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Instability in stope panels in shallow mines manifests itself as rockfalls from the
hangingwall. Rockfalls from unstable stope panels vary in size from rockfalls
between support units, to rockfalls spanning between pillars or solid abutments, to
rockfalls bridging several panels and pillars. A suitable and reliable design
methodology for stable stope panels at shallow depths is therefore required. This
methodology must consider all manifestations of instability in stope panels and take

account of the factors governing the stability.

Very few mines design stope panels according to a systematic design procedure or
methodology. Rock mass characterisation, estimation of rock mass properties,
identification of potential failure modes, appropriate stability analyses and other
elements of the rock engineering design process are often neglected. Instead, panel
lengths are often dictated by the equipment in use and by previous experience under
similar conditions. Consequently, unplanned stope panel collapses occur on most
near-surface and shallow mines. Although these incidents often occur during
blasting, they pose a major threat to the safety of underground workers and the
economic extraction of orebodies. Hence, a rock engineering design methodology
for the design of stable stope panels between pillars is of vital importance for

optimum safety and production in shallow mining operations.

Using the proposed design methodology, rock mechanics practitioners and mine
planners should be able to identify and quantify the critical factors influencing the
stability of stope panels. The critical factors should then be used as input to the
design of stable stope panels that will provide the necessary safe environment for

underground personnel working in stopes.

It is concluded that the design of stable stope panels should be a process of
defining the means of creating stable stope panels for the safety of underground
workers and optimum extraction of the orebody. Therefore, a method is required
whereby all rock properties, their variability, and an understanding of all rock
mechanisms affecting the stability of stope spans are used as a fundamental base.

A procedure for identifying the mechanisms and rock properties relevant to the
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specific problem is then required. In this way, existing knowledge should be used in

an optimal way to design site specific stable stope spans.

Hence, it is proposed that the design methodology for stable stope panels is a

process consisting of the following steps:
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11.
12.
13.

Define objective.

Rock mass characterisation.

Estimation of in situ rock mass properties.

Consider an “ideal” stope panel.

Identification of potential failure modes.

Stability analyses.

Identify all significant hazards and assess the significant risks.
Geometric optimisation.

Determination of support requirements.

Design of support.

Evaluation.

Recommendation and implementation.

Monitoring of excavation and support behaviour to validate design and permit
modifications.
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Onstabiliteit in afboupanele in vlak myne manifesteer as rotsstorings vanaf die
hangwal. Rotsstortings weens onstabiele afboupanele varieér in grote vanaf
rotsstorings tussen bestuttings eenhede, tot rotsstorings tussen pilare, tot
rotsstorings oor verskeie panele en pilare. ‘n Geskikte en betroubare
ontwerpmetodologie vir stabiele afboupanele op vlak dieptes word dus benodig.
Sodanige metodologie moet alle manifestasies van onstabiliteit in afboupanele
oorweeg en moet ook oorweging skenk aan die faktore wat stabiliteit/onstabiliteit

beheer.

Baie min myne ontwerp afboupanele volgens ‘n sistematiese ontwerp prosedure of
metodologie. Rotsmassa karakteriseering, skatting van rotsmassa eienskappe,
identifikasie van potensiéle swigtingsmeganismes, toepaslike stabiliteits analises en
ander elemente van die rots ingenieurswese ontwerp proses word dikwels nagelaat.
Instede daarvan word paneellengtes dikwels dikteer deur die toerusting ingebruik en
deur vorige ondervinding onder soortgelyke omstandighede. Gevolglik vind
onbeplande ineenstorting van afboupanele plaas in meeste vlak myne en myne
naby die oppervlakte. Alhoewel hierdie insidente dikwels plaasvind gedurende
skiettyd, hou dit groot gevaar in vir die veiligheid van ondergrondse werkers en die
ekonomiese ekstraksie van ertsliggame. ‘n Rots ingenieurs ontwerp metodologie vir
die ontwerp van stabiele afboupanele tussen pilare is dus van uiterste belang vir

optimum veiligheid en produksie in vlak mynbou operasies.

Rotsmeganika praktiseerders en mynbeplanners behoort die kritiese faktore wat die
stabiliteit van afboupanele beinvioed te kan identifiseer en kwantifiseer deur die
voorgestelde ontwerp metodologie te gebruik. Die kritiese faktore moet dan gebruik
word as inset tot die ontwerp van stabiele afboupanele wat die nodige veilige

omgewing vir ondergrondse personeel sal skep.

Die gevolgtrekking word gemaak dat die ontwerp van stabiele afboupanele behoort
‘n proses te wees wat die middele definieer om stabiele afboupanele te skep vir die
veiligheid van ondergrondse werkers en optimum ekstraksie van die ertsliggaam. ‘n
Metode word dus benodig waardeur alle rotseienskappe en hulle veranderlikheid, en

verstaan van alle rots meganismes wat die stabiliteit van afboupanele affekteer
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gebruik word as ‘n fundamentele basis. ‘n Prosedure vir die identifiseering van

relevante meganismes en rots eienskappe word dan benodig. Bestaande kennis

behoort op hierdie manier optimaal gebruik te word vir die ontwerp van plek

spesifieke stabiele afboupanele.

Die volgende proses word voorgestel as ontwerp metodologie vir stabiele

afboupanele:
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11.
12.
13.

Definieér die doelwit van die ontwerp.

Rotsmassa karakterisering.

Skatting van die in situ rotsmassa eienskappe.

Beskou ‘n “ideale” afbouplek.

Identifikasie van potensiéle swigtings modes.

Stabiliteits analiese.

Identifikasie van belangrike gevare en beskouing van belangrike risiko’s.
Geometriese optimeering.

Bepaling van bestuttings benodigthede.

Ontwerp van bestutting.

Evaluering.

Aanbeveling en implementering.

Monitering van uitgrawing en gedrag van bestutting om ontwerp te bevestig en

om modifikasies toe te laat.
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Symbols

A, Band C parameters used to describe RSR, RMS and N’

Cc cohesion

D, equivalent dimension

d, thickness of foliated rock mass column
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Ey rock mass modulus

fn the maximum horizontal stress in a Voussoir beam
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width
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J1 primary joint set

J2 secondary joint set

Ja joint alteration number

Jn joint set number

J, joint roughness number

Jy the volumetric joint count or the sum of the number of joints per unit

length for all joint sets

Jw joint water reduction factor
GCh . Oy

m Hoek-Brown material constant

m; Hoek-Brown rock mass parameter for intact rock

mp Hoek-Brown rock mass parameter m for rock mass

m, Hoek-Brown rock mass parameter for residual strength

M the moment generated at the abutment due to the vertical loading on
the beam

M, the moment generated at the abutment

M(x) the load on the beam at x

N rock mass number (Goel et al, 1996), or the ratio of true to effective

beam thickness

N’ modified stability number

Nin the lowest value of N for which solution possible is

Nmax the highest value of N for which solution possible is

N’ value of N associated with smallest calculated value of f,,
NX size core = 54,7 mm diameter

Q Barton’s rock quality index

Q Modified rock quality index

q load per unit width of beam (N/m?)

Hoek-Brown material constant

S, Hoek-Brown rock mass parameter for residual strength
S span
S, S, S; mean joint spacings for major joint sets

T beam thickness
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V(x) the shear force acting on the beam at x

w total load acting on beam, or shear force

W(x) load distribution on the beam

Wy, Wo uniform loads on beam (force/unit length)

V4 the moment lever arm after deflection

Z’ value of Z associated with smallest calculated value of f,,
Z, the moment lever arm before deflection

Z,’ value of Z, associated with smallest calculated value of f,,
Oh horizontal stress component

oy vertical stress component

On normal stress

o1 major principal stress

Om maximum horizontal stress due to the vertical beam loading
o) intermediate principal stress

o3 minor principal stress

o uniaxial compressive strength of the intact rock
or uniaxial tensile strength

Ocr UCS for intact rock

o vertical stress, or fibre stress, or axial stress

oy horizontal stress

Ob buckling stress

P rock density

1% Poisson’s ratio

£ strain

¥ unit or specific weight

) midspan deflection

n deflection

Mmax maximum deflection

¢ angle of internal friction

o basic friction angle of joint surface

Y7, coefficient of friction

T shear stress acting on stope
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Txy shear stress acting on transverse section through beam

¢ friction angle

Te top the shear stress acting on the top of the beam as a function of the
position x

Te bottom the shear stress acting on the bottom of the beam as a function of

the position x

Terminology

anchor

The means by which a device is secured to the host rock.

beam

Is a structure supported at one or more points and subjected to external forces.

capacity

Is the strength or resisting force of the structure.

coefficient of friction
A constant of proportionality, u, relating the normal stress and the corresponding

critical shear stress at which sliding starts between two surfaces.

cohesion
The shear resistance at zero normal stress, or intrinsic shear strength of the

material.

compression failure

Normal forces exceeding the compressive strength of the material.

compressive stress

Normal stress tending to shorten the body in the direction in which it acts

consequence
The degree of harm, the potential severity of the injuries or ill health, and/or the

number of people potentially affected.
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convergence
The reduction of the distance between two parallel surfaces, usually the hangingwall
and footwall. Itis similar to closure, but technically referring to the elastic component

of closure.

demand

Is the stress or disturbing force in a structure.

dowel
A full contact, non-pretensioned device. (This term is often reserved for non-steel

tendons such as wood or fibreglass.)

empirical

Relying or based on practical experience without reference to scientific principles.

failure
The condition in which the maximum strength of the material is exceeded or when

the stress or strain requirement of a specific design is exceeded.

fall of ground
Fall of a rock fragment or a portion of fractured rock mass without the simultaneous

occurrence of a seismic event.

fault tree technique

Is a systematic method for acquiring information about a system. The information so
gained can be used in decision making. It can also be defined as a deductive failure
analysis which focuses on one particular undesired event and which provides a
method for determining causes of this event. The undesired event constitutes the
top eventin a fault tree diagram and generally consists of a complete or catastrophic

failure. Careful choice of the top event is important to the success of the analysis.

field stresses
The stresses which exist in a rock mass before an excavation is made. At a distance
sufficiently far away from any underground excavation, the field stresses will be

equal to the virgin stress.
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geotechnical parameters

The parameters describing the technical response of geological materials.

hazard, cause, fault, threat
Something which has the potential to cause harm e.g. hangingwall,

methods of work, etc.

instability

Rock can strain, yield, deteriorate and ultimately disintegrate under the influence of
stress, gravity and vibration. Instability and failure can be defined as any limiting

point in this progress.

keyblock

A block that can be removed from a rock face without breaking intact rock.

method

Special form of procedure, or the orderly arrangement of ideas.

methodology

The science of method, or a body of methods used in a particular branch of activity.

near-surface mining

Mining at depths less than 100 m below surface.

outcrop

The exposure of the bedrock at ground surface.

pillar workings
Underground excavations separated by rock left in situ during the mining process to
support the local hangingwall, roof, or to provide regional stability to the mine or

portion thereof.

plane stress
A triaxial stress field with one of the principal stresses, e.g. o;=0and 7= 7, =0 is

defined as the condition of plane stress.
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Poisson’s ratio
The ratio of shortening in the transverse direction to elongation in the direction of an

applied tensile force in a body.

primary or top faults

The primary categories in which the hazards to safety and health will be considered.

principal stress
A unique set or sets of unique directions mutualy perpedicular to each other in which
all the shear stress components are zero. The normal components of stress acting

along these directions are called the principal stresses.

probability

Is the objective measure of the likelihood of occurrence of random events (variable)
and as such provides quantitative assessments of system adequacy. If an
experiment can result in any one of N different equally likely outcomes, and if exactly
n of these outcomes correspond to event A, then the probability (P) of event A is:

P(A)=nIN. Also, 0 < P(A) < 1.

risk
Is the product of the probability of occurrence of a hazard and the effect or

magnitude of the damage that would be caused by the hazard.

rock mass

Rock as it occurs in situ, including its structural discontinuities.

rock structure

The nature and distribution of structural features within the rock mass.

rockbolt

A steel rod placed in a hole drilled in rock for the purpose of reinforcing rock in the
periphery of an excavation. One end of the rod is firmly anchored in the hole by
means of a mechanical device and/or grout, and the threaded projecting end is
equiped with a nut and plate which bears against the rock surface. The rod can be

pretensioned.
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roofbolt

A general term encompassing rockbolts, dowels and friction rock stabilisers.

shallow mining

Mining at depths less than 1000 m below surface.

shear failure
Failure in shear when the forces parallel to a plane exceeds the strength of the

material in that direction

span

Diameter of largest circle which can be drawn between pillars and walls.

stability

See definition of instability.

topography

Natural or artificial surface features of a district.

virgin stress
Also known as the primary state of stress. Itis the stress in the rock mass before itis

disturbed by man-made works.

Young’s modulus

Modulus of elasticity, E.
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