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Chapter 2 

AN OPTIMIZATION APPROACH TO THE DETERMINATION OF 

PLANAR MECHANISM WORKSPACES 

2.1 INTRODUCTION 

In this chapter an optimization approach is used to determine the workspace boundaries of two different 

types of planar mechanisms. The proposed optimization approach is a new and easily implemented 

numerical approach, which is based on a novel constrained optimization algorithm that has the 

considerable advantage that it may easily be automated. 

The work presented here is motivated by, and stems from, the foundation paper of Haug et al. [12] which 

represents the state-of-the-art of computing workspaces of manipulators by the continuation method. In 

their paper, Haug and his co-workers emphasize the need for refined computer codes by means of which 

works paces may easily be obtained. 

In this chapter accessible output sets for manipulators are defined and criteria for determining their 

boundaries are stated. A method, based on the definition of the boundary, is developed by means of 

which the boundary may be mapped. In simplest terms the method consists of finding a suitable initial 

radiating point(s) in the output coordinate space, and then determining the points of intersection of a 

representative pencil of rays, which emanates from the radiating point(s), with the boundary of the 

accessible set. The points of intersection are determined through an optimization approach in which a 

proven robust dynamic constrained optimization algorithm of Snyman [37,38] and Snyman et al. [39] is 

used. 

The planar examples considered here are purposefully chosen to be identical to that of Haug et al. [12], 

so as to allow for a valid assessment of the new approach. In particular, the method is illustrated by its 

application to a planar Stewart platform and a planar redundantly controlled serial manipulator. 
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2.2 ACCESSmLE OUTPUT SE TS 

In accordance with Haug et aI. (12], generalized coordinates q == [ql' qp ... , qmJ E R ml are defined that 

characterize the position and orientation of each body in the mechanism. In the neighborhood of an 

assembled configuration of the mechanism, generalized coordinates satisfy m independent holonomic 

kinematic constraint equations of the form: 

<I>(q) == 0 (2.1) 

where <I> : R nq -7 R m is a smooth function. 

Mechanisms are usually designed to produce a certain functionality, where the motion ofthe mechanism 

is to be controlled by specifying the values of selected generalized coordinates, called input coordinates. 

As described by Haug et al. (12] these coordinates form a subset of the mechanism generalized 

coordinates, and their values are controlled by external influences with the intent of controlling the 

motion of the mechanism. The vector of input coordinates is denoted by v == [v I' V 2 p'" V nv Y . 

To define the desired functionality of a mechanism, some measure of output, that is controlled by 

mechanism inputs, must be defined. Output coordinates constitute a subset of mechanism generalized 

coordinates that define the useful functionality of the mechanism. Output coordinates are distinct from 

input coordinates and are denoted by u == [u l , u 2 , ••• , unu r. Generalized coordinates that are neither input 

coordinates, nor output coordinates, are called intermediate coordinates denoted by 

W == [WI' w 2' ... , wnwY, where nw =nq-nq-nq. 

Inequality constraints are usually imposed on the input variables and often also apply to the intermediate 

variables. They take the form 

(2.2) 

and 

W min ::; W ::; W max (2.3) 

The accessible output set of a manipulator is the collection of all achievable output coordinates of the 

manipulator. To be more precise in characterizing the accessible output set for a manipulator, the 

generalized coordinates are partitioned as follows: 

q = [u T , V T , W T r (2.4) 

In terms of this partition the constraint equations (2.1) may be written as: 
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<1)(u, V, W) =0 (2.5) 

The accessible output set A is therefore simply defined as: 

A == { UE R nil : <1)(U, V, w) = 0; V satisfying (2.2) and w satisfying (2.3) } (2.6) 

Intuitively the boundary aA of the accessible output set may be defined as: 

aA == { U E R nil : U E A and 3 a S E R nil such that for u f =u + As, AE R 

arbitrary small and either positive or negative, no V and w exist that satisfy (2.7) 

<1)(u', v, w) 0 as well as inequalities (2.2) and (2.3) } 

2.3 FINDING A POINT ON JA 

A distinction is made with respect to system of equations (2.1) and (2.5), between two possibilities: 

Case (i): where m nv and, given u and w, system (2.5) may easily be solved to give V in terms of u 

andw: 

v=v(U,w) (2.8) 

This is typically the situation with parallel manipulators where the inverse kinematics is easy to solve. 

Case (ii): where m =nu and, given V and w, system (2.5) may easily be solved to give u in terms of v 

andw: 

(2.9)u=u(v, w) 

This again is typical for serially linked manipulators where the forward kinematics is relatively easy to 

solve. 

First consider first Case (i). Assume that a radiating point UO of A is available, and for the moment 

assume that it is interior to the accessible set. It is now proposed that, consistent with the definition of 

JA in (2.7), a point ub on the boundary in the direction S E R nil from UO be determined by solving the 

following constrained optimization problem: 

Problem (i): 
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maximize 
u,w 

vmin s; v(u, w) s; vm,x 
such that: 

w min s; W s; wm,x 

and subject to equality constraints: h(u,s) = 0, hER nu-l 

which defines a point on the parameterized straight line ray, U(A) =U() + AS, AE R. Here 11'11 denotes 

I'd {F I 'f 2 [ ]T (I [() ()]T d [ ]T hthe Euc 1 ean norm, or examp e, 1 nu = ,U = x, y ,U = x ,y , an s = Sf'S), , t en 

has the components x =XO +AS . y =y () + Asl' and it follows that: 
.t ' 

h(u, s) (x - x()/s~ -(y - yO)/Sy =O} (see Figure 2.1) 

Figure 2.1 Ray in A from UO to JA. 

For Case (U) the associated constrained optimization problem is given by: 

Problem (ii): 

maximize 
v.w 

such that: 
wnun s; W s; w m", 

and subject to equality constraints: h(u(v, W),s) 0 

where the equality constraint defines a point u on the straight line through U
Oin the direction s. 

Note that should U
O be chosen to be exterior to A, then the optimization problems above obviously 

become minimization problems. 

In this chapter, the presentation will be restricted to planar mechanisms. In Chapter 3 the methodology 

developed here for and applied to planar mechanisms, will be extended to spatial mechanisms. 
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2.4 BASIC METHODOLOGY FOR MAPPING THE BOUNDARY OF A PLANAR 

ACCESSIBLE SET 

Assume a planar manipulator with a two-dimensional accessible set A, and also for the moment assume 

that A is convex, which certainly will not always be the case. Also assume, for the moment, that the 

radiating point UOis an interior point as shown in Figure 2.2. 

The boundary aA may now be numerically mapped by solving the appropriate optimization problem «i) 

or (ii» for N successive rays, with respective directions Si, i =0,1,2, ... ,N ,emanating at angular intervals 

of 0 (where for example 0 =3600 N) from UO =[xo, yO]T as depicted in Figure 2.2. / 

hiFigure 2.2 Numerical map of dA; U , i =O,I,. .. ,N. 

Questions now arise in connection with details of the implementation of the methodology. The first 

question relates to how an initial radiating point U
O may be obtained. Depending on the particular 

geometry of each case, a suitable choice for U
O may be self-evident. If not, it is suggested that, in Case 

(i), UO may be obtained from equation (2.8) by solving for u in: 

(2.10)v = v(u, w) 

where 

=(v minv + vmax )/2 
w =(wOlin + w 

max )/2 

In practice this may be done by solving the least squares optimization problem 

minimize Ilv(u, w)-,r (2.11) 
u 

In Case (ii), if an obvious choice for U
O is not available, then an indication may be obtained from 

equation (2.9): 
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UO (2.12)= U(V, W) 

The second question concerns the strategy to be adopted if non-convexity of A interferes with the 

mapping as illustrated in Figure 2.3, where as result of the non-convexity, two boundary points u~ and 

u~ exist. 

Figure 2.3 Complication if A is non-convex. 

If this happens, it will be necessary to adjust U
O such that the boundary point ub is unique for a prescribed 

search direction s. The precise strategy to be adopted will be described separately in the later sections 

dealing with the application of the methodology. A final question that must be addressed, is what 

procedure to adopt if the boundary mapping approaches a bifurcation point. The procedure to deal with 

such an eventuality is also described in the sections dealing with the applications. 

2.5 APPLICATION TO THE PLANAR SERIAL MANIPULATOR 

Although the emphasis of this study is on determining the workspaces of parallel manipulators, the 

versatility of the optimization method should at least correspond to that of Haug et al's [12] continuation 

method. Consequently, the serial manipulator studied by Haug et al. [12] is also investigated in this 

section using the optimization approach. 

2.5.1 Geometry of the Planar Serial Manipulator 

The redundantly controlled serial manipulator shown in Figure 2.4 was therefore purposefully taken 

from Haug et al. [12]. This is a planar manipulator with three links, and three revolute joints. 

Revolute joint 1 is the connection between the serial manipulator and the ground. The global coordinate 

system is fixed with the origin coinciding with joint 1. The orientation angle of link 1 relative to the 
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positive X-axis, is indicated by 81, and is measured in a right hand sense about the origin of the fixed 

global coordinate system. Similarly 82 and 83 measures the orientation angles of respectively link 2 with 

link 1, and link 3 with link 2. Depending on the configuration of the serial manipulator, the orientation 

angles can be positive, or negative. 

Figure 2.4 Planar serial manipulator with redundant input. 

The working point P is the end point of link 3, which is the position where in practice some end effector 

is mounted. The accessible region of the working point depends on the upper and lower orientation 

angle limitations. In accordance to Haug et al. [12], the same limitations are imposed on all three 

orientation angles. Expressing the constraint equations in terms of the orientation angles in radians, 

gives: 

(2.13) 


This choice of angle limits clearly causes the workspace to be symmetric about the positive X-axis, and 

one also intuitively expects the workspace to be non-convex. 

2.5.2 Constraint Equations of the Planar Serial Manipulator 

With reference to Section 2.2 , equation (2.13) is the serial manipulator version of the general inequality 

constraints (2.2). Here the orientation angles are obviously the input variables, Le. v =r8 I , 82 ,83 r , 
and the global coordinates of the working point P are the output coordinates, i.e. u =[x, yr. There are 

no intermediate coordinates required in describing the serial manipulator. 
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The serial manipulator therefore has five generalized coordinates (2.4): 

q=[nT,vTY =[x,y,8,,82 ,83 J 
Having only two degrees of freedom, and three inputs, makes the serial manipulator redundantly 

controlled. This means that the same output coordinates can be obtained with different sets of input 

coordinates. The situation becomes clearer when looking at the two kinematic constraint equations 

corresponding to general form (2.5). Doing the forward kinematic analysis for the serial manipulator, 

gives expressions for the output coordinates in terms of the input angles (8 j , i = 1,2,3): 

x=4cos8, +2cos(8, +8z)+cos(8, +82 +83 ) 

(2.14) 
y =4sin8, + 2 sin (8 , +8J+sin(8, +82 +83 ) 

Having two equations in three variables results in the existence of multiple solutions for a particular 

choice of (x, y) . 

Rewriting equation (2.14) in the general form (2.5), gives: 

<I> (n, v) = [u, - 4 c~s(v, ) - 2c~s(V , + V 2) - c~s(V , + V 2 + V 3 )] 0 
(2.15)

4 Sill (v 1)- 2 Sill (v , + v 2)-Slll(V ,+ v 2+ vJu 2 

from which explicit expressions for u follows: 

u(v) =[4 cos( v , )+ 2 cos( V I + V 2 )+ COs(v, + V 2 + V 3 )l 
(2.16)

4 sin (v I )+ 2 sin (v I + V 2 )+ sin(v , + V 2 + V 3 ) J 

The inequality constraints given by expression (2.13) can be written in the standard form (2.2): 

(2.17) 


Notice that the serial manipulator can be classified under Case (ii) of Section 2.3. Expressions (2.17), 

(2.16) and (2.15) which were specifically derived for the serial manipulator, correspond to the general 

expressions (2.2), (2.9) and (2.5). The boundary aA of the accessible set of the serial manipulator may 

therefore be numerically determined by applying the basic methodology described in Section 2.4 and in 

which optimization Problem (ii) of Section 2.3 is successively solved. 

The specific constrained optimization method used in solving the optimization problems is the dynamic 

trajectory method of Snyman [37], [38] for unconstrained optimization, applied to penalty function 

formulations (Snyman et al. (39], Snyman [40]) of the constrained problems. The particular computer 

code used is LFOPCV3 (Snyman [40]). 
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2.5.3 Discussion of Results for the Planar Serial Manipulator 

2.5.3.1 Outer Accessible Workspace Boundary 


Figure 2.5 shows the outer accessible workspace boundary obtained. 
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IJ 
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Figure 2.5 Boundary of the accessible output set of the planar serial manipulator. 

With the workspace being symmetrical about the positive X-axis, only the top half is computed. The 

radiating point for determining the workspace is chosen to be at the origin of the global coordinate 

system, i.e. UO = [0, O]T _ This choice for the radiating point allows for the separation of the outer 

workspace boundary into a far and a near boundary. 

Looking at only the top half of the accessible output set, it is clear that the near and far boundaries are 

smooth curves, which meet at an extreme point A. The working point of the serial manipulator will be at 

this extreme point A, if the input angles take on their respective maximum values, i.e. Vi =v;nax for 

i =1, 2, 3. The output coordinates of point A are determined by substituting these maximum values of Vi 

in equation (2.16), resulting in u A = [0.0, 5.1962]T. 

For the top half, the outer boundary is mapped by successively solving optimization Problem (iiJ for 

successive rays emanating from the radiating point Uo which, for the far boundary, is effectively an 
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interior point. The maximization is carried out for successive search directions Si' i = 1, 2, ... , N , each 

corresponding to a radiating angle 'Vi. Here 'VI 0 and 'VN =rc/2, with the other angles suitably and 

monotonically spaced in between. Clearly 'V N rc/2 corresponds to the ray passing through uA. 

As soon as the point A is reached, Problem (iiJ becomes a minimization problem since, for the mapping 

of the near boundary, UO is now an exterior point. The inner boundary is now mapped by successively 

carrying out the minimization, but now for successive angles decreasing from 'VI' =rc/2 and 'VN' = O. 

The bottom half of the workspace boundary is simply a mirror image of the top half. 

In the mapping, depending on the curvature of the workspace boundary, provision is made for adjusting 

the angular interval between rays so as to ensure sufficient accuracy. 

Haug et al. [12] not only manage to determine the accessible workspace boundaries of the serial 

manipulator, they also describe the behavior of the manipulator associated with different curves of the 

workspace. Their method enables them to find the bifurcation points located within, and on the 

boundaries of the accessible output set. These bifurcation points are numbered, and each curve 

connecting two bifurcation points is "described" with reference to those input variables that remain 

fixed, and those input variables that vary as the manipulator advances along the specific curve. 

Here, an alternative and more concise notation for labeling the bifurcation points and boundary curves is 

proposed. This should facilitate the discussion of the results. 

The serial manipulator working point P will coincide with a bifurcation point if all the input angles are 

fixed at (usually) either their maximum or minimum allowable values. If for each input angle 

( 8 i , i = 1, 2,3 ), the state is indicated by setting Xi := 0 for the minimum allowable value and Xii for 

the maximum allowable value, then the configuration of the manipulator at a specific bifurcation point 

may be indicated and labeled by a triplet enclosed in round brackets, (X I X2 X3)' Thus point A in 

Figure 2.5 where all three input angles have maximum values is, for example, labeled by (1 1 1). 

The boundary curves may be labeled in a similar manner. Usually, as one moves from one bifurcation 

point to the next along a particular boundary curve, the value of one of the input angles, say j, varies 

from one extreme bound to the other. This may be indicated by setting X j := - and Xi := 0 or 1 for 

i "# j ,depending on whether input angle i assumes a minimum or maximum value. The curve may 

therefore be labeled by a triplet enclosed in square brackets, [X I X2 X3]' 
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On closer inspection of the results for the far boundary aA in Figure 2.5, three distinct curves are 

identified. Along curve ac the serial manipulator is stretched and the three links form a straight line. 

The working point will advance along this curve as it moves on an arc of radius = 4 +2 +1 = 7 , with 

center of radius at the origin of the global coordinate system. 

The proposed notation for labeling the boundary curves and bifurcation points is slightly modified to 

accommodate curves and points where the input variables take on fixed values other than the extreme 

values corresponding to bounds. 

Curve ce is labeled [- 0.0 0.0] indicating that input variable VI varies between its minimum and 

maximum values, while input variables V2 and V3 both remain fixed at 0.0. The top half of curve ce 

[- 0.0 0.0] is curve ac, where input variable VI varies between zero and its maximum value. Point c is 

labeled as (1 0.0 0.0) indicating that v' = [v;nax ,0.0,0.0r while point a is labeled (0.0 0.0 0.0) 

indicating that v" [0.0,0.0,0.0f. The global coordinates of point c are u' = [3.5, 6.0622r. The 

bottom half of curve ce [- 0.0 0.0] is curve ae where input variable VI varies between zero and its 

minimum value, while V2 and V3 remain fixed at 0.0. Point e is labeled (0 0.0 0.0) indicating that 

ev' =[v~in,O.O,O.Or ,andtheglobalcoordinatesofpointeare u =[3.5, 6.0622f 

With v I fixed at v ~;IX = 1t/3, the working point will map the curve cd [1 0.0] as it moves on an arc of 

radius = 2 +1 =3 with the center of radius coinciding with the position of revolute joint 2. The mirror 

image of curve cd [1 0.0] is curve ef [0 - 0.0], where VI is fixed at v~'in -1t/3. Finally with input 

variables VI and V2 both fixed at their maximum values, curve dA [1 1 -] lies on an arc of radius =1 , 

with center of radius situated at revolute joint 3. It follows that the mirror image of curve dA [1 1 -] is 

curvefD [0 0 -], where input variables VI and V2 both fixed at their minimum values. 

The inner boundary of the workspace is an arc of radius =5.1962 which joins bifurcation points A and 

D. The arc radius is the shortest possible distance from the global coordinate system origin to the 

working point, and can be obtained with both input variables V2 and V3 either at their maximum, or 

minimum values. Curve AD in fact consist of two overlapping bifurcation curves AC [- 1 1], and BD 

[- 0 0]. The global coordinates of any bifurcation point can easily be determined from equation (2.16). 

Clearly in this specific case, the near boundary could have been obtained by a simple and obvious 

geometrical construction, rather than by the general optimization mapping used here. 
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2.5.3.2 Curves Connecting Bifurcation Points 

For the serial manipulator under consideration, four bifurcation points are situated inside the workspace 

boundaries, namely points E, F, G and H as shown in Figure 2.6. 
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Figure 2.6 Interior bifurcation points and curves of the pLanar serial manipulator. 

Figure 2.6 also shows interior curves connecting these bifurcation points. For clarity, a magnified view 

of the upper segments is shown in Figure 2.7. The interior curves connecting the bifurcation points, are 

mapped using forward kinematic analyses. Taking curve AdE [1 1 -] as an example: M points along 

curve AdE [1 1 -] can easily be mapped by setting v I V ~ax , V 2 :::: V ~a, and v3 v j , where 

vJ==vm""_ (Vm"'_V min )
33 3 3M 

and solving for each setting j, j =0, I, 2, ...,M equation (2.16) directly to give the corresponding output 

coordinates u(v). 
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Figure 2.7 Magnified view of upper part of boundary and bifurcation curves of planar serial manipulator. 

Curve cg [I - 0.0] does not connect any bifurcation points, but is the interior extension of the second 

arc de on the far boundary described in Section 2.5.3.1. The mapping of this curve is done in a similar 

manner to that described for curve AE above. Curve ej [0 - 0.0] is the mirror image of curve cg 

[1 - 0.0]. 

The final two interior paths to be dealt with, are path hi and path klmn also reported by Haug et al. [12l 

Path hi lies on an arc with radius == 6.64575, and center point at (0.0, 0.0). The radius is obtained by 

solving optimization Problem (ii) with -n13 =v~in 5. Vi 5. v~ax =nl3 for i == 1 and 2, and 

Here it was noticed that with variation in the search direction, VI varies, but V2 remains constant at the 

value v 2 =-0.3335. If V3 is fixed at v 3 == v~ax = n13, then carrying out the optimization for different 

search directions, VI varies again but V2 takes on the constant value v2 = +0.3335. The respective 

computed curves hi [- -0.3335 1] and ih [- +0.3335 I] coincide as shown. 

Path klmn is computed similarly and lies on an arc of radius 6.2915. This curve consists of two partially 

overlapping curves km [- 1 -0.714], and in [- 1 +0.714] as shown in Figure 2.6. 
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It should be stated that the respective constant values (0.3335 and 0.714) assumed by V2 for the curves ih 

and in differ slightly from that (0.3241 and 0.7499) reported by Haug et al. [12]. 

2.6 APPLICATION TO THE PL ANAR STEWART PLATFORM 

In the remaining part of this study, the emphasis falls on Stewart platform workspaces, and specifically 

how the optimization approach is utilized in analyzing and characterizing the different workspaces. Th!s 

section deals with determining the exterior boundaries of the accessible workspace of a planar Stewart 

platform, as well as finding the bifurcation point connecting curves. 

2.6.1 Geometry of the Planar Stewart Platform 

The geometry of the planar Stewart platform considered here is taken from Haug et al. [12], and is as 

shown in Figure 2.8. 

Leg 3 

3 

Figure 2.8 Planar Stewart platform. 

The moving upper platform is connected to the fixed base via three linear actuators such as, for example, 

hydraulic cylinders. The base can in general be fixed in any orientation but in this case it is fixed 

horizontally. The global coordinate system was chosen to be on the base, with the origin midway 

between joints C and D, and with the directions of the axes as shown in Figure 2.8. 

The lower ends of the actuator legs are connected to the base at points C, D and E with respective global 

coordinates (-1,0), (1,0) and (2,0). The upper ends of actuator legs 1 and 2 are both connected to the 

left hand side of the top platform at point A. Actuator leg 3 has its upper end connected to the right side 
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of the top platform at B. The working point P is at the center of the top platform at global position 

(x, y) with the platform making an angle cp with the horizontal. 

Each of the three actuator legs is a variable length linear actuator with its length indicated by 

l;, i 1, 2, 3. There are limitations on the maximum and minimum lengths of linear actuators, and 

therefore the accessible region of the working point P is determined by the constraints on the actuator 

lengths which are formally expressed as: 

0< rmm ~ l < lmax (2.18) 
I I I 

for i = 1, 2, 3 

The actual leg length limits that are used, are the same as the limits specified by Haug et al. [12], and are 

given in Table 2.1. 

Legi ltlln ltax 

i 1 ~ 2 

2 ~ 2 

3 1 J3 

Table 2.1 Minimum- and maximum lengths of the actuator legs. 

2.6.2 Constraint Equations of the Planar Stewart Platform 

Clearly for the planar Stewart platform, and with reference to the definitions given in Section 2.2, the 

actuator leg lengths are the input variables, i.e. v = [11' 12,13]T , on which the inequality constraints (2.18) 

are imposed corresponding to the general constraints (2.2). The global coordinates of the working point 

are the output variables, i.e. u =[x, yr. The rotation angle cp of the top platform is the one and only 

intermediate coordinate, Le. w =cp. Here, no inequality constraints of the general form (2.3), are 

imposed on the intermediate variable w. 

The generalized coordinates (2.4) for the Stewart platform are given by 

(2.19) 
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This system clearly has three degrees of freedom, since the configuration of the system is uniquely 

defined by any three of these coordinates. This implies the existence of three kinematic constraint 

equations of the form (2.5), specifying the interrelationships between the coordinates. 

From the geometry shown in Figure 2.8, the inverse kinematics may easily be performed to give the 

actuator lengths in terms ofx, y and <p: 

112 =(x - cos<p + lY + (y sin <p)2 

l~ = (J - x + cos <p y+ (y - sin <pY (2.20) 

I: =(x + cos <p 2Y+ (y sin <pY 

The above may be rewritten in the standard form (2.5) for the constraint equations as: 

(2.21) 

from which the explicit expressions for v follow: 

(2.22) 


Inequalities (2.18) may also be written in the standard form: 

(2.23) 


and v = v(u, w)as given by (2.22) 

Now expressions (2.23), (2.21) and (2.22) for the planar Stewart platform, clearly correspond to Case (i) 

of Section 2.3 , specified in general by expressions (2.2), (2.5) and (2.8). 

The method used to determine the boundary aA of the accessible output set for the planar Stewart 

platform is similar to the method used for the serial manipulator. The only difference is that for the 

planar Stewart platform optimization Problem (i) is successively solved. The computer code LFOPCV3 

[40] is again used to solve the optimization problems. 
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Note that here there is no explicit restriction (2.3) on w. This implies that there are no limitations on the 

orientation angle of the top platform, therefore the workspace boundary is solely dependant on the 

limitations imposed on the actuator leg lengths. This is called the accessible or reachable workspace 

defined by Kumar [11) as the "volume or space within which a reference point on the hand or end 

effector of a manipulator can be made to coincide with any point in the volume or space". 

2.6.3 Discussion of Accessible Workspace Results for the Planar Stewart Platform 

2.6.3.1 Outer Accessible Workspace Boundary 

The computed outer boundaries of the accessible workspaces for two different situations are shown in 

Figure 2.9 and Figure 2.10. For the cases depicted here, the boundary mapping was done at intervals of 

0= 5' (see Figure 2.2). 

Figure 2.9 shows the boundary of the accessible output set of the standard planar Stewart platform for 

which the limits on the actuator lengths, given in Table 2.1, are such as to prevent a singular 

configuration from occurring. Such a singularity will occur if the upper platform is allowed to take on a 

position that is collinear with any ofthe actuators (Haug et aI. [41)). 

Y 

1.8 

1.6 
(011) 

(101) 
B 

[10-] 

[0-0] [-00:2.]__C-;-:: 
(100) 

1.2 

1.0 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Figure 2.9 Boundary of the accessible output set of the standard planar Stewart platform (1:::; I, :::; /3) . 

The methodology described in Section 2.4, represented by the least squares problem (2.11), is used to 

find the central radiating point for the planar Stewart platform. The central point for the standard planar 

Stewart platform is Ull =[0.99996 1.374791Y. 
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[1-1] 

Figure 2.10 shows the results for the modified planar Stewart platform, where the limitations on actuator 

leg 3 is relaxed to 1:S; 13 :s; 3. This was also done by Haug et al. [12] to allow for collinearity to occur. 

The central radiating point for this second situation is UO == [0.95169 1.69061Y . 
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Figure 2.10 Boundary of the accessible output set of the modified planar Stewart platform ( I ~ l, ~ 3 ). 

One notices that the boundary of the workspace for the standard case is defined by six smooth curves 

intersecting at distinct comers A, B, C, D, E and F. On closer inspection of the results, it becomes clear 

that one may easily relate the various curves of the workspace boundary to the behavior of the Stewart 

platform. This was indeed done by Haug et al. [12] in identifying the comers as bifurcation points and 

numbering them. The individual boundary curves were then labeled according to the numbers of the 

bifurcation points they connected and the variation of the actuator lengths were tabulated for each curve. 

With reference to Section 2.5.3.1 the newly proposed notations for labeling the bifurcation points and 

boundary curves are also applied here to describe the workspace of the planar Stewart platform. 

Labeling the bifurcation points in the proposed manner indicates which actuator legs are at their 

minimum values, and which assume their maximum lengths when the manipulator working point 

coincides with any specific bifurcation point. Thus point A in Figure 2.9 and Figure 2.1 0, where all three 

legs have maximum values is, labeled by (1 1 1). The other boundary bifurcation points of the standard 

planar Stewart platform are similarly labeled as shown in Figure 2.9. 
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Similarly, the square bracket triplets with which the boundary curves are labeled, indicate which legs 

remain fixed at either their minimum or maximum bounds, and which legs vary from one extreme to the 

other as the manipulator working point moves from one extreme to the other. Consider, as an example, 

boundary curve AB connecting bifurcation point A (1 1 1) to bifurcation point B (1 0 I) in Figure 2.9. 

This curve is labeled by [1 - 1], indicating that legs 1 and 3 remain fixed at their respective maximum 

lengths, and leg 2 varies from its maximum length (working point coinciding with A) to its minimum 

length (working point coinciding with B). The other boundary curves are labeled in a similar manner. 

The precise mapping of the bifurcation point comers is done by, having identified through the boundary 

mapping procedure the three active constraints at the corner, then minimizing Ilv(u, w) v" r with 

respect to u and w, where va corresponds to the leg lengths associated with the three identified equality 

constraints. This bifurcation point mapping is automatically done by the computer code as it maps the 

boundary. 

The results for the modified planar Stewart platform is qualitatively the same as for the standard 

platform, except that for the modified case there is only five smooth boundary curves with bifurcation 

point B (1 0 1) lying inside the workspace. Here the two smooth boundary curves AB and BC of the 

standard case blend into a single smooth boundary curve A C, which consists of three parts: AA' [1 - 1], 

A'e [1 - ], and C C [1 0 -]. It is clear that along A'e the platform is stretched to be collinear with 

actuator leg 1 so that only the single constraint II =It''" is active. 

The point A' may be determined in a manner similar to the way in which the corner bifurcation points 

were obtained by minimizing, with regard to u and v, the following error function: 

(2.24) 

The first two terms of error function (2.24) correspond with the two active constraints at A' and the last 

term to the collinearity condition which also applies at A'. Similarly, point C is determined by setting 

vl(u,w)=v~a" V2(U,W)=v~lin and u z =(u l +l)tan(w). In both cases the optimization code 

LFOPCV3 [40] reduces the error value to zero, giving the desired solutions. 

A comparison between the workspace boundaries obtained and depicted here, with the results of Haug et 

al. [12], shows that equally accurate results are obtained with relative ease using the basic optimization 

approach. 
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2.6.3.2 Curves Connecting Bifurcation Points 

From further inspection of Figure 2.9 and Figure 2.10, it is apparent that in the standard case only six, 

and in the modified case only five of the eight bifurcation points occur on the boundary. The remaining 

two points for the standard case are G (1 1 0) and H(0 0 1), and occur in the interior. For the modified 

case point B(1 0 1) is also an interior point. These interior bifurcation points, at which in each case 

three constraints are active, may be determined in exactly the same manner as previously described for 

the boundary bifurcation points. For the standard case bifurcation points G and H almost coincide in the 

u plane. The precise respective coordinates are: 

forG(ll 0), u 1 =0.92857151, u 2 1.3608971, w -0.38025119 

andforH (0 0 1),u, =0.93166249,"z =1.363325, w 0.37183426 

These results are exactly the same as those given by Haug et al. [12]. 

To complete the picture, interior curves connecting boundary bifurcation points to interior bifurcation 

points, and along which only one of the actuator lengths is allowed to vary, were also computed. These 

interior curves are of importance since, according to Haug et al. [42], limits on controllability of the 

planar Stewart platform are associated with configurations lying on the interior curves. 

The method of mapping the interior curves is described with reference to the representative curve 

connecting boundary bifurcation point A (1 1 1) to G (1 1 0). Along this curve [1 1 -], v, = v;nax , 

V 2 =v~ax and V3 varies between v~ax and v~in. M points along this curve may be mapped by 

successively solving, for j =1,2,3, ... , M , the following set of non-linear equations: 

v, (u, w) - V ~ax = 0 

vz(u,w) V~"IX=O 

v,(u, w)-v~ =0 (2.25) 

where vi =vmux_L(v""'" _ vOlin)
3 , M 3 3 

This may readily be done by minimizing the sum of the squares of the residual errors, again using the 

LFOPCV3 optimization code. For clarity, the computed interior curves are shown separately on Figure 

2.11 and Figure 2.12 for the two individual platforms. 
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Figure 2.11 Computed curves for the standard planar Stewart platform ( I :::; lJ :::; J3 ). 

A final matter of interest concerns paths FH [0 - 1] and HD [0 0 -] for the modified planar Stewart 

platform shown in Figure 2.12. Along each of these paths there are respective points F and D' at which, 

with leg I at its minimum position, a collinear and singular configuration is assumed. These points F 

and D' are computed in a manner similar to the determination of A' and C' described in Section 2.6.3.1, 

but now with v l = V ~ill. The circular arc F D', of radius I + J2 and center at global coordinates 

(x, y) =(- 1, 0), therefore designates the path of the working point when the planar Stewart platform 

assumes a collinear configuration with actuator leg 1 at its minimum position. 

This concludes the presentation of the accessible workspace results for the planar Stewart platform. 

From an implementation point of view, it is important to state that all the techniques described here, and 

used to generate the workspace boundary and bifurcation curves, are integrated in a Fortran computer 

code PLANSTEW that is easy to use. The user specifies the limits on the leg lengths, and the code then 

automatically computes and plots the accessible workspace boundaries, as well as the curves connecting 

the bifurcation points situated on the outer boundary with those situated inside the accessible output set. 

The code PLANSTEW is available from the author on request. The details of the code is explained in 

Appendix A. 
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Figure 2.12 Computed curves for the modified planar Stewart platform ( I ~ I; ~ 3 ). 

Note that nothing has been said about the values that the orientation angle <p assumes within the 

workspace. While determining the boundaries of the accessible workspace, the main interest is the 

maximum aJlowable displacement from the radiating point UO irrespective of orientation. The value of 

the orientation angle <p is only a concern if it is apparent that the top platform assumes a flipped 

configuration where interference of the legs with each other becomes a possibility. 

The next section deals with determining the dexterous workspace of the planar Stewart platform, where 

the orientation angle plays a primary role. 

2.6.4 Determining the Dexterous Workspace of the Planar Stewart Platform 

2.6.4.1 Introduction 

The dextrous workspace of a parallel manipulator is defined by Haug et al. [8] as: "(the boundary of) the 

set of points that can be reached by a given point on the working body and at which specified ranges of 

rotation of the working body can be achieved." Clearly the dextrous workspace is not unique but 

depends on the specified ranges of rotations. It is also apparent that for any non-zero range of 

orientations the dextrous workspace will be a subset of the accessible workspace. 
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Haug et al. [8J explain that it is important to distinguish between the dexterous workspace and the 

accessible workspace of a manipulator. The literature often discusses the "workspace" of a manipulator, 

yet it often happens that the manipulator cannot "work" while following a continuous path within this so 

called workspace [43, 44J, because it is essentially an accessible rather than a dextrous workspace and 

contains points at which no range of rotation is possible. 

From the definition of a dextrous workspace it follows that for any given manipulator, a range of 

dextrous workspaces exists. Once the dexterity requirements for the manipulator are stipulated, the 

dexterous workspace within which the specific dexterity requirements are satisfied, can be determined. 

Adjusting the dexterity requirements will obviously result in a completely different dextrous workspace. 

Haug et al. [8] mention that dexterity requirements for a manipulator are often stated in terms of ranges 

of mobility, normally rotatability, that must be achieved at each point in the desired accessible output set. 

For the planar Stewart platform under consideration, any range of rotatability will be specified with 

relation to the orientation angle q> of the top platform, i.e. q> must be able to assume all values in the 

range [q>min - q>max ] at any point in the associated dextrous workspace. 

With the orientation angle q> of the planar Stewart platform defined as the intermediate coordinate w 

( w =q> , see Section 2.6.2), one may naively expect that any such dexterity requirement can directly be 

translated to inequality constraints imposed on the intermediate coordinate of the form. 

(2.26)w min :s;w:s;w max 

Seeing that expression (2.26) corresponds to expression (2.3), it is possible to solve optimization 

Problem (i) with the additional inequalities as given by expression (2.26). With reference to Section 2.3 

this would imply maximizing the displacement from the radiating point U
O with inequality constraints 

imposed in both the actuator leg lengths (input coordinates) and the orientation angle of the top platform 

(intermediate coordinate). 

The optimum solution to this problem (maximum displacement from uo) does however not yield points 

at the boundary where all orientations in the range [<Pm;n - <Pmax] are possible. In fact in general one may 

expect only one possible orientation in the range at a specific boundary point, and therefore the boundary 

thus obtained will not coincide with the boundary of the dextrous workspace for [q> min - q> max]' 
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In order to compute the dextrous workspace for the range [<p min - <P max ], denoted by A [<p min <P max]' it is 

necessary to first consider the fixed orientation accessible workspace A [<PliX]' 

2.6.4.2 The Fixed Orientation Accessible Workspace of the Planar Stewart Platform 

Consider the situation where a single dexterity requirement needs to be defined for the planar Stewart 

platform. This is the case where the accessible workspace for a fixed orientation of the moving platform 

is to be determined. Such afixed orientation requirement is expressed as an equality: 

(2.27)
<P = <Pfixoo 

and the associated accessible workspace is denoted by A [<pr.x]' 

Equation (2.27) is in actual fact an equality constraint fixing the value of the intermediate coordinate, i.e. 

w = (2.28)w fixoo 

If, instead of the additional inequality constraints (2.26), an additional equality constraint (2.28) is added 

to optimization Problem (i), the optimum solution will correspond to a position where the fixed 

orientation requirement is achieved. The modified optimization Problem (i) is: 

Modified Problem (i): 

maximize 
u,w 

maxsuch that: vmin:;; v(u, w):;; v 

h(u,s) =0, hE R nu 
-
I 

and subject to equality constraints: 
W=W lix 

Solving the modified problem yields a point on the boundary of the fixed orientation accessible 

workspace. The complete boundary of A [<Pnx] may now be numerically mapped as before, by solving 

the modified problem for successive rays emanating from UOat angular intervals b (see Figure 2.2). 

2.6.4.3 Computed Fixed Orientation Accessible Workspaces of the Planar Stewart Platform 

The fixed orientation workspace A[O·] where the top platform is fixed in a horizontal orientation, i.e., 

<P = <Plixoo = 0* , is shown in Figure 2.13. The angular unrestricted accessible workspace is shown for 
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comparison purposes. The fixed orientation workspace is clearly a proper subset of the accessible 

workspace. 

y 

OA 0.6 0.8 1.0 1.2 lA 1.6 

Figure 2.13 Fixed orientation workspace A[O"] inside the unrestricted accessible workspaceA. 

As an extension to the proposed labeling notation (see Sections 2.5.3 and 2.6.3), the bifurcation points 

and boundary curves of the fixed orientation accessible output set A[O·] are also labeled. Here the 

labeling notation is slightly modified to include the specification of the fixed orientation (j) =0" . 

The mapping of each of the four boundary curves is characterized by the active "search direction" 

equality constraint, the active "fixed orientation" equality constraint and also a single active inequality 

constraint. This means that only one actuator leg is at an extreme length as the working point advances 

along the fixed orientation boundary curves shown in Figure 2.13. 

Each of the four bifurcation points therefore correspond to the position of the working point with at least 

two legs at extreme lengths. Consider for example bifurcation point BIf, which is labeled 

(1 0 -) (j) 0". This label indicates that for the dexterity requirement (j) =0', the working point 

coincides with bifurcation point B" if II =11 
m

", and 12 l;in. The length of actuator leg 3 is detennined 

by the fixed orientation (j) =0' . 

As a result of the choice of leg length limits, the top platform is horizontal when it is in its highest 

possible and lowest possible positions. This is why bifurcation points A" (1 1 -) <p =0' and 
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C"(O 0 -) <p=0° in Figure 2.13 respectively coincide with bifurcation points A(1 1 1) and 

C(O 0 0) in Figure 2.9. The choice of the actuator leg length limits allows labeling bifurcation points 

0

A" and C" as: A" (1 1 1) <P =o· and C' (0 0 0) <P =0 • 

The fixed orientation boundary curves are labeled in a similar manner. Boundary curve A"B" is, for 

example, labeled [1 - -] <P =0' showing that II = llmax as the working point advances along this 

curve. Actuator leg 2 varies from its minimum length at bifurcation point BN to its maximum length at 

bifurcation point A", and once again, 13 is determined by the fixed orientation <P =0°. The other 

bifurcation points and boundary curves are similarly labeled (see Figure 2.13). 

2.6.4.4 Using Fixed Orientation Workspaces to Determine a Dextrous Workspace 

The mapping of the fixed orientation workspace may now be extended to determine the dextrous 

workspace A[<Prnm - <Pm",,] where the dexterity requirement is: 

(2.29)<P to assume all values in the range [<Pmin - <Pm"x] at any point in the dextrous workspace 

It should be clear that A [<Prnin <Pmax] is given by the intersection of all possible A [<Pnx ], 

<PD' E [<Pmm - <Pm..]' Since it is expected that A[<PfJ varies in a "continuous" manner with <Pfix' the 

reasonable assumption is now made that A[<Pmill <Pm",,] may be obtained by simply considering the 

intersection of the extreme fixed angle sets, i.e. 

(2.30) 

The validity of assumption (2.30) may in practice be reinforced by checking whether at the intennediate 

central value, <Pi' the following condition is satisfied: 

(2.31) 


where <Pi = (<Pm!1l + <Pm"x )/2. 


{Indeed for the examples considered here condition (2.31) is more than satisfied see Figure 2.13 where 


A[<pJ =A[0' ].} 

Thus, if the orientation of the top platfonn is fixed to the minimum value as specified in the fixed 

orientation requirement, i.e. <P <Plixctl = <Pmin' the minimum fixed orientation workspace A[<Pmill] is 

mapped. Next the maximum fixed orientation (<p = <Pl1xetl = <Pm,,) set A [<Prnax ] is mapped. The 

intersection or overlapping area is the dextrous workspace A[<Pmm - <Proax] within which the full dexterity 

requirement (2.29) is met. 
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2.6.4.5 Computed Dextrous Workspace 

As an example of the application of the above methodology, consider the following rotatability 

requirement for the top platform of the planar Stewart platform: 

(j)to assume all values in range [(_10')_(10°)] at any point in A[C-I0") (10°)] 

The minimum fixed orientation workspace A[-lO'] and maximum fixed orientation workspace A[10·] 
are shown in Figure 2.14. The intersection or overlap of these two workspaces gives the dextrous 

workspace A [(-] 0°) - (10' )], indicated by the shaded region, within which the full range rotatability is 

achieved. 

BH/(O 

[0 - -] <p =10" 

[-I-]<p=-I0° 

[0 - -] <p -100 

--- Boundary ofA[100] 


Boundary of A[-IOO] 


Boundary of reachable workspace A 


Figure 2.14 Dextrous accessible output set Ak-lO') - (I 0')]. 

In accordance with the work of Haug et al. [8], the boundaries of the dexterous accessible output sets for 

which (j) achieves the full ranges [(-Y)-(Y)], [(-10')_00')] and [(-IY)-(15')] of rotatability 

are respectively shown in Figure 2.15. These boundaries are plotted together with the boundaries of the 

fixed orientation workspace A[O'] and of the orientationally unrestricted workspace A. 
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Figure 2.15 Dextrous accessible output sets for different full-range rotatability requirements. 

Figure 2.15 correspond exactly to the results obtained by Haug et al. [8], and when analyzed, the results 

confirm the accuracy of the method proposed here. 

The orientationally unrestricted accessible workspace is, as expected, bounded by the exterior boundary 

dA shown in Figure 2.15. For each search direction, the top platform is "displaced" further and further 

away the radiating point nO, as far as the leg length limits allow. It follows that for each point along the 

boundary of the reachable workspace, the orientation of the top platform depends on the extreme lengths 

of the two "active" actuator legs of that search direction. 

As soon as the orientation of the top platform is fixed the maximum displacement from nO is limited by 

the first actuator leg reaching its extreme length. This explains why the fixed orientation workspaces 

A[<PfiX] are smaller than the unrestricted accessible workspace. Forcing the orientation of the top 

platform to remain fixed, prohibits any further rotation of the top platform. With no orientation limits 

imposed, the top platform can be tilted differently for each search direction, allowing for a maximum 

displacement from nO which corresponds to an orientation with more than one actuator leg reaching its 

extreme value. 
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2.7 CONCLUSION 

The optimization approach presented in this chapter successfully determines the workspaces of the 

planar manipulators investigated here. It is evident that this new optimization approach represents a very 

promising general tool for determining and analyzing manipulator workspaces. Computing the 

boundary of the workspace using the optimization approach allows the various sections of the workspace 

boundary, to be related to the behavior of the manipulator. 

A new and concise notation for labeling the different bifurcation points and curves is also introduced 

here. It is believed that this, in general, greatly facilitates the description of the behavior of mechanisms 

within and on the boundary of the associated workspaces. 

The computer code PLANSTEW demonstrates the ability to automate the process to allow the user to 

automatically map both outer boundaries of the accessible output sets and interior curves. The interior 

curves represent configurations at which controllability or mobility of the manipulator may be limited. 

As far as the dextrous workspace is concerned, the approach proposed by Haug et al. [8] can successfully 

account for full range rotatability requirements of closed loop manipulators. However, one of the 

concluding remarks of Haug et at. is: " ...the computations that result in solving the necessary conditions 

of the boundaries of the accessible output sets, however are shown to be tedious even for the planar 

manipulators studied". In contrast, the approach presented here may easily be implemented and 

automated. 

The optimization approach also accounts for the full range rotatability requirements, and because the 

dexterity requirement is simply treated as an additional equality constraint, the dextrous accessible output 

set is easily mapped. 

In the next chapter, the optimization approach, a<; developed here for planar manipulators, is extended to 

apply to a six-legged spatial Stewart platform. 
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