
Appendix A 

A Computer Program for Determining the Planar Stewart Platform 

Workspace (PIANSTEW) 

A.I INTRODUCTION 

This appendix explains the automated computer program PLANSTEW that was used to map the 

accessible output sets as well as the bifurcation point connecting curves of the planar Stewart platform. 

PLANSTEW consists of a main program and a few subroutines. The outlay of the main program is 

shown in Figure AI, and the different subroutines are shown in Figure A2. Figure A.3. Figure A6 and 

Figure A7. The detail of the main program is explained here and the discussions of the subroutines are 

included as sub-paragraphs. 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

A.2 THE MAIN PROGRAM 


I. Enter the Min & 
Max Lc~ Lcngths: 


Ji.lf l=l.2,3 


(:-=', & I:'"' 

2. Calculate the Mean 
Lcg Lcngth<: 

fiir ; "" I, 2.3­

I;"" =V;" +1,-'1I2 

:t Call Subroutine 
Slt1rt 

4. Radiating Point 

u" == lx,p .voff 

5. Initialize the Truth 
Tn,le: 


8 x 3 M.1trix IDAII 


6. Initialjze ''(ltd'' 
iuentifkatlon vCClOr 

It~r i;:;;;; l, 2,3 

;u.•, =0 

7, [Ilcrement at 
0$ 3, S 2n for 


; = t, 2,. ,(Max 6Ine-l) 


I 
H. For every OJ 

I 
X.l 	Intersection with 

the or-axis 

I ...
R2 Can Suhr\)Utine 

Bmmdurv 

I 
R.3 Bound:Jry Point 

llJ =\ex.yf 
4 

I 
X,4 Identification 


Vector 


id =li;J!.iJ!,id 1 f' 


&.5 An1rmalion 

Vector 


ja=lja l ,ja 1 .j:J.;f 


R.6 Check I,,, 

Bifurcation 


H
11.1 Lobel the "oundary

l II. M:lf1ping the hifurcation bifurcation points: 
connecting curves lnitialiw m;;:;:(} 

lOA Closing .'Iegmcnl 


write: Poinl,«(J,3), Poinl,(O,4) 


write: Poin"'(Max Blne-I), 3), Pnims(Max 8Ine-I),4) 


I 

103 else if: Poinl..o;;(i,l) #- 0 and PoinL.s(i. 2) '#0 

then write: POlnls(i,1) , Points(i.2) 

:Uld write: Poinls(i,3). Point.sCi.4) 

10.2 for i =I, 2,,,,,(MaxBlnc-1) if; 

Pnints(i, I) =0 (md Puinc,(i,2)=(J 

lhen write: Poinu(i,3), Poims(i,4) 

10.1 Draw command: "Hne" 

In. Create a Script file from the 
entries of matrix Points 

9" Matrix Points 

(Max6Inc-l)x4 

i 
H.6.2 Enlry in matrix Points 


Pl.linL"i(i. 3) "'" i'X 


P(iinLII(i, 4) =- J' 

RAI With 8=0,if; 

iuj>ior id:>J or iJ,>I, 

then hifurcatiun did not occur 

H.6.2 With 8=0,if: 

iu, -5.1 and iu:S:l and id,:S: 1. I-
then bifurcation did occur 


k =k+1 


H,63 With 8>0, if: 


ja:::.O, i- ­
then hif urcadon did not occur 

~.6.4 With e> 0 , if; 


ja,:;!()ana ja::=O and ja,::::I),or 


ja:=Of1nd ja 1 $(; and ja,!=O,ar 


.la l =0 (lnd ja? =0 una ia, ~o. 


lhcn~ 

K6.5 With B> (), if; 


jal.".,O und ja: '#(1 (ind ja,=() ,or 


ja,.?!:()(}ud ja 1 =() and _ia-, $0 ,or 


ja.=Oand j:t, $0 and ja,:;tO, 


then .....:,. 

r 

H,6.5.S Enlry in matrix Points 

Pnilll'\{i.l)::::: XIoI1 

POiIlL<\(i,2) )'''1 

}i,6.2.1.2 Max leg Icngth~> for 

j: 1,2,3 if iu i =I ,lhen 


I~' =I;"' and IDBound(k, j) I 


R.6.2.1.1 Min leg lenglh" for 

j=I,2,3 i[ id, =(J ,lhen 

I;" = I;'" "nd lDBound(k, j) = 0 

:-t6.2.J Tran.;;Iate vector id to 
actuator leg lenglhs: 

Create vector 


I'" ;[I,",I~',I;· J' 


~t6.11 Enlry in matrtxPoints 

POinl'i(i,3) ex 

Poin!.S(i.4) = y 

1'.6,5.2.2 Unchangctllcg Ic.ngths 

If jll, ,,0 for j=I,2,3 

jf ja; =0 for j=1,2,3 

8.6.5.( Bifurcatiun nccurred on the 
houndary of the accessihlc tlutput set I--­

11.2 for I = 1,2, ... , k ,I'lf i = 1,2 .... , 8 : 


IDEA(!) = IDAlIU, I) -IDBouou(l, I) 


IDEA(2); IDAlI(i, 2) -IDBoUlld(l, 2) 


lDEA(3) = IDAlI(i, 31-1DBound(f. j) 


if: lDEA(l) =0 and IDEA(2) =0 (md 


lDEA(3);1l 'hen m;m+1 and [nl]sc(m);; 


11.3 FinJ the blfurclltion pointS not situated on the 

t';ouooary: Initialize Nt) =0 

11.4furi=I.2,,,,,R; j=i ,il' 


j" InUse(l) (JIuJ j" loU,e(2) and .i ~ InU,c(3) 


j;<lnUsc(4) (lnd .i"loU,e(5) and i"lnUse(6) 


then No;; No+ 1 and i(lr J:::: I, 2. J 


Inn.r(No, I) =lDAlI( j, I) 


IJ.5 Crentc incremented vectors 


/'" ::::: (/~ ,/~t, 1.~'11· from the matrix Inner and call 


R.6.5.4 Bifurcation 
p(linl COordUl<lte.<.: 

U.., =Ix fol 'YI,;' 1'1 

suhroutinelnrt<n'or 

RA5.3 Call Subroutine 
Bifurcation 

RA5,2.2.4 Va,y -> Min. 

ifj",=2-0=2 thell 

1;"" ;;; I:~" and IDBuund(k. J);;:: 0 

R.6.5.2.2.3 Vary -> Max, 

if .ta) =2-1=lthcn 

I":' =I;"" and IDBounu(k, j) =I 

8.6.5.2.2.2 Min -> Vary, 
irja, ;()-2 :-2 then 

I;" =I~' and lDBound(k, j) =0 

x'6.5.2.2.1 MllX -> Vary. 
if ,la, 1-2=-llhcn 

I;" =1'."" ,mu IDBnund(k, j) =I 

R.6.5.2.1.2 Max leg length" 

I ­

-

-

n, ___P_'_lS_Si_h_IC;":il1:g:ul:ar:c:'o:n:fig:u:':"':io:n::::__1--1~::::::::::::::::::::::::~ 
R.6.5.2.L I Min leg lengths, 

8,6.5.2, I Unchanged leg lengths if j<lJ ;;;;;(}lmd id ;;;;;() ,then 

if j.l i :::. 0 and it!,: I ,then 

R.6A 1 Bifurcation occurred inside [r; ;;;;;the llccessihJe output sci, 	 J;"'~ uou IDBound(k. i) 

j 

1:~' =:; I;"'" <lno IDBound(k,.J) ={) 

RJj,5.2 Tmnslate vectors id and ja 

to acluator leg lengths: 


Create vector 


/''' =[I~'.I;",I:"f'· 

Figure A, 1 Row chart showing the layout of the main program. 

Appendix A 	 100 

 
 
 



DESCRIPTION OF COMPUTER CODE: PLANSTEW 

Looking at Figure AI, the first thing the user has to enter, is the respective minimum and maximum 

actuator leg lengths. The main program then calculates the mean actuator leg lengths. 

[min + I max 
{.mean 	 = 1 I (Ai) 

I 2 

for 	i =1, 2, 3 

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the 

input variables. Subroutine Start is used to determine the initial central point uo. 

A.2.t 	 Subroutine Start 

In the flow chart showing the layout of subroutine Start (see Figure A2), it is evident that the user 

has to enter an initial guess as to where the central point Uo is situated. This initial guess preferably 

has to be inside the accessible output set, and for the planar Stewart platform under consideration, 

the initial guess that was entered, is (x, y) = (1.0, 1.2). 

[ Suhroutine 
Start 

I 
(I) Starting Point 

Enler u vulid staning point: 


Deroult (x, y) = (I.n.1.2) 


I 
I 

(iv) No Gri.ldicnt VecturN 
(il) No Obicctive Function 

j',r j 1,2,3
f(x)=O 

gf,(x) = ()f 	 j 
I I 

(iii) Equ~lilY COU'Hr<..lint Equation 
(v) Gr..uicnl Vectors 

for j::::I,2,3 
Forward Difference 

Methot!h,{x)"',-I;'·:O 

4. Radiating Point I 	 I CmmJinate.o; uti =Ix",yl! Jf 

Figure A.2 Subroutine Start. 

There is no explicit objective function, as the three non-linear equations are entered as equality 

constraints, i.e. 

V I (u, w) - V ~,e;l!l =0 

v (u 	w)_v mcon 0
2' 2 	 (A2) 

The gradient vectors of the equality constraints are determined numerically using the forward 

difference method: 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

(A.3) 

The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11), 

and the output of subroutine Stan is the radiating point U
O from where the boundary of the planar 

Stewart platform is mapped. 

The next step in the main program (step 5 in Figure A.l), is to initialize the "truth table". Knowing that 

the planar Stewart platform has three legs each having two extreme positions, it is evident that there are 

23 = 8 bifurcation points. This truth table is used to identify which bifurcation points are situated on the 

boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation 

connection curves as will be explained later. 

The initialization of the truth table involves creating an 8 x 3 matrix IDAJI where each row represents a 

different bifurcation point. The entry in each of the three columns indicates whether the corresponding 

leg takes on a minimum or maximum length with the manipulator working point corresponding with that 

specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a 1 entry in column 

i indicates that leg i takes on a maximum length, and a 0 entry that leg i takes on a minimum length. 

Step 6 in Figure A.I is the initialization of the vector ido1d • This is an "old" identification vector, and it is 

used in subroutine Boundary. An auxiliary variable 8 is defined in the main program to be used in the 

mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 6 is 

incremented from 0 to 2n, as follows: 

6 = i(2n) (A.4) 
I Max 6 Inc 

for i =0, 1, 2,..., (Max 6 Inc-I) . 


The user decides on the number of increments required, and defines the parameter "Max6Inc". It 


follows that once the parameter "Max8Inc" is specified, the increment size Dof the emanating rays used 


for mapping the planar accessible output set (see Section 2.4), is fixed. 


2n
D=--­ (A.5)

Max 6 Inc 

For each orientation angle 8i, the intersection of the specific emanating ray with the OY-axis (CutJ is 

determined in the main program (7.1 in Figure A.I), as it is used in subroutine Boundary. 

(A.6) 


for i = 0, 1, 2, ... , (Max 6 Inc-I) 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

A.2.2 Subroutine Boundary 

I 
(iLl) Min leg length., 

for j=l,2.3 

'f/c,(X)1 5 AClTol , 

then id; =0 

I 


Subroutine 
Roul1daryl I 

If e" =0, thenI 
"=[x" +srartddl]

l u " (i) Stilting Point .vr~SJimd,1I =IUI5 
<jl=() 

I 
I 

(v) Gradient Va.1ors

( (ii) Objeclive Function 
gf,(x)=-(x- x")~lu -11"1 

f(.<)=-IIu- u"ll 

gf,(x) =-(v - y,,)/~u - u"ll 

gf,(x) =11 

If e, ;;;.y±tolfac ,or a, =i-±lnlfac.: 

litell bj(x)ax- x(,":;() l- I
H(iii) Equality COI1Strantt (vi) Orddient Vet.'tot'S 

Equation I I r-
For all olher value. ... of ai, 

h,(x) 5: y - xtnne- cut,. =0 '- ­

It}f j=1,1.3, c;\x).,;"", -I, sO (iv) IfkXjuaJil)' Conslmml 
(vii) Gr..idienl VecLors L 

&jll!ltions
c .. ,,{x)==lj -l:"'~ sO JH I l 

I 
(viii) Ide.ntify Active Ctmstminl<;; 

Creale ldentificntion Vector 

id =Iid"id" id, IT 

I 

I 


(0.2) Max l.JOg Lellglh., 

for 1=4,5,6 

j[lc,(x~';Ac'Tol, 

lhen id ,., ~ J 

I 


.--- ­

I 

(a) Tnlcmnce Faclnr 

Default ActTol =1O-~ 

(a.3) Varying leg length., 

flJf j=l,2,3 


if C J (x)::;: ActTol and 


Cj>l(x}::;:AClTol,then 

ill ,=2 

Else if 6, >0 .thell 

x=x,j'l 

y= J',.\ 

<P"""tp",1 

I 

If e, =+± 'olfac ,or 


e, =T± lollac 


lhen gh,.,{x);;; 1 


gb",(x)=O 


gh,,,ct)=() 


For all other valueN of 6i • 

yh , ,(x)==-tan9 

gh",!x)= 1 

gh,,(x) =0 

(vii) Fnrwanl Differencc 
Method 

(h) Create Affirmation Vector ja 

for j~l,2,3 

jU J =id<i<IJ- id / 

I 
(c) Upd~ttc Vector id"ld 

filf j= 1,2,3 1<.3 Boundary Pnlnl 

"I =lfX. yjTidcMi =id j rl 
Figure A3 Subroutine Boundary, 

With eo =a , an initial point on dA is sought, and optimization problem (i) as described in Section 

23 is applicable, In order to make sure that the maximization is not done 1t out of phase, an offset 

(Startdelt) is added to the x-value of the radiating point uo, The actual radiating point used to find 

the initial point on dA with eo = a , is uo*: 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

Looking at Figure AI, the first thing the user has to enter, is the respective minimum and maximum 

actuator leg lengths. The main program then calculates the mean actuator leg lengths. 

(A.I) 


for i 1,2,3 

Equation (2.1) is used in equation (2.10), remembering that the actuator leg lengths were chosen as the 

input variables. Subroutine Start is used to determine the initial central point uO. 

A.2.I 	 Subroutine Start 

In the flow chart showing the layout of subroutine Start (see Figure A2), it is evident that the user 

has to enter an initial guess as to where the central point UOis situated. This initial guess preferably 

has to be inside the accessible output set, and for the planar Stewart platform under consideration, 

the initial guess that was entered, is (x, y) = (1.0, 1.2). 

t 
Subnmtinc 

Stiln 

I 
(i) Starting Point 

Enter a valid slarting point: 

Defauil (x, y) =(1.0. 1.2) 

I 

l (ii) /Vo Ohjc1.1ivc Function 1 
(iv) No Gmdicnt Vectors 

£(x)=O 
for j=I,2,3 

gf,(x)=U 

I I 
(iii) Equality COIl.'1trainl Equation 

(y) Gradient Vectors 
Ibr j= 1,2,3 Forward Diffcreoce 

h,(x) ali -I:'·'" =() Methml 

I I 

4. R;idialing Poinl 

Cunnlinatc..., uP =rx\l, )-,(If" 

Figure A,2 Subroutine Start. 

There is no explicit objective function, as the three non-linear equations are entered as equality 

constraints, i.e. 

V I (u, w) - V ~ean = 0 

V 2 (u, w) - V~c-Jn =0 	 (A2) 

V 3(U,W)-V;can =0 

The gradient vectors of the equality constraints are determined numerically using the forward 

difference method: 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

(A.3) 


The three non-linear equations are solved by minimizing the square of the Euclidean norm (2.11), 

and the output of subroutine Start is the radiating point UO from where the boundary of the planar 

Stewart platform is mapped. 

The next step in the main program (step 5 in Figure A.i), is to initialize the "truth table". Knowing that 

the planar Stewart platform has three legs each having two extreme positions, it is evident that there are 

23 
:::: 8 bifurcation points. This truth table is used to identify which bifurcation points are situated on the 

boundary of the accessible output set. The remaining bifurcation points are used to trace the bifurcation 

connection curves as will be explained later. 

The initialization of the truth table involves creating an 8 x 3 matrix IDAII where each row represents a 

different bifurcation point. The entry in each of the three columns indicates whether the corresponding 

leg takes on a minimum or maximum length with the manipulator working point corresponding with that 

specific bifurcation point. Based on the proposed labeling notation (Section 2.5.3.1), a 1 entry in column 

i indicates that leg i takes on a maximum length, and a 0 entry that leg i takes on a minimum length. 

Step 6 in Figure A.l is the initialization of the vector id"ld. This is an "old" identification vector, and it is 

used in subroutine Boundary. An auxiliary variable 8 is defined in the main program to be used in the 

mapping of the planar accessible output set as discussed in Section (2.4). This orientation angle 8 is 

incremented from 0 to 21t, as follows: 

8.:::: i(21t) (A.4) 
, Max 8 Inc 

for i =0, I, 2, ... , (Max 8 Inc-I) . 


The user decides on the number of increments required, and defines the parameter "Max8Inc". It 


follows that once the parameter "Max8Inc" is specified, the increment size S of the emanating rays used 


for mapping the planar accessible output set (see Section 2.4), is fixed. 


21t
S=--­ (A.5)

Max 8 Inc 

For each orientation angle 8i , the intersection of the specific emanating ray with the Of-axis (Cuti) is 

determined in the main program (7.1 in Figure A.l), as it is used in subroutine Boundary. 

(A.6) 


for i = 0, 1, 2, ... , (Max 8 Inc-i) 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

A.2.2 Subroutine Boundary 

If Il, ""'of± tolfnc ,or 9, =-r-± hlifac: 

lhcnhi(x)EiX-x.~=() 

For all other values nrS;. 

hi (xl !i!E y- xlnn 8- I:Uf; =0 

for }=1,2.3, cj(x)=I;'" -I, ~o 

c",(x)e( -I;"" sO 

Subroutine 
Roundaryl j 

If e, =0, then 

l 

W +SlIlrlddr] 


(i) St,ming Point U .vI! 

I }-r-
StllTtdd, =OJIS 

<II=!) 

I 
I 

(v) Grudicnt Vecturs 
(ii) O~~ctive Functi,)n 

gr,(x) =-(x- X,,)~IU -u"i 
f(X)=-Ilu-u'l 

gf,(x) =-(y - Y,)~lu - u"l 

gf.,(x)=(l 

[ j 
r- ­

I 
(iii) Equality C,mSlramt (vi) Gr.w.icnt Vector,; H Equation I I (­

'- ­

(iv) Inequality Com'lraim 
(vii) Gradient Vectors.EquationsH ] [ 
I 

I (vit) ftlrwaru Difference 

J Me'lli>d 

(vi1i) loonliJy Active umSlraims: 
Crcatc-ldentitication Vector 

id = [id " id" id, l' 

I 
(,.. I) .\'lin Leg Lengths 


[Ilr j=J,2,3 


irjc, (x)1 ,; ActTnl , 


then id, =0 


1 

Else if a, :> 0 , (hen 

x =x,." 
Y=)"'>l 

<P=CP,j,1 

I 

If e, =+± tolfac ,(it 


8, =T± tolfac 


tben gbu(x)= I 


ghu{x)=O 


ghV\(x);(} 

For .\11 uther vaiues of 9,., 
gh (x)=-lan8u 

gh,,(x)=] 

gh,,(x)=() 

J 


J 

(a) Tolerance Factor 

Dcfllull ActTol ;;;: JO-~ 

I 

I 


(a,2) Max Leg Lengths 


for j =4,5,6 


if Ie i(x)l,; Ac(rlll , 


then id ,.,=1 


J 


(;1,3) Varying Leg Leng'h., 

[m j=I,2,3 

if c ,ex)'; ActTnl and 

t: id (x) s; AClTol ,then 

itl j =2 

(b) Create Affirmation Vee'"r ja 
1(lr 1,2,3 

.ia j id i:::: Jd'td) ­

1 
(e) Updme Vee,"rid,." 

[or j=I,2,3 rl 1U Boundary Point 
n, =kx,y)rld"1.! =id j 

Figure A.3 Subroutine Boundary, 

With eo 0, an initial point on aA is sought, and optimization problem (i) as described in Section 

2.3 is applicable. In order to make sure that the maximization is not done 1t out of phase, an offset 

(Startdelt) is added to the x-value of the radiating point uo. The actual radiating point used to find 

the initial point on aA with en =0 , is Uo": 
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DESCRIPTION OF COMPUTER CODE: PlANSTEW 

(A.7) 

With 8; > 0, the output and intermediate coordinates of the previous boundary point is used as an 

initial guess for the new boundary point sought. 

Maximization problem (i) of Section 2.3 is converted to an equivalent minimization problem as 

follows: 

minimize -Ilu uiI II (A.S)
n.w 

Analytical expressions for the gradient vectors of the objective function are used in subroutine 

Boundary a,.<; can be seen in box (vi) of Figure A.3. 

The 8; and Cut; values determined in the main program, are used in subroutine Boundary to impose 

the single equality constraint. A separate equality constraint had to be defined to accommodate the 

asymptotic behavior of the tan-function: 

If 8; f± TolFac or 8; = ~1t ± TolFac, then: hi == x Xii 0 

(default value TolFac 0.001) (A.9) 

for all other values of 8i: hi == Y - x tan 8; - Cut; = 0 

Analytical expressions for the gradient vectors of the equality constraint are used as can be seen in 

Figure A.3. 

The minimum and maximum leg lengths that were entered in the main program, are used in 

subroutine Boundary for the six inequality constraint equations (see box (v) in Figure A.3). 

C (mll' I
j 

sO 
i 

(A. 10) 
c. ==l. _Imax sO 

;+3 I I 

for j =1,2,3 

These inequalities impose correspond to expression (2.IS) of Section 2.6.1. Once agam, the 

forward difference method (A.3) is used to determine the gradient vectors of the inequality 

constraints. 

An important aspect of subroutine Boundary, is to identify the active inequality constraints, as the 

mapping of the boundary is done. For each 81> i =0,1,2, ...,(Max8Inc-l), the values of the 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

inequality constraints are monitored, and the entries of an identification vector, 

id = rid!' id2' id,]T, as well as the entries of an affirmation vector ja =[ja p ja 2 , ja 3 r is 

determined. These vectors are used in the main program to identify the bifurcation points, as the 

workspace boundary is mapped. 

A tolerance factor ActTol is associated with vector id, and its magnitude is specified by the user 

(default value ActTol =10-5 
). Each entry of the vector id can have one of three possible entries: 

• 	 if any of the actuator legs is at its minimum length, the corresponding entry in vector id will 

have the value zero. 

:. for j = 1,2,3: if Ic j I~ ActTol, then id j =0 

• 	 if any of the actuator legs is at its maximum length, the corresponding entry in vector id will 

have the value one. 


:.for j = 4,5, 6: if Ic j/ ~ ActTol, then id H =1 


• 	 if any of the actuator legs is varying anywhere between its minimum and maximum length, 

the corresponding entry in vector id will have the value two. 

:.for j = 1,2,3: if c j ~ ActTol and c j+, ~ ActTol, then id j =2 

The entries of the affirmation vector (ja) is determined at each a" i =0, 1, 2, ... , (Max aInc-I) , by 

subtracting the current identification vector (id obtained for a(, i =1, 2, ... , Max aInc-I) from the 

"old" identification vector (ido1d, which in actual fact is id obtained for 

at, i =0,1, 2, ... , Max aInc- 2). 

ja = idOl" -id 	 (A. II) 

With ao 0, the initialized vector idOl" =[0, 0, O]T is used to determine the affirmation vector 

(ja). After the affirmation vector has been determined, the vector ido1d is updated, i.e. for j =1,2,3, 

id old; =id j . 

The coordinates of the "boundary point" (uhi =[ex, y]T ),the identification vector id as well as the 

affirmation vector ja are transferred back to the main program. 

Each boundary bifurcation point is entered in a consecutive row k of the matrix IDBound using a similar 

notation to the one used for matrix IDAII. Once all the boundary bifurcation points are found, a 

comparison between the matrices IDAlI and IDBound allows for the isolation of the bifurcation points 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

not situated on the accessible output set boundary. Counter k is initialized before the boundary mapping 

is started. 

The main program uses the two vectors id and ja to identify the bifurcation points as the workspace 

boundary is mapped. 

Clearly it is possible to intersect a bifurcation point with ray °where 8n =° , and provision is made to 

identify such a bifurcation point, if this happens. 

with 80 =0, if: id t > 1, or id 2 > 1, or id J > 1, then a bifurcation point is not intersected by ray 0. 

with 80 =0, if: id t ~ 1, and id 2 ~ 1, and id J ~ 1, then a bifurcation point is intersected by ray 0. 

Increment counter k =k + 1 

With 8n 0, the identification vector (id) shows whether each of the three actuator legs is at its 

maximum or minimum length. 

With 8i > 0, it is the affirmation vector (ja) that indicates whether a bifurcation point is situated 

between two successively mapped boundary points: 

with 8 i > 0, if: ja t = °,and ja 2 = 0, and ja 3 == ° , 
then a bifurcation point is not present between rays i and i-I. 

with 8; > 0, if: ja t *0, and ja 2 *0, and jaJ = 0, 

or ja J *O,and ja z O,and ja 3 *O,or ja l O,and ja 2 *O,and ja 3 *0, 

then a bifurcation point is present between rays; and ; - 1 . 

Increment counter k = k + 1 . 

The detail of why any two entries of the affirmation vector ja has to be non-zero values to indicate 

bifurcation is evident from the discussion of the results in Section 2.6.3.1. 

The main program creates a matrix called Points which has (Max8Inc) rows and four columns. The 

global x- and y-coordinates of mapped workspace boundary are respectively entered in columns 3 and 4 

of matrix Points (see Box 8 in Figure 9). The global x- and y-coordinates of the mapped bifurcation 

points are respectively entered in columns 1 and 2 of matrix Points. This matrix is then used to create a 

drawing of the workspace (see Figure A.4). 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

the vector ja and the vector id (for Of > 0) to determine the actual lengths of the actuator legs, and 

creating a vector containing these extreme actuator leg lengths r" == [l~Xl , I;", I;Xl y, The vector (Xt is 

then used in subroutine Bifurcation to determine the coordinates of the bifurcation point. 

If a bifurcation point is intersected by ray 0 where 00 0 , the vector (Xt is determined from the entries 

of the identification vector: 

• 	 extreme leg lengths corresponding to the minimum leg lengths: 

:. for j == 1,2,3: if id j 0, then lexl l~m 
J J 

IDBound(k, j) == 0 

• extreme leg lengths corresponding to the maximum leg lengths: 

:.for j == 1,2,3: if id j = I, then l;Xl == I;"" 
IDBound(k, j) == 1 

With 0 i > 0, a bifurcation point is identified if any two entries of the affirmation matrix ja is a non-zero 

value, Since ja =idoJd - id , two entries of the vector id change when a bifurcation point is present in 

the section of the boundary contained between the vectors idoJd and id. Mapping the unchanged leg 

lengths is done by examining the vector id as well as the vector ja. 

• extreme leg lengths corresponding to the minimum leg lengths: 

:.for j == 1,2,3: if id j == 0 and ja j == 0, then l~" == 17" 
IDBound(k, j) 0 

• 	 extreme leg lengths corresponding to the maximum leg lengths: 

:. for j = 1,2,3: if id j I and J'a, == 0, then le" = lmax 
I I I 

IDBound(k, j) =1 

Mapping the changed leg lengths is done by examining only the vector ja. 

• 	 maximum leg lengths changing to varying leg lengths: 

:. for j =1,2,3: if ja j == I 2 = , then l eXl 1max 
J J 

IDBound(k, j) = 1 

• minimum leg lengths changing to varying leg lengths: 

:. for j =1,2,3: if ja j =0 2 =-2, then l~xl 

IDBound(k, j) = 0 
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DESCRIPTION OF COMPUTER CODE: PlANSTEW 

• varying leg lengths changing to maximum leg lengths: 

1 , then [eXl 

IDBound(k, j) == 1 

:.for j 1,2,3: if ja j 2-1 
} 

• 	 varying leg lengths changing to minimum leg lengths: 

[min:. for j == 1, 2, 3: if ja j ::: 2 - 0 = 2, then [~x' 
J 

IDBound(k, j) =0 

The vector r t is transferred by the main program to subroutine Bifurcation where the coordinates of the 

bifurcation points are determined (see Figure A.6). 

A.2.3 Subroutine Bifurcation: 

[ Subroutine 
R!'fUrt'lltion 

J 
(i) Starting Point 

X=X,jd 

Y='Y,(') 

"'=<!),~ 

l (i1) No Objective Function 

f(x)=O j 
(iv) No Gr.tdienl VCCh)i'S 

fo, j = 1.2.3 

gf,(x)=() 

I 
(jm Equality Cnn<;lmint Equntion 

itit j;l,2.3 

b,(x)sl, -I';' =0 

(v) Gnu.Hent Vectors 
P'ltwarJ Difference 

Method l K6.5A Bifurcalioll PHint 

Coordinates u 1"01 =IXN1 ' y", I!' ] 
I I 

Figure A.6 Subroutine B(furcation. 

The starting point used in this subroutine is coordinates of the previous boundary point, and similar 

to subroutine Start, there is no explicit objective function, as well as no objective function gradient 

vectors for the code LFOPCV3. 

The components of the vector r t are used in the three equality constraint equations shown in box 

(iv) of Figure A.6. LFOPCV3 is once again used to solve three non-linear equations: 

ext 
VI ( U, W ) -VI o 
v 2(U, W)_V~Xl =0 (A.12) 

v (u, w)-v~xt =03 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

The gradient vectors of the equality constraints are detennined using the forward difference method 

given by equation (A3). 

Once the coordinates of the bifurcation point (u hil = [X 
Ui 

! , Y hif ]T) is detennined, they are 

transferred to the main program, where they are respectively entered into columns ] and 2 of the 

matrix Points. 

Once the exterior boundaries are mapped, the bifurcation point connecting curves are traced using the 

matrices IDAll and IDBound. The first step in tracing the bifurcation point connecting curves is to 

identify the bifurcation points situated on the accessible output set boundary. 

All row vectors of matrix IDBound is subsequently subtracted from each row vector in matrix IDAD to 

give the resultant vector IDEA: 

IDEA =IDAII - IDBound (A 13) 

If for any of the row vectors in matrix IDBound vector IDEA is a zero vector, the specific row vector in 

IDAIl is labeled as it represents a bifurcation point situated on the boundary of the accessible output set. 

After the complete boundary is mapped, the unlabeled row vectors of IDBound is isolated and used to 

trace the bifurcation point connecting curves as described in Section 2.6.3.2 and set out in Figure A2 and 

Figure A7. 

A.2.4 Subroutine Interior 

[ Subroutine 
Inferior 

If II1'p = () , then 

X=Xll 

y= ),,, 

'1'=(1 

[ (i) Starting Point 

I 
(iv) No Gr-.ldieut Vectors 

(ii) No Objective Function 

l 
for j=I,2,3

fIx) =0 ] 
gf,(x)=O 

I I 

(iii) Equalit.y Cun,'Itmim Equation (v) Grlldienl VeclOr,.; 

lor j =1,2,3 FnrwanJ Difference 
Mcto"d 

0j(x);;;'i-I;'=O 

I I 


El..e If Insp > () ,then 

x=x", 

y;;;;: Ya. 

'1'='1'", 

Incremented coordinates 
011 bifurcation point 

connectjng curvc 

u" =Ix", y,,, f' 

I 

Figure A.7 Subroutine Interior 
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DESCRIPTION OF COMPUTER CODE: PLANSTEW 

The starting point used in this subroutine is the radiating point U
O when the first point of a new 

bifurcation point connecting curve is to be traced. Once the first point on the curve is found, its 

coordinates are used as the starting point from where the next point on the curve is to be traced. 

is coordinates of the previous boundary point, and similar to subroutine Start and Bifurcation, there 

is no explicit objective function, as well as no objective function gradient vectors for the code 

LFOPCV3. 

The components of the vector ill are used in the three equality constraint equations shown in box 

(iv) of Figure A.7. LFOPCV3 is once agdin used to solve three non-linear equations: 


v,(u,w)-v;" =0 


v 2 (u, w) V ~' =0 (A. 14) 

v3 (u,w) v~\ 0 

The gradient vectors of the equality constraints are determined using the forward difference method 

given by equation (A.3). 

= [x il1Once the coordinates of the point on the interior curve (u in 
, in r) is determined, they are 

transferred to the main program and entered into a script file from where the results are drawn. 

This concludes the description of the computer code PLANSTEW. 
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Appendix B 

B The Mapping of the Near Global Optimum Boundary Curves of the 

Reachable 6-3 Stewart Platform Workspace 

The method for computing the accessible workspace for the 6-3 Stewart platfonn is explained further in 

this appendix, with the emphasis on the near global optimum boundary curves (EF [I l--11]in Figure 

3.3 and DG 101--10] in Figure 3.4). 

Following the "upward sweep" to map the reachable workspace as depicted in Figure 3.3, no problems 

occur as the near global optimum boundary curve DE [-1111-] is mapped. Even for the first few rays 

mapping curve EF [11 - -11], the near global maximum displacement from U
O is found time and again, 

and the first part of curve EF is easily detennined as shown in Figure B.I. However, as curve EF is 

followed using the "upward sweep", the near global optimum is separated further and further from the 

global optimum situated along curve FG [-1111-] (see Figure 3.2). As soon as the distance between 

the near global and global maximum displacements for two successive rays reaches a critical value, the 

optimizer LFOPCV3 "jumps" to the global optimum for the latter ray. This explains the "jump" between 

the near global boundary curve EF [11 - -11] and global boundary curve FG [- 1111 -] as shown in 

Figure B.l. 

Curve EF [11--11] as presented in Figure 3.2 and Figure 3.3 is mapped with user interference. 

Because the first part of this curve is successfully detennined, the optimization approach allows for the 

identification the actuator legs assuming extreme lengths as the working point follows curve EF. The 

label of curve EF [11 - -II] stems from this identification procedure, and the label shows that actuator 

legs 1, 2, 5 and 6 remain fixed at their maximum lengths along curve EF. 

Using a separate procedure, the complete near global optimum curve EF [11- -11] is mapped for NR 

successive rays emanating in the range 121.8" :S;cpj :::;;180' (2.126:S;cpj :S;n), by minimizing the 

following error function using LFOPCV3. 
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THE MAPPING OF THE NEAR GLOBAL OPTiMUM BOUNDARY CURVES 

e( u, w) = (v j (u, w) V ~,ax r + (V 2 (u, w) - V ~,ax y+ (V 5 (U, w) - V ~ax y 
+ (V 6(U, w) V~ax t + (U 2 - UtanOY + {JU~j+ U;j - (z'l -u3Jtan(cp)) 

(Rt) 
j 

The first four terms of (B.1) fixes the actuator legs at their extreme lengths while the fifth term fixes the 

vertical plane at 0i = 0". The last term of (B.1) corresponds to equation (3.15), and is incremented as 

curve EF [11 - -11] is traced, i.e. 

cp. =2.126+ jl.016 (R2)
j N 

R 

for j = 0, 1, 2, ...,NR 

z 

OO~ =OOy =0°) 

[II 

o 

Figure B.l The "jump" between the near global optimum and global optimum boundary curves. 

Curve GD [01- -10] shown in Figure 3.4 is mapped in a similar manner. 
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Appendix C 

C Procedure of Finding the Bifurcation Point Coordinates of the Fixed 

Orientation 6-3 Stewart Platform Workspace 

As an extenuation of Section 4.3, an explanation follows on the details of how the bifurcation points on 

the boundary (i1A [0·, 0·, 0' h, of the fixed orientation workspace A [0', 0", 0'] of the 6-3 Stewart 

platfonn are mapped. Bifurcation point B (0 1 - 1 0) [0', 0', 0'] shown in Figure 4.1 and Figure 

4.2(a) is used as a representative example. 

Bifurcation point B (0 1 - 1 0) [0', 0', 0'] is found by minimizing an error function, 

corresponding to the planar case explained in Section 2.6.3.1, where an error function (2.24) was defined 

to find the point A' shown in Figure 2.10. 

The error function used to find the coordinates of bifurcation point B (0 1 - - 1 0) [0', 0', 0'], is 

again expressed in tenns of the output coordinates (u) and intennediate coordinates (w). 

Eight tenns can be defined for the error function, one to "fix" the direction of the vertical plane (3.11), 

four tenns to "fix" actuator legs 1,2,5 and 6 to their respective extreme lengths and a final three to "fix" 

the orientation of the top platfonn (4.4). 

The error function of the planar Stewart platfonn is defined in tenns of three coordinates (two output and 

one intennediate), and it consists of three tenns. This means that for the spatial Stewart platfonn under 

consideration, the error function defined in terms of six variables should only have six tenns. 

Fortunately, not all eight of the possible tenns are independent. The six tenns used determine the 

orientation of the top platfonn (4.4) and any three of the four "active" actuator legs. Because the 

platfonn is symmetrical about the XOZ plane and all the leg length limits are the same, the fourth leg 

automatically assumes the correct extreme length at the correct orientation of the vertical plane. 
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PROCEDURE OF FINDING THE COORDINATES OF THE BIFURCATION POINTS 

Considering, for example, bifurcation point B (0 1 - - 1 0) [0·, 0·, 0"]. It is expected that actuator 

legs 3 and 4 assume the same intermediate length when the other four legs assume the labeled extreme 

lengths. The error function to be minimized is: 

e(u, w) (vl(u, w)_v~jn Y+(v 2(u, w) V~"IX r +(vs(u, w) V;'lX y 
(C.1) 

+(w 1 OY+(w 2 -0Y+(w,-oy 

The global coordinates that were obtained for bifurcation point B (0 1 - - 1 0) [0·, 0·, 0·], by 

minimizing the error function (B.t) using LFOPCV3, are (6.197, 0.0, 6.613). 

These coordinates and the fixed orientation of the top platform (ex = o· ,p o· and y= 0·), are 

substituted into expressions (3.3) and (3.4) to determine the actuator leg lengths: 

II = lo =8.0 =Imin 

12 = 15 15.0 = Irnax 

/3 /4=11.331 

This validates the definition of error function (C. I ). 
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Appendix D 

D Determination of a Non-Vertical Bifurcation Curve of the Fixed 

Orientation 6-3 Stewart Platform Workspace 

. Bifurcation line A'B'C' [0°, 0·, - 30·] presented as part of the fixed orientation accessible workspace 

boundary dA [0', 0·, - 30'] shown in Figure 4.3 is analyzed in more detail looking at the three vertical 

planes of the fixed orientation accessible workspace A [0', 0·, - 30' ], respectively isolated at e=15° , 

e= 30'and e 4Y. 

z 
z 

- - -
1,\ A'(-I-I-I) [00 0° -30°] 

[--­

b 
T 
b 
° 2­(- ---01) , 

[0' 0° -300 J I 
~---c: 

I 

~ 

C(O 0-0-)[0°0°-30°] 

[-­ I] (0° 0° -30°] 

b..., 
I 

o 
o 

~ c: 
I 
I 
I 

~ 

~ 

(01----) 
-----­ [0° 0° -30°] 

C(O -0- 0 -) [0° 0° -300 J 

[­

c: 
I 
I 
I 

~ 

[- ­ - - 0 -] [0° 0° -30°] 

z 
A'(-I-I-I) [0°00 -30°] 

(c) e =30° 

C(O - 0 0 _)(00 0° -30°] 

b 
7 
b 
S, 

I 
I 

<:> 

I 

Figure D.1 Sections ofJA ~o, 0°. 30' Jat (a) OJ == 15° ,(b) 0i = 45'. and (c) 0i = 30'. 

Figure D.I (a) shows the section of the fixed orientation accessible boundary JA [0', 0', 30·] in the 

vertical plane at ej ISO. Along curve A'a [- I ­

remains at its maximum length as the manipulator working point follows the curve. Curve A'a forms 
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DETERMINATION OF ANON-VERTICAL BIFURCATION CURVE 

part of the convex boundary surface A'B'D' labeled to Section 4.3 as 

A'B'D' [- 1 - - -] [0', 0", 30·]' Similarly curve aC' [0 - - - - -] [0', 0·, 30· ][e; I Y ] 

is characterized by actuator leg I remaining fixed at its minimum length, and curve aC' fonns part of the 

concave boundary surface C'B'D' [0 

Next consider Figure D.1 (b) which shows the section of the fixed orientation accessible boundary 

JA [0·, 0', - 30° ] in the vertical plane at ei =45' . The labels of convex curve A'b 

[- - I - -] [0°, 0·, - 30· ][e; =45"] and concave curve bC' [- - 0 - - -] [0·, 0', - 30· ] 

[e; =45"] respectively correspond to the labels of convex boundary surface NEB' and concave 

boundary surface C'EB' labeled in Section 4.3. 

The actual bifurcation curve A'B"C coinciding with the intersection of the four boundary surfaces 

A'B'D' and NEB', as well as C'B'D' and CEB' (as labeled in Section 4.3), consists out of two 

bifurcation lines. The upper bifurcation line is a convex, and is labeled A'B" [- 1 I - -] 

[0°, 0·, - 30·], while the bottom bifurcation line is and a concave with label B"C' [0 0 - - -] 

These two bifurcation lines intersect at bifurcation point B" 

The curve A'B'C' obtained from the vertical plane at e; =30' is labeled and shown in Figure D.I (c). 

Convex "bifurcation line" A'B' [- 1 - - - -] [0', 0·, - 30·] [e; = 30°] does in actual fact not 

coincide with the intersection of boundary surfaces A'B'D' and A'EB', as it is part of boundary surface 

A'B'D' [- I - - -] [0·, 0', - 30' ]. Similarly, concave "bifurcation line" B'C' [- 0 - -] 

[0', 0·, - 30· ][e; = 30' ] fonns part of boundary surface C'E B' [- - 0 - -] [0°, 0°, - 30° ], and 

does not coincide with the intersection of the two boundary surfaces C'EB' and C'B'D'. 

The actual bifurcation curve A'B"C' is shown in Figure D.2 together with the near bifurcation curve 

A'B'C' and they almost coincide. 
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DETERMINATION OF A NON-VERTICALBIFURCATJON CURVE 

z 
A' 

I 
z 

A':C' X
B" C 

B" 

Figure D.2 The near (A'B'C) and actual (A'B"C') bifurcation curves. 

The computed "bifurcation" curves A'B'C' [0', 0·, - 30' ], A'D'C' [0·, 0·, - 30' ], A'E'C' 

[0·, 0', - 30·], A'PC' [0·, 0·, 30'], A'G'C [0·, 0', 30·] and A'H'C' [0', 0·, 30·] as presented in 

Figure 4.4 are also not the exact bifurcation curves. The deviations are however sufficiently small so as 

to be considered negligible from a practical point of view. 

In addition the bifurcation lines all lie outside the dextrous workspace A [0·, W, (-30·) - (30·)] 

(Volume A'CI'J'K'L'M'N') as shown in Figure 4.5 and may therefore be ignored in the further analysis 

of the dextrous workspace. 
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