information in the training set is not enough to train all of the neurons in the hidden

layers. There are a number of heuristics for determining the correct number of neurons in

the hidden layer:

1. The number of hidden neurons should be between the size of the input layer and

the size of the output layer.

2. The number of hidden neurons should be two thirds the size of the input layer, plus

the size of the output layer.

3. The number of hidden neurons should be less than twice the input layer size.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

41

Chapter 4 Implementation

Table 4.1: Configuration parameters of the neural network

Number of input layers 150

Number of output layers 8

Number of hidden layers 1

Number of hidden neurons 108

Desired error < 0.001

Considering a neural network with a input layer size of 150 and a output layer size of

8, a hidden layer of 108 neurons fulfills all three the abovementioned requirements. To

improve the accuracy of the neural network, forward selection methods and backward

selection methods may be used. These methods are described in section 2.2.

A neural network library called Fast Artificial Neural Network (FANN) library [50] was

used as a starting point for developing the ANN-based gesture recognition algorithm. A

standard fully connected backpropagation neural network was created. A bias neuron was

placed in each layer (except the output layer), and this bias neuron was connected to

all neurons in the next layer. When running the network, the bias nodes always emit

ones. The configuration parameters of the neural network can be seen in table 4.1.

The activation function used for both the hidden layer and the output layer is a symmetric

sigmoid function (tanh). It is one of the most applied activation functions for a neural

network. It is defined as

y = tanh(sx) =
2

1 + e−2sx
− 1 − 1 < y < 1, (4.1)

where x is the input to the activation function, y is the output, and s is the steepness. An

example of a symmetric sigmoid activation function can be observed in figure 4.7.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

42

Chapter 4 Implementation

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -2 0 2 4

Figure 4.7: A symmetric sigmoid activation function

To train the neural network for a desired error of less than 0.001, around 25 epochs were

needed. In figure 4.8 the average error per pattern is plotted, where J =
∑p=1

n Jp is the

sum over the errors on n individual patterns, also known as the total training error [61].

4.4 Dynamic time warping

4.4.1 Preprocessing

For the dynamic time warping algorithm, no preprocessing is required. The algorithm is

used directly to match the test gesture against the reference gestures.

4.4.2 The algorithm

The DTW algorithm used in this study was implemented in C by Andrew Slater and John

Coleman [46] at Oxford University Phonetics Laboratory. The DTW non-linearly wraps

one time sequence to match another given start and end point correspondence. DTW was

introduced by Sakoe and Chiba [47] in a seminal paper in 1978. DTW has been extended

to deal with unknown start and end points in a continuous data stream. More recent

research has focused on applying it to data mining from one-dimensional time series, as

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

Chapter 4 Implementation

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Epochs

E
rr

o
r

(J
/n

)

Figure 4.8: Learning curve for neural network

well as indexing and clustering.

When a gesture is time-sampled with a constant sampling period, a sequence of fea-

ture vectors is obtained. Each feature vector consists of the x-, y- and z-axis acceleration

values, i.e. a(x, y, z). When comparing two gesture sequences using dynamic time warping,

one may express the sequence of feature vectors as:

A = a1, a2, . . . , ai, . . . , aI (4.2)

B = b1, b2, . . . , bj, . . . , bJ (4.3)

where I is the number of feature vectors in the test gesture A, and J is the number of

feature vectors in the reference gesture B. The first step in the algorithm is to construct a

matrix, D, in which the distances between each feature vector in A and B is tabulated. For

each combination of samples in the two gestures, the distance measure used is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

Chapter 4 Implementation

D(i, j) = ||Ai −Bj|| (4.4)

It must now be established which feature vectors in the test gesture correspond to which

feature vectors in the reference gesture. Using D one tries to find the correspondence as

close to the diagonal of the matrix as possible in order to compute the minimum cost

path. One may consider the minimum cost path through the matrix as a sequence of

moves. As one cannot move backward in time, the only moves allowed are to the right in

the matrix (q), up in the matrix (r), and to the right and up in the matrix (s). We can

then calculate the possible moves as

qi,j = Gi−2,j−2 + Di−1,j + Di, j (4.5)

ri,j = Gi−1,j−1 + Di,j (4.6)

si,j = Gi−1,j−2 + Di,j−1 + Di, j (4.7)

where

Gi,j =



qi,j qi,j < ri,j, qi,j < si,j

ri,j ri,j < si,j, ri,j < qi,j

ri,j qi,j = ri,j, ri,j = si,j

si,j si,j < ri,j, si,j < qi,j

(4.8)

One may then use GI,J as a similarity measure. The G matrix indicates how much the

gestures differ when best aligned. It is not necessary to perform a full DTW, where the

minimum cost path has to be determined by selecting the best path from G.

After calculating GI,J by comparing the test gesture to each of the reference gestures,

the minimum value of GI,J is selected to determine which reference gesture resembles the

test gesture the most:

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

45

Chapter 4 Implementation

G = argmin
x

GI,J(x) (4.9)

where x represents the reference gestures.

In figure 4.9 the G matrix was plotted after using the algorithm to compare a Circle test

gesture with a Circle reference gesture. The Gi,j values increase in the direction of the

diagonal, due to the spatial and temporal differences between the test gesture and the

reference gesture. A deep trough forms in the middle of the graph, indicating that there is

a lot of similarity between the test gesture and reference gesture when aligned in the time

domain. This can be compared to figure 4.10 where a Circle test gesture was compared

to a Square reference gesture. Once again the Gi,j values increase in the direction of the

diagonal, but this time the trough is not as pronounced as in the previous example. The

final GI,J value is also much larger than in the previous comparison.

In figure 4.11 the G matrix for a Circle test gesture and a Circle reference gesture

was plotted on a 3-dimensional grid to improve the clarity of what is indicated in figure

4.9. The same was done for a Circle test gesture and Square reference gesture in figure

4.12. As can be seen from the figures, the Circle vs. Circle grid is flattened out, indi-

cating similarity, but in the Circle vs. Square grid the differences create a trough and

hill. The final value obtained from figure 4.12 is also much larger than the value obtained

from figure 4.11, indicating a larger dissimilarity value.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

46

Chapter 4 Implementation

 0 10 20 30 40 50 60 70 80 90 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0

 100000

 200000

 300000

 400000

 500000

 600000

Figure 4.9: Plotting the G matrix: Circle test gesture vs. Circle reference gesture

 0 10 20 30 40 50 60 70 80 90 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0

 100000

 200000

 300000

 400000

 500000

 600000

Figure 4.10: Plotting the G matrix: Circle test vs. Square reference

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

47

Chapter 4 Implementation

 0 10 20 30 40 50 60 70 80 90 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 0

 50000

 100000

 150000

 200000

 250000

 300000

Figure 4.11: Plotting the G matrix on a grid: Circle test gesture vs. Circle reference

gesture

 0 10 20 30 40 50 60 70 80 90 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 50000

 100000

 150000

 200000

 250000

 300000

Figure 4.12: Plotting the G matrix on a grid: Circle test gesture vs. Square reference

gesture

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

48

Chapter 5

Optimizing gesture recognition

algorithms

During optimization, algorithm-level optimization must be explored, as well as low-level

optimization methods, such as loop unrolling, unrestricted pointer, and custom opera-

tions [20]. Performance evaluation includes determining function execution times of the

algorithm. This can be specified by giving the execution time (in milliseconds) of each

function, as well as the percentage of total execution time of the algorithm.

Algorithm-level optimization replaces time-consuming code segments with code that is

more efficient. Timing information must be collected for each function. At this stage,

functions that consume the most time can be identified and replaced without optimiza-

tion at a low-level. For this study, the different algorithms were evaluated and the most

efficient algorithm implemented before starting on low-level optimization.

During the low-level optimization process, various methods can be used to reduce branch

instructions or increase the basic block size. The basic block size is the ratio of the to-

tal number of executed instructions over the total number of dynamic executed branch

instructions [20]. Loop fusion and loop unrolling can be used to increase the basic block

size. Loop fusion merges basic blocks in the code domain as different code segments are

49

Chapter 5 Optimizing gesture recognition algorithms

merged, while loop unrolling merges basic blocks in the time domain as different loop

iterations are merged. This increases the code size for each loop trip.

Two factors need to be considered when implementing a gesture recognition algorithm on

an embedded device:

• Computational efficiency - Some techniques are more computationally efficient than

others, and this dictates where the techniques can be used. A technique with low

computational efficiency during the learning phase may still be implemented on an

embedded device if the computational efficiency of the recognition phase is high. The

learning phase may be performed off-line on a computer, and the recognition phase

may be implemented on the device.

• Storage efficiency - Different techniques use different representations for their models

and require different amounts of storage [33]. This includes both the amount of

memory that the model requires and the amount of data required to store the

model. Some techniques cannot be implemented on an embedded system due to

their large memory requirements.

5.1 Floating point conversion

To reduce chip size and power dissipation, floating-point units are not provided on most

embedded processors. Software emulation of floating-point arithmetic is usually imple-

mented, but this degrades the performance of most pattern recognition algorithms. It is

possible, however, to write a fixed point implementation of a pattern recognition algo-

rithm [37]. Each floating point variable and constant can be replaced with a 32-bit integer

(primitive type “int” in C), where the data representation of the fixed-point variable con-

sists of three fields: sign, integer and fraction. The number of bits assigned to the integer

field (the integer word-length, or IWL) determines the value range. The number of bits

assigned to the fraction field (the fractional word-length, or FWL) determines the quan-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

Chapter 5 Optimizing gesture recognition algorithms

tization step.

For example, if one selects the FWL as 12 bits, the IWL will be 19 bits (12 + 19 +

1 sign bit = 32 bits). The floating point number 1.875 in decimal (1.111 in binary) may

be represented as the fixed point number 7680 in decimal (1111000000000 in binary). Both

fixed and variable FWL can be used.

5.2 Optimization considerations

Nissen [38] considered the following optimization techniques while working on the Fast

Artificial Neural Network library (FANN) that is included in the Debian Linux distribu-

tion:

• Algorithmic optimization - optimizing or changing the algorithms used in the soft-

ware

• Architectural optimization - modifying the data structures that the algorithm uses

• Cache optimization - modifying the data architecture for sequential data access to

improve cache performance

• Common subexpression elimination - manually removing common subexpressions

by calculating expressions once and storing the results in local variables

• In-lining of code - avoiding unnecessary overhead for function calls by writing the

code directly in the algorithm, or using in-line functions or macros

• Loop unrolling - manually unrolling loops to improve performance, which the com-

piler may not always perform due to aliasing

• Table lookup - manually calculating values and storing them in a lookup table,

instead of calculating them when they are required

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

Chapter 5 Optimizing gesture recognition algorithms

With algorithmic optimization, one may try to improve the computational efficiency of

the algorithm itself, or make use of different techniques within the algorithm. This is done

in neural networks, for example, by making use of the RPROP algorithm instead of the

backpropagation algorithm when training the neural network. In some cases it is better

to make use of the simpler, more effective algorithm and optimize the actual calculations

done in the algorithm.

Architectural optimization consists of modifying or changing the data structures that the

algorithm uses. Choosing the optimal data structures allows one to easily loop through the

data and optimize the instructions on code level. If the correct data structure is used, the

data will be situated closer to each other in memory, allowing for quick access to the data.

Cache optimization is not considered important for embedded devices running a gen-

eral purpose operating system like Symbian, due to the limited size of the cache typically

implemented on such an embedded device. In such a case, the operating system occupies

most of the cache and the cache is not suitable to storing large arrays of data. When

optimizing for a regular desktop environment or a dedicated embedded device such as

a digital signal processor, careful attention must be paid to how data is read from and

written to the cache. Data should be stored sequentially, as this improves the performance

of the cache [38].

Compilers do perform automatic common subexpression elimination, but it may still be

more computationally efficient if done by hand. The results of subexpressions are stored

in a lookup table and then read when required. This is especially true of subexpressions

inside a loop, in which the calculation can be performed once and then stored. The cen-

tral loops in the algorithm should be hand optimized, while the more complex loops and

not-so-often used loops can be optimized by the compiler.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

52

Chapter 5 Optimizing gesture recognition algorithms

Inline functions outperform ordinary functions by eliminating the overhead of function

calls. This includes tasks such as stack-frame setup, parameter passing, stack-frame

restoration and the returning sequence. Besides these key advantages, inline functions also

provide the compiler with the ability to perform improved code optimizations [39]. Inline

functions are subject to additional optimizations what would not otherwise be possible, be-

cause most compilers do not perform interprocedural optimizations. Inline functions work

well for small functions (typically three lines or less) or small functions that are called

repeatedly. While code expansion can improve speed by eliminating function overhead

and allowing for interprocedural compiler optimizations, this is all done at the expense of

code size.

Loop unrolling is another optimization technique that may be performed better by hand. This

technique improves computational efficiency by preventing the program from jumping

back and forth inside a loop and rather let it run instructions sequentially. This also in-

creases speed at the expense of increased program size. When using a resource-constrained

device, it may be more computationally efficient to store the results of calculations in a

lookup table, instead of calculating them each time they are required.

It is sometimes argued that performance engineering is not a real science, because new

algorithms are not created. Nissen [38] does not share this opinion, and gives an example

of the importance of performance engineering in a neural network. On an AMD Athlon

machine, the jneural neural network library uses 509.138 nanoseconds per connection in a

fully connected ANN with four layers and 128 neurons in each. On an HP iPAQ the fixed

point FANN library uses 188.134 nanoseconds per connection on a similar ANN. This is

2.7 times faster than the jneural library. It may be possible to buy a computer which

will execute the jneural library just as fast as the fixed point library on the iPAQ, but it

would not be possible to fit this computer into your pocket.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

53

Chapter 5 Optimizing gesture recognition algorithms

5.3 Algorithmic optimization

5.3.1 Hidden Markov models

When using the forward-backward algorithm for the evaluation problem, the number of

multiplications required in the forward pass is s2(T −1)+sT , and in the backward pass is

(s2 + s)(T − 1), where s denotes the number of states, and T denotes the total number of

elements. The total number of multiplications is therefore equal to 2s2(T − 1)+ s(2T − 1)

[34]. If the Viterbi algorithm is used instead, the number of computations may be reduced

to s2(T − 1) + sT .

By taking logarithms of the model parameters, the Viterbi algorithm can be implemented

without any multiplications [41]. The calculations required for this alternative implemen-

tation is in the order of N2T additions, as well as the calculations for preprocessing. As

the preprocessing needs to be performed once and saved, its cost is negligible for most

systems. We note that when using the Viterbi algorithm to give the maximum likelihood

state sequence, no scaling is required if we use the logarithms as discussed in the alterna-

tive Viterbi implementation.

The probability computation step is generally performed using the Viterbi algorithm

(i.e., the maximum likelihood path is used) and requires on the order of V N2T compu-

tations. For modest vocabulary sizes, e.g., V = 100 words, with an N = 5 state model,

and T = 40 observations of the unknown word, a total of 105 computations is required

for recognition (where each computation is a multiply operation, an add operation and a

calculation of the observation density, b(0)).

5.3.2 Neural networks

In a feedforward ANN an input can easily be propagated through the network and eval-

uated to an output. It is more difficult to compute a clear output from a network where

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

54

Chapter 5 Optimizing gesture recognition algorithms

connections are allowed in all directions (as in the brain), as this will create loops. There

are ways of dealing with these loops in recurrent networks, but feedforward networks are

usually a better choice for problems that are not time dependent.

The running time of the execution of a neural network (not the training time) can be

estimated as follows:

T = cP + (n− ni)G (5.1)

where c is the number of connections, n is the total number of neurons, ni is the number

of input and bias neurons, P is the cost of multiplying the weight with the input and

adding it to the sum, G is the cost of the activation function and T is the total cost. If

the ANN is fully connected, l is the number of layers and nl is the number of neurons in

each layer (not counting the bias neuron), this equation can be rewritten as

T = (l − 1)(n2
l + nl)P + (l − 1)nlG (5.2)

This equation shows that the total cost is dominated by P in a fully connected ANN. This

means that if one wants to optimize the execution of a fully connected ANN, one needs to

optimize P and the retrieval of the information needed to compute P . While training an

MLP is processor intensive, computing the output of a trained MLP requires very little

processor time, particularly since all internal quantities can be modelled using integers

and nonlinear functions replaced by a look-up table [39].

5.4 Performance measurement

A sampling profiler operates by frequently sampling the position of the instruction pointer

while the program runs [40]. This generates a huge amount of raw data which is then

processed to generate profiling data. Sampling profilers can often tell the programmer

exactly in which line of code most of the time is spent. Commercial profilers usually work

this way because modifications to the application code is unnecessary. Another profiling

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

55

Chapter 5 Optimizing gesture recognition algorithms

method that is commonly used is to explicitly time blocks of code. These measurements

can then be displayed in real-time and aid in finding transient performance problems.

5.5 Other optimization techniques

The Symbian OS Performance Tips booklet [43] gives the following tips for further opti-

mization:

• Try to create data structures only once and re-use them in loops.

• Remove variables in loops that will stay the same (this can lead to inefficient heap

usage.

• Check if unnecessary variable casting is done (also known as type coercion).

• Check for inefficient file usage.

• Remove function calls in a loop’s condition statement.

• It is unnecessary to unroll loops. With modern compilers this type of optimization is

no longer necessary, and may even be counterproductive. The compiler may perform

this optimization where appropriate.

• If the const qualifier is used appropriately to mark read-only variables, the compiler

may generate more efficient code.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

Chapter 6

Results

6.1 Comparing the gesture recognition algorithms

6.1.1 Hidden Markov model

The confusion matrices in tables 6.1 and 6.2 were obtained by means of leave-one-out

validation testing. The Hidden Markov Model was trained with 79 of the 80 available

samples and then tested using the remaining sample. Initially a 4-state HMM was used,

but the recognition accuracy of the HMM proved to be too low to be able to accurately

compare the model with the other algorithms. Using 8 states for the HMM increases the

recognition accuracy to above 90%, which is approximately equal to the accuracy obtained

with the other algorithms.

For the HMM with 4 states, a total of 53 of the 80 samples were correctly classified, for a

total accuracy of 66.25%. For the HMM with 8 states, a total of 77 of the 80 samples were

correctly classified, for a total accuracy of 96.25%. It is interesting to note that the HMM

with 4 states is unable to distinguish between the circular gestures, incorrectly classifying

all Right Circle gestures as Left Circle gestures.

57

Chapter 6 Results

Table 6.1: Confusion matrix for HMM with 4 states

L
ef

t
C

ir
cl

e

L
ef

t
S
q
u
ar

e

L
ef

t
T
ri

an
gl

e

L
ef

t
In

fi
n
it
y

R
ig

h
t

C
ir

cl
e

R
ig

h
t

S
q
u
ar

e

R
ig

h
t

T
ri

an
gl

e

R
ig

h
t

In
fi
n
it
y

Left Circle 0.7 0.0 0.0 0.1 0.0 0.0 0.2 0.0

Left Square 0.2 0.5 0.0 0.0 0.0 0.2 0.1 0.0

Left Triangle 0.0 0.0 0.1 0.9 0.0 0.0 0.0 0.0

Left Infinity 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Right Circle 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Right Square 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Right Triangle 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Right Infinity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 6.2: Confusion matrix for HMM with 8 states

L
ef

t
C

ir
cl

e

L
ef

t
S
q
u
ar

e

L
ef

t
T
ri

an
gl

e

L
ef

t
In

fi
n
it
y

R
ig

h
t

C
ir

cl
e

R
ig

h
t

S
q
u
ar

e

R
ig

h
t

T
ri

an
gl

e

R
ig

h
t

In
fi
n
it
y

Left Circle 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Left Square 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0

Left Triangle 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0

Left Infinity 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Right Circle 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

Right Square 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Right Triangle 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Right Infinity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

58

Chapter 6 Results

6.1.2 Neural network

The confusion matrix in table 6.3 was obtained by means of leave-one-out validation test-

ing. The neural network was trained with 79 of the 80 available samples and then tested

using the remaining sample. This process was repeated for each of the 10 samples per

gesture. The rows represent the sample being tested, and the columns indicate as which

gesture the sample was recognized.

Table 6.3: Confusion matrix for ANN

L
ef

t
C

ir
cl

e

L
ef

t
S
q
u
ar

e

L
ef

t
T
ri

an
gl

e

L
ef

t
In

fi
n
it
y

R
ig

h
t

C
ir

cl
e

R
ig

h
t

S
q
u
ar

e

R
ig

h
t

T
ri

an
gl

e

R
ig

h
t

In
fi
n
it
y

Left Circle 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Left Square 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0

Left Triangle 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.0

Left Infinity 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Right Circle 0.0 0.0 0.1 0.0 0.9 0.0 0.0 0.0

Right Square 0.0 0.0 0.0 0.0 0.0 0.8 0.2 0.0

Right Triangle 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Right Infinity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

A total of 72 of the 80 samples were correctly classified, for an overall accuracy of 90%.

6.1.3 Dynamic time warping

The training and recognition procedures in DTW are potentially much faster than other

techniques used for gesture recognition, such as HMMs and ANNs. This was evaluated

by implementing a gesture recognition system using the gesture data gathered in section

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

Chapter 6 Results

4.1. Since there are no training steps or preprocessing required for the DTW algorithm,

the raw gesture data could be evaluated directly. Leave-one-out validation was used to

test the algorithm, by using the DTW algorithm to compare each one of the 8 gestures

to the remaining 79 reference gestures.

Table 6.4: Confusion matrix for DTW

L
ef

t
C

ir
cl

e

L
ef

t
S
q
u
ar

e

L
ef

t
T
ri

an
gl

e

L
ef

t
In

fi
n
it
y

R
ig

h
t

C
ir

cl
e

R
ig

h
t

S
q
u
ar

e

R
ig

h
t

T
ri

an
gl

e

R
ig

h
t

In
fi
n
it
y

Left Circle 0.8 0.0 0.0 0.0 0.0 0.2 0.0 0.0

Left Square 0.0 0.9 0.0 0.0 0.0 0.1 0.0 0.0

Left Triangle 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Left Infinity 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Right Circle 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

Right Square 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Right Triangle 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Right Infinity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

With the DTW algorithm, a total of 77 of the 80 samples were correctly classified, for

an overall accuracy of 96.25%. This compares very well with the HMM algorithm with 8

states, and the DTW algorithm is therefore considered sufficiently accurate as to imple-

ment it.

6.1.4 Measuring execution time

The execution time of the three algorithms was first measured on a HP Pavilion dv9086ea

notebook with an Intel Core 2 Duo T7200 processor running at 2 GHz and with 1 GB

of RAM. Testing was performed on Ubuntu Linux v. 7.04 Feisty Fawn. Execution time

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

60

Chapter 6 Results

was measured using the UNIX time command. To measure the execution time of the

algorithm, the following steps were followed:

• All optimization flags were disabled before the compilation of each algorithm.

• Output to stdout and stderr was suppressed by running the algorithm with the

command ./name_of_algorithm >nul 2>&1

• 1000 program executions of each algorithm were measured, and the average execu-

tion time computed.

The reasoning behind measuring the average of 1000 program executions, instead of mea-

suring the program execution time directly, can be explained by ways of the following

analogy: If one would like to measure the width of a piece of paper, one would rather

measure the width of a stack of 200 pieces of paper instead of buying an expensive micro-

scope to measure the width of one piece of paper. Even though it is possible to measure

the program execute time of one iteration of the algorithm, the accuracy of the measure-

ment is improved by measuring the average of 1000 iterations of the algorithm. This is

due to the fluctuations in the program execution time when trying to measure only one

iteration of the algorithm.

The measured time is the time the algorithm takes to recognize one gesture. In the

case of this study, the gesture being tested was the Left Circle gesture. The results

of performance measurements can be seen in table 6.5 and figures 6.1 and 6.2.

The measurements to determine the required amount of memory include the amount of

memory required by the Python interpreter. This is due to the interpreter being used

to run multiple iterations of the algorithm, in order to accurately measure the perfor-

mance. As the required amount of memory for each algorithm does not differ significantly,

using required memory as a performance metric is considered irrelevant.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

61

Chapter 6 Results

Table 6.5: Comparing algorithm performance characteristics

Characteristic HMM (4 / 8 states) ANN DTW

Recognition performance Medium Slow Fast

Recognition (preprocessing) 2.8 ms 1.8 ms None required

Recognition (algorithm) 10.5 ms / 12.2 ms 23.02 ms 8.31 ms

Training time Long / Extensive Medium No training

Size of network on disk 4382 bytes / 13740 bytes 591163 bytes 5926 bytes

Memory required 1.5 MB / 1.5 MB 1.4 MB 1.5 MB

0 5 10 15 20 25 30

HMM (4 state)

HMM (8 state)

ANN

DTW

Execution time (ms)

Preprocessing Time
Recognition time

Figure 6.1: Execution times for all the algorithms

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

62

Chapter 6 Results

The average execution times for the three algorithms is provided in figure 6.1. It is inter-

esting to note that the neural network’s execution time is unusually long in comparison

to the other two algorithms. This is due to the large dimensions of the neural network

- there are 150 input neurons, 108 hidden neurons and 8 output neurons in the net-

work. The size of the neural network may be decreased by decreasing the amount of input

neurons required, by first performing feature extraction on the data. It would be inter-

esting to test whether the additional overhead incurred by preprocessing will shorten the

execution time of the network significantly, or enough to improve the overall performance.

The DTW algorithm’s execution time is slightly faster than that of the 4-state HMM,

but the 4-state HMM’s recognition accuracy is much lower (66% vs. 96%). The DTW

algorithm outperforms the 8-state HMM with regards to execution time, and with similar

recognition accuracy. Another advantage of the DTW algorithm is that it requires no pre-

processing - the calculations may be performed directly on the raw sampled data. Based

on these results the decision was made to implement and optimize the DTW algorithm

on the mobile device.

The neural network requires a large amount of storage space (577 KB) compared to the

HMM and DTW algorithms (13KB and 6 KB respectively). Note that the graph in figure

6.2 is plotted on a logarithmic scale in order to observe the actual values of the HMM and

DTW algorithms. This is due to the large size of the neural network. The DTW algorithm

outperforms the ANN and HMM algorithms with regards to the required storage space. It

should be noted, however, that as the amount of gestures to be recognized increase, the

storage space required by the DTW algorithm will increase linearly. This is not the case

with the ANN and DTW algorithms, as the sizes of the networks will remain static, unless

they have to be enlarged to increase recognition accuracy.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

Chapter 6 Results

1 10 100 1000 10000 100000 1000000

HMM (4 state)

HMM (8 state)

ANN

DTW

Disk space required (bytes)

Figure 6.2: Storage space required for storing the trained networks

6.2 Profiling the gesture recognition algorithm on

the mobile device

It does not make sense to use a profiler tool on the algorithm implemented on the mobile

device, as the algorithm is contained in only a few subroutines. Profilers work well in

cases where there are many subroutines and the source of a bottleneck must be deter-

mined. Therefore only a timer routine was used to profile the gesture recognition algo-

rithm. When the algorithm on the mobile device was profiled, the following steps were

followed:

• Ensure that no other programs are running at the same time.

• Measure program start time and measure program end time with microsecond res-

olution.

• Subtract start time from end time to get running time.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

64

Chapter 6 Results

• Initially the running time will get shorter after each iteration. Record 5 running

times to calculate an average running time when successive running times differ by

less than 10ms.

To accurately determine the execution time of the algorithm on the mobile device, the

Symbian TTime::HomeTime() function was used. This timer has a microsecond resolution.

6.3 Porting the gesture recognition algorithm to Sym-

bian OS

The gesture recognition algorithm was ported to the mobile device by making use of

Nokia’s Open C platform [55]. Open C is a set of POSIX libraries to enable standard C

programming on Symbian Series 60 devices. Open C implements a version of the libc

standard C library that includes standard input/output routines, database routines, bit

operators, string operators, character tests and character operators, storage allocation,

time functions and signal handling. The Open C version used in this study was 3.0.1. The

development environment used was Nokia’s Carbide.c++ v.1.2 IDE, that is based on the

open source Eclipse development tools [58].

Due to the limited amount of memory available on the mobile device, the original DTW

algorithm did not run as expected. This was attributed to allocated memory not being

freed after each iteration of the DTW algorithm. On a PC, this is not a problem, as there

is sufficient memory available to hold all the required data structures for each iteration of

the DTW algorithm and then freeing the memory on exit. The program was modified to

free the allocated memory after each iteration of the DTW algorithm.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

65

Chapter 6 Results

6.4 Optimizing the gesture recognition algorithm on

the mobile device

Modern compilers perform many optimizations (e.g. loop unrolling) automatically. Before

manually performing low-level optimizations, the optimization flags on the compiler were

adjusted to see whether performance could be improved. The compiler that was used to

compile code for the mobile device is the GCCE compiler distributed as part of the Nokia

S60 3rd Edition SDK for Symbian OS Feature Pack 1 (FP1).

To modify optimization flags in the GCCE compiler, the gcce.mk file in the

C:\Symbian\9.2\S60_3rd_FP1\Epoc32\tools\compilation_config

directory may be edited and the REL_OPTIMIZATION field modified for the phone release

build configuration. The GCCE compiler supports 3 levels of optimization with addi-

tional optimization flags. On optimization level 1, around 18 different optimizations are

performed, some of which are shown in table 6.6. On optimization level 2, an additional

21 optimizations are performed. On optimization level 3, an additional 3 optimizations

are performed:

• -finline-functions - Integrates all simple functions into their callers.

• -funswitch-loops - Move branches with loop invariant conditions out of the loop.

• -fgcse-after-reload - A redundant load elimination pass is performed after reload.

The results of the different compiler optimization flags, together with the results of the

other optimizations described in this section, is provided in figure 6.3. It should be noted

that the optimizations as shown in the figure were performed incrementally, e.g. the

optimization where the loading of the test gesture was moved out of the loop includes the

optimization where only integer arithmetic was used.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

Chapter 6 Results

T
ab

le
6.

6:
O

p
ti
m

iz
at

io
n

fl
ag

s
en

ab
le

d
on

op
ti

m
iz

at
io

n
le

ve
l
2

O
p
ti
m

iz
at

io
n

fl
ag

D
es

cr
ip

ti
on

-
f
d
e
f
e
r
-
p
o
p

A
lw

ay
s

p
op

th
e

ar
gu

m
en

ts
to

ea
ch

fu
n
ct

io
n

ca
ll

as
so

on
as

th
at

fu
n
ct

io
n

re
tu

rn
s.

-
f
d
e
l
a
y
e
d
-
b
r
a
n
c
h

A
tt

em
p
t

to
re

or
d
er

in
st

ru
ct

io
n
s

to
ex

p
lo

it
in

st
ru

ct
io

n
sl

ot
s.

-
f
g
u
e
s
s
-
b
r
a
n
c
h
-
p
r
o
b
a
b
i
l
i
t
y

U
se

h
eu

ri
st

ic
s

to
gu

es
s

b
ra

n
ch

p
ro

b
ab

il
it
ie

s.

-
f
c
p
r
o
p
-
r
e
g
i
s
t
e
r
s

A
co

p
y
-p

ro
p
ag

at
io

n
p
as

s
is

p
er

fo
rm

ed
to

tr
y

to
re

d
u
ce

sc
h
ed

u
li
n
g

d
ep

en
d
en

ci
es

.

-
f
l
o
o
p
-
o
p
t
i
m
i
z
e

M
ov

es
co

n
st

an
t

ex
p
re

ss
io

n
s

ou
t

of
lo

op
s

an
d

si
m

p
li
fy

ex
it

te
st

co
n
d
it

io
n
s.

-
f
i
f
-
c
o
n
v
e
r
s
i
o
n

A
tt

em
p
t

to
tr

an
sf

or
m

co
n
d
it
io

n
al

ju
m

p
s

in
to

b
ra

n
ch

-l
es

s
eq

u
iv

al
en

ts
.

-
f
i
f
-
c
o
n
v
e
r
s
i
o
n
2

U
se

co
n
d
it
io

n
al

ex
ec

u
ti

on
to

tr
an

sf
or

m
co

n
d
it

io
n
al

ju
m

p
s

in
to

b
ra

n
ch

-l
es

s
eq

u
iv

al
en

ts
.

-
f
t
r
e
e
-
c
c
p

P
er

fo
rm

sp
ar

se
co

n
d
it

io
n
al

co
n
st

an
t

p
ro

p
ag

at
io

n
(C

C
P

)
on

tr
ee

s.

-
f
t
r
e
e
-
d
c
e

P
er

fo
rm

d
ea

d
co

d
e

el
im

in
at

io
n

(D
C

E
)

on
tr

ee
s.

-
f
t
r
e
e
-
d
o
m
i
n
a
t
o
r
-
o
p
t
s

P
er

fo
rm

a
va

ri
et

y
of

si
m

p
le

sc
al

ar
cl

ea
n
u
p
s

e.
g

co
n
st

an
t/

co
p
y

p
ro

p
ag

at
io

n

-
f
m
e
r
g
e
-
c
o
n
s
t
a
n
t
s

A
tt

em
p
t

to
m

er
ge

id
en

ti
ca

l
co

n
st

an
ts

ac
ro

ss
co

m
p
il
at

io
n

u
n
it

s.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

67

Chapter 6 Results

0 100 200 300 400 500 600 700 800 900 1000

Base program

Optimization flags -O2

Optimization flags -O3

Optimization flags -O3 -fno-
unit-at-a-time

Using only integers

Moving loading of gesture x out
of loop

Using fixed x and y arrays
instead of dynamically

allocating arrays

O
p

ti
m

iz
at

io
n

Milliseconds (ms)

Figure 6.3: Execution times after performing different optimizations

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

68

Chapter 6 Results

The flag -fno-unit-at-a-time prevents the compiler from parsing the whole compila-

tion unit before starting to produce code. Parsing the whole compilation unit allows some

extra optimizations to take place but consumes more memory (in general).

Having the compiler perform automatic optimization reduces the execution time by about

14%. There is not much difference in improvement between the different optimization lev-

els, due to the simplistic nature of the algorithm. The main algorithm is contained in one

function, so inlining functions does not really make a difference.

After automatic compiler optimization has been performed, any unnecessary variables

and function calls in all loops’ condition statements, as well as in the rest of the program,

were replaced with constants. This did not prove to have any effect on the execution time.

By converting the floating point variables in the program to integer variables, a 16%

reduction in execution time was achieved. To reduce chip size and power dissipation,

floating-point units are not provided on most embedded processors. Software emulation of

floating-point arithmetic is usually implemented. However, the mobile device that these

optimizations were performed on, the Nokia N95, does include a Floating-Point Unit

(FPU). This means that for mobile devices without a FPU, the performance gain will be

even higher.

Architectural optimization was also carried out. In the base program (without any opti-

mization) the gesture file being recognized was loaded each time the DTW algorithm was

performed. By only loading the file once at the start of the program and then using the

same data structure for future calculations, a further 26% reduction in execution time was

achieved. This indicates that by properly refactoring a section of code, large performance

gains are achievable.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

69

Chapter 6 Results

The base program dynamically allocates two-dimensional arrays after the gesture files

are loaded. By replacing the dynamically allocated array with a fixed array, an additional

64% reduction in execution time was achieved. This is quite significant, and it indicates

the very large amount of overhead that is required to dynamically allocate arrays using

the malloc() function.

6.5 Implementation of a user application utilizing ges-

ture recognition on a mobile device

A user application was implemented to test the real-world functionality of the gesture

recognition algorithm. The user application was developed in the Python programming

language and executed on the mobile device using Nokia’s Python for Series 60 (S60)

version 1.4.1 [56] utilities. Using Python allows one to rapidly prototype a graphical user

interface (GUI) and other functionality by making use of the built-in APIs to provide, for

example, sound and graphics capabilities. An example of the user application running on

the mobile device is shown in figure 6.4.

To have the system learn a new gesture, the user can select the New Gesture command

from the pop-up menu. When the user starts the moving the device, the application

records the gesture until the device stops moving. The recorded gesture is then stored as

a reference gesture on the device. To recognize a gesture, the user selects the Recognize

command from the pop-up menu. The application records the test gesture as soon as the

user starts moving the device. When the device stops moving, the application executes

the gesture recognition algorithm and displays the recognized gesture as a graphic on the

screen. The recognized gesture is also spoken out loud using the text-to-speech function-

ality of the Nokia Python Audio API.

A sliding window algorithm, similar to the one suggested by [2], was used to detect the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

70

Chapter 6 Results

Figure 6.4: User application running on the mobile device

beginning and end of the gestures. The algorithm in [2] suggests that ranges where the

variance is greater than a set threshold may be considered to be periods of activity. The

window size and threshold value may be found analytically, based on the sensor noise

floor and the minimum attack speed considered to represent a deliberate motion. For the

user application the start of a gesture was recorded when the variance was greater than a

set threshold. The end of the gesture was recorded when the variance was lower than a set

threshold, based on a sliding window where the variance was calculated using a window

of previous samples.

The gesture recognition algorithm (written in C) was linked into the Python program

as a dynamically linked library (DLL). Wrapper code was created for the C algorithm in

order to link it into the Python program.

The user application was converted into a standalone Python program on the Symbian

device through the Ensymble developer utilities for Symbian S60 [57]. It can also run as

a script in the Python for S60 shell.

When using the Symbian for 3rd edition SDK FP1, the program has to be signed with

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

71

Chapter 6 Results

a cryptographical signature and a digital certificate must be generated. This may be

done by making use of the Symbian createsis command. From Symbian 3rd Edition

onwards, it is not possible to install an application on a Symbian device without signing

the application first.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

72

Chapter 7

Conclusion

7.1 Summary of the work

This research provides two contributions to the field of gesture recognition. It was shown

that gesture recognition can be performed on a mobile device with high accuracy for

a reasonable amount of gestures, without the need for extensive preprocessing. It was

also shown that partial dynamic time warping is a very effective technique to recognize

accelerometer-based gestures, with very low computational overhead and minimal train-

ing required.

The applicability of optimization techniques to resource-constrained devices was also in-

vestigated, with some interesting findings. Dynamically allocating arrays on a mobile

device proved to be one of the largest contributing factors to computational overhead

on a resource-constrained device. It is possible to optimize even a simple algorithm by

refactoring the code for speed and performance.

A HMM with 4 states was able to correctly classify a total of 53 of the 80 samples,

for a total accuracy of 66.25%. As the recognition accuracy of the HMM proved to be

too low to be able to accurately compare the model with the other algorithms, a HMM

with 8 states was used. For the HMM with 8 states, a total of 77 of the 80 samples were

73

Chapter 7 Conclusion

correctly classified, for a total accuracy of 96.25%.

Regarding the ANN, a total of 72 of the 80 samples were correctly classified, for a total

accuracy of 90%. Regarding the DTW algorithm, a total of 77 of the 80 samples were

correctly classified, for a total accuracy of 96.25%. This compares very well with the HMM

algorithm with 8 states, and the accuracy of the DTW algorithm was considered sufficient

for implementation.

The ANN had the slowest computational performance, due to the large size of the neural

network. The HMM performed better, but the DTW algorithm proved to be the fastest

with comparable recognition accuracy. The DTW algorithm has an average recognition

time of 8.31ms, compared to the HMM algorithm at 15ms, and the ANN algorithm

at 24.82ms. Another advantage of the DTW algorithm is that there is no preprocessing

required whatsoever - the calculations can be performed directly on the raw sampled data.

The model was empirically validated by implementing it in a user application on the

mobile device. After the gesture recognition algorithm was implemented on the mobile

device, it was discovered that the system does have some problems handling dynamical

differences (intensive vs. phlegmatic), but performs well with regards to spatio-temporal

differences.

7.2 Critical evaluation of own work

Partial dynamic time warping proves to be effective for recognizing accelerometer-based

gestures. It has very low computational overhead and has low memory requirements for a

reasonable amount of gestures. It does not require extensive training, as is the case with

both hidden Markov models and artificial neural networks.

A well-defined and sufficiently constrained recognition problem (small intraclass variations

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74

Chapter 7 Conclusion

and large interclass variations) will lead to a compact pattern recognition representation

and a simple decision making strategy. It is therefore of importance that the gestures to

be recognized are sufficiently different from one another in order to create large interclass

variations.

The reasoning behind using only 8 different gestures was explained earlier in the text,

but the sample size used per gesture may be a cause for concern. In order to fully test

the validity of the partial dynamic time warping algorithm used, the amount of samples

per gesture should be increased. This is left as future work, as the objective of this study

was only to evaluate the various algorithms and optimize the most efficient one.

The algorithm implemented is not a full implementation of the dynamic time warping

algorithm. A minimum cost path obtained from the distance matrix is used as a simi-

larity measure, without having to calculate the final time warped signal. To the author’s

knowledge, this method has not yet been applied to accelerometer-based gesture recogni-

tion.

7.3 Future work

Future work includes performing user testing to gauge recognition accuracy when dif-

ferent users are involved. Both user-dependent and user-independent testing should be

performed. Informal testing shows good user-dependent accuracy, but suboptimal user-

independent accuracy. The algorithm simplifies training by only requiring one gesture

sample to be performed. This means that the system can be retrained for different users

very easily, making user-independent accuracy unnecessary.

The size of the neural network can be decreased by decreasing the amount of input neu-

rons required. This can be done by performing feature extraction on the data. It would

be interesting to see if the additional overhead incurred by preprocessing will decrease the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

Chapter 7 Conclusion

execution time of the network significantly, or enough to improve the overall performance.

The applicability of the partial dynamic time warping algorithm to other pattern recogni-

tion problems should be explored. It is possible that the similarity measure may be used

as a computationally efficient way to solve pattern recognition problems in other domains

where there are a limited amount of patterns, but a large amount of spatio-temporal

variability.

The algorithm may be ported to other resource-constrained devices, such as wireless

sensor nodes. As the algorithm was implemented in the C programming language and

was optimized with regards to stack and heap size, porting it to other microcontroller

architectures should prove to be unproblematic.

By utilizing accelerometer-based gesture recognition techniques and optimizing the ges-

ture recognition algorithms for resource-constrained devices, truly mobile applications in

the field of Human-Computer Interaction (HCI) can be created by performing gesture

recognition on-board a mobile device. Users will be able to manipulate objects on the

mobile device directly using hand gestures, or use gestures to issue specific commands.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76

Bibliography

[1] T. Baudel and M. Beaudoin-Lafon, “Charade: remote control of objects us-

ing free-hand gestures,” Communications of the ACM, vol. 36, no. 7, pp. 28-

35, July 1993.

[2] A.Y. Benbasat and J.A. Paradiso, “An Inertial Measurement Framework

for Gesture Recognition and Applications,” Lecture Notes in Computer Sci-

ence: Gesture and Sign Language in Human-Computer Interaction, vol. 2298,

no.2002, pp. 77-90, 2002.

[3] T. Westeyn et al., “Georgia tech gesture toolkit: supporting experiments

in gesture recognition,” Proceedings of the 5th International Conference on

Multimodal interfaces, Vancouver, British Columbia, Canada, pp. 85-92, 5-7

November 2003.

[4] P. Keir et al., “Gesture-recognition with Non-referenced Tracking,” Proceed-

ings of the IEEE conference on Virtual Reality, Alexandria, Virginia, USA,

pp. 137, 25-29 March 2006.

[5] E. Farella et al., “Design and implementation of WiMoCA Node for a body

area wireless sensor network,” Proceedings of the IEEE Conference on Sensor

Networks, Montreal, Canada, pp. 342-347, 14-17 August 2005.

[6] D. Geer, “Will gesture recognition technology point the way?,” IEEE Com-

puter, vol. 37, no. 10, pp. 20-23, 2004.

77

[7] A. Feldman, E.M. Tapia, S. Sadi, P. Maes, C. Schmandt, “ReachMedia:

On-the-move interaction with everyday objects,” Ninth IEEE International

Symposium on Wearable Computers (ISWC’05), Osaka, Japan, pp. 52-59,

18-21 October 2005.

[8] W. Chou, Pattern recognition in speech and language processing, CRC Press,

Boca Raton, Florida, 2003.

[9] A. Wilson and A. Bobick, “Parametric hidden Markov models for gesture

recognition,” Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, no. 9, pp. 884-900, 1999.

[10] H. Lee and J. Kim, “An HMM-based threshold model approach for gesture

recognition,” Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, no. 10, pp. 961-973, 1999.

[11] A. Buys, Research guide for post-graduate students, Department of Engineer-

ing and Technology Management, University of Pretoria, p. 7, Feb. 2006.

[12] K. Wadleigh, Software optimization for high-performance computing, Pren-

tice Hall, Upper Saddle River, New Jersey, 2000.

[13] H. Muller, C. Randell, and A. Moss, “A 10mW Wearable Positioning Sys-

tem,” Proceedings of the 10th IEEE International Symposium on Wearable

Computers, Montreux, Switzerland, pp. 47-50, 11-14 October 2006.

[14] J. Mouton, How to succeed in your master’s and doctoral studies: a South

African guide and resource book, Pretoria: Van Schaik, pp. 163-164, 2001.

[15] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: a review,”

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1,

pp. 4-37, 2000.

Electrical, Electronic and Computer Engineering 78

[16] D. Lowe and A. Webb, “Optimized feature extraction and the Bayes decision

in feed-forward classifier networks,” Transactions on Pattern Analysis and

Machine Intelligence, vol. 13, no. 4, pp. 355-364, 1991.

[17] E. Choi et al., “Beatbox music phone: gesture-based interactive mobile phone

using a tri-axis accelerometer,” IEEE International Conference on Industrial

Technology (ICIT 2005), Hong Kong, pp. 97-102, 15-18 December 2005.

[18] K. Van Laerhoven et al., “Towards a wearable inertial sensor network,” IET

Seminar Digests, vol. 2003, no. 10350, pp. 125-130, 2003.

[19] K . Van Laerhoven and H. Gellersen, “Spine versus porcupine: a study in

distributed wearable activity recognition,” Eighth International Symposium

on Wearable Computers (ISWC 2004), Arlington, VA, USA, vol. 1, pp. 142-

149, 31 October - 3 November 2004.

[20] I. Ozer, T. Lu, and W. Wolf, “Design of a real-time gesture recognition

system: high performance through algorithms and software,” IEEE Signal

Processing Magazine, vol. 22, no. 3, pp. 57-64, 2005.

[21] J. Kumagai, “Talk to the machine,” IEEE Spectrum, vol. 39, no. 9, pp. 60-64,

2002.

[22] H. Brashear et al., “Using multiple sensors for mobile sign language recogni-

tion,” Proceedings of the Seventh IEEE International Symposium on Wear-

able Computers, Boston, MA, USA, pp. 45-52, 11-13 October 2003.

[23] J. Mäntyjärvi, J. Himberg, and T. Seppanen, “Recognizing human motion

with multiple acceleration sensors,” IEEE International Conference on Sys-

tems, Man, and Cybernetics, Arizona, USA, pp. 747-752, 7-10 October 2001.

[24] E. Barnard and D. Casasent, “Invariance and neural nets,” IEEE Transac-

tions on Neural Networks, vol. 2, no. 5, pp. 498-508, 1991.

Electrical, Electronic and Computer Engineering 79

[25] T. Pylvänäinen, “Accelerometer Based Gesture Recognition Using Continu-

ous HMMs,” Lecture Notes in Computer Science: Pattern Recognition and

Image Analysis, vol. 3522, no. 2005, 2005.

[26] V. Mäntylä et al., “Hand gesture recognition of a mobile device user,” IEEE

International Conference on Multimedia and Expo, New York, NY, USA,

vol. 1, pp. 281-284, 30 July - 2 August 2000.

[27] G. Chambers et al., “Hierarchical recognition of intentional human gestures

for sports video annotation,” Proceedings of the 16th International Confer-

ence on Pattern Recognition, Quebec City, pp. 1082-1085 vol.2, 11-15 August

2002.

[28] T. Westeyn et al., “Recognizing mimicked autistic self-stimulatory behaviors

using HMMs,” Proceedings of the Ninth IEEE International Symposium on

Wearable Computers, Osaka, Japan, pp. 164-167, 18-21 October 2005.

[29] G. Bailador, D. Roggen, G. Tröster, and G. Triviño, “Real time gesture

recognition using Continuous Time Recurrent Neural Networks,” Proceedings

of the 2nd International Conference on Body Area Networks (BodyNets),

Florence, Italy, June 2007.

[30] Y.H. Hu and J. Hwang, Handbook of neural network signal processing, CRC

Press, Boca Raton, Florida, 2002.

[31] S.T. Welstead, Neural network and fuzzy logic applications in C/C++, John

Wiley & Sons, New York, 1994.

[32] E. Charniak, “Bayesian networks without tears”, AI Magazine, vol. 12, no. 4,

pp. 50-63, 1991.

[33] S. Rabin, AI game programming wisdom 3, Charles River Media, Boston,

Massachusetts, 2006.

Electrical, Electronic and Computer Engineering 80

[34] L.F.C. Pessoa, “Multilayer perceptrons versus Hidden Markov Models: Com-

parisons and applications to image analysis and visual pattern recognition”,

Ph.D. thesis, Georgia Institute of Technology, 1995.

[35] K. Murakami and H. Taguchi, “Gesture recognition using recurrent neural

networks”, Proceedings of the SIGCHI conference on human factors in com-

puting systems, New Orleans, Louisiana, USA, pp. 237-242, 28 April - 5 June

1991.

[36] D. Xu, “A neural network approach for hand gesture recognition in virtual

reality driving system of SPG”, 18th International Conference on Pattern

Recognition (ICPR’06), Hong Kong, pp. 519-522, 20-24 August 2006.

[37] Y.S. Moon, C.C. Leung and K.H. Pun, “Fixed-point GMM-based speaker

verification over mobile embedded system”, Proceedings of the 2003 ACM

SIGMM workshop on Biometrics methods and applications, Berkeley, CA,

USA, pp. 53-57, 2-8 November 2003.

[38] S. Nissen, “Implementation of a fast neural network library (FANN)”, Grad-

uate Report, University of Copenhagen (DIKU), 2003.

[39] M. De Loura, Game programming gems 2, Charles River Media, Boston,

Massachusetts, 2001.

[40] D. Treglia, Game programming gems 3, Charles River Media, Boston, Mas-

sachusetts, 2002.

[41] L.R. Rabiner and B.H. Juang, “Fundamentals of speech recognition”, Pren-

tice Hall, Upper Saddle River, New Jersey, 1993.

[42] Cambridge University Engineering Department, “HTK Speech Recognition

Toolkit”, 2008, http://htk.eng.cam.ac.uk/. Last accessed on 14 April 2008.

Electrical, Electronic and Computer Engineering 81

[43] A. Langstaff, “Essential Symbian OS Performance Tips”, 2008,

http://developer.symbian.com/main/learning/press/books/pdf/Performance Tips.pdf. Last

accessed on 14 April 2008.

[44] Free Software Foundation, GCC Online Documentation, 2008,

http://gcc.gnu.org/onlinedocs/. Last accessed on 14 April 2008.

[45] M.H. Ko et al., “Online context recognition in multisensor systems using

dynamic time warping”, Proceedings of the 2005 International Conference

on Intelligent Sensors, Sensor Networks and Information Processing, Mel-

bourne, Australia, pp. 283-288, 5-8 December 2005.

[46] J. Coleman, “Introducing speech and language processing”, Cambridge Uni-

versity Press, Cambridge, UK, 2005.

[47] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for

spoken word recognition”, IEEE Transactions on Acoustics, Speech, and Sig-

nal Processing, vol. 26, no. 1, pp. 43-49, 1978.

[48] A. Graps, “An introduction to wavelets”, IEEE Computational Science &

Engineering, vol. 2, no. 2, pp. 50-61, 1995.

[49] J. Heaton, “Introduction to neural networks with Java”, Heaton Research

Inc., Chesterfield, Missouri, 2005.

[50] S. Nissen, “Fast Artificial Neural Network Library (FANN)”, 2008,

http://fann.sourceforge.net/. Last accessed on 17 April 2008.

[51] Georgia Institute of Technology Contextual Computing Group, “Georgia

Tech Gesture Recognition Toolkit”, 2006, http://gt2k.cc.gatech.edu/. Last

accessed on 18 April 2008.

[52] V.N. Vapnik, “Statistical learning theory”, Wiley & Sons, New York, 1998.

Electrical, Electronic and Computer Engineering 82

[53] AiLive Inc., “LiveMove White Paper”, 2006,

http://www.ailive.net/papers/LiveMoveWhitePaper en.pdf. Last accessed

on 17 April 2008.

[54] A. Wilson and S. Shafter, “XWand: UI for intelligent spaces”, Proceedings of

the SIGCHI Conference on human factors in computing systems, Lauderdale,

Florida, pp.545-552, 5-10 April 2003.

[55] Nokia Research Center, “Open C: Standard-based

Libraries for Symbian-based Smartphones”, 2008,

http://opensource.nokia.com/projects/openc/. Last accessed on 17 April

2008.

[56] Nokia Research Centre, “Python for S60,” 2008,

http://opensource.nokia.com/projects/pythonfors60/. Last accessed on

17 April 2008.

[57] J. Ylänen, “The Ensymble developer utilities for Symbian OS”, 2007,

http://www.nbl.fi/ nbl928/ensymble.html. Last accessed on 17 April 2008.

[58] Nokia, “Carbide Development Tools”, 2008,

http://www.forum.nokia.com/main/resources/tools and sdks/carbide/index.html. Last

accessed on 17 April 2008.

[59] J.O. Wobbrock, A.D. Wilson and Y. Li, “Gestures without libraries, toolkits

or training: A $1 recognizer for user interface prototypes,” Proceedings of

the 20th annual ACM symposium on user interface software and technology,

Newport, RI, USA, pp. 159-158, 7-10 October 2007.

[60] S. Watanabe, “Pattern recognition: Human and Mechanical”, Wiley & Sons,

New York, 1985.

[61] R.O. Duda, P.E. Hart and D.G. Stork, “Pattern classification”, Wiley &

Sons, New York, 2001.

Electrical, Electronic and Computer Engineering 83

	FRONT
	Title page
	Summary
	Keywords
	Opsomming (Afrikaans)
	Acknowledgements
	Contents
	List of Abbreviations

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	BIBLIOGRAPHY

