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SUMMARY 

Data security will play a central role in the design of future IT systems. The PC has been a 

major driver of the digital economy. Recently, there has been a shift towards IT applications 

realized as embedded systems, because they have proved to be good solutions for many 

applications, especially those which require data processing in real time. Examples include 

security for wireless phones, wireless computing, pay-TV, and copy protection schemes for 

audio/video consumer products and digital cinemas. Most of these embedded applications will 

be wireless, which makes the communication channel vulnerable. 

The implementation of cryptographic systems presents several requirements and challenges. 

For example, the performance of algorithms is often crucial, and guaranteeing security is a 

formidable challenge. One needs encryption algorithms to run at the transmission rates of the 

communication links at speeds that are achieved through custom hardware devices. 
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Public-key cryptosystems such as RSA, DSA and DSS have traditionally been used to 

accomplish secure communication via insecure channels. Elliptic curves are the basis for a 

relatively new class of public-key schemes. It is predicted that elliptic curve cryptosystems 

(ECCs) will replace many existing schemes in the near future. The main reason for the 

attractiveness of ECC is the fact that significantly smaller parameters can be used in ECC than 

in other competitive system, but with equivalent levels of security. The benefits of having 

smaller key size include faster computations, and reduction in processing power, storage space 

and bandwidth. This makes ECC ideal for constrained environments where resources such as 

power, processing time and memory are limited. 

The implementation of ECC requires several choices, such as the type of the underlying finite 

field, algorithms for implementing the finite field arithmetic, the type of the elliptic curve, 

algorithms for implementing the elliptic curve group operation, and elliptic curve protocols. 

Many of these selections may have a major impact on overall performance. 

In this dissertation a finite field from a special class called the Optimal Extension Field (OEF) 

is chosen as the underlying finite field of implementing ECC. OEFs utilize the fast integer 

arithmetic available on modern microcontrollers to produce very efficient results without 

resorting to multiprecision operations or arithmetic using polynomials of large degree. This 

dissertation discusses the theoretical and implementation issues associated with the 

development of this finite field in a low end embedded system. It also presents various 

improvement techniques for OEF arithmetic. 

The main objectives of this dissertation are to  

• Implement the functions required to perform the finite field arithmetic operations. 

• Implement the functions required to generate an elliptic curve and to embed data on 

that elliptic curve. 

• Implement the functions required to perform the elliptic curve group operation. 
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All of these functions constitute a library that could be used to implement any elliptic curve 

cryptosystem. In this dissertation this library is implemented in an 8-bit AVR Atmel 

microcontroller. 

KEYWORDS 

Elliptic Curve, Cryptography, ECC, Public-key, Finite field, Optimal Extension Field, OEF, 

Diffie-Hellman, ElGamal, ECDH, Discrete Logarithm Problem, ECDLP, Itoh Tsujii Inversion, 

Frobenius, Karatsuba algorithm, Extended Euclidean algorithm, Schoolbook method, Addition 

Chain algorithm, Non-Adjacent Form, Quadratic Residue, Legendre Symbol, Embedded 

System. 
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OPSOMMING 

Datasekuriteit sal ‘n kernrol in die ontwerp van toekomstige inligtingstegnologie-stelsels speel. 

Die persoonlike rekenaar was ‘n belangrike dryfkrag agter die digitale ekonomie. Daar was die 

afgelope tyd ‘n verskuiwing na IT-toepassings wat as ingebedde stelsels gerealiseer word, 

omdat daar bewys is dat hulle goeie oplossings bied vir vele toepassings, veral die wat intydse 

dataverwerking verg. Voorbeelde hiervan sluit sekuriteit vir draadlose telefone, draadlose 

berekening, betaal-TV en kopieerbeskermingskemas vir oudio-/videoverbruikerprodukte en 

syferkameras in. Die meeste van hierdie ingebedde toepassings sal draadloos wees, wat die 

kommunikasiekanaal nog kwesbaarder maak. 

Die implementering van kriptografiese stelsels bied verskeie vereistes en uitdagings. Die 

werkverrigting van algoritmes is dikwels kritiek en om sekuriteit te waarborg is ‘n enorme 

uitdaging. ‘n Mens het enkripsie-algoritmes nodig wat teen die transmissietempo’s van die 

kommunikasieskakels fuksioneer teen snelhede wat deur doelgemaakte hardewaretoestelle 

bereik word. 
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Publiekesleutel-kriptostelsels soos RSA, DSA en DSS is voorheen gebruik om kommunikasie 

oor onveilige kanale te beveilig. Elliptiese krommes is die grondslag vir ‘n betreklik nuwe klas 

publiekesleutel-skemas. Daar word voorspel dat elliptiesekromme-kriptostelsels (ECC) baie 

bestaande skemas in die nabye toekoms sal vervang. Die belangrikste rede vir die 

aantreklikheid van ECC is die feit dat aansienlik kleiner parameters in ECC as in ander 

mededingende stelsels gebruik kan word, maar met gelyke sekuriteitsvlakke. Die voordele om 

‘n kleiner sleutelgrootte te hê sluit vinniger berekeninge en vermindering van verwerkingkrag, 

bergruimte en bandwydte in. Dit maak ECC ideaal vir omgewings waar hulpbronne soos krag, 

verwerkingtyd en geheue beperk is. 

Die implementering van ECC benodig verskeie keuses soos die tipe onderliggende eindige 

veld, algoritmes vir die implementering van die eindigeveld-rekenkunde, die tipe elliptiese 

kromme, algoritmes vir die implementering van die elliptiesekromme-groepwerking en 

elliptiesekromme-protokolle. Baie van hierdie keuses kan ‘n belangrike impak op die algehele 

werkverrigting hê. 

In hierdie verhandeling word ‘n eindige veld uit ‘n spesiale klas bekend as Optimale 

Uitbreidingveld (OEF) gekies as die onderliggende eindige veld om ECC te implementeer. 

OEFs benut vinnige integraalrekenkunde wat op moderne mikrobeheerders beskikbaar is om 

baie doeltreffende resultate te lewer sonder om in ‘n groot mate staat te maak op 

multipresisiewerkinge of rekenkunde wat polinomiale gebruik. Hierdie verhandeling bespreek 

die teoretiese en implementeringvraagstukke wat met die ontwikkeling van hierdie eindige 

veld in ‘n lae-end-ingebedde stelsel verband hou. Dit bied ook verskeie verbeteringtegnieke 

vir OEF-rekenkunde. 

Die hoofoogmerke van hierdie verhandeling is om  

• Die funksies te implementeer wat nodig is om die eindigeveld-rekenkundige werkinge 

uit te voer. 

• Die funksies te implementeer wat nodig is om ‘n elliptiese kromme te genereer  en om 

data op daardie elliptiese kromme in te bed. 
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• Die funksies in werking te stel wat nodig is om die elliptiesekromme-groepwerking uit 

te voer. 

Al hierdie funksies maak ‘n biblioteek uit wat gebruik kan word om enige elliptiesekromme-

kriptostelsel te implementeer. In hierdie verhandeling word hierdie biblioteek in ‘n 8-bit AVR 

Atmel-mikrobeheerder geïmplementeer. 
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Chapter 1  

INTRODUCTION 

1.1 CRYPTOGRAPHY 

The fundamental aim of cryptography has always been to provide secure communications over 

an insecure channel, so that only a set of intended recipients can understand the message. 

Cryptography draws from a broad range of sciences, including mathematics, computer science, 

information theory and human psychology. With the growing rate of electronic commerce and 

information exchange, cryptography is gaining in importance and getting attention from 

corporations, governments and individuals alike. 

Cryptography involves the study of mathematical techniques that allow the practitioner to 

provide the following security services [1]: 

Confidentiality 

A service used to keep the content of information accessible to only those authorized to have it. 

Integrity 

A service that requires the computer system assets and transmitted information be capable of 

modification only by authorized users. 

Authentication 

A service that is concerned with assuring that the origin of a message is correctly identified. 
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Non-repudiation 

A service which prevents both the sender and the receiver of a transmission from denying 

previous commitments or actions. 

Availability 

A measure of the ability of the system to function efficiently in providing security. 

These security services are provided by using cryptographic algorithms. There are two major 

classes of algorithms in cryptography: Private-key or Symmetric-key algorithms and Public-

key algorithms. 

1.1.1 Symmetric-key Algorithms 

Private-key or Symmetric-key algorithms are algorithms where the encryption and decryption 

key are the same. The main function of these algorithms is encryption of data. 

There are two types of symmetric-key algorithms, which are commonly distinguished: block 

ciphers and stream ciphers. Block ciphers are encryption schemes in which the message is 

broken into strings (called blocks) of fixed length and encrypted one block at a time. Examples 

include the Data Encryption Standard (DES) [2], the International Data Encryption Algorithm 

(IDEA) [3], and the Advanced Encryption Standard (AES) [4]. Stream ciphers operate on a 

single bit of plaintext at a time. They are useful because the encryption transformation can 

change for each symbol of the message being encrypted. 

1.1.2 Public-key Algorithms 

Public-key (PK) cryptography is based on the idea of separating the key used to encrypt a 

message from the one used to decrypt it. In general, one can divide practical public-key 

algorithms into three families: 

Algorithms based on the integer factorization problem 

Given a positive integer n, find its prime factorization, e.g. RSA [5]. 
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Algorithms based on the discrete logarithm problem 

Given y and q find x such that pqy x mod= , the Diffie-Hellman [6] key exchange protocol is 

based on this problem as well as many other protocols, including the Digital Signature 

Algorithm (DSA) [1, 7]. 

Algorithms based on Elliptic Curves 

Elliptic curve cryptosystems are the most recent family of practical public-key algorithms, but 

are rapidly gaining acceptance. Due to their reduced processing needs, elliptic curves are 

especially attractive for embedded applications. 

Despite the differences between these mathematical problems, all three algorithm families 

have something in common: they all perform complex operations on very large numbers, 

typically 1024-2048 bits in length for the RSA and discrete logarithm systems or 160-256 bits 

in length for the elliptic curve systems. Since elliptic curves are somewhat less 

computationally intensive than the other two algorithm families, they seem especially 

attractive for embedded applications. 

Public-key cryptosystems solve in a very elegant way the key distribution problem of 

symmetric-key schemes. However, PK systems have a major disadvantage: public-key 

algorithms are very arithmetic intensive. Hence, in practice, cryptographic systems are a 

mixture of symmetric-key and public-key cryptosystems. Usually, a public-key algorithm is 

chosen for key establishment and authentication through digital signatures, and then a 

symmetric-key algorithm is chosen to encrypt the communications and the data transfer, 

achieving in this way high throughput rates. Additional information on cryptography can be 

found in [1, 7]. 
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1.2 EMBEDDED SYSTEM1 

An embedded system is a specialized computer system that is part of a larger system or 

machine. Typically, an embedded device is housed on a single microprocessor board with the 

programs stored in ROM. Virtually all appliances that have a digital interface (watches, 

microwaves, VCRs, cars) utilize embedded systems. Some embedded systems include an 

operating system, but many are so specialized that the entire logic can be implemented as a 

single program [8]. 

Technological improvements have made possible the development of powerful, low cost and 

low power microprocessors. Embedded systems are quickly becoming ubiquitous in our daily 

life for keeping track of our addresses, appointments, messages, and so on. The next 

revolution after the Internet is expected to be driven by Embedded System applications. 

Embedded processors are already an integral part of many communications devices and their 

importance will continue to increase. 

Embedded devices are very different from PCs from the computational resources and memory 

availability point of view. In addition, embedded systems are usually designed to consume 

small amounts of energy. Despite these constraints, one should be able to run the same types 

of applications that run today in a fast computer. These devices become increasingly 

connected; the communication channels between them remain highly insecure. Thus the 

existing situation demands the use of cryptography, but does not possess quite enough power 

to run the traditional algorithms, which are computationally intensive by design, in a 

reasonable amount of time. Constrained environments present a difficult challenge, where 

every possible optimization must be used simply to enable the very use of security, and to 

obtain acceptable levels of performance. 

8-bit microcontrollers are one example of embedded device used for extremely low-power and 

low-cost applications. The contribution of this dissertation deals with the implementation of 

Elliptic Curve Cryptosystems (ECC) on such 8-bit microcontrollers, and tries to achieve the 

                                                
1 In this dissertation “embedded system” will be used to refer to a low end embedded system with limited 
resources. 
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following objectives for the implementation of ECC: low code size, acceptable level of 

security, and acceptable speed of execution. 

1.3 WHY ELLIPTIC CURVE CRYPTOSYSTEMS? 

The use of elliptic curves in public key cryptography was first proposed independently by 

Koblitz [9] and Miller [10] in 1980s. Since then, elliptic curve cryptography has been the 

focus of a lot of attention and gained great popularity due to the identical level of security they 

provide but with much smaller key sizes than conventional public key cryptosystems have. 

Elliptic curve cryptosystems are based on the group of points on an elliptic curve over a finite 

field. They rely on the complexity of finding the value of a scalar, given a point and the scalar 

multiple of that point. This corresponds to solving the Discrete Logarithm Problem (DLP). 

However, it is more difficult to solve the Elliptic Curve Discrete Logarithm Problem (ECDLP) 

than its original counterpart. Thus, elliptic curve cryptosystems provide equivalent security 

compared to traditional public key cryptosystems such as RSA and discrete logarithm based 

systems like ElGamal and Diffie-Hellman algorithms, but with much smaller key sizes and 

computationally more efficient algorithms. Therefore they have smaller bandwidth and 

memory requirements, which makes them extremely desirable for embedded systems, where 

resources such as power, processing time and memory are limited for example smart cards, as 

well as use on personal computers and workstations. 

An elliptic curve cryptosystem relies on the assumed complexity of the Elliptic Curve Discrete 

Logarithm Problem (ECDLP) for its security. An instance of the ECDLP is posed for an 

elliptic curve defined over a finite field. The rule to perform the elliptic curve group operation 

can be expressed in terms of arithmetic operations in the finite field; thus the speed of the field 

arithmetic determines the speed of the cryptosystem. 

Traditionally, ECCs have been developed over finite fields which have either prime order 

(greater than 3), or characteristic 2. Prime fields have the advantages of using integer 

operations, whereas binary extension fields can use the exclusive-or (XOR) and shift 

operations instead of addition and multiplication respectively, which lead to significant 

improvements in speed. These fields have the following advantages: 
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• All subfield arithmetic is integer arithmetic and does not require any multi precision 

calculations. 

• The polynomial degree m is very small for all secure fields, so that the number of 

subfield calculations is minimized. 

Efficient algorithms for finite field operations have been closely investigated. Besides the 

standard basis, alternative representations such as the normal bases and dual bases have been 

studied [11]. Optimal Extension Fields (OEFs) have been found to be especially successful in 

embedded software implementations of elliptic curve schemes. The arithmetic operations in 

OEFs are much more efficient than in characteristic two extensions or prime fields, due to the 

use of a large characteristic ground field and the selection of a binomial as the field 

polynomial. 

In the elliptic curve scalar point multiplication, a large number of field multiplications and 

inversions are computed. Inversion is inherently more complex and at least several times more 

costly than multiplication. The adaptation of Itoh-Tsujii method [12] for standard basis, 

particularly for Optimal Extension Fields, has been effective in achieving fast inversion. 

In this dissertation, OEFs over a finite field with prime power order, that is ( )mpGF  where p is 

an odd prime and m is a positive integer, are implemented to achieve the above advantages  

1.4 CONTRIBUTION OF THE DISSERTATION 

An elliptic curve cryptosystem relies on the assumed complexity of the Elliptic Curve Discrete 

Logarithm Problem (ECDLP) for its security. An instance of ECDLP is posed for an elliptic 

curve defined over an extension finite field ( )mpGF  for p a prime and m a positive integer. 

The rule to perform the elliptic curve group operation can be expressed in terms of arithmetic 

operations in the finite field; thus the speed of the field arithmetic determines the speed of the 

cryptosystem. 
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An elliptic curve cryptosystem can be represented by three layers as depicted in figure (1.1). 

The first layer represents the underlying finite field, which consists of arithmetic operations 

required to perform elliptic curve group operation and to implement any elliptic curve 

cryptosystem. This layer can be considered as a core of the entire system. The second layer 

represents the elliptic curve, which consists of the elliptic curve group operation. The external 

layer is the cryptography layer, in which any elliptic curve cryptographic algorithm can be 

implemented. 

Finite Field

EC

Cryptography

 

Figure 1.1 Elliptic Curve Cryptosystem Structure 

The contribution of this dissertation is to discuss the theoretical issues of ECC and to 

implement the first two layers in a low end embedded system, which can be considered as a 

library that contains all functions and definitions required to implement any elliptic curve 

cryptosystem such as ECDH, ECDSA, and other cryptosystems in a low end embedded system. 

In this dissertation, a special type of the extension finite field will be used; this field is named 

Optimal Extension Field (OEF). Efficient algorithms will be used for performing finite field 

operations in OEFs. In order to practically verify the theoretical algorithms discussed, a 

complete library of the first two layers was implemented on an AVR Atmel microcontroller 

for a medium sized field whose elements can be represented with 134 bits. 
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1.5 THE DISSERTATION OUTLINE 

This dissertation consists of 10 chapters, which are organized in such a way that makes it easy 

to understand the operation of elliptic curve cryptosystem. The structure shown in figure (1.1) 

is not only useful to achieve efficient implementation of an elliptic curve cryptosystem, but it 

is also useful to describe this system, and so chapter 5 starts from the center, which is the 

underlying finite field, then the progress is carried on, in the next chapters, step by step until 

describe the complete structure. 

This dissertation is organized as follows 

Chapter 2 starts by giving a brief description of an abelian group and a finite field, then shows 

how an elliptic curve works over real numbers, and over the different types of finite fields, 

which are the prime finite field, binary finite field, binary composite finite field, extension 

finite field and optimal extension finite field. The last section compares these finite fields and 

describes the advantages and disadvantages of each field. From this section it can be 

concluded that implementing an elliptic curve over an optimal extension field is consider to be 

the best choice for embedded system. 

Chapter 3 summarizes previous work on elliptic curve cryptosystem and previous 

implementations of elliptic curve cryptosystems over different finite fields found in the 

literature. It also summarizes the use of some efficient algorithms used to implement finite 

field’s arithmetic operations, especially finite field inversion, and algorithms used to speed up 

the scalar multiplication of a point on an elliptic curve. 

Chapter 4 describes some definitions and properties of an optimal extension field. Then it 

describes the primary efficient algorithms that will be used in the finite field arithmetic 

operations and the elliptic curve group operation and implementation. For example the 

Schoolbook method and Karatsuba algorithm could be used in finite field multiplication and 

the Itoh and Tsujii Inversion algorithm to implement finite field inversion. 

Chapter 5 gives an elementary introduction to optimal extension finite field. Then it describes 

the arithmetic operations on an optimal extension field: addition, subtraction, multiplication, 

squaring, inversion and exponentiation. It shows an efficient algorithm to perform a subfield 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 1 INTRODUCTION 

Electrical, Electronic and Computer Engineering 9

reduction. It also describes a method to speed up the multiplication operation by performing a 

single reduction for each coefficient, instead of performing a subfield reduction after each 

subfield multiplication. Then it shows how the Itoh and Tsujii Inversion algorithm reduces the 

problem of extension field inversion to subfield inversion, which can get through table look-up. 

This chapter describes the first layer of the elliptic curve cryptosystems structure shown in 

figure (1.1). 

Chapter 6 describes the basic method used to compute the multiplication of points on an 

elliptic curve. This method is called the Addition-Subtraction method, and it is faster than the 

Binary-Double-and-Add algorithm, which uses binary expansion. The Addition- Subtraction 

method used the Balanced Binary Expansion that can be found using the Non Adjacent Form 

method. At the end of this chapter there is a comparison of the complexity of these two 

methods. 

Chapter 7 shows how to embed a random data and a normal message as a point on an elliptic 

curve. This embedding of data is necessary because an elliptic curve group operation works on 

points on a curve, and encryption a message using elliptic curve cryptosystems required to 

embed this message as a point on a curve before starting the encryption process. This chapter 

presents an efficient method to solve the quadratic equation, which is required to embed data 

on an elliptic curve. It also describes two types of data conversion: the first one is between an 

OEF element and a long integer that represented as a string of decimal digits. The second 

conversion is between an OEF element and an octet string message. This chapter and chapter 6 

describe the second layer of the elliptic curve cryptosystem structure shown in figure (1.1). 

Chapter 8 gives an introduction to elliptic curve cryptography and a brief description of the 

elliptic curve discrete logarithm problem. Then it describes two simple cryptosystems that 

could be implemented in the external layer of the elliptic curve cryptosystem design: the 

elliptic curve Diffie-Hellman, which is analog to the Diffie-Hellman key exchange protocol, as 

well as a system analog to the ElGamal cryptosystem. These two cryptosystems and other 

cryptosystems could be implemented using the library functions defined in the first two layers. 
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Chapter 9 gives a brief description of a microcontroller that is used in the implementation, and 

a brief description of the underlying finite field used. Then it presents the design architecture 

of the software implementation. At the end it summarizes the results and timing of the 

software implementation. 

Finally, chapter 10 summarizes the conclusions gained in this dissertation, and presents a 

summary of the dissertation’s achievements. At the end recommendations are made for future 

work, which could further enhance OEF and elliptic curve algorithms. 
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Chapter 2  

ELLIPTIC CURVES 

2.1 INTRODUCTION 

The study of elliptic curves is an important branch of mathematics. Elliptic curves are simple 

functions that can be drawn as gently looping lines in the ( )yx,  plane. They have been well 

studied by mathematicians for many years, which in the latter half of the 20th century has 

yielded some very significant results. Elliptic Curve Cryptography is just one application of 

elliptic curve theory. 

Elliptic curves can provide versions of public-key methods that, in some cases, are faster and 

use smaller keys, while providing an equivalent level of security. Their advantage comes from 

using a different kind of mathematical group for public-key arithmetic. All practical public-

key systems today exploit the properties of arithmetic using large finite groups. 

An elliptic curve is defined by an equation in 2 variables, with coefficients. For cryptography, 

the variables and coefficients are restricted to elements in a finite field, which results in the 

definition of a finite abelian group; a group is a set of elements with custom-defined arithmetic 

operations on those elements. For elliptic curve groups, these specific operations are defined 

geometrically. Introducing more stringent properties to the elements of a group, such as 

limiting the number of points on such a curve, creates an underlying field for an elliptic curve 

group [13]. 
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2.1.1 Abelian Groups 

An abelian group G (or { }•,G ) is a set of elements with a binary operation, denoted by • , 

satisfying the following axioms, [1]: 

Closure:   ( ) GbaGba ∈•∃∈∀ ,, . 

Associative:   ( ) ( ) Gcandbacbacba ∈∀••=•• ,, . 

Identity element: GeGa ∈∃∈∀ ,  such that 

aaeea =•=• . 

Inverse element: GaGa ∈∃∈∀ ',  such that 

eaaaa =•=• '' . 

Commutative:   abbaGba •=•∈∀ ,, . 

2.1.2 Finite Field 

A finite field F (or { }×+,,F ) is an algebraic system consisting of a finite set of elements with 

two binary operations called addition (+) and multiplication (×), satisfying the following 

axioms: 

• F is an abelian group with respect to (+). 

• { }0\F  is an abelian group with respect to (×). 

• Distributive:  Fcba ∈∀ ,,  

( ) ( ) ( )cabacba ×+×=+×  
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( ) ( ) ( )cbcacba ×+×=×+ . 

The order of a finite field is the number of elements in the field. There exists a finite field of 

order q if and only if q is a prime power (i.e. mpq = , where p is a prime number and m is a 

positive integer), the finite field of order pm is generally written2 ( )mpGF  [14]. p is called the 

characteristic of the finite field ( )mpGF . Before looking at this, firstly elliptic curves in which 

the variables and coefficients are real numbers will be explained; this probably makes it easier 

to understand the operations over elliptic curves. 

2.2 ELLIPTIC CURVES OVER REAL NUMBERS 

An elliptic curve over real numbers is defined as the set of points ( )yx, , which satisfy an 

elliptic curve equation of the form that mathematicians call the “Weierstrass” form: 

 
64

2
2

3
31

2 axaxaxyaxyay +++=++ . ( 2.1 )

For the purpose of this dissertation it is sufficient to deal with a special case of equation (2.1) 

which is: 

 
64

32 axaxy ++= . ( 2.2 )

To plot such a curve, it is required to compute 

 
64

3 axaxy ++= . ( 2.3 )

For given values of a4 and a6, the plot consists of positive and negative values of y for each 

value of x. Also included in the definition of an elliptic curve is a single element denoted Ο 

and called the point at infinity. Figure (2.1) shows an example of the elliptic curve for 

5,7 64 =−= aa . 
                                                
2 GF stands for Galois field, in honor of the mathematician who first studied finites field GF(p), this symbol will 
be used in this dissertation. 
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Figure 2.1 Plot of elliptic curve 5732 +−= xxy  [15] 

2.2.1 Geometric Description of Addition 

It can be shown that a group can be defined based on the set3  ( )64 , aaE  provided that 

64
3 axax ++ , has no repeated factors. This is equivalent to the condition 

 0274 2
6

3
4 ≠+ aa . ( 2.4 )

The basic idea is to find a way to define “addition ( )+ ” of two points ( )QP,  that lie on the 

curve such that the “sum” is another point on the curve. the rules of addition over an elliptic 

curve can be defined as described in [16]. Assume that OP ≠  and OQ ≠ : 

1. O serves as the additive identity, thus OO −=  and POP =+ . 

                                                
3 The set of points ( )64 , aaE  consist of all of the points ( )yx,  that satisfy Equation (2.2) together with the 
element O. 
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2. The negative of a point P is the point with the same x coordinate but the negative of the 

y coordinate, i.e. if ),( yxP = , then ),( yxP −=− . 

3. If P  and Q have different x coordinates, then the line PQ  intersects the curve in 

exactly one more point R (unless the line is tangent to the curve at either P or Q, then 

PR =  or QR = ) then define RQP −=+ . Figure (2.2) illustrates this construction. 

4. If QP −= , then define OQP =+ . 

5. If QP = , draw the tangent line to the curve at point P, and find the intersection point 

R with the curve; then define RP −=2 . 

 

Figure 2.2 Addition of elliptic curve points over a real number [1] 

2.2.2 Algebraic Description of Addition 

For two distinct points on the curve ( )PP yxP ,=  and ( )QQ yxQ ,=  that QP −≠ , the slope of 

the line that joins them is: 

 ( ) ( )PQPQ xxyy −−=∆ . ( 2.5 )
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For derivations of equation (2.5) see [16]. Then the sum QPR +=  can be expressed as 

follows: 

 
QPR xxx −−∆= 2  ( 2.6 )

 ( )RPPR xxyy −∆+−= . ( 2.7 )

To double a point P, then PR 2= , where 0≠Py ; the expressions are: 

 ( ) PP yax 23 4
2 +=∆  ( 2.8 )

 
PR xx 22 −∆=  ( 2.9 )

 ( ) PRPR yxxy −−∆= . ( 2.10 )

2.3 ELLIPTIC CURVES OVER FINITE FIELDS 

Calculations over the real numbers are slow and inaccurate due to round-off error. 

Cryptographic applications require fast and precise arithmetic; so what does it have to do with 

cryptography? It turns out that similar formulas work if replace real numbers with finite fields. 

The formulas stated previously do not change. But instead of using floating-point arithmetic 

use a large number and do all calculations modulo a large prime. This method is mentioned in 

the IEEE 1363a standard [17]. 

The key to the implementation of ECCs is the selection of elliptic curve groups over the finite 

field of ( )pGF  and ( )mpGF , where p is a prime and m is a positive integer. By definition, 

elliptic curve groups are additive groups. Any such field is isomorphic to ( )[ ] ( )xPxpGF , 

where ( ) ( )pGFpxpxxP i

m

i
ii

m ∈+= ∑
−

=
,

1

0
, is a monic irreducible polynomial of degree m over 

( )pGF . 
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Various finite fields admit the use of different algorithms for arithmetic. Unsurprisingly, the 

choices of p, m, and ( )xP  can have a dramatic impact on the performance of the ECC. In 

particular, there are generic algorithms for arithmetic in an arbitrary finite field and there are 

specialized algorithms which provide better performance in finite fields of a particular form. 

The following sections briefly describe field types proposed for ECC, where background 

reading can be found in [18]. 

2.3.1 Prime Finite Fields ( )pGF  

For the Galois finite field ( )mpGF , of pm elements, for some prime p and positive integer 

1=m , there is a Galois finite field4 ( )pGF , which is called a prime finite field and consists of 

the set of integers modulo p, which are the all possible results of reduction modulo p: 

{ }1....,,2,1,0 −p . 

The arithmetic operations on ( )pGF  are the usual addition, subtraction and multiplication 

modulo p. 

Prime fields are commonly used for software implementations of elliptic curve cryptosystems 

since they are based on integer arithmetic which is optimized in modern microprocessors. 

For elliptic curve E over a finite field ( )pGF , equation (2.2) can be used in which the variable 

and coefficients all take on values in the set of integers modulo p. For some prime number 

3,2≠p , equation (2.2) can be rewritten as: 

 ( ) paxaxpy modmod 64
32 ++= ( 2.11 )

                                                
4 Usually denoted this finite field by Zp 
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where the values of 4a  and 6a  satisfy ( ) 0mod274 2
6

3
4 ≠+ paa , the rules for addition over 

( )64 ,aaE p  are the same for elliptic curves defined over real numbers except that the arithmetic 

operations are modulo p. 

Example 2.1 

Let 23=p  and consider the elliptic curve 132 ++= xxy , in this case 164 == aa . Table (2.1) 

lists the points (other than O) that are part of ( )1,123E . Figure (2.3) shows the points of 

( )1,123E ; note that the points, with one exception, are symmetrical about 5.11=y . 

Table 2.1 Points on the Elliptic Curve ( )1,123E  

(0, 1) (6,4 ) (12, 19) 

(0, 22) (6, 19) (13, 7) 

(1, 7) (7, 11) (13, 16) 

(1, 16) (7, 12) (17, 3) 

(3, 10) (9, 7) (17, 20) 

(3, 13) (9, 16) (18, 3) 

(4, 0) (11, 3) (18, 20) 

(5, 4) (11, 20) (19, 5) 

(5, 19) (12, 4) (19, 18) 
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Figure 2.3 The Elliptic Curve ( )1,123E  [1] 

For example, let ( )10,3=P  and ( )7,9=Q  in ( )1,123E , then to find QP +  use equations (2.5 – 

2.7) 

1123mod
2
123mod

39
107 =






 −=








−
−=∆  

( ) 1723mod10923mod93112 ==−−=Rx  

( )( ) 2023mod16423mod107311 =−=−−=Ry  

so ( )20,17=+QP . 
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To find 2P use equations (2.8 – 2.9) 

( ) 623mod
4
123mod

102
133 2

=





=








×

+=∆  

( ) 723mod3023mod3362 ==−−=Rx  

( )( ) 1223mod3423mod10736 =−=−−=Ry  

and ( )12,72 =P . 

The preceding equation involves taking the multiplicative inverse in )( pGF 5. 

2.3.2 Binary Finite Fields ( )mGF 2  

The finite field ( )mGF 2 , called a binary finite field, of 2m elements, can be viewed as a vector 

space of dimension m over ( )2GF . That is, there exists a set of m elements 

{ }1210 ,,,, −mαααα K  in ( )mGF 2  such that each ( )mGFa 2∈  can be written uniquely in the 

form: 

 
∑

−

=
=

1

0

m

i
iiaa α  ( 2.12 )

where { }1,0∈ia . 

                                                
5 The Binary Extended Euclidean Algorithm can be used to find the inverse 
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Example 2.2 

For the finite field ( )22GF , let 13 =α  and 1≠α . 

The elements of ( )22GF  are 

0, 1, α  and 12 +=αα . 

Using the standard trinomial basis, it is possible to write 

( ) ( ) ( ) ( ) ( ){ }22 11,10,101,0002 αα =====GF . 

Simple operations on ( )22GF  are: 

01122 =+=+=+ αααα  

12 =+αα  

αα =+ 21  

2ααα =•  

12 =• αα  

ααα =• 22 . 

The elements of ( )mGF 2  should be represented by bit strings of length m. There are several 

ways of performing arithmetic in ( )mGF 2 . The specific rules depend on how the bit strings are 

represented. There are two common structures for basis representations, which are discussed 

in the IEEE 1363a standard [17]: polynomial basis representations and normal basis 

representations; see [15, 19] for more details. 
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There are two types of elliptic curve over ( )mGF 2 : A supersingular elliptic curve is the set of 

solutions to the equation 

 
64

3
3

2 axaxyay ++=+  ( 2.13 )

where 4a  and 6a  satisfy equation (2.4) and 04
3 ≠a . This type of curve can be computed 

quickly, but it has some very special properties that make it unsuitable for cryptography. 

A non-supersingular elliptic curve is the set of solutions to the equation 

 
6

2
2

32 axaxxyy ++=+  ( 2.14 )

where 0274 2
6

3
2 ≠+ aa . Curves of this type are excellent for cryptography application, to check 

the rules of addition for this type of curve refer to [1]. 

2.3.3 Binary Composite Fields ( )( )mnGF 2  

There are various ways to represent the elements of ( )kGF 2 , depending on the choice of the 

basis or the particular construction method. If k is the product of two integers as mnk = , then 

it is possible to derive a different representation method by defining ( )kGF 2  over the field 

( )nGF 2 , which is called the ground field. 

An extension field defined over a subfield of ( )kGF 2  is known as a composite field, which is 

denoted by ( )( )mnGF 2 . Both the binary and the composite fields refer to the same field, and it 

is possible to obtain one representation from the other. Sunar et al. [20] describe the 

construction of the composite field. 
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The two pairs [21] 

 ( ) ( ) ∑
−

=
+=

1

0
,2

n

i

i
i

nn yqyyQGF ( 2.15 )

and 

 ( )( ) ( ) ∑
−

=
+=

1

0
,2

m

i

i
i

mmn xpxxPGF ( 2.16 )

are called a composite field if 

• ( )nGF 2  is constructed from ( )2GF  by ( )yQ . 

• ( )( )mnGF 2  is constructed form ( )nGF 2  by ( )xP . 

Where ( )yQ  is an irreducible polynomial over ( )2GF  and ( )xP  is also irreducible over 

( )nGF 2 , these irreducible polynomials should have minimal weight, in order to provide 

superior performance as compared with binary fields. 

The advantage of the composite field is that its operations are computed using arithmetic in the 

subfield ( )nGF 2 , and the operations in the subfield can be efficiently performed by index 

table look-up if n is not too large. 

J. Guajardo and C. Paar [22] describe efficient implementations of elliptic curve 

cryptosystems using a composite finite field. 
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2.3.4 Prime Extension Fields ( )mpGF  

For any positive integer m, it is possible to extend the prime field ( )pGF  to a field of pm 

elements which is called an extension field of ( )pGF  and denoted as ( )mpGF , which 

combine the advantages of both prime and binary fields. In this field the multiprecision 

algorithms are not necessary because of the integer arithmetic using small polynomials. 

2.3.5 Optimal Extension Fields (OEFs) ( )( )mn cGF ±2  

Optimal Extension Fields (OEFs) were introduced by C. Bailey and C. Paar in [23]. They are a 

class of extension fields ( )mpGF , which exploit the optimizations of integer arithmetic in 

modern processors to produce the fastest multiplication results over binary and prime fields. 

The OEF is defined as ( )mpGF  which satisfies the following: 

• p is a prime less than but close to the word size of the processor. 

• p is a pseudo-Mersenne prime given in the form cp n ±= 2 , where nc 2
1

2log ≤ . 

The elements of ( )mpGF  should be represented by a sequence of m words. All arithmetic 

operations are performed modulo the field polynomial. The choice of field polynomial 

determines the complexity of the modular reduction; the algorithmic and implementation 

details for OEFs will be discussed in chapter 5. 
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2.4 PERFORMANCE COMPARISON OF FIELD TYPES 

Arithmetic in finite fields is an integral part of many public-key algorithms, including those 

based on the discrete logarithm problem in finite fields and elliptic curve based schemes. The 

performance of these schemes depends on the performance of the arithmetic in the underlying 

finite field. Figure (2.4) shows the different finite fields types that are proposed for use in 

public key cryptography; these types were briefly described in the previous section. 

Finite Field

Binary (char = 2) Prime (char = p)

GF(2n) GF((2n)m)

CompositeExtension

GF(p) GF(pm)

GF(2n - c) GF((2n- c)m)GF(pm)GF(p)

ExtensionNormal

OEFNormalPseudo MersenneGeneral

 

Figure 2.4 Finite Field Types 

Most of the previous work on elliptic curve cryptography based over finite fields has focused 

on prime fields ( )pGF  and binary extension fields ( )mGF 2 . Let us then look at the 

advantages and disadvantages of different finite fields types. 
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2.4.1 Binary Finite Fields 

The binary extension field ( )mGF 2  is a good choice for hardware circuit design of finite field 

multipliers, because it is possible to represent the elements of the subfield ( )2GF  using logical 

values “0" and “1”, so each field operation requires m bit-wise operations which is faster in the 

hardware design; this makes field operation easier and more efficient. However, this type of 

field does not offer the same computational advantages in a software implementation, since 

most of modern microprocessors are deigned to be efficient for operations that deal with 

words rather than bits; this makes the operations very slow for large values of m. 

2.4.2 Prime Finite Fields 

The implementation of the prime field ( )pGF  for large p on standard computers is also facing 

computational difficulties. Multiple machine words are required to represent elements of this 

field, since typical word sizes are simply not large enough. The problem with this 

representation is that during computation, the carries between words must be propagated, and 

the reduction modulo p must be performed over several machine words. 

There has been a large amount of research dealing with methods for doing long-number multi-

precision arithmetic efficiently; one of the most popular methods in this context is based on 

the Montgomery reduction [24]. On the other hand, using the processor's multi-precision 

arithmetic comes at a cost to time efficiency, especially with the reduction modulo p 

operations. 

2.4.3 Binary Composite Fields 

In spite of the fact that both the binary and the composite fields ( )( )mnGF 2  refer to the same 

field, efficient hardware and software implementations can be obtained for composite fields, 

since this field provides efficient implementations for specific operations such as 

multiplication, inversion and exponentiation. 

The advantage of composite field is that its operations are computed using arithmetic in the 

subfield ( )nGF 2 , and the operations in the subfield can be efficiently performed by index 
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table look-up if n is not too large. Thus, instead of performing the computations in the binary 

field, it is more efficient to implement the composite field to perform the computations. 

Gaudry et al. [25] show a way of attacking the original elliptic curve cryptosystem over 

composite fields; this makes their use in practice questionable. 

2.4.4 Optimal Extension Fields 

Optimal Extension Fields ( )( )mn cGF ±2  offer considerable computational advantages by 

selecting p and m specifically to match the underlying hardware used to perform the arithmetic. 

All arithmetic operations are performed modulo the field polynomial, and thus there is no need 

for the multi-precision arithmetic. The key performance advantage of OEFs is due to fast 

modular reduction in the subfield. 

The proper selection of p and m provide the following advantages: 

• All subfield operations utilize the processor's fast integer arithmetic, since the size of p 

is less than the word size of the processor. 

• p is a pseudo-Mersenne prime; this allows for efficient subfield modular reduction. 

• An irreducible binomial wxm −  exists for efficient extension field modular reduction. 

Because of these advantages, as well as others that will be discovered later, the OEFs are 

considered to be the best choice for embedded system. 
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Chapter 3  

PREVIOUS WORK 

3.1 PREVIOUS WORK 

Elliptic curves are algebraic curves that have been studied by many mathematicians since the 

seventeenth century. In 1985, Neal Koblitz [9] and Victor Miller [10] independently proposed 

public key cryptosystems using the group of points on an elliptic curve. This represents the 

creation of the elliptic curve cryptosystem, which has been shown to be a secure and 

computationally efficient method of performing public-key operation. Furthermore it is a good 

choice for a smaller and faster PK cryptosystems: a practical and secure technology, even for 

the most constrained environments. 

Numerous researchers and developers have spent years researching the strength of ECC and 

improving techniques for its implementation. This chapter reviews some of the most relevant 

previous contributions. 

De Win et al. [26] present a software implementation of arithmetic operations in a finite field 

( )( )mnGF 2 , with focus on ( )( )11162GF . This construction yields an extension field with 2176 

elements; polynomials with coefficients in the subfield ( )162GF  are used to represent these 

elements. Look up tables are used to carry out the calculations in the subfield; the small size of 

these tables allow them to fit in the computer memory. Optimizations for multiplication and 

inversion in such composite fields of characteristic two are described in [22]. 

Another paper by De Win et al. [27] presents a detailed implementation of elliptic curve 

arithmetic on a desktop PC, with a focus on its application to digital signature schemes using 

the fields ( )pGF  with p a 192-bit prime and ( )1912GF . For ECCs over prime fields, their 
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construction uses projective coordinates to eliminate the need for inversion, along with a 

balanced ternary representation of the multiplicand. 

Schroeppel et al. [28], optimize a software implementation of an elliptic curve analogue of the 

Diffie-Hellman key exchange [6] over the field ( )1552GF ; a polynomial bases is used to 

represent the field elements. They describe how to efficiently compute the field operations in 

this field. 

A great deal of work has been done in studying aspects of inversion in a finite field, especially 

since inversion is the most costly of the four basic operations. There are two principle 

approaches to inversion in finite fields. One is based on the Extended Euclidean algorithm, the 

other one is based on Fermat’s Little theorem. In the case of prime fields, Knuth [29] 

demonstrates that the Extended Euclidean algorithm requires 47.1log843 2 +s  divisions in the 

average case, for s the element to be inverted. A great number of variants on Euclid's 

algorithm have been developed for use in cryptographic applications. Schroeppel et al. [28] 

optimize a version of the Euclidean algorithm named “Almost Inverse Algorithm” for an EC 

implementation over ( )1552GF ; De Win et al. [26] also apply the same algorithm for EC over 

the composite field ( )( )11162GF . 

The authors in [30, 31] propose two types of fast algorithms for computing multiplicative 

inverses in ( )mGF 2 , one is of sequential type and the other is of recursive type. Itoh and Tsujii 

[32] present an algorithm for multiplicative inversion in ( )mGF 2  based on the idea of reducing 

extension field inversion to the problem of subfield inversion. Their method is presented in the 

context of normal bases, where exponentiation to the qth power is very efficient. 

Takagi et al. [33] improve a fast algorithm for multiplicative inversion in ( )mGF 2  that is 

proposed by Itoh and Tsujii [32] and reduce the number of multiplications by decomposing 

1−m  into several factors and a small remainder. 

Guajardo and Paar [22] describe a version of Itoh and Tsujii's algorithm for inversion when 

applied to composite Galois fields ( )( )mnGF 2  in a polynomial basis. In another paper [12] they 
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generalize this algorithm in extension fields ( )mpGF , and show that the Frobenius map can be 

explored to perform the exponentiations required for the inversion algorithm efficiently. 

The authors in [34] present multiplier architectures for composite fields of the form ( )( )3
3nGF  

using Multi-Value Logic (MVL); the architecture is based on a modified version of the 

Karatsuba-ofman algorithm [35] for polynomial multiplication over ( )( )3
3nGF . Elements of 

( )( )3
3nGF  are represented as polynomials of maximum degree 2 with coefficients in ( )nGF 3 . 

Multiplication in ( )nGF 3  is achieved in the obvious way. Karatsuba multiplication is 

combined with modular reduction over ( )( )mnGF 3  to reduce the complexity of their design. 

The authors estimate the complexity of their design for arithmetic over ( )( )323GF  as 56 “mod 

3 adders” and 67 “mod 3 multipliers”. The work in [36] describes ( )nGF 3  architectures for 

applications of cryptographic significance, and treats the hardware implementation of fields of 

characteristic 3. 

The work in [37] is one of the few that explicitly treated the general case of a ( )mpGF  

multiplier; ( )mpGF  multiplication is computed in two stages. First the polynomial product is 

computed modulo a highly factorizable degree S polynomial ( )xM , with 12 −≥ mS , thus the 

product is computed using a polynomial residue number system. In the second step an 

irreducible polynomial ( )xP , which is defined over ( )mpGF , is used to reduce the result. The 

authors discuss a suitable choice for S, ( )xM  and ( )xP , and present an iterative method for the 

factorization. However, due to the constraints on the size of m, this method does not seem to 

be able to apply to field sizes acceptable in cryptographic applications. 

Hasegawa et al. [38] describe an ECDSA implementation over ( )pGF  on the M16C, a 16-bit 

10 MHz microcomputer. They propose the use of a field of characteristic 12 ±= cep , where e 

is an integer within the machine word size and c is a multiple of the machine word size. A 

multiplication in this field could be implemented in a small amount of memory. To reduce the 

number of operations needed for an EC point doubling, the authors use a randomly generated 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 3 PREVIOUS WORK 

Electrical, Electronic and Computer Engineering 31

curve with a coefficient of EC equal to 3−p . They also modify the point addition algorithm in 

[17] to reduce the number of temporary variables from 4 to 2. 

Different research has worked on speeding up the scalar multiplication kPQ = . The authors in 

[39] propose a new addition formula in projective coordinates for an elliptic curve over 

( )nGF 2 , by rewriting the elliptic curve addition formula. This new formula speeds up the 

elliptic curve scalar multiplication by reducing the number of underlying field multiplications. 

The authors show that the addition formula in projective coordinates is improved by about 10 

percent for general field elements and 12 percent for restricted coefficients. 

The work in [23] introduces Optimal Extension Fields and their implementation on high-end 

RISC workstations. The authors employ well-known techniques for fast finite field arithmetic 

and how to perform them in an OEF. They provide performance statistics of OEF arithmetic 

on RISC workstations, and show that an OEF yields a considerable speed advantage over 

previous software implementations of Galois field arithmetic for elliptic curve cryptography. 

Some other papers extend the work on OEFs and report their performance on high-end RISC 

workstations. 
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Chapter 4  

RELEVANT ALGORITHMS 

The success of a cryptosystem depends on certain issues. One of the issues that leads to a 

successful and efficient implementation of a cryptosystem is the choice of algorithm to 

implement and optimize the arithmetic. In spite of the huge number of algorithms, it is 

important to carefully choose the best combination. This chapter discusses the primary 

algorithms that will be used in the finite field arithmetic and the elliptic curve implementation. 

Understanding these algorithms makes it easier to appreciate how the finite field arithmetic 

can be optimized and the elliptic curve cryptosystem can be implemented efficiently using 

these algorithms, as shown in the next chapters. 

As mentioned previously, the underlying finite field that will be used in the implementation is 

the Optimal Extension Field. Therefore before starting with the algorithms relevant to this 

field, the first section explains some definitions and properties of OEF. 

4.1 OPTIMAL EXTENSION FIELDS 

The Optimal Extension Fields were introduced by Bailey and Paar in [23]. This section 

explains some definitions of the OEF, which are taken from [23]. 

Definition 4.1 

Let c be a positive rational integer. A pseudo-Mersenne prime is a prime number of the form  

ncwherecn
2
1

2log,2 ≤± . 
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Definition 4.2 

An Optimal Extension Field is a finite field ( )mpGF  such that: 

1 p is a pseudo-Mersenne prime. 

2 An irreducible binomial ( ) wxxP m −=  exists over ( )pGF . 

The following theorem describes the cases when an irreducible binomial exists. 

Theorem 4.1 [40] 

Let 2≥m  be an integer and ( )*pGFw ∈ , where ( ) ( ) { }0\* pGFpGF =  Then the binomial 

wxm −  is irreducible in ( )[ ]xpGF  if and only if the following two conditions are satisfied: 

1. Each prime factor of m divides the order e of w over ( )*pGF  but not ( ) ep 1− . 

2. 4mod1≡p , if 4mod0≡m . 

Corollary 4.1 [23] 

Let w be a primitive element for ( )pGF  and let m be a divisor of 1−p . Then wxm −  is an 

irreducible polynomial of order ( )mp 1−  over ( )pGF . 

There are two special cases of OEF, which yield additional arithmetic advantages; they are 

called Type I and Type II. 

Definition 4.3 

A Type I OEF has 12 ±= np . 

A Type I OEF allows for subfield modular reduction with very low complexity. 
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Definition 4.4 

A Type II OEF has an irreducible binomial 2−mx . 

A Type II OEF allows for speedups in extension field modular reduction since the 

multiplications by w can be implemented using shifts instead of explicit multiplications. 

The range of possible m for a given p depends on the factorization of 1−p  due to Theorem 

(4.1) and Corollary (4.1). For more details regarding the construction method for OEFs, refer 

to [23]. 

Before starting with the algorithms, let us distinguish between the following two expressions: 

 nba mod≡  ( 4.1 )

means a is congruent to b modulo n, and this is if ( )ban −|  [41]. In contrast 

 nab mod= . ( 4.2 )

4.2 THE SCHOOLBOOK METHOD 

The Schoolbook method is the usual way to multiply two polynomials. Consider two degree-d 

polynomials with m coefficients, where 1+= dm  

 ( ) ∑
=

=
d

i

i
i xaxA

0
 ( 4.3 )

 

 ( ) ∑
=

=
d

i

i
i xbxB

0
. ( 4.4 )
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Then the product ( ) ( ) ( )xBxAxC = , can be calculated using this method as 

 
( ) ∑∑∑∑

= =

+

≥=+=

=







=

d

i

d

j

ji
ji

tsits
ts

d

i

i xbabaxxC
0 00,;0

. . ( 4.5 )

Calculating the product using this method requires m2 multiplications and ( )21−m  additions. 

4.3 THE KARATSUBA ALGORITHM 

Multiplying two polynomials efficiently is an important issue in a variety of applications, 

including signal processing, cryptography and coding theory. In elliptic curve implementation 

the polynomial multiplication is required to implement the elliptic curve group operation and 

the polynomial inversion. A fast multiplication algorithm was developed by Karatsuba and 

Ofman [35]; the key to the efficiency of this algorithm is to reduce coefficient multiplications 

at the cost of extra additions compared to the schoolbook or ordinary multiplication method. In 

order to decide which method is more efficient, the cost ratio between one multiplication and 

one addition should be known. Although many algorithms are simpler than the Karatsuba 

algorithm (KA), it shows that it has a better performance for polynomials of small degree 

which are used in many applications. 

Knuth [29] describes briefly how to multiply polynomials in a fast way, based on the 

Karatsuba algorithm. In order to simplify the problem assume that the maximum degree of the 

two polynomials, which are multiplied, is identical. In the next subsection a simple case of 

degree-2 polynomials is given to demonstrate how the Karatsuba algorithm works, and then a 

general case for polynomials of arbitrary degree is described in section (4.3.2). Both sections 

show a comparison between the performance of this algorithm and the Schoolbook method. 
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4.3.1 KA for Degree-2 Polynomials 

Consider two degree-2 Polynomials 

( ) 01
2

2 axaxaxA ++=  

( ) 01
2

2 bxbxbxB ++= . 

The product of ( )xA  and ( )xB  using the Schoolbook method is given by 

( ) ( ) ( ) ∑∑∑
= =

+

=

===
2

0

2

0

4

0 i j

ji
ji

i

i
i xbaxcxBxAxC  

( ) [ ] [ ] [ ] [ ] [ ]001001
2

201102
3

2112
4

22 baxbabaxbababaxbabaxbaxC ++++++++= . 

Using this method for polynomial multiplication requires nine multiplications and four 

additions. To show how KA works define the following auxiliary variables: 

000 baD =  

111 baD =  

222 baD =  

( ) ( )10101,0 bbaaD ++=  

( ) ( )20202,0 bbaaD ++=  

( ) ( )21212,1 bbaaD ++= . 
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Then construct the coefficients of ( )xC  from these auxiliary variables using only additions 

and subtractions: 

00 Dc =  

011,01 DDDc −−=  

1022,02 DDDDc +−−=  

212,13 DDDc −−=  

24 Dc = . 

So ( )xC  is given by 

( ) 01
2

2
3

3
4

4 cxcxcxcxcxC ++++= . 

This algorithm requires six multiplications and thirteen additions. Let #MUL and #ADD be the 

number of multiplications and additions, respectively. Table (4.1) shows the complexity of 

these two algorithms: 

Table 4.1 Complexity of the Schoolbook method and the Karatsuba Algorithm for 3=m  

 #MUL #ADD 

Schoolbook 9 4 

Karatsuba 6 13 

 

Let r be the ratio between the cost of one multiplication and one addition; addmul TTr = , where 

Tmul and Tadd are the time required for one multiplication and one addition, respectively. The 

time complexity of the Schoolbook method is given by 

( ) addaddmulSB TrTTT 4949 +=+= . 
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The time complexity of KA can be similarly calculated as 

( ) addaddmulKA TrTTT 136136 +=+= . 

Now we need to find the value of r for which the time of KA is less than the time of the 

Schoolbook method, therefore 

KASB TT >  

( ) ( ) addadd TrTr 13649 +>+  

3>r . 

So, if the ratio between the cost of one multiplication and one addition is greater than three, it 

is more efficient to use the KA. 

4.3.2 KA for Polynomial of Arbitrary Degree 

For polynomials whose number of coefficients m is a power of 2, the KA can be applied in a 

recursive way, as shown in [42]. However it is not straightforward to apply the KA to 

polynomials of arbitrary degree. This section describes a method to multiply two arbitrary 

polynomials with m coefficients using a one-iteration KA [42]. 

Consider two degree-d polynomials with 1+= dm  coefficients 

 ( ) ∑
=

=
d

i

i
i xaxA

0
 ( 4.6 )

 
 ( ) ∑

=
=

d

i

i
i xbxB

0
. ( 4.7 )
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Compute for each 1,,1,0 −= mi L  

 iii baD = . ( 4.8 )

Calculate for each 32,,2,1 −= mi L  and for all s and t with its =+  and 01 ≥>≥− stm  

 ( ) ( )tststs bbaaD ++=, . ( 4.9 )

Then 

 ( ) ( ) ( ) ∑
−

=
==

22

0

m

i

i
i xcxBxAxC  ( 4.10 )

can be computed as 

 00 Dc =  ( 4.11 )

 
 122 −− = mm Dc  ( 4.12 )
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stmits
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i . ( 4.13 )

To analyze the complexity of KA for arbitrary polynomials, let us first analyze the number of 

auxiliary variables Di and Ds,t, denoted by #Di and #Ds,t 

 mDi =#  ( 4.14 )

 

 
mmD ts 2

1
2
1# 2

, −=  ( 4.15 )
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mmDDD tsi 2

1
2
1### 2

, +=+= . ( 4.16 )

One multiplication is required to determine each variable Di and Ds,t, which results in 

 
mmMUL

2
1

2
1# 2 += . ( 4.17 )

The number of required additions is given by 

 
1

2
7

2
5# 2 +−= mmADD . ( 4.18 )

For large m, the one-iteration KA approaches 25.0 m  coefficient multiplications, and 2.5m2 

additions. The KA is efficient if the ratio r is larger than 3, since 

 KASB TT >  ( 4.19 )

 
 ( ) addmuladdmul TmmTmmTmTm 






 +−+






 +>−+ 1

2
7

2
5

2
1

2
11 2222  ( 4.20 )

 
 3>r . ( 4.21 )

The detailed proofs of the analyses are omitted for brevity, but can be found in [42]. 

Table (4.2) shows the complexity of the KA and Schoolbook method for a few polynomials 

with a prime number of coefficients (m), 3=r  for all of these polynomials: 
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Table 4.2 Comparison of the KA and the Schoolbook method for polynomials with m 

coefficients 

KA Schoolbook 
m 

#MUL #ADD #MUL #ADD 

2 3 4 4 1 

3 6 13 9 4 

5 15 46 25 16 

7 28 99 49 36 

11 66 265 121 100 

13 91 378 169 144 

17 153 664 289 256 

4.4 THE EXTENDED EUCLID ALGORITHM 

Euclid devised a scheme to discover if two numbers have any common factors. Euclid’s 

algorithm finds the greatest common divisor between two numbers. Rosen [41] describes 

several methods to find the greatest common divisor. What is more useful than the original 

Euclid algorithm is what is known as the Extended Euclid algorithm. It is more useful, because 

it can be used to find an inverse. 

Inversion of numbers in a prime field is similar to solving the linear congruence ncbx mod= , 

replacing c with 1 to get nbx mod1= , x must be the inverse of nb mod . Extended Euclid 

algorithm can be used to solve this linear congruence, as shown in algorithm (4.1). 

The Itoth and Tsujii algorithm has been used to calculate the inversion; this algorithm reduces 

the problem of extension field inversion to subfield inversion. The Extended Euclid algorithm 

can be used to compute the subfield inversion. 
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Algorithm 4.1 Extended Euclid Algorithm 

Require: n, b are positive integers. 

Ensure: nbx mod1−= . 

1: bb ←0  

2: nn ←0  

3: 1←t  

4: 00 bnq ←  

5: 00 bqnr ×−← r 

6: 00 ←t  

7: If 0>r  

8: ( ) ntqttemp mod0 ×−←  

9: tt ←0  

10: tempt ←  

11: 00 bn ←  

12: rb ←0  

13: 00 bnq ←  

14: 00 bqnr ×−←  

15: GoTo 7 

16: End if 

17: If 10 ≠b  

18: 0←x  

19: End if 

20: tx ←  
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4.5 THE ITOH AND TSUJII INVERSION (ITI) ALGORITHM 

One advantage of an extension field relies on a special mapping that is defined for all finite 

fields. The norm function maps elements of the extension field to the subfield by raising them 

to the ( ) ( )11 −− ppm  power, i.e. if  

( ) ( )mpGFxA ∈  

then 

 ( ) ( ) ( )pGFA ppm

∈−− 11 . ( 4.22 )

Itoh and Tsujii in [32] make use of this advantage to reduce the problem of extension field 

inversion to subfield inversion. They introduce the following theorem: 

Theorem 4.2 

Let  

( ) ( )mpGFxA ∈  

and 

 ( )
( )1

1
−
−=

p
pr

m

. ( 4.23 )

Then, the multiplicative inverse of an element A can be computed as 

 ( ) 111 −−− = rr AAA . ( 4.24 )

This theorem, which was originally developed in [32] for use with composite fields ( )( )mnGF 2  

in a normal basis representation, can be applied to extension fields ( )mpGF  in polynomial 
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representation, as shown in [12]. Algorithm (4.2) describes the procedures for computing the 

inverse according to equation (4.24): 

Algorithm 4.2 General ITI Algorithm in ( )mpGF   

Require: ( ) ( )*mpGFxA ∈ .  

Ensure: ( )xPAC mod1−≡ .  

1: 1−← rAB  Addition Chain Algorithm 

2: rr AAABAb ==← −1  ( )pGFAr ∈  

3: ( ) 11 −− =← rAbb  Extended Euclid Algorithm 

4: ( ) 111 −−−
==← AAAbBC rr   

 

Step 2 is a normal extension field multiplication, while the multiplication in step 4 is trivial 

since ( ) 1−rA  is in the subfield, the inversion in step 3 is a subfield inversion since ( )pGFAr ∈  

and it can be calculated using the Extended Euclid algorithm or through table look-up. The 

core of the algorithm is an exponentiation to the ( )1−r -th power in the extension field 

( )mpGF  in step 1; the exponent is expanded as  

 
pppp

p
pr mm

m

++++=−
−
−=− −− 2211
1
11 L . ( 4.25 )

Exponentiation of A to the ( )1−r -th power requires the computation of powers 
ipA  for 

11 −≤≤ mi ; thus, the p-adic representation ( ) ( )pr 01111111 L=− . Now an efficient method 

is required to evaluate ( )xA 1− . ( )1−r  will be fixed for a given field; thus the problem is to 

raise a general element to a fixed exponent. The use of straightforward methods such as the 

Binary Method of Exponentiation [29] is very costly, while the Addition Chain algorithm is a 

popular method for evaluating the norm function. 
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To see how the Addition Chain Algorithm works, let us take a simple finite field ( )6pGF . 

Algorithm (4.3) shows how to compute ( )xAr 1− , where ( ) ( )pr 0111111 =− . All exponents are 

expressed in base p for clarity. This simple example requires three exponentiations to the p-th 

power, one exponentiation to the 2p -th power and three general multiplications. The general 

expression for the complexity of this algorithm can be found in [32]. 

Algorithm 4.3 Addition Chain for 1−rA  in ( )6pGF  

Require: ( ) ( )*mpGFxA ∈ . 

Ensure: ( )xPAB r mod1−≡ . 

1: ( )10AAB p =←  

2: ( )11
0 ABAB =←  

3: ( )1100
0

2

ABB p =←  

4: ( )1111
0 ABBB =←  

5: ( )11110ABB p =←  

6: ( )11111ABAB =←  

7: ( )111110ABB p =←  

 

These exponentiations can be implemented efficiently using the Frobenius map, which is 

defined as ( ) pAA =σ . Applying an i-th iterate of the Frobenius map can be viewed as shifting 

the exponent to the left by i digits, e.g. 

 ( ) ( )pAAA p 100004 4

==σ . ( 4.26 )
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4.6 THE FROBENIUS MAP 

The previous section has shown how the inverse of the finite field elements could be found 

using the Itoth and Tsujii Inversion algorithm. This algorithm requires a norm function to 

implement the exponentiation; the Frobenius map can be used efficiently to evaluate the norm 

function and implement the required exponentiations. 

Definition 4.5 [43] 

Let ( ) ( )mpGFxA ∈ . Then the mapping pAA →  is an automorphism6 known as the Frobenius 

map, which is defined as 

 ( ) pAA =σ . ( 4.27 )

If i is a nonnegative integer, then i-th iterate of the Frobenius map 
ipAA →  is also an 

automorphism [43]. 

Now let us see how to use the Frobenius map to implement the exponentiations ( )mpGF  

elements. 

Consider the arbitrary element 

 ( ) ∑
−

=

=
1

0

m

j

j
j xaxA  ( 4.28 )

( )mpGF∈ , and ( )pGFa j ∈ . The i-th iterate of the Frobenius map is 

 
( ) ( ) ∑∑∑

−

=

−

=

−

=

==







==

1

0

1

0

1

0

m

j

jpp
j

pm

j

j
j

p
m

j

j
j

pi ii

ii

i

xaxaxaAAσ . ( 4.29 )

                                                
6 An automorphism is an isomorphism of a system of objects onto itself. An isomorphism is a kind of interesting 
mapping (function) between objects. 
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By Fermate’s Little Theorem [41] paa j
p
j mod≡ , one can rewrite equation (4.29) as 

 
∑

−

=

=
1

0

m

j

jp
j

p ii

xaA . ( 4.30 )

In this summation attention will be given to the powers 
ijpx  for 1,0 −≤< mji , which can be 

simplified as shown in the next theorem. 

Theorem 4.3 [12] 

Let ( )xP  be an irreducible polynomial of the form ( ) wxxP m −= , over ( )mpGF , e an integer, 

( ) 0=αP , and it is understood that 3≥p , then: 

 ste w αα ≡  ( 4.31 )

where mes mod≡ , and 
m

set −= . 

Proof 

First, notice that since ( ) 0=αP , then wm ≡α . Now 

 stme +=αα  

 
 

( 4.32 )

 ststme w αααα ≡= . ( 4.33 )

□ 

Let e be the exponent in the equation (4.30), i.e. ijpe = , then  

 ( )xPxwx stjpi

mod≡  ( 4.34 )
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where mjps i mod≡ , by theorem (4.1), ( )1| −pm  which implies ( ) mpp mod111 ≡+−= , 

thus mjjps i mod≡≡ , then 

 ( )xPxwx jtjpi

mod≡ . ( 4.35 )

If ( )xP  is given, then it is possible to precompute all 
ijpx , for 1,0 −≤< mji  in equation 

(4.30), utilizing a table look-up with entries 

 
pwc m

mjijp

j mod
mod−

=  ( 4.36 )

where ( )pGFc j ∈ . Now the equation (4.30) can be rewritten as 

 ( )∑
−

=

=
1

0

m

j

j
jj

p xcaA
i

. ( 4.37 )

A single subfield multiplication is required to compute ( )jj ca ; thus only 1−m  subfield 

multiplications are required to compute the exponentiation 
ipA . 

Example 4.1 

Consider 239=p , ( ) 217 −= xxP . Use the equation (4.37) to find the exponentiation for an 

arbitrary element ( )17239GFA ∈ . First computes the values of cj, 160 ≤≤ j , for a certain i-th 

iterate. 

Let us start with 1=i , 239A  using the equation (4.36) 

1239mod2 17
02390

0 ==
−×

c  

132239mod2 17
12391

1 ==
−×

c  
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M  

67239mod2 17
1623916

16 ==
−×

c . 

For 2=i ,
2239A  then 

1239mod2 17
022390

0 ==
−×

c  

216239mod2 17
122391

1 ==
−×

c  

M  

187239mod2 17
16223916

16 ==
−×

c . 

As can be seen, one can use these values as a table look-up, which can be used for any 

arbitrary element ( )17239GFA ∈ . 

4.7 THE NON-ADJACENT FORM (NAF) 

Scalar multiplication is the basic cryptographic operation of elliptic curve cryptography, which 

is denoted by 

 kPQ =  ( 4.38 )

where Q and P are points on an elliptic curve and k is an integer. What this really means is that 

add P to itself 1−k  times: 

 
44 344 21

L

timesk

PPPQ
−

+++= . ( 4.39 )
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Koblitz in [44] uses a more efficient algorithm instead of the normal Binary-Double-and-Add 

algorithm to compute the scalar multiplication kP , for example ( )( )PPPPP 22215 +++= . 

It is more efficient to compute ( )( )( ) PP −2222 , which requires five operations instead of six. 

To compute kP , k can be represented as a sum of a minimal number of powers of 2 with 

coefficients 1± , by converting a string of set bits to a string of zero bits followed by -1 and the 

leading 0 is set. Koblitz calls the result the “Balanced Binary Expansion (BBE)”. The 

following example makes this clear: 

Example 4.2 

Let 10045=k . 

Binary Expansion 10111100111001=  

Balanced Binary Expansion 10100010100101 −−= . 

 

The Balanced Binary Expansion has the following properties: 

• Each positive integer has a unique Balanced Binary Expansion. 

• There are no two consecutive coefficients which are nonzero. 

• It has the fewest nonzero coefficients of any signed binary expansion. 

Solinas [45] describes a simple way to create the Balanced Binary Expansion. It is called the 

“Non-Adjacent Form (NAF)”. In this method, the integer k is represented as 

 
∑

−

=

=
1

0

2
l

j

j
jkk  ( 4.40 )

where each { }1,0,1−∈jk , jkk jj ∀=⋅ + ,01 , and l is the bit length of k. 
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Algorithm (4.4), slightly modified from [45], shows how to find a Balanced Binary Expansion 

of an integer using the Non-Adjacent Form method: 

Algorithm 4.4 Non-Adjacent Form 

Require: n integer number. 

Ensure: S Balanced Binary Expansion of n. 

1: nk ←  

2: 0←l  

3: While 0>k  

4: If k odd 

5: [ ] ( )3&2 klS −←  

6: If [ ] 0<lS  

7: 1+← kk  

8: End if 

9: Else 

10: [ ] 0←ls  

11: End if 

12: 1+← ll  

13: 2kk ←  

14: End while 
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Chapter 5  

OPTIMAL EXTENSION FIELD ARITHMETIC 

5.1 INTRODUCTION 

An Extension Field ( )mpGF  is isomorphic to ( )[ ] ( )xPxpGF , where ( ) ∑
−

=
+=

1

0

m

i

i
i

m xpxxP , 

( )pGFpi ∈ , is a monic irreducible polynomial of degree m over ( )pGF . A residue class will 

be identified with the polynomial of least degree, and a standard basis representation will be 

used to represent a field element ( ) ( )mpGFxA ∈  

 ( ) 01
2

2
1

1

1

0
axaxaxaxaxA m

m
m

m

m

i

i
i ++++== −

−
−

−

−

=
∑ L  ( 5.1 )

where ( )pGFai ∈ . 

The Optimal Extension Field is a class of extension field ( )mpGF  for p, a prime of special 

form and m, a positive integer. OEF fully exploits the optimizations of integer arithmetic in 

modern processors to produce the fastest multiplication results over binary extension and 

prime fields. 

To optimize the arithmetic in ( )mpGF , the following properties are required for both p and m 

[23]: 

1. Choose p to be less than but as close as possible to the word size of the processor so 

that all subfield operations utilize the processor's fast integer arithmetic. 
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2. Choose p to be a pseudo-Mersenne prime that is of the form cn ±2  for some 

nc 2
1

2log ≤  to allow for efficient subfield modular reduction. 

3. Choose m so that an irreducible binomial wxm −  exists for efficient extension field 

modular reduction. The extension degree m can be small if the processor word size 

allows for large p. 

Since p is less than the processor’s word size ( )xA  can be represented using an array of size m, 

each array element contains one ai. 

All arithmetic operations are performed modulo the field polynomial. The choice of field 

polynomial determines the complexity of the modular reduction. For example, on a 

microcontroller with 8-bit architecture, p would be chosen closest to 28, which would fully 

exploit the microcontroller ability to quickly perform 8-bit × 8-bit integer multiplications and 

thus perform subfield multiplication using a single multiply instruction followed by modular 

reduction. A suitable m is then chosen to provide a field of suitable order. 

The elliptic curve operation requires one multiplication, one inversion, one squaring (or two 

squaring operations in the case of doubling) and a number of additions that are relatively fast 

compared with the first three; all of this arithmetic is in the OEFs. The operation of inversion 

is the most costly of the four basic operations, and its performance depends on the speed of 

multiplication. Therefore the speed of a single extension field multiplication determines the 

speed of the group operation in general. 

This chapter describes the basic construction for arithmetic in the OEFs, and the required 

algorithms to implement these operations. The algorithms are described for use in general 

cases; however, to make it easier to visualize, in some sections the optimal extension field 

with 1728 −=p , and 17=m  will be used, i.e. using the following extension field: 

( )( )178 172 −GF  
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and an irreducible polynomial: 

( ) 217 −= xxP . 

5.2 ADDITION AND SUBTRACTION 

Addition and Subtraction of two field elements ( )mpGFBA ∈,  is performed in an intuitive 

way, first by adding or subtracting the coefficients of the two polynomials in ( )pGF  as 

follows: 

 ( ) ( ) ( )∑∑∑ ±=±=±
−

=

−

=

i
ii

m

i

i
i

m

i

i
i xbaxbxaxBxA

1

0

1

0

. ( 5.2 )

Then it is required to perform the modular reduction; since ( )pGFba ii ∈, , the maximum 

value is ( )12 −p , in addition, and the minimum value is ( )1−− p , in subtraction, the modular 

reduction can be performed simply by subtracting p once from the intermediate result if it is 

more than or equal p, in addition operation, and adding p once to the intermediate result if it is 

less than 0, in subtraction operation. This method of modular reduction is more efficient in 

addition and subtraction operations than using the subfield modular reduction method shown 

in algorithm (5.4). 
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Algorithm (5.1) and algorithm (5.2) describe the OEFs addition and subtraction respectively: 

Algorithm 5.1 OEF Addition 

Enquire: ( ) 01
2

2
1

1 axaxaxaxA m
m

m
m ++++= −

−
−

− L  

 ( ) 01
2

2
1

1 bxbxbxbxB m
m

m
m ++++= −

−
−

− L , ( )mpGFBA ∈, . 

Ensure: ( ) ( ) ( ) ( )mpGFxCxBxA ∈≡+ . 

1: for 0←i  upto 1−m  do 

2: iii bac +←  

3: if pci ≥  then 

4: pcc ii −←  

5: endif 

6: endfor 

 

Algorithm 5.2 OEF Subtraction 

Enquire: ( ) 01
2

2
1

1 axaxaxaxA m
m

m
m ++++= −

−
−

− L  

 ( ) 01
2

2
1

1 bxbxbxbxB m
m

m
m ++++= −

−
−

− L , ( )mpGFBA ∈, . 

Ensure: ( ) ( ) ( ) ( )mpGFxCxBxA ∈≡− . 

1: for 0←i  upto 1−m  do 

2: iii bac −←  

3: if 0<ic  then 

4: pcc ii +←  

5: endif 

6: endfor 
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5.3 MULTIPLICATION 

Field multiplication can be performed in two stages. First, multiply the two polynomials, ( )xA  

and ( )xB , using ordinary polynomial multiplication to form an intermediate product ( )xC ′ ; 

and then perform modular reduction on ( )xC ′  to produce the result ( )xC . 

Consider ( )xA  and ( )xB  to be polynomials of degree 1−m  in ( )mpGF  

 ( ) ∑
−

=
=

1

0

m

i

i
i xaxA  ( 5.3 )

 

 ( ) ∑
−

=
=

1

0

m

i

i
i xbxB  ( 5.4 )

where ( )pGFba ii ∈, . 

The normal Schoolbook multiplication method can be used to calculate the intermediate 

product ( )xC ′  of degree less than or equal to 22 −m  

 ( ) ( ) ( ) ∑∑
−

=

−

=

−
−

+ ′+′++′==×=′
1

0

1

0
01

22
22

m

i

m

j

m
m

ji
ji cxcxcxbaxBxAxC L  ( 5.5 )

where the coefficients ( )pGFci ∈′ . 

Algorithm (5.3) describes this method, which requires 2m  multiplications and ( )21−m  

additions in the subfield ( )pGF  to calculate the coefficients 22,,1,0, −=′ mici L . 
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Algorithm 5.3 Schoolbook Method for Polynomial Multiplication 

Require: ( ) 01
2

2
1

1 axaxaxaxA m
m

m
m ++++= −

−
−

− L . 

 ( ) 01
2

2
1

1 bxbxbxbxB m
m

m
m ++++= −

−
−

− L , ( )mpGFBA ∈, . 

Ensure: ( ) ( ) ( )xBxAxC ×=′  

1: for 0←i  upto 22 −m  d0 

2: 0←′ic  

3: if mi <  

4: is ←  

5: 0←e  

6: else  

7: 1−← ms  

8: 1+−← mie  

9: endif 

10: for sj ←  downto e 

11: jjiii bacc −+′=′  

12: endfor 

13: endfor 

 

In the next stage of OEF multiplication, the intermediate result ( )xC ′  has to be reduced 

modulo the irreducible polynomial ( ) wxxP m −= . It could be observed that 

 ( )xPwxm mod≡ . ( 5.6 )

This observation leads to the general expression for this reduction, given by 

 ( ) ( ) ( )xPxCxC mod′≡  ( 5.7 )
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 ( ) ∑
−

=
−′≡

22

0
mod

m

i

mi
i wxxcxC . ( 5.8 )

Section (5.3.2) describes an efficient method to calculate the residue ( )xC . But let us first 

explain in the next section how to compute a fast subfield modular reduction, which is 

required by a subfield multiplication. 

5.3.1 Subfield Modular Reduction 

The over-all performance of OEFs greatly relies on the fact that subfield multiplication is fast. 

Subfield arithmetic in ( )pGF  is implemented with standard modular integer techniques. The 

multiplication of two elements ( )pGFba ∈, , yields the integer product bax ×= . In general, 

case x has about twice the bit length of p, and it needs to be reduced to the same size of p; this 

can be performed by a modular reduction as pxba mod≡× . 

For OEF, the characteristic p is a pseudo-Mersenne prime, which makes the subfield 

multiplication efficient and allows for an efficient reduction modulo p. Mohan and Adiga [46] 

show a technique for fast modular reduction for modulo of the form cn ±2 , where c is a small 

integer, without an explicit integer division. 

A form of such a modular reduction algorithm has been presented, which is adapted from [46]. 

This algorithm addresses a modulo of the form cn −2 . The original algorithm needs several 

shifts, which is modified in algorithm (5.4) in order to eliminate these shifts without any 

additional operations. 
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Algorithm 5.4 Subfield Modular Reduction 

Require: nccppx n
2
1

2
2 log,2, ≤−=< . 

Ensure: ( )pxr mod≡ . 

1: x[i] refers to i-th n-bit word of x 

2: [ ]0xr ←  

3: [ ]1xq ←  

4: while 0>q  do 

5: cqq ×←  

6: [ ]0qrr +←  

7: [ ]1qq ←  

8: endwhile 

9: while pr ≥  do 

10: prr −←  

11: endwhile 

 

To understand the operation of this algorithm, consider the following diagram: 

a

r = r0 q0 r0

b

x = abr < 2n

0n2n0n
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Let ( )pGFba ii ∈, , which are less than n2 . The size of a product bax ×=  is less than n22 , 

but in general larger than n2 . The above algorithm will be used to perform a modular 

reduction. 

Let r0 be the lower n bits of the product x, and the upper n bits q0, so: 

 
002 rqbax n +=×=  ( 5.9 )

 
but 
 

 ( )pcn mod2 ≡  ( 5.10 )

then 

 ( )prcqxr mod00 +≡= . ( 5.11 )

This can be represented as: 

r0

cq0 mod p

cq0 + r0 mod p

r1q1cq0

r = r0 + r1 < 2n+1

0n2n0n

0n+1
 

This new expression for the residue class is still larger than n2 , so the process is repeated: q1 is 

the upper n bits of cq0 and r1 is the lower n bits of cq0. Again rewrite the equations and replace 
n2  by c: 
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r2r = r + r2 cq1R < 2n+2

0n0n+2
 

Now the result residue of ba ×  that in general is less than 22 +n , subtract p from the 

intermediate result r once or twice to complete the reduction. This algorithm requires only two 

multiplications by c and several additions and subtractions, so one OEF subfield multiplication 

is actually three integer multiplications. 

5.3.2 Extension Field Modular Reduction 

After finishing the first stage of multiplying two polynomials, the intermediate result ( )xC ′  is 

obtained, which in general has a degree greater than or equal to m. The next stage is to reduce 

( )xC ′  so that it has a maximum degree of 1−m . This can be achieved by taking the remainder 

after polynomial long division with the divisor being the irreducible field polynomial. 

OEFs have a field polynomial of the form 

 ( ) wxxP m −= . ( 5.12 )

Using an irreducible binomial as a field polynomial allows for a more efficient computational 

of the modular reduction. 

In general, the intermediate result ( )xC ′  has the form 

 ( ) 01
32

32
22

22 cxcxcxcxC m
m

m
m ′+′++′+′=′ −

−
−

− L . ( 5.13 )

Then only the terms im
im xc +

+′ , where 0≥i  must be reduced modulo ( )xP . 
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First observe that the following congruencies hold: 

 ( )xPwxm mod≡  ( 5.14 )

 
 ( )xPwxxm mod1 ≡+  ( 5.15 )

 
M  

 ( )xPwxx mm mod222 −− ≡ . ( 5.16 )

Using these congruencies, ( ) ( ) ( ) ( )xPxBxAxC mod×=  can be computed as: 

 
( ) ( )

.

mod

1

0

1

10

,0,,0,

1

0

1

0

∑ ∑∑

∑∑

∑∑

−

=

−

+=
−+

=
−

≥=+≥

−

<=+≥

−

=

−

=








 +=

+=









⋅=

m

k

k
m

ki
ikmi

k

i
iki

mkjiji

mk
ji

mkjiji

k
ji

m

j

j
j

m

i

i
i

xbawba

xbawxba

xPxbxaxC

( 5.17 )

So the coefficient ci can be computed as: 

 
pbawbac

m

mij
jij

i

j
jiji mod

1

10








+= ∑∑

−

+−=
−

=
− . ( 5.18 )

Extension field multiplication requires 2m  ( )pGF  products jiba , and 1−m  multiplications 

by w when the Schoolbook method is used, the total of 12 −+ mm  subfield multiplications 

that form the performance critical part of a field multiplication. For OEFs with cp n −= 2 , a 

subfield multiplication can be performed as single-precision integer multiplication, resulting in 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 5 OPTIMAL EXTENSION FIELD ARITHMETIC 

Electrical, Electronic and Computer Engineering 63

a double-precision product with a subfield reduction modulo p, by using algorithm (5.4). Each 

subfield reduction requires two multiplications and several additions, so ( )12 2 −+ mm  

additional multiplications are required to perform the extension field multiplication using this 

technique. 

Using the accumulation-and-then-reduction technique shown in equation (5.18) reduces the 

number of reductions mod p to m; only one reduction per coefficient 1,,1,0, −= mici L , is 

required. This can be done by using an integer larger than p to represent the residue class of 

the sum of integer products, and then reduce the result, which in general is more than two 

words. 

Using Type II OEFs offers additional optimization; since it uses an irreducible binomial 

( ) 2−= mxxP , the multiplication by w can be replaced by left shift one bit, which reduces the 

number of multiplication to 2m . 

To see how this works let us take the following example: 

( ) ( ) ( )( )178 172, −∈ GFxBxA  

( ) 217 −= xxP . 

First, calculate the intermediate values for 32,,18,17, L=′ ici  

11621531415216117 bababababac +++++=′ L  

21631515316218 babababac ++++=′ L  

M  

1516161531 babac +=′  

161632 bac =′ . 
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Now calculate 16,,1,0, L=ici  

239mod17000 cwbac ′+=  

239mod1801101 cwbabac ′++=  

M  

239mod3201511414115015 cwbabababac ′+++++= L  

239mod01611521415116016 bababababac +++++= L . 

The maximum value for the multi-word integer ci before reduction can be calculated as: 

1 A product multiplication jiba  has a maximum value of ( )21−p . 

2 Accumulate 17 products, 16 of which are multiplied by 2=w . 

3 ( ) 212
max 21C85C4h1869252133 <==−= pACC . 

Now, expand the basic OEF reduction shown in algorithm (5.4) for multiple words.  

As 21log max2 =ACC  bits, the number can be represented in the radix 28 with three digits as 

 
01

2
2 22 xxxx nn ++=  ( 5.19 )

where nxxx 2,, 210 < . Using the two congruencies 

 ( )cc nn −≡ 2mod2  ( 5.20 )
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 ( )cc nn −≡ 2mod2 22 . ( 5.21 )

The first reduction is performed as 

 ( )cxcxcxx n −++≡′ 2mod01
2

2 ( 5.22 )

noting that 239mod502892 ≡=c . The maximum value of hx 1734=′ , can be obtained when 

BFFFFx 1= . Since 13log2 =′x  bits, which is less than n22 , algorithm (5.4) can be applied to 

reduce x′  to an element ( )239GF . 

To perform the three-word reduction, two multiplications are required to get a 13-bit reduction, 

and then another two multiplications are required by algorithm (5.4), so each reduction 

requires four multiplications. The total number of multiplications that are required to perform 

extension field multiplication using this technique is mm 42 + . 

23m  multiplications are required to perform extension field multiplication using subfield 

reduction to reduce each inner product individually. 

Algorithm (5.5) shows the entire multiplication and reduction. Line 13 supposes that the 

maximum value of accumulation is less than n32 , otherwise additional reduction is required 

using the same principle. 
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Algorithm 5.5 OEF Multiplication with Reduction 

Require: ( ) ∑
−

=
=

1

0

m

i

i
i xaxA , ( ) ∑

−

=
=

1

0

m

i

i
i xbxB  ( )( ) ( )xPcGF

mn −∈ 2 , where 

( ) 2−= mxxP , ( )cGFba n
ii −∈ 2, . 

Ensure: ( ) ( ) ( ) ( )( )xPxcxBxAxC
m

i

i
i mod

1

0
∑

−

=
≡≡ , where ( )cGFc n

i −∈ 2 . 

1: x[i] refer to i-th n-bit word of x, << means left shift 

2: for 0←i  upto 1−m  

3: 0←ic  

4: if 1−≠ mi  

5: for 1−← mj  downto 1+i  

6: jjmiii bacc −++←  

7: end for 

8: 1<<← ii cc  Multiply by 2=w

9: end if 

10: for ij ←  downto 0 

11: jjiii bacc −+←  

12: end for 

13: [ ] [ ] [ ]012 2
iiii cccccc +×+×←  Equation (5.22)

14: ←ic Subfield_Reduction(ci) Algorithm (5.4)

15: end for 
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5.4 SQUARING 

Extension field squaring is similar to multiplication and it can be implemented using the 

general multiplication algorithm shown above. Since the two inputs are equal, there are 

identical inner product terms. By taking advantage of this, the multiplication algorithm can be 

modified to get some additional computational efficiency. 

For example, to compute the squaring of  

( ) ( )( )178 172 −∈ GFxA  

( ) 217 −= xxP  

first calculate the intermediate values for 32,,18,17, L=′ ici  

9810711615216117 22222 aaaaaaaaaac +++++=′ L  

2
910811715316218 2222 aaaaaaaaac +++++=′ L  

M  

161531 2 aac =′  

2
1632 ac =′ . 

Now calculate 16,,1,0, L=ici  

239mod17
2
00 cwac ′+=  

239mod2 18101 cwaac ′+=  

239mod2 19
2
1202 cwaaac ′++=  
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M  

239mod2222 32879614115015 cwaaaaaaaac ′+++++= L  

239mod2222 2
89710615116016 aaaaaaaaac +++++= L . 

Multiplication by two can be implemented as a left shift operation by one bit, which is faster 

than multiplication. The number of coefficient multiplications can be reduced to ( ) 21+mm  

instead of 2m  that is required by the general multiplication algorithm. 

The following technique may be used to achieve more efficiency. Double one coefficient by 

shifting it one bit lift, then perform modular reduction by simply subtracting p from the 

doubled result if it is more than or equal to p, and store the new values. These can be used later 

when they are needed again without recalculating the doubled coefficient. Algorithm (5.6) 

shows an efficient method to square OEFs element. 

 

 

 

 

 

 

 

 

 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 5 OPTIMAL EXTENSION FIELD ARITHMETIC 

Electrical, Electronic and Computer Engineering 69

Algorithm 5.6 OEF Squaring with Reduction 

Require: ( ) ∑
−

=
=

1

0

m

i

i
i xaxA ( )( ) ( )xPcGF

mn −∈ 2 , where ( ) 2−= mxxP , 

( )cGFa n
i −∈ 2 . 

Ensure: ( ) ( ) ( )( )xPxcxAxC
m

i

i
i mod

1

0

2 ∑
−

=
≡≡ , where ( )cGFc n

i −∈ 2 . 

1:  x[i] refer to i-th n-bit word of x, << means left shift 

2:  ( ) ( )xAxB 2←  

3:  for 0←i  upto 1−m  

4:  0←ic  

5:  if 1−≠ mi  

6:  for 1−← mj  downto 



 −−−−

2
11 imm  

7:  jjmiii bacc −++←  

8:  end for 

9:  if i is odd 

10:  
2
jii acc +←  end if 

11:  1<<← ii cc  Multiply by 2=w

12:  end if 

13:  if 0≠i  

14:  for ij ←  downto  21 i+  

15:  jjiii bacc −+←  

16:  end for 

17:  end if 

18:  if i is even 

19:  
2

2jii acc +←  end if 

20:  [ ] [ ] [ ]012 2
iiii cccccc +×+×←  Equation (5.22)

21:  ←ic Subfield_Reduction(ci) Algorithm (5.4)

22:  end for 
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5.5 INVERSION 

The extension field inversion is the most costly arithmetic operation in elliptic curve system. 

Most of the finite field inversions are either based on the Extended Euclidean algorithm or on 

Fermat’s Little theorem. The Itoth and Tsujii Inversion algorithm offers an alternative 

inversion method which is particularly suited to finite fields in polynomial basis that have a 

binomial as the field polynomial. 

The Itoh and Tsujii Inversion takes advantage of the nature of OEFs to reduce the problem of 

extension field inversion to subfield inversion. This inversion reduction can be done by using a 

special mapping, which is defined for all finite fields; the norm function maps elements of the 

extension field to the subfield by raising them to a certain power. 

The Itoh and Tsujii Inversion algorithm computes an inverse in ( )mpGF  as: 

 ( ) ( )xPAAA rr mod111 −−− = . ( 5.23 )

Note that ( )pGFAr ∈ , where 
1
1

−
−=

p
pr

m

. 

Algorithm (4.3) describes the procedure for computing the inverse according to equation 

(5.23); more details on this algorithm can be found in section (4.5). The Extended Euclid 

algorithm or a table look-up can be used to compute the subfield inversion ( ) 1−rA . 

The most costly operation is the computation of the exponentiation 1−rA . The Addition Chain 

algorithm is a popular method that can be derived to perform this exponentiation. This method 

requires four multiplications and five exponentiations to a pi-th power to compute 1−rA  in the 

case of 17=m . 

The exponentiations occurring in the Addition Chain can be implemented efficiently using 

Frobenius maps; the exponentiation in an OEF is evaluated by multiplying each coefficient of 
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the element’s polynomial representation (aj) by the Frobenius constant (cj), which is 

determined by the field and its irreducible binomial as shown in equation (5.24). 

 ( )∑
−

=

=
1

0

m

j

j
jj

p xcaA
i

 ( 5.24 )

cj can be computed as 

 
pwc m

mjijp

j mod
mod−

= . ( 5.25 )

Computing the p-th iteration of the Frobenius map for an OEF with a binomial field 

polynomial requires at most 1−m  multiplications in ( )pGF . The Frobenius constants cj are 

fixed as shown in equation (5.25), so these constants can be precomputed for a table look-up. 

Frobenius maps can be defined as ( ) pAA =σ . Applying an i-th iterate of the Frobenius map 

can be viewed as shifting the exponent to the left by i digits, e.g. 

( ) ( )pAAA p 100004 4

==σ . 

Algorithm (5.7) shows the details of finding the inversion of element in the finite field 

( )( )178 172 −GF , and an irreducible binomial ( ) 217 −= xxP . In this example five extension 

field multiplications, five exponentiations to a pi-th power and one subfield inversion are 

required. The Frobenius constants shown in table (5.1) may be used to compute the required 

exponentiations using equation (5.24). 
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Algorithm 5.7 OEF Inversion in ( )( )178 172 −GF  

Require: ( ) ∑
=

=
16

0i

i
i xaxA ( )( ) ( )xPGF

178 172 −∈ , where ( ) 217 −= xxP , 

( )1728 −∈ GFai . 

Ensure: ( ) ( ) ( )( )xPxAxC mod1−≡ , where ( ) ( )( )178 172 −∈ GFxC . 

1: ( )pAAC p 10
0 =←  ( )Aσ

2: ( )pAACC 11
01 =←  Multiplication

3: ( ) ( )pACC p 1100
12

2

=←  ( )1
2 Cσ

4: ( )pACCC 1111
123 =←  Multiplication

5: ( ) ( )pACC p 11110000
34

4

=←  ( )3
4 Cσ

6: ( )pACCC 11111111
345 =←  Multiplication

7: ( ) ( )pACC p 0000001111111100
56

8

=←  ( )5
8 Cσ

8: ( )pACCC 1111111111111111
567 =←  Multiplication

9: ( ) ( ) 11111101111111111
78

−==← rp AACC p  ( )7Cσ

10: rr AAAACc ==← −1
8  Multiplication

11: ( ) 11 −− =← rAcc  Subfield Inversion

12: ( ) 111
8

−−−
==← AAACcC rr  



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 5 OPTIMAL EXTENSION FIELD ARITHMETIC 

Electrical, Electronic and Computer Engineering 73

 

Table 5.1 Frobenius constants ( ) ipi AA =σ  

Exponent 
Coefficient 

p 2p  4p  8p  

0a  1 1 1 1 

1a  132 216 51 211 

2a  216 51 211 67 

3a  71 22 6 36 

4a  51 211 67 187 

5a  40 166 71 22 

6a  22 6 36 101 

7a  36 101 163 40 

8a  211 67 187 75 

9a  128 132 216 51 

10a  166 71 22 6 

11a  163 40 166 71 

12a  6 36 101 163 

13a  75 128 132 216 

13a  101 163 40 166 

15a  187 75 128 132 

16a  67 187 75 128 
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5.6 EXPONENTIATION 

Raising an extension field element ( ) ( )mpGFxA ∈  to the n-th power can be computed by 

multiplying ( )xA  by ( )xA  n times. Unfortunately this method is inefficient for large n. The 

binary method for exponentiation can be modified to compute the extension field 

exponentiation; this algorithm is simple and powerful. 

The idea of this algorithm is to square and multiply by ( )xA  until ( )xAn  has been reached. For 

example, to compute 13A , it can be expanded as: 

( )( ) AAAA ⋅⋅=
22213 . 

In fact this method is called left-to-right binary exponentiation, which can be described as 

follows. First write the exponent 13 in binary: 1101, starting chain with 1, the most significant 

bit is set so multiply by A, and then square the result. The next bit is set, so multiply again by 

A and square. For a clear bit simply square the result, and carry on until all bits are done. 

Another method is called right-to-left binary exponentiation is shown in algorithm (5.8). This 

right-to-left method is easier to program, takes the same number of multiplications as the left-

to-right method. After initializing C to 1 and B to A, enter a loop, in which always square B, 

while multiplying C by B only if n is odd. 

For large value of n ( )pn > ; it will be better to use algorithm (5.8) with the Addition Chain 

algorithm, which describes in section (4.5). The Addition Chain algorithm is a popular method 

for evaluating the norm function. The Frobenius map can be used efficiently to evaluate the 

norm function and implement the required exponentiations. 
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Algorithm 5.8 OEF Exponentiation 

Require: ( ) ∑
−

=
=

1

0

m

i

i
i xaxA , ( )mpGF∈ , where ( )pGFai ∈ , n is an integer. 

Ensure: ( ) ( ) ∑
−

=
≡≡

1

0

m

i

i
i

n xcxAxC , where ( )pGFci ∈ . 

1: ( ) 1←xC  10 =c ,other 0=ic

2: if 0<n  

3: nn −←  

4: ( ) ( )xAxB 1−←  Algorithm (5.7)

5: else  

6: ( ) ( )xAxB ←  

7: end if 

8: While 0≠n  do 

9: if n is odd  

10: ( ) ( ) ( )xBxCxC ×←  

11: end if 

12: ( ) ( )xBxB 2←  

13: 2nn ←  

14: end while 
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5.7 FAST MULTIPLICATION 

As is shown above, extension field multiplication is a very important issue, since it is required 

to implement both the elliptic curve group operation and the algorithms for inversion and 

exponentiation. The improvement of implementing extension field multiplication enhances the 

performance and the efficiency of the entire elliptic curve system. 

Section (5.3) has explained the normal multiplication method and has described a special 

technique, accumulation-and-then-reduction, to perform the extension field modular reduction, 

which reduces the complexity of the multiplication process. 

In this section, a method to reduce the complexity of extension field multiplication will be 

used. This fast multiplication algorithm was developed by Karatsuba and Ofman [35], and 

using it reduces the number of subfield multiplications in exchange for an increased number of 

additions, compared to the Schoolbook multiplication method. Section (4.3) has provided a 

generalization and detailed analysis of this algorithm. 

Algorithm (5.9) shows the details of implementing the Karatsuba algorithm. 

Algorithm 5.9 OEF Fast Multiplication using Karatsuba Algorithm 

Require: ( ) ∑
−

=
=

1

0

m

i

i
i xaxA , ( ) ∑

−

=
=

1

0

m

i

i
i xbxB  ( )( ) ( )xPcGF

mn −∈ 2 , where 

( ) 2−= mxxP , ( )cGFba n
ii −∈ 2, . 

Ensure: ( ) ( ) ( ) ( )( )xPxcxBxAxC
m

i

i
i mod

1

0
∑

−

=
≡≡ , where ( )cGFc n

i −∈ 2 . 

1: x[i] refer to i-th 8-bit word of x, << means left shift 

2: for 0←i  upto 1−m  

3: for ij ←  upto 1−m  

4: if ji =  

5: iii baD ←  

6: else 

7: ( )( )jijiji bbaaD ++←,  
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8: end if 

9: end for 

10: end for 

11: for 0←i  upto 1−m  

12: 0←ic  

13: if 1−≠ mi  

14: mik +←  

15: for 1−← mj  downto 12 +k  

16: jjkjjkii DDDcc −−+← −− ,  

17: end for 

18: if k is even 

19: 2kii Dcc +←  

20: end if 

21: 1<<← ii cc  Multiply by 2=w

22: end if 

23: for ij ←  downto 12 +i  

24: jjijjiii DDDcc −−+← −− ,  

25: end for 

26: if i is even 

27: 2iii Dcc +←  

28: end if 

29: [ ] [ ] [ ]012 2
iiii cccccc +×+×←  Equation (5.22)

30: ←ic Subfield_Reduction(ci) Algorithm (5.4)

31: end for 
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The extension field multiplication using the Karatsuba algorithm requires  

 
mmMUL

2
1

2
1# 2 +=  ( 5.26 )

multiplications, and 

 
1

2
7

2
5# 2 +−= mmADD  ( 5.27 )

additions, while the Schoolbook method requires 2m  multiplications and ( )21−m  additions. 

The choice between using the Schoolbook method or the Karatsuba algorithm to implement 

extension field multiplication depends on the cost ratio between one multiplication and one 

addition. If this ratio is high then it is more efficient to use the Karatsuba algorithm; refer to 

section (4.3.2) for more details on how to compute this ratio. On the other hand the Karatsuba 

algorithm requires more memory space than the schoolbook method, and so the memory 

access time is an important issue in the implementation. 
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Chapter 6  

SCALAR MULTIPLICATION 

6.1 ELLIPTIC CURVE POINTS SCALAR MULTIPLICATION 

Scalar multiplication is the operation of computing kP  for a given point P on an elliptic curve 

and an integer k. The primary operation in an elliptic curve cryptosystem is point 

multiplication, which is denoted by 

 kPQ =  ( 6.1 )

where Q and P are points on an elliptic curve and k is an integer; the cost of executing such 

cryptosystem depends mostly on the complexity of the scalar multiplication operation. Thus, 

using efficient algorithms for point multiplication has a strong influence on the performance 

and the execution time of elliptic curve cryptosystems. 

Since scalar multiplication means the addition of P to itself 1−k  times, the additive notation 

it could be used to represent kP as: 

 
44 344 21

L

timesk

PPPQ
−

+++= . ( 6.2 )

For large k, computing kP is a costly endeavor, and it is inefficient to use a straightforward 

summation technique that requires ( )1−k  elliptic additions, so other techniques should be 

used to efficiently compute this multiplication. 

Scalar multiplication on an elliptic curve is analogous to exponentiation in the multiplicative 

group of integers modulo a fixed integer, which is based on square and multiply algorithm as 
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shown in section (5.6). The same technique can be used in scalar multiplication by replacing 

the squaring with doubling and the multiplication with addition over an elliptic curve; this 

technique is called The Binary-Double-and-Add algorithm. For instance, P25  can be 

computed using this algorithm as: 

 ( )( )( )( )PPPP 222225 ++= . ( 6.3 )

The binary expansion of 25 is 110012, starting the chain with 0. The most significant bit is set, 

so add P, and then double the result. The next bit is set, so add P and double the result. Now 

the next bit is clear, so just double the result, and so on until all bits are done. This expansion 

requires four doubling operations, and two sums, instead of the 24 elliptic addition operations 

that are required by using the normal summation. 

In general, using this algorithm to compute the scalar multiplication by k with l bits requires 

( )1−l  doubling operation and an average ( ) 21−l  addition; thus it requires ( ) 213 −l  

operations. 

The complexity of scalar multiplication can be reduced by using the Addition-Subtraction 

method which reduces the required number of addition operations. This method uses Balanced 

Binary Expansion (or signed binary expansion), in which no two consecutive coefficients are 

nonzero, instead of using the normal binary expansion that is used by the binary algorithm. For 

instance, the binary expansion of 10045 is 10111100111001 , while the balanced binary 

expansion is 10100010100101 −− . Algorithm (4.4) shows how to use the Non Adjacent 

Form (NAF) method to find a balance binary expansion. 

The operation of the Addition-Subtraction method is the same as the previous algorithm 

except that subtract P when the bit is -1. Algorithm (6.1) illustrates how point multiplication is 

done using the Addition-subtraction method. The inputs are the point P, and the signed binary 

expansion of k (NAF(k)), which is represented as 

 
∑

−

=

=
1

0

2
l

j

j
jkk  ( 6.4 )
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where l is the bit length of k 

During the loop there are two operations. The value of ki determines which operation will be 

done; if ki is 1 then the operation is addition, while if ki is -1 then the operation is subtraction, 

and always doubles the result. 

Algorithm 6.1 Addition-Subtraction method 

Require: 
A point ( )( )mpGFEP ∈ , ( ) ∑

−

=
=

1

0
2

l

i

i
ikkNAF . 

Ensure: kPQ = . 

1: PQ ←  

2: for 2−← li  downto 1 

3: PQ 2←  

4: if 1=ik  

5: PQQ +←  

6: end if 

7: if 1−=ik  

8: PQQ −←  

9: end if 

10: end for 

 

The number of additions is approximately the number of nonzero coefficients in NAF(k); the 

average number of nonzero coefficients in NAF(k) is 3l  [44]. Since this method requires at 

most l doublings, the average complexity of the Addition-Subtraction method is approximately 

l doublings and 3l  additions, for a total of 34 l  elliptic operations, as compared with the 

binary method. This is about one-eighth faster, since it reduces the number of elliptic additions 

from ( ) 21−l  to 3l . Table (6.1), shows the complexity of the three methods that are used to 

compute the scalar multiplication. 
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Table 6.1 Complexity of Scalar Multiplication kP, where lk =2log  

Method #ADDITION #DOUBLING 

Normal Summation 1−k  - 

Binary Algorithm ( ) 21−l  ( )1−l  

Addition-Subtraction Method 3l  l 
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Chapter 7  

EMBEDDING DATA ON AN ELLIPTIC CURVE 

The previous chapters have shown the arithmetic operations over the finite field, and point 

multiplications that are required in elliptic curve cryptography implementation. Before we go 

further into the cryptography techniques, we explain how to map data strings onto a curve, and 

how we can ensure that values picked at random satisfy the elliptic curve equation. This 

chapter describes how to embed random data and a normal message on elliptic curve and how 

to solve the quadratic equation. 

7.1 EMBEDDING A POINT ON A CURVE 

Embedding data on a curve does not mean encrypting that data; it simply encodes data as 

points on a given elliptic curve E defined over a finite field ( )mpGF . Consider the following 

elliptic curve equation: 

 
64

32 axaxy ++= . ( 7.1 )

By converting the right side to a simple form ( )xf  

 ( )xfy =2 . ( 7.2 )

Then the new equation is a simple quadratic equation. Later this chapter shows how to solve 

such a quadratic equation. 
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Even though the elliptic curve E is defined over the finite field ( )mpGF , there are many 

elements in this field that do not satisfy equation (7.2). Thus more bits are required in the finite 

field than the actual data, otherwise not all of the data will be on the curve and the 

cryptosystem is not useful. 

There are several approaches to embed data on a curve. One of the relatively straightforward 

techniques, is the method proposed by Koblitz [16], which makes use of the fact that the 

density of points for any curve over a finite field is almost uniformly distributed, which means 

any subsection of the bits can be seen as an integer and increment it using simple arithmetic. 

For instance, for arbitrary x data, first check if it is on the curve, i.e. x satisfies equation (7.2); 

if not, increment x and perform the test again until the equation (7.2) can be solved. Then two 

values of y are found, and the points ( )yxP ,  and ( )yxP −,  are on the curve. 

Figure (7.1) shows the required procedures to embed a random point on elliptic curve; all of 

these steps will be explained in the next sections. 
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Generate a Random Curve E
y2 = x3 + a4x + a6

4(a4)3+27(a6)2

= 0

Generate a Random Finite Field 
Element x ∈  GF(pm)

Compute
f(x) = x3 + a4x + a6

f(x) is 
Quadratic 
Residue

Increment x

Compute y such that
y2 = f(x)

P(x, ±y) are 
2 random points on E

Yes

No

Yes

No

 

Figure 7.1 Procedures of Embedding Random Point on Elliptic Curve E 
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7.2 SOLVING THE SQUARE ROOT EQUATION 

To find a point on an elliptic curve ( )( )mpGFE  for a given x-coordinate, the corresponding y-

coordinate must be calculated by substituting the x-coordinate into the elliptic curve equation 

(7.2), which returns the value of 2y , so we need to find the square root of 2y . 

Cohen reports in [47] that if p is an odd prime number, and a is a quadratic residue7, then there 

exists an x such that ( )pax mod2 ≡ . In a finite field ( )mpGF  where the prime p satisfies that 

( )4mod3≡p  and m is odd, the solution is given by 

 ( ) ( )pax
mp mod41+= . ( 7.3 )

But in order to find the value of x, first notice that if 12 += km , for some k [48] 

 ( ) ( ) 






 +−+=+ ∑
−

=

1

0

2 11
4

1
4

1 k

i

i
m

ppppp
( 7.4 )

so that 

 
( ) ( )

( ) ( ) 411

41

1

0

2

+−

+
















⋅













 ∑
=

−

=

ppp
p

p aaa

k

i

i

m

. ( 7.5 )

These relations can be verified by straightforward induction. The quantity  

∑
−

=

1

0

k

i

iu

a  

where 2pu =  can be efficiently computed in a technique analogous to the Itoh-Tsujii 

Inversion, based on the Frobenius map in characteristic p as 

                                                
7 The next section describes how to check if a certain value is a quadratic residue 
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L . ( 7.6 )

Exponentiation to a power of p is a linear operation in characteristic p. After computing this 

quantity, a multiplication by a and exponentiation to 1−p  and ( ) 41+p  are required to 

complete the square root evaluation. The conventional exponentiation algorithm may be used 

to compute these exponentiations; however, if p is large, it may be an advantage to compute 
1−pz  as 1−⋅ zz p . 

Consider 

( ) ( )mpGFxA ∈  

where 182 +×=m , so 8=k , assuming that A is a quadratic residue. 

Using equation (7.6) to compute 
∑

−

=

1

0

k

i

iu

A  as 

( ) ( ) 8, 0
111

4
32327

=⋅= +++++++++ kAAA
uuuuuuuuu L  

( ) ( ) 4, 1
111

232

=⋅= +++++ kAAA uuuuuu  

( ) 2,. 2
1 ==+ kAAA uu . 

Algorithm (7.1) shows how to compute 
∑

−

=

1

0

k

i

iu

A  using the Frobenius map. 
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Algorithm 7.1 
Computing 

∑
−

=

1

0

k

i

iu

A in ( )17pGF  

Require: ( ) ( )mpGFxA ∈ , where 12 += km , 8=k . 

Ensure: 
( ) ∑

≡

−

=

1

0

k

i

iu

AxC , where ( ) ( )mpGFxC ∈ , 2pu = . 

1: up AAC =←
2

0  ( )A2σ

2: uAACC +=← 1
01  Multiplication

3: ( ) ( ) 24 1
12

uup ACC +=←  ( )1
4 Cσ

4: 321
123

uuuACCC +++=←  Multiplication

5: ( ) ( ) 4
328 1

34

uuuup ACC +++=←  ( )3
8 Cσ

6: ∑
==←

−

=++++

1

0
721

34

k

i

iu
uuu AACCC L  

Multiplication

 

Then use equation (7.5) to complete the evaluation of the square root of A. Algorithm (7.2) 

shows the details of computing the square root of an arbitrary element ( ) ( )mpGFxA ∈ , using 

equation (7.5). 

Algorithm 7.2 OEF Square Root 

Require: ( ) ( )mpGFxA ∈ , where 12 += km , k is integer. 

Ensure: Find ( )xC , such that ( ) ( ) )(mod2 pxAxC ≡ , where ( ) ( )mpGFxC ∈ . 

1: ∑
←

−

=

1

0
0

k

i

iu

AC  
Equation (7.6)

2: pCC 01 ←  ( )0Cσ

3: pCC 12 ←  ( )1Cσ

4: ( ) 1
13

−← CC  Inversion

5: 324 CCC ←  Multiplication

6: ACC 45 ←  Multiplication

7: ( )( ) 41
5

+← pCC  Exponentiation
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This section gives an efficient method for finding a square root in Optimal Extension Fields 

( )mpGF  where the prime p satisfies ( )4mod3≡p  and m is odd. A similar technique can be 

used to compute the square root when ( )8mod5≡p . The remaining case is ( )8mod1≡p , 

which is the most complex case. In the last case Shanks’s algorithm can be applied to find the 

square root without benefit from this technique. 

7.3 QUADRATIC RESIDUE 

Let p be an odd prime, then the congruence 

 ( )pax mod2 ≡  ( 7.7 )

for a given a has three cases. Firstly there is no solution in this case, a is a quadratic non-

residue modulo p. Secondly there is one solution if ( )pa mod0≡ . Finally there are two 

solutions in this case, a is a quadratic residue modulo p. A simple way of identifying whether 

or not an integer is a quadratic residue modulo p is the Legendre symbol. 

The Legendre symbol [16] 

Let a be an integer and 2>p  a prime. We define the Legendre symbol ( )pa  as 

 









−
=









pulononresiduequadraticaisaif
puloresiduequadraticaisaif

apif

p
a

mod,1
mod,1

|,0
. ( 7.8 )

Then the number of solutions modulo p of the above congruence is ( )pa+1 . 

By Fermat’s Little theorem, in ( )pGF  the square of ( ) 21−pa  is 1, so ( ) 21−pa  itself is 1± . 

Hence the following congruence can be proved: 
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 ( ) ( )pa
p
a p mod21−≡






 . ( 7.9 )

In ( )mpGF , if 12 += km , for some k  

 ( ) ( ) 
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( 7.10 )

so that 
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Again the quantity 
∑

−

=

1

0

k

i

iu

a  can be computed using equation (7.6) as shown in the previous 

section. Algorithm (7.3) shows the details of computing the value of the Legendre symbol: 

Algorithm 7.3 Legendre Symbol 

Require: ( ) ( )mpGFxA ∈ , where 12 += km , k is integer. 

Ensure: Find ( ) ( ) ( )pApac p mod21−≡= . 

1: ∑
←

−

=

1

0
0

k

i

iu

AC  
Equation (7.6)

2: pCC 01 ←  ( )0Cσ

3: pCC 12 ←  ( )1Cσ

4: 213 CCC ←  Multiplication

6: ACC 34 ←  Multiplication

7: ( )( ) 21
4

−← pCc  Exponentiation
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7.4 RANDOM NUMBER GENERATOR 

Many aspects of elliptic curve cryptosystems require large random numbers: OEF generation, 

elliptic curve generation, base element generation, encryption process, and so on. 

The concept of randomness has little meaning for a digital computer, since it is designed to 

reproduce the same output for any given input and because of its simplicity it does not produce 

very random numbers. What is useful for cryptographic purposes is that an attacker cannot 

easily guess the next bit knowing all the previous data. 

The random number generator used here was developed by Dr. Marsagila [49]; he reports that 

the repeat period is approximately 2502 . He calls his code “the mother of all random bit 

generators”. 

The internal state of the generator determines the output. An initial seed of 32-bit is used to 

create the initial internal state, so this should be as random as possible to begin with. Two 

arrays store carry values in their first element, and random 16-bit numbers in elements 1 to 8. 

These random numbers are moved to elements 2 to 9 and a new carry and number are 

generated and placed in elements 0 and 1, the two arrays are filled with random 16-bit values 

on first call of the random generator. A 32-bit random number is obtained by combining the 

output of the two generators. 

To generate a finite field element ( ) ∑
−

=
=

1

0

m

i

i
i xaxA , generate a random value for each ia  which 

is in ( )pGF , so a reduction algorithm8 should be used at the end of the random generator to 

reduce a 32-bit to a ( )pGF  element. 

7.5 EMBEDDING PLAINTEXT 

The previous sections have shown how to embed a random point on an elliptic curve, but what 

about embedding a plaintext on a curve? The situation is different, because during the 

encryption process a plaintext must be embedded in a point on the curve in such a way that it 
                                                
8 Based on the technique used in section (5.2.2) 
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can be retrieved successfully from that point when decrypted, and so each message must 

correspond to a unique point and vice versa. However, the previous technique may be used 

here with some modification. 

The first step is to divide the plaintext T into blocks t with fixed length l, and then represent 

each block as a finite field element by converting the string t to the OEF element tx . The 

length of each block l, should be the maximum value that can be chosen, so that when we 

convert t to finite field element it could be represented as 

 
01

3
3

2
2 txtxtxt m

m
m

m ++++ −
−

−
− L . ( 7.12 )

Let 1−= mtj , then 

 
∑

−

=

− +=
2

0

1
m

i

i
i

m
t xtxjx . ( 7.13 )

Compute the right side ( )xf  of equation (7.2) for tx , then check if ( )xf  is a quadratic residue 

using algorithm (7.3); if so find ty  which is the square root of ( )xf  using algorithm (7.2), 

then the point ( )ttt yxP ,  represents the embedded message block t. If ( )xf  is a quadratic non-

residue, then increment j by 1 and try again with the new tx . Koblitz proves in [16] that an tx  

can be found for which ( )xf  is a square before j gets to the maximum value of 1−mt . 

It is easy to recover t from the point ( )ttt yxP , . All that one needs to do is simply clear the last 

term of tx , which is 1−mt , and then convert tx  back to a string t. 

7.6 DATA CONVERSION  

All the arithmetic operations and the internal routines were used to implement an elliptic curve 

cryptosystem in this dissertation deal with variables, which are elements of the Optimal 

Extension Field. In practice it is required to convert these field elements to integer or octet 

strings, for example, the ECC may be used to generate a key that could be used for a 
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symmetric cipher, so that this key should be represented as an integer. In another example, to 

encrypt a message, then it should be converted from the octet string to a finite field element. 

In the OEF, cp n −= 2 , where n is the size of the microcontroller word, so each element of the 

field can be represented in m microcontroller words. However, for each word, there will be 

only cn −2  possible values instead of n2 ; thus the number of possible octet strings formed 

from the concatenation of m words is reduced by mc  due to the representation. 

In general, to convert finite field element to integer or octet string representation, perform 

radix conversion arithmetic. Thus the field element  

 ( ) 01
2

2
1

1 axaxaxaxA m
m

m
m ++++= −

−
−

− L ( 7.14 )

may be represented by the integer I as 

 
01

2
2

1
1 apapapaI m

m
m

m ++++= −
−

−
− L . ( 7.15 )

7.6.1 Converting Between OEF Elements and String of Decimal Digits 

To convert the OEF element to an integer I as shown in equation (7.15) I will have a bit length 

of  pm 2log , which is larger than the microcontroller word, and thus it can not be 

represented directly in a single variable. It is possible to represent this integer as ASCII string 

of decimal digits. 

To convert an element A to an ASCII string S, repeatedly divide A by 10: the remainder at 

each step will be the i-th element of S. After each step, set the new value of A to the quotient 

and increment i, and at the end reverse the string S. 

To find the element A, for each element of S, multiply A by 10 and add the i-th element to it. 

For example, the following ASCII string of decimal digits: 

S = 2629551508397781474604157911956172681504 
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can be represented as the following OEF element in ( )( )17239GF  

( )
.2281168412811089232166

6552111109231107354823
234567

8910111213141516

+++++++
+++++++++=

xxxxxxx
xxxxxxxxxxA

 

7.6.2 Converting between OEF elements and octet string 

Encrypting a message using ECC requires at first to represent this message as a finite field 

element, while the opposite conversion is required in the case of a decryption process to 

retrieve the original message. 

If a message M is large, then the first step is to divide M into blocks im  of fixed size l 

 ( )( )







 −−
=

8
2log2 ncm

l
n

 ( 7.16 )

where  a  is the biggest integer a≤ . 

The next step is to convert each message block im  to a finite field element. The same 

technique that was used in the previous section will be used, except that the division is by 256, 

and the conversion back to octet string uses multiplication by 256. For example, the following 

message 

M = "hello world" 

can be represented as the following OEF element in ( )( )17239GF  

( ) 7294403712814589203108129207 2345678910 ++++++++++= xxxxxxxxxxxA . 
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Chapter 8  

ELLIPTIC CURVE CRYPTOGRAPHY 

8.1 INTRODUCTION 

After having covered all the math of finite fields, elliptic curves, and the basics of getting real 

data onto curve in the previous chapters, now it is the time to show how to use elliptic curve as 

cryptosystem and to actually hide data. 

Although the use of elliptic curve cryptosystems is relatively new, they are a popular research 

area, and more secure than previous cryptosystems because the analogue of the discrete 

logarithm problem on elliptic curves is more complex than the classical discrete logarithm 

problem. 

The elliptic curve cryptosystems do not use new cryptographic algorithms with elliptic curves 

over finite fields, but they implement existing algorithms that are similar to Diffie-Hellman 

and ElGamal algorithms. This chapter describes two simple elliptic curve cryptography 

protocols that analogue to Diffie-Hellman and ElGamal. 

The elliptic curve cryptosystems have domain parameters, which determine the arithmetic 

operations on elliptic curves over finite fields; these domain parameters can be summarized as 

• q: prime power used in the finite field ( )qGF , that is mpq = , where p is a prime. 

• Field representation of the method used for representing field elements in ( )mpGF . 
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• 4a , 6a : field elements, they specify the equation 64
32 axaxy ++= , of the elliptic 

curve E over ( )mpGF . 

• G: a base point represented by ( )gg yx ,  on ( )( )mpGFE . 

• n: order of the point G, that is n is the smallest positive integer such that OnG = . 

Similar to the other public key cryptosystems, elliptic curve cryptography requires two entities, 

one at the encryption side and the other at the decryption side. Thus each user should have a 

public key and private key. In general, one can generate these two keys using elliptic curve 

cryptography as follows 

• Choose a suitable finite field ( )mpGF . 

• Generate a random elliptic curve E over the finite field ( )mpGF . 

• Select a random finite field element k, where ( )mpGFk ∈ . 

• Generate a base point G in the elliptic curve E. 

• Compute GkP = , where P is a point on E, and OP ≠ . 

• k is the private key, while P is the public key. 

8.2 ADVANTAGES OF ELLIPTIC CURVE CRYPTOGRAPHY 

Elliptic curve cryptography offers several advantages, especially for those systems requiring 

strong security in constraint devices to give the most security per bit. A white paper by 

Certicom [50] reports some of these advantages: 

• ECC offers considerably greater security for a given key size. 
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• The smaller key size also makes possible much more compact implementations for a 

given level of security, which means faster cryptographic operations, running on 

smaller chips or more compact software. This means less heat production and less 

power consumption, all of which is of particular advantage in constrained devices, but 

of some advantage anywhere. 

• There are extremely efficient, compact hardware implementations available for ECC 

exponentiation operations, offering potential reductions in implementation footprint 

even beyond those due to the smaller key length alone. 

• ECC provides longer running battery operated devices that produce less heat. 

• ECC provides software applications that run faster and take up less memory. 

• ECC provides scalable cryptography for the future. 

On the other hand, the main advantage of using the underlying finite field is that different 

elliptic curves can be selected or can be changed at any time for security reasons, without 

changing or modifying the underlying finite field. 

8.3 THE ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM 

Each cryptosystem is based on a complex problem that makes the cryptosystem hard to attack. 

For example, the security of RSA depends on the hardness of extracting modular e-th roots, 

while the ElGamal cryptosystem bases its security on the intractability of the Discrete 

Logarithm Problem (DLP). 

The Discrete Logarithm Problem can be defined as follows: given bai = , find the particular 

value for i that satisfies the equation, namely bi alog= . When solving for the Discrete 

Logarithm Problem over a prime field, this means finding the integer i for which 

( )pbai mod≡ , where p is a prime. 
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The Discrete Logarithm Problem over a finite field group can be defined as follows: 

Definition 8.1 [16] 

If G is a finite field group, b is an element of G, and y is an element of G, which is a power of 

b, then the Discrete Logarithm of y to the base b is any integer x such that ybx = . 

 

ECC uses a group logarithm problem too, but it differs in the method by which the group is 

defined, and how the fundamental operations on the group are defined. The following is an 

analogue definition for the group of points on an elliptic curve: 

Definition 8.2 [16] 

If E is an elliptic curve over ( )qGF  and G is a point of E, then the Discrete Logarithm 

Problem on E (to the base G) is the problem, given a point EP ∈ , of finding an integer Zk ∈  

such that GkP = , if such an integer k exists. 

 

Point G is called the base point in ECDLP, while Pk Glog=  is the Elliptic Curve Discrete 

Logarithm of P to the base point G. 

The strength of security of the Elliptic Curve Cryptography lies in the Elliptic Curve Discrete 

Logarithm Problem. ECDLP is believed to be unsolvable in sub-exponential time, while there 

are already algorithms to solve the DLP in sub-exponential time. On the other hand the 

ECDLP is more complex than the integer factorization problem. 

Now, the superficially obvious, certain way of finding k would be to perform repeated addition 

operations stepping through G, 2G, 3G, and so on, until Gk  is found. One would start by 

doubling G, then adding G to 2G finding 3G, then 3G to G finding 4G and so on. This is the 

brute force method. The problem with this is, if one uses a large enough prime field, the 
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number of possible values for k becomes inconveniently large, so inconveniently large that it 

is quite practical to create a sufficiently large prime field that searching through the possible 

values of k would take all the processor time currently available on the planet thousands of 

years [50]. 

There are many possible algorithms to use for encryption with elliptic curves, and many 

discrete logarithm protocols can be converted to use elliptic curves, such as Diffe-Hellman and 

ElGamal. 

8.4 THE DIFFIE-HELLMAN PROTOCOL 

The Diffie-Hellman protocol is the original public key cryptosystem proposed for secret 

sharing, and it was the first public key algorithm ever invented. This algorithm was invented in 

1976 by Whitfield Diffie and Martin E. Hellman [6]. It gets its security from calculating 

discrete logarithms in a finite field. The idea behind the Diffie-Hellman algorithm is to 

generate private information over an insecure communication channel, and share it in a secure 

fashion. This information can then be used as a private key in a symmetric key cryptosystem 

such as DES. 

8.4.1 Diffie-Hellman Key Exchange 

To see how the Diffie-Hellman key exchange works, assume that there are two users, A and B, 

who want to use this algorithm to generate and distribute a secret key: 

• There are two publicly known numbers: a prime number q and an integer α  that is a 

primitive root of q. A and B agree on these public elements. 

• User A selects a random integer qX A < , and computes qY AX
A modα= . 

• User B selects a random integer qX B < , and computes qY BX
B modα= . 

• Each side keeps X value private and makes the Y value publicly available to the other 

side. 
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• User A computes ( ) qYk AX
BA mod= . 

• User A computes ( ) qYk BX
AB mod= . 

The keys kA and kB are identical 

 ( ) ( ) ( ) B
X

A
XXX

BA kqYqqYk BBAA ==== modmodmod α  ( 8.1 )

so both side share the same key 

 ( ) qk BA XX modα= . ( 8.2 )

The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy 

to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. 

For large primes, the latter task is considered infeasible. The Diffie-Hellman key exchange 

protocol can be easily extended to three or more people. More information can be found in [7]. 

8.4.2 Elliptic Curve Diffie-Hellman (ECDH) 

The Diffie-Hellman key exchange algorithm can easily be implemented using elliptic curve. 

Suppose there are two users, A and B; then to distribute a key between them using Elliptic 

Curve Diffie-Hellman can be done in the following manner, figure (8.1): 

• They first publicly choose a finite field ( )mpGF . 

• They agree on an elliptic curve E over a finite field ( )mpGF . 

• They pick a base point G in the elliptic curve E, which is also a public element. 

• User A chooses a random finite field element ( )m
A pGFk ∈ , which is A’s private key. 

• User B chooses a random finite field element ( )m
B pGFk ∈ , which is B’s private key. 
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• A generates a public key GkQ AA ×= , where QA is a point on the elliptic curve E, then 

sends it to B. 

• B generates a public key GkQ BB ×= , where QB is a point on the elliptic curve E, then 

sends it to A. 

• Now A generates the secret key BAA QkP ×= . 

• Similarly, B generates the secret key ABB QkP ×= . 

It is easy to show that the secret keys are the same, so they share the same key 

 ( ) GkkP BAs ×=  ( 8.3 )

 

Ps is a point in elliptic curve E that could be represented as ( )ss yx , . For reasonable security, it 

is important to use only the xs value, since the value of ys could be recovered from the elliptic 

curve equation, as shown in the previous chapter. However, 1 bit of ys is necessary in order to 

determine which root will be used: ys or –ys. 
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Public Elements
GF(pm)   Extension Finite Field 
E             Elliptic Curve over GF (pm)
G             Base Point on E

Key Generation
Private kA   Random Finite Field 

Element
Public QA QA = kA × G

Key Generation
Private kB    Random Finite Field 

Element
Public QB QB = kB × G

Secret Key Generation
PA = kA × QB

Secret Key Generation
PB = kB × QA

Send QB to ASend QA to B

Share Key
PA = PB = PS = (kA KB) × G

User A User B

 

Figure 8.1 Elliptic Curve Diffie-Hellman (ECDH) 

The security of ECDH is gained by the intractability of point Ps without solving the Elliptic 

Curve Diffie-Hellman Problem (ECDHP), which is defined as follows: 

Definition 8.3 

Given G, EQ ∈ , such that: GkQ ×= , where k is a finite field element. The ECDHP is to find 

k. 
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Thus it seems infeasible to compute Ps, kA and kB knowing only G, GkA  and GkB . Functions 

such as ECDH are known collectively as one-way function [6]. 

The advantage of this algorithm is that, after generating the secret key xs, it could be used in a 

symmetric key cryptosystem for a period of time before regenerate a new key. Since this key 

can be seen as NAF representation, then the Addition-Subtraction method can be used to 

compute the scalar multiplication, as shown in chapter 6, and so the computations are speeded 

up. 

8.5 THE ELGAMAL PROTOCOL 

The ElGamal protocol is another public-key cryptosystem using the discrete logarithm 

problem as its core. To generate a key pair in the ElGamal cryptosystem, choose a large prime 

p, and another two numbers, x and g that are smaller than p. x is used as a private key. Now 

compute the public key y as: 

 pgy x mod= . ( 8.4 )

It is easy to compute y as shown in the equation above, but it is infeasible to find x given y, g 

and p by the property of discrete logarithm problem. Encryption using the public key and 

decryption using private key is an exponentiation operation. However decryption using the 

public key would require performing the difficult inverse operation especially for a large 

enough p prime value. 

8.5.1 Elliptic Curve Analogue to ElGamal Protocol 

The ElGamal cryptosystem is another popular system that can be implemented with elliptic 

curve. It is a very useful protocol for randomly generated curves and points, because it does 

not require knowledge of the order of the curve, the factors of that number, or the order of the 

base point. Another advantage is that it is not patented. 
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To generate a key pair in the ElGamal cryptosystem the same procedures used in Diffie-

Hellman protocol would be followed. An elliptic curve E defined over a finite field ( )mpGF  is 

chosen, a base point, G which is public, must be chosen, each user choosing a random finite 

field element kA and kB, which are the private keys for user A and B respectively. Then each 

user computes his public key and sends it to the other user: 

 GkP AA ×=  ( 8.5 )

 
 GkP BB ×=  ( 8.6 )

which are the public key of A and B respectively. Each user can encrypt and send messages 

using these public key points in such a way that no one can discover the data without solving 

the discrete elliptic curve logarithm problem. 

Encryption Process 

• User A embeds the message information onto the curve, E, as a message point Pm 

• User A chooses a random finite field element r. 

• User A computes the two points 

 GrPr ×=  ( 8.7 )

and 

 Bmh PrPP ×+= . ( 8.8 )

• Then user A sends both points Pr and Ph to B. 
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Decryption Process 

• B computes the point. 

 rBs PkP ×= . ( 8.9 )

• B subtracts Ps from Ph to get the message point Pm. 

 shm PPP −= . ( 8.10 )

• B recovers the original message from the message point Pm. 

To see how this works: in equation (8.8), BrP  can be expanded as ( )Gkr B , then the term Ph in 

equation (8.8) is rewritten as: 

 ( )GkrPP Bmh ×+= . ( 8.11 )

Substitute equation (8.7) into equation (8.9), and combine this with equation (8.11) into 

equation (8.10), which gives: 

 ( ) ( ) mBBmm PGrkGkrPP =×−×+= . ( 8.12 )

Figure (8.2) shows the complete procedure of generating a pair key and encryption and 

decryption processes in the elliptic curve cryptography analogue to the ElGamal protocol. 
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Figure 8.2 Elliptic Curve Analogue to ElGamal Protocol 

One advantage of this protocol is that the public keys can stay public: there is no need to 

change them. Every time data are exchanged, a new random value r is chosen. Neither of the 

sides needs to remember r, and, if the field size is large enough, it will be very difficult to 

discover the secret finite field elements kA or kB. This provides both secret sharing and 

authentication. 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 8 ELLIPTIC CURVE CRYPTOGRAPHY 

Electrical, Electronic and Computer Engineering 107

There are some drawbacks to this protocol. This system requires a message expansion of 2, 

since a point message Pm is encrypted as ( )hr PP , . Another drawback, is that in this protocol a 

man-in-the-middle attack is possible. One possible solution to eliminate this attack is by 

verifying the public keys via an alternate channel such as a telephone in relatively small 

environments, or using certificates for large environments like the Internet. 
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Chapter 9  

IMPLEMENTATION 

This chapter discusses the implementation details of an elliptic curve cryptosystem over 

optimal extension fields. It starts by giving a brief description of the ATmega128 

microcontroller that is used in the implementation, and then it describes the optimal extension 

field. The elliptic curve cryptography design architecture, the data structure and the functions 

used in the implementation are presented. The optimal extension field arithmetic performance 

and elliptic curve group operation timing are summarized at the end of the chapter. 

9.1 ATMEGA128 MICROCONTROLLER 

The ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced 

RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega128 

achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize 

power consumption versus processing speed. 

The AVR core combines a rich instruction set with 32 general-purpose working registers. All 

the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two 

independent registers to be accessed in one single instruction executed in one clock cycle. The 

resulting architecture is more code efficient while achieving throughputs up to ten times faster 

than conventional CISC microcontrollers. 

The ATmega128 provides the following features 

• 128K bytes of In-System Programmable Flash with Read-While-Write capabilities. 
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• 4K bytes EEPROM. 

• 4K bytes SRAM. 

• 53 general-purpose I/O lines. 

• 32 general-purpose working registers. 

• Real Time Counter (RTC). 

• 4 flexible Timer/Counters with compare modes and PWM. 

• 2 USARTs. 

• A byte oriented Two-wire Serial Interface. 

• An 8-channel. 

• 10-bit ADC with optional differential input stage with programmable gain 

• Programmable Watchdog Timer with Internal Oscillator. 

• An SPI serial port. 

• IEEE std. 1149.1 compliant JTAG test interface. 

• 6 software selectable power saving modes. 

• 0 - 16 MHz. 

The device is manufactured using Atmel’s high-density nonvolatile memory technology. By 

combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, 

the Atmel ATmega128 is a powerful microcontroller that provides a highly flexible and cost 

effective solution to many embedded control applications [51]. 
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9.2 THE UNDERLYING FINITE FIELD 

The first step of implementation is the selection of the underlying finite field. An extension 

finite field is identified with the notation ( )mpGF  for p a prime and m a positive integer. This 

field is isomorphic to ( ) [ ] ( )xPxpGF , where ( ) ( )∑
−

=
∈+=

1

0
,

m

i
i

i
i

m pGFpxpxxP , is a monic 

irreducible polynomial of degree m over ( )pGF . 

In the implementation, the Optimal Extension Field has used as the underlying finite field, in 

which a special form of p has been chosen as cn −2 , where n is the microcontroller word size, 

which is equal to 8 in ATmega128 microcontroller, and c is an arbitrary positive integers that 

satisfies  nc 2
1

2log ≤  and is chosen to get a value of p that is close to the microcontroller 

word value. In addition, m is chosen so that an irreducible binomial ( ) wxxP m −=  exists, 

where ( )pGFw ∈ . The choices of p, m, w and ( )xP  can have a dramatic impact on the 

performance of the ECC. The following parameters are used in the implementation: 

8=n  

17=c  

2391728 =−=p  

17=m  

2=w . 

So the OEF is 

( )( )178 172 −GF  
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and the irreducible binomial is 

( ) 217 −= xxP . 

This field has an order of about 1342 . There are some advantages to this selection; for instance, 

choosing 2=w  gives the ability to use shift operation instead of multiplication, and since p 

satisfies that ( )4mod3≡p  and m is odd with the form 12 += km , for some k, then the square 

root of a finite field element can be computed efficiently, as shown in section (7.2). 

The implementation code could be used with the other parameters by modifying the header 

file and a few simple routines, such as the “Reduction routine”. 

9.3 SOFTWARE IMPLEMENTATION 

The algorithms shown in the previous chapters have implemented in C using the Visual Micro 

Lab (VMLab) simulator version 3.9, which is a virtual prototyping design framework that 

simulates several types of AVR microcontrollers, such as ATmega128. The WinAVR software 

has used as a third party GNU C compiler (GCC) to compile C Code. The WinAVR software 

is open source software development tools for the Atmel AVR series of RISC microprocessors 

hosted on the Windows platform, and it includes the GNU compiler for C and C++. 

9.3.1 Design Architecture 

Elliptic Curve Cryptography implementation is very intensive, and it consists of several 

routines and functions, so a proper design should be used to accomplish an efficient 

implementation. The design has been used in this dissertation divides the implementation into 

three levels, as depicted in figure (9.1): 
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LIBRARY

 

Figure 9.1 Elliptic Curve Cryptography Design Architecture 

The first level consists of two groups: the support functions group includes basic functions, 

such as conversion functions between OEF elements and long integer string, and other basic 

arithmetic functions. The second group in this level includes the required functions to handle 

OEF elements and the arithmetic operations in this field such as addition, subtraction, 

multiplication, and other operations. This level is the only abstract level and it could be 

considered as the core level, since the other levels depend on it. 

Level 2 also consists of two groups: the first group is the curve functions, which include the 

required routines to generate a curve and to embed data as a point on a curve. A point 

functions group includes addition, subtraction and doubling of elliptic curve points and scalar 

point multiplication. 

In the last level any elliptic curve cryptosystem can be implemented, such as ECDH, EC 

analogue to ElGamal cryptosystem, ECDSA, and other cryptosystems. As shown in figure 
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(9.1), the first two levels can be considered as a library that contains all the definitions and 

routines required to implement any elliptic curve cryptosystem. 

The advantages of this design are as follows: 

• The library can be used to implement any elliptic curve cryptosystem. 

• An elliptic curve cryptosystem can be implemented independent of a chosen curve or 

on a selected finite field. 

• For security reasons several curves can be used on the same finite field. 

• The underlying finite field can be changed without changing the top level routines. 

• Future improvement can be accomplished easily. 

• This design makes it easy to understand the implementation of different algorithms. 

9.3.2 Data Representation 

The main groups in the design are OEF, curve and points blocks. Each of these blocks consists 

of two parts: data and functions. This section shows how the data could be represented. 

Representation of OEF elements 

The elements in ( )mpGF  are represented by polynomials of degrees less than m as 

 ( ) 01
2

2
1

1 axaxaxaxA m
m

m
m ++++= −

−
−

− L ( 9.1 )

where all the coefficients ia  are in ( )pGF . Thus the OEF elements can be represented by a 

structure that consists of an array of the element’s coefficients as follows: 
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typedef struct 

{ 

     uint8_t Element[m]; 

}OEFPoly; 

Notice that the type of Element array is uint8_t (unsigned char), so one can use the arithmetic 

operations, e.g. addition, subtraction, multiplication, and so on, which are implemented using 

C-type functions. This structure will be the prototype for most of the routines in the three 

levels. 

Representation of the Elliptic curve 

The elliptic curve equation over optimal extension field ( )mpGF  where 3>p  is given as 

 baxxy ++= 32  ( 9.2 )

where ( )mpGFba ∈, . 

Any elliptic curve of this form can be uniquely determined by a and b. Thus an elliptic curve 

can be given by the following structure: 

typedef struct 

{ 

   OEFPoly a; 

   OEFPoly b; 

}Curve; 

This structure consists of the two parameters of the elliptic curve equation, which are of 

OEFPoly type. 
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Representation of Points 

Each point on an elliptic curve E over ( )mpGF  has the form ( )yx, , where ( )mpGFyx ∈, . 

Both coordinates x and y are represented as OEFPoly type; thus the structure for a point on an 

elliptic curve is given by: 

typedef struct 

{ 

   OEFPoly x; 

   OEFPoly y; 

}Point; 

This structure can be used to represent any point on an elliptic curve, but there is still another 

point that the point at infinity O. In the implementation this point has represented as ( )0,0 . 

9.3.3 Functions Representation 

The first two levels in figure (9.1) are a library that contains most of the required functions to 

implement any elliptic curve cryptosystem. This section gives a brief description of these 

functions. 

OEF functions 

The first task of the implementation is to implement the required functions to generate an 

underlying finite field, and to perform all the arithmetic operations on this field, which are 

discussed in chapter 5. Table (9.1) shows these functions, gives a brief description of each 

function task and shows the related algorithm or equation of these functions 
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Table 9.1 OEF functions 

Function Description Note 

PolyRandom Generate a random OEF Poly  

PolyNull Null out an OEF Poly  

PolyNeg Negate an OEF Poly  

PolyCopy Copy an OEF Poly to another one  

PolyIsNull Check if an OEF Poly is Null  

PolyIsEqual Check if 2 OEF Poly are equal  

PolyAdd Add 2 OEF Poly Algorithm (5.1)

PolySub Subtract 2 OEF Poly Algorithm (5.2)

PolyDouble Double OEF Ploly  

PolyMulti Multiply 2 OEF Poly Algorithm (5.5)

PolyKaratsuba Multiply 2 OEF Poly using Karatsuba algorithm Algorithm (5.9)

PolySquare Square an OEF Poly Algorithm (5.6)

PolyScale Scale an OEF Poly by 8-bit value  

PolyScale2n Scale an OEF Poly by 8-bit power 2 value  

PolyInverse Inverse an OEF Poly Algorithm (5.7)

PolyFrobenius Apply Frobenius map on an OEF Poly Equation (4.37) 

PolyExponent Exponent an OEF Poly Algorithm (5.8)

PolyQR Check if an OEF Poly is Quadratic Residue Algorithm (7.3)

PolySqrRoot Find a square root of an OEF Poly Algorithm (7.2)

 

Elliptic Curve Functions 

This group includes functions required to generate an elliptic curve and to embed data on an 

elliptic curve. Table (9.2) describes this functions group. 
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Table 9.2 Elliptic Curve functions 

Function Description 

CurveRandom Generate a random Elliptic Curve 

CurveCheck Check equation (2.4) 

CurveFx Compute ( )xf  value in equation (7.2) 

CurveEmbedData Embed an OEF Poly as a point on an Elliptic Curve 

CurveEmbedMesg Embed a plain text as a point on an Elliptic Curve 

CurveExtractMesg Recover a plain text from an Elliptic Curve 

 

Points Functions 

As shown in table (9.3), these functions are used to generate random points and to perform the 

arithmetic operation of points. 

Table 9.3 Point functions 

Function Description 

PointRandom Generate a random Point 

PointNull Null out a Point 

PointNeg Negate a Point 

PointCopy Copy a Point to another one 

PointIsInfinity Check if a Point is at Infinity 

PointIsEqual Check if 2 Points are equal 

PointAdd Add 2 Points 

PointSub Subtract 2 Points 

PointDouble Double a Point 

PointMulti Multiply a Point by 32-bit value 

PointPolyMulti Multiply a Point by an OEF Poly (Algorithm 6.1) 
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Support Functions 

This group consists of several support functions that could be called from different levels. 

However, table (9.4) shows only those functions that could be called from level three while 

implementing an elliptic curve cryptosystem. 

Table 9.4 Support Functions 

Function Description 

Str2OEF Convert long integer to an OEF Poly 

OEF2Str Convert an OEF Poly to long integer 

Mesg2OEF Convert a plain text to an OEF Poly 

OEF2Mesg Convert an OEF Poly to a plain text 

Reduction Compute the Reduction. 

SubfieldReduct Compute subfield reduction using algorithm (5.4) 

RandGenerat Generate 8-bit random number 

Euclidean Inverse of 8-bit value using Euclidean algorithm 

9.4 RESULTS AND TIMING 

This section describes the performance of some algorithms and finite field operations, which 

are discussed in the previous chapters; it also shows the execution time of an elliptic curve 

group operation. Table (9.5) shows the finite field arithmetic performance on the ATmega128 

microcontroller. 
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Table 9.5 OEF arithmetic performance on ATmega128 microcontroller 

Description Operation Time 

Addition ( ) ( ) ( )xBxAxC +=  0.1 msec 

Subtraction ( ) ( ) ( )xBxAxC −=  0.1 msec 

Doubling ( ) ( )xAxC 2=  0.08 msec 

Multiplication ( ) ( ) ( )xBxAxC ⋅=  2.94 msec 

Squaring ( ) ( )xAxC 2=  2.19 msec 

Kartsuba Multiplication ( ) ( ) ( )xBxAxC ⋅=  6.43 msec 

Inversion ( ) ( )xAxC 1−=  16.39 msec 

Scale by 8-bit ( ) ( )xAsxC ⋅=  0.27 msec 

Scale by 8-bit of 2n ( ) ( )xAxC n2=  0.19 msec 

Frobenius Map ( ) ( )xAxC
ip=  0.29 msec 

Exponent ( ) ( )xAxC e=  13.9 msec 

Square Root ( ) ( )xAxC =  79.37 msec 

 

Table (9.5) shows that the Kartsuba multiplication is two times slower than normal 

multiplication (using the Schoolbook method), this is because the Kartsuba algorithm requires 

817 arithmetic operations (153 multiplications and 664 additions), while the Schoolbook 

method requires 545 arithmetic operations (289 multiplications and 256 additions) as shown in 

table (4.2) for 17=m . The ratio between the cost of one multiplication and one addition r 

should be greater than three in order to the Kartsuba algorithm to be more efficient than the 

Schoolbook method. 

The ATmega128 microcontroller executes powerful instructions in a single clock cycle and 

achieves throughput approaching 1 MIPS per MHZ, this means the cost of one multiplication 

is approach to the cost of one addition, so r is less than three and the Schoolbook method is 

more efficient than the Kartsuba algorithm. 
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Using the arithmetic functions listed in table (9.5) to implement the elliptic curve group 

operation gives the performance results shown in table (9.6): 

Table 9.6 Elliptic Curve group operation 

Description Operation Time 

Point Addition 21 PPQ +=  25.2 msec 

Point Doubling PQ 2=  27.44 msec 

Point Multiplication by 32-bit value PkQ ⋅=  1.022 sec 

Point Multiplication by an OEF Poly ( ) PxAQ ⋅=  4.972 sec 

 

Table (9.7) shows the size required for the software implementation: 

Table 9.7 Program Size 

File Size (KB) 
OEF 10.6 
Point 4.98 
Curve 1.71 
Support 7.20 
Header 3.47 
Hex 40.3 

 

As shown in table (9.7), the size of the hex file is 40.3 kB. In fact, one can reduce the size by 

selecting only the most suitable functions for a certain microcontroller. In the implementation 

there is more than one function to perform the same task; the performance of these functions 

depends on the selected microcontroller. For example, to perform the multiplication of two 

OEF elements, one has two options: using the Schoolbook method or the Karatsuba algorithm, 

for the ATmega128 microcontroller the first method is better, as it is shown in table (9.5). 

Another example, to find the subfield inversion one could use look-up table or the Extended 

Euclidean algorithm depending on the available memory size. Even though a lot of 

microcontrollers have a random number generator, the implementation includes a random 

number generator that could be more secure than the built-in one. 
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The variety of the functions gives a user more flexibility to choose the best functions, 

according to the memory size, speed, and other features of the selected microcontroller. As a 

result, this gives the most efficient performance. 
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Chapter 10  

CONCLUSION 

10.1 SYMMARY 

Embedded systems are essential parts of most communications systems, which makes them 

especially attractive as a potential platform for implementing cryptographic algorithms. 

Several algorithms were implemented, although previous implementations of arithmetic 

intensive cryptographic algorithms seem to indicate that they can achieve acceptable 

performance on an embedded microcontroller and on a constrained platform. 

This dissertation has demonstrated that elliptic curve cryptosystems are well suited for 

cryptographic applications and can be used in embedded system. Furthermore, elliptic curve 

cryptosystems are a logical alternative to other systems based on the discrete logarithm 

problem over finite fields because of their security and their efficiency, derived from their 

short key lengths. The main advantages of implementing elliptic curve cryptosystems are: 

• Small key size as compared with traditional schemes. 

• Wide range of applications including network security, smart cards, electronic banking, 

digital signatures, and other applications. 

• High flexibility and enhanced security through periodically changing the curve. 

• Can be used with any public-key cryptosystem. 
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The underlying finite field is the core of the elliptic curve cryptosystem. This dissertation 

evaluated and discussed different types of finite fields: the prime finite field, binary finite field, 

binary composite finite field, extension finite field and optimal extension finite field; then it 

compared these types. The merits of prime extension fields and their role in ECCs were 

investigated further, and the theory for an ECC based over a special class of prime extension 

fields, known as Optimal Extension Fields, was derived using a polynomial basis 

representation. 

This dissertation described all of the OEF arithmetic and the operations for the group of points 

on an elliptic curve over such a field. Algorithms based on this theory were detailed, and 

several techniques used to speed up the OEF arithmetic and elliptic curve group operation 

were explained. 

An implementation based on these algorithms was discussed, with emphasis on the high level 

design and representation of the elements in the OEF and point on the curve. The result of this 

implementation is a library that contains all the definitions and functions required to perform 

the OEF arithmetic and elliptic curve group operation in embedded system; this library can be 

used to implement an elliptic curve cryptosystem in embedded system in a simple manner 

without involving the complicated operation of the underlying finite field. The library 

performance was evaluated in chapter 9, which shows that OEFs are especially attractive for 

use in an elliptic curve cryptosystem. 



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  AAbbuu  MMaahhffoouuzz,,  AA  MM  ((22000044))  

Chapter 10 DISCUSSION 

Electrical, Electronic and Computer Engineering 124

10.2 SUMMARY OF ACHIEVEMENTS 

The main achievements of this dissertation include the following: 

• The underlying finite field, and a combination of optimization techniques, can result in 

acceptable performance of ECCs in an embedded system. 

• The dissertation shows that OEFs are good arithmetic structures to use as underlying 

finite field in ECCs in an embedded system. 

• During finite field multiplication, performing one reduction for each coefficient instead 

of a subfield reduction after each subfield multiplication is an efficient practice in an 

embedded system. 

• It demonstrates an efficient implementation of the Itoh and Tsujii Inversion algorithm 

for computing inverses in Optimal Extension Field. 

• It implements a library of functions that can be used to implement any elliptic curve 

cryptosystem in a low end embedded system. 
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10.3 FUTURE DEVELOPMENT 

Finally, this is not the end; it is just the end of the beginning. The work performed in this 

dissertation has made available many interesting opportunities for further research and 

development. There include the following: 

• Instead of choosing elliptic curves at random, a more structured approach could be 

taken. 

• Further improvements could be made on the algorithms used in the finite field 

implementation. The OEF arithmetic, especially multiplication and inversion algorithm, 

could be made more efficient, which would significantly improve the performance of 

the cryptosystem. 

• Because point scalar multiplication is the base of any elliptic curve cryptosystem, the 

improvement of this operation could directly speed up the complete cryptosystem. 

• Any one interested in implementing a cryptosystem based on elliptic curve could use 

the library that was implemented in this dissertation. This introduces functions dealing 

with long integers that make the implementation as simple as those cryptosystems 

based on small integers. 
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