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Abstract

The importance of Cytotoxic T-Cell (CTL) reponses during the course of intracellular infections

has received a lot of attention during the past few decades. CTLs respond to epitopes pre-

sented by the Major Histocompatibility Complex (MHC) originating from intracellular proteins

for which they have an appropriate T-Cell Receptor (TCR) for. This response is crucial for

the control of pathogens such as Influenza, Hepatitis, HIV and others by destroying the cell in

which the pathogen replicates. Due to the extreme polymorphism of MHC molecules, Com-

putational Immunology techniques have been developed to detect potential MHC ligands and

as a consequence, potential CTL epitopes. The polymorphism factor needs to be taken into

account especially when concerning the design of vaccines with a CTL response component to

maximize population coverage. Tools have been constructed that combine the predictions tools

concerning major steps in this pathway, that is, proteasomal cleavage, Transporter associated

with Antigen Presentation (TAP) affinity, Major Histocompatibility Complex (MHC) affinity

and Immunogenicity. In this study, a novel method is developed to combine the different steps in

the pathway, which includes the development of a novel TAP predictor. Furthermore, by using a

BLOSUM-based score in conjunction with the epitope prediction results, a novel CTL epitope-

based clustering method was developed. Two pathogens with major CTL epitope components,

but vastly different mutation rates were chosen to infer whether the aforementioned methods

can be used to detect potential CTL epitopes and group sequences together based on shared

immunogenicity.

 
 
 



1
Introduction

The immune system is a collection of cells and tissues with the main task of keeping and restoring

a state of homeostasis that can be disrupted by pathogenic entities. Understanding the complex

mechanism by which the immune system works is crucial in this modern age. With the increase

in computing power over the last few decades, computational modelling of different processes

have been made possible. One of the crucial aspects of the immune system is the Cytotoxic

T-lymphocyte response. These cells are in charge of destroying cells presenting foreign peptides

that could be of pathogenic or cancerous origin (Shevach, 2002,Shedlock and Shen, 2003). Exper-

imental screening of peptides for CTL epitopes is an arduous task, not because of the procedures,

but because of the shear amount of peptides and other agents that need to be screened. Here

we will be discussing known aspects of the MHC Class I antigen presentation pathway and the

different ways it can be modelled from available experimental data. From scoring matrices to

learning techniques like Support Vector Machines and Artificial Neural Networks have been ap-

plied in an attempt to solve this problem. We will also see that in designing these tools, certain

hypotheses can be formulated from results obtained. An overview of the biological process will be

given and with each of the main steps and the corresponding prediction tools will be discussed.

1.1 The Antigen Processing Pathway

To understand the problems associated with designing tools for modelling the antigen presenta-

tion, it is essential to understand the underlying mechanisms of of the pathway. One can imagine

the pathway as being a byproduct of protein recycling inside the cell. Proteins have a limited

lifespan inside a cell and during their breakdown, some of the peptide fragments might enter the

antigen presentation pathway. The pathway can be broken down into three parts:

1. Fragment generation - How the cell generates a diversity of internal peptides for MHC Class

I presentation

2. Transport to the ER - How the fragments are transported to the ER
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CHAPTER 1. Introduction 1.1. The Antigen Processing Pathway

3. Association with the MHC Class I binding groove - What determines whether a peptide

would bind efficiently to the MHC molecule

Figure 1.1: 1) A hypothetical virus enters the cell and production of the protein products take place 2) Some
of the viral peptides are digested by the cell’s proteasomes 3) Fragments are carried by chaperones to the
Transporter associated with Antigen Presentation (TAP) 4) TAP transports the peptide into the ER lumen 5)
The peptide gets trimed on its N-terminal by ERAP 6) The peptide binds with MHC 7) The peptide-MHC
complex is transported by the Golgi apparatus to the cell membrane 8) A Cytotoxic T-lymphocyte (CTL)
with a complimentary receptor binds to the MHC-peptide complex 9) Proliferation and activation of the CTL
occurs 10) The CTL signals the cell’s destruction. Adapted from (Pamer and Cresswell, 1998,Cresswell et al.,
2005)

Recognition by a CD8+ T-Cell could be considered as a fourth step. With each of the steps

there exists a level of redundancy that will be investigated. Starting off with fragment generation,

all the consecutive steps and tools designed to model them will be discussed with emphasis on

MHC binding and tools associated with it. A rudimentary illustration is shown in Figure 1.1.

1.1.1 Fragment Generation

The human proteasome is a 20S barrel shaped structure (see Figure 1.2) with the main purpose

of specifically degrading proteins in the cytosol (Unno et al., 2002). It has affinity for proteins

marked for degradation, e.g. by ubiquitination. The proteasome’s core cleaving regions are iso-

lated from the cytosol, which protects normal cellular proteins from random degradation. Two

types of proteasomes can exist within a cell, the constitutive and the IFNγ induced immunopro-

teasome (Pamer and Cresswell, 1998).

They are similar except for three subunits. Under stimulation by IFN-γ, subunits X, Y and Z

of the constitutive proteasome are replaced by LMP7, LMP2 and MECL-1 respectively (Eleuteri
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(a) 20S Proteasome side-view (b) Top view of the 20S proteasome

Figure 1.2: The 20S/Constitutive proteasome structure from the side and top. Note, to ease viewing, the top
view only shows half of the structure [PDB: 1IRU]. (Unno et al., 2002)

et al., 1997). The constitutive proteasome is more attuned to cutting after acidic residues while

the immunoproteasome prefers to cut after hydrophobic residues (Gaczynska et al., 1996). The

advantages of altering the specificity of the proteasome has to do with the diversity of peptides

generated. Fragments produced by the immunoproteasome usually contain hydrophobic residues

at the C-terminal side, which is preferable for MHC Class I binding. There seems to be no

further trimming on the C-terminal side, but if the peptide is extended on the N-terminus, the

ER contains aminopeptidases (e.g. ERAP) that cut the peptide to an appropriate size (Chang

et al., 2005). This does not make the constitutive proteasome useless, since it has been shown

that antigen presentation can still occur in the absence of immunoprotease subunits (Pamer and

Cresswell, 1998). Also, in the rabbit, skeletal muscle cells do not produce substitution units

when stimulated by IFN-γ, but are still able to present MHC complexes (Kisselev et al., 1999).

Though, one can imagine the total scope of presenTable antigens is limited by reduced coverage

of cleavage sites in the absence of these substitution units.

A denatured/ubiquinated protein enters the proteasome and if appropriate residues in the

protein are in close proximity to the hyrdolases, the protein is cleaved and the peptides exit

the proteasome (Kisselev et al., 1999). It has been shown that efficient fragment generation is

correlated with the presentation of CTL epitopes (Sijts et al., 1997). Thus peptides fragments

generated from other means, such as aborted translation products should prove to be insufficient

for adequate peptide presentation.

Though beyond the scope of this review, it is worth mentioning that other factors also
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CHAPTER 1. Introduction 1.1. The Antigen Processing Pathway

attach to the proteasome enhancing cleavage of the peptides. The PA28 subunits bind to both

ends of the proteasome (forming a 26S particle) and enhances cleavage of peptides by changing

the conformation of the input peptide, making more cleavage sites accessible at the same time

(Kisselev et al., 1999). However, it has been shown that the 26S proteasome complex can

produce more products that are smaller than the appropriate length for MHC binding (Kisselev

et al., 1999, Fahnestock et al., 1994). Since the proteasome can cleave peptides in an ATP

dependent manner, association of subunits such as PA700, an ATPase, can dramatically increase

the efficiency of fragment generation.

Two tools, NetChop C2.0 (Kesmir et al., 2002) and ProteaSMM (Tenzer et al., 2005) that

predict potential proteasomal cleavage sites will be discussed in Section 1.2.2.

1.1.2 Transport to the ER

The MHC complex needs to associate with a potential epitope in the ER. Transport of the

proteasomal fragments to the ER is thus an essential step in antigen presentation. Two questions

need to be addressed here: i) How are peptides transported across the membrane of the ER and

ii) How are peptides transported to this cross-membrane transporter. The Transporter Associated

with antigen Presentation (hereafter, TAP) facilitates transport of peptides from the cytosol to

the lumen of the ER and various chaperones facilitate the transport of peptides to TAP (Wright

et al., 2004). The TAP dimer consists of two monomers, TAP.1 and TAP.2. Across mammalian

species there exists a lot of similarities between the TAP transporter. However, they do sometimes

differ in promiscuity. For instance, the mouse TAP molecule has a preference for hytdrophobic

residues at the C-terminus of the peptide ligand, whereas the human TAP molecule can efficiently

bind peptides with a basic residue at the C-terminal end (Uebel et al., 1997). TAP concerns

itself with the terminal residues at either end of a potential ligand. Variation in the terminal

residues can significantly influence binding affinity to TAP (van Endert et al., 1995). Identifying

the preference for these residues is crucial in designing TAP predictors. The problem with this

is that TAP need not bind peptides of lengths appropriate for the MHC Class I binding groove,

and therefore exists no "fixed" window in defining a TAP binder (Peters et al., 2003). There

is some correlation between the terminal end of a binding peptide and the terminal end for an

MHC Class I binding motif (Khan et al., 2000). Still, TAP is able to transport peptides that do

not meet these requirements. Chaperones, especially Hsp70 and Hsp90 play important roles in

protecting a peptide product of the proteasome from other cytosolic endopeptidases (Callahan

et al., 2008).
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1.1.3 Association with the MHC Class I binding groove

The MHC Class I molecule is probably the most important molecule in antigen presentation as

it actually presents a peptide for screening by CTLs. The binding site for the peptide consists

of a bed of anti-parallel β-strands, overlaid in a flanked fashion by two anti-parallel α-helices.

The peptide ligand binds in the groove formed by the alpha helices. The heavy chain of the

MHC molecule also associates with a β2-migroglobulin (Khan et al., 2000). Assembly of the

final MHC-β2M-peptide complex involves other peripheral proteins, and the process can be

summarised as (Cresswell et al., 2005):

1. ERp56 associates with tapasin, which associates with TAP.1

2. MHC Heavy chain dissociates from the chaperone, Calnexin and associates with the chap-

erone Calreticulin and β2-M associates with the MHC heavy chain.

3. The MHC-Calreticulin-β2-M complex associates with tapasin and ERp57

4. Transported peptides are cleaved by ERAP to appropriate length and if they bind to the

MHC binding groove, the MHC-β2-M-peptide complex dissociates and transported to the

cell surface by the Golgi apparatus

The article by Cresswell et. al. (2005) provides an illustration explaining this process. Pep-

tides may also be trimmed by ERAP. ERAP is an IFN-γ inducible, ER-associated aminopepti-

dase and is quite interesting in that it does not cut peptides to a length smaller than 8 amino

acids. Only about 30% of the proteasomal fragments can potentially be MHC ligands and 50%

of those are too long (Chang et al., 2005). ERAP therefore directly increases the amount of po-

tential MHC ligands. MHC molecules that have no peptide bound in the groove are eventually

degraded, but not presented. The author imagines two reasons for this, one being that "empty"

MHC molecules would take up space on the cell surface, limiting the visibility of peptide-carrying

MHC complexes. The other would be wasting valuable cellular resources on a useless process.

There are six main types of MHC Class I molecules in humans, HLA-A to HLA-F. HLA-

A, HLA-B and HLA-C conform to the classical mode of presentation, presenting unmodified

peptides and are designated Class Ia molecules. HLA-D, HLA-E and HLA-F are involved in

presenting a completely different set of peptides, in terms of modification and length. They are

designated Class Ib molecules (Pamer and Cresswell, 1998). Here, we will be focussing on the

Class Ia types since the prediction tools discussed later only concerns them.

A very brief overview of the binding process will be discussed here, as not to reiterate when

discussing the prediction tools. The MHC binding groove contains position-specific binding pock-

ets that have strong affinities for a specific range of residues. During motif discovery experiments,
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(a) Binding groove in tubes form (b) Binding groove in space-filler
form

Figure 1.3: HLA*A0201 associated with a nonamer peptide with the sequence LLFGYPVYV. From left to
right, the peptide ligand is arranged in an N-C fashion [PDB: 1DUZ ] (Khan et al., 2000).

it was revealed that there exists 2-3 pockets that bind a limited range of amino acids (Rammensee

et al., 1995). These positions are called anchor positions and it is essential that the correct amino

acids exist in the correct position in order for the potential ligand to bind strongly to the groove.

The binding groove of the HLA A*0201 molecule with bound peptide LLFGYPVYV is shown in

Figure 1.3. From the clefts on either side of the binding groove, it is easy to see that the length

of the binding peptide is limited. However, the peptide still needs to span a majority of the

groove to form interactions with crucial binding pockets which exist near the clefts. It has been

demonstrated that when the P1 residue of the peptide is removed, binding still occurred, but

at a severely lowered affinity (Khan et al., 2000). A sTable binding of an MHC ligand changes

the conformation of the groove from an open to a closed state. This allows the MHC-peptide

complex to have a long half-life, sometimes even tens of hours (Khan et al., 2000).

Even though the anchor residues of a potential ligand is important, a peptide containing them

does not by default qualify as an appropriate binder. Other interactions are also important, using

the nonamer from before as an example. Correct conformation of the ligand backbone is crucial

for orienting residues towards potential binding pockets. In addition to this, various water bridges

can form between backbone -CO and -NH groups. Residues might influence the orientation of

their neighbours and it is this property that distinguishes two MHC ligand predictors, Bimas and

NetMHC (Parker et al., 1994,Nielsen et al., 2004a). The former assumes that contribution of

each residue in the potential ligand is independent, while the latter addresses the interdependence

problem.

A sTable MHC-peptide complex is then transported via the Golgi apparatus to the cell surface

where it comes under CTL scrutiny.
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1.1.4 Recognition by the TCR of a CTL

An appropriate TCR can bind to the MHC-peptide complex and initiate a series of events that

would eventually lead to CTL expansion, destruction of the presenting cell. If CD4+ T-Cells

are stimulated via MHC Class II, they retain long lasting memory of this epitope (Shedlock and

Shen, 2003). The immunogenicity, or ability to induce an immune response, of a peptide has a

low correlation with its binding affinity. Factors that may influence immunogenicity are (Ochoa-

Garay et al., 1997):

• Affinity of the peptide for its complimentary TCR

• Whether the peptide is similar to a self-peptide, whereby the parent of the complimentary

TCR had already been removed via negative selection. Alternatively, inhibition by the

peripheral tolerance CD4+CD25+ cells (Shevach, 2002).

• A very unusual case where the peptide binds so strongly, that the CTL is sensitised for

destruction by other CTLs; a process known as CTL fratricidal killing.

From the results of Ochoa-Garay et. al. (1997), it can be deduced that a combination of

MHC binding affinity and immunogenicity would be crucial in vaccine design. If the peptide

is highly immunogenic, but exists sparsely on the cell surface due to low presentation yield,

it would lower the efficacy of the vaccine. Conversely, if a peptide binds with a high affinity,

but has low immunogenicity, the vaccine would also have lower efficacy. High affinity peptides

might occupy a lot of "MHC space" on the cell surface and cause the other epitopes to fade into

the background and escape immune surveillance. POPI is currently the only tool known to the

author with reasonable immunogenicity prediction.

Epitope Cross-Reactivity

Cytotoxic T-lymphocyte epitopes are usually polyspecific, meaning they stimulate the response

of different T-Cell clones (Mason, 1998). Knowing there is only a limited set of CTL clones

within the human body, an inference can be made that certain T-Cell epitopes are cross-reactive.

Cross-reactivity, in the context of Cell-Mediated Immunity, is the definition given to an epitope

that stimulates the response similar to T-Cell clones by a different epitope. In a recent study

of cross-reactivity, it was determined that particularly the central part of an epitope, e.g. the

threonine residue in SLYNTVATL is particularly sensitive to mutations abrogating cross-reactivity

(Frankild et al., 2008). As a consequence, the researchers developed a rudimentary measure

to compare two epitope sequences, dubbed by this author as “The Frankild Score”. However,

cross-reactivity can sometimes be found between epitopes that share very little amino acids. For

example, the epitope from Influenza A, GILGFVFTL has cross-reactivity with the Epstein-Barr

7
 

 
 



CHAPTER 1. Introduction 1.2. Pathway Prediction Tools

Virus epitope, SVRDRLARL. The Frankild score for these two epitopes is low, indicating that other

subtle forces govern cross-reactivity that cannot necessarily be simplistically extrapolated from

sequence similarity alone.

1.2 Tools that Predict Steps in the Antigen Presentation

Pathway

In this section, three separate sets of tools will be discussed that cover each of the steps mentioned

in antigen processing and presentation. They follow:

• Proteasomal cleavage - NetChop C2.0 and ProteaSMM (Kesmir et al., 2002,Tenzer et al.,

2005)

• TAP affinity - The method by Peters et. al. (2003)

• MHC binding affinity prediction by Bimas and NetMHC (Nielsen et al., 2004a,Parker et al.,

1994)

1.2.1 Performance Measurements

Before discussing how these individual tools work, it is prudent to discuss how they are evaluated.

The tools are usually evaluated in how they solve a binary problem, e.g. how proteasomal cleav-

age site predictor can distinguish between cleavage and non-cleavage positions. The following

statistical measurements are very useful in determining performance:

1. True Positives (TP) - Predicted positives that are really positive

2. False Positives (FP) - Predicted positives that are really negative

3. True Negatives (TN) - Predicted negatives that are really negative

4. False Negatives (FN) - Predicted negatives that are really positive

From this, the following can be calculated:

Sensitivity =
TP

TP + FN
(1.1)

Specificity =
TN

TN+ FP
(1.2)

PPV =
TP

TP + FP
(1.3)
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Figure 1.4: As the threshold values increase, it becomes clear that less positive value are predicted (drop in
sensitivity) while the accuracy of the prediction (really the fraction of negatives predicted, specificity) increases.

MCC =
TP × TN− FP × FN√

(TP + FP)(FP + FN)(TN+ FP)(TN+ FN)
(1.4)

Where sensitivity (Equation 1.1) and specificity (Equation 1.2) is the total fraction of TP and

TN calculated, respectively. PPV (Equation 1.3) is the Positive predictive value and measures

the fraction of correctly predicted positives. MCC (Equation 1.4) is the Matthews Correlation

Coefficient (Matthews, 1975). The MCC ranges from a value of -1 to 1, 1 being a perfect

prediction and -1 being an inverted prediction and 0 for a random prediction.

The values of these functions can be measured at different thresholds. This allows for the

creation of a generalised performance measuring curve, called a Receiver Operating Characteristic

Curve (Martin et al., 2005). This curve is a plot of sensitivity vs. specificity (or, alternatively

the False Positive rate, FPR = 1−Specificity). The area under this curve determines the overall

performance of the prediction tool. The area is somewhere between zero and one, one being better

performance than zero. An area of 0.5 constitutes a random predictor. Interestingly, if the tool

produces a curve of an area below 0.5, say 0.3, it is merely an indication that the classification

labels are reversed. For example, the tool reverses the predictions for a proteasomal cleavage site.

Reversing the prediction calling would give this tool an AUC of AUC = 1 − 0.3 = 0.7. In Figure

1.4 we see the sensitivity and specificity values of an MHC binder predictor at different thresholds.

The tradeoff between sensitivity and specificity is clear. In Figure 1.5 the ROC plots of different

MHC binder predictors are superimposed, but instead of specificity, the aforementioned FPR is
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Figure 1.5: Curve depicting a ROC analysis of Sensitivity vs. False Positive Rate (1 − Specificity). The
different curves represent different tools used for predicting MHC ligands, with the solid black curve the result
of a tool combining 5 predictors.

used, which still yield the same AUC values. The AUC also gives the average specificity and

sensitivity values across all sensitivity and specificity values respectively. One might wonder what

the big fuss is between a tool with an AUC value of 0.98 versus a tool with an AUC value of

0.99. Taking the average specificity as an example, there is only a 1.01 factor increase. However,

specificity can also be used to calculate the FPR, which is a fraction loosely translated as "Given

100 positive predictions, what fraction of those should actually be negative?". Translating the

specificity values to FPR values, the difference becomes more clear. The first predictor has an

FPR of 0.02, while the second has an FPR of 0.01. This draws to the conclusion that the first

tool makes twice the amount of false positive predictions than the second tool.

Different tools for the same prediction make use of training sets using different data scales

and the AUC value really is a good way to compare them. Other ways to test the performance

of a tool would be correlation and regression to measure how well the predictor’s score correlates

with a testing set.

1.2.2 Proteasome Cleavage Site Predictors

Two predictors will be discussed, namely NetChop C2.0 and ProteaSMM (Tenzer et al., 2005).

Both make similar assumptions, though constructed from vastly different data and methods.

NetChop C2.0 uses a neural network approached, while ProteaSMM uses a scoring matrix. Both

these methods investigate prior to training the importance of the residues at a cleavage site,

plus the influence of surrounding residues. NetChop C2.0, however, made use of some clever

training data. Very little data exists (or existed at the time of the tools’ construction) pertaining

to cleavage preferences for the proteasome. This is further complicated by having to predict

cleavage sites for both the consitutive- and immunoproteasome. NetChop C2.0 takesr advantage
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Figure 1.6: Example of an SMM calculation

of MHC ligands determined from different proteins. As whole proteins were used to produce

the ligands, the flanking regions of the MHC binders could also be extracted from the sequence

data of their original proteins. As mentioned in Section 1.1.1, little or no C-terminal trimming

occurs, therefore the MHC binder was cleaved from its parent peptide at the C-terminal end.

The authors also assumed that within MHC binder peptides have a very low probabilty of being

cleaved, as they already escaped proteasomal cleavage.

ProteaSMM

ProteaSMM is a matrix-based tool for predicting potential proteasomal cleavage sites (Tenzer

et al., 2005). It takes advantage of the Stabilised Matrix Method which is a type of position

specific scoring matrix. Where it differs from the usual matrix-type calculations, is that it tries

to reproduce experimental values from training data, and thus gives a quantitative result over a

qualitative one. This is especially important in proteasomal cleavage predictions, since whether

a protein will be cut at a specific position is more relative than it is absolute, as can be seen in

its training data (Toes et al., 2001). The data set contains not only the positions of cleavage

sites, but also the frequency of peptides produced. From this, the prediction at a certain motif

can be defined in a quantitative way. An example is displayed in Figure 1.6.

The full description of the SMM method can be found in the article by Peters and Sette

(2005). Here, a brief overview of how the method was applied to predicting proteasomal cleavage

sites will be explained.
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• A matrix is constructed from sequence data using a window of length seven, designating Pn

as residues before the cleavage point and Pn’ as residues after. P1 would be the C-terminal

residue of the cleavage point.

• For each training sequence, a binary value is assigned per position for the presence or

absence of a residue

• A set of "paired residues" could also be defined, e.g an Ala at P1’ that co-pairs with an Arg

at P2. The algorithm checks whether there are enough incidences of a given pair, before it

is actually included in the training

• The value of the amino acid is assigned a corresponding value from a weight matrix

• The weights Vw are adjusted using cross-validation, each time the algorithm attempts to

minimise the error by adjusting the weights.

• When training is complete, together with the offset value, a prediction gives an estimate of

the expected experimental value that could be obtained. The score obtained in ProteaSMM

is a log-estimate of the total amount of fragments generated from a particular cleavage site.

ProteaSMM was trained on both constitutive proteasome data and immunoproteasome data.

The AUC values for both sets were similar, ranging from 0.67 - 0.82 on different testing sets.

It was noted in the article that it did outperform NetChop C2.0 and NetChop 20S which are

explained in the next section.

NetChop 20S and NetChop C2.0

At the time NetChop was designed, very little in vitro digestion data of the proteasome was

available (Nielsen et al., 2005). This is a huge problem, because in order for an artificial network

to generalise a problem, it needs a large amount of data to perform with reasonable accuracy.

Given enough data, an ANN’s power comes from the fact that it can solve non-linear problems,

allow for erroneous data and have the ability to "improve" itself (Brusic et al., 2004). In the case

of NetChop 20S and NetChop C2.0 (hereafter collectively referred to as NetChop), the researchers

needed to increase the amount of available data. With the help of an CTL epitope database from

whole, known proteins, they Figured that the epitopes and the regions surrounding them could

provide additional cleavage data, since a peptide will not be presented, unless it was cleaved

at the correct place on the C-terminal end. However, as mentioned in Section 1.1.1, it is more

likely for the immunoproteasome to be involved in fragment generation for MHC presentation,

thus the additional data provided by the MHC ligands are more than likely biased towards

the immunoproteasome cleavage preference and not the constitutive immunoproteasome. The
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Table 1.1: . ProteaSMM exclusive residues in bold, NetChop exclusive residues underlined

Position Positive Effect on Cleavage Negative Effect on Cleavage
P1 DFLY PKGTN
P2 QYV PD
P3 V GQ
P4 PT DK
P2’ DLH KSREP

difference in preference of these two proteasomes became clear in the Kullback and Lieber analysis

of the cleavage sites. Briefly, the Kullback-Lieber distance is a log-odds ratio between particular

residue at a particular position in the cleavage sequence and the same residue in the background.

The researchers do say that this data should be approached with caution, since the MHC ligands

mainly represent cleavage data for the immunoproteasome, not uncleaved sequences. Still, this

tallies well with the earlier discussion that the constitutive proteasome prefers acidic residues

at the C-terminal end of cleavage. Reading further, we are once again faced with a bit of a

conundrum. According to the weights in the neural network after training on in vitro cleavage

data on Enolase and β-Casein, the preferred residues at P1 (i.e. at the C-terminal end of the

would-be fragment) are Phe, Tyr and Leu and disfavours Pro, Gly, Thr, Asn and Lys. Still, this

is somewhat in accordance with the Kullback-Lieber distance results, but not really with the

ProteaSMM constitutive matrix, where Asp is also a preferred amino acid at the P1 position.

This is in accordance with theory. See Table 1.1 for a full difference between positional amino

acid preference between ProteaSMM and NetChop.

Neural Networks

Fully describing a neural network would take a full review on its own, but the gist of its operation

is easy enough to explain briefly. Neural networks are designed to process information in parallel.

This means, unlike a matrix-based method, a neural network would consider all the residues in

all the positions of an imaginary sequence TCGGALL. (unless explicitly specified as is the case

with SMM). This is achieved by assigning an input neuron to each position for each possible

amino acid, so in this example it is 7×20 = 140 neurons. Only the neurons corresponding to the

amino acids at a position are activated. This ’signal’ is passed to a hidden layer of neurons where

weight adjustment occurs. The weights of the neurons are adjusted to try and minimise error

with the desired output, also known as "back propagation". A significant parameter in a neural

network is the learning rate. The smaller the learning rate, the smaller the adjustments are to

the weights of the neurons and the converse is true for a large learning rate. The problem with

a large learning rate is that the error between the predicted and desired result is not minimised.

The problem with a small learning rate, is that the network takes too long to train. Usually,

a differential learning rate is applied to compromise between the two factors. In immunological
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tools, the output of the neural network is usually an approximation of the actual experimental

result (Nielsen et al., 2004a).

As is often observed when comparing prediction tools, the performance measure of a particular

tool by different researchers are usually comparable. It is very tempting to come to the conclusion

that the authors are biased, but hopefully this can be avoided. Performance of a predictor can

be influenced by the set it was tested on. According to some (Tenzer et al., 2005), the predictive

performance in terms of AUC of NetChop averages 0.71, peaking at 0.78, while ProteaSMM

averages at 0.72, peaking at 0.81. he authors of NetChop claim it to be 0.81 . It does, however,

make sense for ProteaSMM to perform better, since SMMs outperform neural networks on smaller

data sets (Peters and Sette, 2005). The later version of NetChop, NetChop C3.0, (Kesmir et al.,

2002) does have a significant improvement over NetChop C2.0 with an AUC value of 0.86. The

reason for the improvement has to do with generalising the input data for the network more, by

using a BLOSUM50 matrix encoding of the amino acids (Henikoff and Henikoff, 1992), inclusion

of HMM predicted inputs. Another significant difference between Netchop C2.0 and NetChop

C3.0 is the inclusion of more proteasomal cleavage data. It is for this reason that NetChop C3.0

is also not compared to ProteaSMM.

One problem with using a ROC curve for analysing potential cleavage sites, is that a ROC

analysis is of a binary nature. Subtle quantitative differences between the prediction tools are

not taken into account. Furthermore, it would be unwise to predefine a threshold for defining

a cleavage site, since it has been mentioned cleavage sites are not absolute. If there exists two

consecutive cleavage site, chances are that not one, but three possible products (all in different

ratios) exist for the particular sequence (Peters et al., 2002). With increasing amount of available

data, prediction results should improve.

1.2.3 TAP Affinity Prediction

The affinity of a peptide to TAP can be a dramatic factor in delivering a potential MHC ligand to

the MHC complex. There are various examples of MHC ligands that never become CTL epitopes

(in this case, irrespective of immunogenicity) (Rammensee et al., 1999). The reasons range

from never being produced by the proteasome to poor delivery to the ER. As the proteasomal

prediction has already been covered, this section deals with predicting the affinity of a peptide to

the TAP complex. TAP affinity is strongly correlated with transport across the ER membrane

into the ER lumen (Peters et al., 2003).

TAPSMM The name assigned to the predictor is inventive, since no name was given for in

the relevant article (Peters et al., 2003). As can be deduced from TAPSMM, the method also

relies on a Stabilised Math Matrix encountered in Section. It also uses three other matrices
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CHAPTER 1. Introduction 1.2. Pathway Prediction Tools

Figure 1.7: Curve (a) shows the ROC curve if N-terminal residues are not weighted, while curve (b) shows the
result of changing the weighing parameter, α to 0.2. (Peters et al., 2003)

and the consensus matrix from them are used in predicting results. The researchers constructed

their own TAP affinity dataset experimentally using IC50 values as the measurement. The set

contained 430 9-mer peptides and 67 longer peptides. Using the 9-mer peptides, the matrices (of

which two were of literature origin) were constructed from the amino acids at respective positions

and the associated IC50 values. Calculating a score from it is a matter of summing the matrix

values for each amino acid at each position. Binding of a peptide to TAP is mainly determined

by the first three N-terminal residues and the C-terminal residue. Using this knowledge, the

researchers could extend predictions to peptides longer than 9 amino acids, by using Equation

1.5:

t = mat1,N1 +mat2,N2 +mat3,N3 +mat9,C (1.5)

The results of the ROC analysis revealed that the method was fairly good, with an AUC

value of 0.702. The researchers realise that the contribution of the N-terminal residues became

less relevant with an increase in peptide length (i.e. window size). To compensate for this, a

down-weighing factor was included for the N-terminal terms in Equation 1.5, leading to Equation

1.6:

t̄ = mat9,C +
α

L− 8

4∑
k=1

(mat1,N1mat2,N2 +mat3,N3) (1.6)

It was determined that the optimal value for α was 0.2. This increased the AUC value of

0.702 to 0.792. The difference in the ROC curves are shown in Figure 1.7.

Interestingly enough, there is some correlation between the value of α and the MHC allotype

to which a peptide will bind. See Table 1.2.
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Table 1.2: It is interesting to note how the value of α and consequently the N-terminal has an effect on binding
to specific allotypes of HLA (Peters et al., 2003).

Allele Optimal α for a window size of 10
HLA-B44 0
HLA-A24 1
HLA-A3 1.2
HLA-B27 4

HLA-A0201 0.4

1.2.4 MHC Ligand Prediction

Various tools exist nowadays for predicting MHC ligands. In the antigen presentation pathway,

this is the most selective step for various reasons and to an extent, the most problematic. MHC

molecules are quite selective in what peptides they bind and with what affinity they bind (Ram-

mensee et al., 1995). This is determined by the residues forming the groove, which form certain

binding pockets. There are pockets for anchor residues, which are essential for a ligand to bind

to the groove. However, these achor residues and positions along the groove where they occur

vary between the MHC types (e.g. HLA-A, HLA-B, HLA-C) and allotypes (e.g. HLA*A0201,

HLA*A0204). Because of the large variability, there needs to be huge amounts of data available

in order to find a reasonably accurate prediction method.

As the amount of binder data became more and more available, so did the MHC ligand

predictors (in general) improve. From the early Bimas method (Parker et al., 1994) to the present

day methods like the Support Vector Machine (SVM) method, SVMHC (Dönnes and Elofsson,

2002,Dönnes and Kohlbacher, 2006), the ANN based method of NetMHC (Nielsen et al., 2004a)

and the SMM based methods (Nielsen et al., 2004b) and others such as SYFPEITHI (Rammensee

et al., 1999) and PepVac (Reche and Reinherz, 2005). Bimas and NetMHC will be discussed as

they are based on different techniques and assumptions. Bimas uses an method that treats each

position in the ligand as independent of all the others, while NetMHC reveals to us that there

is, in fact, a lot of interdependence between the residues of a ligand. It is by this assumption

that NetMHC performs a lot better than Bimas.

Bimas

Bimas was one of the original tools for predicting MHC ligands. It is based on the assumption

that binding of a peptide to MHC is independent with respect to the residues it is made up of and

that the total binding can be expressed as an additive function. The binding affinity is correlated

with the half-life of the binding of β2-M to the MHC complex. The peptides used for data set

construction were carefully constructed with substitutions occuring at strategic positions and

sometimes, by looking at the set closely, substitutions are progressive. At single substitutions,
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the half-life was compared and a coefficient was assigned, e.g.

CA7,E7 = TGLFGGAGV
TGLFGGAGV

= 770
530 = 1.45

There are a total of 20 × 9 = 180 variables(coefficients) to consider, which, for the authors,

was a lot given the amount of data they had. It was decided that if a particular positional amino

acid’s coefficient was too close to 1.0, it would remain fixed at 1. Also, if there was no way

to measure the coefficient of a variable at a certain position, it was fixed at 1.0. A total of 82

variable coefficients were allowed to be changed during optimisation. The output of the function

is an approximation of the experimental β2-M half-life data. The prediction seems to correlate

reasonably well with the testing half-life values.

The authors note, however, the limitation of the independent binding assumption, by listing

a few peptides with curious properties. Still, evaluating this method on current data sets yields

pretty impressive results, e.g. when tested on the HLA*A01 (Tenzer et al., 2005) and HLA*A0201

(Trost et al., 2007), AUC values of 0.9934 and 0.920 are obtained, though the accuracy of

performance analysis of HLA*A01 seems a little doubtful 1. We will see in NetMHC how the

shortcomings of Bimas (and other tools) were addressed.

NetMHC

During the following years after Bimas, a flood of MHC data became available. It was the start

of a real feast for people eager to solve the MHC ligand problem. The databases grew, more

and more became known of the specific binding motifs for various MHC allotypes. The problem

was, however, that the data was of a binary nature and not the sleek quantitative data used in

construction of Bimas. Even so, discrete datasets like SYFPEITHI (Rammensee et al., 1999)

and MHCPEP (Brusic et al., 1998) still provide very useful information. MHCPEP also includes

immunogenicity data of MHC ligands. Other data sets were constructed using quantitative IC50

values. The IC50 value in terms of MHC binding is a measurement of what concentration peptide

there needs to be for a specific amount of MHC molecules to be 50 percent saturated (Sidney

et al., 2001,Sylvester-Hvid et al., 2002). The reason for the necessity of a quantitative data set is

to distinguish between "Is it a binder?" and "Precisely how much of a binder is it?". This could

aid especially a learning method such as ANNs to add weights to the neurons, because even if

two peptides do bind well to MHC, one of them is likely to be "more or less of a binder".

NetMHC makes use of the Sette and SYFPEITHI data sets in training of the neural network.

The authors elegantly demonstrated why they think an ANN would be more appropriate in

solving the MHC ligand problem. The theory is that interdependence between residues in a

peptide could have a dramatic effect on MHC binding. By taking MHC ligands from the database,

they constructed a 9 × 9 matrix with each position represented by a score obtained from using
1Why would better tools be constructed if Bimas already performed at a near perfect level?
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Equation 1.7.

Mij = ΣPij(ab)log(
Pij(ab)

Pi(a)Pj(b)
) (1.7)

Where i and j are positions of which a mutual information score is calculated, with a and

b representing amino acids at i and j respectively. Pij(ab) is the probability of simultaneously

having amino acid a at i, while having b at j. Pi(a) represents the total occurence of a in

the background (same applies for Pi(b). NetMHC makes use of two ANNs for prediction, by

summing the result of the two in a weighted fashion. There are ten input neurons. Nine for the

positions (when training 9-mers) and the tenth for the output of a HMM. One ANN is trained

using sparsely encoded amino acids, which means that only one amino acid neuron is activated

per position at a time and the BLOSUM neurons can be activated based on the similarity

between the amino acids at a given position. The limit amount of data makes it wise to rather

encode the sequences using a BLOSUM50 encoding matrix. The BLOSUM matrix is a matrix

obtained from observing substitution frequencies of amino acids from aligned sequences in a LOD

fashion (Henikoff and Henikoff, 1992). This reveals subtle relationships between the amino acids.

An example is given in 1.8. Although there are two mismatches between sequences RFFIVDKLL

and RFFLVEKLL; the network, having already seen RFFIVDKLL, assumes the P3 amino acid is the

same. The sparse encoding sees them as different and has to adjust the weights of two variables.

So, why not only use the BLOSUM encoding? The BLOSUM encoding will cause the network

to behave a little more erroneously in comparison with the sparse encoding, when faced with the

sequences RFFIVDKLL and RFFLVDKLL. Here, only the P3 residues are different, but the BLOSUM

encoding will once again see it as the same. Therefore, the weighted output yields a significantly

better result than either of the encoding methods alone. Inclusion of the HMM output also

proved fruitful.

Although this method is powerful and tested to be the most accurate with an AUC for

HLA*A0201 of 0.932, ANN training requires a lot of data. Here, by also including the SYFPEI-

THI data, the researchers were able to increase the set. The amount of quantitative data for

the other alleles in comparison with HLA*A0201 is a lot less and prediction performance should

accordingly be lower.

1.3 Modeling the Entire Process

There have been attempts to model the Class I Restricted pathway (Tenzer et al., 2005,Larsen

et al., 2005). Of the three classes of tools, namely MHC ligand predictors, TAP affinity predictors

and proteasomal cleavage site, MHC ligand prediction is the most accurate. This is true for a

number of alleles. There have even been attempts to design tools that predict epitopes covering
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Figure 1.8: This Figure depicts how BLOSUM encoding could help the ANN to generalise a problem. The
two peptides have two mismatches between them at P4 and P7. With sparse encoding, the ANN now has to
take two mismatches into account for weight balancing. With BLOSUM encoding, the Ile and Leu of P3 are
seen as the "same" amino acid and the network only has to adjust for the one P7 value as it has "seen" a
Leu before (i.e. the Ile)

95% of the American population (Reche and Reinherz, 2005). Prediction of epitopes for a

specific allele seem fruitless and some prediction tools, like the newer versions of NetMHC allow

for supertype prediction, i.e. across the entire HLA-A2 serotype. Still, further binding data

on other alleles, especially neglected population groups should be gathered. The current MHC

ligand predictors are also capable of predicting ligands in the size ranges of 8-11 amino acids.

It seems surprising that there aren’t a lot of data on in vitro digests of the two classes of

proteasomes. Within species variability of these is negligible and good methods have already

been established to determine cleavage sites. TAP prediction is fairly accurate and proven to

increase the accuracy of MHC ligand binders by filtering TAP non-binding sites and thereby

eliminating the MHC ligand that goes with it.

It is the author’s opinion that predictors should not be binary classifiers. Quantitative values

at each step could be invaluable when approximating a candidate CTL epitope for a vaccine. A

peptide sequence that has a positive result for all the tools may not necessarily be a good CTL

epitope (excluding the factor of immunogenicity here); If 10 fragments of the same sequence

containing the CTL epitope are produced, but only 0.7 of that transported across the ER by

TAP and only 0.5 of that presented to the MHC molecule, that means only 4 of the original 10

potential epitopes were actually presented.

A lot of work need be done in improving the prediction performance of especially the pro-

teasomal cleavage site predictors. Combining the results of predictions at different steps in the
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antigen presentation pathway is attractive, but not when the error accumulates at each step,

brining it again ever closer to a random prediction. One of the purposes of these prediction

tools would be to decrease experimental costs. By screening only 10 epitopes for antigenicity

instead of hundreds, the throughput of the experimental method is increased ten fold. For this

to happen, though, the predictors need to be of high quality.

The troublesome aspect of training MHC predictors is the nature of the dataset. Using a

simple PSSM based on LOD scores of binders and non-binders, the author designed a tool with an

AUC value of 0.88. This was surprisingly high and even more surprising was the fact that similar

AUC values could be obtained when at a training- and testing set size ratio of 2:8. It became

clear, however, that the nature of the dataset was to blame for the unrealistic performance.

When testing the same method on a different set, AUC values of only 0.72 could be obtained.

Caution should therefore be taken when choosing training and testing sets.

1.3.1 Other Available Tools

In conjunction with resources like SYFPEITHI and MHCPEP, other online resources are avail-

able, such as The Jenner Institute (http://www.jenner.ac.uk), the International Immunogenetics

Information Management System (http://imgt.cines.fr) (Lefranc, 2005) and the online commu-

nity resource for computational immunology (Peters et al., 2006), EpiMHC http://immunax.

dfci.harvard.edu/bioinformatics/epimhc/ (Reche et al., 2005), MHCBN http://www.imtech.

res.in/raghava/mhcbn/ (Bhasin et al., 2003).

1.4 The other Immunological Responses

Investigating tools for the other classes of immune responses is beyond the scope of this review.

It is worthwhile to mention that vast improvements have been made in predicting MHC Class

II ligands. Helper T-Cells (CD4+, HTL) need to be activated for the CTL to differentiate

into memory cells (Shedlock and Shen, 2003). As for the humoral immunity, predicting B-

Cell epitopes, i.e. areas on a molecule where an antibody can bind is an extremely difficult

task. Even with the like of BepiPred which predict continuous epitopes (epitopes formed by a

continuous range of amino acids), prediction accuracy is very close to random (Larsen et al.,

2006). Hopefully, as more structural data becomes available and better structural prediction

algorithms, the performance of BepiPred could increase.
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1.5 Problem Statement

Phylogenetic methods are currently used to assess the genetic distance between strains of pathogenic

organisms, and by extension, immunological distance. In the context of Cell-Mediated Immu-

nity, specific differences in epitope repertoire between the pathogen strains may be an improved

way to determine immunological distance. To the author’s knowledge, there currently exist no

available and freely accessible methods to peform this task. Using quantitative prediction meth-

ods for proteasomal cleavage, TAP affinity, MHC affinity, Immunogenicity and cross-reactivity,

a system has been created to assess the immunological differences between strains of pathogens.

The result of which is Fortuna, a freely accessible web-based tool to perform these immunological

analyses.

1.6 Aims

1. Combine the results from various compuational immunology tools concerning the Class I

restricted antigen presentation pathway

2. Develop a novel TAP-ligand predictor

3. Devise a way to compare different sets of epitopes by using a combination of results from

the antigen pathway prediction tools and the Frankild score

4. Design a web-based interface to access these tools

5. Perform a small study on the CTL epitope profiles of the Human Immunodeficiency Virus

and Influenza A
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2
Development of Fortuna

Fortuna is a tool designed to aid the meta-analysis of immunological properties between variants

of the same protein sequence. To achieve this, it utilises a combination of prediction tools for

each of the steps in the Class-I restricted antigen presentation pathway (hereafter C1APP) as

well a method to approximate cross-reactivity. Additional analysis on epitopes include frequency

versus entropy analysis as well as self-epitope analysis. In this chapter, the design and imple-

mentation of tools used to facilitate the aforementioned will be described. In 2.1 the method

by which C1APP predictors are implemented is shown. Proteasomal cleavage and MHC ligand

affinity predictions are discussed in Sections 2.1.1 and 2.1.3. A novel TAP predictor, Variable

Lengthed TAP Predictor (hereafter VLTAPP) has been developed and is discussed in Section

2.1.2. Beyond using VLTAPP for pathway prediction purposes, the author wishes to illustrate

the advantages and challenges associated with immunological prediction tools. Thus, a complete

description of design, training and validation of the predictor is provided. The method to com-

bine the prediction scores is discussed in secton 2.1.4. In contrast to other prediction methods,

which in the whole simply add the individual predictions of proteasomal cleavage, TAP affinity

and MHC affinity together, here a method is described that systematically produces a final score

from the results of the individual predictors. Analysis and visualization procedures are discussed

in section 2.3. This section will focus on clustering analysis of sequences in Section 2.3.4, analysis

of epitope sequence entropy and frequency in Section 2.3.1 and self-epitope discovery. Visual-

ization procedures are given in conjunction with the description of the analysis procedures. The

implementation of Fortuna as a web-based application is described in the next Chapter and will

illustrate the interface to the analysis and prediction tools. Overview of the development process

is shown in Figure 2.1 on the following page.

2.1 Pathway Predictions

This section deals with the different predicitors used in epitope prediction. First, the proteasomal

cleavage methods will be discussed and how the results from this prediction is used to prepare
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Implement offline versions of 
Proteasomal cleavage,

MHC affinity and 
Immunogenicity Predictors

TAP Predictor development
(VLTAPP)

Obtain peptide IC50 data

Encode data for ANN

Train, test and implement
Develop a method to
combine prediction

scores

Develop analysis
methods

Entropy/Frequency

Cluster analysis
and cluster comparison

Self-epitope discovery
Develop visualization

methods

Integrate into
a Web application

Figure 2.1: Overview of the development process of Fortuna. First, offline versions of NetMHC (MHC
prediction), ProteaSMM (proteasomal cleavage prediction), and POPI (immunogenicity prediction) were im-
plemented. The TAP predictor, VLTAPP was constructed from the obtained data and all prediction tools
were integrated. Analysis tools and visualizations were developed as shown in the diagram and subsequently
integrated into a web-based application, called Fortuna.

ligands for the next step, TAP ligand prediction. A novel predictor for TAP is constructed and

the design as well as implementation of it is discussed. Lastly, the implementation of MHC

affinity and peptide immunogenicity is discussed. Finally, a method is shown to combine the

predictions to give a final epitope score.

2.1.1 Proteasomal Cleavage Prediction

Proteasomal cleavage is the very first step in the Class I-restricted antigen presentation pathway.

It is also the first step in the simulated version of the pathway. There are many proteasomal

prediction tools available, however, very few that can predict cleavage sites in a quantitative

manner, i.e. how many times a certain site in a protein will be cleaved relative to other cleavage
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sites. ProteaSMM method that does quantitative predictions on proteasomal cleavage sites

(Tenzer et al., 2005). It is based on PSSM that does predictions for both the constitutive and

immunoproteasome. NetChop is another prediction tool that was considered (Nielsen et al.,

2005), but it differs from ProteaSMM by two very important factors:

1. Predictions are discrete

2. Does not distinguish between cleavage sites for the Immuno- and constitutive proteasome

The goal for the final ouput where Proteasomal cleavage, TAP affinity, MHC affinity and

immunogenicity are all taken into account is to not only determine whether a potential MHC

ligand will be displayed on the cell surface, but also the amount of it that will be displayed. It will

be fruitless to consider an appropriate MHC ligand as an immunological target if it’s availability

from the proteasomal cleavage step is low. Furthermore, there is a significant difference in the

amount as well as composition of the proteasomal digests between the two main proteasomal

types. Since TAP is dependent on the products of the proteasome, the difference in amount

as well as actual fragments produced will be determined by the type of proteasome employed

by the cell. NetChop does not reveal this discrepancy. The question remains, however, how to

determine in a quantitative way the fragments passed to TAP.

Quantitative Calculation of Proteasomal Fragments

Initially, proteasomal cleavage prediction is performed independently across all the positions

in the input peptide. There is no information on the relative amount of a given sub-fragment

between two cleavage posistions. The score output of ProteaSMM can be interpreted as a relative

amount of cleavage at a site and can thus be used to calculate the amount of a fragment existing

between two sites. To achieve this, a probabilisitic method is created. Assuming the maximum

value possibly produced by an ProteaSMM matrix relates to a 100% probability of a site being

cleaved, all the scores can be converted to a pseudo-probability. The procedure is:

1. Determine the ProteaSMM scores for a given sequence

2. Calcuate the cleavage positions

3. Obtain the maximum possible value for the matrix used in prediction

4. Convert the scores to a fraction of the maximum score

With the cleavage probabilities calculated, fragment probabilities can now be determined. In

simple terms, given the probability of cleavage sites A and B, what is the probability of fragment

AB? More formally described in Equation 2.1 on the next page
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P(AB) = P(A)× P(B) (2.1)

Where P(AB) is the probability of a fragment formed by sites A and B, P(A) and P(B) are

the probabilities for a cleavage site to occur at position A and B. This assumes that the cleavage

events A and B are independent, i.e. the existence of one cleavage site does not inherently influ-

ence the base probability of another cleavage site. The next step is to determine the probability

of the fragment AB given another cleavage site exists between them. How much will the inter-

nal cleavage site, C influence the probability of AB being a product of proteasomal digestion?

What is the probability that the cleavage of AB will occur while C does not? The procedure is

relatively simple and based on the rule of conditional probability and shown in Equation 2.2.

P(AB|C ′) = P(A)× P(B)× P(C ′) (2.2)

Where P(C’) is equal to 1−P(C). Given that B exists on the C-terminal end of the fragment

AB, the probabilities of all the fragments formed by cleavage sites between A and B are calulated.

There are two limits imposed on this procedure:

1. Minimum length of the fragment is 9 amino acids

2. The maximum length of the fragment is defined by the user, usually 20

The problem with the first condition is that a cleavage site with high probability may occur

within a region defining an MHC ligand. The reason for disregarding this potential problem is

because of the unknown nature of quatitative prediction performance of ProteaSMM; including

more predicted cleavage sites may increase overall error of fragment probability. The maximum

limit is imposed because the training set of the predictor does not contain peptides of length

greater than 17 amino acids. An example of the procedure is given in 2.2 on page 27. Since

proteasomal cleavage is also a rate-length dependent process, the probability of very long peptides

will become negligible; more internal cleavage sites mean less probability for fragments formed

by the terminal ends tested. TAP ligands also become less potent as their length increases. The

exception to the maximum length rule is when there are no cleavage sites within the length limit

upstream from a particular cleavage site. The solution is to find the next available upstream

cleavage site. The rationale behind using the C-terminal cleavage site and working upstream

instead of starting at the N-terminal cleavage site and working downstream, is that there is

very little evidence of C-terminal cleavage beyond the proteasome (Snyder et al., 1994). In

the ER, where loading of a peptide onto MHC occurs, the ERAP molecule is designated to

trim the fragment from TAP to appropriate size. Thus far, overwhelming evidence suggests

that N-terminal proteolytic cleavage by the ERAP molecule is the de facto way of doing this.
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Restrictions are therefore applied to the C-terminal end of a potential MHC ligand, while the

N-terminal end is allowed to be more variable.

With careful investigation,it can be determined that the fragments probabilities calculated

in 2.2 on the following page do not add up to the probability of the C-terminal end when summed

as they should when consulting probability rules concerning independence. To compensate, the

probabilities are multiplied by a factor as shown in Equation 2.3.

FNC =

∑N
k=C2

P(Ck)

P(C)
(2.3)

Where FNC is the factor that all the probabilities of the fragments should be multiplied with,

P(Ck) is the probability of a fragment defined by cleavage point C and the upstream cleavage

point k, C2 is the first cleavage point upstream from C and N is the most upstream cleavage

point. An illustration of the entire process is shown in Figure 2.2. The author is aware of the

proteasomal cleavage prediction tool, FragPredict (Holzhütter et al., 1999). This tool does a two-

run pass that consists of first predicting the cleavage sites and then the possibility of fragments

therein. However, implementation of this method is exceptionally difficult, it does not distinguish

between immuno- and constitutive proteasome cleavage sites, and subsequent methods also claim

to perform better in terms of cleavage prediction (Nielsen et al., 2005,Tenzer et al., 2005,Ginodi

et al., 2008).

Implementation of ProteaSMM

A local version of ProteaSMM is available. The predictions are made on 10-mer sequences with

the cleavage point exisiting between the 6th and 7th amino acid. The input sequence(s) are

scanned and a non-redundant list of 10-mers are built as shown in Figure 2.3 on the following

page. The word list is passed to the SMM application provided. Various matrices trained on

different data are provided for both prediction of constitutive- and proteasomal cleavage sites.

The enhanced matrices were used, since they were trained on the most amount of data and are,

theoretically, the most accurate. The output from SMM as a rule is a text file containing a list

of words (peptides) with corresponding predictions values. For ProteaSMM the values are the

log10 quantitative values that equate to relative amounts.

2.1.2 Variable Lengthed TAP Predictor

Construction of VLTAPP

There are a multitude of tools available concerning the prediction of ligand affinity to TAP.

They include PREDTap (Zhang et al., 2006), Tappred (Bhasin and Raghava, 2004) and the

SMM Method by Peters (Peters et al., 2003). The different methods employed are attuned
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N C

07121621

0.750.600.250.25

Potential fragments

P(          ) = 0.75*0.6*(1-0.10) = 0.41

P(          ) = 0 (Fragment too long)

P(          ) = 0.75*0.25*(1-0.10)*(1-0.60) = 0.07

P(          ) = 0 (Fragment too short)

Figure 2.2: The Figure illustrates a region of a protein sequence containing predicted proteasomal cleavage
sites. The size of the circles are representative of the cleavage probability. The letters N and C represent the
N- and C-terminal ends respectively. The numbers below the circles indicate the position upstream from the
C-terminal end. The fragments C-7 and C-21 are not viable since they fall beyond the range limit of allowed
lengths, namely [9,20]. The two viable fragments, C-12 and C-16, have their probabilities depicted on the
Figure. To illustrate the influence of length on the procedure, we can insert a hypotherical cleavage poition,
C-14 (not shown), with a probability equal to C-12. This would reduce the score of C-16 by a factor of 0.40,
which would make it 0.03.

TLWQRPVVTVKIGGQL...

TLWQRPVVTV
 LWQRPVVTVK
  WQRPVVTVKI
   QRPVVTVKIG

TLWQRPVVTV
LWQRPVVTVK
WQRPVVTVKI
QRPVVTVKIG
..........

Peptide List

Figure 2.3: An input sequence is read from N- to C-terminal. Words of a predefined are extracted from the
sequence and added to a list. Only words that have not been added to the list are considered to remove
redundancy in subsequent predictions performed on the words.
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Table 2.1: The size of the dataset containing TAP ligands of varying sizes with all possible single amino acid
substitutions to a single reference peptide.

Length of Peptide Ligand Possible Substitutions Total
8 8x20 = 160 160
9 920 = 180 340
10 1020 = 200 540
11 1120 = 220 760

to the type of prediction made. Some focus on classification, i.e. making discrete predictions

whether an input peptide would bind to TAP with an appreciable affinity, while others use

regression methods to make quantitative predictions of the peptide’s binding affinity to TAP. As

was demonstrated with MHC ligand prediction, peptide lengths vary between 8-11 amino acids

in the majority of cases and there is an adequate amount of information for many (but in no

means all) HLA allotypes to make at least moderately accurate predictions across all lengths.

However, since TAP ligands are the product of proteasomal digestion, the length of the peptides

vary considerably. This poses a problem for anyone wishing to construct a TAP prediction

tool, because the size of the training set increases quadratically with every additional lengthed

peptide included in the set. It can be demonstrated by constructing a hypothetical a training set

consisting of variable length peptides with each length containing all the possible single amino

acid substitutions to a reference peptide. See Table 2.1.

Fortunately, only the terminal portions of the ligand are important in TAP binding. Most

notably, as deduced in the literature, the three N-terminal amino acids and the C-terminal amino

acid (van Endert et al., 1995,Uebel et al., 1997,Daniel et al., 1998). The length of the ligand is

inversely proportional to the influence of the N-terminal end amino acids on binding. The method

by Peters makes use of a position specific scoring matrix in conjunction with a summation term

for the three N-terminal amino acids. A factor is applied to the N-terminal scores to compensate

for the ligand length (Peters et al., 2003). This method separates the training of the 9-mer

ligands and longer ligands. Here, length will directly be included in the training of the ANN to

be constructed.

Data Acquisition and Pre-processing The data for the TAP predictor training set was

obtained from the AntiJen web service (Toseland et al., 2005). Ligand data criteria are variable

and only those entries satisfying the following criteria were considered:

1. Measurement in IC50 values

2. Use of the standard peptide RRYNASTEL

3. Ligand for the human TAP
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Table 2.2: Adjustment of IC50 values from entries using different standard peptide concentrations.

Peptide Std Peptide Concentration IC50 Adj IC50 log2IC50
AAASAAAAK 250 2143 2143 11.065
AAASAAAAK 150 1709 2983 11.543
AWASAAAAY 250 60 60 5.907
AWASAAAAY 150 45 75 6.229

The IC50 value represents the inverse affinity of TAP and is a close approximation to the dis-

sociation constant Kd (Barlow et al., 1997). The measurements are carried out by adding varying

concentrations of a testing peptide to a solution and then measuring how much of a reference

peptide, whose concentration remains constant, managed to bind to TAP. The results are plotted

and through interpolation, the concentration of the testing peptide needed to block 50% of the

available TAP molecules is determined. For example, 83 mM is needed for AAAAAAAAY to bind

to 50 percent of the TAP molecules while a concentration of 250 mM RRYNASTEL exists in the

solution (van Endert et al., 1995). The amount of standard peptide used in different experiments

can vary. This causes the IC50 values to be seemingly highly variable. To compensate, the fold

difference between concentrations of the standard peptide and testing peptide were measured,

approximating the values to what they are if 250 mM RRYNASTEL were used. Examples of this

procedure is demonstrated in Table 2.2. For one ligand that has multiple experimental values,

the adjusted results were averaged. The final set consists of 343 peptides. This set contains

less 9-mer peptides than used in other studies. After investigation, it was discovered that some

entries in AntiJen did not meet the aforementioned criteria to be included in the set, nor were

all the peptides from the single amino acid substitution set available.

Input Data Encoding For an ANN to perform with appreciable accuracy, the input nodes

(parameters) of the network need to be appropriate. In the context of predictions made from

amino acid sequence, each input node can be a binary value representing a unique amino acid at

a given position. For instance, in a 4-mer window, 80 input nodes can be used to represent each

of the 20 amino acids at a given position. The limited and missing data in the TAP training set

makes the use of this binary definition of the amino acids problematic, e.g. if an amino acid at

a particular position isn’t included in the set, there is no way for the neural network know what

its influence would be on the output. Therefore, it is prudent to use physiochemical properties

to make an approximation of an ’unseen’ amino acid. Properties used to encode an amino acid

to a set of numerical values include, but are not limited to, hydrophobicity, pKa values for the

side chains, volume and structural nature (cyclic/aliphatic). An example of this would be the

PredTAP tool that uses a multitude of amino acid properties. A more indirect method is to

make use of a BLOSUM matrix to encode the amino acid. This is done by making 20 value
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Table 2.3: Amino acid properties used as input parameters

Property Value Description
Cyclic {0,1} Has a Cyclic R-group, such as F,Y,W,H
Aliphatic {0,1} Has an Aliphatic R-group, such as

K,L,V,I
Hydrophobicity {0,1} Utilises Kyte-Dolittle Method (Kyte and

Doolittle, 1982)
pKa Side Chain {0..1} Range Scaled value of pKa values. For

acids, the values [1..7) are reversed and
scaled to [1..0) and Bases [7..14] are scaled
to the values [0..1]

Volume [0..1] Volume of the R-group
Proline {0,1} Discrete value to indicate amino acid is

Proline
Isoelectric point (pI) {0,1} Ranged scaled value of the pI value for the

amino acid

vector of BLOSUM scores for the amino acid versus itself and all the other amino acids in the

matrix. This method was used in MHC ligand predictor, NetMHC, with great success. This

encoding scheme was also investigated, however, the nature of each favoured binding residue will

be of interest here (or comparison to other studies examining the nature of TAP ligands. See

Table 2.3 a list of properties used.

Even though values such as pKa have a range limit of [1, 7) for acids and (7, 14] for acids,

the values for each property in the encoding matrix fall in the range [0, 1]. The reason for this

is to assess the contribution of the physiochemical properties on the output score without scale

bias. Input parameters that have a greater value may be seemingly down-weighted while those

with a small value range may be up-weighted. Scaling solves this problem.

Artificial Neural Network Construction and Training The AMORE package allows for

the construction of a simple feed-forward ANN in the R statistical language (Limas et al., 2007).

It is implemented in the R programming language. The input nodes of the neural network was

defined by:

1. The aforementioned physiochemical properties of the four C-terminal and the four N-

terminal residues

2. The length in amino acids of the peptide transformed to log2.

3. The average physiochemical properties accross the whole peptide (only hydrophobicity, pI,

Proline and pKa values used)

Central to the training of an ANN, a choice has to be made on the amount of hidden neurons,

the learning rate and the number of training cycles. With each iteration, the weights of the nodes
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are adjusted to better fit the desired output. A careful balance has to be achieved between the

accuracy of the network on the training data and testing data. Too many training cycles will

lead to over-fitting whereby the network might perfectly explain the training data, but fail to

perform reasonable predictions on new data. On the other hand, if too little training cycles

are performed, the network tends to under-fit the data leading to similar erroneous predictions.

The same scenario is encountered with improper selection of hidden neuron functions and/or the

amount of hidden neurons. Too many hidden neurons also lead to over-fitting. The learning rate

is another point of interest. If the learning rate is too large, the network cannot optimize itself

due to too large weight changes constantly ’missing’ the optimal weights. If the learning rate

is too small, the network will take eons to reach the optimal weights. For these two reasons, a

momentum is added to the training cycles with the amount of weight change decreases per cycle,

meaning that ’rough’ adjustments are made to the weights in the earlier training cycles while

finer tuning is done to the weights in the later cycles as the error rate decreases.

Implementation of VLTAPP

Including TAP prediction in any simulated Class I restricted antigen presentation pathway is a

unique problem. It is the only step that is guaranteed to depend on the output of the previous

step, namely proteasomal prediction. Whereas prediction of proteasomal cleavage sites, MHC

affinity and immunogenicity can be done independently, TAP prediction input is generated from

proteasomal cleavage prediction output. In other research, ligands equal to MHC ligand length

are assumed to be the definitive TAP ligand required for transport of the pro-MHC ligand to

the ER where it gets loaded onto MHC. This assumption does not hold much water, because

many lengthed proteasomal products can be produced. The extraction procedure is shown in

Table 2.4 on the following page. A unique list of proteasomal products are encoded to the

appropriate VLTAPP parameters and passed Python via the rpy2 interface to the R functions

used for prediction. TAP predictions at a given proteasomal cleavage site are averaged to make

a final prediction, but proportional values for the proteasomal fragments at a location can also

be taken into account to provide a more representable score. This method is explained later.

2.1.3 MHC Affinity and Immunogenicity Prediction

MHC Ligand Affinity

Of all the prediction tools available for steps in APP, none exist in greater variety than MHC

ligand predictors. Some tools are only avaialbe by request or online, while others are available

in offline versions. Predictors with only online versiona availableinclude SVMHC (Dönnes and

Elofsson, 2002), BIMAS (Parker et al., 1994), MAPPP (Hakenberg et al., 2003) and many others.
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Table 2.4: TAP ligands are generated from the proteasomal cleavage predictions. The orange coloured residues
are cleavage sites (towards the C-terminal end). Only ligands of greater than seven and smaller than sixteen
are extracted. The three TAP ligands extracted here are shown.

Initial sequence ANNGEDATAGLTHMMIWHSNLPRFKLMV

Proteasomal Cleavage Sites ANNGEDATAGLTHMMIWHSNLPRFKLMV

TAP Ligands
––––––ATAGLTHMMIWHSNL–––––––
––––––––-GLTHMMIWHSNL–––––––
––––––––––-THMMIWHSNL–––––––

Offline methods include NetMHC (Buus et al., 2003,Nielsen et al., 2004a,Lundegaard et al., 2008)

and matrix based methods such as MHCSMM (Tenzer et al., 2005). NetMHC has been tested on

numerous occasions as one of the, if not the best, MHC ligand predictors (Trost et al., 2007,Lin

et al., 2008). The offline version is a Python script that is designed to run from the command

line, however a few modifications allowed the author to directly include it as a module of Fortuna.

The can take a list of peptides of lengths 8-11 as input. The word lists are generated in the same

way as demonstrated in Section 2.1.1 on page 26. The output is stored in Python dictionaries

as peptide lists with the appropriate IC50 value for the requested HLA allotype.

MHC Ligand Immunogenicity

To the author’s knowledge, there is only one immunogenicity predictor availalbe, namely POPI

(Tung and Ho, 2007). The tool can take a peptide of any length as input and predicts immuno-

genicity as four levels: None, Little, Moderate, High. Each higher level represents one log10 more

spot forming units, represented as 0, 1, 2 and 3 for None, Little, Moderate and High predictions.

The offline version of the tool was recreated according to criteria in the article. The method

utilizes an SVM for predictions. Using the criteria listed, the input peptide is encoded in Python

then passed to the libsvm module for the R statistical program where the actual predictions are

made. The author cross-checked the locally produced POPI and the version available online,

with the result being that 100% of the input peptides were predicted with the same levels of

immunogenicity. The input peptides that are used for MHC prediction are also passed to POPI

for immunogenicity predictions.

2.1.4 Combining Pathway Predictions

Combining all the predictions in the APP is by no means novel and various tools exist that do

integrate proteasomal cleavage, TAP affinity and MHC affinity. NetCTL integrates NetChop,

TAPSMM and NetMHC (Larsen et al., 2005) while MHC-Pathway integrates ProteaSMM,
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TAPSMM and MHCSMM. The method here differs both in that immunogenicity prediction

is taken into account as well as the way TAP predictions are integrated into the simulated path-

way. The assumption of proportionality is key to the method presented here. For instance, if two

TAP fragments of near equal affinity exist, the one with the higher amount will be more readily

transported across the ER. This assumption is also held for MHC affinity where the availability

of TAP ligands will determine how many MHC ligands will be available to bind to MHC. Finally,

how many potential epitopes will be displayed on the cell surface for interaction with appropriate

TCRs.

Combining TAP and Proteasomal Cleavage Predictions

As stated before, the ability of an MHC ligand precursor to be transported by TAP into the ER

is dependent on the TAP fragments that contain said MHC ligand. In turn, these fragments are

dependent on the proteasome to be formed. Since proteasomal cleavage is a quantitative process

and fragment formation depends on the cleavage promiscuity of the flaking regions, it stands

to reason that both the TAP affinity and level of these fragments play a role in determining

the rate of transport by TAP into the ER. The other methods take the average logIC50 of all

the TAP fragments of a specific range of lengths that occur upstream from a specific cleavage

site. Here, the relative amount of the fragments and their TAP affinity are summed to obtain a

single, weighted logIC50 score. The theory comes from the formula for the dissociation constant

as demonstrated in Equation 2.4.

KDL =
[T ][L]

[TL]
(2.4)

Where KDL is the dissociation constant for the ligand, L, [L] and [T ] is the concentrations

of the TAP molecule and free ligand respectively whereas [TL] is the concentration of the TAP-

ligand complex. The IC50 value is a good approximation of the KDL value and by rearranging the

formula we can see that the level of [TL] is influenced by [L] and [KDL ], assuming the concentration

(i.e. availability) of TAP molecules remain the same.

[TLRelative] =
[T ][L]

IC50
(2.5)

The terms are the same as described for Equation 2.4, with IC50 now substituting KDL . The

assumption is that for all ligands the same amount of TAP molecule is avaialable for binding.

This is not true on a very technical level, as the first ligands to bind to the TAP molecule will

obviously decrease its availability. The author assumes, however, that transport of bound ligands

are rapid enough for this factor to be trivial.

The pseudo concentration of the ligand, L, can be predicted as the fraction produced by
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Equation 2.2 on page 25. For example, if two solutions contained the same amount of membrane

bound TAP molecule (2500 nM) and identical ligands with an IC50 value of 300nM, but at

different relative concentrations (0.6 and 0.1 respectively) were added, their [TL] values would

be:

[TL0.6] =
[2500nM][0.6]

300nM
= 5.00

[TL0.1] =
[2500nM][0.1]

300nM
= 0.83

Essentially, six times the amount of ligand was bound in solution one than was in solution

two. Note that the KD term was surplanted by the IC50 value. The goal here is to obtain

an IC50 value for the total amount of fragments associated with a particular epitope. Since [T]

remains constant, [L] can be used to directly change the value of the IC50 value, thus making the

value of [TL] inversely correlated to the value of IC50. Taking the same value for the solutions

used earlier with the adjusted IC50 values, the same answers are obtained.

[TL0.6] =
[2500nM]

300nM× 1
0.6

=
2500nM
500nM

= 5.00

[TL0.1] =
[2500nM]

300nM× 1
0.1

=
2500nM
3000nM

= 0.83

To explain the rationale of other researchers behind using averaged logIC50 values, we again

turn to Equation 2.5. To get the average concentration of all the TAP ligands in a solution is a

simple matter of averaging the concentrations. Since Equation 2.5 predicts relative concentrations

of [TL] and we know that IC50 is inversely correlated to [TL], the reciprocal individual IC50

values for the TAP ligands can be averaged.

[TL]Avg =
1

IC50Avg
=

∑n
i=1

1
IC50i

n
(2.6)

[TL]Avgw =
1

IC50Avgw
=

n∑
i=1

[Li]

IC50i
(2.7)

Where TLAvg is the average relative concentration of the TAP-Ligand complex, IC50Avg

the average IC50 value and n the amount of fragments for which the average is calculated. The

difference between Equations 2.6 and 2.7 is that in the latter, fragment concentrations are also

taken into account and is the method used here and as a result, the average is implied by summa-

tion. Of course, if the sum of the [Li] values do not equal one because the C-terminal end from

which the TAP ligands orgiginate have a proteasomal score of less than 1.0, the score produced
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Table 2.5: Relationship between Scores and Amount

Score Relationship to Amount
Proteasomal Cleavage Directly proportional to amount
TAP IC50 Inversely correlated to amount
MHC IC50 Inversely correlated to amount

by Equation 2.7 will in the majority of cases be less than that of Equation 2.6. Therefore, to

negate this ‘total proteasomal’ effect, the value can be divided by the sum of the [Li] values to

give the IC50 with respect to the relative frequencies of the TAP ligands among themselves. To

illustrate all these points, the values of 1
IC50Avg

will be compared for three ligands with a IC50

values of 500nM, 300nM, 700nM and proteasomal probabilities of 0.2, 0.4, 0.1 respectively.

[TL]Avg =
1

IC50Avg
=

∑n
i=1

1
IC50i

n
=

1
500 + 1

300 + 1
700

3
= 2.225× 103

IC50 =
1

2.2254× 103
= 444nM

[TL]AvgPw =
1

IC50AvgPw
=

n∑
i=1

[Li]

IC50i
=

0.2
500

+
0.4
300

+
0.1
700

= 1.876× 103

IC50Pw =
1

1.8762× 103
= 533nM

IC50w = IC50Pw ∗
n∑
i=1

[Li] = 533× 0.7 = 373nM

Where IC50 is the IC50 value by directly averaging the reciprocal IC50 results, IC50Pw is

the IC50 value of taking proteasomal cleavage in its entirety into account and IC50w is the IC50

value when taking just the relative frequencies of the fragments into account. The above example

shows just how much the relative frequencies of the TAP ligands can have an effect on the final

IC50 value.

Combining All Predictions

The final prediction before inclusion of immunogenicity, is to predict the level of a potential

MHC ligands relative to other MHC ligands. All the relationships between score and amount

are known and again summarised in Table 2.5.

Each step is dependent on the output from the previous step and as such, each preceding

score can be treated as a coefficient. The proteasomal scores are used directly and IC50 values

for TAP and MHC predictions are in their reciprocal form. The final is expressed as a log10
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value of the product of all the scores. The log values of reciprocal forms of IC50 values may cause

the final score to be negative so the score is also adjusted by subtracting the threshold values

set for each step. For example, the log10 value of 1
300 is −2.48; by subtracting a threshold value

of log10
1

500 , the value is now 3.74. In this case, it is clearer which ligands are likely to bind to

MHC, by taking every MHC ligand to have a score of greater than or equal to zero. A potential

ligand that matches the threshold at each step has a score of zero. Instead of multiplying the

scores and then calculating the log10 value of it, the individual log10 scores for each step are

summed to allow flexibility in terms of choosing which steps to include in calculation of the final

score.

Sl = (log10Pl + log10
1

TAPl
+ log10

1
MHCl

) − b (2.8)

Where Sl is the final score for the MHC ligand in question, Pl is the proteasomal score at the

cleavage point, TAPl is the adjusted IC50 value for all the TAP ligands, but only taking relative

frequencies of the TAP ligands into account, MHCl the IC50 value for the MHC ligand and b

is the log10 value of product of all the thresholds for proteasomal, TAP and MHC prediction; b

is calculated by Equation 2.9.

b = log10(Pthreshold ×
1

TAPthreshold
× 1
MHCthreshold

) (2.9)

Where Pthreshold is the proteasomal threshold score measured in fractional amount,i.e. the

actual threshold value divided by the maximum prediction value, TAPthreshold and

MHCthreshold are the IC50 values of TAP and MHC prediction respectively. The inclusion

of any of the scores is optional, but the thresholds used in Equation 2.9 are dependent on the

scores utilised in Equation 2.8. If at any point one of the scores has a value of less than or equal

to zero before log-transformed, the score is assumed to be infinitely negative. The prediction

value of immunogenicity of the MHC ligand can be added to the score directly, since it is already

expressed as a log10 value.

2.2 Discovering Potential Self-Epitopes via BLAST

To discover potential self epitopes contained in the input sequences, BLAST is utilised (Altschul

et al., 1990). A redundant list of 8-11 mer peptides are built from the input sequences and scanned

against a RefSeq database of protein sequences (Pruitt et al., 2005,Pruitt et al., 2007,Pruitt et al.,

2009). The rationale behind using RefSeq sequences is that it is a database of curated sequences

which reduces redundancy dramatically. Further filtering is performed by excluding records that

have the text HYPOTHETICAL or PUTATIVE in the title. To filter out sequences, a list of GI’s

36

 
 
 



CHAPTER 2. Development of Fortuna 2.2. Self-Epitopes Via BLAST

are built that meet the exclusion criteria, i.e. they are of Human origin and do not contain

HYPOTHETICAL or PUTATIVE in the title. All the records that do not match the built GI list are

extracted and a new reduced version of the database is built. The reduced size of the database

also BLAST searches by reducing the number of records to scan. The offline BLAST toolkit,

BLAST+, is used to perform all the operations including query seraches (Camacho et al., 2009).

Setting BLAST+ Parameters

The default parameters for BLAST are not optimised for the search of small sequences and

adjustments need to be made to them. The recommendation by the BLAST guide to search for

small sequences is to:

1. Use the PAM30 matrix

2. Adjust the word size to 2

3. Use a higher E-value

The scoring matrix is used to measure how well the query sequence matches a testing se-

quence. The PAM30 matrix is recommended, however the BLOSUM35 matrix is used, because

it has already been used in the literature for measuring cross-reactivity and would be ideal for

identifying potential self-epitopes (Frankild et al., 2008). The smaller word size will include

more sections of a sequence into the search query. One of the blast outputs is an E-value that

is, briefly, a measurement of how likely it is for the input query sequence to be the same as the

target sequence. The E-value is usually set low to exclude any ’random matches’ to a search

query. Here, because the search queries are so small, the E-value tends to be naturally higher

and the threshold needs to be increased to accomodate potential hits. It is set to 200.

Measurement of Cross-Reactivity

The method by Frankild et al. (2008) is used to measure cross-reactivity between a predicted

epitope and potential self-epitope. The method measures the difference between two peptides by

utilising the BLOSUM35 matrix. The scores for each residue comparison are tallied and summed.

To ensure that the score always falls in the range [0, 1], the maximum and minimum comparison

scores for each peptide are calculated and the score range scaled. The final comparison score is

defined in Equation 2.10.

SP1P2 =

∑n
i=1 B(P1i,P2i) −min(SP1)

max(SP1) −min(SP1)
(2.10)

Where SP1P2 is the comparison score of peptide P1 vs peptide P2, Pni the residue of each

peptide at position i, B the BLOSUM35 matrix, max(SP1) the maximum comparison score, essen-
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tially P1 vs P1 and min(SP1) the minimum comparison score for P1 calculated by the sum of

the minimum value for each residue at all the posistions. Even though a BLOSUM matrix is

symmetrical, it should be noted that SP1P2 6= SP2P1 specifically because the values of min(SP1)

and min(SP2) are not the same. Frankild also postulated the idea that weight assignment to

each position might augment cross-reactivity measurement. The weights from their research can

be included in Equation 2.11.

SwP1P2 =

∑n
i=1 B(P1i,P2i)wi −min(SwP1)

max(SwP1) −min(SwP1)
(2.11)

Where Sw is the weighted cross-reactivity score, w is the weight vector and wi the weight

assigned at position wi. The vector is nine units long and is expanded and contracted for longer

and shorter peptide lengths by an averaging procedure.

Relating Epitopes and BLAST Hits

One peptide word relates to all its BLAST hits, if any. However, since epitopes are not static

and can occur with various substitutions, the reverse is also applied, meaning that a BLAST

hit also relates to all the variants of an epitope for which it was a hit. The total score for any

BLAST hit can be either the average cross-reactivity score to all the potential epitope hits and/or

the product of the average score to the sum of the frequencies of all the epitopes across all the

input sequences. This augmentation can possibly reveal how important it is for the pathogen in

question to retain this potential self-epitope.

2.3 Analysis and Visualisation

In this section, it will be shown how the prediction methods of the previous section can be im-

plemented in analysis and visualisation procedures. First, rudimentary visualisation of predicted

MHC affinity of epitopes and variants across the input sequence(s). Next, it will be shown how

prediction data from multiple sequences can bse used to perform frequency and entropy analysis

on the data, showing the occurance of potential epitopes at positions as well as the frequency

of the variants that occur there. Following this, is the cluster analysis procedures. Here the

development of a method that incorporates both the Frankild score and pathway prediction

results to determine distances between two epitopes. Extending from this, is the development

of a clustering procedure based on the calculated distances. Finally, it will be shown how the

clustering and comparison of clusters can be visualised.
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2.3.1 MHC Treemap and Density Plots

Selective pressures applied on the sequence of a potential epitope has an inherent effect on its

affinity value. Escape mutations include those that will render the epitope unable to bind suffi-

ciently to MHC to elicit a response. Given that multiple variants of a sequence is given, the total

variation of MHC affinity can be calculated and visualised through density plots. Furthermore,

the frequency of epitopes per HLA allotype is also an important factor in determining for which

allotypes immunologically sensitive. Various methods exist to visualise relative frequencies, e.g.

bar graphs, pie charts etc. Another effective method is a Treemap. A treemap is a rectangular

plot that is made up of smaller rectangles whose area illustrates the input values used for its

construction. In this specific case, the frequency of input sequences that contain epitopes of a

given length for a given HLA allotype. The regions for each allotype are assigned a unique hue

of colour. Futhermore, the colours are assigned a lightness based on the log value of the average

of the log IC50 values for all the potential binders. The procedure to construct the treemap can

be summarised as:

1. Tally the epitopes for the queried HLA allotypes and epitope lengths

2. Divide the plot into areas that reflect the total frequency of MHC ligands for an HLA

allotype

3. Further sub-divide the areas into areas reflecting the frequency of an MHC ligand at a

given position for a particular HLA-allotype

To demonstrate, the potential MHC ligands of the HIV protein, p17, were predicted for HLA

allotypes B3501 and A0201 with the ligand lengths restricted to 9 and 10 residues. The treemap

is shown in Figure 2.4 on the next page. Specific information is also displayed in two tables. The

first table, 2.6 on the following page, contains information on the frequency and average IC50

values for MHC ligands occuring at specific postions. The second Table, 2.7 on page 41, contains

a summary of the total information of MHC ligands of the queried lengths across all sequences

for each allotype. The intention is not to give a full detailed analysis of MHC ligands, merely

a summarized version to determine which positions could be key in epitope analysis. Detailed

analysis of MHC ligands in terms of variability in conjuction with frequency is described in

Section 2.3.1 on page 42. Please note that the discrepancies between Tables 2.6 and 2.7 are due

to omission of some of the values that existed in the original table from which Table 2.7 was

constructed.

Density plots are created from the MHC affinity predictions. Density plots visually represent

the frequency of of sequences containing and MHC ligand at a specific position at and above a

range of logIC50 values. These plots are generated for the peptides at each position for which at
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Figure 2.4: Example of an MHC Treemap. The graph is divided into sectors. The hue represents an allotype.
The area of the sector corresponds to the total MHC ligands of that particular allotype. The sector is further
sub-divided into smaller areas representing the allotype frequency at a specific position. Each smaller block
represents the frequency of sequences that contained predicted MHC ligands at a single position. The lightness
of the hue represents the reciprocal average IC50 value.

least one MHC ligand was predicted for a given allotype. Again, sequences of the HIV protein,

p17, is used as an example and displayed in Figure 2.5 on the next page.

Table 2.6: Epitope Counts per Allotype at position in Sequences.

Allotype Length Position Avg MHC Count Fraction
A0201 10 20 199 73 0.94
A0201 10 37 82 65 0.83
A0201 10 91 233 1 0.01
A0201 10 92 270 1 0.01
A0201 9 34 171 5 0.06
A0201 9 36 6 66 0.85
B3501 10 60 245 1 0.01
B3501 10 67 450 1 0.01
B3501 9 60 92 7 0.09
B3501 9 85 206 44 0.56
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Table 2.7: Epitope Counts per Allotype at position in Sequences.

Allotype Length Count Avg Count per Position
A0201 10 200 33
A0201 9 450 45
B3501 10 8 1
B3501 9 161 40
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(a) MHC Density for HLA A0201 at 92 (9-mer)
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(b) MHC Density for HLA B3501 at 68 (10-mer)
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(c) MHC Density for HLA B3501 at 86 (9-mer)
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(d) MHC Density for HLA B3501 at 136 (10-mer)

Figure 2.5: MHC Density Plots for HLA Allotypes A0201 at positions 92 and 68 and B3501 at 86 and 136. The
y-axis is the cumulative frequencies of sequences containing MHC ligands with at most the 1 − log50000IC50
values represented by the x-axis. The vertical line is the preset threshold that constitutes MHC binding, in
this case represented by 1 − log50000500.
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2.3.2 Entropy and Frequency Analysis

Difference between sequences of the same protein can account for immunological escape. Factors

like MHC affinity and immunogenicity can directly be influenced if a mutation exists within the

site where an MHC ligand exists. Mutations that affect MHC affinity negatively may negate

the ability of a ligand to bind to MHC and thus never be under the scrutiny of the immune

system. On the other hand, there can be mutations that negatively affect the interaction between

MHC-ligand and the TCR. Thus, sequence variability measured against epitope frequency at a

particular range of postions and the sequence variability of predicted MHC ligands can shed light

into immunological escape mechanisms.

Entropy as a Measurement of Sequence Variability

The Shannon Entropy score is a measurement of variability of a sequence of characters (Shannon,

1948). It utilizes the frequency and diversity of characters in a word to assess the variability. This

is best explained by a direct example. The words GOOGOL and SPLASH have different entropies

since GOOGOL has more frequently occuring letters than SPLASH. Calculation of their respective

Shannon entropies is accomplished through Equation 2.12.

H(X)b = −

n∑
i=1

p(xi)logbp(xi) (2.12)

Where H(X) is the entropy of a particular word, n the length of the word, xi a particular

character in the word, p(xi) the frequency of the character and b the log base used. Applying

the formula to the words GOOGOL and SPLASH using a log base of 2, the following values are

obtained:

H(GOOGOL) = −[p(G)log2(G) + p(O)log2(O) + p(L)log2(L) + p(E)log2(E)]

= −[(0.33)(log20.33) + (0.5)(log20.5) + (0.17)(log20.17) + (0.17)(log20.17)]

= 1.90

H(SPLASH) = −[p(S)log2(S) + p(P)logp(P) + p(L)log2(L) + p(A)log2(A) + p(H)log2(H))]

= −[(0.33)(log20.33) + (0.17)(log20.17) + (0.17)(log20.17) +

(0.17)(log20.17) + (0.17)(log20.17)]

= 2.27
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It is shown that SPLASH having more variable characters, and as a consequence lower average

frequencies, does indeed have a higher H(X) value of 2.27 as opposed to GOOGOL with a value of

1.90. Since amino acids can be represented by single characters, Shannon entropy can also be

applied to measure variability. The terms of the Equation are redefined as:

• H(X) – The entropy of all the amino acids occuring across all sequences at aligned position

X. The score is rescaled so that the maximum possible entropy is 1.0 and the minimum

entropy 0.0

• x – A vector containing the frequency of occuring amino acids

• p(xi) – The frequency of the amino acid at the vector position i

Table 2.8 provides an example of entropy measurements across the positions of the sequence

KQIMKQLQP and variants of it. The entropy is 0.00 for most positions, except positions 4, 5 and

7 which have values of 0.66, 0.66 and 0.31. The lower row of numbers is the windowed average

version of entropy. These values are measured by obtaining the average of the entropy values

at, and 8 positions upstream from it. If the N-terminal end of the sequence is less than 9 amino

acids from the measured entropy value, the window size is shortened according to how far the

N-terminal is. The averaging procedure is done give a single score across the entire range of

positions that contain an MHC ligand. Of course, for differently sized MHC ligands, a different

window size is used.

Table 2.8: Example of Shannon entropy calculation for five sequences that are nine amino acids long. The
higher variable regions have higher entropy. The entropy score is range scaled for the amount of sequences.
The smoothed score is calculated by window averaging.

Position 1 2 3 4 5 6 7 8 9
Seq 1 K Q I M K Q L Q P
Seq 2 K Q I M K Q L Q P
Seq 3 K Q I I Q Q L Q P
Seq 4 K Q I I Q Q L Q P
Seq 5 K Q I L A Q I Q P
Entropy 0.00 0.00 0.00 0.66 0.66 0.00 0.31 0.00 0.00
Entropy Smoothed 0.00 0.00 0.00 0.16 0.26 0.22 0.23 0.20 0.18

MHC Ligand Frequency Calculation

To determine the frequency of MHC ligands at specific positions, the sequences are first screened

for MHC ligands of a set of lengths and associated with a set of HLA allotypes and the frequencies

of sequences containing MHC ligands at a certain position. This is best illustrated by an example
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Table 2.9: MHC Ligand Frequency Calculation.

Sequence
Seq 1 RLRPGGKKTYMLKHLVWASRELERFALNPGLLETA
Seq 2 RLRPGGKKTYMLKHLVWRSRELERFALNPGLLETA
Seq 3 RLRPGGKKTYMLKHLVWRSRELERFALNPGLLEYA
Frequency 00000003344444441100000002222222220

shown in Table 2.9. Subsections of three sequences of HIV protein p17 were analyzed for MHC

ligands. MHC ligands are shaded to either X or X. The underlined amino acid indicates the C-

terminal of the MHC ligand. To deal with overlapping sequences, the frequencies are determined

across the entire epitope length. In Seq 1 there is a region of overlap between two MHC ligands,

indicated by the X colour. Reading the frequencies, we can see that the ligand YMLKHLVWA is

also taken into account when calculating the frequencies. Looking at the ligand ALNPGLLET, we

can see that there are no overlapping ligands, so only those ligands are taken into account for

frequency calculation. In this specific example, only MHC ligands of length 9 and associated

with HLA allotype A*0201 are shown. In practice, all the MHC ligands for all the queried HLA

allotypes will be tallied together.

Correlating Entropy and Frequency

The entropy score increases as the variability of amino acids increase. This, in conjunction with

frequency of sequences containing an MHC ligand at a specific or range of positions can be used

to predict whether the mutations within the MHC ligand regions have a significant effect on

MHC binding by determining correlation between frequency and entropy as demonstrated in a

previous study (Yusim et al., 2002). The procedure used by Yusim is useful for determining

total effect of mutations on all regions containing MHC ligands. However, since MHC affinity

alone cannot account for immunogenicity of a ligand, the procedure is modified here by esti-

mating entropy/frequency correlations at localised positions in a sequence. For both entropy

and frequency, window smoothed versions of the scores are used and correlation is measured by

Spearman’s method. The rationale behind smoothing the scores is to determine correlation based

on change in the two parameters, i.e. does the change in entropy have an effect on frequency of

MHC ligands. Spearman’s rank correlation is used in case the data is not normally distributed,

which would be a prerequisite of Pearson’s correlation.

To calculate which local areas to test, the positions of consecutive high and low peaks of

the frequencies are determined. This is accomplished by using a smoothing function in the R

language. A minimum length of typically 15 is imposed on correlation testing. An example of

the smoothing procedure and how the minimum length is imposed is shown in Figure 2.6 on the

following page.
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Figure 2.6: Example of smoothing the MHC ligand frequencies. The orange line is the smoothed version of the
frequencies. The peaks of the graph are determined numerically. Since limitations is placed on the minimum
length of a region to be tested for frequency and entropy correlation, the length between two peaks may be to
small, as indicated by the red line. The solution is to extend the testing region to the next peak as indicated
by the blue line.

Finally the correlations are plotted together with frequency and entropy. Both positive and

negative correlations are included, though negative correlations are more useful in making con-

clusions about the entropy/frequency relationship. An example of entropy vs frequency output

is given in Figure 2.7.
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Figure 2.7: The Figure shows actual output from entropy vs frequency analysis of HIV p17. The keys of the
graphs have been excluded. The stepping red line is the actual measured, overlapping frequency of MHC ligands
at their respective positions. The smoother red line is the window averaged frequency. The thin, stepping
green lines indicate entropy while the thicker, smoother green lines represent the window averaged entropy.
Below the graph are lines indicating significant local correlations, orange and blue representing negative and
positive correlations respectively. The tick marks at the edges of the lines indicate the boundaries of local
correlation. The bottom graph is a map of MHC ligand occurence for the different allotypes queried. The
frequency of a ligand is determined by how opaque it is. In both the bottom and top graph, the x-axis represent
aligned position of the sequences.

SeqLogos for MHC ligands

Since immunogenicity isn’t granted to all MHC ligands, it is important to observe mutations

that do occur in predicted ligands that may have an effect on immunogenicity. As a visual

abstraction, the local version of the SeqLogo package is employed (Crooks et al., 2004) to survey

predicted MHC ligands for mutations. An example is given in Figure 2.8 on the next page.

The SeqLogo output can be considered of a two-dimensional nature. In addition to providing

encountered amino acids at specific positions within the region of the protein sequence and their

relative frequency, the total height of the combined amino acids also reveal how conservative a

position is within a sequence.

To fully illustrate MHC ligand variants, the results are displayed in a table with HLA allotype,

position within the sequence and the frequency of sequences containing an MHC ligand is also
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Figure 2.8: The well known SLYNTVATL MHC ligand that occurs on aligned position 85 of the HIV protein
p17 has many variants associated with it. The height of the letters representing the amino acids reveal the
log version of their frequency within the tested sequences. A notable mutation is seen in position 3, with the
substitution of tyrosine for phenylalanine.

Figure 2.9: MHC ligand variability example

included. By including frequency, it can also be deduced whether immuno-evasive mutations are

more partial to eliminating MHC binding potential or MHC-ligand-TCR interaction. A table

example of SLYNTVATL and its variants is given in Figure 2.9. Only a single entry is given, but it

can be seen that the table is divided into five parts. Firstly, HLA allotypes are grouped together,

the first column indicates position, the second the frequency, the thirst shows the most frequently

occuring MHC ligand, and then substitution variants of it. The positions of the sequence variants

that contain identical amino acids are replaced by a period to easily accentuate the positions

that do contain different amino acids. The last column contains the SeqLogo.

It may be asked why not all the sequences at a given position are included to give a full

spectrum of mutations. The reason is simply that mutations that directly effect immunogenicity

without great influence of MHC affinity are isolated.

2.3.3 Epitope Info

Section 2.1.4 on page 32 describes how prediction scores are combined. The next task is to

display these predictions in a sensible manner. The predictions for proteasomal cleavage, TAP
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affinity, MHC affinity and immunogenicity are all individually important as well as combinations

of the scores. Having said that, displaying all the permutations will not reveal enough relevant

information. What complicates matters further is especially proteasomal and TAP predictions

when taking into account the protein can be processed by either the constitutive or immunopro-

teasome. Therefore only certain combination forms of predictions are deemed useful. They are

listed in Table 2.10 on the following page.

The scores are computed and displayed in a table. An example of the data displayed is

shown in Table 2.11 on page 50. All the scores are threshold-adjusted log10 values of the original

score. The rationale behind this is so reveal which scores make up larger combination scores like

those that take all predictions into account (MI.PTc and MI.PTi in the table). The threshold-

adjustment is essentially subtracting the cutoff value for a prediction from the predicted score.

The resultant score that doesn’t make the cut-off will be less than zero. For clarification reasons,

and to not penalize combination scores too much by one prediction, values below the threshold

are adjusted to match the threshold, essentially not contributing to the final score.

The individual epitope scores can prove to be very effective, however it is also useful to see

the total score for an individual sequence based on its predicted immunological prowess. A more

summarised form of the epitope prediction is utilised, only taking the total prediction results

into account, i.e. MIPTc and MIPTi (see Table 2.10 on the following page). The sum of these

scores are obtained for all the predicted epitopes in a sequence. To ensure that the score isn’t

biased towards sheer amount of predicted epitopes available, an average result is also obtained.

Finally, the amount of epitopes are counted for the queried HLA allotypes and ligand lengths

and combined with the scores are displayed in a table.

2.3.4 Cluster Analysis

Another way in which the prediction results for potential CTL epitopes can be utilised is com-

paring sequences based on their epitope profiles. Finding similar patterns of CTL epitopes could

prove pivotal in, for instance, vaccine design. Phylogenetic methods have been developed to

group proteins based on their amino acid sequence. Since mutations within an epitope of a par-

ticular HLA or HLA supertype is mostly independent from other epitopes that occur within a

sequence, it is prudent to provide a method that computes distances between sequences based on

only these predicted epitopes. With appropriate distance measures, hierarchical clustering pro-

cedures can be employed to group immunologically similar proteins together as well as revealing

immunologically distant groups.
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Table 2.10: Pathway Prediction Combination Criteria. Note that ‘c’ and ‘i’ are abbreviations for constitutive
and immunoproteasome.

Score Abbreviation Rationale
Proteasomal Cleavage Pi or Pc Reveals the initial amount of the original

peptide from which the MHC ligand can
be extracted

TAP affinity Ti or Tc Shows the average TAP affinity, which
indicates the amount of fragment avail-
able for MHC loading

MHC affinity M Indication of MHC-peptide availability
on the cell surface

Immunogenicity I Inidcation of the immunostimulating po-
tency of the MHC-ligand

Proteasomal Cleavage and
TAP affinity

PTc or PTi Reveals in relative terms how much of
the inital peptide will be available for
MHC loading

Proteasomal Cleavage, TAP
affinity and MHC affinity

M.PTc or M.PTi Reveals in relative terms how much of
the peptide will be available on the cell
surface

Proteasomal Cleavage, TAP
affinity, MHC affinity and Im-
munogenicity

MI.PTi or MI.PTc The total stimulatory value of the MHC
ligand

MHC affinity and Immuno-
genicity

MI How well the peptide can stimulate the
immune response based on innate ability
and relative amount available on the cell
surface

Calculating Sequence Distances

Distances between sequences are calculated by the difference in their predicted epitope reper-

toires. To accomplish this, the epitopes are mapped to their aligned position wihtin the sequences

they are found and epitope sequence comparisons based on the Frankild method are done. An

example of immunological comparison between two sequences, P1 and P2 based on predicted

epitopes for HLA A0201 and HLA B3501 is shown in Table 2.13. One factor that is immediately

apparent is the inequality between the scores when comparing P1 to P2 and P2 to P1. This is

partly because the Frankild score is asymmetrical and partly because of the absence of an A0201

ligand in P2 that occurs in P1 at position 54. The absence of a predicted epitope in one sequence

equates to a distance of 1 when comparing it with a sequence that does, in fact, contain it. The

sum of the scores indicate that P1 is closer to P2 than P2 is to P1.

This rather simplistic comparison does not yield unambiguous scores. The immunologically

stimulatory effect of the epitopes are not taken into account. For instance, if the predicted

epitope ALNPGLLETA is not very immunologically active, the exclusion of it from P2 is not that

significant and the distance from P2 to P1 should be reduced. The comparison score can be further
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Table 2.13: Calculation of immunological distance between the sequences P1 and P2 based on some of the
calculated epitopes for HLA A0201 and HLA B3501. The score 1−SExEy

(i) is the comparison of the epitopes
that exist at position i in sequences x and y. The underlined portions in a sequence indicate the mutational
site while ‘–’ indicates that no epitope was predicted for the sequence in question for the HLA allotype and
position in question.

Allotype Position Epitope in P1 Epitope in P2 Score (1 − SEP1EP2(i)) Score (1 − SE1E2(i))
A0201 67 QIMTQLQPA QIMAQLQPA 0.06 0.06
A0201 54 ALNPGLLETA - 1.00 0.00
B3501 61 TPEGCKQIM TAEGCKQIM 0.08 0.12
Total Difference 1.14 0.20

augmented by assigning weights to the epitopes based on pathway prediction scores with Equation

2.13. With the weight augmentation, the sequences are now a lot closer immunologically. MHC

ligands for HLA A0201 at positions 54 and 67 are predicted to be non-immunogenic. For both

cases, the Cw score is calculated to 0 and it is only the epitopes for HLA B3501 at position 61

that contributes to the immunological distance between the two sequences.

CwP1P2 = (1 − SEP1EP2)× Sl(EP1) (2.13)

Where CwP1P2 is the distance from epitope P2 to P1, SEP1EP2 is the Frankild score and Sl(EP1)

the predicted pathway score. Note that any combination of predictions could potentially be used

to calculate Sl(EP1), e.g. the MHC affinity and immunogenicity scores. If the weighted score is

less than 0, the score is rounded to 0 meaning that any sequencial difference when transitioning

from P2 to P1 is trivial. Careful attention should be paid not to read CwP1P2 as the distance

from P1 to P2. The pathway weighted augmented example of Table 2.13 is show in 2.14.

Table 2.14: The same sequences and epitopes are compared as in Table 2.13, but now augmented with the
weights of MHC affinity and immunogenicity.

Allotype Position Epitope in P1 Epitope in P2 Score (CwP1P2) Score (CwP2P1)
A0201 67 QIMTQLQPA QIMAQLQPA 0.00 0.00
A0201 54 ALNPGLLETA - 0.00 0.00
B3501 61 TPEGCKQIM TAEGCKQIM 0.17 0.18
Total Difference 0.17 0.18

Clustering of Data

The calculation of immunological distances can be used to compare two sequences or an entire set

of sequences. Clustering procedures allow for grouping immunologically similar sequences while

at the same time separating more distant ones. Agglomerative clustering is used to progressively

assign sequences and groups of sequences that are immunologically similar. Clustering procedures

involve the generation of a distance matrix and then performing clustering procedures from the
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matrix. The Unweighted Pair Group Method with Arithmetic Mean was used via the hclust

function of the R language to construct hierarchical trees. UPGMA is one of the simplest

methods to perform hierarchical clustering. The method works by progressively joining sequences

and groups of sequences based on the average distance between them. The distance between two

sequences can be read from the distance matrix itself, however to measure the distance between

two groups of sequences, Equation 2.14 is applied.

1
|A| · |B|

=
∑
xεA

∑
yεB

d(x,y) (2.14)

Where A and B are sets of sequences, |A| · |B| is the product of the sizes of the sequence sets,

x is a sequence in A, y is a sequence in B. This Equation calculates the average of the sum of

the distances between all the elements in both sets in a non-redundant fashion so that when the

distance from x to y is measured, the procedure won’t be repeated for the distance from y to x.

An example of UPGMA is shown in Figure 2.10 on the next page.

As an example, 20 sequences of HIV protein p17 was mapped for HLA A0201 based epitopes

and a comparison matrix constructed. It is generally assumed that the distances are symmetrical,

but here the procedure needs to be modified since the symmetry assumption is not met. Thus,

the following procedure is followed:

1. Calculate immunological distances between sequences

2. Populate an n×n matrix, where n is the amount of sequences with D(i, j), where D is the

distance from sequence i to j

3. Seperately group the rows and the columns

4. Visualise in a heatmap with dendrograms indicating the hierarchical nature of clustering

rows and columns

The clustering procedure of 30 sequences of HIV p17 based on predicted epitopes of HLA

A0201 will be used to illustrate the process.

Construction of Dissimilarity Matrices

The calculation of immunological distances is performed between sequences in an all versus all

fashion, meaning that if a hundred sequences are to be compared to each other, for each sequence

there will be ninety-nine comparisons with all the other sequences. The immunological distance

of a particular sequence to itself is calculated as zero. The results of these comparisons are used

to populate an n × n matrix, where n is the amount of sequences compared. The term D(i, j)

denotes the distance from sequence i to j or, by what immunological degree i needs to change to
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Figure 2.10: Example of UPGMA process. Five hypothetical sequences with arbritrary distances between them
are clustered. In (a) the distance matrix is populated with the distances between the sequences. The closest
distance C to D is marked bold and C and D are joined. The new sequence group (CD) is compared to
the rest of the sequences via an Equation similar to 2.14 as shown in the right hand panel. A new matrix
is constructed as shown in (b). The procedure is repeated with A and B forming the new group AB. The
final grouping is shown in (c) to be AB.CD with the final distance of E measured to AB.CD. In (d) the
constructed dendrogram from the procedure is shown. The height shows the distances of the sequence groups
to their neighbours, e.g the distance between A and B is 4, while the distance between AB and CD is 5.75.
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Figure 2.11: Twenty sequences of HIV protein p17 were compared for immunlogical distances based on potential
epitopes related to HLA A0201. This color map is the visual representation of these distance values. The
legend indicates the range of the distances. The highlighted portion show the distances for sequence 12, values
in the row indicating how far the sequence is to other sequences and the column showing how far the other
sequences are to sequence 12. Note the lack of similarity between the row and column distances.

be transformed into j. If i were to denote a row in the matrix, it means that all the values in row

i taken as a whole, gives a general pattern of how far sequence i is to all the other sequences.

The matrix can be visualised as in Figure 2.11. Close inspection reveals the general asymmetry

of the matrix.

Effects of Asymmetrical Measurements

With most clustering algorithms, it is assumed that the distance between two objects that

are compared, is symmetrical, i.e. the distance D(i, j) = D(j, i). As stated, the distance mea-

surements calcualted here are generally asymmetrical because of the inherent asymmetry of the

Frankild score and the way in which pathway weights are implemented. The symmetry assumed

by most agglomerative clustering methods simply means that the rows (or columns) in the dis-

similarity matrix are clustered together, for instance, the matrix in Figure 2.10 on the preceding

page is symmetrical. Transposing the matrix so that, essentially, the columns are clustered to-

gether would yield the same dendrogram as in Figure 2.10 on the previous page(d). To cluster

rows, a distance between each of the rows need to be calculated in an all versus all fashion. Here,

the euclidean distance metric is used and its calculation shown in Equation 2.15.
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Figure 2.12: The dendrograms were constructed from the distance matrix illustrated in Figure 2.11 on the
previous page. In (a) the rows are clustered, grouping together sequences that share similar immunological
distances to the other sequence. In (b) the columns are clustered together, grouping together sequences that
share similar immunological distances from other sequences.

Dpq(p,q) =

√√√√ n∑
i=1

(pi − qi)2 (2.15)

Where Dpq is the euclidean distance between row p and row q, i is the sequence number

and n is the total amount of sequences. A matrix is populated with the results with p and q

providing the location within the matrix. The newly constructed matrix is symmetric and the

UPGMA procedure can be applied to perform the clustering. This procedure is repeated for the

columns and an example is shown in Figure 2.12. Alternatively, the maximum distance between

two sequences can be used as a single measurement. This results in a symmetric heatmap and

therefore the grouping of the rows and the columns would be more equivalent.

Visualising The Clustering

Heat Maps

The dendrograms shown in Figure 2.12 is useful for grouping together sequences that are

similarly distant from and to other sequences. To better visualise the grouping, where both the

row and column clustering are simultaneously visibile, a heatmap is used. The colourmap shown

in Figure 2.11 on the previous page is an example of a heatmap, but the term heatmap will

be used here as the colormap shown with optimal row and column ordering as determined by

hierarchical clustering. An example is shown in Figure 2.13 on page 58.

To determine the optimal amount of groups in which the row and columns can be divided, the
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Hubert gamma value is used. The Hubert gamma value is a general measure that, when cutting

a dendrogram into a certain amount of groups, how well the groups are separated and how little

variance there is within groups (Dunn, 1973). The value ranges between 0 and 1, with higher

values indicating better clustering. By cutting the dendrograms stepwise into smaller groups

(i.e. larger amount of groups) and measuring the Dunn index at each step, the optimal amount

of groups can be determined. The heatmap is annotated by indicating where the partition

is between the calculated groups for both the columns and the rows. On the heatmap itself,

clustering sectors are formed, making it easier for the researcher to choose sequences that group

well together or conversely, sequences that are far apart.

In Figure 2.15 on page 60 the grouping procedure is applied to the matrix. From the heatmap,

areas of mass similarity or dissimilarity are easily visible. For instance, the columns that represent

sequences 2, 17 and 11 are clustered with the rows representing sequences 15, 6, 19, 8, 10, 16,13,

5, 7, 18 and 4. This is a distant clustering, meaning that the indicated row sequences are

very similarly far from the sequences represented by the indicated columns. For the row that

represents sequence 12, it can be seen that it is generally close to the other sequences, but the

converse is not true and, in fact, in the column dendrogram, it is placed in its own group.
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(b) Ordered by Rows
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(c) Ordered by Columns
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(d) Ordered by Rows and Columns

Figure 2.13: These Figures show how the clustering of rows and columns of the distance matrix for the 20
sequences of HIV p17 can be used to reorder the original colour map to clearly indicate sequence grouping.
The colour scale is described in the top-left corner of each plot, with darker colours indicating further distances
and darker colours, closer distances. The unordered matrix is shown in (a). In (b) and (c) ordering by row
and then by column is shown and in Figure (d) heatmap with ordered rows and columns are shown. Note how
the general trend in shading matches with the branch lengths of the dendrograms.
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(d) Dendrogram Grouping for Column Clustering

Figure 2.14: Grouping of heatmap clusters. To annotate the heatmap with groupings as shown in Figure 2.15,
the Hubert gamma values are calculated according to how many parts the dendrograms are split into. In (a)
and (b) this is shown as a plot with the x-axis and y-axis representing group numbers and Hubert gamma value
respectively. The predicted optimal number of groups is shown as a green dot. The red dot in (b) indicates
that the optimal group number measurement of 3, has been overriden with 6. In (c) and (d) the groupings
are shown with the Rows dendrogram cut into 5 parts and the Columns dendrogram cut into six.
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Figure 2.15: Heatmap of certain predicted HLA*A0201 restricted epitopes with grouping annotation. The
heatmap is annotated with colours representing groups of each dendrogram. The heatmap is also ‘cut’ between
the groups to make clustering of Rows and Column samples clearer. The density plot in the top left corner
is a visual indication of overall similarity/dissimilarity. The colour scale is calculated according to ‘breaks’
determined from the original matrix data. A linear colour scale may fail to ephasize regions of exceptional
difference or similarity.
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Detailed Immunological Comparison The difference between groups of sequences be fur-

ther elucidated by tabulating the epitope differences and similarities between them. Any groups

of sequences can be compared to each other, though importantly, sequences that form immuno-

logically similar or distant sectors can be read from the heatmap. This will give a clearer picture

of the relationship between the sequences. The procedure is divided into two main parts. First,

the sequences are scanned for unique epitope sequences and the existence of these epitopes are

mapped between the two sequence sets. The frequencies of these epitopes are calculated as

well as a weight that can be any combination of the pathway prediction scores. The next step

is to combine all the epitopes that occur at specific positions for specific HLA allotypes. The

next step is to summarise the relationships between the sequence sets according to predicted

epitopes at specific positions in order to compare the epitope variants between the sequence sets.

This information is then tabulated according to HLA allotype and posistion. The frequency of

epitopes occuring at the positions as well as the queried weights for these epitopes are utilised

to elucidate differences between the sequence sets. An example is shown in Figure 2.16 on the

following page. See the description for information on the data dispalyed. Figure 2.16a on the

next page shows the occurence of specific predicted epitopes in both sequence sets. It may seem

redundant to include the differences in weights of the same predicted epitopes, afterall they will

have the same MHC IC50 and immunogenicity predictions. The weights used here include all

the pathway predictions made. TAP and proteasomal predictions can exist beyond the range of

the predicted epitope’s sequence and for some of the displayed predicted epitopes, the influence

of mutations relevant to proteasomal cleavage and/or TAP affinity is indeed evident for the top

half of epitopes in the Table. In Figure 2.16b on the following page the total differences between

epitopes occuring at a specific position is shown. The comparison here was between immunolog-

ically similar sequences, so the SeqLogos do appear similar. It is revealed, that the sequences are

not entirely identical, although the differences in epitopes “repertoire” shown here are trivial.

2.4 Conclusion

Here, the main development aspects of Fortuna were described, with special focus on implementa-

tion of individual C1APP associated predictors, the design of a novel TAP affinity predictor and

combination of prediction results. Additionally, it was shown how the output from the prediction

results could be used to perform subsequent analyses relating to Clustering of sequences based

on immunological profile, entropy/frequency analysis and self-epitope discovery. The following

chapter illustrates the interface to these tools via a web-based interface and usage examples of

Fortuna.
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(a) Comparing all epitopes

(b) Comparing epitopes at specific positions

Figure 2.16: The above Figures depict comparisons between two immunologically related sequences. In (a)
a snippet of the total list of epitopes is shown. The headings reveal the HLA allotype length of the epitope,
aligned position, sequence, predicted IC50 value for MHC binding, POPI prediction, weight associated with
the epitope (in this case, the combined predictions for MHC, Proteasomal, TAP and Immunogenicity), the
differences between the weights of sequence set 1 and sequence set 2 (w1 - w2), the frequency that the
specific epitope occurs in the sequence set and the difference between the frequencies. The last column show
the sequence numbers that contain the epitope. In (b) a summary of the epitopes occuring at specific positions
for associated HLA molecules is shown. The frequencies and weights are read similarly as in (a), although it
should be noted that the average weight for all the epitopes in the sequence set of the HLA allotype in question
occuring at the indicated position is used. The yellow highlighted epitopes in the “Seq List x” columns are
epitopes that occur in both sequence sets. The final two columns are the SeqLogos of the epitopes predicted
for the two sequence sets.
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3
Implementation of Fortuna

In this chapter, it will be demonstrated how the aforementioned prediction and analysis tools

can be made accessible to the general user. The design, method of operation, visualizations and

interfaces will be discussed as well as examples shown. First, the implementation of Fortuna as

a web-based tool will be discussed by describing the server-side and client-side processes. This

is followed by a usage example of Fortuna.

3.1 Fortuna as a Web-Based Application

In order to make full use of predictions and analysis tools provided by created, a suitable interface

to them is needed. Countless problems can be encountered when developing a stand-alone

package that provides interface to these tools. Problems include, but not limited to, computer

architecture, operating system and available computer resources. It is for this reason that a web-

based application is designed with a server backend. Any person can access the tool, provided

they have a compatible web browser and internet connection. The tool, as a whole, is called

Fortuna. It is dividided into two parts:

1. Client Side - The web browser from which the tool is accessed. Sequence input, parameters

and analyses are queried from here.

2. Server Side - Where the predictions, analyses and outputs are generated and sent to the

browser.

Through constant interface between the Server and Client side, analyses are performed and

output generated. A flow diagram of the Client/Server interface is shown in Figure 3.1 on the

next page.

The design, however, is not a trivial process and a multitude of programming packages are

employed to accomplish the task. First, we will examine the input and parameters required

for initial analysis, i.e. immunological predictions. Next, we will look at the programming tools
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Server Side

Client Side

Initial Predictions Analysis

Web Browser

Sequence
Input and

Paramaters

Job Storage/
Retrieval

Client Analysis
Request

Output
Generation

Figure 3.1: Flow diagramme of Fortuna Client/Server interface. All requests are sent via user from the web
browser to the server. For initial predictions, where the user sends sequences to be analyzed according to a set
of parameters, the server processes these requests and stores the submitted job. Upon completion, the user
can access a job and request different analyses to be performed on it. The output is then sent to the browser.

utilised to accomplish the internal programming that include interface to predictions and analysis

as well as creation of the server side that will handle requests from the user. Lastly, the design

and use of the interface will be discussed.

3.1.1 Server Side Processes

How Predictions are Handled

Immunological predictions in a single sequence is a relatively simplistic task, but since the intent

here is to reveal immunological information across multiple sequences, additional steps need to

be taken to ensure predictions are done in a consistent manner. The overall steps and appli-

cations/packages associated with each are listed in Table 3.1 on the following page. This is

especially true if the sequences differ in length. The solution is to first align the sequences with

clustalw2 and map the positions in the native sequences to their ‘aligned’ positions. So, if

a predicted MHC ligand, proteasomal cleavage site, etc. occurs at position X in a sequence,

this position is then mapped to its position within the alignment. All the positional references

between the sequences thus remain consistent.

All of the predictions made rely on words of amino acids as input. The word list consisting

of different length words are created. A summary of the word lengths and steps associated with

them is shown in Table 3.2 on page 66. Proteasomal Cleavage predictions always use words of

length 10, while words MHC- and TAP affinity predictions can be variable. The word list for
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Sequence Input
Sequence
 Alignment

Word List 
Generation

MHC Affinity 
Prediction

Proteasomal
Cleavage 
Prediction

TAP Affinity
Prediction

MHC Affinity 
Prediction

BLASTP

Agglomerate 
Results

Store

Figure 3.2: Overview of the prediction process. Sequences and parameters (HLA allotypes, ligand lengths,
thresholds etc.) are taken as input. The sequences are validated and those that pass the validation test are
aligned using clustalw2. Word lists are generated and sent to the respective predcition tools. Proteasomal
cleavage prediction using 10-mer words, while the length of words used for NetMHC is determined by the input
parameters. The results are agglomerated and stored.

Table 3.1: Steps in Prediction Process.

Step Process Application/Package Used
1 Sequence Alignment The clustalw2 package via the BioPython

library
2 Word list generation
3 MHC Affinity Prediction The stand-alone version of NetMHC-3.0 via

a python interface
4 Proteasomal Cleavage Prediction The SMM application using proteasomal

cleavage matrices
5 TAP Affinity VLTAPP implemented in the R statistical lan-

guage and accessed via the rpy2 package
6 Immunogenicity An R implementation of the POPI tool
7 Self-Epitope Prediction The NCBI’s BLAST+ package utilising a 2009

version of the RefSeq database

TAP affinity prediction is dependent on the proteasomal cleavage prediction steps.

After all the prediction steps have completed, the results are agglomerated and stored on

disk for future retrieval by the user.

Management of Jobs and Storage

Fortuna is not intended to be a fully open system. This means that a user needs to register and

that jobs submitted by a particular user are not accessible by other users to ensure a certain level

of privacy. This also means that jobs that are submitted by a user can be retrieved at any other

time. The completed jobs are stored in a pickled format. In the Python programming language,

objects are entities of variables that can contain potentially any computer-encodable information.

All the prediction results are stored in Python objects. The Pickle library for Python can be used

to store any object on disk. Each submitted job has a unique identification number associated
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Table 3.2: Word List Generation

Step Word Length
Proteasomal Cleavage Prediction 10-mer
TAP Affinity Ranging from 9-mer to typically 20-mer
MHC Binding Affinity NetMHC allows for binding affinity predic-

tion of 8-11 mer words
POPI Can be arbritrary length, though the same

word list is used as for MHC affinity predic-
tion

BLAST Same length as for MHC affinity prediction

Table 3.3: Programming Package Utilised for Server Side Development.

Task Type Tool/Interface Citation

Sequence Alignment
and FASTA file han-
dling

clustalw2 via
BioPython

(Thompson et al., 1994,Cock et al., 2009)

Cluster analysis R-packages fpc and
stats

(Hennig, 2009, R Development Core
Team, 2009)

Graphical Output R-packages gplots,
plotrix and Cairo

(Warnes, 2009, Jim Lemon et al., 2009,
Urbanek and Horner, 2009)

VLTAPP ANN AMORE (Limas et al., 2007)
Web Application
Framework

Turbogears (Ramm et al., 2006)

with it. Referenced from the identification number is the filename that contains the ‘pickled’

Python object. Only jobs that have been complete are accessible for analysis.

Server Side Development

The Python version 2.6 and R version 2.9.1 programming languages were mainly used for

server side development. The Turbogears package [http://www.turbogears.com] was used to

create the Web server. Turbogears allows for rapid development of web applications and has

intrinsic methods for dealing with databases as well as web browser-compatible content gener-

ation. Most of the analysis is done in Python using mostly novel code. The handling of FASTA

files as well as Clustalw2 alignment was accomplished through the BioPython, though in the

latter case the code needed to be modified. Graphical output for the Heatmaps, Treemaps,

Entropy/Frequency graphs and Hubert gamma values are generated with R. The python inter-

face to the WebLogo application is used for creation of the SeqLogos. VLTAPP uses an ANN

implementation provided by the AMORE package (Limas et al., 2007).
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3.1.2 Client Side

Although the output is generated on the server side, some browser-based code need to be ex-

ecuted to provide an appropriate layout of Figures, Tables etc. Web browsers use JavaScript

as a programming language to manipulate the documents they display. The JQuery pack-

age [http://www.jquery.com] was used as the JavaScript framework to accomplish most of the

JavaScripts routines needed for the client interface. Layout and aesthetics are handled by the

JQueryUI framework [http://www.jqueryui.com]. This library provides tools to design an easier

accessible Graphical User Interface (GUI) on the browser side, which is traditionally a difficult

task. The DataTables packages [http://www.datatables.net] was used to enhance the Tables that

display output from various analyses. This package not only optimally render the Tables (that

can be very large), but also provided filtering routines if the user decided to look for specific en-

tries. For instance, when the epitope prediction output is generated, the user might want to view

a specific epitope and can filter the rows according to that epitope’s sequence. The DataTables

package also allow for the saving of tabular data, making further use of the predictions outside

the context of Fortuna a lot easier. Indeed, the data in Table 2.11 on page 50 was obtained by

directly saving the data from the “Epitope Info” analysis Table in the browser.

In order not to intrude on the user while performing different analyses, the generation of

dynamic content (i.e. output) is handled via AJAX requests. AJAX allows the web browser to

communicate with the server in a ‘behind the scenes’ fashion allowing multiple analyses to be

performed simultaneously and avoiding content-loss that is associated with refreshing or changing

the page of the web browser.

3.2 Example of Interface and use of Fortuna

To illustrate the interface and use of Fortuna, the process of submitting the sequences an param-

eters to examples of analyses will be shown. However, to avoid redundancy, not every conceivable

analysis will be performed. The demonstration will be limited to:

1. Registration

2. Starting a new job

3. Job overview

4. Clustering analysis

5. Comparing sets of sequences

This will only show a fraction of the use of Fortuna, but later in the text when analyses will

be performed on HIV and Influenza, the use of all the tools will be discussed in more detail. The
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Figure 3.3: Registration Screen

examples that follow only demonstrate the use and to a certain degree, the technologies used to

make Fortuna possible.

3.2.1 Registration

To submit a job and access any of the tools, a user needs to register. This ensures that previously

submitted jobs can be retrieved in an organised manner, i.e. not jumbled with other users’ jobs.

A more important point, is that it ensures a reasonable level of privacy. Only the owner of a

job can access it at any given time. Fortuna uses NetMHC under an academic license, meaning

that the user has to agree to certain terms and conditions in order to register, most notably

that Fortuna may not be used for commercial purposes. The registration screen is shown in

Figure 3.3.

3.2.2 Starting a New Job

A new job is started at the screen shown in Figure 3.4 on the following page. Each user can

only view his or her jobs and this provides a level of organisation as well as privacy. It should

be noted that some of the options like the HLA allotypes and lengths of the MHC ligands

are set parameters and cannot be changed after the job has been submitted. After submitting

the sequences, the user is shown a confirmation dialog, giving information on the validity of

the uploaded sequences. Non-standard amino-acid or arbritrary characters within the sequence

portion of a FASTA entry are not tolerated and these sequences are automatically omitted from

predictions. The files are also tested if they are, indeed, valid FASTA files. If this condition is

not met or if all the sequences within the file contains ‘invalid’ characters, the job cannot be

started.
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(a) Defining a new Job

(b) The completed jobs in a list

Figure 3.4: In (a) a new job is defined by uploading or entering sequences defined and setting HLA, Proteasomal
and TAP parameters. Different predictable allotypes can be selected as well as the chosen MHC ligand
length(s). The default proteasomal threshold is also set here as well as the maximum size of the TAP lengths.
After the parameters are set, the job can be submitted. In (b) a list of completed jobs are shown.
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Figure 3.5: The overview of the completed job shows what HLA allotype ligands have been predicted as well
as the lengths concerned. Other parameters like the Proteasomal threshold value and maximum TAP ligand
length is shown. The aligned sequences are also displayed. At the top of the image, the various tabs can be
seen that are used to access the analysis tools. The content is dynamically shown, meaning that setting the
parameters on a specific page will not be changed if navigating to other analysis tools.

3.2.3 Overview of the Submitted Job

After the completion of the alignment, predictions and BLAST analysis of the input job, it can

be viewed as shown in Figure 3.5. The overview mainly shows the parameters used for prediction

analyses as well as the predictions made for the sequences. With modified code of the Sequence

Manipulation Suite version 2, the aligned version of the sequences are also displayed (Stothard,

2000). From this window, all the analysis tools can be accessed.

3.2.4 Example of Cluster Analysis

One of the design goals of Fortuna is to make the analysis tools as flexible as possible. In the

extreme case, defining the options of clustering is a good example of this. In Figure 3.6 on

page 72 the process of selecting clustering options and then the output produced is shown. As

described, multiple sets of options can be passed to the server for analysis. The sets of parameters

are handled separately when clustering analysis is performed on the server. For each parameter

set, a distance matrix is produced and these matrices are added together to produce the final

distance matrix. The rationale behind the option to separate the parameters is mainly due to
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accuracy differences in accuracy between neural networks for their associated HLA allotypes.

MHC ligand predictors tend to have different optimal IC50 cutoff values (though biologically,

the viable IC50 value remains virtually the same). The user thus has the option to give different

HLA predictions different threhsold values if epitopes of different HLA allotypes are analyzed

simultaneously.

The output consists of a Heatmap, banner plot, dendrograms and grouping information. The

Heatmap shows the general clustering pattern of the sequences. The banner plot is a visual

representation of he clustering and essentially show how appropriate agglomerative clustering

is for immunological distances between the sequences. The dendrograms show how the rows

and columns of the heatmap cluster together and exist merely as a reference. The grouping

information tab shows the Dunn-indeces for differnent group numbers of both the rows and the

columns.

For further analysis of the difference between sets of sequences, the “Compare Sequeces”

tool is used. Sets of sequences that can be seen to be immunologically close or distant on the

heatmap can be selected from the side columns and the sequence numbers copied to the “Compare

Sequences” tool, which will be discussed next.

3.2.5 Comparing Sequences

Any sequence or set of sequences can be compared based on their CTL epitope profile. The

interface and part of the output is shown in Figure 3.7 on page 73. What should be noted

from this figure, is the HLA allotype, ligand length as well as the thresholds for MHC affinity,

proteasomal cleavage and TAP affinity thresholds. These parameters can be tweaked in all the

analyses. The user may, in conjunction to the mandatory MHC affinity threshold, choose other

steps in the pathway deemed relevant to the fate of the potential MHC ligand. A ligand with

appropriate affinity may in its original protein never be cut at the correct C-terminal end or

be transported via TAP to the ER. In the context of the “Compare Sequences” analysis, the

parameters can be set according to the parameters used in clustering. Note, however, that

only one parameter set can be compared at a time and that this analysis is not intended to

compare sequences that have been clustered based on different thresholds and weights. Still,

simultaneous comparison of multiple HLA allotype ligands can be performed. The user also

chooses the weights to be used comparing the sequences together. The last option is the sets

of sequences to be compared. The output is obtained and displayed in the bottom half of the

analysis screen where the user can examine the existence of particular potential epitopes in the

different sequence sets or, alternatively, examine the sets of different epitopes that occur for each

allotype at a particular position. A more detailed explanation of the output has been explained
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(a) Setting Clustering Options

(b) Clustering Output

Figure 3.6: In (a) the clustering parameters are set. Different scores from the pathway can be selected to
serve as weights for predicted epitopes. Thresholds can also be set. It is important to notice that multiple
sets of parameters can be passed. In this example, two HLA allotypes are chosen individually and added to
the total options. The bottom half of (a) shows the sequence list. This table allows the user to select desired
sequences for cluster analysis as well as providing filtering options if a specific set of sequences are required. In
(b) the output is shown. The results are also arranged in tabs, with the main display concerning the heatmap,
and the rest of the tabs dealing with visual representation of clustering quality and grouping information. The
numbers to the left of the heatmap are the index numbers of the sequences as arranged in the rows/columns
of the cluster. Selected sequences can be copied to another analysis tool, “Compare Sequences”.
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Figure 3.7: Comparing Sequences example

in Figure 2.16 on page 62.

3.3 Conclusion

In this chapter the design and implementation of the Web-acessible tool, Fortuna was discussed.

It was illustrated how freely available software packages can be used to create sophisticated

interfaces to acess the prediction, analysis and visualization methods used by Fortuna. In the

following chapter, it will be shown how Fortuna can be used to perform real-world prediction

analysis of CTL epitopes, using Influenza A and HIV as pathogens for investigation.
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4
Results

The main aim of this project is to provide an accessible tool to aid in the study of potential

CTL epitopes of any arbitrary protein. To achieve this goal, Fortuna holistically integrates

many different prediction tools concerning the Class I restricted antigen presentation pathway

in conjunction with subsequent analylis methods. This chapter will focus on the analysis of

CTL epitopes of two pathogens, HIV and Influenza A. Infection of any of these two organisms

has significant impact on the human population and virulence of both have been shown to

be attenuated by CTL responses. By analyzing the CTL epitope repertoire of both, insight

can be attained into the general CTL response escape mutations. Furthermore, by using the

clustering procedure described in Section 2.3.4 on page 48 an attempt will be made to group

different sets of protein sequences together based on predicted similar CTL epitope profiles.

Although only forming a part of the epitope prediction and analysis, the predictive performance

result of VLTAPP will be discussed in detail and compared to other predictors. Beyond merely

creating VLTAPP for prediction purposes, the author would like to enlighten the reader to

the construction and evaluation of a typical sequence-based ligand predictor and subsequent

physiochemical properties that can be obtained by investigating the predictor itself. The results

of VLTAPP will be discussed first followed by HIV and Influenza analyses.

4.1 Performance of VLTAPP

This section show the performance analysis results of VLTAPP. The results aim to show how

VLTAPP performs in a discrete classification and precision of ligand IC50 values. The perfor-

mance analyses are divided into two parts, namely “Single Performance Measurements” in Section

4.1.1 and “Fragmented Predictor Performance Plots” in Section 4.1.1. The former describes the

performance of VLTAPP in the context of the entire data set while the latter shows how well

the predictor performs with the inclusion of increasin amounts of data. This measurement is

necessary when considering improving the predictor with inclusion of possible data that may

be available in the fututre. Lastly in Section 4.1.2 it will be shown how certain physiochemical
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Table 4.1: List of Performance Assessments done on VLTAPP

Measurement Description
Area of the Receiver Operatic
Characteristic Curve (AROC)

Overall performance in terms of descriminating
between classes at various thresholds. Ranges
from [0..1] with 1 denoting a perfect prediction.

Matthew’s Correlation Coeff-
cient (MCC)

Another measurement of the classification per-
formance. Ranges from [-1..1] with 1 being a
perfect prediction.

Residual Error Measurement of the quantitative performance.
A value of 0 denotes a perfect prediction.

Regression analysis A linear model is fitted between the predicted
and test data. The resultant R2 value is used
as a performance measurement and ranges from
[0..1] with 1 being a perfect prediction.

Correlation Measurement of the linear trend between train-
ing and testing data. Ranges from [0..1] with 1
being a perfect linear correlation.

properties of the TAP dimer binding sites can be elucidated by analyzing the weights of the

trained neural network.

4.1.1 Performance Measurements

Extensive evaluation was performed on the predictor. The limited data set does not allow for

a perfect evaluation, nevertheless the measurements are comparible to those that exist in other

studies. Both classification performance and regression performance was analysed. Performance

measurements were split into two groups, namely for the entire set and concerning only the

samples of longer than nine amino acids. Most other studies focus on the accuracy of a given

predictor for 9-mer peptides, but as stated before, most ligands encountered by TAP are not

9-mers long. Performance measurements are listed in Table 4.1.

For single performance measurements on the overall set, a 10-fold cross validation was per-

formed. Briefly, the training set is divided into ten subsets. With each training of the ANN,

one of the ten subsets are removed and the performance of the resultant network is tested on it.

This is done for each of the subsets and the results are ultimately agglomerated to make a single

performance measurement. For the second group (longer than nine amino acids) a 72-fold cross

validation was performed as fluctuations in performance with resampling is high for small sets.

Assessment of the predictor’s performance with the inclusion of more data is in addition to the

single performance measurement an effective way to approximate possible future improvements

in prediction by inclusion of more data. This has been illustrated in literature and is referred to

as Fragmented Prediction Performance Plots (Carugo, 2007).

The procedure starts with randomly shuffling the training set and reserving a predefined
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Table 4.2: VLTAPP Single performance measurement for all entries.

Measurement Value Notes
Correlation (Spearman) 0.83 Values for Pearson and Kendall are 0.83 and 0.65

respectively
Linear Regression R2 0.685 The gradient for the regression line is 0.870
AROC Value 0.942
Matthew’s Correlation Coeffi-
cient

0.773 The value was measured at the 2100nM thresh-
old. A maximum MCC value of 0.784 was ob-
served at a threshold of 2800nM.

Residual Error 1.62 Measured as the average difference between pre-
dicted and experimental values

portion of the data as testing data. The training set starts at a defined amount and increases

with every iteration. Fluctuation of performance measurements is expected and observed so the

procedure is repeated numerous times, randomly sampling the set with each cycle. With the

resultant prediction versus test values, performance measurements are made. The plots for the

results are then constructed by taking the average result per training set size. The fraction of

training data ranged from 10% to 95% of the data with 50 increasing steps and resampling 30

times.

Only single performance measurements were made as FPPPs would produce results that are

too convoluted. The result of performance measurements are shown and discussed in Section 4.1

on page 74. Although not shown here, it was found that the network performed optimal with

approximately 300 training cycles, using six hidden neurons.

Single Performance Measurements

The results of the single performance measurements are summarised in Tables 4.2 and 4.3 for

all samples and those of ligands longer than nine amino acids respectively. The first set of

performances to be analysed will be for the total set. Correlation is relatively high at 0.83 and

comparable to 0.88 in a study by Bhasin et al (2003). Regression analysis revealed an R-squared

value of 0.685 which is higher than the 0.614 value reported for method by Peters. The AROC

value of 0.94 is high, indicating that approximately 94% of the predictions made as binder or

non-binder would be correct. This value is lower than the 0.96 reported for a method by Zhang.

Although no comparison to another study can be made, the Matthew’s Correlation Coeffcient

of 0.773 is high for classification. To the author’s knowledge, no residual error was measured

for any other predictor in the literature. The value of 1.62 for a set with values approximately

normally distributed between 3.85 and 23.61 is moderately good.

It is immediately clear that the performance of VLTAPP for predicting log2IC50 values of

longer ligands is lower. This is not surprising, given the little amount of data available for
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Table 4.3: VLTAPP Single performance measurement for Ligands longer than nine amino acids.

Measurement Value Notes
Correlation (Spearman) 0.72 Values for Pearson and Kendall are 0.70 and 0.52

respectively
Linear Regression R2 0.481 The gradient for the regression line is 0.722
AROC Value 0.942
Matthew’s Correlation Coeffi-
cient

0.498 The value was measured at the 2100nM thresh-
old. A maximum MCC value of 0.717 was ob-
served at a threshold of 16500nM.

Residual Error 2.27 Measured as the average difference between pre-
dicted and experimental values

the longer ligands. However, overall classification performance seems to be high and even on

par with 9-mers with an AROC value of 0.942. On the other hand, the Matthew’s Correlation

Coefficient of 0.659 is lower than for the overall set. A possible reason for this is the severely

skewed distribution of log2IC50 values for longer peptides. Only 29% of the longer ligands are

binders. The MCC value reaches its peak at approximately the median of the set, with a value of

0.784. The linear model estimated during both regression analyses indicate that VLTAPP has a

tendency to over-estimate IC50 values owing to the fact that both linear models have gradients

of less than 1. This over-estimation is marginally higher in the prediction of longer peptides.

Visual representation of the ROC curves are in Figure 4.1 on page 80 .

The only comparison to other tools that can be made is on the regression level with Peters’

method. The R-squared value for regression for VLTAPP is 0.56 which is higher than the 0.48

reported for Peters’ method. Having said that, it would be erroneous to immediately conclude

that VLTAPP’s performance is the superior, since the training sets were different. The author

had more examples of longer TAP ligands. While this should inherently increase the performance

of VLTAPP over Peters’ method, it should be noted the distribution of lengths in the set were

also different. A summary of the differences can be observed in Table 4.4 on the following page.

Although the Peters’ method performed well, most of the test predictions were made on ligands

only one or two amino acids longer than a 9-mer. Only 16% of the Peters set was longer than

11 amino acids compared to 50% for the VLTAPP set.

Fragmented Predictor Performance Plots of VLTAPP

Results for this method are shown in Figure 4.2 on page 81. From all the Figures, it is evident

that there is a dramatic increase in performance up to approximately 50 samples. Performance

then almost plateaus out, however not completely. It is not hard to deduce why the dramatic

increases in performance occurs mostly when increasing the size of initially small samples; the

input parameters are good enough for the ANN to quickly estimate the appropriate weights of
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the nodes. Having said that, other factors may influence the performance:

1. Inappropriate input parameters

2. Insufficient dataset diversity

3. Experimental error

Since a relatively good performance is achieved with small amount of data, the author does

not think the input parameters are inappropriate. It is possible the dataset is not diverse enough,

given there are only 343 samples. If this is true, increasing the amount of data for ANN training

from this set will have no significant improvement on the ANN’s performance. Performance

measurements could also be influenced by this as testing on data virtually the same as the training

set is irrelevant. Still, the author concludes that the plateau is largely due to experimental error.

Extrapolating IC50 for values beyond the functional parameters will have a significant effect on

the accuracy of the measurements. This is also seen in MHC ligand affinity experiments where a

lot of the entries have a value like < 1 nM. To explain, the difference between 2000 nM and 2050

nM is marginal. The one is only 1.025 times larger than the other. On the other hand, the fold

difference between 0.5 nM and 1.0 nM is 2.0. In VLTAPP terms, this means one log2 difference.

VLTAPP’s performance increase does not flatten entirely and a small upward trent can still

be observed at the extreme upper ends of training sample size. The nature of the increase is too

marginal on this scale to make appropriate extrapolations. Various extrapolation methods were

tested and most seem to get near perfect prediction at around 1500 samples, which is obviously

incorrect. The predictors performance will at best, with infinite amount of samples be at the

mercy of the original experimental errors.

Inherited from experimental is the difference in measurements between two experiments.

Taking MHC ligand affinity measurements as an example, Peters et al. (2006) note that the Buus

and Sette datasets had a correlation of 0.65. With larger sets, this lack of perfect correlation

Table 4.4: Comparison of Length Distribution of longer TAP ligands between VLTAPP and Peters’ set

Length of Peptide Number in Peters set Number in VLTAPP set
10 36 28
11 18 8
12 6 4
13 1 2
14 0 3
15 1 18
16 1 7
17 0 2
18 1 0

Total 64 72
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Table 4.5: Top End FPPP values vs Single Performance Measurements.

Measurement Single Performance FPPP Extrapolation (df=30)
AROC 0.942 0.927 0.938
MCC 0.773 0.729 0.758
R-Squared 0.685 0.649 0.692
Residual Error 1.62 1.74 1.55

does not seem to influence overall prediction when combining two sets much. For 343 samples,

the matter is quite different, especially considering the longer peptides for which only 72 are

available.

The prudence of resampling the FPPP tests is evident in the plots of Figure 4.2. To com-

pensate for any variance that may occur due to the small testing size of 34 for each resampling,

the predicted/test values at each sample size from each resampled set were agglomerated. This

procedure worked well, as can be seen from the Figures for AROC-, MCC and Linear Regression

R-squared measurements (Figures 4.2a, 4.2b and 4.2d). At very small sample sizes, the predic-

tion quality is virtually random, which is expected from training any predictor with little data.

The top end values reflect the single performance measurements well and are compared in Table

4.5. The smooth-spline function in R was also used to make extrapolations to 343 samples. In-

terestingly, predictions for classification performances were under-estimated while performances

for quantitative performances were over-estimated by this extrapolation method. This illustrates

clearly that more data is needed to make FPPP from which good extrapolations can be made.
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ROC Curve of VLTAPP for All Samples
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(a) ROC Curve for all samples

ROC Curve of VLTAPP for > 9-mers
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Figure 4.1: Comparison of VLTAPP ROC curves for all samples and those longer than 9-mers.
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Figure 4.2: FPPP analysis using for parameters on VLTAPP. The plots were constructed from measurements
of the agglomerated test data for each sample at a given sample size.
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4.1.2 Weight Analysis of VLTAPP Artificial Neural Network

As stated before, one of the purposes of constructing a ligand binding prediction tool is to

elucidate some of the relevant parameters, such as physiochemical properties that affect binding.

To achieve this, maximum and minimum values for each input node was fed into VLTAPP and

the resultant outputs tallied. The properties were then grouped based on position in the input

and a barplot was constructed as shown in Figure 4.3 on the following page. The sign of the

results were reversed, since the predictor estimates log2IC50 values and positive weights would

essentially mean a negative effect on binding. The plot depicts the total influence, or weight, of

each property at a given position. The bottom graph shows the total influence that changes at a

certain position has. The bottom graph shows the total log2 influence of amino acid substitutions

at a given position. The same applies for the average inputs and length. The result ties well with

previous investigation on the nature of the TAP-ligand motif. The first C-terminal residue has

by far the biggest influence on the score. As stated by Peters et al. (2003), the three N-terminal

residues do contribute significantly to the score. It should be noted that the residue at C-3 also

has significant weight on it’s own, averaging between the N-2 and N-3 residues. The C-2, C-4

and N-4 positions have the least amount of influence on the score, but still have a few log2 value

effect on it. The average properties for the entire peptde also has far less significant impact on

the output score when compared to C-1, N-1, N-2 and N-3 residues, but higher performance

values were obtained with inclusion of it. Even though the total effect of the average and length

inputs seem to contribute less to prediction than the other values, it is only because they consist

of less input parameters than the parameters for the terminal inputs; only six parameters are

used for the average values compared to nine for the terminal inputs. The top graph clearly

shows that the length parameter has a profound effect on the output score.

Looking closer at the weights in the top graph, very little contradictions are observed. For

instance, at the C-1 position, a high positive weight is given for basic amino acid residues while a

high negative weight is given for acidic amino acids. The opposite is true for positions C-2, C-4

and N-4 where generally opposing parameters have similar weights. These inputs are therefore

not as powerful as the rest of the parameters on output estimation and are also downweighed

during ANN training. For the specific influences of amino acids on binding, refer to Table 4.6 on

page 84.
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Figure 4.3: The two bar graphs above reveal the relative weights of the inputs for VLTAPP. Weights are
calculate based on the influence of the maximum allowed value for the given parameter minus the minimum
allowed value across all inputs. For instance, the maximum length of a peptide in the training set was 17,
which translates to an input value of log217 = 4.087. The top graph reveals the relative weights of the
properties at the position marked on the x-axis. The N and C letters indicate the terminal end of the peptide
and the numbers correspond to the position relative to its terminal. The Avg value is the average value for
a given property over the entire peptide. The Len value is the log2 length of the peptide. Properties and
their associated colours are indicated on the right. The bottom graph illustrates the total contribution of each
position to the predicted score. This is calculated by the absolute sums for each property at the given position.
The x-axis is labeled as in the top graph. Note that the colours do not correspond to the properties of the
top graph and merely exist to provide some clarity.
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Table 4.6: The table shows influence of amino acid substitutions on the predicted log2IC50 score when
substituted into a reference peptide, AAAAAAAAA. Preferred amino acids are those that produce top-end
scores and disfavoured amino acids are those producing scores at the lower end.

Amino Acid N-1 N-2 N-3 C-1
C -3.26 -0.93 -0.10 1.63
D -5.11 -2.16 -2.45 -5.26
E -4.53 -2.64 -2.82 -5.58
F -5.69 -2.79 1.14 2.48
G -3.59 -4.66 -3.02 -4.53
H -5.81 -2.95 0.02 0.02
I -1.17 1.50 1.20 1.89
K -2.77 -2.25 -1.04 0.74
L -1.12 1.35 1.04 1.59
M -1.76 1.53 0.96 1.22
N -6.16 -2.37 -2.01 -4.16
P -9.03 -9.01 -0.54 -0.89
Q -6.56 -1.93 -1.76 -3.85
R -2.85 -2.03 -0.25 2.58
S -2.58 -2.49 -1.88 -1.58
T -3.21 -1.94 -1.49 -1.08
V -3.53 0.37 0.49 -0.16
W -9.63 -1.83 0.73 1.85
Y -5.66 -0.99 1.79 4.15

Preferred AA I, L, M V, M, L, I H, L, M, V, W, Y C, F, H, I, K, L, M, R, W, Y
Disfavoured AA D,F, H, N, P, Q, W, Y G, P G, N D, E, G, N, Q
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CHAPTER 4. Results 4.2. Analysis of CTL Epitopes

4.2 Analysis of HIV-1 and Influenza A CTL epitopes

To assess the usefulness of Fortuna in predicting CTL epitopes, the epitope profiles for two

distinct viral pathogens were analyzed. Both pathogens harbour experimentally determined

CTL epitopes restricted to a variety of HLA allotypes. The crucial difference between the two

viruses, is genetic variability of the sequences containing CTL epitopes as well as the nature of

the infection itself. Influenza, being acute, does not remain in the host for too long before being

eliminated or causing the death of the host, meaning that mutations in the CTL regions have

little time to accumulate. HIV, being a chronic infection, has more opportunity for mutations

within the regions containing CTL epitopes for the particular host to occur. As such, the priority

of certain analyses on the two pathogens were different. For example, in Influenza A, clustering

of sequences is useful in determining seasonal flus with highly similar CTL epitope repertoire, or

conversely, grouping together sequences that are distant in terms of their CTL epitope repertoires.

For HIV, being the more genetically variable of the two pathogens, SeqLogos of potential epitpoes

could provide insight into regions within epitopes that promote CTL escape.

4.2.1 Methods

HIV-1 Analysis

Acquisition of Sequences and Parameter Setting The author decided to use HIV-1

Subtype C sequences from South African patients as test subject for analysis. The highest

incidence of HIV infection occurs in southern Africa and an overwhelmining majority of the

pathogens are of subtype C. The sequences were obtained from the LANL HIV Sequences

database (http://www.hiv.lanl.gov). The search interface allows for changing various search-

ing parameters. The parameters and choice by the author are shown in Table 4.7 on the following

page. The important criteria to note are inclusion of sequences that have HLA information of

the patient and whether the person is drug naïve. Knowing the HLA information of the patient

allow us to perform analysis on only sequences of patients with a particular HLA allotype, for

example, the sequences from patients with an HLA molecule of allotype A*0201. Secondly, the

internal structural proteins of HIV are partitioned into two groups, the gag group and the pol

group. Since proteins of the pol group, i.e. HIV protease, Reverse Transcriptase and Integrase as

well as the capsid protein of the gag group have drugs directed against them, it is therefore cru-

cial to choose sequences from patients naïve to the drug treatment so that resistance mutations

wihtin these regions do not interfere with mutations relevant to CTL escape. A similar reason is

given for the exclusion of the surface proteins, gp41 and gp120. Both are under immunological

pressure, but mainly due to escape from high affinity antibodies which most likely will interfere

with the CTL epitope profile.
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Table 4.7: Search Parameters for selecting HIV sequences

Parameter Choice
Organism HIV-1
Subtype C
Include only sequences with patient HLA in-
formation

Yes

Include only full-length sequences Yes
Genomic regions pol and gag
Include only sequences from drug naïve pa-
tients

Yes

Fortuna is designed to handle a very similar set of sequences and ideally, anaylsis of one

protein sequence. To circumvent this limitation of ‘one protein only’, the sequences of the

individual proteins of gag and pol were ligated with a 20-mer sequence of tryptophan (W). The

predictions needed to be altered, so that the ligated regions do not yield any incorrect MHC

ligands or proteasomal cleavage sites. The sequences were ligated as they appear in the gag and

pol regions with the gag proteins preceding the pol proteins. A total set of 147 sequences and

189 sequences for pol and gag respectively were obtained from LANL. The gag and pol sequences

with the same patient identification number and year in the FASTA title line were joined and

sequences containing non-standard amino acids were filtered out, leaving a final set of 125 gag-pol

sequences.

To determine which HLA allotypes predictions should be made for, the HLA allotypes em-

bedded in the FASTA line were tallied and a list of the top occuring HLA allotypes were made.

Concerning analysis of sequences, the sequences are from patients with HLA allotypes for which

most of the supertypes are known. NetMHC only has a limited set of HLA allotypes for which

ligands can be predicted. If the patient posesses an allotype that does not occur directly in the

list of predictable HLA allotypes, the representative of its supertype is chosen as a substitute

for MHC affinity prediction. In Table 4.8 on the next page, the frequency, supertype informa-

tion and choice of HLA Allotype for which predictions of the listed allotype will be made, is

shown. Where no direct match of HLA allotype occurs, the alternative HLA allotype for which

predictions will be made is underlined. The choice of alternative HLA allotype was made with

the aid of HLA supertype information obtained from the literature (Sidney et al., 2008). The

length of MHC ligands was chosen to be 9-11 amino acids. MHC threshold was set to 500 nM,

proteasomal threshold set to 0.8 and maximum length of TAP ligands chosen to be 18.

Analysis of Predictions performed on HIV Sequences Though this study is not focused

around evaluating the performances of prediction tools utilised, it is important to evaluate which
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Table 4.8: HLA Allotype Frequencies and Prediction Choice

HLA Allotype Count Supertype Predicted HLA Allotype
B*5802 35 B58 B*5801
A*6802 26 A2 A*6802
A*3001 25 A1/A3 A*3001
B*1510 25 B39 B*3901
B*4201 24 B7 B*3501
B*1503 24 B27 B*2705
A*02 23 A2 A*0201

A*2301 16 A24 A*2301
B*0801 14 B8 B*0801
A*0301 13 A3 A*0301
A*3002 11 A1 A*3001
B*5801 11 B58 B*5801
A*74 11 A3 A*0301
B*44 11 B44 B*4401

experimentally determined CTL epitopes can be predicted by using Fortuna. The Los Alamos

National Library provides a compendia of CTL epitopes defined for many HLA allotypes (Korber

et al., 2007). The compendium also provides a list of optimally defined epitopes. One of the

criteria for an ‘optimal epitope’ is that it exhibits a dominant response, meaning that escape mu-

tations in this epitope has a significantly negative effect on immune response. Optimal epitopes

for the HLA allotypes in Table 4.8 associated with supertypes A2, A3, B7 and B58 were noted

and searched for in the pathway prediction results performed on the previously mentioned HIV

protein sequences. Because different protein sequences were artificially joined, the positions of

the experimentally determined epitopes needed to be remapped. The sequences were searched

for sequences of optimally defined epitopes and the positions noted. In certain cases, the exact

sequence for a determined epitope did not occur in any of the testing HIV sequences. In this

event, the sequences were searched for the closest matching sequence word by comparing regions

within the sequences with the epitope sequence based on a BLOSUM35 matrix. If no reasonable

match could be found, the epitope was omitted from the study. All the prediction results were

tested for being positive at the positions where the epitopes occur. Though information such as

proteasomal cleavage and TAP affinity are not always noted for the listed epitopes, it is assumed

that these prediction results need at least be above a reasonable threshold to be considered as a

positive result.

Epitope Entropy and Frequency Analysis The epitopes predicted for HIV sequences

will be analyzed for both frequency and sequence entropy. The attempt here is to demonstrate

whether the mutations within a particular epitope are geared towards providing CTL escape

by lowering the affinity of the epitope to a TCR or whether the mutations abrogate the ability
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of the epitope seqeunce to bind to MHC. In the event of the former, mutations should occur

in non-anchor positions and possibly in positions that are relevant to MHC-epitope and TCR

interactions as noted by Frankild et al. (2008). For the latter, the mutations should occur more

in the terminal ends of the epitope and frequency of the epitope and its variants above the MHC

binding threshold sholud be lower. The SeqLogo’s generated by the Epitope/Frequency analysis

should also provide insight into which amino acids are ‘favoured’ by CTL escape mechanisms.

The author notes that the favouring of a certain amino acids does not necessarily only reflect

on CTL escape, but also maintaining viral fitness. Only the epitope sequence profiles of the

optimally defined epitopes will be considered.

Cluster Analysis of HIV Sequence Immunological Profiles It may seem senseless clus-

tering sequences of HIV from unrelated patients together, but clustering of sequences from pa-

tients with shared HLA allotypes could provide insight into patterns of escape mutations. Groups

of sequences with similar distances to other sequences likely share a similar immunological state

that could not necessarily be determined by direct phylogenetic analysis performed on aligned

sequences alone. By determining which groups are immunologically close/distant to each other

from the heatmap produced in cluster analysis, the in-depth comparison (by using the compare

sequences tool) could provide insights into the epitope sequences that are vulnerable to the effect

of mutations therein. The sets optimally defined epitopes for each HLA allotype will be anal-

ysed seperately and only one sequences containing the relevant HLA allotype. Using sequences

from patients that do not posess the required HLA allotype could lead to false conclusions, be-

cause either the epitope sequence remains conserved due to lack of immunological challenging or

mutations exist due to overlapping epitopes that are expressed by the patients HLA allotypes.

Parameters for the clustering procedure were set to the HLA allotype to be tested, lengths

of the ligands in question, position where the ligands occur, MHC threshold of 1000 nM. The

effects of using prediction results as weights was also tested by first clustering with the prediction

results as weights and then without. In all cases, the distance of a missing epitope was set to 0.3.

It should be noted that HLA allotypes that belong to the same supertype were tested together

for the purpose of increasing the sample size of the clustering procedure.

Self-Epitope Discovery To determine if there are potential self-epitopes within the HIV

sequences, all the predicted epitopes for the HLA allotypes listed were analysed and examined

for BLAST hits to human protein sequences. The reason for not limting the analysis to OTEs

was to test whether there are indeed potential epitopes that are not immunologically active due

to their similarity to ligands presented by cells in the human body. As stated by Frankild, it

is very likely to miss self-epitopes by using a BLOSUM matrix based comparison method, so
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it is expected that only a fraction of the epitopes predicted would be similar to self-epitopes,

if any. Epitopes with high self-similarity were tested for conservation as well as the frequency

of sequences containing the potential self-epitope of variants of it with sufficient MHC binding

affinity. The list of predicted self-epitopes will be compared with epitopes of the same or similar

sequence obtained in the literature based on immunogenicity.

Influenza A Analysis

Acquisition of Sequences The Los Alamos National Libratory also provides another site

dedicated to Flu research (http://www.flu.lanl.gov). The site contains a comprehensive list

of influenza sequences, both protein and nucleotide based. Since H1N1 and H3N2 are the more

common serotypes of Influenza A to infect humans, sequences from these two serotypes were

obtained. The search interface allows limiting the search to specific proteins. The search was

limited to all the proteins of Influenza A except the envelope proteins, Hemagluttanin and Neu-

ramidinase, based on similar reasons used for limiting HIV sequences. HA and NA are susceptible

to humoral immunity and mutations within these protein sequences to evade antibody responses

may occur in regions containing CTL epitopes and would give a wrong impression on the nature

of CTL escape mutations. The source of the sequences were set to anywhere in the world and

from any year. The resultant set of sequences are a mix of different protein sequences from

different genes. The sequences were grouped together based on the origin of the sequence as

per standard Influenza nomenclature, i.e. Virus Type/Geographic Origin/Strain Number/Year

of Infection (Virus Subtype). The sequence groups that do not contain all of the protein se-

quences PA, PB1, PB2, NS1, NS2, M1, M2 and NP were excluded. The sequences were joined

on the same principle as the HIV sequences, including a 20-mer tryptophan sequence between

the proteins. The final set contains 4402 sequences. Fortuna is not meant to handle more than

approximately 200 sequences at a time, so the final sequence set was trimmed by the following

procedure:

1. Isolate sequences for a specific Influenza A serotype

2. Extract sequences from different years with at most 3 sequences from a single year

This gave a represetible set of Influenza sequences for each serotype over years, some from as

far back as the 1930s. This procedure was not applied to the 2009 pandemic strain of H1N1, where

45 sequences were extracted. The H1N1 sequences from the pandemic were treated separately

from the other H1N1 sequences, meaning that the list sequences from non-2009 pandemic H1N1

isolates was generated using the same aformentioned criteria. The final list contains 236 sequences

and the breakdown is shown in Table 4.9.
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Table 4.9: Breakdown of Influenza A Sequence Set

Serotype Count
H1N1 (non-2009 pandemic) 74
H1N1 (2009 pandemic) 41
H3N2 80
H2N2 41
Total 236

Epitope Prediction Analysis The analysis of epitopes will be limited to only the HLA

A0201 allotype for which a comprehensive set of epitopes exist in the literature, i.e. MHC

affinity and immunogenicity have been described. A portion of the predicted epitopes were

tested against a list of known epitopes and the experimental values matched with prediction

results where available.

Entropy and Frequency Analysis Entropy and frequency analysis will be performed as

for HIV sequences. The difference here is that predicted epitopes that do not exist in the

literature will be scrutinise for amino acid substitutions. It is assumed that internal influenza

proteins, being mutationally inert when compared to HIV proteins, only acquire mutations when

sufficient pressure is applied. That is, in this case, from the CTL response. Similar to the

HIV CTL epitope entropy/frequency analysis, the analysis on influenza epitopes could provide

insight into the conservation of epitope sequence and whether mutations are partial towards

direct CTL escape by amino acid substitutions that attenuate MHC-peptide-TCR interactions

or by abrogating the ability of the epitope to bind to MHC.

Cluster Analysis To investigate how the different Influenza group together immunologically a

few factors need to be taken into account. Influenza A serotypes, being defined by Neuramidinase

and Haemagluttanin, may still share similar CTL epitopes borne from the internal proteins.

Clustering will be performed on the basis of epitopes for HLA A0201 and B5801, all of which

being representatives of HLA supertypes A2, B8 respectively. The motivation is that sufficient

literature is available for definition of epitopes restricted to these HLA allotypes. Clustering will

be performed in the context of epitopes obtained from the literature and compared to clustering

performed by using all predicted epitopes.

The disproportionate nature of 2009 Pandemic Inlfuenza sequences forced the author to

exclude these sequences from the initial study, since the UPGMA clustering procedure is likely

to cluster large groups of sequences together and insight could lost in terms of relationship of

2009 pandemic flu with strains from other years. As a sub-study, the 2009 pandemic flu sequences

will be tested amongst themselves to determine patterns of immune escape. The 2009 pandemic

flu sequences provided a unique opportunity to test numerous flu sequences that were collected
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in a comparitively short time. The clustering procedure was first performed on a naïve basis,

meaning all the predicted epitopes were considered for clustering, and then based on epitopes

found in the literature. This is to test the influence of possibly incorrectly predicted epitopes.

It should be noted that an appropriate criteria needs to be used to define the clusters iden-

tified. For Flu the dates when the sequences were obtained can be used, for instance, to see

any relationship with modern Flu strains with past strains. For HIV, the question is a little

more complex. The only criterium the author considered to aid in the definition of the clusters

would be the level of HIV in the blood of the patients. Althoug this criterium is sound in theory,

it should be noted that the level of HIV in the blood of patients does not necessarily directly

correlate with the CTL epitope repertoire.

4.2.2 Epitope Analysis Results

Pathway Prediction Results and Epitope Variants

When using prediction tools to analyse sequences for potential CTL epitopes, it is often surprising

how many hits are found. However, the very nature of the prediction tools employed will result

in many true positives and false negatives. It is already mentioned that epitopes defined in the

literature will be examined in context of their variants. Having said that, it is also important

to understand why the pathway prediction results cannot be used as is; meaning it is unwise

to assume predicted epitopes to be true if they have not been experimentally validated. The

pathway prediction results for both HIV and Influenza A were analysed in fairly the same manner.

The prediction scores for the literature defined epitopes were assimilated and are displayed in

various tables. The relation of the literature defined epitopes to the predicted epitopes were

also determined to illustrate how well the combination of current tools involved in the Class I

restricted antigen presentation pathway can determine immunodominant epitopes.

Central to the analysis of epitopes is determining where sequence variations occur. Sequence

variations close to the terminal ends generally have a profound effect on the binding affinity of

the epitope to MHC, whereas mutations more to the center have profound effects on interaction

of the pMHC complex to the TCR of the original epitope. Only the optimal epitope sequence

variants were considered. Considering the variants of all the predicted epitopes would be too

exhaustive. SeqLogos were used to represent both the predicted binder and non-binder variants

of an epitope, juxtaposed and placed in a table. Epitope variants of HIV are shown in Section

4.2.3.
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HIV Pathway Prediction Results

It has already been mentioned that protein products of gp160 (i.e. gp41 and gp120) are excluded

from analysis, because T-Cell epitope mutations may be affected by B-Cell escape mutations.

Beyond this, certain sequences that were originally planned to be included in the CTL epitope

analysis were excluded as well. Some of the sequences obtained from LANL contain wildcard

characters at certain positions and Fortuna does not accept sequences that contain non-standard

amino acid characters. Due to the fact that all the sequences from a patient are gramatically

ligated together, a whole set of potentially useful sequences may be excluded due to wildcard

characters existing in some of the included protein sequences. This is especially true for Vpu

that reduced the amount of legitimate sequences by a significant amount. Vpu is also a short

sequence and does not contain many optimal CTL epitopes. The exception to this exclusion rule

is sequences ending in a wildcard character, which was merely stripped from the sequence. Some

epitopes were not found as exact matches in the sequences due to HIV’s high mutability. When

no match to an epitope was found, the closest matching sequence was used as a representative.

In all subsequent analyses, the representative sequences were marked as being a non-match to

the original sequence.

Optimal HIV Epitope Pathway Predictions The prediction results including protea-

somal cleavage, TAP affinity, MHC affinity and immunogenicity were tested for the optimal

epitopes restricted to the HLA allotypes A*0201, A*0301 and B*5801. Prediction results for

the aforementioned epitopes are summarised in Table 4.11 on page 95. The thresholds used for

the different prediction tools were 0.1 for proteasomal cleavage, 2100nM for TAP prediction and

1000nM for MHC prediction. It should be noted that the allotype used for predictions of HLA

A*0201 restricted epitopes were made by using HLA*A212, because NetMHC failed to predict

appreciable IC50 values for HLA A*0201. The NetMHC predicted values are summarised in

Table 4.10 on page 94 and it is clear that that all predictions for HLA*A0201 epitopes are under

1000nM when using HLA*A0201. Epitopes for HLA*A6802 were also tested for binding affinity

under HLA*A02xx allotypes since they do belong to the same A2 supertype, but almost none

of the epitopes were predicted to be “cross binders”. This factor is important when considering

epitope variants across the sequences from patients with HLA allotypes that fall in the same

supertype. For the A*0301 and B*5801 restricted epitopes almost all the predictions fell within

appreciable value ranges. The prediction results shown in Table 4.11 on page 95 are shown in a

format that is both relative and absolute. TAP and Proteasomal cleavage scores are the log10

scores relative to the predefined threshold, i.e. the log10 value below the IC50 threshold for TAP

affinity and the log10 value above the threshold for proteasomal cleavage. The MHC score is

directly defined as the IC50 value in nM, while the score for POPI is the log10 value of the
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predicted spot forming units of the epitope. To be noted are the values in a colour other than

green. Red indicates scores that did not meet the required threshold. With regards to MHC

IC50 values, orange values are those above 500nM which is generally regarded as the cutoff point

and 1000nM, the leanient threshold decided upon by the author. It is expected that optimally

defined epitopes will have scores above the prediction thresholds and it can be assumed that red

scores are scores incorrectly predicted. This is especially apparent for POPI scores, where the

majority of the epitopes are predicted to have no or very little immunogenicity. The scores for

proteasomal cleavage and TAP affinity are mostly above the threshold levels, but it should be

mentioned that the proteasomal cleavage was set to a low level.

Optimal HIV Epitopes in Context of Other Predicted Epitopes

The data in Table 4.11 on page 95 is restricted to the optimally defined HIV epitopes restricted

to HLA allotypes A*0201 (A*212) A*0301 and B*5801. However, these are not the only epitopes

predicted. To assess the position of the optimally defined epitopes relavtive to other predicted

epitopes, a list of predicted epitopes using the same parameters as for the optimally defined

epitopes was obtained with the added condition that at least 30% of the sequences contained

an predicted epitope at a particular position. Both 9-mer and 10-mer epitopes were searched

for. The resultant list contains 230 predicted epitopes across all the previously mentioned HIV

proteins. The results are summarised in Table 4.14 on page 99. Only the top 30 predicted

epitopes (top half) along with the optimally defined epitopes are shown (bottom half). As is

evident, only one of the optimally defined epitopes were in the top 30, namely ILKEPVHGV which

is at a position of 25. The prediction scores are ranked according to the combination of the

Immunoproteasome score, Immunoproteasome produced TAP ligand affinity, MHC affinity and

immunogenicity, i.e. MIPTi. HIV is a chronic infection and it is assumed that cells that are

infected and immunogenic would be under the influence of IFN-γ Some of the predicted “Top

Tier” epitopes were indeed defined in the complete list of known HIV CTL epitopes, but in most

cases the research consensus (obtained from the summary available at the HIV LANL site) was

that the epitopes only elicited responses in a fraction of the patients. Other top epitopes were

not found in the literature and are assumed to either not exist as CTL epitopes or elicit an

insignificant immune response.
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Table 4.10: Predictions for many HLA Allotypes of superclass A2. The green, orange and maroon numbers
indicate predicted IC50 values at or below 500nM, between 500nM and 1000nM and above 1000nM
respectively. Peptides marked with + are those for which only a close match was found in the sequences and
those marked with ∗ are peptides for which no close match was found.

Peptide Restricted Allotype A0201 A0202 A0212 A6801 A6802 POPI
AIIRILQQL A*0201 897 30 74 33627 1950 0
ALVEICTEM∗ A*0201 29 12 98 34132 10625 0
FLGKIWPSYK+ A*0201 7226 1185 412 404 32949 0
ILKEPVHGV A*0201 372 77 3 38214 3425 2
LVGPTPVNI A*0201 4762 1407 661 36667 2172 3
PLTFGWCYKL A*0201 10985 2726 96 36869 20446 0
SLYNTVATL A*0201 163 109 4 20944 11158 0
VIYQYMDDL A*0201 695 287 18 24407 15903 0
VLEWRFDSRL A*0201 1456 2053 30 37165 17517 1
DTWAGVEAIIR A*6801 46073 35532 30557 32 23527 3
ITKGLGISYGR∗ A*6801 46892 26388 21530 21 23294 0
DTVLEEWNL+ A*6802 40752 20571 15937 14266 822 0
ETYGDTWTGV A*6802 4507 1081 22 1324 5 0
GAETFYVDGA A*6802 25224 5127 21252 38363 26467 0
ITLWQRPLV A*6802 799 10136 344 13409 2011 0
IVTRIVELL+ A*6802 1666 111 4762 8535 120 0
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Table 4.11: Below are the results of predictions performed on epitopes obtained from the literature and the
fragments from which they originate. The epitopes are grouped according to the HLA allotype to which they
are restricted. The Pc and Pi abbreviations indicate the threshold adjusted score for proteasomal prediction
on the C-terminal end for the constitutive and immunoproteasome respectively. The Tc and Ti values are the
averaged scores for TAP ligands that originate from predicted proteasomal fragments. MHCIC50 is the IC50
value of the ligand and POPI the predicted immunogenicity. All prediction scores are represented as log10

scores subtracted by the threshold score for that particular prediction and limited to 0.00. The the exception
being MHCIC50, which is given as raw IC50 values measured in nM. Epitope sequences marked with ‘+’
are sequences that closely resemble the original sequence in the literature, but for which no direct match was
found in the sequences.

Allotype Sequence Pc Tc Pi Ti MHCIC50 POPI MIPTc MIPTi
A0212 AIIRILQQL 1.16 0.66 1.31 0.71 74 0 4.48 4.81
A0212 FLGKIWPSQK+ 0.80 0.99 0.90 1.06 886 0 4.14 4.47
A0212 LVGPTPVNI 0.99 0.92 1.05 1.00 661 3 7.23 7.56
A0212 VIYQYMDDL 1.01 0.00 1.41 0.00 18 0 1.74 2.07
A0212 ILKEPVHGV 1.03 0.27 1.08 0.36 3 2 6.42 6.75
A0212 SLYNTVATL 1.17 0.24 1.70 0.18 4 0 4.39 4.72
A0212 PLTFGWCYKL 0.90 0.00 1.36 0.00 96 0 1.93 2.26
A0212 ALTEICTEM 0.79 0.00 0.77 0.00 140 2 2.85 3.18
A0212 VLKWRFDSSL∗ 1.16 0.82 1.47 0.83 14 1 6.76 7.09

A0301 KTKPPLPSVSK 0.68 0.74 0.90 0.77 30 0 4.66 4.99
A0301 AVDLSFFLK 0.42 0.39 0.67 0.42 89 0 2.78 3.11
A0301 AIFQSSMTK 0.67 0.39 0.60 0.51 11 3 6.93 7.26
A0301 QVPLRPMTYK 0.80 0.03 0.99 0.08 158 1 2.71 3.04
A0301 KIRLRPGGKKK 1.02 0.86 1.35 0.87 83 1 5.98 6.31
A0301 HMYISKKAK 0.68 0.77 0.96 0.79 37 0 4.70 5.03
A0301 RLRPGGKKKY+ 1.35 0.12 1.86 0.07 721 0 1.90 2.23
A0301 KIRLRPGGK 0.59 0.43 0.65 0.51 65 2 5.21 5.54
A0301 KLVDFRELNK 0.72 0.67 0.89 0.72 111 0 3.91 4.24
A0301 QIYPGIKVK 0.96 0.38 1.16 0.42 120 2 5.15 5.48
A0301 GIPHPAGLK 0.57 0.32 0.78 0.35 55 2 4.88 5.22
A0301 AVFIHNFKR 0.78 0.78 0.98 0.82 127 2 6.26 6.59

A0301 ALTEICTEMEK+ 0.51 0.37 0.59 0.45 391 2 4.14 4.47
A0301 KMRSAHTNDVK+ 0.66 0.41 0.79 0.47 136 2 4.89 5.22
A0301 AVDLSFFLK+ 0.42 0.50 0.67 0.53 89 0 3.14 3.47
A0301 RVKQWPLTEEK+ 0.53 0.00 0.74 0.00 254 0 0.60 0.93
A0301 KTKPPLPSVSK+ 0.68 0.47 0.90 0.50 30 0 3.77 4.10

B5801 TSTLQEQIGW 1.59 0.41 2.11 0.35 74 2 6.08 6.41
B5801 IAMESIVIW 1.58 0.00 1.97 0.00 10 0 2.00 2.33
B5801 RSLYNTVATLY 1.17 0.20 1.63 0.16 216 1 3.51 3.84
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Table 4.12: Below are the top 30 ranked predicted HIV epitopes along with the optimally defined epitopes.

Rank Sequence Count Pc Tc Pi Ti MHCIC50 POPI MIPTc MIPTi
1 KLVPVDPREV 55 0.77 0.95 0.97 0.98 9 2 7.96 8.29
2 EMMTACQGV 103 0.91 0.50 0.94 0.59 7 3 7.71 8.04
3 VASGYIEAEV 73 0.70 0.71 0.75 0.80 36 3 7.51 7.84
4 ELAENREIL 104 1.00 0.49 1.50 0.44 22 3 7.29 7.62
5 HLKTAVQMAV 101 0.78 0.67 0.97 0.71 6 2 7.22 7.55
6 KLAGRWPVKV 100 0.75 0.53 0.87 0.59 3 2 7.04 7.37
7 IVTDSQYAL 100 1.11 0.48 1.60 0.43 71 3 6.84 7.18
8 SLVKHHMYI 56 0.83 0.53 1.12 0.55 6 2 6.82 7.15
9 VLDVGDAYF 106 0.88 0.60 1.39 0.54 169 3 6.64 6.97

10 GIWQLDCTHL 100 1.09 0.76 1.26 0.81 117 2 6.57 6.90
11 QLPEKDSWTV 63 0.95 0.27 1.12 0.32 3 2 6.45 6.78
12 VLDVGDAYFS 105 0.71 0.65 1.01 0.66 330 3 6.35 6.68
13 KLLWKGEGA 103 0.89 0.59 0.94 0.68 43 2 6.22 6.55
14 RLRRYSTQV 44 0.91 0.85 0.90 0.95 4 0 6.18 6.51
15 GLQRGWEAL 47 1.15 0.43 1.63 0.39 4 1 5.98 6.31
16 VIQDNSDIKV 91 0.70 0.68 0.94 0.71 10 1 5.97 6.30
17 QLGIPHPAGL 105 1.14 0.46 1.39 0.48 50 2 5.95 6.29
18 LLWKGEGAVV 104 0.90 0.43 0.87 0.54 2 1 5.94 6.27
19 ALNPGLLET 90 0.86 0.96 0.98 1.03 14 0 5.92 6.25
20 KLVSSGIRKV 70 0.81 0.50 0.57 0.68 39 2 5.90 6.23
21 KVGSLQYLAL 101 1.09 0.75 1.59 0.70 493 2 5.88 6.22
22 RMRIRTWNSL 55 0.98 0.86 1.48 0.80 89 1 5.88 6.21
23 ILKEPVHGV 86 1.03 0.10 1.08 0.19 3 2 5.86 6.19
24 YMDDLYVGS 102 0.87 0.51 0.96 0.58 5 1 5.86 6.19
26 SLCLFSYHRL 36 1.23 0.33 1.54 0.34 37 2 5.76 6.09
27 RTQDFWEVQL 101 1.19 0.53 1.59 0.51 196 2 5.67 6.00
28 LVSSGIRKV 70 0.81 0.50 0.57 0.68 69 2 5.66 5.99
29 QIYPGIKVRQ 38 0.6 0.72 0.62 0.81 261 2 5.59 5.92
30 AEWDRLHPV 73 0.62 0.53 0.82 0.57 62 2 5.58 5.91

25 ILKEPVHGV 86 1.03 0.10 1.08 0.19 3 2 5.86 6.19
39 LVGPTPVNI 93 0.99 0.35 1.05 0.43 661 3 5.34 5.67
53 VLKWRFDSSL 1 1.16 0.28 1.47 0.29 14 1 4.97 5.30
55 ALTEICTEM 2 0.79 0.38 0.77 0.49 140 2 4.91 5.24
62 SLYNTVATL 58 1.17 0.38 1.70 0.32 4 0 4.86 5.19

112 VIYQYMDDL 105 1.01 0.36 1.41 0.34 18 0 3.96 4.29
141 PLTFGWCYKL 28 0.90 0.49 1.36 0.45 96 0 3.55 3.88
159 AIIRILQQL 26 1.16 0.31 1.31 0.37 74 0 3.33 3.66
223 FLGRIWPSHK 7 0.82 0.27 0.90 0.34 772 0 1.82 2.15
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Influenza Pathway Prediction Results

All of the preselected protein sequences for Influenza were included in the pathway analysis and

none had to be removed.

Optimal Influenza Epitopes The pathway prediction results for Influenza epitopes re-

stricted to the HLA*A0201, HLA*A1101, HLA*B0702 and HLA*B4002 are listed in Table 4.13

on the following page. Again, it can be observed that the least accurate results are found in

immunogenicity prediction. Overall, the results for the other predictions are reasonable, i.e. the

values represent optimal epitopes. The epitopes are displayed in the same way as the HIV epi-

topes in Table 4.11 on page 95. All the optimal epitopes could be predicted by their respective

HLA allotypes to which they are restricted. Therefore, an HLA prediction “substitute” as was

needed for certain HLA*A0201 restricted epitopes of HIV is not necessary for any of the Influenza

epitopes.

Optimal Epitopes in the Context of other Predicted Epitopes The top 30 predicted

HLA*A0201 restricted epitopes are listed in Table 4.13 on the following page. Five out of eighteen

of the optimal epitopes from the literature are included in the top 30 results and twelve fall in the

upper half of the 180 predicted epitopes. The results are significantly better for Influenza than

HIV epitopes. Interestingly, according to the Immune Epitope Database and Analysis Resource

(http://www.immuneepitope.org), the 2nd best predicted epitope ILGFVFTLTV is elsewhere de-

fined in the literature as immunogenic, although not listed in the source the author considered.

However, the fourth top predicted epitope, GMITQFESL was negative in eliciting an immune re-

sponse, although it was shown to bind to HLA*A0201.
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Table 4.13: Below are predicted values for FLU CTL epitopes from the literature. The results are expressed
in the same way as in Table 4.11.

Allotype Sequence Pc Tc Pi Ti MHCIC50 POPI

A0201 GILGFVFTL 0.34 0.00 0.87 0.00 18 3
A0201 CLPACVYGL 0.50 0.99 1.02 0.91 61 2
A0201 FQGRGVFEL 0.53 0.98 1.07 0.89 78 3
A0201 NMLSTVLGV 0.21 0.77 0.37 0.85 10 0
A0201 FMYSDFHFI 0.20 0.85 0.53 0.85 2 0
A0201 FQVDCFLWHV 0.21 0.77 0.32 0.87 9 0

A1101 ASCMGLIYNR 0.19 0.00 0.67 0.00 17 2
A1101 RLFFKCIYRR 0.05 1.19 0.21 1.26 93 0
A1101 SVQPAFSVQR 0.30 1.08 0.62 1.09 30 3
A1101 SVQRNLPFER 0.25 0.83 0.63 0.80 18 3
A1101 KLVGINMSKK 0.00 0.00 0.04 0.13 63 2
A1101 GTFEFTSFFY 0.62 0.67 0.85 0.71 9 0
A1101 SFSFGGFTFK 0.00 0.81 0.23 0.86 32 2
A1101 VLRGFLILGK 0.00 0.00 0.01 0.14 214 0
A1101 KFLPDLYDYK 0.00 0.00 0.20 0.06 393 0

B0702 LPFDRTTVM 0.48 0.00 0.49 0.00 8 3
B0702 SPIVPSFDM 0.28 1.06 0.27 1.16 230 0
B0702 QPEWFRNVL 0.52 0.75 1.02 0.70 27 2
B0702 QPEWFRNIL 0.41 0.78 0.99 0.70 58 2

B4002 TEVETYVLSI 0.15 0.00 0.27 0.02 293 1
B4002 SEQAAEAMEV 0.22 1.08 0.51 1.09 612 0
B4002 GERQNANEI 0.12 0.87 0.46 0.87 602 0
B4002 QEIRTFSFQL 0.36 0.85 0.42 0.93 479 2
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Table 4.14: Below are the top 30 ranked predicted Flu epitopes along with the optimally defined epitopes.

Rank Sequence Count Pc Tc Pi Ti MHCIC50 POPI MIPTc MIPTi
2 ILGFVFTLTV 235 0.82 0.72 0.91 0.79 56 3 7.17 7.5
4 GMITQFESL 185 1.09 0.65 1.6 0.6 70 3 7.11 7.44
5 YMFESKSMKL 117 1.03 0.67 1.51 0.63 9 2 7 7.33
6 MQFSSLTVNV 230 0.92 0.52 0.94 0.62 28 3 6.91 7.24
7 KIYKTYFEKV 87 0.83 0.78 1.08 0.8 20 2 6.81 7.14
8 GQMSRPMFL 75 1.16 0.63 1.68 0.57 150 3 6.78 7.11
9 FINEQGESIV 91 0.72 0.75 0.75 0.84 145 3 6.76 7.09

10 FVANFSMEL 236 0.89 0.33 1.47 0.26 20 3 6.39 6.72
12 LLQNSQVYSL 129 0.98 0.61 1.28 0.62 24 2 6.32 6.65
13 RVMVSPLAV 199 0.88 0.59 0.78 0.72 203 3 6.24 6.57
15 RQMVATTNPL 71 0.79 0.58 1.04 0.6 212 3 6.1 6.43
16 FSMELPSFGV 235 0.9 0.32 0.97 0.4 37 3 6.09 6.42
17 MMWEINGPES 227 0.88 0.81 0.88 0.91 187 2 5.99 6.32
19 GLKDDLLENL 143 1.07 0.4 1.58 0.35 156 3 5.91 6.24
20 ILTSESQLTI 188 0.84 0.45 0.94 0.52 143 3 5.88 6.22
21 KLSDYEGRL 139 1.08 0.63 1.29 0.67 113 2 5.84 6.17
22 RLNKRSYLI 73 0.77 0.74 1.19 0.71 143 2 5.77 6.1
23 QMSRPMFLYV 75 0.99 0.45 1.27 0.47 33 2 5.68 6.01
24 VIFDRLETL 127 1.14 0.47 1.5 0.46 54 2 5.65 5.98
25 FVSHKEIESV 185 0.91 0.81 1.26 0.8 49 1 5.61 5.95
26 WLIEEVRHRL 124 1.06 0.29 1.3 0.32 145 3 5.57 5.9
27 SLPGHTNEDV 62 0.74 0.47 0.99 0.49 270 3 5.57 5.9
28 AQDVIMEVV 236 0.87 0.74 1.14 0.75 301 2 5.55 5.88
29 GISSMVEAMV 225 0.97 0.37 1.06 0.44 230 3 5.53 5.86
30 ILVRGNSPV 229 0.7 0.46 0.74 0.54 300 3 5.45 5.78

1 GMFNMLSTV 236 0.82 0.57 0.73 0.7 11 3 7.39 7.72
3 RMQFSSLTV 230 0.89 0.67 0.99 0.74 48 3 7.15 7.48

11 GILGFVFTL 235 1.04 0.26 1.57 0.2 18 3 6.37 6.7
14 CLPACVYGL 46 1.2 0.63 1.72 0.57 61 2 6.21 6.54
18 FQGRGVFEL 156 1.23 0.28 1.77 0.22 78 3 5.97 6.3
38 FMYSDFHFI 236 0.9 0.57 1.23 0.57 2 0 5.12 5.45
51 FQVDCFLWHV 146 0.91 0.6 1.02 0.67 9 0 4.65 4.98
59 LLMDALKLSI 209 0.81 0.53 1.11 0.54 7 0 4.46 4.79
62 RLIDFLKDV 236 0.85 0.48 1.18 0.48 56 1 4.41 4.74
74 NMLSTVLGV 236 0.91 0.49 1.07 0.54 10 0 4.24 4.57
77 ALLKHRFEI 236 0.71 0.51 0.72 0.6 80 1 4.19 4.52
99 SMIEAESSV 212 0.79 0.45 0.77 0.55 18 0 3.74 4.07

115 NLYNIRNLHI 234 0.97 0.06 1.21 0.08 239 2 3.48 3.81
121 MLLRSAIGQV 72 0.96 0.45 1.04 0.53 65 0 3.36 3.69
127 FLEESHPGI 231 0.88 0.34 1.05 0.38 22 0 3.35 3.68
150 RLIDFLKDVM 197 0.81 0.35 0.81 0.45 462 1 3.02 3.35
165 WMMAMKYPI 194 0.6 0.19 0.92 0.2 16 0 2.74 3.07
180 CLLQSLQQI 236 0.83 0.34 0.92 0.41 307 0 2.18 2.51
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4.2.3 Variants of Epitopes

Variants of HIV CTL Epitopes

Although many sequences are available to test for sequence variants of the epitopes, only the

sequences from patients to which the optimal defined epitopes are restricted to were considered

for determining sequence variants. The epitopes and respective variants for HLA*A0201 are

listed in Table 4.15 and HLA*B5801 in Table 4.16. The Tables show the epitope sequence form

the literature, the frequency of occurence within patients with the appropriate HLA alltoype,

the averaged entropy over the length of the sequence, the sequence variants and finally sequence

logos representing the sequences that are predicted to be presented on MHC and those that

aren’t. It is immediately apparent that mutations within most of the epitope sequences for both

HLA A*0201 and B*05801 are confined to specific positions. This is in accordance with the

literature where the impact of mutations within the SLYNTVATL epitope (hereafter referred to as

SL9)on immunogenicity was assessed. Indeed, all the variants listed in Table 4.15 correspond

to those reported by the researchers. It should be noted that SL9 also exists within an epitope

presented by HLA B*5801, namely RSLYNTVATLY (hereafter referred to as RL11). Interestingly

the mutations of SL9 correspond with the mutations of RL11. This is not too surprising, as the

more central part of the epitope is recognised by the appropriate TCR. Still, the similarity in the

proportion of SL9:Y3->F3 and RL11:Y4:F4 as well as SL9:T8->V8 and RL9:T9->V9 is significant,

considering the sequence logos were created from sets of sequences that only overlap by 30%.

The sequence logos also reveal to a certain extent whether the mutations have an effect on the

epitopes MHC binding ability or interfaction between the peptide-MHC complex and the TCR.

For example, FLGRIWPSHK has the majority of its mutations occuring at position 9, which is

the position of the anchor residues, having mostly an effect on peptide-MHC interation, whereas

VLKWEFDSSL, the mutations are more focused on positions 3 and 5. This is indicative of mutations

that cause interference with MHC-peptide-TCR interaction.

It is plausible that novel epitopes could be obtained from the list of predicted epitopes other

than the optimally defined epitopes on the basis of sequence variability. However, it is a common

occurence for epitopes from different HLA allotypes to overlap and mutations within a predicted

epitope may only exist due to selective pressures applied to a flanking epitope. This also applies

to the reverse argumnet, where a predicted epitope may be excluded outright based on the lack

of mutational variability, but one of the HLA*A0201 restricted ODEs investigated, VIYQYMDDL,

showed in the context of the sequences examined, very little variability. Surprisingly, some

predicted epitopes with very little sequence variability, had poor combination scores, which does

raise the confidence in the prediction results somewhat.
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Association of Epitope Variants with Levels of HIV To investigate whether there is

a direct relationship between epitope variants and blood levels of HIV, the variants of the p17

related epitope, SLYNTVATL. This epitope has been studied in detail before and it was established

that this epitope is immunodominant and subject to mutation and that these mutations do have

an effect on levels of HIV (Iversen et al., 2006). The sample size of HIV sequences from patients

with the HLA allotype A*02 (sic) is 28. However, as shown before, the HLA*B5801 restricted

epitope RSLYNTVATLY shows similar patterns of variation. Thus, using the sequences obtained

from patients with the B*58 allotype brings up the sample size to 52. The results are shown

in 4.4 on page 103. Although no direct correlation between the presence of SLYNTVATL and HIV

levels, it can be deduced that the variants of the epitope are associated with the more extreme

HIV viral loads.
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Table 4.15: Variants for certain HLA*0201 restricted optimal epitopes. The epitope sequence from the
literature is shown in the first column. The second and third column show the frequency of MHC binders
(i.e. all the epitope variants that have sufficient binding affinity to the HLA molecule) and the the averaged
entropy of the sequences. Nominal sequence and its variants are shown in column four. Column five and six
show the sequence variants in SeqLogo format.

Lit Sequence Frequency Entropy Sequences Binder SeqLogos Non-binder SeqLogos
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Figure 4.4: The figure depicts the variants of SLYNTVATL. The top graph maps the epitope variants to
the log2RNA/ml values of the patients the sequences were obtained from. The middle graph depicts the
relative frequencies of epitope variants found at the indicated viral level. The bottom graph shows the relative
frequencies of all the variants of SLYNTVATL.
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Table 4.16: Entropy/Frequency

Lit Sequence Frequency Entropy Sequences SeqLogo (B) SeqLogo(NB)
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.S....... (3)
..Q...... (3)
.SM...... (3)
.G....... (2)
V........ (2)
.T....... (2)
..Q.C.... (2)
V.I...... (1)
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Variants of Influenza CTL Epitopes

The variants of optimal Influenza epitopes were described separately for serotypes H1N1 and

H3N2. Only variants for HLA*A0201 restricted epitopes were considered. Variants for H1N1

and H3N2 epitopes are listed in Tables 4.17 on the following page and 4.18 on page 107 respec-

tively. Only epitopes with at least one variant found in the sequences tested are included in

the Tables. The reason for the separate analysis of epitope variants between H1N1 and H3N2

is that the author noticed descrepencies between the epitopes of the two serotypes. Most no-

tably is the absence of the epitopes FQGRGVFEL in the H3N2 sequences analyzed. Overall the

sequence conservation of CTL epitopes for both serotypes is high with top-end epitopes having

an entropy of 0.02 − 0.03. Some of the optimal epitopes were only found in a fraction of the

sequences, meaning they were predicted with MHC IC50 values of > 500 nM. That is, they were

predicted as non-binders. The author also noted that some of the predicted epitoeps have high

entropy associated with them. This begs the question whether these are in fact epitopes with

high enough immunogenicity that makes mutations within these regions beneficial in terms of

escaping immune surveilance. Although putative inferences can be made from the predicted

results, experimental validation is necessary to positively or negatively identify these regions as

epitopes. Nevertheless, some of these epitopes for H3N2 are shown in Table 4.19 on page 107.
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Table 4.17: Variants for certain HLA*0201 restricted optimal epitopes of Influenza A H1N1.

Lit Sequence Frequency Entropy Sequences Binder SeqLogos Non-binder SeqLogos
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Table 4.18: Variants for certain HLA*0201 restricted optimal epitopes of Influenza A H3N2.

Lit Sequence Frequency Entropy Sequences Binder SeqLogos Non-binder SeqLogos
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Table 4.19: Variants for certain HLA*0201 restricted predicted epitopes of Influenza A H3N2 with high
sequence entropy.

Lit Sequence Frequency Entropy Sequences Binder SeqLogos Non-binder SeqLogos
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Timeline Analysis of Predicted Epitopes To investigate whether the predicted epitopes

with high frequency are associated with the immunogenic evolution of Influenza, timelines were

constructed. The timelines are a visualization of epitopes at a specific positions occuring at

the times the sequences were obtained. That is, it shows the variants of epitopes at different

time points. Of special interest were the sequences obtained in and around 1968 when the Hong

Kong flu pandemic struck. This pandemic was associated with the H3N2 serotype. H3N2 is

also the current seasonal flu. In Figure 4.5 on the next page the timeline profiles of selected

HLA*A0201 restricted epitopes are shown. Although none contain any of the optimal epitopes,

these epitopes did present some interesting results. For all of them, a particular variant or set of

variants occured during the Hong Kong flu pandemic of ca. 1968. The optimal epitopes, being

generally highly conserved, did not show any difference at the time points associated with the

pandemic. It could be pure coincidence that these variants occured at said timepoints, however

the author notes that having at least six epitopes with variants (or in the case of SIWIELDEI,

absence) reduces the probability of coincidence. The PB1 epitope, SMDKEEIEI has also recently

reverted to a variant seen from 1968−1977. Predicted epitopes scores are shown in Figure 4.6 on

page 110. The figures represent the sum of the predicted scores for the epitopes, meaning that the

presence or absence of an epitope influences the score. For the optimal epitopes, there is a clear

upward trend in the sum of the scores, however a marginal downward trend is observed for the

average scores. Taking all the predicted scores into account, there is a definitive downward trend

for the sum of the epitope scores and a similar downward trent in the average predicted scores.

Again, this poses the question whether Influenza is steadily losing HLA*A0201 immunogenic

CTL epitopes. However, the author urges the reader not to find too much comfort in these

results as they are, afterall, predicted. As can be seen in Figure 4.6e on page 110, there seems to

be no relation between the time sequences were obtained and total HLA*A1101 restriced epitope

scores for predicted.
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Figure 4.5: Variants of selected epitopes over time. The labels of the Figures indicated the Influenza in which
the epitope exists.
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Figure 4.6: Timeline for various epitope scores. Each plot depicts the predicted epitope scores versus the
sampling year the sequences for which the epitopes scores were calculated, were obtained.
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4.2.4 Clustering Results

HIV Epitope Clustering Results

It was mentioned before that clustering of sequences together requires a prior category of clus-

tering. In this case, the levels of HIV in the blood the sequences were obtained from was decided

upon. However, as mentioned in Section 4.2.3 on page 100 no direct association could be found

between the epitope variants and levels of HIV in the blood. Still, clustering was attempted on

the HIV sequences because the author still tested whether HIV can group sequences together

based on similar epitopes. The clustering was by and large limited to the HLA*A0201 restriced

optimally defined epitopes. Clustering can be performed in a symmetrical and asymmetrical man-

ner. Especially in the context of “missing epitopes” within certain sequences, the asymmetric

method of measuring the distance between two sequences having a different amount of epitopes

decreases the distance from the one having the epitope and one that doesn’t. Furthermore, the

weights of the epitopes are also taken into account as measure of distance. Epitopes with a low

score, if predicted correctly, would would have less of an impact on immunogenicity if mutations

occur within them. The symmetrical measurement takes the maximum distance between two

epitopes of two sequences as the distance measurement for that epitope. The distance for missing

epitopes was set to 0.20. The purpose here is to see how well the clustering will perform with

high sequence entropy. For this reason, clustering was performed by excluding and including

the epitope AIIRILQQL and its variants during clustering. Figure 4.7 on page 113 depicts four

heatmaps. The central part of the plot shows the distances between the sequences (marked on

the edges) as a colour range from dark blue to white; white being the most distant and dark blue

being the closest. Each heatmap is the result of clustering of sequences obtained from patients

containing the HLA*A02xx allotype. Figures 4.7a and 4.7b are the result of clustering with and

without epitope AIIRILQQL and its variants. It can be seen that the inclusion of AIIRILQQL had

a dramatic influence on introducing noise into the cluser. However, it could still clearly define the

two main groups as seen on the heatmaps. Definition of the smaller groups were less clear with

the inclusion of AIIRILQQL. The author does not suggest that certain epitopes need be excluded

or are invaluable in determining sequences with similar immunogenic patterns, but merely to il-

lustrate the limitation of a sequence-only approach. Figure 4.7c shows clustering performed with

the asymmetric method. With symmetric clustering groups are mirrored on either side of the

heatmap. With asymmetric clustering, unqiue groups are defined, meaning that any arbritrary

group on the heatmap is not reflected at any other part of the heatmap. Because the differences

in weight are also taken account during both measurements (different weights used as a factor

of the Frankild distance), lighter regions in the heatmap also indicate a predicted difference in

potency between the sets of sequences. The final Figure, 4.7d shows clustering by using all the
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predicted 9-mer epitopes of HIV. This heatmap clearly shows that clustering is hampered when

the amount of potential epitopes to be considered is high. HIV, being highly mutable, is of

course very susceptible to “noisy” clustering in general.
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(c) Asymmetric ODE excluding AIIRILQQL
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(d) All Predicted Epitopes

Figure 4.7: Below are the results of clustering performed on sequences from patients with the HLA*A02xx
HLA allotype.
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Influenza Epitope Clustering

Clustering of Influenza epitopes were done in a similar manner to HIV epitopes, with the differ-

ence being the attribute chosen as hypothetical grouping criterium. The sequences obtained from

LANL all contain at least the year of submission. Converse of the timeline procedure described

in the previous section, the epitopes will now be used to cluster dates together. However, first

it will be determined if there are differences between the CTL epitope repertoire of Influenza

serotypes H1N1 and H3N2. The clustering was done symmetrically. The result of the separation

based on CTL epitope repertoire is shown in Figure 4.8 on the following page. For both the op-

timal and predicted epitopes, there is a clear distinction between H1N1 and H3N2 CTL epitope

repertoires (see the description of Figure 4.8. Still, a few sequences from the other serotype are

included in both H1N1 and H3N2 groups. This could be the result of recombination between

H3N2 and H1N1 genomes during simultaneous infection of both.

Clustering of H1N1 Sequences Clustering of H1N1 sequences was performed using only

the optimally defined epitopes. The clustering is shown in Figure 4.9 on page 116. On closer

inspection, it is clear that the 2009 H1N1 strain’s sequences are separate from the rest. To inves-

tigate whether this is simply because the H1N1 sequences are naturally grouped together because

of their shear number or whether they are separated from the rest of the H1N1 sequences due to

a difference in epitopes, the epitope differences were obtained and are displayed in Table 4.20 on

the following page. This is not a complete list of the optimal epitopes, but merely those for which

a large difference was observed. As can be seen in the Table, the epitope variant of RLNKRSYLI,

RLNKRGYLI differs by only one amino acid, but that substitution does occur in the central part

of the epitope, which has an influence on cross-reactivity and immunogenicity. This epitope is

also lowly conserved, having six other variants. Other epitopes with central/near central substi-

tutions are the epitopes WMMAMRYPI and LLMDALKLSI, although two thirds of the epitope variants

for the pre-2009 Influenza H1N1 strains have LLMALKLSI. The epitopes LLRSAIGPV is an epitope

which is predicted to exist in one of the pre-2009 H1N1 sequences. This Table illustrates the

power of Fortuna to differentiate between two clusters.

Clustering of H3N2 Sequences Clustering of H3N2 sequences was performed using the

optimal epitopes and all the predicted 9-mer epitopes. The heatmaps are shown in Figure 4.10

on page 117. Here, the attempt was made to isolate sequences obtained during the 1968-69 Hong

Kong flu pandemic from the rest of the sequences. The optimal epitopes for Influenza could

not isolate sequences of this time period from the rest of the sequences. However, when all the

predicted 9-mer epitopes were used for clustering, sequences from and around 1969 were, in fact,

isolated from the rest. Although noise is introduced into the clustering when considering a large
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(b) Using All Predicted Epitopes

Figure 4.8: The two heatmaps in this figure depict separation of H3N2 and H1N1 serotypes based on their
CTL repertoire. The first heatmap shows cluster-based separation on optimally defined epitopes while the
second heatmap shows separation based on all the predicted epitopes restricted to HLA*A0201. In both cases,
the output from the pathway prediction results were used as weights. The sides of the heatmap marked orange
represent sequences from H1N1 while the blue represents sequences from H3N2.
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amount of putative epitopes, it does also reveal subtle differences between the sequences and

even with the included “noise” in the comparison, there are still clearly definable clusters.

4.2.5 Self-Epitope Discovery

The predicted epitopes of HLA*A0201 for HIV and Influenza were scanned for self-epitopes

using the results of a BLASTP search referencing human proteins. Both HIV and Influenza

contain epitopes with high Frankild scores with respect to potential self-epitopes. For influenza,

the optimal epitope GILGFVFTL is closely related to the sequence GILLFLFTL although the G->L

mutation is in the center region of the supposed self-epitope and would probably result in non-

cross reactivity. The highly mutable HIV epitope, AIIRILQQL has a high Frankild score when
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Figure 4.9: The heatmap shows the clustering of all the Influenza A H1N1 sequences, including sequences
from the 2009 strain.

compared to AIQRVLQQL which originates from the zinc-finger domain of an untitled protein. It is

very likely that many cross-reactivity with self-epitopes were missed by using the Frankild score

as noted by the authors of that study. However, it has been shown that closely related matches

can still be found. Curiously, by examining Figure 4.11 on page 118 it is evident that a lot of the

epitopes detected have high Frankild scores when compared to potential self-epitopes. Although

it seems that Influenza epitopes have a higher incidence of self-epitopes, it should be noted that

each dot on the plot represents an epitope variant and because HIV is highly mutable, many of

the variants of the epitopes will occur in the lower frequency regions.
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(b) All Predicted 9-mer Epitopes

Figure 4.10: The two Figures show the clustering of Influenza A serotype H3N2 according to HLA*A0201
restriced epitopes. The first figure is generated by using the optimally defined epitopes while the second figure
is generated by using all the 9-mer epitopes predicted.
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Figure 4.11: This figure depicts the average Frankild score and frequency of predicted HLA*A0201 restricted
epitopes and their variants. Blue represents scores obtained from Influenza epitopes while red represents scores
obtained from HIV epitopes.

4.3 Conclusion

In this chapter, Fortuna was used to analyse the epitopes of two important pathogens, namely

HIV and Influenza. It was shown that although only a modest amount of reliance can be put in

using prediction tools to correctly identify immunogenic CTL epitopes, the analyses performed

from these predictions did aid in the discovery of potential epitopes. In the case of Influenza, by

examining the variants of epitopes predicted and those from the literature, relationships could

be established between occurence of an epitope and incidence of a pandemic. For HIV, there

was no correlation between HIV viral load and epitope variant occurence, but it did show that

the variants of the HIV epitope SLYNTVATL is associated with the extreme values of viral load.

Although the author could not perform the desired clustering of HIV sequences by HIV level

based on CTL epitope repertoire, HIV provided some insight into the limitations of using a

direct sequence comparison approach when trying to group epitopes together. For Influenza,

the clustering did prove useful in isolating pandemic strains. Further analysis of the differences

between said pandemic strains and “moderate” strains revealed insight into a novel CTL epitope

repertoire. Whether these differences in epitope sequences contributed directly to the virulence

of the 2009 Flu strain can only be validated through experiments.
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5
Conclusionary Discussion

Herein, the development of a method to analyse the CTL epitope profile of multiple sequences for

use in immunological comparisons was discussed. Fortuna is a web-accessible tool that combines

the results of different tools associated Proteasomal cleavage, TAP affinity, MHC affinity and

immunogenicity prediction in an attempt to give a quantitative score representing the fate of a

peptide as it goes through the Class I restricted antigen presentation pathway. A novel predictor

for one of the steps in the pathway, namely TAP ligand affinity, was created and dubbed Variable

Lengthed TAP Predictor (VLTAPP). VLTAPP was shown to perform comparably with other

known predictors of TAP affinity. It was also shown how the training of a predictor could

provide insight into the the binding region of a molecule for which the structure is not fully

known. By analyzing the CTL epitopes of two pathogens, HIV and Influenza, the virtues as well

as the shortcomings of prediction tools in the context of CTL epitope prediction was illustrated

through epitope score prediction, epitope variant summary and cluster analyses.

5.1 Identification of Pitfalls in CTL Epitope Prediction

Throughout the project, the author noted some very obvious and somewhat less obvious pitfalls

associated with CTL epitope prediction. A full discussion of each goes beyond the scope of this

project, and these shortcomings will only be briefly discussed.

5.1.1 Problems with POPI and Immunogenicity Prediction in General

Of all the predicted steps, immunogenicity has the largest impact on whether a peptide-MHC

complex would be recognised by the immune system. The author noted that many epitopes

undergo mutations that do not affect the ability to bind to MHC, but change the parts of the

epitope that interface with the TCR. The immunogenicity predictor used in this study, POPI, has

relatively good validation scores with approximately 60% accuracy of predicting any one of four

classes. The author trained POPI as instructed in the literature and after validation, similar
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accuracies were obtained. However, the very way in which POPI does predictions is flawed.

By circumventing the issue of length of an MHC ligand when calculating immunogenicity, the

authors of POPI decided to average all the pre-selected amino acid properties over the entire

length of the sequence. This means that any permutation of any sequence would produce the

same immunogenicity score. It is very unlikely that 9! = 362880 permutations of one epitope

will produce the same immunogenicity. The author appreciates that the training set used during

construction of POPI is the only real one of its kind, outdated and provides experimental results

as discrete values. In a perfect scenario, an immunogenicity predictor would consider the peptide-

MHC complex and search for the appropriate T-Cell Receptor αβ chains that would have high

affinity to the complex. This is a non-trivial task, since it requires prior modelling of millions of

TCRαβ combinations in conjunction with correctly docking an arbritrary protein to an arbitrary

HLA allotype. Any tool developed that could make these accurate predictions would take a fairly

long time to run and would defeat the purpose here; to provide an easily accessible tool to aid

in crude possibly pre-experimental CTL epitope analysis.

The other problem with predicting immunogenicity is the differences between the T-Cell

repertoire between individuals. Since naïve T-Cells undergo both positive and negative selection

depending on what is presented to them in the thymus, there should be a difference in repertoire

between people having different sets of HLA molecules. HLA molecules, even within the same

supertype have a vastly different set of peptides they present and as a consequence, the naïve

T-Cell population would receive vastly different “training”. So, in order to properly predict

immunogenicity, it should first be predictd what possible T-Cell clones would be available to

scrutinise the peptide-MHC complex based on the molecules presented by the individual’s HLA

set. The author cannot imagine a quick solution to the problem with the current knowledge of

TCR-peptide-MHC interaction.

Immunogenicity could also be abrogated by indirect factors. In a recent study, it was deter-

mined that the HLA*B2705 restricted epitope, KRWIIILGLNK undergoes a L6− > M mutation

that attenuates the immune response in general (Lichterfeld et al., 2007). After investigation, it

was determined that KRWIIIMLGLNK is still highly immunogenic, but cross reactive with the ILT4

expressed on myelomonocytic cells. Binding of a and MHC-peptide complex to this molecule in-

duces a tolerance response by affecting the maturation of dendritic cells, which are regulators and

initiators of the adaptive immune responses. This is an example of a mutation whose effect is not

limited to the epitope itself, but can affect responses against multiple antigenic stimuli. These

tolerance inducing peptides were also discovered by the researchers in Epstein-Barr Virus (EBV)

and Hepatitis C Virus (HCV) showing that this escape mechanism is not all that uncommon.
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5.1.2 Cross-reactivity

It was only recently that Frankild et. al. (2008) tackled the issue of CTL epitope cross-reactivity.

They developed a simple and modestly effective method to identify cross-reactive CTL epitopes.

They did put a lot of emphasis on CTL epitopes that are cross reactive but only share one or two

amino acids. Cross-reactivity can be defined as the ability of two epitopes iliciting a similarly

strong CTL immune response by stimulating a similar set of CTL clones. CTL epitopes are

not acted upon by a single clone. Therefore, correct “prediction” of cross-reactivity would be

predicting the TCRαβ chains that will bind each of the two epitopes and evaluating “shared

T-Cell clones” of the epitopes.

5.1.3 Proteasomal Cleavage Prediction

The way proteasomal cleavage is handled here is rather simplistic. It utilises a method based

on a position specific scoring matrix when it is known that proteasomal cleavage is far more

complicated that merely “motive” driven (Piwko and Jentsch, 2006). Something that further

compounds the problem is the lack of available proteasomal cleavage sets and as shown with the

evaluation of VLTAPP, training set size does have a profound impact on predictor performance.

5.1.4 MHC Prediciton

Although generally very good, MHC prediction is also subject to the availability of a predictor

for the desired HLA allotype. HLA ligand sets re not equal in size for a lot of HLA allotypes with

some containing less than a hundred. MHC, being one of the most polymorphic molecules, means

that producing training sets for all of the thousands of HLA allotypes known unfeasible . There

have been attempts to try and make predictions for an HLA supertype, but subtle differences

between HLA allotypes within the same supertype could also have a profound effect on certain

peptide ligands (Alexander et al., 2010). Recently an attempt was made to make predictions for

9-mer MHC ligands using any arbitrary HLA allotype. The way the prediction works is to train

a neural network that takes into account the amino acid residues in the binding pockets of the

MHC molecule (Lundegaard et al., 2008). So, if a novel HLA allotype is found, approximations

could be made for ligand affinity to it as long as the amino acids from the binding pockets are

known.

5.2 Bioinformatics Facilitating CTL Based Vaccine Design

The concept of using computaitonal tools in aiding the design of vaccines has been reviewed mul-

tiple times in the literature (Groot and Berzofsky, 2004,Groot, 2006,Korber et al., 2006). With

the increasing availability of efficient sequencing technologies, the genomes of many organisms
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can be readily determined and from that, protein sequences. By using MHC prediction alone, a

rough set of MHC ligands, and by extension potential CTL epitopes can be elucidated from the

sequence alone. The total length of the Influenza proteins used in this study is approximately

3000 amino acids long. To determine affinity to a single HLA molecule by experimentation alone,

taking into account peptide lengths of 8-11 amino acids would be considered, would require ap-

proximately 12000 assays without counting replication. If an MHC predictor predicted 300 MHC

ligands for each of the peptide lengths, this would reduce the amount of experimentation needed

by 90%. Either this would allow more modest budgets to perform the experiments or more repli-

cates of the experiments to be performed, increasing the result of the experiments. By using the

sequences of mutational variants of the same protein, peptides can be filtered further based on

their sequence conservation. A moderately immunogenic peptide with high sequence conserva-

tion would make a more appropriate candidate for a vaccine that one with high immunogenicity

but with low sequence conservation, since the pathogen of origin is likely to quickly acquire

escape mutations within this region.

5.3 The use of Prediction Tools in this Study

Using prediction tools outright for inferring immunological relationships between protein variants

is bold to say the least, but between all the incorrect predictions, the author did discover a very

significant hint of correct classification. Indeed, by including only the optimal epitopes, classifi-

cation was by and large improved, with the exception of isolating the Influenza H3N2 strain of

the Hong Kong pandemic. By knowing virulent strains of Influenza and CTL epitope variants

associated with them, it could be possible to estimate whether current trends in Influenza mu-

tations might lead to reversion of a strain to its pandemic state. It is very possible to use simple

phylogenetic methods to make these predictions, however the author notes that applying phy-

logenetic methods would take the mutations associated with all selective pressures into account

and not necessarily isolate appropriate mutations associated with immune surveilance escape.

The author suspects that if the prediction methods are more accurate and more appropriate

weight assignment can be achieved, the total set of predicted epitopes should be sufficient in

detecting immunological similarities, since non-immunogenic epitopes would be down-weighed

enough for changes in them to become of no consequence when comparing two or more CTL

epitope profiles.

5.4 Conclusion

With the increase in size of available immunological datasets the author hopes that the methods

used in this project to aid in immunological classification can be improved. With high throughput
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accurate computational analysis of immunological profiles it may be possible in future to start

designing tailor made CTL epitope based vaccines. That is, vaccines specificically designed for

the HLA Allotype profile of the recipient. Especially in the context where treatment is not

readily available, vaccines can severely reduce the mortality rate in regions afflicted by vaccine

preventable disease.

The project presented here, aims to be a stepping stone in the future development of com-

putational immunology tools. Presented to the reader were the advances made in recent years

in applying computational methods to the field of Immunology. The reader was also exposed

to the rationale behind creating predictors and how they can aid in research. Development of

Fortuna allows to analyse the CTL epitope profiles of different proteins, compare them with

each other and evaluate similar “immune profile”. Further development of Fortuna would include

fine-tuning MHC prediction, especially in the context of correctly predicting affinity values for

and MHC ligands with respect to its variants, better prediction of immunogenicity and better

abstraction of cross-reactivity measurements. It should be interesting to see the application of

Fortuna or similar method to other diseases where CTL-epitopes could play a protective role,

for example most cancers and parasitic infections such as visceral Leishmaniasis. Also, in the

study of finding close matches to avoid host and graft immunological incompatibility after organ

transplants. Having said that, there is still a lot of research necessary to assimilate necessary

data to make more accurate predictions. Especially in the context of pMHC-TCR interaction

that is, despite the extreme efforts put in by researchers, still poorly understood. Bioinformatics

tools in general, also have a tendancy to make people complacent with prediction/calculation

results. It should always be remebered that prediction tools perform as best as they are named

and can be, almost in a fashion of fate, completely wrong when all supposed evidence suggest

they are correct.
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6
Summary

The field of Immunology can be be hindered by labour intensive experimental procedures. In

the context of CTL epitope studies, computational methods can aid in reducing the redundancy

of elucidating epitopes contained within protein sequences by revealing peptides that are likely

to be epitopes. By combining the prediction results of proteasomal cleavage, TAP affinity, MHC

affinity and Immunogenicity putative epitopes can be revealed. Exending this procedure is done

by performing the analysis on multiple sequences to reveal plausible escape mutations through

visualising all the variants of a potential epitopes. Cluster analysis can reveal how different

sequences group according to their epitope profile. By integrating this functionality into a web-

based application, researchers investigating the CTL epitopes of arbitrary proteins are aided in

the analysis and discovery of potential epitopes.
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