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Appendix A

A Computer Program for Determining the Planar Stewart Platform

Workspace (PLANSTEW)

A.1 INTRODUCTION

This appendix explains the automated computer program PLANSTEW that was used to map the

accessible output sets as well as the bifurcation point connecting curves of the planar Stewart platform.

PLANSTEW consists of a main program and a few subroutines. The outlay of the main program is
shown in Figure A.1, and the different subroutines are shown in Figure A.2, Figure A.3, Figure A.6 and
Figure A.7. The detail of the main program is explained here and the discussions of the subroutines are

included as sub-paragraphs.
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A.2 THE MAIN PROGRAM
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Figure A.1 Flow chart showing the layout of the main program.
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Looking at Figure A.1, the first thing the user has to enter, is the respective minimum and maximum
actuator leg lengths. The main program then calculates the mean actuator leg lengths.
[
zimexm — __}._—l-__ (A' 1)
2

fori=1,23

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the

input variables. Subroutine Start is used to determine the initial central point u’.

A.2.1 Subroutine Start

In the flow chart showing the lay out of subroutine Start (see Figure A.2), it is evident that the user
has to enter an initial guess as to where the central point u’ is situated. This initial guess preferably
has to be inside the accessible output set, and for the planar Stewart platform under consideration,

the initial guess that was entered, is (x, y)= (1.0, 1.2).

Subrouting
Start

{1} Starting Poing
Enter a valid starting point:
Defaglt (x, ) =(1.0,1.2)
]
] ]

" - . iv) No Gradiont Vectors
[ (ii) Ne Obiective Function } {iv} No Gradiont Vectors

) =0 for j=123
gl (x)=0

iii) Exquality Constraint Equation
(i Bq Y By {v) Gradient Vectors

for j=123 Forwand Difference
b, sl -1 =0 Method
( 4. Radiating Point
j Courdinates u® ={x", ¥"|"

Figure A.2 Subroutine Start.

There is no explicit objective function, as the three non-linear equations are entered as equality
constraints, i.c.

v(a,w)=v™ =0

vy (u,w)—-v;™" =0 (A2)

vy, w)-vi™ =0

The gradient vectors of the equality constraints are determined numerically using the forward

difference method:
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(A.3)

The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11),
and the output of subroutine Start is the radiating point u’ from where the boundary of the planar

Stewart platform is mapped.

The next step in the main program (step 5 in Figure A.1), is to initialize the “truth table”. Knowing that
the planar Stewart platform has three legs each having two extreme positions, it is evident that there are
2° =8 bifurcation points. This truth table is used to identify which bifurcation points are situated on the

boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation

connection curves as will be explained later.

The initialization of the truth table involves creating an 8 x3 matrix IDAIl where each row represents a
different bifurcation point. The entry in each of the three columns indicates whether the corresponding
leg takes on a minimum or maximum length with the manipulator working point corresponding with that
specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a | entry in column

i indicates that leg / takes on a maximum length, and a O entry that leg { takes on a minimum length.

Step 6 in Figure A.1 is the initialization of the vector id,4. This is an “old” identification vector, and it is
used in subroutine Boundary. An auxiliary variable 0 is defined in the main program to be used in the
mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 8 is
incremented from 0 to 27, as follows:

i(2
L (A4)
Max 81Inc
fori=0,1,2,..,(Max8Inc—-1).
The user decides on the number of increments required, and defines the parameter “Max6Inc”. It

follows that once the parameter “Max8Inc” is specified, the increment size 6 of the emanating rays used

for mapping the planar accessible output set (see Section 2.4}, is fixed.

27

§m {A.5)
Max 6Inc

For each orientation angle 8;, the intersection of the specific emanating ray with the 0Y-axis (Cus;) is

determined in the main program (7.1 in Figure A.1), as it is used in subroutine Boundary.
Cut, = y* - x" tan(8,) (A.6)
fori=0,12,..,(Max8Inc—1)
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A.2.2 Subroutine Boundary
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|

]

{ii} Objective Function

{¥) Gradient Vectors
fix) = -u'] ) ==te=)ffu-o']
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* | |

{viii} ldentify Active Constraints:
Create Identification Vector

id ={id,,id,, id. ]

|

[ {u} Tolerance Factor

Defualt ActTol =107

|

N (x.3) Varying Leg Lengths
{a.2) Max Log Lengths for j=1,2,3

for j=4,5.6
il'c,(x)< ActTol and

G 1) Min Leg Lengths
for j=12.3

i ZC}(I)’ < ActTol |

iffe, ) s Aatet,
¢, {xy€ ActTol , then
then K, ={

then i, =1 i =2

]

(hy Create Affiemation Vector ja
for j=1,2,3

Ja, =id g, — i,

|

{¢) Updute Vector idgy
for j=1,2,3 &.3 Bowndary Point
iy, =id, u, =ex, y{'

Figure A.3 Subroutine Boundary.

With 6, =0, an initial point on dA is sought, and optimization problem (i) as described in Section

2.3 is applicable. In order to make sure that the maximization is not done 7 out of phase, an offset
(Startdelt) is added to the x-value of the radiating point u’. The actual radiating point used to find

the initial point on dA with 8, =0, isu”":
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Looking at Figure A.l, the first thing the user has to enter, is the respective minimum and maximum

actuator leg lengths. The main program then calculates the mean actuator leg lengths.

Lmiu + z‘m;\x
l.mc;m T Al
! 2 ( )

fori=1,2,3

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the

input variables. Subroutine Start is used to determine the initial central point u’.

A.2.1 Subroutine Start
In the flow chart showing the lay out of subroutine Start (see Figure A.2), it is evident that the user
has to enter an initial guess as to where the central point u’ is situated. This initial guess preferably
has to be inside the accessible output set, and for the planar Stewart platform under consideration,

the initial guess that was entered, is (x, y)= (1.0, 1.2).

Subrantine
Stury

() Starting Point
Enter a valid starting point:
Default {x, v} = (1.0,1.2)

]
] ]

{ii} No Objective Function {iv) o Gradiont Vectars
() =0 for j=1,2,3
s ) =0
11} Equality Constraint Equation
(i) Eq P i =12 '2 E4 (v} Gradient Vectors
or pEhe Forward Difference
h(xyst =1 =10 Methad
( 4. Radiating Poini
| e

Figure A.2 Subroutine Starr.

There is no explicit objective function, as the three non-linear equations are entered as equality
constraints, i.e.

v, (u,w)=vi =0

v, (0, W)= vI= =0 (A2)

v,(u,w)=vi*" =0

The gradient vectors of the equality constraints are determined numerically using the forward

difference method:
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o) U +8x)-fx)
ox, Ax,

H

(A3)

The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11),
and the output of subroutine Start is the radiating point u’ from where the boundary of the planar

Stewart platform is mapped.

The next step in the main program (step 5 in Figure A.1), is to initialize the “truth table”. Knowing that
the planar Stewart platform has three legs each having two extreme positions, it is evident that there are
2% =8 bifurcation points. This truth table is used to identify which bifurcation peints are situated on the
boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation

connection curves as will be explained later.

The initialization of the truth table involves creating an 8 x3 matrix IDAIl where each row represents a
different bifurcation point. The entry in each of the three columns indicates whether the corresponding
leg takes on a minimum or maximum length with the manipulator working point corresponding with that
specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a 1 entry in column

i indicates that leg i takes on a maximum length, and a O entry that leg / takes on a minimum length.

Step 6 in Figure A.1 is the initialization of the vector idyg. This is an “old” identification vector, and it is
used in subroutine Boundary. An auxiliary vaniable 0 is defined in the main program to be used in the
mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 8 is
incremented from O to 2r, as follows:

i(2m)

. — A4
" Max08Inc (A4

fori=0,1,2,...,Max06Inc—-1).

The user decides on the number of increments required, and defines the parameter “Max6Inc”. It
follows that once the parameter “Max8Inc” is specified, the increment size § of the emanating rays used
for mapping the planar accessible output set (see Section 2.4), is fixed.

2n

O = e (A.5)
Max 81Inc

For each orientation angle ©;, the intersection of the specific emanating ray with the 0Y-axis (Cut;) is

determined in the main program (7.1 in Figure A.1), as it is used in subroutine Boundary.
Cut, = y" —x" tan(8,) (A.6)
for i =0,1,2,..,(Max 8Inc-1)
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A.2.2 Subroutine Boundary

Subrontine
Boundary

8, =0, then

- }:x"+8mmielt}
=

"

Else if 8, >0, then

L
F=Yaa

=0

|

(i) Starting Point
Startdely =005

I

{v) Gradient Vectors

(i) Objetive Function

f(x}=—ﬂu-u°ﬂ gf,{x):—{;(—xu)/“u—unﬁ

If 8, =% wlfac , or

i )
g x)=-0 y;,)/"u u n 8, =2 % wifac
- N gl {x)=0 then gb, (x)=1
W8 =Ltwlfac,or B =52 wifie b =0
gh(x)=
then h ()= x-x, =0} h
why (x)=0
L 7/
(iii) E‘;'g;ﬂ:ﬁ“"s“m' [ (vi) Gradient Vectors N
7 ™ uation l For all other values of 8,
For alt other values of 65, gh,, (x)=—tan8
h{x)=y—xtn0-cur, =0 ghx) =1
. 4 #hy (x)=0
/
f 3 !
for j=12.3, ¢,(x}=0" =1 <00 i sertali i 3 B .
i ; 4 {iv} lm,(g;::z( ,(;,'\:mlmml (vii) Gradient Vecws {vil} l-or:\/rl.xerd Ii;ﬂcrence
c, (xyml -~ 1" <0 Metho }
‘ |
{viii} Identify Active Constraints:
Create Ientification Veetor
id=lid,,id,,id 1"
(o) Tolerance Faclor
Detault ActToi=10"
\ )
A
{ 2.3} YVarying Leg Lengths
(. ) Min Leg Lengths (1,2) Mux Leg Lengths @B f::y‘flil ;3 Bl
for j=1,23 for j=4,56 s=hs
il ¢,(x) < ActTol and
irfe, ) < ActTot, itfe, (0| < Acerol ,
§ ¢, (2)S AciTol | then
then id, =0 then id _, =1

id, =2
]

I

(b} Create Affirmation Vector ja

for j=1,2.3
fa, =i, ~id,;
(c) Update Veetor id g
for j=1,2.13 8.3 Boundary Point
W, =id, u, =|ex, v}’

Figure A.3 Subroutine Boundary.

With 6, =0, an initial point on dA is sought, and optimization problem (i) as described in Section

2.3 is applicable. In order to make sure that the maximization is not done & out of phase, an offset
(Startdelt) is added to the x-value of the radiating point u’. The actual radiating point used to find

the initial point on dA with 8, =0, is u”":
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(AT

- [x“ + Startde!z]
u =
i
y
With 8, > 0, the output and intermediate coordinates of the previous boundary point is used as an

initial guess for the new boundary point sought.

Maximization problem (i) of Section 2.3 is converted to an equivalent minimization problem as

follows:

minimize — nu - u“u (A.8)
u,w

Analytical expressions for the gradient vectors of the objective function are used in subroutine

Boundary as can be seen in box (vi) of Figure A 3.

The 6; and Cut; values determined in the main program, are used in subroutine Boundary to impose
the single equality constraint. A separate equality constraint had to be defined to accommodate the

asymptotic behavior of the tan-function:

If §, =%+ TolFac or 8, =&+ TolFac,then: h, =x—x"=0
(default value TolFac =0.001) (A9)

for all other values of 8; h, = y —xtan8, - Cur, =0

Analytical expressions for the gradient vectors of the equality constraint are used as can be seen in
Figure A.3.

The minimum and maximum leg lengths that were entered in the main program, are used in
subroutine Boundary for the six inequality constraint equations (see box (v) in Figure A.3).
c,=I"-1<0

= max
C,y=L 1M <0

(A.10)

for j=1,2.3

These inequalities impose correspond to expression (2.18) of Section 2.6.1. Once again, the
forward difference method (A.3) is used to determine the gradient vectors of the inequality
constraints.

An important aspect of subroutine Boundary, is to identify the active inequality constraints, as the

mapping of the boundary is done. For each 8, i=0,12,..,(Max8Inc—1), the values of the
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inequality constraints are monitored, and the entries of an identification vector,
id=[id,, id,, id,]", as well as the entries of an affirmation vector ja=[ja,, ja,, ja,]” is
determined. These vectors are used in the main program to identify the bifurcation points, as the

workspace boundary is mapped.

A tolerance factor ActTol is associated with vector id, and its magnitude is specified by the user
(default value ActTol =107). Each entry of the vector id can have one of three possible entries:
» if any of the actuator legs is at its minimum length, the corresponding entry in vector id will
have the value zero.
~for j=1,2,3:if |c,| < ActTol , then id, =0
e if any of the actuator legs is at its maximom length, the corresponding entry in vector id will

have the value one.
~for j=4,5,6:if c,|< ActTol, then id _, =1
s if any of the actuator legs is varying anywhere between its minimum and maximum length,
the corresponding entry in vector id will have the value two.
~for j=1,2,3:if ¢, < ActTol and c,,, < ActTol, then id; =2
The entries of the affirmation vector (ja) is determined at each 8, i =0,1,2,...,(Max81Inc—-1), by

subtracting the current identification vector (id obtained for 8, i =1,2,..., Max8Inc—1) from the
“old” identification vector (id,e, which in actwal fact is id obtained for

0, i=0,1,2,.,Max6Inc-2).

ja=id,, ~id (A.11)

With 8, =0 , the initialized vector id , =[0,0,0]" is used to determine the affirmation vector
(ja). After the affirmation vector has been determined, the vector id,yq is updated, i.e. for j=1,2,3,
id,,, =id;.

The coordinates of the “boundary point” (u" =[ex, y]"),the identification vector id as well as the

affirmation vector ja are transferred back to the main program.

Each boundary bifurcation point is entered in a consecutive row k of the matrix IDBound using a similar
notation to the one used for matrix IDAIL.  Once all the boundary bifurcation points are found, a

comparison between the matrices IDAIl and IDBound allows for the isolation of the bifurcation points
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not situated on the accessible output set boundary. Counter £ is initialized before the boundary mapping

1S started.

The main program uses the two vectors id and ja to identify the bifurcation points as the workspace

boundary is mapped.

Clearly it is possible to intersect a bifurcation point with ray O where 6, =0, and provision is made to
identify such a bifurcation point, if this happens.
with 8, =0,if: id, >1,0r id, > 1, or id, > 1, then a bifurcation point is not intersected by ray 0.
with 8, =0,if: id, <1,and id, <1, and id, <1, then a bifurcation point is intersected by ray 0.

Increment counter k =k +1

With 6, =0, the identification vector (id) shows whether each of the three actuator legs is at its

maximum or minimum length.

With 8, >0, it is the affirmation vector (ja) that indicates whether a bifurcation point is situated
between two successively mapped boundary points:
with 8, >0,if: ja, =0,and ja,=0,and ja, =0,
then a bifurcation point is not present between rays i and i —1.
with 8, > 0,if: ja, #0,and ja, #0,and ja, =0,
or ja,#20,and ja, =0,and ja,#20,0r ja,=0,and ja, #0,and ja, #0,
then a bifurcation point is present between rays i and i —1.

Increment counter k =k +1.

The detail of why any two entries of the affirmation vector ja has to be non-zero values to indicate

bifurcation is evident from the discussion of the results in Section 2.6.3.1.

The main program creates a matrix called Points which has (Max8Inc) rows and four columns. The
global x- and y-coordinates of mapped workspace boundary are respectively entered in columns 3 and 4
of matrix Points (see Box 8 in Figure 9). The global x- and y-coordinates of the mapped bifurcation
points are respectively entered in columns 1 and 2 of matrix Points. This matrix is then used to create a

drawing of the workspace (see Figure A.4).
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i+4
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J+l

Shitur

i+3
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i+2
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i+l
Shmmd

aA . S’buund

Figure A.4 Finding dA using boundary and bifurcation mappings.

If only the boundary mappings are used, the danger exists of inaccurately mapping the accessible output

set as shown in Figure A.5.

i+0
Shound

i+5
Stound

i+3
P bound

i+2
Shound

i+l
shnuml

i
Shound

Figure A.5 Finding 0A using only boundary mappings.

As soon as bifurcation point is identified between two boundary mappings, the specific coordinates of
the bifurcation point is determined, and entered into columns 1 and 2 of matrix Points. The

determination of the bifurcation point coordinates is done by interpretating the vector id (for 6, =0) or
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the vector ja and the vector id (for 6, > 0) to determine the actual lengths of the actuator legs, and

creating a vector containing these extreme actuator leg lengths I =[I/, [, [ . The vector I is

then used in subroutine Bifurcation to determine the coordinates of the bifurcation point.

If a bifurcation point is intersected by ray 0 where 0, =0, the vector I’ is determined from the entries

of the identification vector:
* extreme leg lengths corresponding to the minimum leg lengths:
~for j=1,2,3:if id, =0, then /;* ="
IDBound(k, jy=0
s extreme leg lengths corresponding to the maximum leg lengths:
~for j=1,2,3:if id, =1, then [* ={7*

IDBound(k, j)=1

With 6, > 0, a bifurcation point is identified if any two entries of the affirmation matrix ja is a non-zero
value. Since ja=idold —id, two entries of the vector id change when a bifurcation point is present in

the section of the boundary contained between the vectors idold and id. Mapping the unchanged leg

lengths is done by examining the vector id as well as the vector ja.

o extreme leg lengths corresponding to the minimum leg lengths:
~for j=1,2,3:if id, =0 and ja, =0, then /" ="
1DBound(k, j) =0
» extreme leg lengths corresponding to the maximum leg lengths:
~for j=1,2,3:if id, =1 and ja,=0,then [ =[T"

IDBound(k, j) =1

Mapping the changed leg lengths is done by examining only the vector ja.
e maximum leg lengths changing to varying leg lengths:
~for j=1,2,3:if ja,=1-2=~1,then [T ="
IDBound(k, j) =1
¢ minimum leg lengths changing to varying leg lengths:
~for j=1,2,3:if ja, =0-2=-2,then [* =/7"
IDBound(k, j) =0
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e varying leg lengths changing to maximum leg lengths:
~for j=1,2,3:if ja, =2~1=1,then IJ* =17
IDBound(k, j) =1
o varying leg lengths changing to minimum leg lengths:
sfor j=1,2,3:if ja, =2-0=2,then [ =1
IDBound(k, j}=0

The vector I’ is transferred by the main program to subroutine Bifurcation where the coordinates of the

bifurcation points are determined (see Figure A.6).

A.2.3 Subroutine Bifurcation:

Subroutine
Rifurcation

(1) Starting Point
x= 1.1(]
Y=V
D=9,
|
]
. ective Funct (iv) No Gradient Vectors
(i} No Objective Function for j=1,2.3
(x)=0
2 () =0
{iri} Equality Constraint Equation (v} Gradient Vectors
for j=1,2,3 Forward Difforence 8.6.5.4 Bifurcation Point
Method

by=d —f% =0 Coordinates u,, =[x, ¥, I'
I3 R P

Figure A.6 Subroutine Bifurcation.

The starting point used in this subroutine is coordinates of the previous boundary point, and similar
to subroutine Start, there is no explicit objective function, as well as no objective function gradient

vectors for the code LFOPCV3.

The components of the vector I are used in the three equality constraint equations shown in box
(iv) of Figure A.6. LFOPCV3 is once again used to solve three non-linear equations:

v (uw)-vi¥ =0

vy(u,w)—vy' =0 (A.12)

v,(u,w)—-vy =0

Appendix A 109



P
g

DESCRIPTION OF COMPUTER CODE: PLANST 5‘-’% NIVERSITEIT VAN PRETORIA

@), UNIVERSITY OF PRETORIA
Qu#® YUNIBESITHI YA PRETORIA

The gradient vectors of the equality constraints are determined using the forward difference method
given by equation (A.3).
bif

Once the coordinates of the bifurcation point (u"™ =[x",y"™ 1) is determined, they are

transferred to the main program, where they are respectively entered into columns 1 and 2 of the

matrix Points.

Once the exterior boundaries are mapped, the bifurcation point connecting curves are traced using the
matrices IDANl and IDBound. The first step in tracing the bifurcation point connecting curves is to

identify the bifurcation points situated on the accessible output set boundary.

All row vectors of matrix IDBound is subsequently subtracted from each row vector in matrix IDAH to

give the resultant vector IDEA:

IDEA = IDAII - IDBound (A.13)

If for any of the row vectors in matrix IDBound vector IDEA is a zero vector, the specific row vector in
IDAH is labeled as it represents a bifurcation point situated on the boundary of the accessible output set.
After the complete boundary is mapped, the unlabeled row vectors of IDBound is isolated and used to
trace the bifurcation point connecting curves as described in Section 2.6.3.2 and set out in Figure A.2 and

Figure A.7.

A.2.4 Subroutine Interior

Subroutine
Interior
If Insp =0, then Else Il Insp >0, then

X=Xy A=,
RAai R ™
¢=0 =9,
(i) Stanting Point ] i I
| ]
. L i (iv) No Gradient Vectors
[ {ii) No O:agc:uv;Funcuon J for j=12.3
x)=
gf,(x)=0
Incremented coordinales
(1ii) Equality Constraint Eguation (v} Gradient Vectors on hifurcation point
for j=1,2,3 Forwand Ditfercnce connecting curve

Methid - Y
hixisl -7 =0 w, =hx, v,

Figure A.7 Subroutine Interior
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The starting point used in this subroutine is the radiating point u’ when the first point of a new
bifurcation point connecting curve is to be traced. Once the first point on the curve is found, its

coordinates are used as the starting point from where the next point on the curve is to be traced.

is coordinates of the previous boundary point, and similar to subroutine Start and Bifurcation, there
is mo explicit objective function, as well as no objective function gradient vectors for the code

LFOPCV3.

The components of the vector I” are used in the three equality constraint equations shown in box
(iv) of Figure A.7. LFOPCV3 is once again used to solve three non-linear equations:

v,(u,w)=vi' =0

v,(u,w)—vy =0 (A.14)

v (u,w)-vi =0

The gradient vectors of the equality constraints are determined using the forward difference method

given by equation (A.3).

in

Once the coordinates of the point on the interior curve (u” =[x", y"1") is determined, they are

transferred to the main program and entered into a script file from where the results are drawn.

This concludes the description of the computer code PLANSTEW.
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Appendix B

B  The Mapping of the Near Global Optimum Boundary Curves of the

Reachable 6-3 Stewart Platform Workspace

The method for computing the accessible workspace for the 63 Stewart platform is explained further in
this appendix, with the emphasis on the near global optimum boundary curves (EF [11==11]in Figure

3.3 and DG [01--10] in Figure 3.4).

Following the “upward sweep” to map the reachable workspace as depicted in Figure 3.3, no problems
occur as the near global optimum boundary curve DE [-1111~-] is mapped. Even for the first few rays
mapping curve EF [11-~1 1], the near global maximum displacement from u’ is found time and again,

and the first part of curve EF is easily determined as shown in Figure B.1. However, as curve EF is
followed using the “upward sweep”, the near global optimum is separated further and further from the
global optimum situated along curve FG [—l 111 —] (see Figure 3.2 ). As soon as the distance between

the near global and global maximum displacements for two successive rays reaches a critical value, the
optimizer LFOPCV3 “jumps” to the global optimum for the latter ray. This explains the “jump” between
the near global boundary curve EF [11--11] and global boundary curve FG [-1111-] as shown in
Figure B.1.

Curve EF [11-—11] as presented in Figure 3.2 and Figure 3.3 is mapped with user interference.

Because the first part of this curve is successfully determined, the optimization approach allows for the
identification the actuator legs assuming extreme lengths as the working point follows curve EF. The

label of curve EF [11—~11] stems from this identification procedure, and the label shows that actuator

legs 1,2, 5 and 6 remain fixed at their maximum lengths along curve EF.

Using a separate procedure, the complete near global optimum curve EF [11——11] is mapped for Ny

successive rays emanating in the range 121.8° <@, <180° (2.126 <@, <m), by minimizing the

following error function using LFOPCV3.

Appendix C 112



THE MAPPING OF THE NEAR GLOBAL OPTIMUM BOUN, é’:& R,

@), UNIVERSITY OF PRETORIA
Qu#® YUNIBESITHI YA PRETORIA

X max

e(u, w) = (Vl(ll, W)—V‘ )2 +(V2(ll, W)'Vz )2 +(\*’5(ll, VV)_V;nax )2

+(v6(u, w)—v;““")2 +(u,—u,tan0)’ +(,/ufj+u§j —(z" —u,, )tan(q)}.)r

(B.1)

The first four terms of (B.1) fixes the actuator legs at their extreme lengths while the fifth term fixes the
vertical plane at 8, =0". The last term of (B.1) corresponds to equation (3.15), and is incremented as
curve EF [11——-11] is traced, i..

j1.016

¢, =2.126+ (B.2)

R

for j=0,1,2,..N,

F (U111 (o= 0°P = 0°y = 0%)

[~1111-]

[l —=11] EQiIInp=-118°

[~1111~]

p=121.8°

D (011110 B = -82.4°

0 X

Figure B.1 The “jump” between the near global optimum and global optimum boundary curves.

Curve GD [01--10] shown in Figure 3.4 is mapped in a similar manner.
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Appendix C

C Procedure of Finding the Bifurcation Point Coordinates of the Fixed

Orientation 63 Stewart Platform Workspace

As an extenuation of Section 4.3, an explanation follows on the details of how the bifurcation points on
the boundary (dA [0°, 0, 0°]), of the fixed orientation workspace A [0“, 0, O°] of the 6-3 Stewart
platform are mapped. Bifurcation point B (0 1 — — 1 0) [0°, 0", 0°] shown in Figure 4.1 and Figure

4.2(a) is used as a representative example.

Bifurcation point B (01 - —10) [0°, o, 0°] is found by minimizing an error function,
corresponding to the planar case explained in Section 2.6.3.1, where an error function (2.24) was defined

to find the point A” shown in Figure 2.10.

The error function used to find the coordinates of bifurcation point B (01 — — 1 0) [0°, 0°, 0°], is

again expressed in terms of the output coordinates (u) and intermediate coordinates (w).

Eight terms can be defined for the error function, one to “fix” the direction of the vertical plane (3.11),
four terms to “fix” actuator legs 1, 2, 5 and 6 to their respective extreme lengths and a final three to “fix”

the orientation of the top platform (4.4).

The error function of the planar Stewart platform is defined in terms of three coordinates (two output and
one intermediate), and it consists of three terms. This means that for the spatial Stewart platform under

consideration, the error function defined in terms of six variables should only have six terms.

Fortunately, not all eight of the possible terms are independent. The six terms used determine the
orientation of the top platform (4.4) and any three of the four “active” actuator legs. Because the
platform is symmetrical about the X0Z plane and all the leg length limits are the same, the fourth leg

automatically assumes the correct extreme length at the correct orientation of the vertical plane.
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Considering, for example, bifurcation point B (0 1 - — 1 0) [O°, 0°, O"]. It is expected that actuator
legs 3 and 4 assume the same intermediate length when the other four legs assume the labeled extreme
lengths. The error function to be minimized is:
e(u,w) = (vl (u,w)—vi™ )2 + (vl(u, w)—v;" )2 + (vs(u, w)—-v" )2 C.1)
+(w,=0)" +(w,~0)" +(w,~0f
The global coordinates that were obtained for bifurcation point B (01 — — 1 0) {0", 0°, O"], by
minimizing the error function (B.1) using LFOPCV3, are (6.197, 0.0, 6.613).

These coordinates and the fixed orentation of the top platform (a=0",=0"and y=0), are

substituted into expressions {3.3) and (3.4) to determine the actuator leg lengths:

I, =1, =80=1
l,=1,=150=1_
I, =1,=11331

This validates the definition of error function (C.1).
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Appendix D

D Determination of a Non-Vertical Bifurcation Curve of the Fixed

Orientation 6—3 Stewart Platform Workspace

_Bifurcation line A’B'C” [0", 0, - 30“] presented as part of the fixed orientation accessible workspace
boundary dA [0", 0, — 30“] shown in Figure 4.3 is analyzed in more detail looking at the three vertical

planes of the fixed orientation accessible workspace A [0”, 0, ——30"], respectively isolated at 6=15",

6=30"and 6=45".
, z

A’(~1-1-1) [0° 0° -30°
A{=E=1-1} [0° 0° -307] ¢ ot !

[ === 13 [0° 0° -30°]

\

fo o e 1110° 0° -30°] [~ = =1= ] [0° 0° -30°]

(-1~ = =1 0° 0° ~30°]

(--=-01)

(P 110° 0° =30°) [0° 0° ~30°)

[ 0 = = =] [0° ©° ~30°]

4

(0 -0~0-) [0°0°-30%)

Ol-=--) <

[0° 0° -30°]

(== — = 010" 0° =30°]
{= = Ol -)[0° 0° ~30°]

[~ ——=-0-1{0°0°-30°) [-——=0-][6° 0" -30°]

00— 0-)[0° 0° -30°]

zZ
G A (—1=1-1) [0° 0° -30°]

[ 1110° 0° -30°]
[l = = =] [0° 0 ~30°]

[ = O - — =7 [0° 0" -30°]

(= = = ~ 01} [0° 0° ~307]

b= -0 -110° 0°-30° (0 - 0 0 ) [0° 0° ~30°)

(=10 — — =) [0° 0° ~30°]

Figure D.1 Sections of A [G", 0, -30°J at(a) 6, =157, (b) 8, =45, and (c) 8, =30".

Figure D.1 (a) shows the section of the fixed orientation accessible boundary dA [O”, 0, - 30“] in the
vertical plane at 6, =15". Along curve A'a 1----] [0", o, ——30“] [9,. = ]5"], actuator leg 2

remains at its maximum length as the manipulator working point follows the curve. Curve A’a forms
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part of the convex boundary surface A'B'D" labeled in  Section 43 as
ABD [-1~ -~ -] o, 00, =30°]. Similarly curve aC’ [0 - — - - - ] lor, 07, =30°][e, = 15°]
is characterized by actuator leg 1 remaining fixed at its minimum length, and curve aC” forms part of the

concave boundary surface CBD’ [0 — - - — - ] [0 0, - 30"].

Next consider Figure D.1 (b) which shows the section of the fixed orientation accessible boundary

oA [0“, 0, —30"] in the vertical plane at 6, =45. The labels of convex curve A'D
[ --1--]0, 0, -30][6 =45] and concave curve ¢ [~ -0 -~ -] [0, 0, =30°]
[6; = 45"] respectively correspond to the labels of convex boundary surface A’E'B’ and concave

boundary surface C’E'B’ labeled in Section 4.3.

The actual bifurcation curve A’B”C coinciding with the intersection of the four boundary surfaces

A'B'D and A'E'R’, as well as C'B'D’ and C'E'B’ (as labeled in Section 4.3), consists out of two

bifurcation lines. The upper bifurcation line is a convex, and is labeled A'B” [-1 -1 — -]
[o°, 0°, —=30°], while the bottom bifurcation line is and a concave with label B’C’ [0 — 0 — — -]
[0“, 0, »30”]. These two bifurcation lines intersect at bifurcation point B”

©1o1--) o, o, -30].

The curve A’B’C’ obtained from the vertical plane at 6, = 30" is labeled and shown in Figure D.1 (c).
Convex “bifurcation line” A'B° [-1 - - — -] [O", 0", -—30"][95 =30°] does in actual fact not
coincide with the intersection of boundary surfaces A’B’D’ and A’E'F’, as it is part of boundary surface
ABD [-1----]Jo, 0, =30°]. Similarly, concave “bifurcation line” B'C’ [- — 0 — — -]

[0", 0, —30”] [9,. =30°] forms part of boundary surface C'E'B’ [- -0 - - —] [0", 0, —30"], and

does not coincide with the intersection of the two boundary surfaces C'E'B’ and C'B’'D’.

The actual bifurcation curve A’B”C” is shown in Figure D.2 together with the near bifurcation curve

A’B’C’ and they almost coincide.

Appendix D 117



DETERMINATION OF A NON-VERTICAL BIFURCATIC ﬁ UNIVERSITEIT VAN PRETORIA

@), UNIVERSITY OF PRETORIA
Qu#® YUNIBESITHI YA PRETORIA

B

Figure D.2 The near (A’B'C’) and actual (A’B”'(”) bifurcation curves.

The computed “bifurcation” curves A'B'C’ [0", 0", ——30"], ADC [O", (O -30"], A'EC
s, 00, =30°], AFC o, 07, 30°], AG'C for, 00, 30°] and AHC [00, 07, 30°] as presented in
Figure 4.4 are also not the exact bifurcation curves. The deviations are however sufficiently small so as

to be considered negligible from a practical point of view,

In addition the bifurcation lines all lie outside the dextrous workspace A[O", 0, (—30°)—(30°)]

(Volume A’C'I'V’K’L'M’N’) as shown in Figure 4.5 and may therefore be ignored in the further analysis

of the dextrous workspace.

Appendix D 118





