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ABSTRACT 

 

The leaching of nitrogen (N) and phosphorus (P) from the rootzone of cropping 

systems is a major contributor of non-point source pollution resulting in deterioration 

of fresh water supplies. An escalating world population is forcing further 

intensification of agricultural production practices and the identification of suitable 

and effective management practices to reduce N and P leaching losses is becoming 

ever more important. Such leaching losses are, however, extremely challenging to 

measure and quantify due to uncertainties associated with the estimation of deep 

drainage and N and P concentrations in this drainage water. SWB-Sci is a locally 

developed, mechanistic crop model to which N and P subroutines have been added to 

enable analysis of leaching losses at the local scale. This involved novel approaches to 

estimate the effects of N deficiencies on yield; to simulate crop P demand, uptake and 

stress effects; to simulate banded P fertilizer applications; and to estimate incomplete 

solute mixing. New equations to estimate the size of the Labile P pool from soil P 

tests commonly used in South Africa, and guidelines on the classification of South 

African soils as calcareous, slightly weathered or highly weathered which is required 

to simulate P, were also developed. The upgraded more versatile model was tested 

using historical datasets from the Netherlands, Kenya and South Africa, and 

performed well in simulating N and P dynamics in maize and wheat cropping 

systems. Variables tested included aboveground dry matter production, yield, leaf 

area index, aboveground crop N and P mass, grain N and P mass, soil water content 
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and soil inorganic N levels. A study was also conducted on a large drainage lysimeter 

into which suction cups and wetting front detectors were installed, and data from this 

experiment together with the SWB-Sci model was used to study vertical solute 

movement more closely. As hypothesized, wetting front detector nitrate (NO3
-
) and P 

concentrations were observed to align closely with simulated mobile phase 

concentrations, and suction cup NO3
-
 concentrations were observed to align closely 

with simulated immobile phase concentrations. These results confirm that monitoring 

and modelling can be used together to improve understanding and obtain more 

accurate estimates of N and P leaching losses, and further work on this approach is 

recommended for a wide range of soils and cropping systems. Finally, long-term 

modelling with the SWB-Sci model was used to analyse and compare N and P 

leaching losses from a dryland versus an irrigated monoculture maize production 

system. Over a 30 year simulation period, irrigated maize was estimated to leach 

considerably higher loads of N and P (~ 4-fold higher). For dryland production, zero 

leaching was observed for consecutive years on several occasions, with major 

leaching losses associated with high rainfall events. A ‘room for rain’ irrigation 

scheduling management practice was estimated to reduce N leaching by 12% and P 

leaching by 14%, while a crop rotation system which incorporated wheat grown over 

the winter months was estimated to reduce N leaching by 23% and P leaching by 

24%. From this study, long-term modelling was confirmed as an effective approach to 

investigate N and P leaching losses, to assist with the planning and design of field 

trials, and to assess the effectiveness of best management practices. It is envisaged 

that SWB-Sci will continue to evolve as a valuable tool for analysing and reducing N 

and P leaching losses from cropping systems to further reduce non-point source 

pollution.   
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