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ABSTRACT 


AN OPTIMIZATION APPROACH TO THE 

DETERMINATION OF MANIPULATOR 


WORKS PACES 


by Lukas Johannes du Plessis 

Supervisor: Professor J.A. Snyman 


Department of Mechanical Engineering 


Degree: Master of Engineering 


Keywords: 	 accessible workspace, dextrous workspace, serial manipulator, parallel manipulator, 

Stewart platform, optimization, bifurcation, workspace characterization 

The main objective of this study is to propose and develop a general numerical technique by means of 

which the workspaces of mechanical manipulators may be determined with relative ease. The emphasis 

is on parallel or so-called Stewart platforms. 

Stewart platforms have many advantages over the traditional serial manipulators. These advantages 

include high accuracy, high stiffness, high load-to-weight ratio and most importantly, low cost. 

According to the literature, it is strongly felt that the use of parallel manipulators in many robotic tasks is 

so necessary that they will become indispensable in the near future. 

In spite of the advantages of these mechanisms, the use of Stewart platforms is still mainly in an 

experimental stage. This is because there seems to be a lack of rational synthesis tools for the design of 

practically useful platform manipulators. In particular, the problems of the forward kinematics and 

workspace determination remain to be satisfactorily solved. This study addresses the latter problem. It 

is believed that if the workspace is understood, and its characterization properly done, then many design 

problems will easily be solved. 

In this study a novel optimization approach to solving the workspace problem is introduced. An attempt 

is made to demonstrate that this approach is general in the sense that it is applicable to different kinds of 

manipulators, and may also easily be implemented to determine various types of accessible workspaces. 

In particular, the generality of the method is illustrated by the fact that the optimization approach was 

successfully implemented for a redundantly controlled planar serial manipulator, a planar Stewart 
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platform as well as a spatial 6-3 Stewart platform. The optimization method is also successful in 

assisting in the characterization of the workspace by, for example, identifying interior curves connecting 

bifurcation points. This is of great potential importance with regard to the control of a manipulator 

within its workspace. 

The description of the behavior of the planar manipulators, led to a new notation for labeling the 

workspaces. This notation arises in a natural way from the optimization approach, is generally 

applicable and easy to understand. Using this notation, the complete workspace may be described in 

terms of the behavior of the manipulator. 

Of great practical importance is the treatment of dexterity requirements imposed on a Stewart platform. 

The optimization approach successfully determines different specified dextrous workspaces of the planar 

Stewart platform. An example of a dextrous workspace of the 6-3 Stewart platform was also 

successfully mapped. This is very significant, because as far as the author is aware, such a mapping has 

not previously been performed for the spatial case. 

It is hoped that this study will lie the foundation for the development of a general and rational synthesis 

design tool for parallel manipulators. Further research that will be addressed in the near future, and 

stems from the work done here, is the determination of the feasible workspace for parallel manipulators 

subject to various additional prescribed mechanical constraints. 

This study has important potential impact for the manufacturing industry of South Africa and other 

developing countries. The implementation of this technology lies in retrofitting existing non-CNC 

milling equipment to increase their capability at a lower cost than that of the alternative of purchasing 

traditional 5-axis machining centers. 
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Die doelwit van hierdie stu die is om 'n algemene numeriese metode te ontwikkel, waarmee die 

werkruimtes van meganiese manipuleerders redelik maklik bepaal kan word. Die klem val op parallel­

of sogenaamde Stewart platforms. 

In vergelyking met die tradisionele serie-manipuleerders, beskik Stewart platforms oor bepaalde 

voordele. Hierdie voordele sluit onder andere in: hoe akkuraatheid, hoe styfheid, hoe las-tot-gewig 

verhouding en, die belangrikste voordeel, lae koste. Vanuit die literatuur is dit duidelik dat die potesiele 

gebruik van Stewart platforms so' belangrik is, dat hulle binne die afsienbare toekoms onvervangbaar sal 

wees. 

Ten spyte van die voordele, is die gebruik van Stewart platforms hoofsaaklik nog in die eksperimentele 

fase. Dit wil voorkom asof daar 'n gebrek is aan rasionale sintese-metodes waarmee prakties-bruikbare 

parallel-manipuleerders ontwerp kan word. Onder andere is die afleiding van die voorwaarste 

kinematiese vergelykings, asook die bepaling van die werkruimtes van hierdie meganismes, huidiglik 

nog probleem-areas. Laasgenoemde probleem word in hierdie studie aangespreek. As die werkruimte 

deeglik omskryf, en dienooreenkomstig gekarakteriseer word, sal baie ontwerp-probleme betreklik 

maklik opgelos kan word. 

'n Nuwe optimeringsmetode word voorgestel waarrnee die werkruimtes van verskillende manipuleerders 

bepaal word. Hierdeur word aangetoon dat die metode algemeen toepasbaar is, en ook maklik 

implementeer kan word om verskillende tipes bereikbare werkruimtes mee te bepaal. 
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In besonder word die algemene toepasbaarheid van die metode aangetoon deur die suksesvolle bepaling 

van die werkruimtes van 'n oortollig-beheerde serie-manipuleerder, 'n vlak Stewart platform en 'n 

ruimtelike 6-3 Stewart platform. Met behulp van die optimerings-metode, kon die werkruimtes 

gekarakteriseer word deur, byvoorbeeld, die identifisering van interne krommes wat bifurkasie-punte 

verbind. Dit is van groot potensiele belang met betrekking tot die beheer van 'n manipuleerder binne die 

spesifieke werkruimte. 

Die beskrywing van die gedrag van die vlak manipuleerders het gelei tot 'n nuwe metode om die 

werkruimtes te anoteer. Hierdie nuwe notasie, wat voortspruit uit die toepassing van die optimerings­

metode, is algemeen bruikbaar en maklik verstaanbaar. Deur gebruik te maak van hierdie notasie, kan 

die algehele werkruimte beskryf word in terme van die fisiese gedrag van die manipuleerder. 

Die afdwing van sekere bruikbaarheids-voorskrifte vir die Stewart platform is noodsaaklik vanuit 'n 

praktiese oogpunt. Verskillende bruikbare werkruimtes van die vlak Stewart platform is bepaal deur die 

optimeringsmetode te gebruik. Verder is daar 'n spesifieke voorbeeld van 'n bruikbare werkruimte van 

die 6-3 Stewart platform bereken. So ver die skrywer kon vasstel, is dit die eerste keer dat 'n bruikbare 

werkruimte vir hierdie ruimtelike manipuleerder bepaal is. 

Daar word gehoop dat hierdie studie die grondslag sal Ie vir die ontwikkeling van 'n algemene ontwerp­

metodiek vir parallel-manipuleerders. As voortsetting van die werk wat hier gedoen is, word dit beoog 

om bereikbare werkruimtes van parallel-platforms, onderhewig aan verskeie ander voorgeskrewe 

meganiese begrensings, te bepaa1. 

Die vervaardigingssektor van die Suid-Afrikaanse nywerheid en van ander ontwikkelende lande, kan 

moontlik voordeel trek uit hierdie navorsing. Bestaande freesmasjiene, wat nie gerekenariseer is nie, kan 

opgradeer word deur die aanhegting van 'n Stewart platform. Sodoende kan die vermoens van hierdie 

freesmasjiene uitgebrei word, en word die hoe kapitale uitgawe om 'n 5-as gerekenariseerde 

freesmasjien aan te koop, uitgeskakel. 
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Chapter 1 

1 REVIEW OF STEWART PLATFORMS 


1.1 INTRODUCTION 

The main objective of this study is to propose and develop a general numerical technique by means of 

which the workspaces of mechanical manipulators may be determined with relative ease. The emphasis 

is on parallel or so-called Stewart platforms. 

To give an understanding of the significance and importance of the development of analytical design 

tools for such mechanical manipulators, this introductory chapter presents a brief survey of the field of 

Stewart platforms. This review will also allow for the later assessment and evaluation of the merits of 

the method proposed here. 

The review, in the form of a literature survey, starts with reference to the history and uses of Stewart 

platforms. This is followed by a discussion of the different designs and commercial products presently 

available. Because of their significance with respect to the current study, special attention is paid to the 

discussion of existing methods for the determination of manipulator workspaces. With reference to these 

existing methods the chapter is concluded with a detailed motivation for the current study. 

1.2 HISTORY OF THE STEWA RT PLATFORM 

In his 1965 article, Stewart [I] "describes a mechanism, which has six degrees of freedom (DOF) 

controlled in any combination by six motors each having a ground abutment". He proposed that the 

mechanism be used for a flight simulator for the training of helicopter pilots. 

Although in-parallel devices or parallel-link manipulators are often called Stewart platforms, Stewart 

was not the original inventor of this type of mechanism. Stewart's proposed mechanism is only a 

different configuration of the six linear jack system developed by Gough (2] in 1947. Gough was one of 

the reviewers of Stewart's article and in his review he states that he designed a similar tire test machine 

(see Figure l.l) in 1949, which was already built and operational in 1954-1955 (3]. 
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Stewart's paper was published together with the communications of the reviewers , as well as the author's 

reply. Stewart acknowledged the fact that he was not aware of Gough's tire test machine and also states 

that, although it is similar to his flight simulation mechanism, it was designed using a different approach. 

Figure 1.1 Gough's six DOF tire test machine (after [1)). 

Ironically, Gough is also not acknowledged as the original inventor of this type of mechanism. 

According to Merlet [4] parallel manipulators have been known for a long time and the actual invention 

is attributed to the mathematician Cauchy, who wrote an article on the possible motion and rigidity of an 

"articulated octahedron" in 1813. 

Merlet is of the opinion that although "Stewart platfonns" is the name currently associated with these 

mechanisms, "Gough platforms" would be more appropriate. 

Nevertheless, the re-discovery of the parallel manipulator by Stewart in 1965, sparked a flame that is still 

burning today. A schematic representation of the modern and general so-called 6-6 Stewart platform 

with prismatic actuators, is shown in Figure 1.2. 

Merlet reports that real interest in this type of robot started around 1987, and from that date the number 

of papers on this subject increased drastically. Because of their inherent advantages of load carrying 
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capacity and spatial rigidity, Stewart platforms are suitable for a wide range of applications. It is 

believed that the research and development of parallel devices is currently the most popular topic in the 

area of robot manipulators [5]. 

Figure 1.2 Schematic view of the general 6-6 Stewart platform (after [6]). 

It is interesting to note that Stewart's proposal also raised some criticism. In his review on Stewart's 

article D. J. Thomas, referring to the possible use of the platform for flight simulation, asks: "Are six 

degrees of freedom really worthwhile?" In his reply Stewart points out that true flight can only achieved 

with six degrees of freedom [1]. 

1.3 USES OF STEWART PLATFORMS 

Although Stewart proposed his mechanism for use as a flight simulator, he also suggested other possible 

uses for the mechanism, including: 

• 	 "a platform held stationary in space mounted on a vessel such as a ship subjected to the random 

movements of the sea." 

• 	 "a new form of machine tool." 

• 	 "an automatic assembly or transfer machine." 

Some of the reviewers of Stewart's article also suggested possible uses of platform devices. G. H. Meier 

[1] stated that the machine tool and medical fields were suitable areas where these platforms may be 

used. Meier noticed that the inherent stability of the platform, as well as its light working platfonn, 
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made it attractive to the machine tool industry as a working table mounted to the platform. With a 

rotating table mounted to the platform, 3600 rotation would be possible. 

The second application suggested by Meier, is a stabilizing platform, where a Stewart platform could be 

used to eliminate rotational motions, and damp linear motions. Looking at a hospital ship for instance, 

this would mean that a doctor would be able to perform delicate operations as he would be working on a 

stabilized platform. Meier also mentioned a gun platform aboard a warship as another application. 

Another reviewer, J. Tindale, stated that any improvements may be satisfactory from a machine point of 

view, but to prove their economical viability would require a period of expensive study and 

development. Tindale included in his review an artistic impression of a possible design of a universal 

mill, which could machine complicated shapes with simple cutters, as well as an artistic impression of an 

oil drilling rig, where the platform is supported on a tripod comprising six telescopic legs. 

By the time Gough reviewed Stewart's article, his tire test machine was fitted with digitally controlled 

motor drives attached to the screw jacks, and electronic instrumentation to study tire-to-ground forces 

and movement. 

The development of platforms for flight simulation and amusement park rides, has been ongoing since 

Stewart's article was published three decades ago. In his comprehensive review [4], Merlet explains that 

the reason for the main interest in these platforms, is their high nominal load-to-weight ratio. He 

developed a prototype platform which has a weight of 35kg, and can carry a load of 600kg. The weight 

of the load is approximately equally distributed on all the links. Another advantage is that the stress in 

each link is mostly of a traction-compression nature, which is very suitable for linear actuators and 

therefore contributes to the rigidity of the platforms. 

There are other advantages that make Stewart platforms suitable for a wider range of applications. For 

example, Merlet states that because the position of the moving platform is less sensitive to the errors on 

the articulated sensors in comparison to serial link robots, Stewart platforms are ideally suited for 

assembly lineups. As early as 1979 a parallel manipulator was first used in a robotics assembly cel1. 

Merlet also points out that parallel manipulators can be used as six component force sensors. Measuring 

the traction-compression stress in the links enables one to calculate the resulting force and torque acting 

on the mobile platform. This capability of parallel manipulators makes it possible for manipulators to be 

used as assembly units, where the platform comes in contact with its surroundings. Another application 

where this feature is important, is surface following. 
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Parallel manipulators can be very small where, for example, the linear actuators range a few micrometers 

enabling the upper platform to perform motions of a few nanometers. In contrast to this, MerIet also 

reports on a huge manipulator developed for mining operations. 

One of the prototype platforms developed by MerIet is used for opthalmic surgery and the European 

Synchrotron Radiation Facility (ESRF) uses a more classical Gough type platform for the manipUlation 

of heavy experimental setups. 

Parallel manipulators can also be used in trusses. The mechanism modules are joined to form an 

articulated truss, which is light and highly redundant. Merlet states that these manipulators may be 

useful in space applications, once the kinematics and control problem'> have been solved. 

In their article on five DOF parallel mechanisms, Wang and Gosselin [7] explain that the development of 

these manipulators is of interest, as they can be used for various tasks where mostly serial five DOF 

mechanisms are presently used. They mention tasks for which axi-symmetric tools are being used (e.g., 

drilling, welding, riveting, etc.), as well as the positioning and orientation of lasers, mirrors, antennas and 

spotlights. 

1.4 DIFFERENT DESIGNS 

Merlet [4] defines a parallel manipulator as a "closed-loop mechanism in which the end-effector is 

connected to the base by at least two independent kinematic chains." He also defines a fully-parallel 

manipulator as "a closed loop-manipulator with an n degrees-of-freedom (DOF) end-effector connected 

to the base by n independent chains, which have at most two links and are actuated by a unique prismatic 

or rotary actuator" 

According to Merlet, many different designs of parallel manipulators are possible and the scientific 

literature is very rich on this topic. All have in common their low cost, since most of the components are 

standard, although the assembly of the manipulator must be done with care. 

According to Merlet's definition, parallel manipulators include all in-parallel devices where the links 

have rotary or prismatic actuators. Stewart platforms traditionally are parallel manipulators equipped 

with prismatic actuators. 

There are two main categories of parallel manipulators, namely planar and spatial manipulators. 
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Looking at the first category, a planar parallel manipulator is a special type of closed loop manipulator. 

Haug et a1. [8] investigated the dextrous workspace of an elementary closed loop manipulator with one 

DOF. Gosselin and Wang [9] considered the singularity loci of a two DOF planar closed loop 

manipulator consisting of a five bar chain. Bajpai and Roth [10] determined the workspace of the same 

five bar chain, with a third additional DOF, as the basis of a manipulator mounted on a rotary joint. 

The closed loop manipulators mentioned thus far have revolute actuators, and according to Merlet's 

definition, these mechanisms are not parallel manipulators as they are connected to the ground via two 

linearly dependent kinematic chains. 

Gosselin and Wang [9] also consider a planar three DOF parallel manipulator with three revolute 

actuators. Seeing that this closed loop manipulator has two independent kinematic chains connecting the 

moving platform with the base, it can be classified as a parallel manipulator (see Figure 1.3). 

The line segment moving platform in Figure 1.3 can be replaced by a triangular shaped moving platform. 

Kumar [11] characterizes the workspace of such a planar three DOF parallel manipulator (see Figure 1.4) 

Figure 1.3 Planar three DOF parallel manipulator with revolute actuators (aftcr [9]). 
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Figure 1.4 Three DOF parallel manipulator with a triangular moving platform and revolute actuators (after [11]). 

The literature is also very rich as far as different designs of planar Stewart platforms (planar parallel 

manipulators with linear actuators) are concerned. Haug et al. [12] determine the workspace of a planar 

three DOF Stewart platform. This Stewart platform is a line segment platform with two coincident joints 

(see Figure 1.5). 

y 

~__________~~~X________~D__________~E 

(0,0) 3 (1,0) (2':1 

Leg 3 

Figure 1.5 Three DOF planar Stewart platform (after [12]). 

Some researchers also consider planar three DOF Stewart platforms with triangular moving platforms. 

Lee et aL [13] found that the optimum design, as far as stability is concerned, of a planar Stewart 

platform, is an equilateral moving platform (see Figure 1.6). 
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Figure 1.6 Planar three DOF Stewart platform with equilateral moving platform (after [13]). 

In a later study Merlet et al. [14] determine the different workspaces of a planar Stewart platform with a 

triangular moving platform. They describe the mechanism in terms of the number and type of kinematic 

chains, with which the moving platform is connected to the ground. Both planar Stewart platforms 

shown in Figure 1.6 and Figure 1.7 are 3-RPR (Revolute-Prismatic-Revolute) parallel manipulators. In 

each manipulator, the mobile platform is connected to the base via three identical chains consisting of a 

revolute joint attached to the ground followed by an actuated prismatic joint which is connected to the 

platform by a revolute joint 

y 

o 
L-----------------~X 

Figure 1.7 The three RPR parallel manipulator (after [14]). 
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The second category of parallel manipulators is spatial mechanisms. Depending on the design, these 

mechanisms can have three to six DOF. For instance, Wang and Gosselin [7] explain that three DOF 

and four DOF devices are sometimes used in flight simulation. Five DOF mechanisms are also available 

and used for tasks where axi-symmetrical tools are being used. 

As pointed out by Stewart in his original paper, there are many possible designs for providing six DOF. 

One of the obvious designs is a three axis gimbal superimposed on a three axis linear slide system. 

Stewart [1] rejected this option, because he wanted to achieve the most simple and cohesive design with 

the highest capabilities in a wide range of applications. 

The original mechanism proposed by Stewart [1] comprises out of a triangular plane, called the platform, 

of which each of the three comers is connected through a three-axis joint (spherical joint or ball-and­

socket joint) to one off the three legs. Each leg is connected to the ground by a two-axis joint (universal 

joint). Three additional actuators are connected to the three legs. Each additional actuator has one end 

connected via a rotary joint to the outer-cylinder end of each leg. The other end of each additional 

actuator is connected to the foundation or base via a universal joint. (see Figure 1.8). 

t~hree-axiS jointx 

Platform 

Axis of 
freedom ~ One-axis joint 

Foundation 

Figure 1.8 Stewart's original platform: General arrangement of single leg system (after [I D. 

The two jack foundation connections have one common axis and the remaining axes are parallel to each 

other. The common axis is not controlled within the single leg system but the plane containing the leg 

can rotate about it, thereby permitting a three-axis motion on the platform support joint. 

The tire test machine of Gough [3], also uses six actuators, but they are arranged differently. Each 

actuator is attached separately to the upper platform (see Figure 1.1). Gough uses the same universal 
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joint system to attach the actuators to the platform and the base, as described in his communications on 

Stewart's original paper [1]. 

Also included in the communications on Stewart's article, are comments by Murdoch and Meier who 

mention the preferred arrangement that would result from the use of the "linear coordinate leg system". 

This is a similar arrangement to the one Gough used for his tire test machine, where the actuator­

foundation, and actuator-platform connecting points are co-planar. 

A general parallel manipulator has the actuator connection points in any position on the fixed and 

moving bodies, i.e. the actuator connection points are not restricted to be co-planar [4] (see Figure 1.2), 

Spatial parallel manipulators are usually labeled according to the number of connecting points on the 

base and moving platforms, keeping in mind that the name "Stewart platform" refers to a parallel 

manipulator equipped with linear prismatic actuators. Stewart's original platform can accordingly be 

labeled as a special 6-3 "Stewart platform", as there are six foundation connecting points and three 

moving platform connecting points. The word special is necessary when referring to this platform, as 

the three additional actuators are connected to the three actuator legs, instead of the moving platform. 

Meier and Murdoch's [I] proposed configuration is a 6-3 Stewart platform, i.e. it has six actuator legs, 

the bottom ends of which are connected to the six base vertices, and the top ends of the actuators are 

connected in pairs to the three moving platform vertices. 

Gough's tire test machine is accordingly labeled as a 3-6 Stewart platform, where the moving platform 

with six vertices is connected to the three base vertices. Furthermore, it follows that a 6-6 Stewart 

platform (see Figure 1.2) is where each of the six linear prismatic actuators connects a moving platform 

vertex with a base vertex. 

The configuration of a spatial Stewart platform is not the only important design aspect. Equally 

important is the type of connections with which the actuators are connected to the moving platforms and 

base. Spatial parallel manipulators can also be described according to the kinematic chains that connect 

the fixed and moving bodies. For example: a 6-6 Stewart platform with the six linear actuator legs 

connected to the base and moving platforms via ball-and-socket (spherical) joints can also be labeled as a 

6-6 Stewart platform with six identical SPS (Spherical-Prismatic-Spherical) chains. 

According to Griffis and Duffy [15], it should be noted that in an SPS serial chain, the prismatic joint (P) 

has an extra DOF, a rotation about the line joining the centers of its S pairs. This extra DOF in each leg 
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does not affect the gross motion of the top platform. Either one of the S pairs could be replaced by a 

Hooke joint. However, this may not be desirable from a design standpoint. 

As described earlier, Stewart uses I-axis rotary, 2-axes universal and three axes spherical joints in his 

original platform. With a 6-3 or 3-6 configuration, the actuators are connected to the base with either a 

spherical or a universal joint, allowing rotation about respectively three or two axes. "Special" ball-and­

socket joints are to be used to connect the top ends of the actuators in pairs to the moving platform. 

Due to the design problems that arise from using pairs of concentric spherical joints, Lin et al. [16] 

emphasize that it is very important to eliminate, as far as possible, the use of concentric spherical joints. 

Fichter [17] proposes that the ends of the legs be mounted on gimbals (Hooke joints), because if it is 

designed properly, a gimbal gives a much greater range of motion than a ball-and-socket joint. The 

platform gimbal is doubled to make the two adjacent legs coincident. The platform gimbal also has a 

third axis perpendicular to the platform plane, which makes it equivalent to a double ball joint. The base 

gimbal Fichter uses, has its first revolute axis inclined to the base plate to increase the useful range of 

motion of the joint (see Figure 1.9). 

Plalfonn bearing block 

Plalfonn gimbal 

Shaft encoder 

Figure 1.9 The leg triangle of the Stewart Platform built at Oregon State University (after (17]). 
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Liu et al. [18] have done the kinematic analyses of a 6-3 Stewart platform of the form shown in Figure 

1.10. This Stewart platform has been built (see Figure 1.11) and is operational in the Arlington 

Automation & Robotics Research Institute (ARR!) of the University of Texas. As can be seen it uses the 

gimbal arrangement proposed by Fichter [17] as actuator connections (see Figure 1.12). 

x 

Figure l. j 0 The 6-3 Stewart platform (after [18]). 

Figure 1.11 Photograph of the ARRI-Stewart platform. 
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Figure 1.12 Photograph of the ARRI-upper platform gimbals. 

In his review Merlet [4] describes the configuration of a 6-6 Stewart platform which has universal joints 

connecting the prismatic actuators to the base, and ball-and-socket joints connecting them to the moving 

platform. 

Fichter [17] does the kinematic and dynarrUc analysis of a general Stewart platform, which he considers 

as two solid bodies connected to each other via six linear actuators (see Figure 1.13). The connections at 

both ends of each actuator are ball-and-socket joints. 

platform 

b, 

base 

Figure 1.13 A schematical of the generalized Stewart platform (after [17]). 
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Similar to planar parallel mechanisms, spatial parallel mechanisms can also be designed using rotary 

actuators. Arai et al. [19] describe a 6-6 parallel manipulator with rotary actuators, as a parallel 

manipulator having six linkage chains, each consisting of three joints and two links. The first joint (joint 

1) is an actuated rotary joint connecting link 1 with the foundation. Joint 2 is a Hooke I universal joint 

connecting links 1 and 2. Joint 3 is a spherical joint connecting link 2 with the moving platform (see 

Figure 1.14). 

Joint 3 
(spherical) 

( 
Joint 2 (Hookel 
universal) Joint 1 

~ (Rotary actuator) 

Figure 1.14 Rotary actuated 6-6 parallel manipulator (after [19]). 

Arai et al. also point out that these rotary actuated parallel mechanisms have the advantage of good 

dynamic characteristics, which stems from the fact that the actuators are fixed in the basement, resulting 

in extremely lightweight movable elements. 

Wang and Gosselin [7] studied the kinematics and singularity representation of spatial five DOF parallel 

mechanisms, with both prismatic and revolute actuators. Both mechanisms consist of six kinematic 

chains, five of which have the same topology. 

Wang and Gosselin first considered the mechanism with the revolute actuators. Each of the five actuated 

legs consists of an actuated revolute joint connecting the first moving link to the base, a Hooke I 

universal joint connecting a second moving link to the first link and a spherical joint attaching the 

moving platform to the second moving link (see Figure 1.15). The five DOF spatial Stewart platform 

has a Hooke I universal joint connecting each of the five prismatic actuators to the base, and a spherical 

joint connecting the moving platform to each actuator. 
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Figure 1.15 The spatial five DOF parallel mechanism with revolute actuators (after [7]). 

The sixth kinematic chain of both mechanisms connects the moving platform with the base, and is not 

actuated. It consists of a Hooke \ universal joint attached to the base, a moving link, and a spherical joint 

attached to the platform (see Figure 1.15). It follows that the sixth kinematic chain constrains the motion 

of the platform to five DOF. According to Wang and Gosselin, the five DOF mechanism could also be 

built using only five legs, i.e. by removing one of the five identical legs, and actuating the first joint of 

the special leg. Apparently, these two arrangements lead to similar kinematic equations. 

Having considered spatial parallel manipulators with revolute links, it is interesting to consider the new 

parallel manipulator proposed by Arai et al. [19]. The proposed new manipulator is a combination of a 

standard 6-6 Stewart platform with prismatic actuators, and a 6-6 parallel manipulator with revolute 

actuators (see Figure 1.16). It has a base plate and an "intermediate platform" connected to each other 

via six firmly fixed linear actuators, i.e. the position and orientation of the "intermediate platform" 

cannot change. A movable link is connected via a ball joint to the actuated part of each of the six linear 

actuators. The other ends of the six movable links are connected via spherical joints to the moving upper 

platform. As soon as the linear actuators move, the movable links move and the moving upper platform 

changes its position and orientation. The proposed mechanism is designed to achieve high speed and 

good accuracy capabilities. 
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End plate 

Moving link 

J 
Fixed linear actuator 

Figure 1.16 New parallel manipulator with fixed linear actuators (after [19]), 

Similar to the parallel manipulator with the fixed linear actuators, is the Hexaglide developed at the 

Institute of Machine Tools of the Swiss Federal Institute of Technology in Zurich. According to 

Honneger et al. [20], who studied the control of this parallel manipulator, the Hexaglide is intended to be 

used as a high speed milling machine. 

The Hexaglide also has six movable links with one end of each link connected to a linear motor. The 

motors are distributed on three linear rails mounted parallel to each other. The other ends of the moving 

links are connected in pairs to the triangular moving platfonn. One could describe the Hexaglide as a 

special 6-3 parallel manipulator (see Figure 1.17). 

Figure 1.17 The six DOF Hexaglide (after [20]) 

Another design which is similar to the Hexaglide and the parallel manipulator with the fixed linear 

actuators, is the three translation DOF parallel manipulator designed by Herve [21]. Three pairs of 

parallel links connect the fixed orientation platfonn with the three linear motors. The three motors run 
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along three radiating rails. Changing the position of the three motors, causes the moving platform only 

to translate, as the parallel links ensure the fixed orientation of the moving platform. 

An interesting design found in the literature is the reconfigurable platform manipulator designed by Ji 

and Song [22]. According to them, the mechanical structure of a parallel manipulator is very suitable for 

reconfiguration, since parallel manipulators are actuated in parallel. The limited workspace of platform 

manipulators further points to the need for a modular, reconfigurable platform with adjustable 

configurations, so that the platform will have a wide range of applications. 

As part of the investigation into a reconfigurable platform manipulator, an experimental platform was 

built consisting of a base and mobile plate and six prismatic actuated legs. The base connections are 

normal two axes Hooke I universal joints, and the moving platform connections are Hooke joints with an 

additional revolute joint, providing three axes rotation. The base and platform plates of the experimental 

platform have reconfiguration hole patterus used to connect the actuator leg units to the plates. 

The objective of Ji and Song is to develop an inventory of standardized leg modules and customized 

mobile platforms and base plates, so that the parallel manipulator can be custom-configured, portable 

and easy to repair. 

1.5 AVAILABLE COMMERCIAL PRODUCTS 

The research and development of in-parallel devices have enjoyed much attention over the last three 

decades [5]. However, in spite of this Ji [23] reports as recently as 1996, that the use of platform 

manipulators is still mainly in an experimental stage. He attributes this to the lack of rational synthesis 

tools for the design of practical platform manipulators. 

Many proposed prototypes, developed by researchers from around the globe, are to be found in the 

literature on parallel manipulators. 

The authors of the Hexapod [24] brochure published by Geodetic Technology in the USA, state that the 

"cost of computing strut lengths has until recently been too high for most (practical) applications. Where 

the cost of processing could be justified, some interesting hexapod-based machines, such as the flight 

simulator, were made." 
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An example of a company that has been involved in the flight simulator is FRASCA International, Inc .. 

They have been in business since 1958, and have developed a wide range of flight simulators, which 

include Stewart platform mounted simulators. 

As far as other applications for parallel manipulators are concerned, it is reported in the Hexapod 

brochure that, "now that the cost of computing strut lengths has fallen dramatically, many companies are 

offering hexapod-based machines". This is happening in spite of the problems mentioned by Ji [23]. 

In MerIet's [4] review he states that Marconi designed the first commercial parallel manipulator in 1985. 

This is the six DOF Gadfly, designed to be used for the assembly of electronic components. In 1986 

Marconi designed the Tetrabot, a huge hybrid serial-parallel manipulator. 

Another company mentioned by MerIet [4] is Demaurex who sells the Delta, which is a 3-4 DOF 

manipulator used for very fast pick-and-place tasks involving light loads. Another product is the Hexa, 

which was still under development in 1994. The Hexa is a six DOF manipulator based on a design 

similar to that of the Delta. Merlet also mentions a new product, the SmartTee which is being developed 

by Hughes. 

In his analysis of the design parameters in parallel manipulators, Ji [23] mentions the NIST Robocrane 

capable of manipUlating tools and devices to perform a variety of tasks such as cutting, shaping and 

finishing, excavating and grading. 

Ji also list the Octahedral Hexapod machine tool developed by Ingersoll Milling Machines Co., which 

can perform machining operations on large workpieces such as engine blocks. This unique mill consists 

of a moving tool assembly guided over the workpiece by six ball screw actuators forming a 6-6 Stewart 

platform as shown in Figure 1.18. 

It is reported that modern milling centers such as the Octahedral Hexapod machine tool, are capable of 1 

mls velocities over a volume of 1 cubic meter with a resolution of 1 million increments per second. 

Spindle speeds can be as high as 24000 revolutions per minute. 
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Figure 1.18 Schematic of a Hexapod six-axis machining center. 

Zou et al. [25] list a few companies who are specifically involved in designing parallel manipulators 

used for manufacturing. One of these is the Italian based company Comau, who manufactures the 

TRICEPTHP. 

The TRICEPT HP has three linear actuators, and the end effector is connected to a three-axis wrist, 

resulting in a total of six degrees of freedom (DOF). According to the manufacturer, the TRICEPT HP is 

a very rigid manipulator, capable of applying a maximum force of 15 kN and lifting up to 500 kg. The 

wrist can handle a payload of up to 150 kg. Typical applications listed in the technical brochure of the 

TRICEPT HP, includes: assembling with force, deburring, polishing, wood working, aluminum milling, 

laser and water-jet cutting, as well as spot and laser welding [26]. 

Zou et al. [25] also refers to Giddings and Lewis in the USA, and Lapik in Russia. Both companies have 

apparently developed their own parallel type CNC machine tools. 

Geodetic Technology has patented their Hexapod 6-3 parallel manipulator (see Figure 1.19) in a number 

of countries [24]. According to the manufacturer, this machine competes with human adaptability and 

dexterity. Geodetic Technology has been developing hexapod technology since 1988, and it comprises of 

unique mechanisms, sophisticated control, together with calibration and translation software. 
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Figure 1.19 The Hexapod 6-3 Stewart platform type machine tool (after [24]). 

Fanuc Robotics is another company that designed a 6-3 hexapod, the FLEXTOOL, which has a base and 

tooling faceplate connected by six servo actuated legs, resulting in six DOF. The FLEXTOOL can 

precisely move locators, clamps and other end-of-faceplate tooling, to multiple positions for welding and 

joining [27]. 

In conjunction with the idea of a reconfigurable Stewart platform proposed by Ji and Song [22], the 

modular design of parallel manipulators is possible thanks to the German company INA. INA 

manufactures high precision joint units, which are ready-to-fit and clearance-free [28]. INA also designs 

telescopic arms, which can be mounted onto precision joints, making the INA system ideal for the 

modular construction of Stewart platforms. 

In order to develop hexapod technology as an economical alternative to conventional designs, the 

Machine Tool Laboratory (WZL) of Aachen RWTH and the ISW of the University of Stuttgart are co­

operating with machine tool manufacturers in the research project "DYNAMIL II" (Dynamic Innovative 

Lightweight Designs for Production Machines of the Year 2000) [28]. INA is also a partner in this 

project. 
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INA is also currently demonstrating the functioning of its joints and telescopic arms for hexapod 

technology in a reliable machine which was designed by the Institute for Machine Tools of the 

University of Stuttgart and built jointly by INA [28]. 

1.6 AVAILABLE DESIGN INFORMATION 

1.6.1 Introduction 

According to Liu et al. [18), there are two fundamental characteristics that set a Stewart platform 

manipulator apart from other industrial robots: a Stewart platform is a closed kinematic system with 

parallel links. These characteristics contribute to the advantages of Stewart platforms. 

Wang and Hsieh [29] state that the rigidity and load-carrying capacity of parallel robots are better than 

those of conventional serial robots. Merlet [4] explains further that the high load I weight ratio is due to 

the equal distribution of the load on the platform. Each link of a six legged Stewart platform is submitted 

to only 1/6 of the total weight. Merlet contributes the rigidity of the platform to the stress in the links 

being mostly traction-compression, which may easily be handled by linear actuators. 

According to Merlet [4], another advantage of parallel manipulators is that the position of the end­

effector is much less sensitive to the error on the articulated sensors than serial link robots. Geng et al. 

[30] explain that the reason for the higher accuracy of parallel manipulators is because the positioning 

error on each actuator is averaged out instead of being accumulated at the end-effector. Merlet [4] also 

mentions that the high positioning accuracy of these manipulators is also due to their high stiffness, 

which insures that the deformations of the links are minimal. He emphasizes that the most important 

advantage of parallel manipulators is their low cost, since mostly standard components can be used. This 

corresponds to the statement of Geng et al. [30] saying that the mechanical design of the Stewart 

platform based parallel link manipulator is relative simple. Liu et al. [18] agree, saying that relatively 

inexpensive commercially available servo actuator technology is used for many Stewart platforms. It is 

interesting to note that this corresponds to Stewart's [1] original design aims, namely to achieve the most 

simple and cohesive design with the highest capabilities for a wide range of applications. 

The architecture of parallel manipulators is very different from that of serial link manipulators, and 

Merlet rightfully states that most of the theoretical problems concerning parallel platforms still have to 

be addressed. According to Merlet, there exists a duality between parallel and serial link manipulators, 

as easy problems for serial link manipulators are often difficult to solve for parallel manipulators, and 

vice versa. Merlet mentions the attempts by Waldron and Hunt [31] as well as that of Zamanov and 

Sotirov [32] to explain this duality. 
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1.6.2 Kinematic Analysis 

Starting in 1987, more and more researchers have become interested in addressing problems concerning 

parallel manipulators. MerIet [33] points out that, for example, the direct kinematics problem has drawn 

the attention of many researchers, and is currently still under investigation, as it has not yet been 

completely solved. MerIet in fact says that Roth, the prestigious researcher of Stanford, has stated that 

the direct kinematic problem of parallel robots is the "kinematic problem of the century". 

Solving the inverse kinematics, i.e. determining the leg lengths once the position and orientation of the 

top platform are known, is easy to do. Finding the position and orientation of the top platform with the 

leg lengths known is, however, far more complicated. Researchers have experimented with different 

techniques to solve the forward direct kinematics with the objective of obtaining the closed form solution 

for the general 6-6 parallel manipulator. MerIet [4] states that the closed form forward kinematic 

solution for some special configurations of spatial manipulators has been found, but as yet, no success 

has been reported for the general 6-6 parallel manipulator. This is confinned by Innocenti [34] who also 

mentions that in spite of their relatively simple arrangement, the kinematic analysis of fully-parallel 

mechanisms is extremely challenging. 

The emphasis currently lies on finding the analytical or closed-form solution of the forward kinematics. 

A closed-form solution is most desirable since it generally reduces the problem to solving one algebraic 

equation with only one unknown. Accordingly, the degree of the equation provides the number of 

platform locations in the complex field, and the locations themselves can be found by determining all 

roots ofthe equation. 

Geng et al., for example, state that in general for a set of leg lengths, the forward kinematics problem can 

have no solution, or multiple solutions. They also categorize the different approaches used to solve the 

forward kinematics into iterative (numerical) methods and direct (closed form) solutions. MerIet [4] also 

states that in general, the forward kinematic analysis has more than one solution. 

Innocenti [34] explains that when performing the direct positional analysis of a mechanism, the 

displacement values of all actuated kinematic pairs are known. Accordingly, all actuators can be thought 

of as frozen, and the mechanism itself can be regarded as a structure. The direct kinematics of the 

mechanism is then equivalent to finding all closure configurations of the structure. 

Griffis and Duffy [15] point out that the forward displacement analysis of parallel manipulators is 

important, as it will provide feedback information, i.e. the position and orientation of the moving 

platform relative to the base, which can be used in a Cartesian controller. They further state that the use 
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of a Stewart platfonn as a force / torque sensor in the field of force / control, will be enhanced by a 

forward analysis of a Stewart platfonn. Geng et al. [30) also report that in general, the forward 

kinematics is used in a position feedback control problem, where the lengths are measured by sensors 

mounted on the actuators. 

In their 1993 article, Liu et al. [18) state that the lack of efficient algorithms for solving the kinematic 

equations is the main obstacle in realizing the potential of the Stewart platfonn as an industrial robotic 

manipulator. 

The fact that multiple solutions exist for the direct kinematics of a Stewart platfonn makes the 

interpretation of the results an important factor. Liu et al. also state that among the solution sets of the 

forward kinematics, only some are feasible due to mechanical constraints. They distinguish between 

"mathematical" solutions and "mechanical" solutions of the forward kinematics problem. 

1.6.3 Workspace Analysis 

1.6.3.1 General Observations 

Prom the geometry of a parallel manipulator, it follows that it is the limited ranges of the actuator legs 

that determine the size of the workspace. Por Stewart's [1) original design, he explains that similar 

movement of all three legs in the XYZ coordinates, results in XYZ motion of the platfonn, and differential 

movement results in attitude (rotational) movement of the platfonn. From this Stewart directly relates 

the linear displacements of the platfonn, to the amplitude of movement of the legs, and the angular 

motions are proportional to the spacing of the three points on the platfonn, relative to the linear motions 

of the legs. It follows that the smaller the platfonn size relative to the stroke of the legs, the larger the 

angular motions. 

The determination of parallel manipulator workspaces has come a long way since Stewart [I) did the 

motion analysis of his flight simulator parallel mechanism in 1965. However, in a recent article Merlet 

et aL [14] state that the workspace determination of parallel manipulators remains a challenging problem. 

The solution of this problem is very important in the design and trajectory planning of parallel 

manipulators. Kumar [11) also states that the point based definition of the workspace is an important 

design consideration and of considerable theoretical significance. 

According to Gosselin [35], many authors have pointed out that the major drawback of parallel 

manipulators is their limited workspace. He further states that it is therefore of primary importance to 

develop efficient tools that will allow the determination of their workspace. Moreover, in the context of 

design, the workspace determination procedure should be simple enough to be included in an 
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optimization cycle in which, for example, the size of the workspace may be maximized with regard to 

design variables. 

The successful mapping and characterizing of the workspace also assist in eliminating the mechanically 

infeasible solutions of the forward kinematics. It is indeed believed that the lack of understanding the 

workspace is a major obstacle in the development of the Stewart platforms into practically useful 

industrial robots (see Section 1.7). 

Unfortunately the determination of the workspace is one of the dualities of serial and parallel 

manipulators mentioned in Section O. This corresponds to Kumar's [11] statement that, compared to the 

research work on workspaces of serial manipulators, much less work has been reported on parallel 

manipulators. Kumar also says that although parallel manipulators are increasingly being used in 

robotics research, there is very little evidence of any general approach to workspace analysis and 

characterization of the reachable and dextrous workspace (defined in Section 1.6.3.6) of such 

manipulators 

Merlel [4] explains that the problem with representing the three dimensional workspace of a spatial 

manipulator, is that the workspace cannot be de-coupled in two three dimensional workspaces 

characterizing the possible translational and orientational motions. Although there is no human readable 

way to represent the complete workspace, some projections of the full workspace can be drawn. He 

further reports that some researchers represent the possible translations of a parallel robot in a plane, for 

a fixed orientation and altitude of the mobile platform. Fichter [17] does this simulating the Stewart 

platform at different points in the Cartesian space. Merlet recommends the use of a geometric algorithm 

which can take into account the limited range of the actuators, the mechanical limits of the passive joints 

and the link interferences. 

Another technique used to represent and characterize the workspace, is to consider the possible rotation 

of the end effector around a fixed point. This method is proposed by Merlet, and apparently it takes into 

account all the constraints limiting the workspace. 

In his review, Merlet [4] also reports that he has solved a corollary problem, namely that of verifying that 

a straight line trajectory lies fully inside the workspace of a parallel manipulator. It is further stated that 

Merlet addressed the problem of determining the dimensions of a parallel robot so that the corresponding 

workspace includes a specified task-space. 
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The workspace boundaries of various planar and spatial parallel manipulators have been studied in the 

literature using different methods. Some of the more important and interesing methods proposed to date 

is discussed in the remainder of Section 1.6.3. 

1.6.3.2 The Work of Bajpai and Roth 

Bajpai and Roth (10] present and analyze the basic kinematic geometry and workspace properties of the 

simplest closed-chain manipulator, with revolute joints, that can be used to position a point in space. The 

planar, revolute jointed, five bar chain considered is shown in Figure 1.20. 

Figure 1.20 Closed loop manipulator with revolute joints (after [10]). 

In their analysis of the closed loop manipulator, they emphasize the influence of the link lengths on the 

reachable workspace. They also comment that unlike the commonly used open-loop manipulators, the 

entire workspace of a closed-loop manipulator will not in general be freely reachable. Bajpai and Roth 

derive the conditions for which the complete independent mobility of the driving links of the five bar 

chain exist. In the end, they are able to suggest a few design rules to be considered when closed loop 

manipulators are to be built. 

1.6.3.3 The Geometric Method of Merlet and Co-workers 

The geometric methods introduced by Bajpai and Roth in 1986, are also used by Merlet et al. (14] in a 

recent article where they consider the workspaces of planar parallel manipulators. The planar three DOF 

parallel manipulators they consider, are composed of three kinematic chains connecting the mobile 

platform to the fixed base. It follows that different types of manipulators are obtained depending on the 

nature of these chains. In particular, they consider the 3-RPR manipUlator, where the mobile platform is 

connected to the base via three identical chains (see Figure l.7). Each chain consists of a revolute joint 
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(R) attached to the ground, followed by an actuated prismatic joint (P), which is connected to the 

platform by a revolute joint (R). 

They define a fixed reference frame on the base, and a moving reference frame is attached to the 

platform with its origin fixed at point C. The position of the moving frame is defined by coordinates of 

point C in the fixed reference frame, and its orientation is given by the angle e between one axis of the 

fixed reference frame, and the corresponding axis of the moving frame. Merlet and his co-workers 

further define an annular region as the region which lies between two concentric circles with different 

radii. It follows that the circle with the largest radius will be referred to as the external circle, and the 

smaller circle will be referred to as the internal circle. The internal circle may not exist. The assumption 

is made that no mechanical interference can occur between the links. 

The first "type" of workspace considered, is the "constant orientation workspace". This workspace is 

defined as the region, which can be reached by point C when the orientation of the moving platform is 

kept constant. For any position of C on the boundary of the workspace, at least one of the link lengths 

should be at its extreme value. If this it not the case, the platform may move in any direction, and 

therefore C cannot be located on the boundary of the workspace. 

In determining the fixed orientation workspace, the region which can be reached by the endpoint of one 

of the actuator legs B; is considered. This region is an annular region Ei, centered at Ai> i.e. the base point 

of leg i. The external circle has a radius corresponding to the maximum actuator leg length, and 

similarly the internal circle has a radius corresponding to the minimum actuator leg length. 

Any specific fixed orientation workspace will therefore be the intersection of the three annular regions of 

point C. similarly, if the revolute joints attached to the ground cannot fully rotate, then point C will only 

be able to reach an angular sector, and the fixed orientation workspace will be the intersection of the 

three angular sectors. 

Examples of fixed orientation works paces, as determined by Merlet and his co-workers, are shown in 

Figure 1.21. 
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Figure 1.21 Examples of constant orientation workspaces of one of the planar Stewart platform considered by Merlet et aI. 

(after [14]). 

They also consider the maximal workspace which is defined as the region the reference point C can 

reach with at least one orientation. They state that the maximal workspace depends upon the choice of 

the reference point on the moving platform, and their objective is to geometrically determine the 

boundary of the maximal workspace. The maximal workspace of another of the manipulators considered 

by Merlet et aL is shown in Figure 1.22. 
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Figure 1.22 An example of the maximal workspace of a planar Stewart platform determined by Merlet et al. (after [14]). 

Chapter 1 27 

 
 
 



REVIEW OF STEWART PLATFORMS 

They continue to describe how their geometric algorithms can be applied to determine various other 

"types" of workspaces. The inclusive workspace is defined as the set of all the positions, which can be 

reached by the reference point, with at least one orientation of the platform in a given interval. This 

inclusive workspace is obtained from the constant and reachable workspaces. The total orientation 

workspace is also determined, i.e. the region which can be reached by point C with every orientation of 

the platform in a given range. Finally the dextrous workspace, which is a particular case of the total 

orientation workspace, is also determined. This is the region that can be reached by the reference point 

with any orientation in a given range. 

1.6.3.4 Gosselin's Method of Spheres 

Moving onto spatial manipulators, Gosselin [35] proposed an algorithm for the determination of the 

workspace of a parallel mechanism, using a method based on the geometric properties of the workspace. 

Gosselin points out that many of the methods to determine the workspace of a spatial six DOF parallel 

manipulator, are based on a complete sampling of the Cartesian space. Instead, Gosselin geometrically 

obtains the workspace, i.e. the region of the three dimensional Cartesian space that can be attained by the 

manipulator with a given orientation of the platform. 

Gosselin states that, if mechanical interference is neglected, the boundary of the workspace is attained 

whenever at least one of the actuators reaches one of its limits. This corresponds to the work of Merlet et 

al. [14] on planar manipulators. 

For a given fixed orientation of the platform, the portion of the three dimensional Cartesian space 

attainable by i-th leg is circumscribed by the concentric spheres of radii p;run and p;nax. It follows that 

p;nin is the minimum reach of actuator leg i, and p;nax the maximum reach. 

For the given fixed orientation the center of the spheres does not coincide with the center of the joint 

connecting the i-th leg to the base. Considering the local reference frame, which is connected to moving 

platform, the vector to the platform connection of leg i is subtracted in the local reference frame from the 

base connection of leg i to find the center of the spheres (see Figure 1.23). 
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Figure 1.23 Location of the center of the spheres used to compute the workspace (after [35]). 

For a given orientation of the platfonn, the workspace of the parallel manipulator in three-dimensional 

Cartesian space can be described as the intersection of six regions, each of these regions being the 

difference of two concentric spheres. Six pairs of concentric circles will be obtained if the intersection of 

the spheres with a horizontal plane is considered (see Figure 1.24). The intersection of the six annular 

regions is the section of the workspace contained in the plane. 

Gosselin derives an algorithm to find the intersection of the six annular regions, keeping in mind that the 

boundary of each section will be made up of circular arcs, i.e. portions of circles (see Figure 1.25). Since 

Gosselin obtains the list of circular arcs, the area of the workspace section can accurately be determined 

by performing an integration process along the boundary. When the areas of the series of parallel planes 

are obtained, the volume of the workspace can be obtained by numerically integrating the area of the 

"slices" containing the workspace sections. 
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y 

Figure 1.24 An example of the six concentric circles obtained if the intersection of the spheres with a horiziontal plane 

( z 512 mm ) is considered (after [35]). 

y 

Area:::: 55168 mm2 

Figure 1.25 Boundary of the workspace for z =512 mm (after [35]). 

Gosselin also demonstrates the ability of his method to determine the workspace of a spatial mechanism. 

As a representative example, the workspace of the parallel manipulator developed at the French national 

institute for research in computer science and control (lNRIA) has been studied [35]. The INRI A 

prototype is a six DOF fully parallel manipulator, and the volume of the workspace was also determined 

(see Figure 1.26). 
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Figure 1.26 Boundary surfaces of the reachable workspace of the INRIA manipulator (after [35]). 

1.6.3.5 Kumar's Method Based on Screw Theory 

In his attempt to characterize the workspaces of parallel manipulators, Kumar [11] defines the reachable 

workspace as the volume or space within which a reference point on the hand or end effector can be 

made to coincide with any point in space. The reference point on the manipulator end effector is on the 

workspace boundary when the manipulator is at full extension in any direction. Because the end effector 

does not possess the ability to translate along the direction of maximal extension, the manipulator is at a 

positional singularity. 

Kumar uses screw theory to express the necessary condition for the end effector to be on the workspace 

boundary. This condition can be expressed as: the instantaneous joint screws all being reciprocal to a 

zero pitch screw through the reference point on the end effector along the direction of full extension. 

From a geometrical viewpoint, a parallel manipulator is considered to be a collection of n serial 

manipulators all of which have a common base and end effector. The i-th chain possesses mi single DOF 

revolute joints each capable of 3600 rotation. 

Kumar isolates the i-th serial chain, and denotes its reachable workspace as Ri, i.e. the workspace of the 

resulting serial manipulator once the other n - 1 chains have been removed. The resulting serial 

manipulator consists of the base, the links in the i-th chain, and the end effector. 
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Kumar points out that the configuration in which the joint screws are reciprocal to a zero pitch screw 

passing through the reference point does not necessarily imply that the reference point lies on a 

boundary. When the reference point of a parallel manipulator is at the workspace boundary, all the 

twists available to the end effector, (about which the end effector can twist), are reciprocal to a zero pitch 

wrench whose axis pa<;ses through the reference point on the end effector. 

In general, there is a set of k possible configurations that satisfy the condition of reciprocity to a zero 

pitch screw through the reference point. For a serial chain with m joints, k =i m
-

1
). The method 

Kumar uses to generate the workspace boundary, consists in basic terms of finding all of the k possible 

configurations, and determining which loci of the reference point are on the workspace boundary. There 

is a special consideration in order to accommodate mechanisms in which all joint screws span a screw 

system of order less than six (for example a planar mechanism). 

The first example considered by Kumar, is a five bar linkage, which is a two DOF parallel manipulator 

similar to the one analyzed by Bajpai and Roth [10] and shown in Figure 1.20. The manipulator consists 

of two serial chains, a 2-R (Link 1 in Figure 1.20) and a 3-R chain (Links 3 & 4 in Figure 1.20). For a 

given position of the reference point P in Figure 1.20, the 2-R chain assumes one of two configurations, 

and for each configuration, the 3-R has two possible configurations. Hence, there are 22 = 4 possible 

solutions for the inverse kinematics. The direct kinematics has two solutions. 

If a zero pitch wrench is applied at the end point, and swept through 3600 in the plane, the workspace 

boundaries can easily be traced (see Figure 1.27). 
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Figure 1.27 The workspace boundaries of the two DOF planar parallel manipulator (after [II D. 
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The second example considered by Kumar, is a three DOF planar parallel manipulator, where the end 

effector is constrained by three serial chains each of which possesses three revolute joints as depicted in 

Figure 1.4. 

23Having 3-R chains, results in =8 possible solutions for the inverse kinematics. The number of 

solutions or closures to the direct kinematics, is at most six. The boundary of the workspace of this 

mechanism consist out of contours generated from analytically derived algebraic expressions, since they 

are arcs of circles or parts of coupler curves of which explicit closed form expressions exist (see Figure 

1.28). 

In determining the dextrous workspace of a parallel manipulator, Kumar proves that if the reference 

point of a parallel manipulator is at the boundary of its dextrous workspace, there exists at least one 

chain such that a zero pitch screw is reciprocal to all the joint screws in that chain. 
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Figure 1.28 Workspace boundary of the planar three DOF parallel manipulator (after [11 D. 

After the workspace boundary is computed, Kumar identifies the closed regions that are completely 

bounded hy workspace contours. Each closed region is then tested for dexterity, i.e. for a particular 

region any convenient point Q is tested: Firstly the ability of the manipulator to provide all attitudes of 

the end-effector with the reference point at Q is tested, and secondly for all attitudes of the end effector, 

the ability to complete a 3600 rotation about any (all) axis (axes) through Q is tested. 

As an extension to the definition of the dextrous workspace, Kumar also defines the controllable 

dextrous workspace. "A point Q belongs to the controllable dextrous workspace if: (a) the reference 

point of the end effector can reach Q, (b) the manipulator can provide the end effector any (every) 
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attitude with its reference point at Q, and (c) for any reference attitude of the end effector, the 

manipulator can produce a complete rotation of the end effector about any (every) axis through the 

reference point, such that , during the rotation, the end effector does not lose or gain a degree of 

freedom. " 

1.6.3.6 Haug et al.'s Continuation Method 

So far each proposed method successfully determines the workspaces of a certain type of manipulator. 

Haug et al. [12] suggest a more broadly applicable numerical algorithm for mapping the boundaries of 

manipulator workspaces. 

In simplest terms, the initial step of their numerical method consists of the non-trivial task of finding an 

initial point on the workspace boundary. Starting from an assembled configuration of the manipulator, a 

unit vector c in the output-space is selected, and the ray emanating from the starting point along vector c 

is traced until the workspace boundary is encountered. Once a boundary point is found, they use a 

continuation method to proceed stepwise along the solution curve. A computer code is implemented in 

the final stage of their method to map the boundary of the accessible output set, until a closed trajectory 

is found. The continuation method is extended to accommodate bifurcation points, where more than one 

solution curve intersect. 

A planar redundantly controlled serial manipulator, a planar Stewart platform and a spatial Stewart 

platform are analyzed by Haug and his co-workers. They determine both the exterior boundary of the 

accessible output set, as well as the exterior-interior bifurcation point connecting curves. They suggest 

that these "interior" curves often represent local impediments to motion or controllability and are 

therefore of practical importance. 

As an extention to the work done on determining the reachable workspace boundaries of various 

manipulators, Haug et al. (8] also analyzed the dextrous workspace of manipulators. Apparently Kumar 

and Waldron (36] introduced the concept of a dextrous workspace. The dextrous workspace is a space 

within which every point can be reached by a reference point on the manipulator's hand (end-effector), 

with the hand (end-effector) in any desired orientation. The importance of the dextrous workspace lies in 

the statement of Haug et al. (8] that "methods for characterizing the region in space in which a 

manipulator can both position and control the orientation of a working body, throughout specified ranges 

of inputs and outputs are not well developed." 

Haug and his co-workers [8] address the existing need for characterizing the region in space in which a 

manipulator can both position and control the orientation of a working body, throughout specified ranges 
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of inputs and outputs. One of the objectives of their research is to define analytical criteria for the 

boundary of the set of points that can be reached by a given point on the working body. Throughout the 

set of points, specified ranges of rotation of the working body must be achieved. 

It is of practical interest and importance to note that, as stated by Haug et a1. [8], the necessary conditions 

for boundaries of dextrous workspaces are often less complex than associated conditions for the 

boundaries of workspaces without any dexterity requirement. This is consistent with experience in 

constrained optimization, where the introduction of additional constraints causes the boundary of the 

feasible solution set, in the present case the dextrous accessible output set, to become more regular and in 

many cases easier to compute. 

Considering that the determination of workspaces of planar parallel manipulators is already a challenging 

problem to solve, the situation worsens significantly when spatial manipulators are considered. To 

handle general parallel robots with arbitrary link geometry, a numerical approach is essential. The 

numerical approach suggested by Haug et al. [8, 12] is very complicated and not easily implemented. 

1.6.3.7 The Method of Wang and Hsieh 

Wang and Hsieh [29] present what they call "a systematic method for the numerical analysis of the 

extreme reaches, and reachable workspace of general parallel robots". They formulate an optimization 

problem in order to find the extreme reach of the manipulator. The distance between the center of the 

end-effector, and a fixed base point with respect to any given search direction is maximized or 

minimized depending on the desired objective. 

In their article, Wang and Hsieh refer to Haug et al.'s [8, 12] continuation numerical method for 

determining the works paces of multi-body mechanical systems. They point out that explicit expressions 

of the constraint equations and Jacobian matrix of the mechanism is necessary if Haug's method is to be 

used. It may be difficult to derive these expressions for general parallel robots having complex coupled 

kinematic loops and multi-OOF joints. 

Wang and Hsieh handle the kinematic constraint equations in an implicit and systematic way, and their 

method does not require the computation of the constraint Jacobian matrix. Various types of joints are 

taken into account and the advantages of efficient recursive computational schemes are exploited. 

The extreme reach is defined as the extreme distance between a base point and the center point of the 

end-effector. Wang and Hsieh denote I as a straight line defined by a fixed base point B and a unit vector 

u. The reachable workspace boundary is intersected by the straight line l as shown in Figure 1.29. 
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The current position of the end effector is Poc (q), in which q is the joint variable vector. The objective 

is to find the farthest (or nearest) position with respect to B that the center point C of the end effector 

coincident with l without violating the kinematic constraints. 

Workspace boundary 

Figure 1.29 Definition of the extreme reach (after [29]). 

The perpendicular distance from C to I is given by S(q). Wang and Hsieh formulate the problem of 

finding the extreme reach as follows: "Find the optimum value of q that maximizes (or minimizes) the 

Euclidian norm of Pnc(q), subject to S(q) = o and the kinematic constraints of the closed loops of the 

driving mechanisms." The search direction u (see Figure 1.29) is maintained by means of the equality 

constraint S(q) =0, ensuring that the perpendicular distance from C to l is zero. 

Using this problem formulation, the boundaries of the reachable workspace are determined by slicing the 

space into equally spaced horizontal planes along the vertical axis. The intersection point of the plane 

and the vertical axis is used as the base point from which the maximum and minimum reaches are 

determined (see Figure 1.30). 
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Horizontal planes 

Vertical axis 

Figure 1.30 Space slicing strategy (after [29]). 

The search directions lie on the plane, and are constantly incremented until a closed envelope is 

determined for each horizontal plane (see Figure 1.31). 

y 

Boundary of 
maximum reach 

x 

Boundary of 
minimum reach 

Figure 1.31 Workspace boundaries of a plane (after [29)). 

Finally three dimensional curve fitting techniques are used to plot the boundary surfaces of the reachable 

workspace. 

The objective function of the constrained nonlinear optimization problem constructed by Wang and 

Hsieh is: 
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Where the constant K depends on whether the maximum or minimum reach has to be found. For the 

maximum reach, the value associated with K is very large so as to overestimate the maximum reach of 

the manipulator. The minimum reach is found by setting K =0 . 

A combined solution procedure is used to solve the above highly non-linear optimization problem. 

Instead of using an ordinary steepest decent method, Wang and Hsieh uses a combined method which 

first uses the cyclic coordinate descent (CCD) method to find a good approximation to the solution 

vector, and then uses a quasi-Newton method to converge to the solution to the desired degree of 

precision. 

Although the proposed method is numerically stable and computationally efficient, multiple local 

optimal points may exist so that there is no guarantee that the method will converge to the global 

solution. The reason for the different possible local optimal points is the fact that the kinematic loops 

may be closed in several different configurations, and each may end up in a different extreme reach. 

Wang and Hsieh suggest that this complication be overcome by solving the optimization problem for 

various initial approximations. The best solution among the alternatives may then be picked. 

Wang and Hsieh consider, as an example, a platform-type parallel robot which has six revolute joints, six 

universal joints and six spherical joints (see Figure 1.32). The center points of the universal joints and 

spherical joints coincide with the vertices of the platforms. The three dimensional workspace boundaries 

obtained, as well as the working areas at different planes, are shown in Figure 1.33. 

a 


Figure 1.32 A platform type fully parallel robot (after [29]). 
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Figure 1.33 Boundary surfaces of the reachable workspace determined by Wang and Hsieh [29]. 

1.7 MOTIVATION FOR THIS STUDY 

Merlet concludes his 1994 review of the development of parallel manipulators by saying: "Parallel 

manipulators present various advantages which can be useful in many robotic tasks. Although 

interesting theoretical problems remain to be solved, the current state of the art has enabled prototypes 

and commercial manipulators to be designed. Although the concept of a parallel manipulator is too 

recent and too different from the design of most classical manipulators to be widely accepted and 

frequently chosen by the designers of robotic systems, it is strongly felt that their use in many robotic 

tasks is so necessary that they will become indispensable in the near future". 

Unfortunately this promise has, as yet, not been fulfilled. In fact, as recently as 1996 Ji [23] states that 

the use of platform manipulators is still mainly in an experimental stage. The biggest reason for this 

seems to be the lack of rational synthesis tools for the design of practically useful platform manipulators. 
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In particular, as is evident from this survey, the problems of the forward kinematics and workspace 

determination remains to be satisfactorily solved. This study addresses the latter problem. It is believed 

that if the workspace is understood and its characterization properly done, then many design problems 

will easily be solved. In particular, workspace characterization will assist in solving design problems 

relating to, amongst others, the determination of the relative sizes of the platforms; the positioning of the 

joints; the determination of acceptable ranges of translation and rotation for which the platform is stable; 

the determination of the ranges of leg displacements, and in assessing the problems caused by leg 

interference. 

The literature reports on a number of different methods for the determination of the manipulator 

workspaces. Some of the more important methods are summarized in Section 1.6.3. Each approach has 

its own advantages, but all the proposed methods appear to be complicated in one way or the other, and 

cannot be generally applied to a wide range of platform devices. The urgent need therefore exists for a 

general, yet easily implemented methodology for the determination and characterization of manipulator 

workspaces. 

In this study a novel optimization approach to solving the workspace problem is introduced. An attempt 

is made to demonstrate that this approach is not only general, but may also be easily implemented to 

determine various types of accessible workspaces. 

Finally it should be mentioned that, although the approach presented here was independantly conceived, 

it has certain features that are philosophically similar to that of the recent optimization method of Wang 

and Hsieh [29], and which is summarized in Section 1.6.3.7. 
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Chapter 2 

AN OPTIMIZATION APPROACH TO THE DETERMINATION OF 

PLANAR MECHANISM WORKSPACES 

2.1 INTRODUCTION 

In this chapter an optimization approach is used to determine the workspace boundaries of two different 

types of planar mechanisms. The proposed optimization approach is a new and easily implemented 

numerical approach, which is based on a novel constrained optimization algorithm that has the 

considerable advantage that it may easily be automated. 

The work presented here is motivated by, and stems from, the foundation paper of Haug et al. [12] which 

represents the state-of-the-art of computing workspaces of manipulators by the continuation method. In 

their paper, Haug and his co-workers emphasize the need for refined computer codes by means of which 

works paces may easily be obtained. 

In this chapter accessible output sets for manipulators are defined and criteria for determining their 

boundaries are stated. A method, based on the definition of the boundary, is developed by means of 

which the boundary may be mapped. In simplest terms the method consists of finding a suitable initial 

radiating point(s) in the output coordinate space, and then determining the points of intersection of a 

representative pencil of rays, which emanates from the radiating point(s), with the boundary of the 

accessible set. The points of intersection are determined through an optimization approach in which a 

proven robust dynamic constrained optimization algorithm of Snyman [37,38] and Snyman et al. [39] is 

used. 

The planar examples considered here are purposefully chosen to be identical to that of Haug et al. [12], 

so as to allow for a valid assessment of the new approach. In particular, the method is illustrated by its 

application to a planar Stewart platform and a planar redundantly controlled serial manipulator. 
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2.2 ACCESSmLE OUTPUT SE TS 

In accordance with Haug et aI. (12], generalized coordinates q == [ql' qp ... , qmJ E R ml are defined that 

characterize the position and orientation of each body in the mechanism. In the neighborhood of an 

assembled configuration of the mechanism, generalized coordinates satisfy m independent holonomic 

kinematic constraint equations of the form: 

<I>(q) == 0 (2.1) 

where <I> : R nq -7 R m is a smooth function. 

Mechanisms are usually designed to produce a certain functionality, where the motion ofthe mechanism 

is to be controlled by specifying the values of selected generalized coordinates, called input coordinates. 

As described by Haug et al. (12] these coordinates form a subset of the mechanism generalized 

coordinates, and their values are controlled by external influences with the intent of controlling the 

motion of the mechanism. The vector of input coordinates is denoted by v == [v I' V 2 p'" V nv Y . 

To define the desired functionality of a mechanism, some measure of output, that is controlled by 

mechanism inputs, must be defined. Output coordinates constitute a subset of mechanism generalized 

coordinates that define the useful functionality of the mechanism. Output coordinates are distinct from 

input coordinates and are denoted by u == [u l , u 2 , ••• , unu r. Generalized coordinates that are neither input 

coordinates, nor output coordinates, are called intermediate coordinates denoted by 

W == [WI' w 2' ... , wnwY, where nw =nq-nq-nq. 

Inequality constraints are usually imposed on the input variables and often also apply to the intermediate 

variables. They take the form 

(2.2) 

and 

W min ::; W ::; W max (2.3) 

The accessible output set of a manipulator is the collection of all achievable output coordinates of the 

manipulator. To be more precise in characterizing the accessible output set for a manipulator, the 

generalized coordinates are partitioned as follows: 

q = [u T , V T , W T r (2.4) 

In terms of this partition the constraint equations (2.1) may be written as: 
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<1)(u, V, W) =0 (2.5) 

The accessible output set A is therefore simply defined as: 

A == { UE R nil : <1)(U, V, w) = 0; V satisfying (2.2) and w satisfying (2.3) } (2.6) 

Intuitively the boundary aA of the accessible output set may be defined as: 

aA == { U E R nil : U E A and 3 a S E R nil such that for u f =u + As, AE R 

arbitrary small and either positive or negative, no V and w exist that satisfy (2.7) 

<1)(u', v, w) 0 as well as inequalities (2.2) and (2.3) } 

2.3 FINDING A POINT ON JA 

A distinction is made with respect to system of equations (2.1) and (2.5), between two possibilities: 

Case (i): where m nv and, given u and w, system (2.5) may easily be solved to give V in terms of u 

andw: 

v=v(U,w) (2.8) 

This is typically the situation with parallel manipulators where the inverse kinematics is easy to solve. 

Case (ii): where m =nu and, given V and w, system (2.5) may easily be solved to give u in terms of v 

andw: 

(2.9)u=u(v, w) 

This again is typical for serially linked manipulators where the forward kinematics is relatively easy to 

solve. 

First consider first Case (i). Assume that a radiating point UO of A is available, and for the moment 

assume that it is interior to the accessible set. It is now proposed that, consistent with the definition of 

JA in (2.7), a point ub on the boundary in the direction S E R nil from UO be determined by solving the 

following constrained optimization problem: 

Problem (i): 
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maximize 
u,w 

vmin s; v(u, w) s; vm,x 
such that: 

w min s; W s; wm,x 

and subject to equality constraints: h(u,s) = 0, hER nu-l 

which defines a point on the parameterized straight line ray, U(A) =U() + AS, AE R. Here 11'11 denotes 

I'd {F I 'f 2 [ ]T (I [() ()]T d [ ]T hthe Euc 1 ean norm, or examp e, 1 nu = ,U = x, y ,U = x ,y , an s = Sf'S), , t en 

has the components x =XO +AS . y =y () + Asl' and it follows that: 
.t ' 

h(u, s) (x - x()/s~ -(y - yO)/Sy =O} (see Figure 2.1) 

Figure 2.1 Ray in A from UO to JA. 

For Case (U) the associated constrained optimization problem is given by: 

Problem (ii): 

maximize 
v.w 

such that: 
wnun s; W s; w m", 

and subject to equality constraints: h(u(v, W),s) 0 

where the equality constraint defines a point u on the straight line through U
Oin the direction s. 

Note that should U
O be chosen to be exterior to A, then the optimization problems above obviously 

become minimization problems. 

In this chapter, the presentation will be restricted to planar mechanisms. In Chapter 3 the methodology 

developed here for and applied to planar mechanisms, will be extended to spatial mechanisms. 
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2.4 BASIC METHODOLOGY FOR MAPPING THE BOUNDARY OF A PLANAR 

ACCESSIBLE SET 

Assume a planar manipulator with a two-dimensional accessible set A, and also for the moment assume 

that A is convex, which certainly will not always be the case. Also assume, for the moment, that the 

radiating point UOis an interior point as shown in Figure 2.2. 

The boundary aA may now be numerically mapped by solving the appropriate optimization problem «i) 

or (ii» for N successive rays, with respective directions Si, i =0,1,2, ... ,N ,emanating at angular intervals 

of 0 (where for example 0 =3600 N) from UO =[xo, yO]T as depicted in Figure 2.2. / 

hiFigure 2.2 Numerical map of dA; U , i =O,I,. .. ,N. 

Questions now arise in connection with details of the implementation of the methodology. The first 

question relates to how an initial radiating point U
O may be obtained. Depending on the particular 

geometry of each case, a suitable choice for U
O may be self-evident. If not, it is suggested that, in Case 

(i), UO may be obtained from equation (2.8) by solving for u in: 

(2.10)v = v(u, w) 

where 

=(v minv + vmax )/2 
w =(wOlin + w 

max )/2 

In practice this may be done by solving the least squares optimization problem 

minimize Ilv(u, w)-,r (2.11) 
u 

In Case (ii), if an obvious choice for U
O is not available, then an indication may be obtained from 

equation (2.9): 
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UO (2.12)= U(V, W) 

The second question concerns the strategy to be adopted if non-convexity of A interferes with the 

mapping as illustrated in Figure 2.3, where as result of the non-convexity, two boundary points u~ and 

u~ exist. 

Figure 2.3 Complication if A is non-convex. 

If this happens, it will be necessary to adjust U
O such that the boundary point ub is unique for a prescribed 

search direction s. The precise strategy to be adopted will be described separately in the later sections 

dealing with the application of the methodology. A final question that must be addressed, is what 

procedure to adopt if the boundary mapping approaches a bifurcation point. The procedure to deal with 

such an eventuality is also described in the sections dealing with the applications. 

2.5 APPLICATION TO THE PLANAR SERIAL MANIPULATOR 

Although the emphasis of this study is on determining the workspaces of parallel manipulators, the 

versatility of the optimization method should at least correspond to that of Haug et al's [12] continuation 

method. Consequently, the serial manipulator studied by Haug et al. [12] is also investigated in this 

section using the optimization approach. 

2.5.1 Geometry of the Planar Serial Manipulator 

The redundantly controlled serial manipulator shown in Figure 2.4 was therefore purposefully taken 

from Haug et al. [12]. This is a planar manipulator with three links, and three revolute joints. 

Revolute joint 1 is the connection between the serial manipulator and the ground. The global coordinate 

system is fixed with the origin coinciding with joint 1. The orientation angle of link 1 relative to the 
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positive X-axis, is indicated by 81, and is measured in a right hand sense about the origin of the fixed 

global coordinate system. Similarly 82 and 83 measures the orientation angles of respectively link 2 with 

link 1, and link 3 with link 2. Depending on the configuration of the serial manipulator, the orientation 

angles can be positive, or negative. 

Figure 2.4 Planar serial manipulator with redundant input. 

The working point P is the end point of link 3, which is the position where in practice some end effector 

is mounted. The accessible region of the working point depends on the upper and lower orientation 

angle limitations. In accordance to Haug et al. [12], the same limitations are imposed on all three 

orientation angles. Expressing the constraint equations in terms of the orientation angles in radians, 

gives: 

(2.13) 


This choice of angle limits clearly causes the workspace to be symmetric about the positive X-axis, and 

one also intuitively expects the workspace to be non-convex. 

2.5.2 Constraint Equations of the Planar Serial Manipulator 

With reference to Section 2.2 , equation (2.13) is the serial manipulator version of the general inequality 

constraints (2.2). Here the orientation angles are obviously the input variables, Le. v =r8 I , 82 ,83 r , 
and the global coordinates of the working point P are the output coordinates, i.e. u =[x, yr. There are 

no intermediate coordinates required in describing the serial manipulator. 
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The serial manipulator therefore has five generalized coordinates (2.4): 

q=[nT,vTY =[x,y,8,,82 ,83 J 
Having only two degrees of freedom, and three inputs, makes the serial manipulator redundantly 

controlled. This means that the same output coordinates can be obtained with different sets of input 

coordinates. The situation becomes clearer when looking at the two kinematic constraint equations 

corresponding to general form (2.5). Doing the forward kinematic analysis for the serial manipulator, 

gives expressions for the output coordinates in terms of the input angles (8 j , i = 1,2,3): 

x=4cos8, +2cos(8, +8z)+cos(8, +82 +83 ) 

(2.14) 
y =4sin8, + 2 sin (8 , +8J+sin(8, +82 +83 ) 

Having two equations in three variables results in the existence of multiple solutions for a particular 

choice of (x, y) . 

Rewriting equation (2.14) in the general form (2.5), gives: 

<I> (n, v) = [u, - 4 c~s(v, ) - 2c~s(V , + V 2) - c~s(V , + V 2 + V 3 )] 0 
(2.15)

4 Sill (v 1)- 2 Sill (v , + v 2)-Slll(V ,+ v 2+ vJu 2 

from which explicit expressions for u follows: 

u(v) =[4 cos( v , )+ 2 cos( V I + V 2 )+ COs(v, + V 2 + V 3 )l 
(2.16)

4 sin (v I )+ 2 sin (v I + V 2 )+ sin(v , + V 2 + V 3 ) J 

The inequality constraints given by expression (2.13) can be written in the standard form (2.2): 

(2.17) 


Notice that the serial manipulator can be classified under Case (ii) of Section 2.3. Expressions (2.17), 

(2.16) and (2.15) which were specifically derived for the serial manipulator, correspond to the general 

expressions (2.2), (2.9) and (2.5). The boundary aA of the accessible set of the serial manipulator may 

therefore be numerically determined by applying the basic methodology described in Section 2.4 and in 

which optimization Problem (ii) of Section 2.3 is successively solved. 

The specific constrained optimization method used in solving the optimization problems is the dynamic 

trajectory method of Snyman [37], [38] for unconstrained optimization, applied to penalty function 

formulations (Snyman et al. (39], Snyman [40]) of the constrained problems. The particular computer 

code used is LFOPCV3 (Snyman [40]). 
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2.5.3 Discussion of Results for the Planar Serial Manipulator 

2.5.3.1 Outer Accessible Workspace Boundary 


Figure 2.5 shows the outer accessible workspace boundary obtained. 


y 

\ 

(, 

4 

IJ 

-2 

-4 

Figure 2.5 Boundary of the accessible output set of the planar serial manipulator. 

With the workspace being symmetrical about the positive X-axis, only the top half is computed. The 

radiating point for determining the workspace is chosen to be at the origin of the global coordinate 

system, i.e. UO = [0, O]T _ This choice for the radiating point allows for the separation of the outer 

workspace boundary into a far and a near boundary. 

Looking at only the top half of the accessible output set, it is clear that the near and far boundaries are 

smooth curves, which meet at an extreme point A. The working point of the serial manipulator will be at 

this extreme point A, if the input angles take on their respective maximum values, i.e. Vi =v;nax for 

i =1, 2, 3. The output coordinates of point A are determined by substituting these maximum values of Vi 

in equation (2.16), resulting in u A = [0.0, 5.1962]T. 

For the top half, the outer boundary is mapped by successively solving optimization Problem (iiJ for 

successive rays emanating from the radiating point Uo which, for the far boundary, is effectively an 
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interior point. The maximization is carried out for successive search directions Si' i = 1, 2, ... , N , each 

corresponding to a radiating angle 'Vi. Here 'VI 0 and 'VN =rc/2, with the other angles suitably and 

monotonically spaced in between. Clearly 'V N rc/2 corresponds to the ray passing through uA. 

As soon as the point A is reached, Problem (iiJ becomes a minimization problem since, for the mapping 

of the near boundary, UO is now an exterior point. The inner boundary is now mapped by successively 

carrying out the minimization, but now for successive angles decreasing from 'VI' =rc/2 and 'VN' = O. 

The bottom half of the workspace boundary is simply a mirror image of the top half. 

In the mapping, depending on the curvature of the workspace boundary, provision is made for adjusting 

the angular interval between rays so as to ensure sufficient accuracy. 

Haug et al. [12] not only manage to determine the accessible workspace boundaries of the serial 

manipulator, they also describe the behavior of the manipulator associated with different curves of the 

workspace. Their method enables them to find the bifurcation points located within, and on the 

boundaries of the accessible output set. These bifurcation points are numbered, and each curve 

connecting two bifurcation points is "described" with reference to those input variables that remain 

fixed, and those input variables that vary as the manipulator advances along the specific curve. 

Here, an alternative and more concise notation for labeling the bifurcation points and boundary curves is 

proposed. This should facilitate the discussion of the results. 

The serial manipulator working point P will coincide with a bifurcation point if all the input angles are 

fixed at (usually) either their maximum or minimum allowable values. If for each input angle 

( 8 i , i = 1, 2,3 ), the state is indicated by setting Xi := 0 for the minimum allowable value and Xii for 

the maximum allowable value, then the configuration of the manipulator at a specific bifurcation point 

may be indicated and labeled by a triplet enclosed in round brackets, (X I X2 X3)' Thus point A in 

Figure 2.5 where all three input angles have maximum values is, for example, labeled by (1 1 1). 

The boundary curves may be labeled in a similar manner. Usually, as one moves from one bifurcation 

point to the next along a particular boundary curve, the value of one of the input angles, say j, varies 

from one extreme bound to the other. This may be indicated by setting X j := - and Xi := 0 or 1 for 

i "# j ,depending on whether input angle i assumes a minimum or maximum value. The curve may 

therefore be labeled by a triplet enclosed in square brackets, [X I X2 X3]' 
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On closer inspection of the results for the far boundary aA in Figure 2.5, three distinct curves are 

identified. Along curve ac the serial manipulator is stretched and the three links form a straight line. 

The working point will advance along this curve as it moves on an arc of radius = 4 +2 +1 = 7 , with 

center of radius at the origin of the global coordinate system. 

The proposed notation for labeling the boundary curves and bifurcation points is slightly modified to 

accommodate curves and points where the input variables take on fixed values other than the extreme 

values corresponding to bounds. 

Curve ce is labeled [- 0.0 0.0] indicating that input variable VI varies between its minimum and 

maximum values, while input variables V2 and V3 both remain fixed at 0.0. The top half of curve ce 

[- 0.0 0.0] is curve ac, where input variable VI varies between zero and its maximum value. Point c is 

labeled as (1 0.0 0.0) indicating that v' = [v;nax ,0.0,0.0r while point a is labeled (0.0 0.0 0.0) 

indicating that v" [0.0,0.0,0.0f. The global coordinates of point c are u' = [3.5, 6.0622r. The 

bottom half of curve ce [- 0.0 0.0] is curve ae where input variable VI varies between zero and its 

minimum value, while V2 and V3 remain fixed at 0.0. Point e is labeled (0 0.0 0.0) indicating that 

ev' =[v~in,O.O,O.Or ,andtheglobalcoordinatesofpointeare u =[3.5, 6.0622f 

With v I fixed at v ~;IX = 1t/3, the working point will map the curve cd [1 0.0] as it moves on an arc of 

radius = 2 +1 =3 with the center of radius coinciding with the position of revolute joint 2. The mirror 

image of curve cd [1 0.0] is curve ef [0 - 0.0], where VI is fixed at v~'in -1t/3. Finally with input 

variables VI and V2 both fixed at their maximum values, curve dA [1 1 -] lies on an arc of radius =1 , 

with center of radius situated at revolute joint 3. It follows that the mirror image of curve dA [1 1 -] is 

curvefD [0 0 -], where input variables VI and V2 both fixed at their minimum values. 

The inner boundary of the workspace is an arc of radius =5.1962 which joins bifurcation points A and 

D. The arc radius is the shortest possible distance from the global coordinate system origin to the 

working point, and can be obtained with both input variables V2 and V3 either at their maximum, or 

minimum values. Curve AD in fact consist of two overlapping bifurcation curves AC [- 1 1], and BD 

[- 0 0]. The global coordinates of any bifurcation point can easily be determined from equation (2.16). 

Clearly in this specific case, the near boundary could have been obtained by a simple and obvious 

geometrical construction, rather than by the general optimization mapping used here. 
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2.5.3.2 Curves Connecting Bifurcation Points 

For the serial manipulator under consideration, four bifurcation points are situated inside the workspace 

boundaries, namely points E, F, G and H as shown in Figure 2.6. 

y 

J 

2 

·2 

-4 

A 
(Ill) 

tI ~OOJ){W) 

Figure 2.6 Interior bifurcation points and curves of the pLanar serial manipulator. 

Figure 2.6 also shows interior curves connecting these bifurcation points. For clarity, a magnified view 

of the upper segments is shown in Figure 2.7. The interior curves connecting the bifurcation points, are 

mapped using forward kinematic analyses. Taking curve AdE [1 1 -] as an example: M points along 

curve AdE [1 1 -] can easily be mapped by setting v I V ~ax , V 2 :::: V ~a, and v3 v j , where 

vJ==vm""_ (Vm"'_V min )
33 3 3M 

and solving for each setting j, j =0, I, 2, ...,M equation (2.16) directly to give the corresponding output 

coordinates u(v). 
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Figure 2.7 Magnified view of upper part of boundary and bifurcation curves of planar serial manipulator. 

Curve cg [I - 0.0] does not connect any bifurcation points, but is the interior extension of the second 

arc de on the far boundary described in Section 2.5.3.1. The mapping of this curve is done in a similar 

manner to that described for curve AE above. Curve ej [0 - 0.0] is the mirror image of curve cg 

[1 - 0.0]. 

The final two interior paths to be dealt with, are path hi and path klmn also reported by Haug et al. [12l 

Path hi lies on an arc with radius == 6.64575, and center point at (0.0, 0.0). The radius is obtained by 

solving optimization Problem (ii) with -n13 =v~in 5. Vi 5. v~ax =nl3 for i == 1 and 2, and 

Here it was noticed that with variation in the search direction, VI varies, but V2 remains constant at the 

value v 2 =-0.3335. If V3 is fixed at v 3 == v~ax = n13, then carrying out the optimization for different 

search directions, VI varies again but V2 takes on the constant value v2 = +0.3335. The respective 

computed curves hi [- -0.3335 1] and ih [- +0.3335 I] coincide as shown. 

Path klmn is computed similarly and lies on an arc of radius 6.2915. This curve consists of two partially 

overlapping curves km [- 1 -0.714], and in [- 1 +0.714] as shown in Figure 2.6. 
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It should be stated that the respective constant values (0.3335 and 0.714) assumed by V2 for the curves ih 

and in differ slightly from that (0.3241 and 0.7499) reported by Haug et al. [12]. 

2.6 APPLICATION TO THE PL ANAR STEWART PLATFORM 

In the remaining part of this study, the emphasis falls on Stewart platform workspaces, and specifically 

how the optimization approach is utilized in analyzing and characterizing the different workspaces. Th!s 

section deals with determining the exterior boundaries of the accessible workspace of a planar Stewart 

platform, as well as finding the bifurcation point connecting curves. 

2.6.1 Geometry of the Planar Stewart Platform 

The geometry of the planar Stewart platform considered here is taken from Haug et al. [12], and is as 

shown in Figure 2.8. 

Leg 3 

3 

Figure 2.8 Planar Stewart platform. 

The moving upper platform is connected to the fixed base via three linear actuators such as, for example, 

hydraulic cylinders. The base can in general be fixed in any orientation but in this case it is fixed 

horizontally. The global coordinate system was chosen to be on the base, with the origin midway 

between joints C and D, and with the directions of the axes as shown in Figure 2.8. 

The lower ends of the actuator legs are connected to the base at points C, D and E with respective global 

coordinates (-1,0), (1,0) and (2,0). The upper ends of actuator legs 1 and 2 are both connected to the 

left hand side of the top platform at point A. Actuator leg 3 has its upper end connected to the right side 
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of the top platform at B. The working point P is at the center of the top platform at global position 

(x, y) with the platform making an angle cp with the horizontal. 

Each of the three actuator legs is a variable length linear actuator with its length indicated by 

l;, i 1, 2, 3. There are limitations on the maximum and minimum lengths of linear actuators, and 

therefore the accessible region of the working point P is determined by the constraints on the actuator 

lengths which are formally expressed as: 

0< rmm ~ l < lmax (2.18) 
I I I 

for i = 1, 2, 3 

The actual leg length limits that are used, are the same as the limits specified by Haug et al. [12], and are 

given in Table 2.1. 

Legi ltlln ltax 

i 1 ~ 2 

2 ~ 2 

3 1 J3 

Table 2.1 Minimum- and maximum lengths of the actuator legs. 

2.6.2 Constraint Equations of the Planar Stewart Platform 

Clearly for the planar Stewart platform, and with reference to the definitions given in Section 2.2, the 

actuator leg lengths are the input variables, i.e. v = [11' 12,13]T , on which the inequality constraints (2.18) 

are imposed corresponding to the general constraints (2.2). The global coordinates of the working point 

are the output variables, i.e. u =[x, yr. The rotation angle cp of the top platform is the one and only 

intermediate coordinate, Le. w =cp. Here, no inequality constraints of the general form (2.3), are 

imposed on the intermediate variable w. 

The generalized coordinates (2.4) for the Stewart platform are given by 

(2.19) 
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This system clearly has three degrees of freedom, since the configuration of the system is uniquely 

defined by any three of these coordinates. This implies the existence of three kinematic constraint 

equations of the form (2.5), specifying the interrelationships between the coordinates. 

From the geometry shown in Figure 2.8, the inverse kinematics may easily be performed to give the 

actuator lengths in terms ofx, y and <p: 

112 =(x - cos<p + lY + (y sin <p)2 

l~ = (J - x + cos <p y+ (y - sin <pY (2.20) 

I: =(x + cos <p 2Y+ (y sin <pY 

The above may be rewritten in the standard form (2.5) for the constraint equations as: 

(2.21) 

from which the explicit expressions for v follow: 

(2.22) 


Inequalities (2.18) may also be written in the standard form: 

(2.23) 


and v = v(u, w)as given by (2.22) 

Now expressions (2.23), (2.21) and (2.22) for the planar Stewart platform, clearly correspond to Case (i) 

of Section 2.3 , specified in general by expressions (2.2), (2.5) and (2.8). 

The method used to determine the boundary aA of the accessible output set for the planar Stewart 

platform is similar to the method used for the serial manipulator. The only difference is that for the 

planar Stewart platform optimization Problem (i) is successively solved. The computer code LFOPCV3 

[40] is again used to solve the optimization problems. 
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Note that here there is no explicit restriction (2.3) on w. This implies that there are no limitations on the 

orientation angle of the top platform, therefore the workspace boundary is solely dependant on the 

limitations imposed on the actuator leg lengths. This is called the accessible or reachable workspace 

defined by Kumar [11) as the "volume or space within which a reference point on the hand or end 

effector of a manipulator can be made to coincide with any point in the volume or space". 

2.6.3 Discussion of Accessible Workspace Results for the Planar Stewart Platform 

2.6.3.1 Outer Accessible Workspace Boundary 

The computed outer boundaries of the accessible workspaces for two different situations are shown in 

Figure 2.9 and Figure 2.10. For the cases depicted here, the boundary mapping was done at intervals of 

0= 5' (see Figure 2.2). 

Figure 2.9 shows the boundary of the accessible output set of the standard planar Stewart platform for 

which the limits on the actuator lengths, given in Table 2.1, are such as to prevent a singular 

configuration from occurring. Such a singularity will occur if the upper platform is allowed to take on a 

position that is collinear with any ofthe actuators (Haug et aI. [41)). 
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Figure 2.9 Boundary of the accessible output set of the standard planar Stewart platform (1:::; I, :::; /3) . 

The methodology described in Section 2.4, represented by the least squares problem (2.11), is used to 

find the central radiating point for the planar Stewart platform. The central point for the standard planar 

Stewart platform is Ull =[0.99996 1.374791Y. 
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[1-1] 

Figure 2.10 shows the results for the modified planar Stewart platform, where the limitations on actuator 

leg 3 is relaxed to 1:S; 13 :s; 3. This was also done by Haug et al. [12] to allow for collinearity to occur. 

The central radiating point for this second situation is UO == [0.95169 1.69061Y . 
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Figure 2.10 Boundary of the accessible output set of the modified planar Stewart platform ( I ~ l, ~ 3 ). 

One notices that the boundary of the workspace for the standard case is defined by six smooth curves 

intersecting at distinct comers A, B, C, D, E and F. On closer inspection of the results, it becomes clear 

that one may easily relate the various curves of the workspace boundary to the behavior of the Stewart 

platform. This was indeed done by Haug et al. [12] in identifying the comers as bifurcation points and 

numbering them. The individual boundary curves were then labeled according to the numbers of the 

bifurcation points they connected and the variation of the actuator lengths were tabulated for each curve. 

With reference to Section 2.5.3.1 the newly proposed notations for labeling the bifurcation points and 

boundary curves are also applied here to describe the workspace of the planar Stewart platform. 

Labeling the bifurcation points in the proposed manner indicates which actuator legs are at their 

minimum values, and which assume their maximum lengths when the manipulator working point 

coincides with any specific bifurcation point. Thus point A in Figure 2.9 and Figure 2.1 0, where all three 

legs have maximum values is, labeled by (1 1 1). The other boundary bifurcation points of the standard 

planar Stewart platform are similarly labeled as shown in Figure 2.9. 
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Similarly, the square bracket triplets with which the boundary curves are labeled, indicate which legs 

remain fixed at either their minimum or maximum bounds, and which legs vary from one extreme to the 

other as the manipulator working point moves from one extreme to the other. Consider, as an example, 

boundary curve AB connecting bifurcation point A (1 1 1) to bifurcation point B (1 0 I) in Figure 2.9. 

This curve is labeled by [1 - 1], indicating that legs 1 and 3 remain fixed at their respective maximum 

lengths, and leg 2 varies from its maximum length (working point coinciding with A) to its minimum 

length (working point coinciding with B). The other boundary curves are labeled in a similar manner. 

The precise mapping of the bifurcation point comers is done by, having identified through the boundary 

mapping procedure the three active constraints at the corner, then minimizing Ilv(u, w) v" r with 

respect to u and w, where va corresponds to the leg lengths associated with the three identified equality 

constraints. This bifurcation point mapping is automatically done by the computer code as it maps the 

boundary. 

The results for the modified planar Stewart platform is qualitatively the same as for the standard 

platform, except that for the modified case there is only five smooth boundary curves with bifurcation 

point B (1 0 1) lying inside the workspace. Here the two smooth boundary curves AB and BC of the 

standard case blend into a single smooth boundary curve A C, which consists of three parts: AA' [1 - 1], 

A'e [1 - ], and C C [1 0 -]. It is clear that along A'e the platform is stretched to be collinear with 

actuator leg 1 so that only the single constraint II =It''" is active. 

The point A' may be determined in a manner similar to the way in which the corner bifurcation points 

were obtained by minimizing, with regard to u and v, the following error function: 

(2.24) 

The first two terms of error function (2.24) correspond with the two active constraints at A' and the last 

term to the collinearity condition which also applies at A'. Similarly, point C is determined by setting 

vl(u,w)=v~a" V2(U,W)=v~lin and u z =(u l +l)tan(w). In both cases the optimization code 

LFOPCV3 [40] reduces the error value to zero, giving the desired solutions. 

A comparison between the workspace boundaries obtained and depicted here, with the results of Haug et 

al. [12], shows that equally accurate results are obtained with relative ease using the basic optimization 

approach. 
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2.6.3.2 Curves Connecting Bifurcation Points 

From further inspection of Figure 2.9 and Figure 2.10, it is apparent that in the standard case only six, 

and in the modified case only five of the eight bifurcation points occur on the boundary. The remaining 

two points for the standard case are G (1 1 0) and H(0 0 1), and occur in the interior. For the modified 

case point B(1 0 1) is also an interior point. These interior bifurcation points, at which in each case 

three constraints are active, may be determined in exactly the same manner as previously described for 

the boundary bifurcation points. For the standard case bifurcation points G and H almost coincide in the 

u plane. The precise respective coordinates are: 

forG(ll 0), u 1 =0.92857151, u 2 1.3608971, w -0.38025119 

andforH (0 0 1),u, =0.93166249,"z =1.363325, w 0.37183426 

These results are exactly the same as those given by Haug et al. [12]. 

To complete the picture, interior curves connecting boundary bifurcation points to interior bifurcation 

points, and along which only one of the actuator lengths is allowed to vary, were also computed. These 

interior curves are of importance since, according to Haug et al. [42], limits on controllability of the 

planar Stewart platform are associated with configurations lying on the interior curves. 

The method of mapping the interior curves is described with reference to the representative curve 

connecting boundary bifurcation point A (1 1 1) to G (1 1 0). Along this curve [1 1 -], v, = v;nax , 

V 2 =v~ax and V3 varies between v~ax and v~in. M points along this curve may be mapped by 

successively solving, for j =1,2,3, ... , M , the following set of non-linear equations: 

v, (u, w) - V ~ax = 0 

vz(u,w) V~"IX=O 

v,(u, w)-v~ =0 (2.25) 

where vi =vmux_L(v""'" _ vOlin)
3 , M 3 3 

This may readily be done by minimizing the sum of the squares of the residual errors, again using the 

LFOPCV3 optimization code. For clarity, the computed interior curves are shown separately on Figure 

2.11 and Figure 2.12 for the two individual platforms. 
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Figure 2.11 Computed curves for the standard planar Stewart platform ( I :::; lJ :::; J3 ). 

A final matter of interest concerns paths FH [0 - 1] and HD [0 0 -] for the modified planar Stewart 

platform shown in Figure 2.12. Along each of these paths there are respective points F and D' at which, 

with leg I at its minimum position, a collinear and singular configuration is assumed. These points F 

and D' are computed in a manner similar to the determination of A' and C' described in Section 2.6.3.1, 

but now with v l = V ~ill. The circular arc F D', of radius I + J2 and center at global coordinates 

(x, y) =(- 1, 0), therefore designates the path of the working point when the planar Stewart platform 

assumes a collinear configuration with actuator leg 1 at its minimum position. 

This concludes the presentation of the accessible workspace results for the planar Stewart platform. 

From an implementation point of view, it is important to state that all the techniques described here, and 

used to generate the workspace boundary and bifurcation curves, are integrated in a Fortran computer 

code PLANSTEW that is easy to use. The user specifies the limits on the leg lengths, and the code then 

automatically computes and plots the accessible workspace boundaries, as well as the curves connecting 

the bifurcation points situated on the outer boundary with those situated inside the accessible output set. 

The code PLANSTEW is available from the author on request. The details of the code is explained in 

Appendix A. 
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Figure 2.12 Computed curves for the modified planar Stewart platform ( I ~ I; ~ 3 ). 

Note that nothing has been said about the values that the orientation angle <p assumes within the 

workspace. While determining the boundaries of the accessible workspace, the main interest is the 

maximum aJlowable displacement from the radiating point UO irrespective of orientation. The value of 

the orientation angle <p is only a concern if it is apparent that the top platform assumes a flipped 

configuration where interference of the legs with each other becomes a possibility. 

The next section deals with determining the dexterous workspace of the planar Stewart platform, where 

the orientation angle plays a primary role. 

2.6.4 Determining the Dexterous Workspace of the Planar Stewart Platform 

2.6.4.1 Introduction 

The dextrous workspace of a parallel manipulator is defined by Haug et al. [8] as: "(the boundary of) the 

set of points that can be reached by a given point on the working body and at which specified ranges of 

rotation of the working body can be achieved." Clearly the dextrous workspace is not unique but 

depends on the specified ranges of rotations. It is also apparent that for any non-zero range of 

orientations the dextrous workspace will be a subset of the accessible workspace. 
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Haug et al. [8J explain that it is important to distinguish between the dexterous workspace and the 

accessible workspace of a manipulator. The literature often discusses the "workspace" of a manipulator, 

yet it often happens that the manipulator cannot "work" while following a continuous path within this so 

called workspace [43, 44J, because it is essentially an accessible rather than a dextrous workspace and 

contains points at which no range of rotation is possible. 

From the definition of a dextrous workspace it follows that for any given manipulator, a range of 

dextrous workspaces exists. Once the dexterity requirements for the manipulator are stipulated, the 

dexterous workspace within which the specific dexterity requirements are satisfied, can be determined. 

Adjusting the dexterity requirements will obviously result in a completely different dextrous workspace. 

Haug et al. [8] mention that dexterity requirements for a manipulator are often stated in terms of ranges 

of mobility, normally rotatability, that must be achieved at each point in the desired accessible output set. 

For the planar Stewart platform under consideration, any range of rotatability will be specified with 

relation to the orientation angle q> of the top platform, i.e. q> must be able to assume all values in the 

range [q>min - q>max ] at any point in the associated dextrous workspace. 

With the orientation angle q> of the planar Stewart platform defined as the intermediate coordinate w 

( w =q> , see Section 2.6.2), one may naively expect that any such dexterity requirement can directly be 

translated to inequality constraints imposed on the intermediate coordinate of the form. 

(2.26)w min :s;w:s;w max 

Seeing that expression (2.26) corresponds to expression (2.3), it is possible to solve optimization 

Problem (i) with the additional inequalities as given by expression (2.26). With reference to Section 2.3 

this would imply maximizing the displacement from the radiating point U
O with inequality constraints 

imposed in both the actuator leg lengths (input coordinates) and the orientation angle of the top platform 

(intermediate coordinate). 

The optimum solution to this problem (maximum displacement from uo) does however not yield points 

at the boundary where all orientations in the range [<Pm;n - <Pmax] are possible. In fact in general one may 

expect only one possible orientation in the range at a specific boundary point, and therefore the boundary 

thus obtained will not coincide with the boundary of the dextrous workspace for [q> min - q> max]' 
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In order to compute the dextrous workspace for the range [<p min - <P max ], denoted by A [<p min <P max]' it is 

necessary to first consider the fixed orientation accessible workspace A [<PliX]' 

2.6.4.2 The Fixed Orientation Accessible Workspace of the Planar Stewart Platform 

Consider the situation where a single dexterity requirement needs to be defined for the planar Stewart 

platform. This is the case where the accessible workspace for a fixed orientation of the moving platform 

is to be determined. Such afixed orientation requirement is expressed as an equality: 

(2.27)
<P = <Pfixoo 

and the associated accessible workspace is denoted by A [<pr.x]' 

Equation (2.27) is in actual fact an equality constraint fixing the value of the intermediate coordinate, i.e. 

w = (2.28)w fixoo 

If, instead of the additional inequality constraints (2.26), an additional equality constraint (2.28) is added 

to optimization Problem (i), the optimum solution will correspond to a position where the fixed 

orientation requirement is achieved. The modified optimization Problem (i) is: 

Modified Problem (i): 

maximize 
u,w 

maxsuch that: vmin:;; v(u, w):;; v 

h(u,s) =0, hE R nu 
-
I 

and subject to equality constraints: 
W=W lix 

Solving the modified problem yields a point on the boundary of the fixed orientation accessible 

workspace. The complete boundary of A [<Pnx] may now be numerically mapped as before, by solving 

the modified problem for successive rays emanating from UOat angular intervals b (see Figure 2.2). 

2.6.4.3 Computed Fixed Orientation Accessible Workspaces of the Planar Stewart Platform 

The fixed orientation workspace A[O·] where the top platform is fixed in a horizontal orientation, i.e., 

<P = <Plixoo = 0* , is shown in Figure 2.13. The angular unrestricted accessible workspace is shown for 
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comparison purposes. The fixed orientation workspace is clearly a proper subset of the accessible 

workspace. 

y 

OA 0.6 0.8 1.0 1.2 lA 1.6 

Figure 2.13 Fixed orientation workspace A[O"] inside the unrestricted accessible workspaceA. 

As an extension to the proposed labeling notation (see Sections 2.5.3 and 2.6.3), the bifurcation points 

and boundary curves of the fixed orientation accessible output set A[O·] are also labeled. Here the 

labeling notation is slightly modified to include the specification of the fixed orientation (j) =0" . 

The mapping of each of the four boundary curves is characterized by the active "search direction" 

equality constraint, the active "fixed orientation" equality constraint and also a single active inequality 

constraint. This means that only one actuator leg is at an extreme length as the working point advances 

along the fixed orientation boundary curves shown in Figure 2.13. 

Each of the four bifurcation points therefore correspond to the position of the working point with at least 

two legs at extreme lengths. Consider for example bifurcation point BIf, which is labeled 

(1 0 -) (j) 0". This label indicates that for the dexterity requirement (j) =0', the working point 

coincides with bifurcation point B" if II =11 
m

", and 12 l;in. The length of actuator leg 3 is detennined 

by the fixed orientation (j) =0' . 

As a result of the choice of leg length limits, the top platform is horizontal when it is in its highest 

possible and lowest possible positions. This is why bifurcation points A" (1 1 -) <p =0' and 
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C"(O 0 -) <p=0° in Figure 2.13 respectively coincide with bifurcation points A(1 1 1) and 

C(O 0 0) in Figure 2.9. The choice of the actuator leg length limits allows labeling bifurcation points 

0

A" and C" as: A" (1 1 1) <P =o· and C' (0 0 0) <P =0 • 

The fixed orientation boundary curves are labeled in a similar manner. Boundary curve A"B" is, for 

example, labeled [1 - -] <P =0' showing that II = llmax as the working point advances along this 

curve. Actuator leg 2 varies from its minimum length at bifurcation point BN to its maximum length at 

bifurcation point A", and once again, 13 is determined by the fixed orientation <P =0°. The other 

bifurcation points and boundary curves are similarly labeled (see Figure 2.13). 

2.6.4.4 Using Fixed Orientation Workspaces to Determine a Dextrous Workspace 

The mapping of the fixed orientation workspace may now be extended to determine the dextrous 

workspace A[<Prnm - <Pm",,] where the dexterity requirement is: 

(2.29)<P to assume all values in the range [<Pmin - <Pm"x] at any point in the dextrous workspace 

It should be clear that A [<Prnin <Pmax] is given by the intersection of all possible A [<Pnx ], 

<PD' E [<Pmm - <Pm..]' Since it is expected that A[<PfJ varies in a "continuous" manner with <Pfix' the 

reasonable assumption is now made that A[<Pmill <Pm",,] may be obtained by simply considering the 

intersection of the extreme fixed angle sets, i.e. 

(2.30) 

The validity of assumption (2.30) may in practice be reinforced by checking whether at the intennediate 

central value, <Pi' the following condition is satisfied: 

(2.31) 


where <Pi = (<Pm!1l + <Pm"x )/2. 


{Indeed for the examples considered here condition (2.31) is more than satisfied see Figure 2.13 where 


A[<pJ =A[0' ].} 

Thus, if the orientation of the top platfonn is fixed to the minimum value as specified in the fixed 

orientation requirement, i.e. <P <Plixctl = <Pmin' the minimum fixed orientation workspace A[<Pmill] is 

mapped. Next the maximum fixed orientation (<p = <Pl1xetl = <Pm,,) set A [<Prnax ] is mapped. The 

intersection or overlapping area is the dextrous workspace A[<Pmm - <Proax] within which the full dexterity 

requirement (2.29) is met. 
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2.6.4.5 Computed Dextrous Workspace 

As an example of the application of the above methodology, consider the following rotatability 

requirement for the top platform of the planar Stewart platform: 

(j)to assume all values in range [(_10')_(10°)] at any point in A[C-I0") (10°)] 

The minimum fixed orientation workspace A[-lO'] and maximum fixed orientation workspace A[10·] 
are shown in Figure 2.14. The intersection or overlap of these two workspaces gives the dextrous 

workspace A [(-] 0°) - (10' )], indicated by the shaded region, within which the full range rotatability is 

achieved. 

BH/(O 

[0 - -] <p =10" 

[-I-]<p=-I0° 

[0 - -] <p -100 

--- Boundary ofA[100] 


Boundary of A[-IOO] 


Boundary of reachable workspace A 


Figure 2.14 Dextrous accessible output set Ak-lO') - (I 0')]. 

In accordance with the work of Haug et al. [8], the boundaries of the dexterous accessible output sets for 

which (j) achieves the full ranges [(-Y)-(Y)], [(-10')_00')] and [(-IY)-(15')] of rotatability 

are respectively shown in Figure 2.15. These boundaries are plotted together with the boundaries of the 

fixed orientation workspace A[O'] and of the orientationally unrestricted workspace A. 

67Chapter 2 

 
 
 



AN OPTIMIZATION APPROACH TO THE DETERMINATION OF PLANAR MECHANISM WORKSPACES 

y 

I
1.8 

1.6 

1.4 

1.2 

LO 

0,4 0.6 0.8 1.0 1.2 1.4 1.6 

Figure 2.15 Dextrous accessible output sets for different full-range rotatability requirements. 

Figure 2.15 correspond exactly to the results obtained by Haug et al. [8], and when analyzed, the results 

confirm the accuracy of the method proposed here. 

The orientationally unrestricted accessible workspace is, as expected, bounded by the exterior boundary 

dA shown in Figure 2.15. For each search direction, the top platform is "displaced" further and further 

away the radiating point nO, as far as the leg length limits allow. It follows that for each point along the 

boundary of the reachable workspace, the orientation of the top platform depends on the extreme lengths 

of the two "active" actuator legs of that search direction. 

As soon as the orientation of the top platform is fixed the maximum displacement from nO is limited by 

the first actuator leg reaching its extreme length. This explains why the fixed orientation workspaces 

A[<PfiX] are smaller than the unrestricted accessible workspace. Forcing the orientation of the top 

platform to remain fixed, prohibits any further rotation of the top platform. With no orientation limits 

imposed, the top platform can be tilted differently for each search direction, allowing for a maximum 

displacement from nO which corresponds to an orientation with more than one actuator leg reaching its 

extreme value. 
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2.7 CONCLUSION 

The optimization approach presented in this chapter successfully determines the workspaces of the 

planar manipulators investigated here. It is evident that this new optimization approach represents a very 

promising general tool for determining and analyzing manipulator workspaces. Computing the 

boundary of the workspace using the optimization approach allows the various sections of the workspace 

boundary, to be related to the behavior of the manipulator. 

A new and concise notation for labeling the different bifurcation points and curves is also introduced 

here. It is believed that this, in general, greatly facilitates the description of the behavior of mechanisms 

within and on the boundary of the associated workspaces. 

The computer code PLANSTEW demonstrates the ability to automate the process to allow the user to 

automatically map both outer boundaries of the accessible output sets and interior curves. The interior 

curves represent configurations at which controllability or mobility of the manipulator may be limited. 

As far as the dextrous workspace is concerned, the approach proposed by Haug et al. [8] can successfully 

account for full range rotatability requirements of closed loop manipulators. However, one of the 

concluding remarks of Haug et at. is: " ...the computations that result in solving the necessary conditions 

of the boundaries of the accessible output sets, however are shown to be tedious even for the planar 

manipulators studied". In contrast, the approach presented here may easily be implemented and 

automated. 

The optimization approach also accounts for the full range rotatability requirements, and because the 

dexterity requirement is simply treated as an additional equality constraint, the dextrous accessible output 

set is easily mapped. 

In the next chapter, the optimization approach, a<; developed here for planar manipulators, is extended to 

apply to a six-legged spatial Stewart platform. 
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Chapter 3 

3 THE DETERMINATION OF THE ORIENTATIONALLY 

UNCONSTRAINED SPATIAL MANIPULATOR WORKSPACES 

3.1 INTRODUCTION 

The methodology proposed for, and applied to the determination of the workspaces of planar 

mechanisms in Chapter 2 may readily be extended to apply to spatial mechanisms, such as the Stewart 

platforms considered by Haug et aL [12] and Liu et at [18]. 

Taking the 6-3 Stewart platform of Liu et al. [18] as a representative example, the "planar" optimization 

approach, developed in Chapter 2, is used in this chapter to map three-dimensional workspaces of this 

six-DOF manipulator. The geometry of this 6-3 Stewart platform is shown in Figure 3.1. 

Z 

.~--------~~~y 

fl 
X 

Figure 3.1 Geometry of the 6-3 Stewart platform. 
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The workspaces to be considered in this study are: 

(i) the orientationally unconstrained reachable workspace A, with boundary denoted by aA, 

(ii) the fixed orientation workspace A [afix ' ~lix' YIiX] , with boundary indicated by aA [alix ' ~lix' Yftx]' and 

(iii) an example of a dextrous workspace A [aliX ' ~ftl( , Ymin Ymax]' with boundary 

aA [anx ' ~lix' Ymin - Ym".]· 

The corresponding different types of workspaces, (i), (ii) and (iii), were defined and determined for the 

planar Stewart platform considered in Section 2.6. Case (i) of the 6-3 Stewart platform is dealt with in 

this chapter, while cases (ii) and (iii) are dealt with in Chapter 4. 

3.2 GEOMETRY OF THE 6-3 STEWARTPLATFORM 

As for the planar Stewart platform described in Section 2.6.1 the spatial Stewart platform also has a 

moving upper platform, as well as a fixed base. The base is a semi-regular hexagon, which in this case is 

also fixed in a horizontal position, while the upper platform is an equilateral triangle. 

Figure 3.1 shows the global coordinate system fixed at the center of the base with the global Z-axes 

pointing vertically upwards. The working point P of the spatial Stewart platform is at the centroid of the 

upper triangular platform. 

The spatial Stewart platform has six linear actuator legs connecting the moving upper platform, to the 

fixed base. The bottom ends of the actuator legs are connected to the six vertices of the base, while the 

top ends of the legs are connected to the three vertices of the upper platform as shown in Figure 3.1. The 

base platform connections are ball-and-socket (spherical) joints, while the moving platform connections 

are gimbals. Fichter [17] proposed these gimbals as described in Section 1.4. This arrangement is 

referred to as a 6-3 Stewart platform (see Section 1.4). 

Varying the lengths of the linear actuators, indicated by Ii, i 1, 2,... ,6, will not only change the position 

of the upper platform, but also its orientation, adding up to the six DOF of the manipulator. 

Adopting the definitions of Liu et al. [18], the position of the upper platform is given by the global 

coordinates of the working point P denoted here by (x, y, z), and the orientation of the upper platform is 

given by the orientation angles (a,~, y). Liu et al. explain the orientation angles as, firstly rotating the 

top platform about the OX-axis through an angle a, then about the OY-axis through an angle ~, and finally 
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about the axis radiating fonn the manipulator working point and fixed perpendicular to the top platfonn 

through an angle 'Y. 

According to Liu et aL [18], the defined orientation angles have a physical meaning in that the a and ~ 

angles define an "approach vector" of the top platfonn, while the 'Y angle defines the roll of the top 

platfonn about the approach vector. 

As with the planar Stewart platfonn, the orientationaIy unconstrained reachable workspace of the spatial 

Stewart platfonn defines the accessible region of the working point P, and is detennined by the 

limitations on the actuator leg lengths (see Section 2.2). 

The actuator leg lengths are again the input variables, i.e. v =[ll' l2' l3' l4' ls, l6]T on which the 

following inequality constraints, corresponding to expression (2.18) in the planar case (Section 2.6.1), 

are imposed: 

0< Imin sis I~"" 
I I I 

(3.1) 

for i =1,2,3, ... ,6 . 

Liu et aL [18] apply their kinematic analyses to an example where they propose certain dimensions for 

the top and bottom platfonns, as well as for the actuator leg limits. In order for this example to be used 

for comparison purposes in the current optimization approach, the dimensions of the 6-3 Stewart 

platfonn analyzed in this chapter is in accordance with the example of Liu et aI. [18]. 

It is important to note that, although different minimum and maximum leg length limits were prescribed 

for the different legs of the planar Stewart platfonn, here all six actuator legs of the spatial manipulator 

have the same leg length limits, i.e. lim;n =8.0 and (max = 15.0 for i = 1,2,3, ... ,6. The dimensions of the 

top and base platfonns are: a = 10.0, b =15.0 and d = 1.0 (see Figure 3.1). 

3.3 CONSTRAINT EQUATIONS OF THE 6-3 STEWART PLATFORM 

With reference to Section 2.2, the global coordinates of the working point P on the 6-3 Stewart platfonn 

are the output coordinates, i.e. u [x, y, Z]T , and the orientation angles of the upper platfonn, are the 

intermediate coordinates, i.e. w =[a,~, 'Yf'. 
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The defined input, output and intermediate coordinates of the 6-3 Stewart platform correspond to the 

definitions of these coordinates given in Section 2.6.2. This explains the correlation between the 

generalized coordinates of the spatial and planar Stewart platforms. 

The spatial Stewart platform has 12 generalized coordinates compared the 6 of the planar Stewart 

platform. The spatial platform coordinates are: 

q =[uT vT 
WTY 

(3.2) 

The spatial Stewart platform obviously has six degrees of freedom, and the six kinematic constraint 

equations of general form (2.1), are the six equations expressing the length of each leg in terms of the 

position and orientation coordinates. These analytical expressions can readily be found by doing the 

inverse kinematic analysis as described by Liu et aL [18]. These expressions, corresponding to (2.20) for 

the planar case, are as follows: 

II ~(XTl -trr-t::f + (YT1 -fY +Z;, 

l2 =~(XTl -trr+i73f +(YTl -f-tY +Z;I 

I, =~(XT2 +f+i73f +(Yn -t)2 +Z;2 
(3.3)

'4 ~(XT2 +f+i73f +(YT2 +tY +Z;2 

i; =~(Xn -trr+ 21rf +(Yn +f+tY +Z;3 

16 =~(Xn - 2JJ - J) +(Yn +1')2 +Z;3 

where 

Y

X Tl = X+ h. [sin(a)sin(~)sin(y+60")+cos(~)cos(y+60·)] 


T1 = Y + h. cos(a)sin(y+60") 


ZT' =Z+ h. [sin(a)cos(~)sin(y+600)-sin(~)cos(y+60")] 


X T2 x - [sine a)sin(~) sin(y) + cos(~) cos(y)] 


== Y 1:l cos(a)sin(y) (3.4)Yn 

ZT2 =z- [sin(a)cos(~)sin(y) sin(~)cos(y)] 


Xn = x+ 1:l [sin(a)sin(~)sin(y-60")+cos(~)cos(y 60")] 


Y y+ 1:lcos(a)sin(y-60")
n 

ZT3 =Z + [sine a)cos(~)sin(y- 60') - sin(~)cos(y- 60·)] 

In expressions (3.3) and (3.4) a is the length of the sides of the upper equilateral triangular moving 

platform, and band d are respectively the short and long sides of the hexagonal base (see Figure 3.1). 
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Expression (3.3) is written in standard fonn (2.5) as: 

<I>(U v w)= 

where 

v~- (XTI - 2JJ - J) -(YTI -1Y -Z~l 
v;- {x TI - 2JJ +2J-J f - (YT1 1-t Y- Z~I 
v~ (XT2+ +2J-Jf-(YT2-tY-Z~2 
v! (XT2 + JJ + 2JJf -(Yn +tY­

v2 {x _d_+" \2 (y +.!L+.!L)2 _ Z2 
5 T3 z..{j 2J3) T3 2 2 T3 
V~-(XT3 - - }) -(Yn +1Y -Z;3 

o (3.5) 


XTI U 1+ [sin(w , )sin(w 2 )sin(w 3 + 60") + cos(w 2 )cos(w 3 + 60")] 


YTI = li2 + .JJ cos(w 1)sin(w 3 + 60') 


ZTI = u 3 + .JJ [sin(w,)cos(w2)sin(w3+600)-sin(w2)cos(w3+60')] 


u - [sin(w 1 )sin(w z)sin(w )+ cos(w )COS(W )]X T2 1 3 2 3 

YT2 li 2 - .JJcos(wl)sin(w3) (3.6) 


ZT2 =u 3 - .JJ [sin(wl)cos(wz)sin(w 3)-sin(wJcos(w3)] 


X TJ =u 1+ .JJ [sinew 1 )sin(w 2 )sin(w3- 60") + cos(w 2 )cos(w 3- 60')] 


YTJ u 2 + .JJcos(wl)sin(w3-60') 


ZTJ u 3 + .JJ[sin(wJcos(wz)sin(w 3 -60')-sin(w z)cos(w 3 60')] 


from which in turn, given U and w, one may solve for v: 

v = v(u, w) 

~(XT! --63-*' +(YT! -1Y +Z;I 

~(XTI -~+~, +(YTI -1-tY +Z;1 

~(XT2 +*+~, +(YT2 -tY +Z;2 
(3.7)

~(xT2 +*+~, +(Yn +tY +Z~2 
~(XT3 --63+~' +(Yn +1+tY +Z~3 
~(X T3 - IJJ - ~ , + (Yn + fY+ Z;3 

and where XTI , YTh ZTI, XT2 , YTZ, ZTZ, XT}, YT} and ZT} are given by expressions (3.6). 

Finally, (2.1) may more concisely be rewritten as 

rnin v mav ~ V ~ , 

(3.8) 


and v = v(u, w) as given by (3.7) 

Thus expressions (3.2), (3.3), (3.5), (3.7) and (3.8) here respectively correspond to (2.19), (2.20), (2.21), 

(2.22) and (2.23) for the planar Stewart platfonn. 
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The orientationally unconstrained reachable workspace is computed with no limits on the orientation 

angles. As will be discussed in Chapter 4, limitations are of course imposed on the angles when the 

fixed orientation and dextrous workspaces are considered. 

3.4 MAPPING THE ACCESSIBLE WORKSPACE OF THE 6-3 STEWART PLATFORM 

3.4.1 Introduction 

Two options exist by which the reachable workspace of the spatial manipulator can be mapped using the 

basic methodology presented for the planar accessible set (see Section 2.4). 

The first option is to consider the three-dimensional workspace to be represented by a set of horizontal 

slices. For any horizontal slice, Z = Zi' i = 1,2,... , Ns ' the associated two dimensional workspace of the 

working point P may be determined in a manner analogous to that described for the planar Stewart 

platform in Section 2.6.2. A composite of the Ns workspace slices then yields a representation of the 

three-dimensional workspace. 

It follows that, for a particular horizontal slice i, the boundary of the workspace aAj may be mapped by 

solving optimization Problem (i) (see Section 2.3) for successive rays emanating from an interior 

radiating point, but now subject to an additional equality constraint: 

u 3 =Z= ZI (3.9) 

where Zi designates the height of the slice. 

To complete the three dimensional representation of the workspace of the spatial Stewart platform, the 

boundaries aAj of N s slices are computed. This means that for each slice i, the equality constraint 

equation will be assigned as follows: 

max max min )
Zi = Z (Z -z (3.10)

Ns 

for i = 1, 2,... , Ns . 

In equation (3.10), zmin and zm". are respectively the lowest and highest possible positions of the 

working point P measured in terms of the global coordinate system. 

For each height Zj, rays emanating in the XY-plane from an interior radiating point will be maximized to 

determine the boundary aAj of the workspace of slice i. With the global Z-axis pointing vertically 

75Chapter 3 

 
 
 



THE DETERMINATION OF THE ORIENTATIONALLY UNCONSTRAINED SPATIAL MANIPULATOR WORKSPACES 

upwards from the center of the lower platform, the obvious choice for the radiating point of every slice, 

is at the fixed height Zj of that slice, and at the origin of the XY-plane. 

Alternative to taking horizontal slices, the determination of planar workspace boundaries may also be 

carried out for successive vertical planes through the central axis OZ. This option is preferable as it 

avoids, to a greater extent than the first option, complications due to non-convexity. The idea is to avoid 

situations where two boundary points may exist for any specific search direction. 

For each plane i through OZ, there corresponds a unique angle 8i that the plane makes with the OX axis. 

For this plane the relationship Yi / Xi =tan 8 i applies, and therefore in the optimization to determine aA i 

for this plane, equality constraint (3.9) is replaced hy 

(3.11) 

The construction of the three-dimensional reachable workspace, is carried out by determining the planar 

boundaries aA i for a fan of Np planes, where each plane has a different value of 8i : 

(3.12) 


for i = 1, 2, ... ,NI' 

It is apparent from the geometry of the spatial 6-3 Stewart platform that the global Z axis is a three fold 

symmetry axis, and therefore it is only necessary to map a third of the complete workspace, 

corresponding to the 8i range: 0· - 120· . 

For each plane the same central point, ZO =(zma, + zmin )/2 on OZ, may be used as interior radiating 

point, i.e. 

(3.13) 

With the dimensions of the spatial Stewart platform as given in Section 3.2, the exact coordinates of Uo 

are: 

UO =(0,0,7.804) 

3.4.2 Computed Accessible Workspace for the 6-3 Stewart Platform 

The vertical plane through the OX-axis ( e=0· ) of the computed reachable workspace is shown in Figure 

3.2 
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Figure 3.2 Boundaries of the accessible sets for the vertical plane through the OX-axis (e 0" ). 

Apparently two different reachable boundaries seem to exist when no constraints are placed on the 

orientation of the top platform. As will become clear later, the inner boundary corresponds to a near 

global constrained local optimum solution to optimization problem (i), whereas the outer boundary 

consists of the global maxima. These two different optima along a ray correspond to the respective 

maximum displacements of two different types of platform configurations as will be shown later. 

As explained in Section 3.4.1 two options exist with which the complete accessible workspace can be 

mapped, namely vertical planes, and horizontal slices. Although Figure 3.2 shows the accessible sets for 

the vertical plane through the OX-axis (e = 0"), these results could have been obtained using both 

'Options mentioned above. The vertical planes option consists of a pencil of rays, restricted to the vertical 

plane through the OX-axis, emanating from the radiating point u" at angular intervals. As for the 

horizontal slices option, Figure 3.2 can be mapped using horizontal rays, perpendicular to the OZ-axis 

and restricted to the vertical plane through the vertical plane through the OX-axis. 

It follows that if the horizontal slices option is to be implemented, the highest possible and lowest 

possible positions of the working point have to be computed before hand to set the upper and lower 
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bounds between which the horizontal rays are to be incremented. The highest possible position is not a 

problem, as it is situated at point F on the OZ-axis, and can therefore easily be determined. Curve ABCD, 

however occupies a lower region than point A which is the lowest possible position of the working point 

if the working point is restricted to move along the OZ-axis. Consequently it will be difficult to 

implement the horizontal slices option, as the lower bound of the range of horizontal rays forms part of 

curve BC and cannot be easily determined as part of an automated process. The better option of the two, 

and the one used here, is the vertical planes option, which is easy to implement as the pencil of rays are 

incremented through the range W -180
0 

• 

It follows that for each ray restricted to a spccific vertical plane and intersecting the radiating point 110 

(3.13), a straight line relation must hold. With q>j defined as the inclination angle between any specific 

ray} and the OZ-axis, the following equation must hold: 

(3.14) 


Equation (3.14) is rewritten to give the additional equality constraint needed to fix the direction of any 

specific ray}. 

(3.1 5) 

The vertical plane is covered by a pencil of NR rays where each ray} has an inclination angle <j)/ 

(3.16) 


for} 0,1, 2,...,NR 

Consequently, if} = 0, the first ray of each vertical plane will lie parallel to the OZ-axis, pointing in the 

negative Z-direction. The first of the two different reachable workspace boundaries in the vertical plane 

through the OX-axis, is mapped by performing an upward sweep of the radiating ray for successive 

inclination angles given by (3.16) and imposing equation (3.15) as additional equality constraint (see 

Figure 3.3). 

The maximum displacement (from the radiating point uo) is found for successive rays } =1, 2, ... , N R ' 

using as starting point for each optimization procedure the solution of the previous ray, 

} 0, I, 2, ... ,(NR -1). This limits the possibility of the platform "jumping" between different 

configurations as the rays are incremented. This procedure works well except for curve EF in Figure 

3.3. The details of how curve EF is mapped, is explained in Appendix B. 
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Figure 3.3 "Upward sweep" reachable workspace boundary in the vertical plane through the OX-axis. 

Using the notation introduced in Chapter 2 and referring to Figure 3.3, the bifurcation points and 

boundary curves of the vertical plane through the OX-axis are labeled in order to differentiate between the 

two types of reachable boundaries that exist. The curves are now described, with the radiating ray 

sweeping counter clockwise upwards from the vertical, with relationship (3.15) imposed for successive 

ray angles <Pi given by (3.16). 

The lowest possible position of the working point along the OZ-axis is at a height of z =2.369. This is 

point A (- 0 0 0 0 -) [0' - 54.3" 0'], which clearly is not a bifurcation point where all the 

actuator legs are at the specific extreme lengths. 

Liu et al. [18] report that with all the actuator legs at their minimum lengths and with no platform 

rotation, the global coordinates of the manipulator working point are (0, 0, 2.646). Using the proposed 

notation, this bifurcation point Liu et al. found will be labeled (0 0 0 0 0 0) [0" 0' o' ] 

The orientation angles of the top platform with the working point coinciding with point 

A (- 0 0 0 0 -) are: a = 0' , ~ -54.3' and y = 0' as indicated by the notation adopted above. 

[0 -Jl- 0] 
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The fact that ~, (which measures the rotation of the top platform about the Of-axis) is the only non-zero 

orientation angle, indicates that actuator legs 1 and 6 have the same lengths with the working point 

coincidingwithpointA(- 0 0 0 0 -). 

With the results of the optimization approach, the exact lengths of legs 1 and 6 of point 

A (- 0 0 0 0 -) are obtained as: 

( = in =9.759 

Considering the above actuator leg lengths, as well as the substantial angle the top platform makes with 

the Of-axis (~== -54.3'), it is clear that the upper platform is in a "flipped" orientation at point 

A (- 0 0 0 0 - ). Although this is a mathematically feasible orientation, mechanically it may not 

be possible due to the actuator legs interfering with each other, and the limited rotations of the joints 

connecting the legs with the base and moving platform. 

Purely mathematically, the working point of the "flipped" top platform advances along boundary curve 

AB [- 0 0 0 0 -] until it reaches bifurcation point B (0 0 0 0 0 0), where all the actuator 

legs take on their minimum lengths, and the orientation angles of the top platform are: a == O' , 

~ == --42.4' and 'Y == 0' . 

The top platform remains in its flipped orientation as the working point advances from bifurcation point 

B (0 0 0 0 0 0) along curves BC[O 0 - 0 0], CD[O 1 1 - 0] and 

DE [- 1 1 1 -]. It is interesting to note that the extreme bifurcation points B 

(0 0 0 0 0 0), and E (1 1 1 1 1 1) are asymmetrically placed off the OZ-axis. With the 

manipulator working point coinciding with bifurcation point E (1 1 1 1 1 1), the top platform is in 

an extreme flipped orientation (a =0°, ~ == -118° and 'Y == 0'), which explains the existence of curve 

EF [1 - 1 1]. Starting in the flipped orientation (~ -118') at bifurcation point E 

(1 1 1 1 1 1), curve EF denotes the path along which actuator legs 3 and 4 are retracted until the 

top platform is out of this flipped configuration. Actuator legs 3 and 4 are then extended again as the 

working point advances along the rest of the curve EF [1 1 - 1 1] and eventually reaches 

bifurcation point F (1 1 1 1 1 1) where the top platform is horizontally orientated (a == O' , ~ =0' 

and 'Y 0'). This completes the upward sweep of the radiating ray. 
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Point F (1 1 1 1 1 1) is at a height of z 12.961 which corresponds to Liu et al.' s [18] reported 

global coordinates ofth~ manipulator working point (0, 0, 12.96), when all the actuator legs are at their 

maximum lengths. 

Following the upward sweep the mapping may be continued by initiating a subsequent downward 

sweep. It follows that equation (3.14) can be changed so that the rays for any specific vertical plane are 

incremented starting with the initial ray parallel to the positive Z-direction and incrementing <p.
} 

through 

180" ending with the final ray parallel to the negative Z-direction. Constraint equation (3.14) now 

becomes: 

I 2 2 ( 0)Vx j + Y j - Z j - Z tan(<p ) = 0 (3.17) 

Which can once again be rewritten in tenns of the generalized coordinates to give: 

(u,.- ZO )tan(<p) =0 (3.18)
. J J 

The reachable workspace in the vertical plane through the OX-axis is now re-mapped using equality 

(3.18) instead of (3.15), and incrementing <p j as given by expression (3.16), resulting in a downward 

sweep of the radiating ray. 

Here again the maximum displacements of the respective rays j 1,2,... , N R are found using as starting 

point for the successive optimizations, the solution for the previous ray, j 0,1,2, ... , (NR -1) . 

Figure 3.4 shows the re-mapped reachable workspace boundary in the vertical plane through the OX-axis 

(e j =0·). Starting from bifurcation point F (1 1 1 1 1 1) where the top platfonn is horizontally 

orientated (a. =0·, ~ =O· and y = 0·), the working point advances along the curve FG 

[- 1 1 1 - ] as the platfonn moves away from the OZ-axis. Although curve FG 

[- 1 1 1 -] in Figure 3.4 carries the same label as curve DE [- 1 1 1 1 -] in Figure 3.3, 

the two boundary curves do not coincide as is evident from the earlier composite Figure 3.2. The reason 

for this is that the top platfonn is now positively tilted as the working point advances along curve FG 

[- 1 1 1 1 -] in Figure 3.4, while the top platfonn is in a negatively flipped orientation as the 

working point advances along curve DE [- 1 1 1 1 -] in Figure 3.3. The positively tilted 

orientation of the top platfonn is a. =0·, ~ =31.9· and y O· when the manipulator working point 

coincides with bifurcation point G (0 1 1 1 1 0) in Figure 3.4. 

Chapter 3 81 

 
 
 



THE DETERMINATION OF THE ORIENTA TIONALLY UNCONSTRAINED SPATIAL MANIPULATOR WORKSPACES 
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Figure 3.4 "Downward sweep" reachable workspace boundary in the vertical plane through the OX-axis (8::: 0·) . 

The "downward sweep" re-mapped reachable boundary in Figure 3.4 shows a boundary curve GD 

[0 1 - - 1 0] between bifurcation points G(O 1 1 1 1 0) and D(O 1 1 1 1 0). The 

behavior along curve GD [0 1 - - 1 0] in Figure 3.4 is similar to that along curve EF 

p 1 - 1 1] in Figure 3.3. Starting at bifurcation point G(O 1 1 1 1 0), actuator legs 3 

and 4 are retracted as the manipulator working point advances along the first portion of curve GD 

[0 1 - - 1 0]. This action forces the top platform from the positively tilted orientation at 

bifurcation point G (0 1 1 1 1 0) (ex:::: 0°, ~ =31.9 0 and y =0"), into the negatively flipped 

orientation (ex: = 0·, ~::: -82.36" and y::: 0·) with the manipulator working point coinciding with 

bifurcation point D (0 1 1 1 0). The manipulator working point follows the last portion of 

curve GD [0 1 - - 1 0] as actuator legs 3 and 4 are extended, so that these legs take on their 

maximum leg lengths when bifurcation point D (0 1 1 1 1 0) is reached. 

-:::....~[.::.:OO:....-~O~O]y'--'-_-'...:....___~ X 
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Comparing Figure 3.3 with Figure 3.4 shows, as is also apparent from the composite Figure 3.2, that the 

bottom portion of the mapped reachable boundary is the same independent of whether the upward sweep 

or downward sweep mapping is done. 

Looking at the results obtained, it is evident that the reachable workspace is characterized by different 

boundary curves corresponding to different types of orientations of the top platform. More specifically, 

analyzing the reachable boundary in the vertical plane through the OX-axis, shows that the negatively 

flipped orientation is not mechanically feasible at all positions where the mathematical solution exists. 

Although the computation of the workspace was restricted here to the plane through the OX-axis 

(9 = 0") , it may be done in a straight forward similar manner for any other vertical plane through OZ, i.e. 

for any other 9 value. 

The demonstration of the successful mapping of the workspace in the vertical plane through the OX-axis 

proves that the optimization approach adopted here is a tool with which the mathematically complete 

reachable workspace can be mapped. The mapping of such a complete workspace is of course of limited 

practical use if it encloses mechanically infeasible regions. However, if the spherical and gimbal joint 

limits are taken into consideration, and the actuator legs are prohibited to interfere while mapping the 

reachable workspace, the complete workspace will be mechanically feasible and of practical value. 

These aspects will be addressed in the future research envisaged and is also discussed in more detail in 

Chapter 5. 

In the next chapter the complete fixed orientation workspace A [a fiX '~Iix ' YfiX]' with boundary 

aA [anx , ~ fix , Yr", ], as well as an example of a complete dextrous workspace A [anx , ~ fix ' Ymin Ymax]' with 

boundary JA [aliX ' ~tix' Ymin - Ymax] are determined. 
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Chapter 4 

DETERMINATION OF THE DEXTROUS WORKSPACE OF THE 

6-3 STEWART PLATFORM 

4.1 INTRODUCTION 

It is of particular importance to be able to compute the fixed orientation and dextrous workspaces of a 

spatial parallel manipulator. MerIet [4] states that in contrast to common serial link mechanisms with 

three intersecting wrist joint axes, the (orientationally unconstrained reachable) workspace of a (spatial) 

parallel manipulator cannot be decoupled in two three-dimensional workspaces characterizing the 

possible translational and orientational motions. The fixed orientation and dextrous workspaces are 

however useful projections of the reachable workspace that can easily be presented in a human readable 

way. 

The study of the different workspaces of the 6-3 Stewart platform is continued in this chapter with the 

objective of determining typical dextrous workspace of practical importance. 

The dextrous workspace of the planar Stewart platform is defined in Section 2.6.4.1. The corresponding 

dexterity requirements for the 6-3 Stewart platform is stated in terms of ranges of rotatability of the 

orientation angles. In general these dexterity requirements may be specified by the triplet: 

[amin - a max , ~min ~max' 'Y min 'Ymax] (4.1) 

which indicates that the orientation angles a, ~ and 'Y must be able to assume all values in the respective 

ranges [amin a max ], IJ3min ~maJ and [ymin 'Y mnJ at any point in the associated dextrous workspace 

denoted by A [amin - a max ' ~ min - ~ max' 'Y min - 'Y max]' This is an extension of, and in agreement with, the 

notation proposed for the planar case. 

For the purpose of this study, the general dexterity requirement (4.1) is restricted to: 

[aliX ' ~liX' 'Ymin - 'Ymax] (4.2) 
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indicating that only y must be able to assume all values in the range [ymin - Ymax]' while a and ~ must 

respectively assume the fixed values <lflx and ~fix at any point in the associated dextrous workspace 

denoted by A [anx ' ~r.Jt' Ymin - Ymax]' 

4.2 FIXED ORIENTATION Ac CESSIBLE WORKSPACE OF THE 6-3 STEWART 

PLATFORM 

It was shown in Section 2.6.4.4 that two fixed orientation accessible works paces may be used to 

determine the planar dextrous workspace. The same procedure is proposed here for the spatial case, and 

therefore it is important to be able to determine any specified fixed orientation accessible workspace. 

Any fixed orientation requirement for the 6 - 3 Stewart platform, i.e. [anx ' ~fix' Ynx] implies three 

equalities: 

a = a lix ' ~ =~IiX and Y =Y[IX (4.3) 

These three equality constraints (4.3) correspond to the single equality prescribed for the planar Stewart 

platform (2.27), and here fix the intermediate coordinates of the 6-3 Stewart platform, Le.: 

(4.4) 


Here vertical planes will be used (see Section 3.4.1) to map the fixed orientation accessible workspace of 

the 6-3 Stewart platform. 

Apart from the three equalities fixing the intermediate coordinates (4.4), two additional equalities are 

needed to specify the search direction of each ray in its associated vertical plane. Equality (3.11) defines 

the orientation of each vertical plane, and depending on whether the plane is to be mapped starting at the 

lowest possible or highest possible position of the working point, equality (3.15) or equality (3.18) 

respectively fixes the direction of the ray in the vertical plane. 

Thus the "fixed orientation" accessible workspace in vertical plane i, (i =0, 1,2,... , N p), making an 

angle 8i with the OX-axis, may be mapped by solving modified optimization problem (i) (see Section 

2.6.4.2) for j successive rays (j =0, 1, 2, ...,NR)' These successive rays emanate from UO (3.13) at 

angular intervals O. In modified optimization problem (i), h(u, s) =0 is given by (3.11) and either (3.15) 

or (3.18), and W W fix is given by (4.4). 
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bifurcation lines at the intersection of the upper convex and lower concave boundary surfaces. The 

previously proposed labeling notation (see Sections 2.5.3 and 2.6.3) is applied to label the fixed 

orientation accessible workspace A [0', 0', 0']. 

The proposed optimization approach may be used to map and label the fixed orientation accessible 

boundary aA [0', 0', o' J in any isolated vertical plane i making an angle e with the OX-axis. Thej 

results for three planes of particular interest, are depicted in Figure 4.2 (a), (b) & (c) for the respective 

cases: (a) aA [0·, 0', 0'] [e 0'], (b) aA [0', 0', 0"] [e = 30'] and (c) aA [0', 0·, 0'] [e =60'],j j j 

e 
I 
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A(ll1111) [0" O· 0°] 
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[-­ - [--­ - - OJ 
[0° O· 0°] 

(-_1001)[000000] G 
D(- ­ 0110) [0· O· 0°] 

ole (000000)[0° O· 0°] 

Figure 4.2 aA [0', 0', 0' ] for (a) 9; = O· , (b) 9 j = 30' and (c) 9 j = 60'. 

These three vertical sections may be used to describe the behavior of the 6-3 Stewart platform for the 

working point coinciding with any point on the boundary surfaces defined by the vertices A, B, C and D, 

as well as the vertices A, F, G and C (see Figure 4.1). 
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Consider the vertical section through the OX-axis at 8 i = O· , shown in Figure 4.2 (a) together with the 

related coplanar vertical section AFC at 8i = 180". It is clear that the lowest possible position of the 

manipulator working point in A [0", 0·, 0" lis bifurcation point C (0 0 0 0 0 0) [0·, 0", 0·] where all 

the actuator legs are at their minimum lengths. 

The manipulator working point will follow bifurcation line CB [0 - - - 0] [0·, 0·, 0·] as it moves 

away from its lowest possible position and maintains the fixed orientation a = o· ,~ = 0" and y= o· . 

Actuator legs 1 and 6 remain fixed at their minimum lengths while actuator legs 2, 3, 4 and 5 vary. 

Similarly, bifurcation line BA [- 1 - - 1 -] [0·, 0·, 0·] represents the path of the manipulator 

working point with actuator legs 2 and 5 fixed at their maximum lengths, and legs 1,3,4 and 6 varying. 

Bifurcation point B (0 1 - - 1 0) [0·, 0·, 0·] coinciding with the intersection of bifurcation lines CB 

[0 0] [0·, 0·, 0·] and BA [- 1 - - 1 -] [0·, 0·, 0·] is the position of the working point if 

actuator legs 1 and 6 are fixed at their minimum lengths, legs 2 and 5 at their maximum lengths and the 

top platform fixed in a horizontal orientation (4.4). 

Bifurcation point B (0 1 - - 1 0) [0·, 0·, 0·] is found by minimizing an error function similar to 

(2.24) defined in Section 2.6.3.1. Details of the procedure is described in Appendix C. 

Finally bifurcation point A (1 1 1 1 1 1) [0·, 0·, 0·] is the highest point III the fixed orientation 

accessible workspace A [0·, 0·, 0·], indicating the position of the working point if all the actuator legs 

at their maximum lengths. 

The vertical section at 8 i =180· is also shown in Figure 4.2 (a) and is labeled in a similar manner. 

Figure 4.2 (b) shows the section of the fixed orientation accessible boundaryoA [0·, 0·, 0·] at B; =30· 

(curve AbC) and at (curve AcC). The concave curve Cb 

[- - - - 0] [0·, 0·, 0·] [8; = 30· ] is the boundary path of the manipulator working point with leg 

6 fixed at its minimum length and the remaining legs varying. 

The single leg fixed at its extreme length is due to the fact that modified optimization problem (i), 

specified in terms of the six output and intermediate coordinates, has five equalities defined in Section 

4.2. The five equalities comprise of the three equalities given by equation (4.4) and the two additional 
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DETERMINATION OF THE DEXTROUS WORKSPACE OF THE 6-3 STEWART PLATFORM 

equalities needed to specify the search direction of each ray in its associated vertical plane. The 

displacement from the radiating point U
O is therefore maximized until the first actuator leg reaches an 

extreme length resulting in a boundary point on any of the 12 boundary surfaces enclosing the fixed 

orientation accessible workspace A [0', 0', 0·]. 

Curve bA [- - - - 1 -] [0", 0", 0'] rei = 30° ] carries a similar label. Boundary surfaces ABD and 

BCD (see Figure 4.1) may therefore respectively be labeled as ABD [- - - 1 -] [0", 0·, 0'] and 

BCD [- - - - - 0] [0", 0', 0"]. 

The above also explains why a bifurcation or intersecting line exists where two bounding surfaces on 

aA [0", 0', 0'] intersect. Along this line two actuator legs remain fixed at their extreme values. 

Similarly the number of legs assuming extreme lengths at any bifurcation point is dependent on the 

different kinds of boundary surfaces intersecting at the specific bifurcation point. 

It is interesting to note that the convex vertical bifurcation lines and convex boundary surfaces are 

associated with maximum extreme leg lengths, and the concave ones with minimum extreme leg lengths. 

A final aspect of interest concerning the fixed orientation accessible workspace A [0', 0", 0'] is the 

bifurcation line BD [- - - 1 0] [0', 0', 0']. The label of this bifurcation line corresponds to the 

label of point b(----10) [0', 0', 0"][e;=300] III Figure 4.2 (b). At point 

b (- - - 1 0) [0", 0', 0'] rei = 30'] six constraints are active, namely the direction of the vertical 

plane (3.11), the two actuator legs assuming extreme lengths and the three orientation angles (4.4). Point 

b may accordingly be solved for by minimizing the following error function using LFOPCV3: 

v:ine(u, w) = (v 5 (u, w) - v~;u ') + (v 6(U, w) - } + (u z-u 1tan(e)Y 
(4.5)

+(wl-OY +(w 2 oy +(w 3-oy 

The labeled bifurcation points, bifurcation lines and boundary surfaces comprising the fixed orientation 

accessible boundary aA [0', 0", 0'] shown in Figure 4.1 are: 

Bifurcation points: 

A (1 1 1 1 1 1) [0', 0', 0'] C (0 0 0 0 0 0) [0', 0", 0'] 

D (- - 0 1 1 0) [0", 0", 0"] E (1 0 0 1 - -) [0', 0', 0"] F (1 0 - o 1) [0", 0", 0'] 


G (- - 1 0 0 1) [0', 0', 0'] H (0 1 1 0 - -) [0', 0', 0'] 
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DETERMINATION OF THE DEXTROUS WORKSPACE OF THE 6-3 STEWART PLATFORM 

Bifurcation lines (upper convex): 

AB [- t - - t -] [0·, 0·, 0·] AD [ ­ - - 1 1 -] [0·, 0·, 0·] AE [1 - - 1 -] [0·, 0·, 0·] 

AF [1 - - - - 1] [0',0·,0·] AG [ ­ 1 ­ - 1] [0·,0',0·] AH [- 1 1 -] [0·,0',0·] 

Bifurcation lines (lower concave): 

CB [0 0] [0·,0·,0·] CD [- - 0 - - 0] [0·,0·,0·] CE [- 0 0 - -] [0·,0·,0·] 

CF [- 0 - 0 -] [0·, 0·, 0·] CG [- - 0 0 -] [0·, 0·, 0·] CH [0 - 0 - -] [0·, 0·, 0·] 

Bifurcation lines (horizontally orientated): 

BD [- - - - 1 0] [0·, 0·, 0·] DE [- - 0 1 - -] [0·, 0·, 0·] EF [1 0 - - -] [0·, 0·, 0·] 

FG [- - - - 0 1] [0·, 0·, 0·] GH [- 1 0 - -] [0·, 0·, 0·] HB [0 1 - - - -] [0·, 0·, 0·] 

Boundary suifaces (upper convex): 


ABD [- - - 1 -] [W, 0·, 0·] ADE [- - 1 -] [0·, 0', 0·] AEF [I - - - -] [0·, 0·, 0·] 


AFG [- - - - 1] [0', 0·, 0·] AGH [- 1 - -] [0·, 0·, 0·] AHB [- 1 - - - -] [0·, 0·, 0·] 


Boundary suifaces (lower concave): 

CBD [- - - - - 0] [0·, 0·, 0·] CDE [- 0 - - -] [0·, 0·, 0·] CEF [- 0 - - - -] [0·, 0·, 0·] 

CFG [- - - 0 -] [0·, 0·, 0·] CGH [- - - 0 - -] [0·, 0·, 0·] CRB [0 - - - -] [0·, 0·, 0·] 

4.3 THE COMPUTATION OF A SPECIFIC SPATIAL DEXTROUS WORKSPACE 

The specific dextrous workspace of the 6-3 Stewart platfonn considered here has the restricted dexterity 

requirement (4.2): 

[0',0", (-30·)-(30°)] (4.6) 

Here, in accordance with the treatment for the planar case (Section 2.6.4.4), two spatial fixed orientation 

accessible workspaces, A [0·, 0·, - 30·] and A [0·, 0·, 30·] are detennined. The intersecting or 

overlapping volume is assumed to be the dextrous workspace A [0·, 0·, (-30·) - (30·)], within which 

the full dexterity requirement (4.6) is met at each point enclosed by aA [0·, 0', (-30·) - (30·)]. 
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DETERMINATION OF THE DEXTROUS WORKSPACE OF THE 6-3 STEWART PLATFORM 

This boundary was mapped as two fixed orientation accessible boundaries JA [0", 0·, - 30·] and 

JA [0", 0", 30·] and they coincide exactly as shown in Figure 4.6. The same behavior is also evident at 

the other vertical dextrous curves separating the dextrous boundary surfaces which makes it easy to map 

sections of the dextrous workspace as shown in Figure 4.6. 

With reference to Figure 4.4, the convex dextrous boundary surface ATJ' [0", 0·, (-30") - (30")] forms 

part the fixed orientation accessible boundary surface A'F'G' [0·, 0·, 30"]. The concave dextrous 

boundary surface C rJ' [0·, 0", (-30·) - (30·)] forms part of the fixed orientation accessible boundary 

surface CF'G' [0", 0·, 30·]' This implies that the first 60° of the dextrous workspace boundary 

JA [0", 0", (-30") (30")] may be found by mapping the first 60° of the fixed orientation accessible 

workspace A [0", 0", 30·]. 

Similarly, the convex dextrous boundary surface A'J'K [0", 0", (-30·) (30·)] forms part of the fixed 

orientation accessible boundary surface A'B'E' [0", 0", - 30"]. The concave dextrous boundary surface 

C'J'K' [0",0", (-30")-(30")] forms part of the fixed orientation accessible boundary surface CE'B' 

[0",0", -30·]. The dextrous boundary JA[O·, 0", (_30") (30")] spanning 8; =60" to 

8; 120· may therefore be found by mapping the corresponding range (8; =60" to 8 i 120·) of the 

fixed orientation accessible workspace A [0', 0·, - 30"]. In practice the intersection of the two fixed 

orientation workspaces is relatively easy to compute. 

The three fold symmetry of the dextrous workspace A [0", 0", (-30") (30·)] also necessitates only the 

first 120° be mapped. 

The validity of assumption (2.30) in Section 2.6.4.4, and applied here to the spatial case, is shown in 

Figure 4.7, where the different fixed orientation accessible workspaces determined in this chapter are 

placed at an X-offset next to each other. The dextrous workspace A [0·, 0", (-30') - (30")] clearly 

satisfies condition (2.31) of Section 2.6.4.4. 
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Chapter 5 

5 CONCLUSION 

The main objective of this study has been achieved. From the results presented in this study, it is evident 

that the proposed optimization approach is indeed a general numerical method by means of which 

different types of workspaces of different classes of mechanical manipulators may easily be determined. 

The generality of the method is illustrated by the fact that the optimization method was successfully 

implemented for a redundantly controlled planar serial manipulator, a planar Stewart platform as well as 

a spatial 6-3 Stewart platform. 

The validity of the optimization approach is established beyond doubt by a comparison of the results 

obtained for the planar manipulators with those reported by Haug et al. [8, 12] in their state-of-the-art 

articles on the continuation method. This is particularly reassuring and encouraging since Haug is 

considered one of the world's leading authorities on computer aided design of mechanical systems [45, 

46]. Not only was the outer accessible workspace boundaries mapped, but also the curves connecting 

the bifurcation points situated on the outer boundary with those situated inside the accessible output set. 

The mapping of the curves connecting the bifurcation points of the planar Stewart platform show that the 

optimization method easily handles the situation where the upper platform becomes collinear with one of 

the actuator legs, resulting in a singularity. Once all the singularities are identified, any required path can 

be planned to avoid those regions where the control of the Stewart platform becomes a problem. The 

method is therefore successful in assisting in the characterization of the workspace and of great potential 

importance with regard to the control of manipulators. 

The description of the behavior of the planar manipulators led to a new notation for labeling the 

bifurcation points and curves of the workspaces. This notation arises in a natural way from the 

optimization approach, is generally applicable and easy to understand. Using this notation, the complete 

work.<;pace may be described in terms of the behavior of the manipulator. This notation is more than a 

simple labeling since it allows for a concise and unambiguous description of the configuration of a 

manipulator at any allowable position and orientation. It is hoped that this notation will be accepted and 

adopted by workers in this field since, the belief is, that it will certainly assist in a clearer description of 

manipulator operations and thus will be invaluable with regard to communication between workers. 
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CONCLUSION 

Of great practical importance is the treatment of dexterity requirements imposed on a Stewart platform. 

The optimization approach successfully determines different specified dextrous workspaces of the 

planar Stewart platform. Using the new notation, the boundaries containing the dextrous workspace are 

easily identified and labeled. Consequently the behavior of the planar Stewart platform when situated on 

these boundaries, may be described in detail. 

As far as the spatial 6-3 Stewart platform is concerned, the workspace results obtained by the 

optimization approach gives a much more detailed description of the workspace than that previously 

reported by Liu et al. [18]. Here, for the orientationally unrestricted workspace, a single vertical plane of 

the accessible workspace was mapped and labeled using the optimization approach. The results show 

that mechanically infeasible regions are enclosed in the orientationally unrestricted workspace. Without 

the labeling notation suggested by the optimization approach, it may have been impossible for this 

important conclusion to be reached. 

A very important achievement of this study is that an example of a dextrous workspace of the 6-3 

Stewart platform was successfully mapped. The dexterity requirement is simple but of practical 

importance. It specifies a rotatability range for only one of the three orientation angles, with the other 

two orientation angles remaining fixed. The determination of this dextrous workspace is very significant 

because, as far as the author is aware, such a mapping has not previously been performed for the spatial 

case. In general of course, a dextrous workspace will imply that dexterity requirements are specified for 

all three orientation angles. There is no reason to believe that the current method will not be able to 

achieve this as well. 

The proposed labeling notation was easily extended to label the surfaces containing the dextrous 

workspace as well. As with the planar Stewart platform, it was shown that the optimization method is a 

powerful tool with which the practical useful dextrous workspaces can be determined and characterized. 

It is hoped that this study will lie the foundation for the development of a general and rational synthesis 

design tool for parallel manipulators. However, reviewing the research reported here, certain further and 

immediate research tasks are identified. Although the planar Stewart platform was analyzed in detail as 

far as the reachable and various dextrous workspaces are concerned, this is not so for the spatial 

platforms. An extension of the research done on the 6-3 Stewart platform workspaces remains to be 

done where the full orientation ally unconstrained accessible workspace and any general specified 

dextrous workspace is to be mapped and labeled. In addition, the work must be extended to the general 

6-6 Stewart platform. 
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CONCLUSION 

Another outstanding problem of important practical value, is the determination of the mechanically 

feasible orientation ally unconstrained reachable workspaces for both planar and spatial Stewart 

platforms. Here, actuator leg interference and actuator joint orientation range limits need to be 

considered as additional constraints in the implementation of the optimization method. 

This study has important potential impact for the manufacturing industry of South Africa and other 

developing countries. The implementation of this technology lies primarily in retrofitting existing non­

CNC milling equipment to increase their capability at a lower cost than that of the alternative of 

purchasing traditional 5-axis machining centers [47]. One of the industries that can benefit from such a 

development is, for example, the plastic injection molding industry, where mould manufacturing is an 

expensive and time consuming operation. 

As a first step towards the successful implementation of such a retrofit, it is foreseen that a planar type 

Stewart platform be fitted to an existing 3-axis machining center that will result in 4-axis milling 

capabilities. A planar type manipulator will be easier and cheaper to manufacture than a spatial 

manipulator, and such a 4-axis CNC mill will, to some extent, fulfill in the machining requirements of 

the pla'>tic injection molding industry. It is however envisaged to extend the machining capability to a 

higher competitive level by the eventual fitting of fully spatial Stewart platforms. This will only be 

possible through the use of sophisticated and powerful design tools of which, it is hoped, the foundation 

was laid here. 

Further future research to be done also includes the extension of the optimization approach to incorporate 

the mapping of the so-called quality index [13J of any configuration within the mechanically feasible 

dextrous workspace. This will give further characterization of the workspace and provide valuable 

information regarding the utility of various regions of the workspace. The quality index should also 

reflect any singularities, and therefore give an indication of the safe regions within which the 

manipulator can be maneuvered and controlled. 

In conjunction with the mapping of the quality index, adjustable positioning of the actuator leg joints on 

the base and moving platforms can be utilized to optimize the mechanically feasible dextrous workspace 

for any required machine tool path. 

A further important point which emerges from this study and is worth mentioning relates to forward 

kinematics. The exercise of mapping bifurcation curves leads to the possibility of successfully 

performing forward kinematics through an optimization approach. This may lead to a competitive 

continuation method and therefore justifies further investigation. 

Chapter 5 98 

 
 
 



Appendix A 

A Computer Program for Determining the Planar Stewart Platform 

Workspace (PIANSTEW) 

A.I INTRODUCTION 

This appendix explains the automated computer program PLANSTEW that was used to map the 

accessible output sets as well as the bifurcation point connecting curves of the planar Stewart platform. 

PLANSTEW consists of a main program and a few subroutines. The outlay of the main program is 

shown in Figure AI, and the different subroutines are shown in Figure A2. Figure A.3. Figure A6 and 

Figure A7. The detail of the main program is explained here and the discussions of the subroutines are 

included as sub-paragraphs. 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

A.2 THE MAIN PROGRAM 


I. Enter the Min & 
Max Lc~ Lcngths: 


Ji.lf l=l.2,3 


(:-=', & I:'"' 

2. Calculate the Mean 
Lcg Lcngth<: 

fiir ; "" I, 2.3­

I;"" =V;" +1,-'1I2 

:t Call Subroutine 
Slt1rt 

4. Radiating Point 

u" == lx,p .voff 

5. Initialize the Truth 
Tn,le: 


8 x 3 M.1trix IDAII 


6. Initialjze ''(ltd'' 
iuentifkatlon vCClOr 

It~r i;:;;;; l, 2,3 

;u.•, =0 

7, [Ilcrement at 
0$ 3, S 2n for 


; = t, 2,. ,(Max 6Ine-l) 


I 
H. For every OJ 

I 
X.l 	Intersection with 

the or-axis 

I ...
R2 Can Suhr\)Utine 

Bmmdurv 

I 
R.3 Bound:Jry Point 

llJ =\ex.yf 
4 

I 
X,4 Identification 


Vector 


id =li;J!.iJ!,id 1 f' 


&.5 An1rmalion 

Vector 


ja=lja l ,ja 1 .j:J.;f 


R.6 Check I,,, 

Bifurcation 


H
11.1 Lobel the "oundary

l II. M:lf1ping the hifurcation bifurcation points: 
connecting curves lnitialiw m;;:;:(} 

lOA Closing .'Iegmcnl 


write: Poinl,«(J,3), Poinl,(O,4) 


write: Poin"'(Max Blne-I), 3), Pnims(Max 8Ine-I),4) 


I 

103 else if: Poinl..o;;(i,l) #- 0 and PoinL.s(i. 2) '#0 

then write: POlnls(i,1) , Points(i.2) 

:Uld write: Poinls(i,3). Point.sCi.4) 

10.2 for i =I, 2,,,,,(MaxBlnc-1) if; 

Pnints(i, I) =0 (md Puinc,(i,2)=(J 

lhen write: Poinu(i,3), Poims(i,4) 

10.1 Draw command: "Hne" 

In. Create a Script file from the 
entries of matrix Points 

9" Matrix Points 

(Max6Inc-l)x4 

i 
H.6.2 Enlry in matrix Points 


Pl.linL"i(i. 3) "'" i'X 


P(iinLII(i, 4) =- J' 

RAI With 8=0,if; 

iuj>ior id:>J or iJ,>I, 

then hifurcatiun did not occur 

H.6.2 With 8=0,if: 

iu, -5.1 and iu:S:l and id,:S: 1. I-
then bifurcation did occur 


k =k+1 


H,63 With 8>0, if: 


ja:::.O, i- ­
then hif urcadon did not occur 

~.6.4 With e> 0 , if; 


ja,:;!()ana ja::=O and ja,::::I),or 


ja:=Of1nd ja 1 $(; and ja,!=O,ar 


.la l =0 (lnd ja? =0 una ia, ~o. 


lhcn~ 

K6.5 With B> (), if; 


jal.".,O und ja: '#(1 (ind ja,=() ,or 


ja,.?!:()(}ud ja 1 =() and _ia-, $0 ,or 


ja.=Oand j:t, $0 and ja,:;tO, 


then .....:,. 

r 

H,6.5.S Enlry in matrix Points 

Pnilll'\{i.l)::::: XIoI1 

POiIlL<\(i,2) )'''1 

}i,6.2.1.2 Max leg Icngth~> for 

j: 1,2,3 if iu i =I ,lhen 


I~' =I;"' and IDBound(k, j) I 


R.6.2.1.1 Min leg lenglh" for 

j=I,2,3 i[ id, =(J ,lhen 

I;" = I;'" "nd lDBound(k, j) = 0 

:-t6.2.J Tran.;;Iate vector id to 
actuator leg lenglhs: 

Create vector 


I'" ;[I,",I~',I;· J' 


~t6.11 Enlry in matrtxPoints 

POinl'i(i,3) ex 

Poin!.S(i.4) = y 

1'.6,5.2.2 Unchangctllcg Ic.ngths 

If jll, ,,0 for j=I,2,3 

jf ja; =0 for j=1,2,3 

8.6.5.( Bifurcatiun nccurred on the 
houndary of the accessihlc tlutput set I--­

11.2 for I = 1,2, ... , k ,I'lf i = 1,2 .... , 8 : 


IDEA(!) = IDAlIU, I) -IDBouou(l, I) 


IDEA(2); IDAlI(i, 2) -IDBoUlld(l, 2) 


lDEA(3) = IDAlI(i, 31-1DBound(f. j) 


if: lDEA(l) =0 and IDEA(2) =0 (md 


lDEA(3);1l 'hen m;m+1 and [nl]sc(m);; 


11.3 FinJ the blfurclltion pointS not situated on the 

t';ouooary: Initialize Nt) =0 

11.4furi=I.2,,,,,R; j=i ,il' 


j" InUse(l) (JIuJ j" loU,e(2) and .i ~ InU,c(3) 


j;<lnUsc(4) (lnd .i"loU,e(5) and i"lnUse(6) 


then No;; No+ 1 and i(lr J:::: I, 2. J 


Inn.r(No, I) =lDAlI( j, I) 


IJ.5 Crentc incremented vectors 


/'" ::::: (/~ ,/~t, 1.~'11· from the matrix Inner and call 


R.6.5.4 Bifurcation 
p(linl COordUl<lte.<.: 

U.., =Ix fol 'YI,;' 1'1 

suhroutinelnrt<n'or 

RA5.3 Call Subroutine 
Bifurcation 

RA5,2.2.4 Va,y -> Min. 

ifj",=2-0=2 thell 

1;"" ;;; I:~" and IDBuund(k. J);;:: 0 

R.6.5.2.2.3 Vary -> Max, 

if .ta) =2-1=lthcn 

I":' =I;"" and IDBounu(k, j) =I 

8.6.5.2.2.2 Min -> Vary, 
irja, ;()-2 :-2 then 

I;" =I~' and lDBound(k, j) =0 

x'6.5.2.2.1 MllX -> Vary. 
if ,la, 1-2=-llhcn 

I;" =1'."" ,mu IDBnund(k, j) =I 

R.6.5.2.1.2 Max leg length" 

I ­

-

-

n, ___P_'_lS_Si_h_IC;":il1:g:ul:ar:c:'o:n:fig:u:':"':io:n::::__1--1~::::::::::::::::::::::::~ 
R.6.5.2.L I Min leg lengths, 

8,6.5.2, I Unchanged leg lengths if j<lJ ;;;;;(}lmd id ;;;;;() ,then 

if j.l i :::. 0 and it!,: I ,then 

R.6A 1 Bifurcation occurred inside [r; ;;;;;the llccessihJe output sci, 	 J;"'~ uou IDBound(k. i) 

j 

1:~' =:; I;"'" <lno IDBound(k,.J) ={) 

RJj,5.2 Tmnslate vectors id and ja 

to acluator leg lengths: 


Create vector 


/''' =[I~'.I;",I:"f'· 

Figure A, 1 Row chart showing the layout of the main program. 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

Looking at Figure AI, the first thing the user has to enter, is the respective minimum and maximum 

actuator leg lengths. The main program then calculates the mean actuator leg lengths. 

[min + I max 
{.mean 	 = 1 I (Ai) 

I 2 

for 	i =1, 2, 3 

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the 

input variables. Subroutine Start is used to determine the initial central point uo. 

A.2.t 	 Subroutine Start 

In the flow chart showing the layout of subroutine Start (see Figure A2), it is evident that the user 

has to enter an initial guess as to where the central point Uo is situated. This initial guess preferably 

has to be inside the accessible output set, and for the planar Stewart platform under consideration, 

the initial guess that was entered, is (x, y) = (1.0, 1.2). 

[ Suhroutine 
Start 

I 
(I) Starting Point 

Enler u vulid staning point: 


Deroult (x, y) = (I.n.1.2) 


I 
I 

(iv) No Gri.ldicnt VecturN 
(il) No Obicctive Function 

j',r j 1,2,3
f(x)=O 

gf,(x) = ()f 	 j 
I I 

(iii) Equ~lilY COU'Hr<..lint Equation 
(v) Gr..uicnl Vectors 

for j::::I,2,3 
Forward Difference 

Methot!h,{x)"',-I;'·:O 

4. Radiating Point I 	 I CmmJinate.o; uti =Ix",yl! Jf 

Figure A.2 Subroutine Start. 

There is no explicit objective function, as the three non-linear equations are entered as equality 

constraints, i.e. 

V I (u, w) - V ~,e;l!l =0 

v (u 	w)_v mcon 0
2' 2 	 (A2) 

The gradient vectors of the equality constraints are determined numerically using the forward 

difference method: 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

(A.3) 

The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11), 

and the output of subroutine Stan is the radiating point U
O from where the boundary of the planar 

Stewart platform is mapped. 

The next step in the main program (step 5 in Figure A.l), is to initialize the "truth table". Knowing that 

the planar Stewart platform has three legs each having two extreme positions, it is evident that there are 

23 = 8 bifurcation points. This truth table is used to identify which bifurcation points are situated on the 

boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation 

connection curves as will be explained later. 

The initialization of the truth table involves creating an 8 x 3 matrix IDAJI where each row represents a 

different bifurcation point. The entry in each of the three columns indicates whether the corresponding 

leg takes on a minimum or maximum length with the manipulator working point corresponding with that 

specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a 1 entry in column 

i indicates that leg i takes on a maximum length, and a 0 entry that leg i takes on a minimum length. 

Step 6 in Figure A.I is the initialization of the vector ido1d • This is an "old" identification vector, and it is 

used in subroutine Boundary. An auxiliary variable 8 is defined in the main program to be used in the 

mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 6 is 

incremented from 0 to 2n, as follows: 

6 = i(2n) (A.4) 
I Max 6 Inc 

for i =0, 1, 2,..., (Max 6 Inc-I) . 


The user decides on the number of increments required, and defines the parameter "Max6Inc". It 


follows that once the parameter "Max8Inc" is specified, the increment size Dof the emanating rays used 


for mapping the planar accessible output set (see Section 2.4), is fixed. 


2n
D=--­ (A.5)

Max 6 Inc 

For each orientation angle 8i, the intersection of the specific emanating ray with the OY-axis (CutJ is 

determined in the main program (7.1 in Figure A.I), as it is used in subroutine Boundary. 

(A.6) 


for i = 0, 1, 2, ... , (Max 6 Inc-I) 
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A.2.2 Subroutine Boundary 

I 
(iLl) Min leg length., 

for j=l,2.3 

'f/c,(X)1 5 AClTol , 

then id; =0 

I 


Subroutine 
Roul1daryl I 

If e" =0, thenI 
"=[x" +srartddl]

l u " (i) Stilting Point .vr~SJimd,1I =IUI5 
<jl=() 

I 
I 

(v) Gradient Va.1ors

( (ii) Objeclive Function 
gf,(x)=-(x- x")~lu -11"1 

f(.<)=-IIu- u"ll 

gf,(x) =-(v - y,,)/~u - u"ll 

gf,(x) =11 

If e, ;;;.y±tolfac ,or a, =i-±lnlfac.: 

litell bj(x)ax- x(,":;() l- I
H(iii) Equality COI1Strantt (vi) Orddient Vet.'tot'S 

Equation I I r-
For all olher value. ... of ai, 

h,(x) 5: y - xtnne- cut,. =0 '- ­

It}f j=1,1.3, c;\x).,;"", -I, sO (iv) IfkXjuaJil)' Conslmml 
(vii) Gr..idienl VecLors L 

&jll!ltions
c .. ,,{x)==lj -l:"'~ sO JH I l 

I 
(viii) Ide.ntify Active Ctmstminl<;; 

Creale ldentificntion Vector 

id =Iid"id" id, IT 

I 

I 


(0.2) Max l.JOg Lellglh., 

for 1=4,5,6 

j[lc,(x~';Ac'Tol, 

lhen id ,., ~ J 

I 


.--- ­

I 

(a) Tnlcmnce Faclnr 

Default ActTol =1O-~ 

(a.3) Varying leg length., 

flJf j=l,2,3 


if C J (x)::;: ActTol and 


Cj>l(x}::;:AClTol,then 

ill ,=2 

Else if 6, >0 .thell 

x=x,j'l 

y= J',.\ 

<P"""tp",1 

I 

If e, =+± 'olfac ,or 


e, =T± lollac 


lhen gh,.,{x);;; 1 


gb",(x)=O 


gh,,,ct)=() 


For all other valueN of 6i • 

yh , ,(x)==-tan9 

gh",!x)= 1 

gh,,(x) =0 

(vii) Fnrwanl Differencc 
Method 

(h) Create Affirmation Vector ja 

for j~l,2,3 

jU J =id<i<IJ- id / 

I 
(c) Upd~ttc Vector id"ld 

filf j= 1,2,3 1<.3 Boundary Pnlnl 

"I =lfX. yjTidcMi =id j rl 
Figure A3 Subroutine Boundary, 

With eo =a , an initial point on dA is sought, and optimization problem (i) as described in Section 

23 is applicable, In order to make sure that the maximization is not done 1t out of phase, an offset 

(Startdelt) is added to the x-value of the radiating point uo, The actual radiating point used to find 

the initial point on dA with eo = a , is uo*: 

Appendix A 103 

 
 
 



DESCRIPTION OF COMPUTER CODE: PLANSTEW 

Looking at Figure AI, the first thing the user has to enter, is the respective minimum and maximum 

actuator leg lengths. The main program then calculates the mean actuator leg lengths. 

(A.I) 


for i 1,2,3 

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the 

input variables. Subroutine Start is used to determine the initial central point uO. 

A.2.I 	 Subroutine Start 

In the flow chart showing the layout of subroutine Start (see Figure A2), it is evident that the user 

has to enter an initial guess as to where the central point UOis situated. This initial guess preferably 

has to be inside the accessible output set, and for the planar Stewart platform under consideration, 

the initial guess that was entered, is (x, y) = (1.0, 1.2). 

t 
Subnmtinc 

Stiln 

I 
(i) Starting Point 

Enter a valid slarting point: 

Defauil (x, y) =(1.0. 1.2) 

I 

l (ii) /Vo Ohjc1.1ivc Function 1 
(iv) No Gmdicnt Vectors 

£(x)=O 
for j=I,2,3 

gf,(x)=U 

I I 
(iii) Equality COIl.'1trainl Equation 

(y) Gradient Vectors 
Ibr j= 1,2,3 Forward Diffcreoce 

h,(x) ali -I:'·'" =() Methml 

I I 

4. R;idialing Poinl 

Cunnlinatc..., uP =rx\l, )-,(If" 

Figure A,2 Subroutine Start. 

There is no explicit objective function, as the three non-linear equations are entered as equality 

constraints, i.e. 

V I (u, w) - V ~ean = 0 

V 2 (u, w) - V~c-Jn =0 	 (A2) 

V 3(U,W)-V;can =0 

The gradient vectors of the equality constraints are determined numerically using the forward 

difference method: 
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(A.3) 


The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11), 

and the output of subroutine Start is the radiating point UO from where the boundary of the planar 

Stewart platform is mapped. 

The next step in the main program (step 5 in Figure A.i), is to initialize the "truth table". Knowing that 

the planar Stewart platform has three legs each having two extreme positions, it is evident that there are 

23 
:::: 8 bifurcation points. This truth table is used to identify which bifurcation points are situated on the 

boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation 

connection curves as will be explained later. 

The initialization of the truth table involves creating an 8 x 3 matrix IDAII where each row represents a 

different bifurcation point. The entry in each of the three columns indicates whether the corresponding 

leg takes on a minimum or maximum length with the manipulator working point corresponding with that 

specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a 1 entry in column 

i indicates that leg i takes on a maximum length, and a 0 entry that leg i takes on a minimum length. 

Step 6 in Figure A.l is the initialization of the vector id"ld. This is an "old" identification vector, and it is 

used in subroutine Boundary. An auxiliary variable 8 is defined in the main program to be used in the 

mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 8 is 

incremented from 0 to 21t, as follows: 

8.:::: i(21t) (A.4) 
, Max 8 Inc 

for i =0, I, 2, ... , (Max 8 Inc-I) . 


The user decides on the number of increments required, and defines the parameter "Max8Inc". It 


follows that once the parameter "Max8Inc" is specified, the increment size S of the emanating rays used 


for mapping the planar accessible output set (see Section 2.4), is fixed. 


21t
S=--­ (A.5)

Max 8 Inc 

For each orientation angle 8i , the intersection of the specific emanating ray with the Of-axis (Cuti) is 

determined in the main program (7.1 in Figure A.l), as it is used in subroutine Boundary. 

(A.6) 


for i = 0, 1, 2, ... , (Max 8 Inc-i) 
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A.2.2 Subroutine Boundary 

If Il, ""'of± tolfnc ,or 9, =-r-± hlifac: 

lhcnhi(x)EiX-x.~=() 

For all other values nrS;. 

hi (xl !i!E y- xlnn 8- I:Uf; =0 

for }=1,2.3, cj(x)=I;'" -I, ~o 

c",(x)e( -I;"" sO 

Subroutine 
Roundaryl j 

If e, =0, then 

l 

W +SlIlrlddr] 


(i) St,ming Point U .vI! 

I }-r-
StllTtdd, =OJIS 

<II=!) 

I 
I 

(v) Grudicnt Vecturs 
(ii) O~~ctive Functi,)n 

gr,(x) =-(x- X,,)~IU -u"i 
f(X)=-Ilu-u'l 

gf,(x) =-(y - Y,)~lu - u"l 

gf.,(x)=(l 

[ j 
r- ­

I 
(iii) Equality C,mSlramt (vi) Gr.w.icnt Vector,; H Equation I I (­

'- ­

(iv) Inequality Com'lraim 
(vii) Gradient Vectors.EquationsH ] [ 
I 

I (vit) ftlrwaru Difference 

J Me'lli>d 

(vi1i) loonliJy Active umSlraims: 
Crcatc-ldentitication Vector 

id = [id " id" id, l' 

I 
(,.. I) .\'lin Leg Lengths 


[Ilr j=J,2,3 


irjc, (x)1 ,; ActTnl , 


then id, =0 


1 

Else if a, :> 0 , (hen 

x =x,." 
Y=)"'>l 

<P=CP,j,1 

I 

If e, =+± tolfac ,(it 


8, =T± tolfac 


tben gbu(x)= I 


ghu{x)=O 


ghV\(x);(} 

For .\11 uther vaiues of 9,., 
gh (x)=-lan8u 

gh,,(x)=] 

gh,,(x)=() 

J 


J 

(a) Tolerance Factor 

Dcfllull ActTol ;;;: JO-~ 

I 

I 


(a,2) Max Leg Lengths 


for j =4,5,6 


if Ie i(x)l,; Ac(rlll , 


then id ,.,=1 


J 


(;1,3) Varying Leg Leng'h., 

[m j=I,2,3 

if c ,ex)'; ActTnl and 

t: id (x) s; AClTol ,then 

itl j =2 

(b) Create Affirmation Vee'"r ja 
1(lr 1,2,3 

.ia j id i:::: Jd'td) ­

1 
(e) Updme Vee,"rid,." 

[or j=I,2,3 rl 1U Boundary Point 
n, =kx,y)rld"1.! =id j 

Figure A.3 Subroutine Boundary, 

With eo 0, an initial point on aA is sought, and optimization problem (i) as described in Section 

2.3 is applicable. In order to make sure that the maximization is not done 1t out of phase, an offset 

(Startdelt) is added to the x-value of the radiating point uo. The actual radiating point used to find 

the initial point on aA with en =0 , is Uo": 
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(A.7) 

With 8; > 0, the output and intermediate coordinates of the previous boundary point is used as an 

initial guess for the new boundary point sought. 

Maximization problem (i) of Section 2.3 is converted to an equivalent minimization problem as 

follows: 

minimize -Ilu uiI II (A.S)
n.w 

Analytical expressions for the gradient vectors of the objective function are used in subroutine 

Boundary a,.<; can be seen in box (vi) of Figure A.3. 

The 8; and Cut; values determined in the main program, are used in subroutine Boundary to impose 

the single equality constraint. A separate equality constraint had to be defined to accommodate the 

asymptotic behavior of the tan-function: 

If 8; f± TolFac or 8; = ~1t ± TolFac, then: hi == x Xii 0 

(default value TolFac 0.001) (A.9) 

for all other values of 8i: hi == Y - x tan 8; - Cut; = 0 

Analytical expressions for the gradient vectors of the equality constraint are used as can be seen in 

Figure A.3. 

The minimum and maximum leg lengths that were entered in the main program, are used in 

subroutine Boundary for the six inequality constraint equations (see box (v) in Figure A.3). 

C (mll' I
j 

sO 
i 

(A. 10) 
c. ==l. _Imax sO 

;+3 I I 

for j =1,2,3 

These inequalities impose correspond to expression (2.IS) of Section 2.6.1. Once agam, the 

forward difference method (A.3) is used to determine the gradient vectors of the inequality 

constraints. 

An important aspect of subroutine Boundary, is to identify the active inequality constraints, as the 

mapping of the boundary is done. For each 81> i =0,1,2, ...,(Max8Inc-l), the values of the 
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inequality constraints are monitored, and the entries of an identification vector, 

id = rid!' id2' id,]T, as well as the entries of an affirmation vector ja =[ja p ja 2 , ja 3 r is 

determined. These vectors are used in the main program to identify the bifurcation points, as the 

workspace boundary is mapped. 

A tolerance factor ActTol is associated with vector id, and its magnitude is specified by the user 

(default value ActTol =10-5 
). Each entry of the vector id can have one of three possible entries: 

• 	 if any of the actuator legs is at its minimum length, the corresponding entry in vector id will 

have the value zero. 

:. for j = 1,2,3: if Ic j I~ ActTol, then id j =0 

• 	 if any of the actuator legs is at its maximum length, the corresponding entry in vector id will 

have the value one. 


:.for j = 4,5, 6: if Ic j/ ~ ActTol, then id H =1 


• 	 if any of the actuator legs is varying anywhere between its minimum and maximum length, 

the corresponding entry in vector id will have the value two. 

:.for j = 1,2,3: if c j ~ ActTol and c j+, ~ ActTol, then id j =2 

The entries of the affirmation vector (ja) is determined at each a" i =0, 1, 2, ... , (Max aInc-I) , by 

subtracting the current identification vector (id obtained for a(, i =1, 2, ... , Max aInc-I) from the 

"old" identification vector (ido1d, which in actual fact is id obtained for 

at, i =0,1, 2, ... , Max aInc- 2). 

ja = idOl" -id 	 (A. II) 

With ao 0, the initialized vector idOl" =[0, 0, O]T is used to determine the affirmation vector 

(ja). After the affirmation vector has been determined, the vector ido1d is updated, i.e. for j =1,2,3, 

id old; =id j . 

The coordinates of the "boundary point" (uhi =[ex, y]T ),the identification vector id as well as the 

affirmation vector ja are transferred back to the main program. 

Each boundary bifurcation point is entered in a consecutive row k of the matrix IDBound using a similar 

notation to the one used for matrix IDAII. Once all the boundary bifurcation points are found, a 

comparison between the matrices IDAlI and IDBound allows for the isolation of the bifurcation points 
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not situated on the accessible output set boundary. Counter k is initialized before the boundary mapping 

is started. 

The main program uses the two vectors id and ja to identify the bifurcation points as the workspace 

boundary is mapped. 

Clearly it is possible to intersect a bifurcation point with ray °where 8n =° , and provision is made to 

identify such a bifurcation point, if this happens. 

with 80 =0, if: id t > 1, or id 2 > 1, or id J > 1, then a bifurcation point is not intersected by ray 0. 

with 80 =0, if: id t ~ 1, and id 2 ~ 1, and id J ~ 1, then a bifurcation point is intersected by ray 0. 

Increment counter k =k + 1 

With 8n 0, the identification vector (id) shows whether each of the three actuator legs is at its 

maximum or minimum length. 

With 8i > 0, it is the affirmation vector (ja) that indicates whether a bifurcation point is situated 

between two successively mapped boundary points: 

with 8 i > 0, if: ja t = °,and ja 2 = 0, and ja 3 == ° , 
then a bifurcation point is not present between rays i and i-I. 

with 8; > 0, if: ja t *0, and ja 2 *0, and jaJ = 0, 

or ja J *O,and ja z O,and ja 3 *O,or ja l O,and ja 2 *O,and ja 3 *0, 

then a bifurcation point is present between rays; and ; - 1 . 

Increment counter k = k + 1 . 

The detail of why any two entries of the affirmation vector ja has to be non-zero values to indicate 

bifurcation is evident from the discussion of the results in Section 2.6.3.1. 

The main program creates a matrix called Points which has (Max8Inc) rows and four columns. The 

global x- and y-coordinates of mapped workspace boundary are respectively entered in columns 3 and 4 

of matrix Points (see Box 8 in Figure 9). The global x- and y-coordinates of the mapped bifurcation 

points are respectively entered in columns 1 and 2 of matrix Points. This matrix is then used to create a 

drawing of the workspace (see Figure A.4). 
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the vector ja and the vector id (for Of > 0) to determine the actual lengths of the actuator legs, and 

creating a vector containing these extreme actuator leg lengths r" == [l~Xl , I;", I;Xl y, The vector (Xt is 

then used in subroutine Bifurcation to determine the coordinates of the bifurcation point. 

If a bifurcation point is intersected by ray 0 where 00 0 , the vector (Xt is determined from the entries 

of the identification vector: 

• 	 extreme leg lengths corresponding to the minimum leg lengths: 

:. for j == 1,2,3: if id j 0, then lexl l~m 
J J 

IDBound(k, j) == 0 

• extreme leg lengths corresponding to the maximum leg lengths: 

:.for j == 1,2,3: if id j = I, then l;Xl == I;"" 
IDBound(k, j) == 1 

With 0 i > 0, a bifurcation point is identified if any two entries of the affirmation matrix ja is a non-zero 

value, Since ja =idoJd - id , two entries of the vector id change when a bifurcation point is present in 

the section of the boundary contained between the vectors idoJd and id. Mapping the unchanged leg 

lengths is done by examining the vector id as well as the vector ja. 

• extreme leg lengths corresponding to the minimum leg lengths: 

:.for j == 1,2,3: if id j == 0 and ja j == 0, then l~" == 17" 
IDBound(k, j) 0 

• 	 extreme leg lengths corresponding to the maximum leg lengths: 

:. for j = 1,2,3: if id j I and J'a, == 0, then le" = lmax 
I I I 

IDBound(k, j) =1 

Mapping the changed leg lengths is done by examining only the vector ja. 

• 	 maximum leg lengths changing to varying leg lengths: 

:. for j =1,2,3: if ja j == I 2 = , then l eXl 1max 
J J 

IDBound(k, j) = 1 

• minimum leg lengths changing to varying leg lengths: 

:. for j =1,2,3: if ja j =0 2 =-2, then l~xl 

IDBound(k, j) = 0 
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• varying leg lengths changing to maximum leg lengths: 

1 , then [eXl 

IDBound(k, j) == 1 

:.for j 1,2,3: if ja j 2-1 
} 

• 	 varying leg lengths changing to minimum leg lengths: 

[min:. for j == 1, 2, 3: if ja j ::: 2 - 0 = 2, then [~x' 
J 

IDBound(k, j) =0 

The vector r t is transferred by the main program to subroutine Bifurcation where the coordinates of the 

bifurcation points are determined (see Figure A.6). 

A.2.3 Subroutine Bifurcation: 

[ Subroutine 
R!'fUrt'lltion 

J 
(i) Starting Point 

X=X,jd 

Y='Y,(') 

"'=<!),~ 

l (i1) No Objective Function 

f(x)=O j 
(iv) No Gr.tdienl VCCh)i'S 

fo, j = 1.2.3 

gf,(x)=() 

I 
(jm Equality Cnn<;lmint Equntion 

itit j;l,2.3 

b,(x)sl, -I';' =0 

(v) Gnu.Hent Vectors 
P'ltwarJ Difference 

Method l K6.5A Bifurcalioll PHint 

Coordinates u 1"01 =IXN1 ' y", I!' ] 
I I 

Figure A.6 Subroutine B(furcation. 

The starting point used in this subroutine is coordinates of the previous boundary point, and similar 

to subroutine Start, there is no explicit objective function, as well as no objective function gradient 

vectors for the code LFOPCV3. 

The components of the vector r t are used in the three equality constraint equations shown in box 

(iv) of Figure A.6. LFOPCV3 is once again used to solve three non-linear equations: 

ext 
VI ( U, W ) -VI o 
v 2(U, W)_V~Xl =0 (A.12) 

v (u, w)-v~xt =03 
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The gradient vectors of the equality constraints are detennined using the forward difference method 

given by equation (A3). 

Once the coordinates of the bifurcation point (u hil = [X 
Ui 

! , Y hif ]T) is detennined, they are 

transferred to the main program, where they are respectively entered into columns ] and 2 of the 

matrix Points. 

Once the exterior boundaries are mapped, the bifurcation point connecting curves are traced using the 

matrices IDAll and IDBound. The first step in tracing the bifurcation point connecting curves is to 

identify the bifurcation points situated on the accessible output set boundary. 

All row vectors of matrix IDBound is subsequently subtracted from each row vector in matrix IDAD to 

give the resultant vector IDEA: 

IDEA =IDAII - IDBound (A 13) 

If for any of the row vectors in matrix IDBound vector IDEA is a zero vector, the specific row vector in 

IDAIl is labeled as it represents a bifurcation point situated on the boundary of the accessible output set. 

After the complete boundary is mapped, the unlabeled row vectors of IDBound is isolated and used to 

trace the bifurcation point connecting curves as described in Section 2.6.3.2 and set out in Figure A2 and 

Figure A7. 

A.2.4 Subroutine Interior 

[ Subroutine 
Inferior 

If II1'p = () , then 

X=Xll 

y= ),,, 

'1'=(1 

[ (i) Starting Point 

I 
(iv) No Gr-.ldieut Vectors 

(ii) No Objective Function 

l 
for j=I,2,3

fIx) =0 ] 
gf,(x)=O 

I I 

(iii) Equalit.y Cun,'Itmim Equation (v) Grlldienl VeclOr,.; 

lor j =1,2,3 FnrwanJ Difference 
Mcto"d 

0j(x);;;'i-I;'=O 

I I 


El..e If Insp > () ,then 

x=x", 

y;;;;: Ya. 

'1'='1'", 

Incremented coordinates 
011 bifurcation point 

connectjng curvc 

u" =Ix", y,,, f' 

I 

Figure A.7 Subroutine Interior 
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The starting point used in this subroutine is the radiating point U
O when the first point of a new 

bifurcation point connecting curve is to be traced. Once the first point on the curve is found, its 

coordinates are used as the starting point from where the next point on the curve is to be traced. 

is coordinates of the previous boundary point, and similar to subroutine Start and Bifurcation, there 

is no explicit objective function, as well as no objective function gradient vectors for the code 

LFOPCV3. 

The components of the vector ill are used in the three equality constraint equations shown in box 

(iv) of Figure A.7. LFOPCV3 is once agdin used to solve three non-linear equations: 


v,(u,w)-v;" =0 


v 2 (u, w) V ~' =0 (A. 14) 

v3 (u,w) v~\ 0 

The gradient vectors of the equality constraints are determined using the forward difference method 

given by equation (A.3). 

= [x il1Once the coordinates of the point on the interior curve (u in 
, in r) is determined, they are 

transferred to the main program and entered into a script file from where the results are drawn. 

This concludes the description of the computer code PLANSTEW. 
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Appendix B 

B The Mapping of the Near Global Optimum Boundary Curves of the 

Reachable 6-3 Stewart Platform Workspace 

The method for computing the accessible workspace for the 6-3 Stewart platfonn is explained further in 

this appendix, with the emphasis on the near global optimum boundary curves (EF [I l--11]in Figure 

3.3 and DG 101--10] in Figure 3.4). 

Following the "upward sweep" to map the reachable workspace as depicted in Figure 3.3, no problems 

occur as the near global optimum boundary curve DE [-1111-] is mapped. Even for the first few rays 

mapping curve EF [11 - -11], the near global maximum displacement from U
O is found time and again, 

and the first part of curve EF is easily detennined as shown in Figure B.I. However, as curve EF is 

followed using the "upward sweep", the near global optimum is separated further and further from the 

global optimum situated along curve FG [-1111-] (see Figure 3.2). As soon as the distance between 

the near global and global maximum displacements for two successive rays reaches a critical value, the 

optimizer LFOPCV3 "jumps" to the global optimum for the latter ray. This explains the "jump" between 

the near global boundary curve EF [11 - -11] and global boundary curve FG [- 1111 -] as shown in 

Figure B.l. 

Curve EF [11--11] as presented in Figure 3.2 and Figure 3.3 is mapped with user interference. 

Because the first part of this curve is successfully detennined, the optimization approach allows for the 

identification the actuator legs assuming extreme lengths as the working point follows curve EF. The 

label of curve EF [11 - -II] stems from this identification procedure, and the label shows that actuator 

legs 1, 2, 5 and 6 remain fixed at their maximum lengths along curve EF. 

Using a separate procedure, the complete near global optimum curve EF [11- -11] is mapped for NR 

successive rays emanating in the range 121.8" :S;cpj :::;;180' (2.126:S;cpj :S;n), by minimizing the 

following error function using LFOPCV3. 
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THE MAPPING OF THE NEAR GLOBAL OPTiMUM BOUNDARY CURVES 

e( u, w) = (v j (u, w) V ~,ax r + (V 2 (u, w) - V ~,ax y+ (V 5 (U, w) - V ~ax y 
+ (V 6(U, w) V~ax t + (U 2 - UtanOY + {JU~j+ U;j - (z'l -u3Jtan(cp)) 

(Rt) 
j 

The first four terms of (B.1) fixes the actuator legs at their extreme lengths while the fifth term fixes the 

vertical plane at 0i = 0". The last term of (B.1) corresponds to equation (3.15), and is incremented as 

curve EF [11 - -11] is traced, i.e. 

cp. =2.126+ jl.016 (R2)
j N 

R 

for j = 0, 1, 2, ...,NR 

z 

OO~ =OOy =0°) 

[II 

o 

Figure B.l The "jump" between the near global optimum and global optimum boundary curves. 

Curve GD [01- -10] shown in Figure 3.4 is mapped in a similar manner. 
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C Procedure of Finding the Bifurcation Point Coordinates of the Fixed 

Orientation 6-3 Stewart Platform Workspace 

As an extenuation of Section 4.3, an explanation follows on the details of how the bifurcation points on 

the boundary (i1A [0·, 0·, 0' h, of the fixed orientation workspace A [0', 0", 0'] of the 6-3 Stewart 

platfonn are mapped. Bifurcation point B (0 1 - 1 0) [0', 0', 0'] shown in Figure 4.1 and Figure 

4.2(a) is used as a representative example. 

Bifurcation point B (0 1 - 1 0) [0', 0', 0'] is found by minimizing an error function, 

corresponding to the planar case explained in Section 2.6.3.1, where an error function (2.24) was defined 

to find the point A' shown in Figure 2.10. 

The error function used to find the coordinates of bifurcation point B (0 1 - - 1 0) [0', 0', 0'], is 

again expressed in tenns of the output coordinates (u) and intennediate coordinates (w). 

Eight tenns can be defined for the error function, one to "fix" the direction of the vertical plane (3.11), 

four tenns to "fix" actuator legs 1,2,5 and 6 to their respective extreme lengths and a final three to "fix" 

the orientation of the top platfonn (4.4). 

The error function of the planar Stewart platfonn is defined in tenns of three coordinates (two output and 

one intennediate), and it consists of three tenns. This means that for the spatial Stewart platfonn under 

consideration, the error function defined in terms of six variables should only have six tenns. 

Fortunately, not all eight of the possible tenns are independent. The six tenns used determine the 

orientation of the top platfonn (4.4) and any three of the four "active" actuator legs. Because the 

platfonn is symmetrical about the XOZ plane and all the leg length limits are the same, the fourth leg 

automatically assumes the correct extreme length at the correct orientation of the vertical plane. 
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PROCEDURE OF FINDING THE COORDINATES OF THE BIFURCATION POINTS 

Considering, for example, bifurcation point B (0 1 - - 1 0) [0·, 0·, 0"]. It is expected that actuator 

legs 3 and 4 assume the same intermediate length when the other four legs assume the labeled extreme 

lengths. The error function to be minimized is: 

e(u, w) (vl(u, w)_v~jn Y+(v 2(u, w) V~"IX r +(vs(u, w) V;'lX y 
(C.1) 

+(w 1 OY+(w 2 -0Y+(w,-oy 

The global coordinates that were obtained for bifurcation point B (0 1 - - 1 0) [0·, 0·, 0·], by 

minimizing the error function (B.t) using LFOPCV3, are (6.197, 0.0, 6.613). 

These coordinates and the fixed orientation of the top platform (ex = o· ,p o· and y= 0·), are 

substituted into expressions (3.3) and (3.4) to determine the actuator leg lengths: 

II = lo =8.0 =Imin 

12 = 15 15.0 = Irnax 

/3 /4=11.331 

This validates the definition of error function (C. I ). 
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Appendix D 

D Determination of a Non-Vertical Bifurcation Curve of the Fixed 

Orientation 6-3 Stewart Platform Workspace 

. Bifurcation line A'B'C' [0°, 0·, - 30·] presented as part of the fixed orientation accessible workspace 

boundary dA [0', 0·, - 30'] shown in Figure 4.3 is analyzed in more detail looking at the three vertical 

planes of the fixed orientation accessible workspace A [0', 0·, - 30' ], respectively isolated at e=15° , 

e= 30'and e 4Y. 
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Figure D.1 Sections ofJA ~o, 0°. 30' Jat (a) OJ == 15° ,(b) 0i = 45'. and (c) 0i = 30'. 

Figure D.I (a) shows the section of the fixed orientation accessible boundary JA [0', 0', 30·] in the 

vertical plane at ej ISO. Along curve A'a [- I ­

remains at its maximum length as the manipulator working point follows the curve. Curve A'a forms 
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DETERMINATION OF ANON-VERTICAL BIFURCATION CURVE 

part of the convex boundary surface A'B'D' labeled to Section 4.3 as 

A'B'D' [- 1 - - -] [0', 0", 30·]' Similarly curve aC' [0 - - - - -] [0', 0·, 30· ][e; I Y ] 

is characterized by actuator leg I remaining fixed at its minimum length, and curve aC' fonns part of the 

concave boundary surface C'B'D' [0 

Next consider Figure D.1 (b) which shows the section of the fixed orientation accessible boundary 

JA [0·, 0', - 30° ] in the vertical plane at ei =45' . The labels of convex curve A'b 

[- - I - -] [0°, 0·, - 30· ][e; =45"] and concave curve bC' [- - 0 - - -] [0·, 0', - 30· ] 

[e; =45"] respectively correspond to the labels of convex boundary surface NEB' and concave 

boundary surface C'EB' labeled in Section 4.3. 

The actual bifurcation curve A'B"C coinciding with the intersection of the four boundary surfaces 

A'B'D' and NEB', as well as C'B'D' and CEB' (as labeled in Section 4.3), consists out of two 

bifurcation lines. The upper bifurcation line is a convex, and is labeled A'B" [- 1 I - -] 

[0°, 0·, - 30·], while the bottom bifurcation line is and a concave with label B"C' [0 0 - - -] 

These two bifurcation lines intersect at bifurcation point B" 

The curve A'B'C' obtained from the vertical plane at e; =30' is labeled and shown in Figure D.I (c). 

Convex "bifurcation line" A'B' [- 1 - - - -] [0', 0·, - 30·] [e; = 30°] does in actual fact not 

coincide with the intersection of boundary surfaces A'B'D' and A'EB', as it is part of boundary surface 

A'B'D' [- I - - -] [0·, 0', - 30' ]. Similarly, concave "bifurcation line" B'C' [- 0 - -] 

[0', 0·, - 30· ][e; = 30' ] fonns part of boundary surface C'E B' [- - 0 - -] [0°, 0°, - 30° ], and 

does not coincide with the intersection of the two boundary surfaces C'EB' and C'B'D'. 

The actual bifurcation curve A'B"C' is shown in Figure D.2 together with the near bifurcation curve 

A'B'C' and they almost coincide. 
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DETERMINATION OF A NON-VERTICALBIFURCATJON CURVE 

z 
A' 

I 
z 

A':C' X
B" C 

B" 

Figure D.2 The near (A'B'C) and actual (A'B"C') bifurcation curves. 

The computed "bifurcation" curves A'B'C' [0', 0·, - 30' ], A'D'C' [0·, 0·, - 30' ], A'E'C' 

[0·, 0', - 30·], A'PC' [0·, 0·, 30'], A'G'C [0·, 0', 30·] and A'H'C' [0', 0·, 30·] as presented in 

Figure 4.4 are also not the exact bifurcation curves. The deviations are however sufficiently small so as 

to be considered negligible from a practical point of view. 

In addition the bifurcation lines all lie outside the dextrous workspace A [0·, W, (-30·) - (30·)] 

(Volume A'CI'J'K'L'M'N') as shown in Figure 4.5 and may therefore be ignored in the further analysis 

of the dextrous workspace. 
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