
Chapter 3 

3 THE DETERMINATION OF THE ORIENTATIONALLY 

UNCONSTRAINED SPATIAL MANIPULATOR WORKSPACES 

3.1 INTRODUCTION 

The methodology proposed for, and applied to the determination of the workspaces of planar 

mechanisms in Chapter 2 may readily be extended to apply to spatial mechanisms, such as the Stewart 

platforms considered by Haug et aL [12] and Liu et at [18]. 

Taking the 6-3 Stewart platform of Liu et al. [18] as a representative example, the "planar" optimization 

approach, developed in Chapter 2, is used in this chapter to map three-dimensional workspaces of this 

six-DOF manipulator. The geometry of this 6-3 Stewart platform is shown in Figure 3.1. 
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Figure 3.1 Geometry of the 6-3 Stewart platform. 
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The workspaces to be considered in this study are: 

(i) the orientationally unconstrained reachable workspace A, with boundary denoted by aA, 

(ii) the fixed orientation workspace A [afix ' ~lix' YIiX] , with boundary indicated by aA [alix ' ~lix' Yftx]' and 

(iii) an example of a dextrous workspace A [aliX ' ~ftl( , Ymin Ymax]' with boundary 

aA [anx ' ~lix' Ymin - Ym".]· 

The corresponding different types of workspaces, (i), (ii) and (iii), were defined and determined for the 

planar Stewart platform considered in Section 2.6. Case (i) of the 6-3 Stewart platform is dealt with in 

this chapter, while cases (ii) and (iii) are dealt with in Chapter 4. 

3.2 GEOMETRY OF THE 6-3 STEWARTPLATFORM 

As for the planar Stewart platform described in Section 2.6.1 the spatial Stewart platform also has a 

moving upper platform, as well as a fixed base. The base is a semi-regular hexagon, which in this case is 

also fixed in a horizontal position, while the upper platform is an equilateral triangle. 

Figure 3.1 shows the global coordinate system fixed at the center of the base with the global Z-axes 

pointing vertically upwards. The working point P of the spatial Stewart platform is at the centroid of the 

upper triangular platform. 

The spatial Stewart platform has six linear actuator legs connecting the moving upper platform, to the 

fixed base. The bottom ends of the actuator legs are connected to the six vertices of the base, while the 

top ends of the legs are connected to the three vertices of the upper platform as shown in Figure 3.1. The 

base platform connections are ball-and-socket (spherical) joints, while the moving platform connections 

are gimbals. Fichter [17] proposed these gimbals as described in Section 1.4. This arrangement is 

referred to as a 6-3 Stewart platform (see Section 1.4). 

Varying the lengths of the linear actuators, indicated by Ii, i 1, 2,... ,6, will not only change the position 

of the upper platform, but also its orientation, adding up to the six DOF of the manipulator. 

Adopting the definitions of Liu et al. [18], the position of the upper platform is given by the global 

coordinates of the working point P denoted here by (x, y, z), and the orientation of the upper platform is 

given by the orientation angles (a,~, y). Liu et al. explain the orientation angles as, firstly rotating the 

top platform about the OX-axis through an angle a, then about the OY-axis through an angle ~, and finally 
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about the axis radiating fonn the manipulator working point and fixed perpendicular to the top platfonn 

through an angle 'Y. 

According to Liu et aL [18], the defined orientation angles have a physical meaning in that the a and ~ 

angles define an "approach vector" of the top platfonn, while the 'Y angle defines the roll of the top 

platfonn about the approach vector. 

As with the planar Stewart platfonn, the orientationaIy unconstrained reachable workspace of the spatial 

Stewart platfonn defines the accessible region of the working point P, and is detennined by the 

limitations on the actuator leg lengths (see Section 2.2). 

The actuator leg lengths are again the input variables, i.e. v =[ll' l2' l3' l4' ls, l6]T on which the 

following inequality constraints, corresponding to expression (2.18) in the planar case (Section 2.6.1), 

are imposed: 

0< Imin sis I~"" 
I I I 

(3.1) 

for i =1,2,3, ... ,6 . 

Liu et aL [18] apply their kinematic analyses to an example where they propose certain dimensions for 

the top and bottom platfonns, as well as for the actuator leg limits. In order for this example to be used 

for comparison purposes in the current optimization approach, the dimensions of the 6-3 Stewart 

platfonn analyzed in this chapter is in accordance with the example of Liu et aI. [18]. 

It is important to note that, although different minimum and maximum leg length limits were prescribed 

for the different legs of the planar Stewart platfonn, here all six actuator legs of the spatial manipulator 

have the same leg length limits, i.e. lim;n =8.0 and (max = 15.0 for i = 1,2,3, ... ,6. The dimensions of the 

top and base platfonns are: a = 10.0, b =15.0 and d = 1.0 (see Figure 3.1). 

3.3 CONSTRAINT EQUATIONS OF THE 6-3 STEWART PLATFORM 

With reference to Section 2.2, the global coordinates of the working point P on the 6-3 Stewart platfonn 

are the output coordinates, i.e. u [x, y, Z]T , and the orientation angles of the upper platfonn, are the 

intermediate coordinates, i.e. w =[a,~, 'Yf'. 
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The defined input, output and intermediate coordinates of the 6-3 Stewart platform correspond to the 

definitions of these coordinates given in Section 2.6.2. This explains the correlation between the 

generalized coordinates of the spatial and planar Stewart platforms. 

The spatial Stewart platform has 12 generalized coordinates compared the 6 of the planar Stewart 

platform. The spatial platform coordinates are: 

q =[uT vT 
WTY 

(3.2) 

The spatial Stewart platform obviously has six degrees of freedom, and the six kinematic constraint 

equations of general form (2.1), are the six equations expressing the length of each leg in terms of the 

position and orientation coordinates. These analytical expressions can readily be found by doing the 

inverse kinematic analysis as described by Liu et aL [18]. These expressions, corresponding to (2.20) for 

the planar case, are as follows: 

II ~(XTl -trr-t::f + (YT1 -fY +Z;, 

l2 =~(XTl -trr+i73f +(YTl -f-tY +Z;I 

I, =~(XT2 +f+i73f +(Yn -t)2 +Z;2 
(3.3)

'4 ~(XT2 +f+i73f +(YT2 +tY +Z;2 

i; =~(Xn -trr+ 21rf +(Yn +f+tY +Z;3 

16 =~(Xn - 2JJ - J) +(Yn +1')2 +Z;3 

where 

Y

X Tl = X+ h. [sin(a)sin(~)sin(y+60")+cos(~)cos(y+60·)] 


T1 = Y + h. cos(a)sin(y+60") 


ZT' =Z+ h. [sin(a)cos(~)sin(y+600)-sin(~)cos(y+60")] 


X T2 x - [sine a)sin(~) sin(y) + cos(~) cos(y)] 


== Y 1:l cos(a)sin(y) (3.4)Yn 

ZT2 =z- [sin(a)cos(~)sin(y) sin(~)cos(y)] 


Xn = x+ 1:l [sin(a)sin(~)sin(y-60")+cos(~)cos(y 60")] 


Y y+ 1:lcos(a)sin(y-60")
n 

ZT3 =Z + [sine a)cos(~)sin(y- 60') - sin(~)cos(y- 60·)] 

In expressions (3.3) and (3.4) a is the length of the sides of the upper equilateral triangular moving 

platform, and band d are respectively the short and long sides of the hexagonal base (see Figure 3.1). 
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Expression (3.3) is written in standard fonn (2.5) as: 

<I>(U v w)= 

where 

v~- (XTI - 2JJ - J) -(YTI -1Y -Z~l 
v;- {x TI - 2JJ +2J-J f - (YT1 1-t Y- Z~I 
v~ (XT2+ +2J-Jf-(YT2-tY-Z~2 
v! (XT2 + JJ + 2JJf -(Yn +tY­

v2 {x _d_+" \2 (y +.!L+.!L)2 _ Z2 
5 T3 z..{j 2J3) T3 2 2 T3 
V~-(XT3 - - }) -(Yn +1Y -Z;3 

o (3.5) 


XTI U 1+ [sin(w , )sin(w 2 )sin(w 3 + 60") + cos(w 2 )cos(w 3 + 60")] 


YTI = li2 + .JJ cos(w 1)sin(w 3 + 60') 


ZTI = u 3 + .JJ [sin(w,)cos(w2)sin(w3+600)-sin(w2)cos(w3+60')] 


u - [sin(w 1 )sin(w z)sin(w )+ cos(w )COS(W )]X T2 1 3 2 3 

YT2 li 2 - .JJcos(wl)sin(w3) (3.6) 


ZT2 =u 3 - .JJ [sin(wl)cos(wz)sin(w 3)-sin(wJcos(w3)] 


X TJ =u 1+ .JJ [sinew 1 )sin(w 2 )sin(w3- 60") + cos(w 2 )cos(w 3- 60')] 


YTJ u 2 + .JJcos(wl)sin(w3-60') 


ZTJ u 3 + .JJ[sin(wJcos(wz)sin(w 3 -60')-sin(w z)cos(w 3 60')] 


from which in turn, given U and w, one may solve for v: 

v = v(u, w) 

~(XT! --63-*' +(YT! -1Y +Z;I 

~(XTI -~+~, +(YTI -1-tY +Z;1 

~(XT2 +*+~, +(YT2 -tY +Z;2 
(3.7)

~(xT2 +*+~, +(Yn +tY +Z~2 
~(XT3 --63+~' +(Yn +1+tY +Z~3 
~(X T3 - IJJ - ~ , + (Yn + fY+ Z;3 

and where XTI , YTh ZTI, XT2 , YTZ, ZTZ, XT}, YT} and ZT} are given by expressions (3.6). 

Finally, (2.1) may more concisely be rewritten as 

rnin v mav ~ V ~ , 

(3.8) 


and v = v(u, w) as given by (3.7) 

Thus expressions (3.2), (3.3), (3.5), (3.7) and (3.8) here respectively correspond to (2.19), (2.20), (2.21), 

(2.22) and (2.23) for the planar Stewart platfonn. 
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The orientationally unconstrained reachable workspace is computed with no limits on the orientation 

angles. As will be discussed in Chapter 4, limitations are of course imposed on the angles when the 

fixed orientation and dextrous workspaces are considered. 

3.4 MAPPING THE ACCESSIBLE WORKSPACE OF THE 6-3 STEWART PLATFORM 

3.4.1 Introduction 

Two options exist by which the reachable workspace of the spatial manipulator can be mapped using the 

basic methodology presented for the planar accessible set (see Section 2.4). 

The first option is to consider the three-dimensional workspace to be represented by a set of horizontal 

slices. For any horizontal slice, Z = Zi' i = 1,2,... , Ns ' the associated two dimensional workspace of the 

working point P may be determined in a manner analogous to that described for the planar Stewart 

platform in Section 2.6.2. A composite of the Ns workspace slices then yields a representation of the 

three-dimensional workspace. 

It follows that, for a particular horizontal slice i, the boundary of the workspace aAj may be mapped by 

solving optimization Problem (i) (see Section 2.3) for successive rays emanating from an interior 

radiating point, but now subject to an additional equality constraint: 

u 3 =Z= ZI (3.9) 

where Zi designates the height of the slice. 

To complete the three dimensional representation of the workspace of the spatial Stewart platform, the 

boundaries aAj of N s slices are computed. This means that for each slice i, the equality constraint 

equation will be assigned as follows: 

max max min )
Zi = Z (Z -z (3.10)

Ns 

for i = 1, 2,... , Ns . 

In equation (3.10), zmin and zm". are respectively the lowest and highest possible positions of the 

working point P measured in terms of the global coordinate system. 

For each height Zj, rays emanating in the XY-plane from an interior radiating point will be maximized to 

determine the boundary aAj of the workspace of slice i. With the global Z-axis pointing vertically 
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upwards from the center of the lower platform, the obvious choice for the radiating point of every slice, 

is at the fixed height Zj of that slice, and at the origin of the XY-plane. 

Alternative to taking horizontal slices, the determination of planar workspace boundaries may also be 

carried out for successive vertical planes through the central axis OZ. This option is preferable as it 

avoids, to a greater extent than the first option, complications due to non-convexity. The idea is to avoid 

situations where two boundary points may exist for any specific search direction. 

For each plane i through OZ, there corresponds a unique angle 8i that the plane makes with the OX axis. 

For this plane the relationship Yi / Xi =tan 8 i applies, and therefore in the optimization to determine aA i 

for this plane, equality constraint (3.9) is replaced hy 

(3.11) 

The construction of the three-dimensional reachable workspace, is carried out by determining the planar 

boundaries aA i for a fan of Np planes, where each plane has a different value of 8i : 

(3.12) 


for i = 1, 2, ... ,NI' 

It is apparent from the geometry of the spatial 6-3 Stewart platform that the global Z axis is a three fold 

symmetry axis, and therefore it is only necessary to map a third of the complete workspace, 

corresponding to the 8i range: 0· - 120· . 

For each plane the same central point, ZO =(zma, + zmin )/2 on OZ, may be used as interior radiating 

point, i.e. 

(3.13) 

With the dimensions of the spatial Stewart platform as given in Section 3.2, the exact coordinates of Uo 

are: 

UO =(0,0,7.804) 

3.4.2 Computed Accessible Workspace for the 6-3 Stewart Platform 

The vertical plane through the OX-axis ( e=0· ) of the computed reachable workspace is shown in Figure 

3.2 
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Figure 3.2 Boundaries of the accessible sets for the vertical plane through the OX-axis (e 0" ). 

Apparently two different reachable boundaries seem to exist when no constraints are placed on the 

orientation of the top platform. As will become clear later, the inner boundary corresponds to a near 

global constrained local optimum solution to optimization problem (i), whereas the outer boundary 

consists of the global maxima. These two different optima along a ray correspond to the respective 

maximum displacements of two different types of platform configurations as will be shown later. 

As explained in Section 3.4.1 two options exist with which the complete accessible workspace can be 

mapped, namely vertical planes, and horizontal slices. Although Figure 3.2 shows the accessible sets for 

the vertical plane through the OX-axis (e = 0"), these results could have been obtained using both 

'Options mentioned above. The vertical planes option consists of a pencil of rays, restricted to the vertical 

plane through the OX-axis, emanating from the radiating point u" at angular intervals. As for the 

horizontal slices option, Figure 3.2 can be mapped using horizontal rays, perpendicular to the OZ-axis 

and restricted to the vertical plane through the vertical plane through the OX-axis. 

It follows that if the horizontal slices option is to be implemented, the highest possible and lowest 

possible positions of the working point have to be computed before hand to set the upper and lower 
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bounds between which the horizontal rays are to be incremented. The highest possible position is not a 

problem, as it is situated at point F on the OZ-axis, and can therefore easily be determined. Curve ABCD, 

however occupies a lower region than point A which is the lowest possible position of the working point 

if the working point is restricted to move along the OZ-axis. Consequently it will be difficult to 

implement the horizontal slices option, as the lower bound of the range of horizontal rays forms part of 

curve BC and cannot be easily determined as part of an automated process. The better option of the two, 

and the one used here, is the vertical planes option, which is easy to implement as the pencil of rays are 

incremented through the range W -180
0 

• 

It follows that for each ray restricted to a spccific vertical plane and intersecting the radiating point 110 

(3.13), a straight line relation must hold. With q>j defined as the inclination angle between any specific 

ray} and the OZ-axis, the following equation must hold: 

(3.14) 


Equation (3.14) is rewritten to give the additional equality constraint needed to fix the direction of any 

specific ray}. 

(3.1 5) 

The vertical plane is covered by a pencil of NR rays where each ray} has an inclination angle <j)/ 

(3.16) 


for} 0,1, 2,...,NR 

Consequently, if} = 0, the first ray of each vertical plane will lie parallel to the OZ-axis, pointing in the 

negative Z-direction. The first of the two different reachable workspace boundaries in the vertical plane 

through the OX-axis, is mapped by performing an upward sweep of the radiating ray for successive 

inclination angles given by (3.16) and imposing equation (3.15) as additional equality constraint (see 

Figure 3.3). 

The maximum displacement (from the radiating point uo) is found for successive rays } =1, 2, ... , N R ' 

using as starting point for each optimization procedure the solution of the previous ray, 

} 0, I, 2, ... ,(NR -1). This limits the possibility of the platform "jumping" between different 

configurations as the rays are incremented. This procedure works well except for curve EF in Figure 

3.3. The details of how curve EF is mapped, is explained in Appendix B. 
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Figure 3.3 "Upward sweep" reachable workspace boundary in the vertical plane through the OX-axis. 

Using the notation introduced in Chapter 2 and referring to Figure 3.3, the bifurcation points and 

boundary curves of the vertical plane through the OX-axis are labeled in order to differentiate between the 

two types of reachable boundaries that exist. The curves are now described, with the radiating ray 

sweeping counter clockwise upwards from the vertical, with relationship (3.15) imposed for successive 

ray angles <Pi given by (3.16). 

The lowest possible position of the working point along the OZ-axis is at a height of z =2.369. This is 

point A (- 0 0 0 0 -) [0' - 54.3" 0'], which clearly is not a bifurcation point where all the 

actuator legs are at the specific extreme lengths. 

Liu et al. [18] report that with all the actuator legs at their minimum lengths and with no platform 

rotation, the global coordinates of the manipulator working point are (0, 0, 2.646). Using the proposed 

notation, this bifurcation point Liu et al. found will be labeled (0 0 0 0 0 0) [0" 0' o' ] 

The orientation angles of the top platform with the working point coinciding with point 

A (- 0 0 0 0 -) are: a = 0' , ~ -54.3' and y = 0' as indicated by the notation adopted above. 

[0 -Jl- 0] 
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The fact that ~, (which measures the rotation of the top platform about the Of-axis) is the only non-zero 

orientation angle, indicates that actuator legs 1 and 6 have the same lengths with the working point 

coincidingwithpointA(- 0 0 0 0 -). 

With the results of the optimization approach, the exact lengths of legs 1 and 6 of point 

A (- 0 0 0 0 -) are obtained as: 

( = in =9.759 

Considering the above actuator leg lengths, as well as the substantial angle the top platform makes with 

the Of-axis (~== -54.3'), it is clear that the upper platform is in a "flipped" orientation at point 

A (- 0 0 0 0 - ). Although this is a mathematically feasible orientation, mechanically it may not 

be possible due to the actuator legs interfering with each other, and the limited rotations of the joints 

connecting the legs with the base and moving platform. 

Purely mathematically, the working point of the "flipped" top platform advances along boundary curve 

AB [- 0 0 0 0 -] until it reaches bifurcation point B (0 0 0 0 0 0), where all the actuator 

legs take on their minimum lengths, and the orientation angles of the top platform are: a == O' , 

~ == --42.4' and 'Y == 0' . 

The top platform remains in its flipped orientation as the working point advances from bifurcation point 

B (0 0 0 0 0 0) along curves BC[O 0 - 0 0], CD[O 1 1 - 0] and 

DE [- 1 1 1 -]. It is interesting to note that the extreme bifurcation points B 

(0 0 0 0 0 0), and E (1 1 1 1 1 1) are asymmetrically placed off the OZ-axis. With the 

manipulator working point coinciding with bifurcation point E (1 1 1 1 1 1), the top platform is in 

an extreme flipped orientation (a =0°, ~ == -118° and 'Y == 0'), which explains the existence of curve 

EF [1 - 1 1]. Starting in the flipped orientation (~ -118') at bifurcation point E 

(1 1 1 1 1 1), curve EF denotes the path along which actuator legs 3 and 4 are retracted until the 

top platform is out of this flipped configuration. Actuator legs 3 and 4 are then extended again as the 

working point advances along the rest of the curve EF [1 1 - 1 1] and eventually reaches 

bifurcation point F (1 1 1 1 1 1) where the top platform is horizontally orientated (a == O' , ~ =0' 

and 'Y 0'). This completes the upward sweep of the radiating ray. 
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Point F (1 1 1 1 1 1) is at a height of z 12.961 which corresponds to Liu et al.' s [18] reported 

global coordinates ofth~ manipulator working point (0, 0, 12.96), when all the actuator legs are at their 

maximum lengths. 

Following the upward sweep the mapping may be continued by initiating a subsequent downward 

sweep. It follows that equation (3.14) can be changed so that the rays for any specific vertical plane are 

incremented starting with the initial ray parallel to the positive Z-direction and incrementing <p.
} 

through 

180" ending with the final ray parallel to the negative Z-direction. Constraint equation (3.14) now 

becomes: 

I 2 2 ( 0)Vx j + Y j - Z j - Z tan(<p ) = 0 (3.17) 

Which can once again be rewritten in tenns of the generalized coordinates to give: 

(u,.- ZO )tan(<p) =0 (3.18)
. J J 

The reachable workspace in the vertical plane through the OX-axis is now re-mapped using equality 

(3.18) instead of (3.15), and incrementing <p j as given by expression (3.16), resulting in a downward 

sweep of the radiating ray. 

Here again the maximum displacements of the respective rays j 1,2,... , N R are found using as starting 

point for the successive optimizations, the solution for the previous ray, j 0,1,2, ... , (NR -1) . 

Figure 3.4 shows the re-mapped reachable workspace boundary in the vertical plane through the OX-axis 

(e j =0·). Starting from bifurcation point F (1 1 1 1 1 1) where the top platfonn is horizontally 

orientated (a. =0·, ~ =O· and y = 0·), the working point advances along the curve FG 

[- 1 1 1 - ] as the platfonn moves away from the OZ-axis. Although curve FG 

[- 1 1 1 -] in Figure 3.4 carries the same label as curve DE [- 1 1 1 1 -] in Figure 3.3, 

the two boundary curves do not coincide as is evident from the earlier composite Figure 3.2. The reason 

for this is that the top platfonn is now positively tilted as the working point advances along curve FG 

[- 1 1 1 1 -] in Figure 3.4, while the top platfonn is in a negatively flipped orientation as the 

working point advances along curve DE [- 1 1 1 1 -] in Figure 3.3. The positively tilted 

orientation of the top platfonn is a. =0·, ~ =31.9· and y O· when the manipulator working point 

coincides with bifurcation point G (0 1 1 1 1 0) in Figure 3.4. 
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Figure 3.4 "Downward sweep" reachable workspace boundary in the vertical plane through the OX-axis (8::: 0·) . 

The "downward sweep" re-mapped reachable boundary in Figure 3.4 shows a boundary curve GD 

[0 1 - - 1 0] between bifurcation points G(O 1 1 1 1 0) and D(O 1 1 1 1 0). The 

behavior along curve GD [0 1 - - 1 0] in Figure 3.4 is similar to that along curve EF 

p 1 - 1 1] in Figure 3.3. Starting at bifurcation point G(O 1 1 1 1 0), actuator legs 3 

and 4 are retracted as the manipulator working point advances along the first portion of curve GD 

[0 1 - - 1 0]. This action forces the top platform from the positively tilted orientation at 

bifurcation point G (0 1 1 1 1 0) (ex:::: 0°, ~ =31.9 0 and y =0"), into the negatively flipped 

orientation (ex: = 0·, ~::: -82.36" and y::: 0·) with the manipulator working point coinciding with 

bifurcation point D (0 1 1 1 0). The manipulator working point follows the last portion of 

curve GD [0 1 - - 1 0] as actuator legs 3 and 4 are extended, so that these legs take on their 

maximum leg lengths when bifurcation point D (0 1 1 1 1 0) is reached. 

-:::....~[.::.:OO:....-~O~O]y'--'-_-'...:....___~ X 
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Comparing Figure 3.3 with Figure 3.4 shows, as is also apparent from the composite Figure 3.2, that the 

bottom portion of the mapped reachable boundary is the same independent of whether the upward sweep 

or downward sweep mapping is done. 

Looking at the results obtained, it is evident that the reachable workspace is characterized by different 

boundary curves corresponding to different types of orientations of the top platform. More specifically, 

analyzing the reachable boundary in the vertical plane through the OX-axis, shows that the negatively 

flipped orientation is not mechanically feasible at all positions where the mathematical solution exists. 

Although the computation of the workspace was restricted here to the plane through the OX-axis 

(9 = 0") , it may be done in a straight forward similar manner for any other vertical plane through OZ, i.e. 

for any other 9 value. 

The demonstration of the successful mapping of the workspace in the vertical plane through the OX-axis 

proves that the optimization approach adopted here is a tool with which the mathematically complete 

reachable workspace can be mapped. The mapping of such a complete workspace is of course of limited 

practical use if it encloses mechanically infeasible regions. However, if the spherical and gimbal joint 

limits are taken into consideration, and the actuator legs are prohibited to interfere while mapping the 

reachable workspace, the complete workspace will be mechanically feasible and of practical value. 

These aspects will be addressed in the future research envisaged and is also discussed in more detail in 

Chapter 5. 

In the next chapter the complete fixed orientation workspace A [a fiX '~Iix ' YfiX]' with boundary 

aA [anx , ~ fix , Yr", ], as well as an example of a complete dextrous workspace A [anx , ~ fix ' Ymin Ymax]' with 

boundary JA [aliX ' ~tix' Ymin - Ymax] are determined. 
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