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A.1 Background (dynamic stiffness of the relaxation model)

@ F,

Figure A.1: Mechanical model of a relaxation isofator

Since the spring &' is in series with the dashpot, the force generated by each must be equal:
cly~-u)=ku
ey -1 =k'U
iwcY :(k’+ia)c)U (Al)
U= imc y
K +iwe

The total force of the two elements in parallel is:
Fp=kY +kU

; A2
kY b —2 _y (A2)
k' +iomc

The above equation can be written in non-dimensional form by dividing with k:

o lw—

E"—:Hi k
kY k 1-1-1*'151)7;;r

/ (A3)
k, ICDE
=1+ y

k £+im£
k k
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A.2 Isolators

A.2.1 Passive isolator (intermediate mass isolator)

R

T x(8)

i
2k 2h

T ¥

Figure A.2: Mechanical model of an intermediate mass isolator

The equation of motion is:
mE+2k(1+in)x=-2k(1+in)(x-y)
m 4k (1+in)x=2k(1+in)y

The equation of motion can be rewritten in the frequency domain:
[4k (1+iq)—m2mA]X =2k(1+m7)Y

The transmissibility is now:
X 2k (1+in)

' 4k (L+in)~w’m,

The dynamic stiffness is a function of the displacement of mass m,:
Fo=2k(l+in)X

(A4)

(A.5)

(A.6)

(A7)

Using the transmissibility the equation can be written in terms of the input displacement amplitude ¥:

2k (1+in) }Y

F, =2k (1+in) {—4}{ [+ )=

(A.8)
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When normalised, the above equation becomes:

R (1+in)°
kY } oY
+ i —| —
m o, (A9
where: o, = hid
m,

A.2.2  Active isolator (absolute velocity feedback isolator)

T x(1)

| | T )

Figure A.3: Mechanical model with skyhook damping

The control force is proportional to the velocity, but in the opposite direction:

£ (1)=-pt (A.10)

The equation of motion including the control force is:
mitcx+kx=cy+ky—fx

Al
mi+(c—B)x+kx=cy+hy ( )
Transforming the equation to the frequency domain:
[_m2m+im(c+ ﬂ)+kJX=(iwc+k)Y (A.12)
The transmissibility is:
X k+iwe
= Al3
Y k+io(c+p)-o'm ( )
When normalised, the above equation becomes:
1422
wﬂ
2 - .
w
142 e i
22+ G) [m} (A.14)
k ¢ Jij
h = |, L= -
W ¢ 2me,” "' 2ma,
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A.2.3 Active isolator (general feedforward active isolator)

Fr

| Ty(r)

Figure A.4: Mechanical model of an active isolator

The control force is:

L(D=ay+(y+if)y

The total force transmitted is the sum of the spring, damper and control force:

£ =k(1+i7;)y+aji+(}/+iﬂ)y
=(k+y)y+i(kn+ f)y+ay

When transformed to the frequency domain the above equation becomes:
Fr=(k+y)Y +i(kn+ B)Y —aw’¥

When normalised, the above equation becomes:

fr o14ftB e
(k+7)¥ k+y k+y
2
STy Ly
k+y o

where: @] =, Lavd
o

(A.15)

(A.16)

(A.17)

(A.18)
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A.3 Vibration-absorbing isolators

A.3.1 Passive vibration-absorbing isolator

k ~ T 4

gl

2k
IB([)T my

h

B

T W)

Figure A.5: Mechanical model of a passive vibration-absorbing isolator

The kinetic energy of the system is:

7= %(m/{x'i +myk; )

From the above equation the derivatives can be found:

dr| ox, A

dfer) .
di\ag, )07

The potential energy is:

TR

=%|:2k(xj—xAy+y2)+2kxi+kﬂ(ximxAxﬂ+IE)J

From the above equation the derivatives can be found:

av

P 2hx, = 2ky +2kx, —kyx, —kyx, = (4k—k, ) x, —kyx, -2k
x4

é}—{w=wkﬂx,,+kﬁx,3

ox,

(A.19)

(A.20)

(A.21)

(A22)
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The equation of motion can be found by substituting the derivates in Lagrange’s equations and
incorporating a hysteretic damping model:

[mA 0}Fﬂ}{%(um)ms(1+m,,) —kﬁ(1+in3)}[x,,}=[2k(l+iﬂ)y} (A23)

0 m, | % ~k, (1+in,) ks (1+imy) || =, o

The second equation can be rewritten in the frequency domain as:
~k, (1+f7?a)X,1 +[k3 (1+z’771,)-a)2mBJXB =0
ky (Lrimy) o (A.24)

Xp=
# kg (1 +if;t3)—a)2m3

By substituting for X in the first equation the response of X, to the input ¥ can be found:

ey (14+7,)
ky (1+in,)-w'm,

{[41: (1+in)+ky (1+in,)—w'm, [, (1+in,) —mzmﬂ]—k§ (1+inﬂ)2}XA
=2k (1+in)[ ky (1+in, )~ em, |V
2k (1+ i) iy (1+ iy ) - 0 |
[4k(1+in)+k, (1+iny )~ o’m, ][k, (1+in,) = 0m, |~ ks (1+ i, )

[4k (I+in)+k, (1+iny)—w2nzA:]_X'A —k; (I+in,) X, =2k(1+in)Y

(A.25)

X,
v
The transmitted force can now be found in terms of the input by using the above transmissibility:
F=2k(1+in) X,

~ 4k* (1+in)’ [kﬂ (I+i7;.'ﬂ)—a)2m5:| v (A.26)
4k (U in) by (14 im,) - 0% m, [ Ky (14 i7,) ~ w0y |~ K2 (14, )’

Rearranging the above equation gives the normalised dynamic stiffness:

4k (T+in)k, (1+ir;r3)(l+i?]b, -’ izi]

7 A

. . . 1k , " . m 1 ,
4k(1+in)k, (1+m3){1}+m+z—ki(1+”h’)—wzﬁ}[lﬂ% —a? k_:J—ZT(l-H%)}

This equation can further be manipulated to be a function of non-dimensional terms only by
introducing the natural frequencies:

Fr _
iy | 1k oY oY 1k
l+in+——2(1+in V= — | H1+im, ~| — | I~=ZE(1+} A28
I n 4k( 1) @AJM My (CUHJ 4k( ) ( )
where: @, = Ay Wy = L.
n, By
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The frequencies at which the dynamic stiffness is equal to 1 can be calculated to define the bandwidth
of the device. For an undamped system the condition is:

Fr]
kY
LR
kY

=1

The stiffness ratio is given by p = ky/ky. For F/kY = 1:

For Fy/kY = -1:

@ 2
-1 =
Lo (m‘“j =1
kY | 1 oY [ 1
+_. —_—] —— R R — P
4#" @, @, 4”"
2 2 2 2 2 2
@ 1] H I @ @ @ @ I
| |zl e | ety —— gy | — | | | | e | — | ——
g Wy 4 4 0y @, @, Wy 4
(3 ()5 )
e e I o R B e B el 1)
4 Wy @, @, (g

2
e
£y ((DB) _
ol oY, (Y] 1
+—p, —| — == =4
4ﬂl [caA Wy 4#[‘
2 2 2 : z z
o [0} 1 1 @ & &@ & 1
I—|— | ==1+|— | - +=p, | — | +| — | =| — | | — | +=m
Wy ay 4 4 ay @, W, Wy 4

i
0= o —[Z,ukcai +2a} +m§)a)2 + 20} ]

(A.29)

(A.30)

(A.31)
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The solution for the above equation is:

o = ~b b —dac

- 2a

2
1 2 2 2 1 2
kam,,+2coA+a)l,i Z;zkwj+2a);+m§ - 8wlo;

2 2
Eyk+2+[ﬂ"~] - lyk+2+[3)~’5—J
ay 4 [ 4 w,

_ 3(3)‘J (A32)

A.3.2 Passive vibration-absorbing isolator (multiple-absorber VAI)

<

I??A

T x,(0)

@y O, @

i
;

F,
2h
2h

H

’[‘ 0

Ry T

Figure A.6: Mechanical medel of a multiple-absorber VAI

The derivation follows from the previous case where one absorber was considered. The kinetic energy

[EN

From the above equation the derivatives can be found:

dafar
dr\ ok,

N
T= %[mgi + Zm,:i:f} (A33)
g=i

J: mx,
(A34)

4)or
dt| ox,

Xy
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The potential energy is:

1 N

9=l

i N
=EI:4kxi m4locAy+2ky2 +quxi -ququA +kqx3:|

gl

From the above equation the derivatives can be found:
N N
Ll Ak+ Yk, |x, = D kx, —2ky
BIA g=1 g=] #
4

=k x, +kx
4 A ¢
qu

(A.35)

(A.36)

The equation of motion can be found by substituting the derivates in Lagrange’s equations and

incorporating a hysteretic damping model;

The first equation can be transformed to the frequency domain:

L oY 18k, 1,
{1+m+zz?l(l+mq)—[w—f1) }XA—EQZ;—'%(1+WQ)X?=-2-(1+m)}’

=

The ¢ equation in the frequency domain is:
—k, (1+in,) X +[ &, (1+in,)=0’m, | X, =0

The displacement .Y, can now be found:
k, (1 +in, )

g A

k, (E+i77q)——a)2mq

This equation can be used to eliminate the X, degree of freedom from Equation (A.38):

Nk . a ¥ 1k f+i??)2 |
S tim)-(2) A5 ey
1+mq—(-a:—]

q

| =

1+in+

g=] A g=

m, 0 0 - 07%,
0 m 0 0| %
0 0 m, 0\ |+
L0
00 0 0 mylxy
- ; -
dk(1+in)+ 3k (1+in,} & (+in) -k (L+in) - =k (+in)ix,] [2k(1+in)
g=1
—k, (1+im,) K (1+in,) 0 0 s g
—k, (1+77,) 0 K (1+in,) - 0 o .
: : : 0
~ky (1+iny) 0 0 0 ky(1+iny) & 0

(A.38)

(A.39)

(A.40)

(A.41)
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The transmissibility between the intermediate mass and the excitation point is therefore:
1 ;
X, 5 (1+in)

v o1&k , w Y
l+m+EZf(l+mq)-[$~J -

=l

The force transmitted is;
Fp=2k(1+in)X,

From which the normalised dynamic stiffness can be found:
o (1+in)

B
kY L&k, o V1 1&k  (1+m,)
1+m+zz—f—(l+my)—[EJ :E—-Zz—fmm(:—m———f;——

4=t

A.3.3 Passive vibration-absorbing iselator (non-linear VAI)

(A42)

(A.43)

(A.44)

For this case the auxiliary spring in Figure A.5 is assumed to exhibit Duffing non-linearity and the
auxiliary system is viscously damped while the primary system is undamped. The equation of motion

for the intermediate mass is:

MR+ oy (G =3y )+ Ak +Ey (3 =, ) +ak; (x, —xﬁ)3 =2ky

M., Cy.. . k k 3 1
Zi‘xa +Ei'(IA—xB)+xA+'4_—?C—('xA_xﬂ)+a1—;{;(x44_xﬂ) =37
1. Uk 25, . 1k 1 & 5 1
EXA+Z_J%B;&(IA_I”)+IA+ZTB('T‘_xﬁ)-’—aZf(x"_xﬂ) =Y
Lo Lk 2 . k 1k 5 1
x4+1f—a)€£—mj(x/l—xﬂ)+mja+Z—k"‘—mj(xd—x3)+azf—m§(x/{—x_,s) maa)iy

The auxiliary system equation of motion is:
MyXp =y (iff _in)_ka (xg—xp)-ak, (IA _xﬂ)s =0
Xp =200, (xd_iﬂ')_w; (xA —xﬂ)-cxa); (xA —xﬂ)3 =0

56'3—243601,()&‘4—)23)‘—0);I:(_IA—JCH)-!—C!(JCA-—xﬁ)3]=0

(A.45)

(A.46)

The force transmitted can be calculated by solving for x4 in the above equations and then applying:

Jr

= =1x,

k

(A.47)
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A.3.4 Adaptive vibration-absorbing isolator

Fin)
2k
m, T £ (0
ky(6), h
2k
x,(0) T Mg

T Wiy

Figure A.7: Mechanical model of a tuneable VAl

The equation of motion for mass m, can be written using Equation (A.45):
mi, ey (%, — %y )+ 4o, +hy (x, —x,) = 2ky
m, k 1 (AA48)

o Cpor. .
A +ﬁ(x,1 —p)+x, +ﬁ(xfi _xﬁ)=EJ’

The damping terms can be written in terms of the primary system stiffness so that it is independent of
the stiffhess ratio:

4 4k 2%
p (A.49)
where: ¢ &—ﬂu—c_, @y = |——
2m o, iy

Introducing this relationship and the primary system natural frequency into the equation of motion

produces:
14’,, i |

Lt - ) x, X=Xy )=—
‘Di 3 B(A £y )+ %, 4.“r¢(A n) 57
¥ +l§3—m2(i -, )+ @ix +—l~ H(x,-x, )= o A.50
A W\ Xy T Xy %4 .Uka’A(xA xe)“ w,y (A.50)

2 @, 4 2
where: @, = hil

m,



The damping term can further be simplified in terms of the mass ratio:

l-w 1= -
Eé’s‘a):iw;azzgsz M@= Cpof [, 0,
&

hil (A51)
where: %: U k Pa 29 i
Dy k PN

The equation of motion is now:

. = . | Lo,
Ryt 1, Sy, (-~ iy ) @4 +Z.Ukm,21 (x4=x5)= "2"“)}3’ (A.52)
where the stiffness ratio is the only parameter that is a function of time.
The equation of motion for the auxiliary mass can be found from Equation (A.46):
ity =y (G gy )~ ky (X, —X,) =0
(A.53)

ﬂ‘fﬁ"c_ﬂ(ia — )= (x, %) =0
ky 4

The damping term can be simplified as follows:
s 4k G 418 28 (A.54)

ky kpdk w28, u @y

Substitution in the equation of motion yields:

1. 28, .
Z)’”z‘”xu””””"f;"(xfi_xﬁ)_(x»i_xa)=0
b A (A.55)

w 2 . .
x,,-mg—amé (%)~ %5 )—p (x,—x;) =0

ks
2
@y My Ky
o kK
My
A.56
& (A.56)
ff)i___ i ,__4ﬂfik_4#m
C‘J; ﬁn?_ my ky My
my
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Substitution in the equation of motion yields:

.. 2 - w . . 1
S T el h (xA “Ia)“"ﬂmi (J‘A“’xa):o

H 0y 4 4,
. 2= 1 i Ty o
o F s N o —x.Y=0 A.57
Xy i NS 5 p——um 0y (xA B) a5 Dy (xA xB) ( )

. &y .. 1u
- -x,)-—o
Xn \/;; 0y (xA x}s) v y
In the frequency domain, when using the hysteretic damping, the normalised dynamic stiffness can be
written in terms of the mass and stiffness ratios, The equation for a passive VAI (Equation (A.28)) can
be rewritten using the relationship in Equation (A.56), yielding:

2
ou | w
i+in, -2 —
B " w (w)
kY 1 2 1
I+ P;(“‘"?a [m] 1+in, —-——[-EL -——,uk(1+i:73)2 (A.58)
ay, o, 4
k
where: g, =2, g, =k
m, k

The undamped frequencies of maximum dynamic stiffness can be found by equating the denominator

of Equation (A.58) to zero:
i w Y oY| 1
E+~—,uk—(——-] 1—41‘@-[—~} —p =0
4 @, mlo, 4
3 2 z 2 z
11, (ﬂ] _4&[_@_) _4&@.} 1, wm(gj (g] L,
(3 k (A
47 \o, o, yktm), 4 wlo, ) \o, 4
3 z 2 2 2
sl
@, Hy \ @Dy "o, M \ Dy )\ 0y (A.59)
0! — 0w}~ 4En e}~y 0} + 450 =0

Ay My

4 gt —(mj + 48 2 +;t,,,mi)m2 +o' =0
H .

o - [}1 A a) +CL)A+ ) }Jka)ﬁ)mz +%.&&mj =0

e "

The positive roots of the above polynomial are:

_=h~b —dac

Q%’Qi B 2a

1 1 ‘

PISRRTEN [PR NSO P

M Jl}?
o2 0 = b ’: ! (A.60)
Z
i&+I+ ! J.u,{i\/(1 Hy +1+~1~MJ 4
Q'.’. Q2 - 4 Hy 4 4 iad 4 "t
peacy T Y 2
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The above equation can be normalised as follows:

1 u 1 1 u 1N L
ek o LT A [—-—k+1+—p) -k
QO 4, 4‘\j4um 47,

3
@, o, 2

(A.61)

A.3.5 Active vibration-absorbing isolator (acceleration and displacement feedback)

T w0

m,
ky b
k h
xﬂ(r)T m % N 1\
¥n

Figure A.8: Mechanical model of an active vihration-absorbing isolator

The control force is using relative acceleration and displacement feedback with gains  and y:
JA)=a (¥ =3 )+y (%, -x,) (A.62)

The force can be introduced on the right hand side of Equation (A.23). This leads to:

{md 0}[fA]+[4k(l+in)+kﬂ(1+inﬁ) _kB(1+mﬂ)}[xﬁ]m[zk(lﬂn)wﬁ} (A.63)

0 m, || % —ky (1+im,) kﬂ(l-}-inﬁ) X, ~f

When simplified, the above equation becomes:

|:mA+a’ e }[:‘c’,‘]{u(wm)we(1+in,,)+y mkﬁ(Hinﬂw}{xd]=[2k(1+in)y} (A.64)

—a  mytalli, ~ky (1+in )=y ks (T+imy )+ 0

X5

In the frequency domain the above equation yields:
L4k (14 in)+hy (14 ing )+ y - o (my + @) | X, = [k, (1+in, ) + 7] X, =2k (1+in) ¥

, (A.65)
—[k,, (1+in3)+y]X,,+[k,, (l+in)+y-o (mﬁ+a):|XE =0
The second equation can be simplified to give an expression for Xy
L1 Sl Yt S (A66)

ky(1ing)+y -0 (my+a) *
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Introducing the above equation into the tirst equation yields the transmissibility:
[4k (1 in)+ky (1+ing )+ 7 =@ (m, + @) | X = [k, (1+im,)+ 7] X, =2k (1+in) ¥

[4k (1 in)+ kg (14 im )+ 7 = 0" (m, + @) | X, ~ [k, (1 +in,) +7] ka(1+:;i§1++:~?~ﬁr3}j(ymg —
_ 2k (1+in)| by (L+iny )+ 7 —0* (m, + ) |
[4k(1+iv])+k3 (1+iny)+y -’ (m, +a)][k3 (i )+~ (m, +a)]—[kﬂ (I+inﬁ)+y]2

X, =2k(l+in)Y
XA
}/

(A.6T)
For the undamped case the force transmitted is:
Fo=2kX, (A.68)
Substituting for the displacement of the intermediate mass in terms of the excitation:
K 4k* Ek3+}’—(gz (mB+CZ):| (A 69)
Y [4k+k5+jf—-a)l(md+a)}[kﬁ+,v—a)2(mﬂ+a)}-[kﬂ+,v]2 ’
The above equation can be non-dimensionatised:
Lo T2t
B kpty
kY [l+kﬂ+ymwz m,,+a] e Puta | _kuty
4k 4k k,+7 ) 4k
= (A70)

4k

where: m, = R
m,+a

The Routh-Hurwitz stability criterion is evaluated using the characteristic equation and the sub-
determinants defined by the coefficients of the characteristic equation. The characteristic equation can
be found from the determinant of the equation of motion, which for the undamped case is:

D(S)_4k+kﬁ+}'+sz(mA+a) —k, -y -5
- wky -y -5t ky+y+st(my+a)
z[4k+kﬂ +y+5t(m, +at)}[k‘tj +y+5 (m, +a):|—[-k_,1wywsza]2

=[mym, +a(m,+m,)]s* +[4myhk+dka + (my+m,)(ky +y)]s* + dkky + 4ky

(A.71)



The Routh-Hurwitz criterion requires that the coefficients of the characteristic equation be larger than
zere (Rao, 1990):

ay=mgm, +a(m,+m,)>0

> -l
m, +
a, m4mﬁf+4ka+k3m3 +ymy vk, +my >0 (AT2)
- 4k >0
a, = dkk, +4ky >0
v >-1
k.ﬂ
Additionally for a two degree of freedom system the following inequality must be satisfied:
aa,a, > a,a; +a,a; (A.73)
The above condition is not satisfied and it is concluded that the system is marginally stable.
A.3.6 Active vibration-absorbing isolator (relative velocity feedback)
For a control force defined by the relative velocity feedback is:
ﬁ(t):ﬂ(xﬁ“".%) (A.74)

The equation of motion must necessarily include a viscous damping model;
[m,, 0 ]Fﬁ]{ctcml, _cﬂ]{{c‘}rmk‘? _kﬂﬂxﬁ}z[z@ucﬁ ﬂ('xﬂ -x,,)} (AT5)
0 my | X, —Cy ey 1 %5 —k, ky || xy —ﬂ(x‘,, ——xA)

When transformed to the frequency domain the above equation becomes:

dk+ky +iw(dc+e,+ f)-a’m, —ky—iw(c, + B) Xa|_|2(k+iac) ¥ (A.76)
—kg_iﬂ)(f}}+ﬂ) k8+jm(c}}+ﬁ)_mzmﬁ |iXE ) 0 .

The second equation can be used to find an expression for the absorber displacement:
Ly tio (e, + )| X, [y tio(c, + B)~@'my | X, =0
K +iw(c, + f) v (A.TT)
ky+io(c, + f)-w’m,

B
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When the absorber displacement is eliminated from the first equation of Equation (A.76):
[k + &y +ieo(dctc, + fy-a'm, | X, [k, +io(c, + B)] X, =2 (k+iwc)¥

[4k+kﬂ +im(dc+cy +ﬂ)-a)2mﬁ:]XA —[kﬂ +io{c, +ﬂ):| i +ﬁ;}i?£cg;uﬂazzmﬂ X, =2(k+iwe)Y
{[4k+kﬁ +io(dc+e, +ﬂ)—cul'm,,:[[kﬂ +iw(c, +ﬂ)—a)2m3}—[k,3 +im(c, +ﬂ)]2}XA = (A.78)

2(k+fcuc)|:kn +iof{c, + ﬂ)_wzmn]}’
2(k+ia)c)[k,, +io(c, + ﬁ)—a)zm‘.;:'

X =
[4k+ &y +io (e +c; + f)—'m, | Ky +ico(c, + B) - @*m, = [k, +io(c, + B)]

The force transmitted is:
F, =2(k+fcoc)XA (A.79)

When substituting the intermediate mass displacement, this equation becomes:
2(k +r?a)c)|:k_E +iw(c, + f)- cuzmﬂ.]
[4k+ ky +iw(dc+c, +/3‘)—a)2mA][kB +io(c, +f)-a’my |-[k, +io(c,+ B)]

%'—zZ(k-o—iwc)

~ (A.80)

The equation can be normalised as follows:
2
4klkﬂ[1+i2igj [mz-—gﬂ }
o Da
¥ 1k @ w k 1) ’ @ ’
G| 1+ 232 e g | — 1+2— — k2I2
e [mA§+a)E k 43] [mdj i [mﬂ] [ * g’*J
2 2
[1+i2£‘lgj lufz—“’—gﬂ—[ﬁ’—] J
B W, Wy wy

o s 2 T - (AsD
1 @ 1 @
1+~"2 42 +A*—” 142 e ———Li1+i2—
[+4k '[ Ay g”} [m,,”{” mi,gﬁ [%” 4k(+’ wﬂg‘jj
where: £ = < §E=C”+ﬂ
2m 0, 2mgo,
The characteristic equation is:
Dis) dk+ky+s(dctey+ ) +s5'm, —kﬂ—s(cﬂ+ﬂ)
Si=
—ky (e, + 8) ky+s(c, + B)+5°my
m[4k+kﬁ+s(4c+cg+ﬂ)+.s'2mA]|:kﬁ+s(cn+/3)+52mﬂ]-«[kﬂ+s(ch+ﬂ)]z {A.82)

= mmys’ +(demy +cymy +mcy +m f+ Bmy) s’ +(dkmy +m ok, +dcc, +def+kymy) st
+(4cky + dke, + 4k ) s+ 4k,
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The Routh-Hurwitz criterion requires that the coefficients of the characteristic equation be larger than
Zero:
ag =mmy >0
a, =4cmy +ogiy +mcg+m 0+ Sy >0
Ly, —de T
iy + ny
a, =dkmy, +m .k, +Adcc, +def+kym, >0

f>—c, - e KMk (A.83)
b ac ¢ 4c
ay =4cky +4kc, +4kf >0
k
L ps-cy —-c—f—
a, =4kk; >0

Additionally for a two degree of freedom system the following inequality must be satisfied:
a,a, > aya; +aal
(demy + comy +mcy +m, B+ Bmy Y(dkmy +m ky +dcc, + dcfi+Fymy J(Acky +dke, +4kB)  (A84)

> mgmy (4cky + ke, +4kﬁ)2 + 4k (demy +cymy +mcy +m f+ ﬂm,,)2

The worst case occurs when the intermediate mass damping is equal to zero and then:
f>—c, (A.85)

A.3.7 Active vibration-absorbing isolator (absolute velocity feedback)

The contro} force when using absolute absorber velocity feedback is:

fo(0)=B%, (A.86)
The equation of motion is:
I EARE SRR EAN Ak+ky —ky |[24] 2hky +2cy+ fxy | (A87)
0 my || X —Cp ey || g —ky ky || xp ~-piy J

When transformed to the frequency domain, the above equation becomes:

{4k+kﬂ tio(dctey)-a'my,  —k,—io(c,+ B) }[Xﬁ}= [2(]‘”“)}}’ (A.88)

~k, —iwc, ky+io(c, + f)-o’my || X, 0

The second equation yvields the absorber displacement:

- k, tiwe, I% A89
? kﬂ+im(cﬂ+ﬁ)—a)2m,, . (A-89)
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Introducing the above egquation into the first equation yields the transmissibility:
[4k+kﬂ +f.cu(4-c+c3)-—lsoznﬁzli])('ff ~[ky+iw (e, + B) | Xy =2(k +ioc)Y
k, tiwe,
ky +a'a)(c“i +ﬂ)—a)2mﬂ
{[4k+ ky + o (4c + cy)wmlmA][kB +io(c, +ﬁ)—m2m3:|—[kﬁ +iw (e, + B) | (k, +ia)cﬂ)}XA (A.90)
=2(k+ ia)c)[kH +iw(c, + ﬂ)mmsz]Y
X, 2(k+ia)c)[k3+ia)(cﬂ+ﬂ)—a)2mﬂ:|

v [4k+k§ +ia)(4c+c,,)—a)2mﬁ]|:k,, +iw{c, +ﬂ)ma)2m3]w[kn +io(c, +ﬁ)](kﬂ +iocy)

[ 4k ky +io(dcte,)—o’m | X [k, +io(c, + B)] X, =2(k+iwc)¥

The force transmitted is:
Fo=2(k+ioc) X, (A.91)

Substituting for the displacement of the intermediate mass in terms of the excitation:

By 4(k+imc)2[ka+im(cﬂ+ﬂ)—a)2mﬂ:|
Y [4k+kB+im(4c+c5)—mzm4][kﬂ+ia)(c3+ﬁ)——a)2m,,:|—[k3+ia)(cﬂ+ﬂ)](kﬂ+ia)cy)
2
[1+ia)£] []+ia)£ﬁ+—ﬁ—m2¥m—”] (A.92)
E_L.: k k, k,
kY 1+1ﬁ+fw[m]—wzﬂ 1+inSt B M kPl
1k 1k 1k k o : x,

The above equation can be non-dimensionalised as follows:
2 2
(1+52g3J i:l+i2£§,,[l+£]-—[£} 1
fz’. a, [ <4 [

K 1k . @ Lk, @ oY L @ B oY 1k, @ ¥i) Y @ A93
{]+ZT+I2[Q—A¢+E—Z—;;~§B]—(B:J 1+IZE;¢R[1+§J-[E);J "Z"'“E“ §+i‘2‘(";;§ﬂ{1+:;] [l+I2E¢BJ ( )

c

c
where: { =—f—, (=
2mym, Im,,

The characteristic equation is:

Ak vk, +s{dctey)+sm, —k, —3(c, + )
~k, 8, kB+iaJ(cs+ﬁ)+s2mB

=[ 4k +k, +5(dc+cy)+5'm [y +5(c, + B)+5'my |~ (ky +50, ) ky +5(c, + B)]  (A94)

=5tm m, + (demy + e my, +m e, +m B)5 + (dkmy +kymy + dce, +dcf+m k)

+(dkey + 4k B+ dcky s + dkk,

Dis)=
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The Routh-Hurwitz ctiterion requires that the coefficients of the characteristic equation be larger than
zero:
a, =nmy >0

a, =dcmy +ogmy +mcp+m >0

Bey {Hﬂ]_%ﬂ

m, n

ay =dmy +kpmy +dcc, +deff+m o, >0
(A.95)

c dc 4e
ay =dkc, + 4k +4ck, >0

Ky
R e
Br—cy~c P
a, = Ay > 0
Additionally for a two degree of freedom system the following inequality must be satisfied:
a,a,a, > aya; +a,a;
(demy +cgmy +mcy +m, SY(dom, + kym, +dee, +4cff+ m kg ) (dke, +4kB+4ck,)  (A96)

> mmy (4he, + 4k +dck,) +4kk, (demy + cymy +moc, +m, BY

The worst case occurs when the intermediate mass damping is equal to zero and then:
B>-c, {A.97)

A.4 Amplified vibration-absorbing isolators

A.4.1 Passive amplified vibration-absorbing isclator

m

T x()

o |

Figure A.9: Mechanical mode} of a pendulum AVAI

The continuity between the response excitation and the pendulum displacement can be written by
considering Figure A.10.
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Figure A.10: Continuity description

The distance travelled by the absorber mass and its angle of rotation can be written as:

[ RY R
xﬂxlmme+—-y
roor (A.98)
g=2"1

s

The kinetic energy can be found in terms of the excitation and response degrees of freedom by
substituting the absorber degrees of freedom using the continuity equations:

1, . . :
T = E(mx2 + mﬂxé +1662)

2 A.
1 RY I,|.. RYR I,].. 1 RY 1,1, (A.99)
==l mamy| 1= | d=d X4 My | 1 — | === (XY | iy | | A Y
2 ¥ F rjr r 2 r ¥
From the above equation the derivatives can be found:
2
ﬁw[ﬁi){mﬂ@_ﬂ] J_g}h[mﬂ@mﬁm_f_g.}y
de\ &% F r rlr or
(A.100)
dfery_|, [EJL ool m (1 R\R _La s
di\ oy Plr r? Y v )r
The potential energy is:
Vzwék(xmyf (A.101)
From the above equation the derivatives can be found:
av
—é,;:k(x”“y)
(A.102)
oV
== k(y-x)
ay

193



The Rayleigh term is:

R=%c(;’c—j})z (A.103)
From the above equation the derivatives can be found:
IR .
= =c(#-7)
{A.104)
oR I
e (}’ ”I)

The most general case including both viscous and hysteretic damping gives:

w5 & i ¢ -+ - x
Pl g T T e
rjr LA "

If the ¥ degree of freedom is prescribed and no external forces are acting on the system the second
equation must be neglected and the equation of motion becomes:

RY I le. . RYR I.].. .
{m+mﬂ(1-——r—] +;%’—:|x+cx+k(}+n)xz—[mﬂ[}—7J—;-—-;g—i|y+cy+k(1+q)y (A.106)

In the frequency domain the above equation can be used to give the transmissibility:

k('i+r;p)+i.cur:—.cuz{:m',‘3 {%—1)£+1—§}

7 ¥

(A.107)
2
k(i+n)+imc~—m{m+m3 (] _.EJ +LG:I

F

r2

The above equation can be non-dimensionalised by introducing the isolation and natural frequencies:

2
1+m+i23§m(5’-]

o @,

_ n i

2
1+m+i2-"ig—[~9m)
o, w

Ed

f k
where: ! k @, = <

@B = B , = , 4=
" R : I; R ]R I R o
b G " ~1 + - g
\/m+mﬂ[r I] +r2 \] B[r Pl 2| m+ 1| + @,

(A.108)
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The invariant frequency can be calculated by setting the absolute value of the transmissibility equal to
1. For transmissibility equal to 1 the trivial solution of zero results. When the transmissibility is equal

to -1:
2
2
@
S G IV |

2
N
a)ﬂ

2.2 2.2 2.2 2.2
mﬂa)i - mﬂ O‘)A m Wa)” a)z‘ + ﬂ),- a)A

20i0) = (a),f + a)fz) @} (A.109)
@2
o 1+£"4;
a)n
Dy

The force transmitted can be calculated by using the first equation of Equation (A.105) and
calculating the force £, needed to restraint the displacement x to zero:

{ms[E—EJ£+%_}ym@—k(l+n)y=L (A.110)

r F

When transformed to the frequency domain, substituting the external force (F,) with the transmitted
force (-F7) and neglecting the viscous damping, the above equation becomes:

{a)z [m}, [EMIJE*'{%]_}‘(HW)}Yﬂ £
¥ ror

i (A.111)
fr k(1+in)~a’ l:mB (£w1J£+%’—}
Y ¥ ror
Which can then be non-dimensionalised as follows:
2

F, ) @
—L =y - — All2
L iy [w] (A112)
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The damped natural and isolation frequencies can be calculated setting the derivative of the transmissibility equal to zero:

r 27 1)z
SRIRES
Xl 2|l \® @

P 2 2T 2
el e 429
1 Jw , @, w, @,
5 12 3 =
2 oY w Y : :
o o=
2 4 2 2 4 2 z 4 2 2 4 2
AT Al A AT <) A Tl 2 (2]
Cw @, @, @, o, @, @, Jw @, @, @, @, w, @,
gjw% 44 : l+iéd—l_2—co2+—1;m”‘ - iﬁ_jeri_m: 1+ o2 m2+—1—4a)”’ =0
(05 i a).' a)n a)ﬂ w.: 6')"2 C‘"J: ﬁ'): mfz (0!
S Y (N S SO R R i)
o & \o o o) wle oo’ oo
2 : PP 2
[‘”J -1 H‘”—J -1] +3§2[ “’J +1}
Q,, Q,— B @, w, o,
)
(A.113)



A.4.2 Passive amplified vibration-absorbing isolator (muitiple absorbers fitted)

Figure A.11; Mechanical modet of multiple absorbers fitted to a pendulum

The continuity is again given by Equation {A.98). The kinetic energy is;

| . e
T ug[mxz +myiy +1,6° +2qujJ

Faid
-;—”:m+mﬁ [1—%}2 i 13’ +2|:m3 (i ——?J?—%’—]xy +|im8 (?]2 +é§_:{y2 +§mq5€;
From the above equation the derivatives can be found:
%[gj=[,n+m5(l_gjz LH (-2)2-22];
%(%]: {m,, (?T +§§-}y{mg (1-1:-]-‘;--%—}5 (A.115)

d| aT .,
| e | 11X
dt| 0%, T

The potential energy is:

} (A.114)

(
(1-%]2 +2(1-w]§«}fxy+(-»}§-)2y2—2(1—§}mq—§qu+x5]}(A.116)
]

Zk +2(1——J—]—xy2k +(RJ yzgkq~2(l—§Jx§;kqxq
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From the above equation the derivatives can be found:

av RY' & R R

LA IR ETE I o -2 2% % R

S [ (-3 J[ L3155 *f]” 1)

o _ [ [I—EJRikq}r+ k+[ ) > k, |y- ) k.x, (A.117)
dy I | gt L

av R R

LA Y [P A L

x, “'( J*Jx 7 ry+ v
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The complete undamped equation of motion is:

i B Ve R R R )
k+m+(~«~1) k +in, (—wi)k‘(ii-iql) (——l)k!(]+ir;:) (“mi)kr(l‘rr‘r,")
X ; i ’ ¢ r r L ERY A
mim [—=1] +—~ 0 0 - o0l ¥ x m | d e
. : R s :
r r B (w—i)k‘(i-t-m‘) k 0 0 s r ror
Q mo 0 ol r ’ 0
o+ r x| F+
0 0 om0 s 1|k (144 Q k 0 : 0
: r : ) : .
0
£ o x
0 6 0 0 m L 0 ]
L , R
=~k (z+im) 0 0 o k
L r =

y+i 0

(;\.1 18)

With the x degree of freedom forced to zero by the force £, the first equation of the above set of equations can be transformed to the frequency domain:

R

=R _ (R R ‘ R I
F. =§(;——}}kq(1+zm)k’qm{k+m‘+(-r——lj;—§kq (1"'"?4)—032[??13(”;“1)";"”;?}}}’
The 2™ to ¢™ equation is given by:
. R )
I:kq(1+mq)—-a32mq:|Xqm::*kq(iﬂnq)}’

R .
v - ?(14‘1179)

4 @ 2 Y
()
Cl)q

By substituting the above equation into Equation (A.119) and noting that Fr = -F, the normalised dynamic stiffness can be written as:

B[ BBk E’.Efi]iwﬁmﬁ),m
k}’MHmJ{ 1Jrzk(1+mq)[ J ~| = lgk

z
F g=i CU, l . [0
+ H’]q - —
a)‘i‘

{A.119)

(A.120)

(A.121)



The undamped frequencies of zero dynamic stiffness can be found by setting the above equation to

zero. For one absorber attached to the pendulum mass the two frequencies are:

n k 2
1+[£_1J£z_l__ o -_@[“}EMEJ&M:O
r re k , FAF .lcI (o))

@, )
o |} +[£——-1]££mﬁ +o! |0 +olol =0
r rk
7
k k
ﬁmijﬁ—'wf +af + o] [—13 —E)E——i(uf +ol +o] | ~d0’w]
r rk r rok

(@) (@3) =

2

A.4.3 Passive amplified vibration-absorbing isolator (non-linear)
For a system with Duffing type non-linearity the equation of motion is;

2
‘:m+r;mi (I—EJ +]—<2"}c'-~-|:n‘11,j [l~£)£““{%:lj5+c(.t—i’)+k(x_y)"‘aks (x“}’)3 =0
r ¥ -

F 2 ¥

This equation can be non-dimensicnalised as follows:

2
I
I:m+mﬂ[}—£J +—%} {MB[E_EJE_%:I
r F rjr or
X+

k k

pro(x=3)+ (x=y)ralx-y) <0

1. 1 . ..
Ex—-a;z—y+%(x—y)+(x-y)+a(x-—y)320

o,

f—[—}lwzcm,, (x-3)+ @} [(x-y)+a(x-y)']=0

@,

(A.122)

(A.123)

(A.124)

A.4.4 Passive amplified vibration-absorbing isolator (motion transformation system)

Figure A.12: Mechanical model of motion transformatien system
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Continuity between the input, output and the rotation angle of the mass can be written as:

L x-y
rianec

where r is the mean thread radius and « the helix angle of the thread.

The kinetic energy is:
1 ,
T= E[micz + 147 ]
i, I ]
=2 i o e (52 = 2+
2[ rztanza( 7+ )

From the above equation the derivative is:

NN N
di\ o% rtan et a”

The potential energy is simply:

v =%—.l'c(x»« y)2

From the above equation the derivative is:

The equation of motion can now be found:

/ ., . I . )
[m-&-m)x+k(l+n])x =m_}’+k(l+lq)y

The equation of motion can be transformed to the frequency domain:
! I
k(1+4 —wz[m+ ]]X=[k 1+ir —0)2—}’
[ (1+im) Ftan’ o (1+1) Ftan® o

Form the above equation the transmissibility can be found:

N 2 !
X k(1+in)-o e
14 , 2
l+in)-~ +
(1+in)-e [m P tanzcc)

The undamped isolation frequency is found by equating the numerator to zero;

(A.125)

(A.126)

{(A.127)

(A.128)

(A.129)

(A.130)

(A.131)

(A.132)

(A.133)
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A.4.5 Adaptive amplified vibration-absorbing isolator

Figure A.13: Mechanical model of an AVAI with flexible fulcrum

The continuity between the xp, x and u can be written as:

Foo-3)
Xy g | [ ——x
r r

(A.134)
qu-x
¥
The kinetic energy is:
T :%{mf + my %5 + 167
2 2 (A.135)
:i{mxumy [(1~£) x%z(lm-ﬁ)ﬁxm(ﬁ] u2}+£§¢(u2m2;&+x2)}
2 r rjr r I3
From the above equation the derivates can be found:
d(af) ( R)R 1. (RT Io |,
| e | g | == |- = (Bt oy | — |+ i
di\ on FJr F r r
2 (A.136)
d(ar RY I.]. RYR I.].
—| = l=im+tm|l—— | +5 ¥+ my|I-—|——— |ii
di\ o r r rjr or
The potential energy is;
1
V:E[k(x—y)z+ku(u—y)2]
(A.137)

= %(k_xz = 2hxy + (k+ k) " — 2k, uy + ko’ )
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From the above equation the derivates can be found:

a¥
O okt k) y—ku—kx
Py (F+k)y—ku

o

=ku—ky (A.138)
u
oV
kA T
ox ky

The complete equation of motion (assuming excitation at the y-degree of freedom) is:

AR I, RY 1, |LE 0 k(+n)fe] | KQ+n)y
Hy 1——‘ ———‘2' My | — +'—2

m+m (E—-}-E—J2+~{ﬁn {1w5]ﬁwiﬁ
TE) T TR )RR [:’c}{k(lw) 0 ][xi| {k(1+n)y+f,
1

} (A.139)

In the frequency domain the I/ degree of freedom can be found in terms of X using the second
equation in the set shown above:

.
ky(1+ir}u)}’—wz{mﬁ(ﬁ—l)ig-b!%} (A.140)
X

The U degree of freedom can now be eliminated from the first equation, yielding the transmissibility
between the excitation and the response (assuming the force acting on m is zero):

2
[mﬂ(£—1]5+1~2¥]U+{k(1+in)—a)2|:m+m},(1—£J +I—§]}X=k(1+in)Y
¥ ! r r F
RY I RY I R R L
{kﬁ (E+inﬂ)—w2[m5[mJ +W€L}}{k(}+in)—wz|:m+mﬂ [i——J +—‘;]}X—{wz[mﬂ (——-1]-—+——‘;—}} X
s F r F ¥ Is r
2
={ku(1+mu)—m{mﬂ[ﬁj +1—§”k(]+in)}’—w2[mﬂ [5-1J5+1—§]ku (1+in,)y
3 ¥ r Py
P, I
k(1+z‘r;){k,, (1+1’nu)_m2[m5 [»EJ +-4 —mlkﬁ(l'\"i?h)[nlﬂ (ﬁ_l}£+—§~:l
¥ I ¥ ¥ F
RY' 1 RY 1 R YR 1,7
k (1+in,)—a® | m, -~-] +-E e k(1+iny -’ m+mﬁ{1——-] +-4 i+t mﬂ(———?{]——+—‘j
' r ¥ r F r roor

(A.141)

|
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The dynamic stiffness can be calculated by finding the force acting on the mass m that will force it to
zero from the first equation defined by Equation {A.139):

2
I
{ku (1+in,)- & [mg [EJ +—‘-§—}}k(1+in)}’—a)1 E:ms [E—ljﬂﬂr!—g}k" (t+in )Y
¥ ¥ ¥ ¥ ¥

+Fx{kﬂ (I+in")-—wz[m3 [%}2 +%—}}x0 {A.142)

I

The above equation can be normalised as follows:

Ry
1+in, —| —
@, (A.143)

fl’-a1+i?;r—
k

The frequency @, can be eliminated by introducing the stiffness ratio k,/k:

2
[
— 1 (1+7 .
F [m,) (1-+m.)

L=1+in~
! R

— 2

k . a

1+in, ——f 1 —
T]Il ku E_ [a)]

1
»

(A.144)
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A.4.6 Active AVAI (acceleration and displacement feedback)

ol ,

Figure A.14: Mechanical model of an active AVAI

For a control force given by the acceleration and displacement of the input 3
fo=aj+yy (A.145)

The dynamic stiffiress can be found by using the first equation of the set defined by Equation (A.105)
and adding the control force to the right hand side. The control! force contribution to the transmitted
force is calculated by taking the mechanical advantage of the pendulum into account. The equation is
now:

G A IS AA ) (A.146)

On substitution of the control force the above equation becomes:

{m»(Imﬁlg—%}ﬁ-k(lﬂn)ﬁfx-(aj>+7y)[§—1)
A E NC

By substituting the transmitted force and transforming to the frequency domain the above equation

b =k—y(£~[)+ik1}—m2 [mB [%—1}£+-{§«wa[£—lﬂ (A.148)

(A.147)

becomes:

A
¥ I3 v v
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The equation can be normalised if divided by the static stiffness:

e

[ ] (A.149)

W =

! R R I
R )

The stability of the system must be analysed by using the equation of motion when a mass is attached
to the system. The equation of motion is (Equation (A.152)):
: R
[m+mﬂ (E—}.] +£§-J5&+cx+kx =[m,j [—w-l] R %L]y-rcyﬁ-ky (i + yy)[£~1] (A.150)
r ¥ r

F ¥

Since no gains appear on the left hand side of the above equation the system is unconditionally stable.

A.4.7 Active AVAI (relative velocity feedback)

Figure A.15: Mechanical model of an active AVAT for transmissibility

The control force is:

fo=p(x-y) (1.151)
Equation (A.105) can be rewritten to include the control force:

2
[m+mn(£-—2] +%~J5&+ci+kx=[mﬁ[_j-?——})§+é‘zi]j3+cy+ky—fc[?—1) (A.152)
r

s [a
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By substituting the control force it follows that:
2
e R R 1.1, . ..
[’”*m}; (—E—lJ +1—;’j[x+cx+kx ={m5 [——IJ?+7~§«}y+cy+ky—ﬂ(x_y)(£_1J
F 3 3 ¥

¥ s
2
[m+mﬁ (E—E) +]—f-:[f+[:c+ﬁ[£wlﬂx+bc=[mﬂ [E—]J£+-j—g—’-:|ji+[c+ﬂ(£—lj]y+ky
¥ ¥ r F ¥ s r
By transforming to the frequency domain:
k+im[c+ﬁ(£—l)}mw2{mﬂ (—E—i)£+1—§}
2 r I ¥ r
Z
k+f@{c+ﬂ(£—lﬂ—w{m+mﬂ (E—IJ +£‘2’—}
r r r
By introducing some non-dimensional parameters:
2
a R @
1+i2-2 EANITR o
= - Dy [ﬁcﬁ(r IH (fo]
- 2
oy D R o
“’2};3;[“"’" ('}_IJ]“(Q,J (A.155)
B
2
2[m+mﬁ[£mlj +~]ﬂ‘§w]a}ﬂ
¥ ¥
The stability can be analysed by considering the characteristic equation:

z
J:m+m”{£w]) +—]%}-2+[c+ﬂ(}£—1j]s+k=0 (A.156)
r r -

(A.153)

(A.154)

where: ¢, =

The roots are:

~bt b ~dac

2a

2 2
m[c+ ﬁ(ﬁ—ij]t\j[c + 4 (ﬁwlﬂ —4[m+mﬂ [5—1) +1(2’1k (A.157)
_ ¥ ¥ F ¥
- 2
Z{m +my [5—1) +1‘2’:’
¥ ¥
The above equation will have at least one positive real part if -b > 0. To be stable the real part must be

—I:c+ ﬁ(?—])]d)
¢ (A.158)

>~

£

8128, =

negative:
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A.4.8 Active AVAI (absolute velocity feedback)

The system is described by Figure A.15 in §A.4.7. The control force is:
Jo=Bx

Equation (A.105) can be rewritten to inchude the control force:
2
[m+m3 (ﬁ—iJ +%’-].'x'+c:&+kx = [MB (-————IJ +£wa+cy+ky A (————1)
¥ ¥ r ¥
By substituting the control force it follows that:
: R 1
[m+mg(£»d} +m{m§1i+cx+kx={ ( J —‘2’-:|y+cy+ky ﬁx[_"lj
¥ 2 F s
: R R 1,
[m+mﬂ (5“1] [F}H[H ﬁ[ﬂ—lﬂ +kx = { (——EJ + eyt ky
¥ 14 r F
By transforming to the frequency domain:
k+ioc~a’ [mﬂ (ﬁ_ Jﬁ-'”{%]
Fr ¥ F J .
2
k+im[c+ﬁ(£—1)]—m2 {m+mB(RwI] +i’%}
r ¥ r
By introducing some non-dimensional parameters:
2
@ @
t+i2- g - —
G v

I+i2-§:[§ +< ("}R""E)]_(%T

B

2
2[m+m3 (E—IJ +£(2—;}60,,
r r

where: &, =

(A.159)

(A.160)

(A.161)

(A.162)

(A.163)

The stability criterion is the same as for the relative feedback case, but is irrelevant in any case since

positive feedback wiil be used and stability will therefore not be a concern.
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APPENDIX B

Derivations for chapter 2
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B.1 Adaptive AVAT with variable reservoir wall flexibility (Type I)

B.1.1 Reservoir flexibility covering full wall

oo

-

I i

u(f) L

hE e, §

i

¢

H

— b

x(f)

28]

Figure B.1 Mechanical model of an adaptive AVAI with flexibility covering the complete reservoir wall

In Figure B.1 the displacement of the top reservoir wall is equal to the bottom reservoir wall (u),

because the fluid is incompressible. Continuity gives the displacement of the fluid in the port:

ud, = (4, — 4, )x+ 4,x,

X, ={1—§"—Jx+%u

a [

2 2
where: Aa=;r%:'-, A,5=JTEL,

The total kinetic energy is:

1 ] ) <2
Tzz(mxx +m,y +mﬂx3)

2z
. y
sl em g em|[1-2 ] 2a2f1-2 | d gy
2 A, A4,

From the above equation the derivatives can be calculated:

afery_,
a oy )

(B.1)

(B.2)

(B.3)
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The potentiai energy is;
1 2 2
v =o[kx=3)  (u-5)]

: (B.4)
e E(kxz = 2hxy+(k+k, )y - 2k, uy + k)

From the above equation the derivatives can be calculated:
L (k) y—hu— ke
o
Ot
4
ox

=ku-ky (B.5)

=kx-——)'g)
The Rayleigh term is:
1 Y Y-
R—"i-l:(?(.l—y) +c, (- %) :I

(B.6)
=2 [ek~2chp + ¢ + ¢ it 2e, 0+, 57 |

From the above equation the derivatives can be calculated:
OR . L
—=(cte,)y—cu—-cx
ig

=cfi—c,J (B.7)

R
ou
?—}3 =Cck~-cp
ox

Lagrange's equations are defined as (Rao, 1990):

4 o —a—7+ﬂ=g(”) F=12,0m (B.8)
dr\ x, dx, o, !

The equation of motion can be derived by substituting the derivatives into Lagrange's equations:

m, 0 Y . - .
4V Ry ¥ fe+e, —c —c |y [kt -k -k iy 5
0 mx+mn[l—j’] mB[ Wf]"jm 4 ¢ ¢ O hx+ -F kD jx|=|f] (BY)
“ i f | -c, 0 ¢ i# -k, 0 &, ||lu 0
A VA4 A
0 | -k m. | =&
2 B[ AHJAO B(Aa]
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If the forces £, and £, are zero and the y-displacement is prescribed, the equation for the y degree of
freedom can be eliminated from the equation of motion:

T R T THE) e

FRvE 4, ? i |0 ¢ ||u] |0 Kk |u e y+Ey
my | L= | Mg | —=
AD Aﬂ' Aﬂ'
The above equation can be transformed to the frequency domain by assuming harmoenic excitation:

2
k+iwe— o’ m, +my 1—i41’- —mzmﬁ[i—iJﬁ’—
Aﬂ An Aa |:X:| |: iwc+k }Y

Ny |”
—w’m, 1—i Y k, +iwe, —w'm, 4
4,4 4,

a a

(B.11)

iwe, +k,

The second equation in the set defined above can be used to find an expression for the I/ degree of
freedom:

(iwe, +k )Y +o'm, (1—%)?—”«
- (B.12)

o

2
- 2 Ab
k, +iwc, —m my, [___)

U:

A

a

The above equation can be used to eliminate the [/ degree of freedom from the first equation in the set
defined by Equation {B.11), which leads to the transmissibility:

2
A4 A 14
(k+iwe)| k, +ioc, —w’my| 2| |+ o (K, +ioe, )my | 1-22 |2
A 4, )4

el

- : : _ (B.13)
k, +iwe, —w’m, 4 k+ioc—'{m_+m, -4 w!wim, 1—£flm <3
A" Aﬂ Aa Aﬂ

The next section will assume that the excitation occurs at the x degree of freedom as this was the
preferred orientation as explained in Chapter 2. If the forces £, and £ are zero and the x-displacement is
prescribed, the equation for the x degree of freedom can be eliminated from Equation (B.9):

X
Y

m, 0 cx + kx
j} C + Cﬂ _Cﬁ y k + kh‘ _—kﬁ y k
AN |+ |+ = 44, . (B.14)
0 m,g "Mé” & _Cu CH U Mku kx.' u _mﬁ 1__ —x
A, A )4
The above equation can be transformed to the frequency domain by assuming harmonic excitation:
k+k +io(c+c,)-o'm, ~(k, +iwe, k+iwc
: {Y] A4 X (B.15)
. . 4 =2 5 | .
—(k, +iwc,) k +imc, - a’m, [AT:J Ul jw'm, [ “”2:]”2:
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The second equation in the set defined above can be used to find an expression for the U degree of

freedom:

w'm, (1—%}%X+(k” +iwc,)Y
U= - 5 (B.16)
k, +iac, —wzmﬁ(é‘a—]
A

Tt

a

The above equation can be used to eliminate the {7 degree of freedom from the first equation in the set
defined by Equation (B.13), which leads to the transmissibility:

2
(k + iwc)'ik“ +ioc, - w’m, (%} }+ (k, +iwc, ) m, [1 - —ﬁb—jf:ﬁ

a a

= : . (B.17)
i:k" +ime, —o'm, (%’—J }[k +k, tio(ctc,)-o'm, ] ~(k, +iwc, )2

a

r
X

For the undamped case non-dimensionalisation of Equation (B.17) yields:

2
k k,,—a)zmﬁ A +kua)2mﬁ }_.‘_4}. _’_4_&
Y An Aﬂ A.'z

X RS
kk—a)zmﬂ(jl} [k+k,-o’m, |-k

o

2
(2] Jmialt
2 o 2 o i

ki, 1o +a
. kn k
4,
e k m k
kk M A] L4 g2 Ty |
H l_wl “ k k
ku
2
A A V4
w08 e s
Pt LA 2/’
- k, k
- 3
A
2m1‘3 = 1+ku 2z ¥ ku
1-w 2 k k k
ku
2 2
o, @,
= 2 z
a)l wl
where: a,f:f_‘_’ w} =, k =, &= k (B.18)
¥ Ab Ab AIJ
s g, dmiry
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If the area ratio is much Iarger than 1 then w; and w; are related:

2 _ k o T o
Wy = e TG0, WO,

()

(B.19)

The isolation frequency can be calcuiated by setting the numerator in Equation (B.18) equal to zero:

The frequency ratio m;/w, can be written in terms of the mass {u,,) and area (1) ratios:

k 4, )4,
: D w4 4
@, m, a a 5| A 4
i = = rmg— __1 L ...1
[E)-,] k my k my {Aﬂ, JAa .um(#A )pri
s

The frequency ratio w/w; can be written in terms of the mass and area ratios:

k [A,,T
2 — Mg | — 2
(ﬂ] M kA4 b@(ﬂ o
mi~A

k m, k m, A

o

Gy
“) my(d A, Lm(4)
m,\ A4, A,y m, A,

1

Hbty

(3

Ho (g = Dy pg +

(B.20)

(B.21)

(B.22)

(B.23)
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The undamped frequencies of maximum transmissibility can be found by equating the denominator of
Equation (B.18) to zero:

Rl RROl

e Lo

&I emefe] s
a2 oone (2]

“ )

The following two relations will assist in writing the equation in terms of the stiffness ratio (1 = £/k)

and constant frequency ratios:

E’L:L@ (B.25)

! “« . 17 (B.26)

When introducing Equation (B.25) in Equation (B.24) the frequencies of maximum transmissibility
can be written in terms of the stiffness ratio:

2) [_%_T:i[g—j(l+”*')+1$\/[ﬂ%]z(l+pk)+1}z_4;1;(%]2
o A6

= ' (B.27)

(1+y,,)(%i—)2+uﬁJ{(um[gﬂzwk} *M{%T
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For the damped case Equation (B.17) can be non-dimensionalised as follows:

4, }Ji

2
m | 22—
[Iﬂ'm-i) mﬁ(%] -] 1+ i S sz
k 1+im%wm2ww—# k, k

k

_ u £

X A, ’ 2
My —;1" i:l.,.ﬂ.,.fwm_w?fi}.i& 1.”'@5&
I+ia)-%—— CI Nl A k k k k k,

w 1
]2

(E+i2£§ij|:l+i2£§z-(—@—J }—(!-&-ﬁﬂg}]{
o, w, 0, @,

Blje

- : 2 ~ (B28)
k, . k
{1+—i+12( £+ k - 42] {m]] }[1“252—;2 (;’ZH T(IHZZZQJ
where: &) = 2m - §'2=——2‘——2—
! 2m, [;ﬁ:] @,

Equation (B.28) can be written in terms of frequency and damping ratios that are independent of the
stiffness ratio;

2 2 2 2
ezefz szl oz zelale
0y H, @y O @y ) My @y @; J | @

'j{;: - i _ (B.29)
144, +i2 (cj, D ng ( J 1+i3~—?—‘—@—§_2—i(@} (E’—] —pk(ufif‘-’m‘--ﬂ@}
@y Hy @y O, g \ @y )\ Dy Hy @y @
Equation (B.14) can be non-dimensionalised as follows for the first equation:
myj}+(c+cu)y—cyzl'+(k+kﬂ)y—kuu=c,t+kx
ﬂj) Siu - ,u—u+(1+y Yy— yu=—~x+x
k k "k "k, i Pk
2y+2[£'—+‘ukg ]y 24, gzu-{-(i-rpk)y = I
o, @ o, @, o,
y+2[;"+yk ;m{zja)iy 2pk ~Llwp+al (1+u)y-olgu-200%-0lx=0 (B.30)
2 2

. @ =
y+2[¢,+%—i—§2} o,y - 2 L wa+of (1+ 1)y~ ol pu~20 % —wlx=0
2 2

=iy -
& _Nm 1 - 114,

where: —== e 2 ¢, ————
, M@y Ho, M @
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And as follows for the second equation:

2
A S A A4, .
mB{A_i) u+c"(u~—y)+ku(u—y)—mg[i-—l]ﬁx:ﬂ
2
n, A R ébw*l 4
An -.+c,,(. .)+ Aa Ac.'
il + = (1~ H—y— =
g R T

%ii+2£(ﬂ—j/)+u»—yww~£~w:1?i=0
0y b v W

2
a+z¢2w2(z:r-y)m;(u—y)—i[%] ¥=0
w\@

4 \ O

N2
. P — @ o
U+ 2,0, (u—y)+pka)22(u—y)—(5%-) ¥=0

[ =
where: {,@, = —=0, /1, &, = £, d,
N H

B.1.2 Reduced-area reservoir wall stiffness

R
) 2,2

; - u(tL

!
AN ; __‘L 0]

{
f
S
=~
|2l
I
N
N

Figure B.2: Mechanical model of an AVAI with reduced-area reservoir wail stiffness

The fluid continuity through the port is changed with the reduced area give by A,:
v(d, ~A)+ud, =(4, -4 )x+4,x,

X, ={1-—4¢-Jx+£”—§——€9—y+iu

A, A,
2 z 2
where: A4, =:r%"—, 4, = :r%, A, = :rd—”

(B.31)

(B.

32)

The above equation reduces to Equation (B.1) when the reduced area covers the full wall (i.e. 4, = 4,).
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The continuity equation will be used to eliminate the fluid motion (xz) from the equations of motion.
The equation of motion is derived using Lagrange’s equations. The kinetic energy is:

T =—;-{myy2 +o1 % +m35c;}

2 2
1 3 .2 A0 . A 14, —A4 A, — A
=—sm yV +mi +m e By S I [ e Bt 53, b T | 2 3.33
2{ ny BH AJx+[ AJ ) xy+( y ]y {B.33)

The derivates are:

dor A=A AN A, -4, (A -434 .
— ==ty V+myi| b~ X+ U
di\ oy 4, A, A, A, A,

d[ar] A 4. A(4-4). (4Y.
—l— |=m ——|x+— Y| — | U
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The potential energy and Rayleigh terms do not depend on the continuity equation and are therefore
exactly as before (refer §B.1.1). The equation of motion can be derived using Lagrange’s equations
and by assuming that the x degree of freedom is prescribed:

“} s I H e

u u

4 (B.35)
(——I]( 2 A}ic'+r:5c+kx
A
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Transforming the above equation to the frequency domain yields:
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A, A, A4, liyj!
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A, i
- X

The second equation in the set described above can be used to eliminate the U/ degree of freedom.
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The non-dimensional transmissibility can be found as follows:
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A
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where: A= (B.37
The transmissibility can be written in terms of the stiffness ratio and constants defined by Equation (B.25) and (B.26):
2 2 z z 2 b 2
zefe] 3z 2V AR T2 s
@, @, .Uic @, o B\ 0y W, @ @, Hy @y He \ @ w, "
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B.2 Adaptive AVAI with slug (Type II)

B.2.1 Slug springs

dy
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Figure B,3: Mechanical model of an adaptive AVAI with a slug

The equations of motion will be derived using Lagrange’s equations. The equations of motion for this
configuration can also be derived by considering force balance as shown by Halwes (1981a). The fluid
continuity through the port is:

yA, = (Ab - Aa)x + A4 x;

B.39
x3:£lw%Jx+§h—y ( )

a a

The kinetic energy is:

T m—;«(mxicz +m3j:§ +my}"2)

2 2
sl ) e

where: m; = pA[l
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From the previous equation the derivatives can be found:

2
4 —6—7: =|m, +m, ﬁ—1 X+my i-—l ﬁ’—j)
di\ ot A, A, A,

, (B.41)
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The potential energy is:
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V= E[k (x—y)2 +k, (xﬂ -y)z]
; ALY (B.42)
z5|:k+k8 (]_/Tj] }(IZ—ny+y2)
From the previous equation the derivatives can be found:
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The complete equation of motion can be found using Lagrange’s equations:
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Assuming that excitation occurs at the ¥ degree of freedom, the second equation is eliminated:
2 2 2
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The equation of motion can be non-dimensionalised by introducing the damping ratio and the isolation
and natural frequencies:

2z
B+ 2w i+ 0l = [E’—J S+ 20w, p+ by
(4]

(B.46)
where:
The transmissibility is:
2
14220 {3}
@, w,
= : (B.47)
122y - [—‘”—J
a)’! a)i’l
Assuming that excitation occurs at the x degree of freedom, the first equation is eliminated:
m, +m A 2 J+|c+e i——lz V| k+ky, -—12 ¥
4 LA A,
(B.48)

4, 4, 4 Y 4, Y
=mﬁ[}f—1JZx+[c+cB[?:— J 1x+|ik+k [Z-—IJ X

The equation of motion can be non-dimensionalised by introducing the damping ratio and the isolation
and natural frequencies:

2
. ) @, . .
V4200, 7+ 0l y r[w"—} P+2w i+l x
o,

The equation is the same as when the x degree of freedom is the excitation degree of freedom, except
for the definition of the natural frequency and damping ratio. In the analysis that follows the ratio X/}
can therefore be inverted as long as the corresponding definition of the natural frequency and damping
ratio is used. The transmissibility can be rewritten in terms of the isolation frequency by introducing
the frequency ratio:

2
1+ 23)— d ¢~ ( ]
X @y o (B.50)
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The frequency ratio is a function of the mass and area ratio only. For excitation at y

o)A m(A 4
B
(&’_J B A, JA m A4 )4 p =Dy

2 2 2
@, A 4 -1
’ mx+m‘,}(———b——1} 1+£’£(¢W1J L s (1) (B.51)
A, m \ A,
where: ,um=ﬁ, yA=—/—I”—
mI A{Z

and for excitation at x:
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m, + (i 1+Eﬁ(—4”—J Hutla (B.52)
A, m,\ 4,
A
where: =&, 2 b
nl'm X qu An

The frequency ratio must be as small as possible, which can be achieved if the denominator is much
targer than the numerator of the previous 2 equations. Considering the first equation:
H (#4“3)#42 01
I + ﬂrn (/‘IA - I)
4
o (g =) 1y = 1, (12, ~1) D 1
H ()UA_I)[P’A"(#A”])]D 1 (B.53)

(s -1)0 1
condition metif 4 — 0 and/or g, — 1

The second equation follows similarly. The current natural and isolation frequencies can be written in
terms of their initial vatues (before changes to the stiffness ratio) indicated by the prime;
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The transmissibility can conveniently be written in terms of the stiffness ratio:

2 2
. D W) o’ )
mﬁ wﬂ wl w}'f
r
I

2
1r2 2 Lo @ [
ey Hy H 00 @,
r2 2
1_+i22i¢'~&[ﬂJ

@, H @,
2 2
1+:23,—1_§'w3-{5’i} [ff’l}
_ @, H He \ @,
- 2
1+fzf¢m¥m§'m£(fﬁ})
@, Ky P
2
k+k, (i—l]
A, c

y P p 2
K+ kg [“j“—ij 2|imx+ml{u;15—1J ]rﬂ;

The dimensions used in the design of the device are shown in Figure B.4,

where: g, =

A .
AN
- ‘.NE..,___.

:
>‘ 57/ >‘ x5(1) 7/ [ (0
/
é

21,

Ir

[
_E_

Figure B.4: Definition of dimensions

(B.55)
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The isolation frequency can be rewritten to find the slug length:

2
k+k, [%-1}
= 2 (B.56)

A A
PN S e A
7 A A‘rp [

a

The slug displacement for an undamped device can be found from the continuity equation:

4
Xp=-LY B.57
b= (B.57)

o

The total length required is a function of the reservoir length (/) the protrusion length (I,) and the slug
length (1):
[o=20 =20 +1 (B.58)

If the length of the protrusion (/) is assumed to be equal to the slug displacement:

I, zzz,—sz—m/ (B.59)

a

The length of the reservoir is a function of the compressed length of the spring (Z.):
L=1+20 Y (B.60)

The total length required can be rewritten using the expressions in Equation (B.59) and Equation
(B.60):

l.,.=2!c+2[-§f’——lJY+l (B.61)

o

The port area can now be found in terms of the outside dimensions of the device using the expressions
for the slug fength Equation (B.56) and the total length Equation (B.61):
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The current isolation frequency can be written in terms of the initial isolation frequency by equating

the numerator to zero:
2 12
@ o;
) ~H

1+, (1, 1)’

A {excitation at x) (B.63)
Ho (14 =1) 4

or

1+1um (nu/i _1)2
H b

, {excitation at y)

The damped isolation frequency can be written in terms of the stiffness ratio:
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B.2.2 Slug stops
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Figure B.5: Mechanical model of a type 11 AVAI with slug stops

Continuity is described by Equation (B.39), For this derivation it is assumed that the stop will stay in
contact with the slug if the relative displacement between the slug and the reservoir is larger than the
gap (k). This might not be the situation for high damping ratios, in which case the approach taken by
Luc and Hanagud (1998) is more appropriate. For this derivation it will be more convenient to use

force balance on the various components rather than Lagrange’s equations as was done up till now.

Graphically the stiffness can be represented as shown in Figure B.6, where f; is the force acting on the

slug,

e

Figure B.6: Graphical representation-of stop force
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The stop force is:
1, = Bk, [y —x, —sign (¥ - x, ) ]

mﬁkx{y—x+%(x-—y)—sign[y—x+%(x—y)}h} (B.65)

o el

0 if <h

A
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where: f= !

zh

1 if ‘y~x+-§:#(x—y)

The stop damping force is:
fa=Pe(y-3,)

B.66
=pc_‘[y~x+i;1(x—y)] (B.66)

PAa
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o

-PA,, f\ +J‘;f

Figure B.7: Forces acting on the slug when in contact with the bottom stop

The forces acting on the slug are:
=2pd + [+ fo = mpk,

k c m A A4
=t A bt A e T R
PEoa % o T 2, [[ AJ 4,7

i

where:

(B.67)
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Figure B.8: Forces acting on the port

The forces acting on the port can be found by substituting the expression found for the pressure in
Equation (B.67):
“2p(4, = 4, }+k(y—x}+c(y-%)=ms
k, c, m AN, A .. .
—{A—"Ad +TA” —A—B[[I—A—:Jx+jy”(,4b —A)+k(y-x)+c(p-x)=mx

a ] 4 a

2
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k(y—x)-&-c(ymx)—-ijd{—/—é—-— .J—C‘AV{A—:—I]—mBJ:(Z’:——IJ x——i—[—:{i——!}yJ:m}c
2
J:m-i-mﬁ(:%z“}J }'c‘:mB(j—:’w]}%j)+k(yn—x)+c(jz—i)—k.,.Ad (-«j«i——i}—cﬁ{j—i—l}

The above equation can be written in terms of non-dimensional parameters:
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B.2.3 Leakage
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Figure B.9: Mechanical model of a type II AVAT with leakage

ivhe

The effect of leakage will be studied with this model. Tt is assumed that the shug is connected to the
port through discrete dashpots as shown in Figure B.9. The exact properties of these dashpots can be
determined by finding the velocity-dependent shear force acting on the port and the slug. The shear
force is a function of the viscosity and the siope of the radial velocity profile in the annulus. The
dashpot properties will, however, not be calculated and this model will only be used to make a

qualitative assessment of the effect of modelling leakage,

If it is assumed that the gap between the port and the slug is small the leakage area is:

A, =end,

The continuity equation is:
v, = x, 4 +end x, +(4, ~ A, —end )x
A, end, — A, end,
Xy =—y+| 1+ x-
4 A A

a o

B

4

If the gap is zero then the above equation reduces to that found in Equation (B.39).

(B.70)

(BI1)
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The kinetic energy is:
T= —;—(m;c2 +my i) 4+ mit)
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where: my = pAl, m = pendf,

The derivatives are:
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The potential energy is:

V= tk(x-y)
f (B.74)
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The derivatives are:
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Figure B,16: Fluid damping
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The Rayleigh term is:
1 ; : ;
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From the above equation the derivatives can be found:
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The complete equation of motion can now be found by substituting the derivates found above in Lagrange’s equations:

d -4 4, - ’ A, —end d —erd d
|:m+m8(1+ﬂj___..iJ :|i+|ic+cﬂ+c»‘(l_:fzrmgiﬁlJ :|5‘+m3[ 5 A&"T 9_1]57; “-i!+|:c_r(Ab AE” 5“1)(57; a+EJ_Cp:Ij"[+h

T a

wgnd —~
;mﬁi[iﬁ&_;)y{cﬂj;}(mqﬂﬁk},

4\ 4 A

4, —end, N\erd, . A, - erd end, . end Y |.. end, Y )
my -1 I+|c, -1 +l|—c, |x+]|m+my ¥, +1| +¢, |%
4 ) A 4, A ’ A, o4 ,

m A, end, Src A ( exd, als
EA A Yy SAG Aa y

a a

o

(B.78)




£et

By transforming to the frequency domain:
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The second of Equation (B.79) can be used to find X
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Back substitution into the first of Equation (B.79) yields:
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The foliowing natural frequencies and damping ratios are now defined:

(B.82})
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The transmissibility can be found by using the above non-dimensional relationships:
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B.2.4 Slug with diaphragm seal
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Figure B.11 Mechanical model of a type II AVAI with a rolling diaphragm seal

To derive the continuity equation it must be recognised that the diaphragm cannot stretch and that the
relative motion between the slug and the port is:

Considering continuity gives:
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]

The total kinetic energy is:
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From the above equation the derivatives can be found:
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—|—|=|m+
dt\ Ox

d{8r
400
dr\ 8y

4 -4Y |,
HIB X+m
A+ A4,

44, (A, ~4,)

AbMAn
= X+
A+ A A+ 4,

4Ab (Aa o Aa)
(Ab + An )2

4.4, (AB - A,,)
! (4, + 4, )2

X
(4, +4,)

A, + A,

2
A, 2
+Aﬂ] Y }

(B.84)

(B.85)

(B.86)

(B.87)
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The potential energy is (ki represents the total stiffness of both diaphragms):

1 2 2
Vmé—lik(x—-y) +kR(xB-x):|
_1 K- y) +k 24, (44 2 (B.88)
2 AL R )

From the above equation the derivatives can be found:

2
4, = A - 24, (4,4
CUR PN i Sak ) B e et S P YA 16 ")+k,{ L
ox A+ 4, A, + 4, (4, + Aa)z A + 4,

2
4 24, (A4, -4
o k+k, » (4 ;)+kR 24, |ay kv, 24 y
oy (4, +4,) 4, + 4, A, + 4,

The Rayleigh term is:

(B.89)

1 . . .
ng[c(xmy)2+ck(xﬂ_x)2]
=1 e(x-y) +e 24 oA, 2 B0
2 Vel A v A

From the above equation the derivatives can be found:

2
aR Ay - A A -4 , 24, (4,— 4,) 24, |.
=|c+c | —2¢, L+, [x-]e+e + 2
r: R(A,,-FA} R n} [ r Cy ] ¥y

Pl i L + A, (4,+4,) A4, +4
2

AR 24, (4, -4 24 24

e = | C {4 2”)+CR 2 |i+|e+e, b Y

v (4, +4,) A+ 4, A+ 4,

The complete equation of motion can now be found by substituting the derivates found above in

(B.91)

Lagrange’s equations:

2 2 3
A, — 4 A, —A A —A A —-A .y

Moy | = | E e e | S| —2e, Tt [+ Rk | 1| — 24k, A Ltk |x
W, + A4, A+ A, A+ A, A, + 4, A+ 4,

A
oy 2 | § | kg ZA”(A"M?)+ . 24,
(Ab +Aﬂ) Ah +Aa (Ab +Aa) Ab +Aa

(B.92)

The transmissibility can now be calculated by transforming the above equation to the frequency

domain:
24, (A4, -4 24 24 {4 - 4 24 , 4444 -4
k+k, (4, 2“)+ ; f—tiwictc, 4 2"}+cR : +w'mﬂ——ﬁ—€—~ﬂ—»—————~2")
X (4, +4) A, + 4, (4, +4,) A, + 4, (4+4)
Yo A -aY 4 -4 4 -4y A - A A -4y
k +kR h L4 _2kR ] (] +kn + fﬂ') C+CR b £l _2Cn 1 3 +CR + wl m+m3 & a
An‘l + Arl Ab + A{l Ab + An Aﬁ + Au- Ab + Aﬂ

(B.93)
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The isolation frequency is:

24,(4,-4,) T 24,

k+k}e(A+A)2 LRy
@ = b i (B.94)
44 (4, -4,)
D ()

The effective mass tertn can be rewritten as follows:

A -4 z A A — A
Tty Wiwmﬂ 44, o f’( "’2 ") = 4 7 My {1—1{”‘]5&‘ (B95)
(4, +4,) (4,+4) A { 4, J

By comparing the effective absorber mass term in Equation (B.94) with the isolation frequency of a
system without a rolling diaphragm an effective mass ratio can be found:

[V .. (B.96)

ratier A z
L4
Aﬂ
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APPENDIX C

Derivations for chapter 3
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C.1 Type I AVAI (equation of motion)

The equation of motion from Appendix B can be non-dimensionalised and written in terms of the
stiffness ratio as follows for the first equation:
myji+(c +cu)j)—c"1k+(k+k")y—kuu = ¥+ ko

mJ’ 3 c Cy ; Ey c .
Al el e o p i (L )y =i x

kﬂ kd
1 . <,
2)}-;—2[4-1 pk—é—i}y—Z,uk §2u+(]+pk)y pu=2"t%+x
@ o, o, w, @,
.. , @ . .
y+2[§l +ﬂkj§zjw1y—2#kj§2wlu+w? (14 g )y - o g~ 25 0%~ @ x =0 (C.1)
2 2

'.l

. (22
y+2(§[+;)__—‘§2] - 2% b Z i+ o) (1+,u,‘)y @} =20 @ % — ol x =0
2

g
o s _
. 41 - Au.k = I = 1 _ 1 Cz
where: = e e 2R
@, @y \p iy My

And as follows for the second equation:

2
A0 . L A A, .
my [-&i—] iitve, (d—3)+k, (u=y)-my, {—/ﬁ-—l]j:—x=0
3
A
my 141 my éb——l 2
A0 C,,(. ) A, A 0
T i - Py —— L L ¥
3 vy Y %

4 u N

I 1
—-—-u+2 - y)+ru-—y———%=0
o] W, P Hy @ (C.2)

z
ii+2§1w2(z’t-jﬁ)+a)j(u—y)—i{—a§-] i=
H\ 9,
ii+2§72a72(ﬂ—j/)+;£k&5§(u——y)~(€o~f—J ¥=0
@,

- —
where:  £,m, = =g, S pt, &, = ¢, 0,
v
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C.2 Typel AVAI (quadrature objective function)

The quadrature objective function can be evaluated by finding the point product of the input and
output signals. This must be done over a predetermined time period 7. Assuming that the input and
output are given by two harmonic functions:

x(t)= X cos(wt+0)

(C.3)
y(r) =Y cos(wr)
where f is the angle between the response of the system and the input.
The input can be rewritten as;
x(f)=Xcos{wt+0) | ' (C4)
= X cos(pe)cos (@)~ X sin(wr)sin(g)
The point product is {Long ef al. 1994):
f=x()y ()
1 Ii2
- _[ [X cos(wi) cos (@)~ X sin(we)sin(@)]Y cos(wr+ ¢)di
-Tf2
z T2
= j X cos(wr)cos(g)Y cos(wt + ¢}~ X sin(wr)sin(0)Y cos(wt +¢)dr (C.5)
-1z .
~ XYcos (2
2

=0 when 0=(2n+1)g— n=012.

C.3 Type Il AVAI (equation of motion)

The equation of motion from Appendix B can be written in terms of the stiffness ratio to make funing
possible. The equation of motion is:

2
j}+2§wﬂy+wfy=(%—J ¥+20w x+olx (C.6)

i

As before, the current natural frequency and damping ratio can be written in terms of the initial value

as follows:
1
g = -
Ny (C.7)
CU” = ,le Cl)’:

Substituting the above relations in the equation of motion:
, 2
j3+24'hl,',j)+ykw;y=(—%,—] X+20w %+ ox (C.8)
o

i
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APPENDIX D

Derivations for chapter 4
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D.1 Vibration measurement of a Boart Longyear S250 rock drill
(calibration factors)

Table D.1: Calibration factors
Sl xedirection’ | - yedirection’ | ¢ z-direction

Calibration factor [V/g] 0.029176 0.031604 0.031604

D.2 Type I AVAIT design (air spring stiffness)

Py ! P,V

Figure D.1: Double sided air spring

The force balance acting on the piston is:
F=(P-P)4 (D.1)

Assuming adiabatic compression the pressure in the top and bottom chambers can be written in terms
of the initial pressure (P;) and volume (¥)):
RV, =RV’ (D.2)

where 7 is the ratio of specific heats (1.4 for air).
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The force relationship of Equation (ID.1) can now be written in terms of the initial pressure and volume

values:

s8]

(D.3)
S (ORES)
h—x h+x
where A is the initial height.
The stiffness of the spring is the derivative of the force with respect to displacement:
dF, 1 n+l I e+l
k=% =npaw 4
& Kh—x] +[h+x] J (D4)
At small displacements this reduces to:
k= 2nP A (D.5)
h
D.3 Typel AVAI design (heavy liquid properties)
Table 3.2 Summary of liquid properties at 25°C
Ted 1 5 [ & [T G| e
L L el | Nemy | 1O )| ming
Water H.0 998 1.00x107 0 100 0
Bromine Br, 3113 0.91x10° -7 50 4
Bromoform CHBr, 2894 N/A | 150 3
Carbon tetrachloride CCl, 1590 0.97x10™ -23 76 3
Lead tetrachforide PbCl, 3174 -15 105
LST 2954
Mercury Hg 13550 1.56x107° | -38 | 356 4
Phosphorous tribromide PBry 2846 -40 173 3
Selenium bromide Se,Br, 3597 227
Selenium monochloride Se,Cly 2764 -85 130
Tetrabromoacetylene Br,CHCHBr, 2954 0 135 2
Thionyl bromide SOBr; 2675 -52 138
Thiophosphorylbromidechloride PSBr,Cl 2475 -60) 95
Tindibromidedichloride S$nBr,Cl, 2814 -20 65

" Baker SAF-T-DATA™ heaith rating, 0 = no hazard, 4 = extreme hazard.




D.4 Type I AVAI design (forces acting on the drill)

Figure D.2: Forces acting on the drill

The forces acting in the x-direction:

The forces acting in the y-direction:

=—R ~F+Psin(0)

The moments about R:

Y M=0

o
=F{a+b)-Psin(0)a+Pcos()e
Fe Psin(@)amPcos(E)c

a+bh
Table D.2: Drill dimensions
Dimension - - 1 Valuefmm} 0
a 1690
b 330
C 70
Piston diameter 63

(D.6)

(D.7)

(D.8)
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Angie {deg]

Figure D.3: Force vs. angle for a supply pressure of 400 kPa

D.5 Type I AVAI design (forces acting on the handle)

Nk:
¢:“?
u‘ i
J
(= —1
o

Figure D.4: Moment acting on the handle

The deflection at point R; can be calculated using the sum of the moments about R;:

> M=0

:F(a+—il]-wR1b
2
F[mg] (D.9)
R =——i
b
51=£[E+i)
E\b 2
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The deflection at point R, can be calculated using the sum of the moments and force balance in the y-

direction:
Y F =0
T
=—R,—R-F
b
F[GHLEJ (D.10)
Rl = ——EMWF

The rotation angle can now be calculated by using Equation (I2.9) and Equation (D.10):
# =sin™ [52_'_‘?'1_)
b

msgn{-g[%—%]—%[%gj} ®.11)

D.6 Type IT AVAI design (effective area calculation)

A

dp

Figure D.5: Definition of dimensions

The volume change due to relative displacement & is:

AV:%Abh—%A,(h-—é) (D.12)
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The relationship between h and 4 is:

1 o1
~d, ~d,~—d,
22" a2
h 5 (D.13)
he—t_s
d,~d,

The volume change can now be written as:

1 1
AV ==Ah-——A{h=5)
37T

d d
LR T PN GO, S S (D.14)
3% d, 37\ d, ~d,
= _w‘_{fih__ dd; +d,2 5
12\d, -4 4 -4

D.7 Type 11 AVAI design (damped design method)

The ratio of natural to isolation frequency is independent of the change in stiffness:

(D.15)
2 h 1)
[Q—J = : : (D.16)
QR RED
wl a){
The right hand side of the equation is constant;
2 r P 2
—[ﬁﬂ-] ~1- Hf"—J —1} +8¢2HﬂJ +1}
W, @, o,
= = 5 (D.17)
o els] )
@, @,
The isolation frequency can be written in terms of the constant C:
O =wC
2 k
Q =————C (D.18)
Ay
mem %)
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The device has to be designed such that the excitation frequency coincides with the isolation
frequency (i.e. @, = Q,). If it is assumed that the stiffness consists of a spring in parallel with the air
spring, the stiffness can be written in terms of the pressure:

k=k,P+k, (D.19)

Since there are two unknowns, two sets of excitation and pressure values are needed to solfve for k&, and
k.. In matrix format the set of equations are;

el

]

5
5

To solve for the stiffness:

[ [ﬂ)z}
el e
c ro1] | Q

2
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APPENDIX E

Derivations for chapter 5
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E.1 Refined model for a type I AVAI

Figure E.1: A liquid vibration absorber system with base excitation

_t x(t)

T 0

The displacement of the top and bottom elements must be equal under steady-state conditions because
the fluid is incompressible. To find the continuity it is necessary to calculate the fluid displaced by the
membrane. To do this it is necessary to know the shape of the membrane when deflected. If it is
assumed that the displacement of the membrane assumes the shape of a paraboloid, the volume

displaced can conveniently be written as:

v=tan
2

(E.1)

with % the height of the paraboloid, which in this case is the relative displacement between » and y.
Alternatively, if the membrane behaves as if fixed at the boundary, no rotation is possible and the
deflected shape can be calculated (Young & Budynas, 2002).

The shape is a function of the radius:

M
(P=y +———et LT
d y‘ZDU+ﬂ 4
4
where: LT =- 4
4 640D
4
Q
Yo =T
64D
2
1+
a2 4 0Y)
16
3
pe_ B
12(1-v?)
forr, =0

(E2)
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a is the disk radius, v Poison’s ratio, ¢ the distributed load, E is the Young’s modulus, ¢ the membrane
thickness and y, the displacement of the centre of the disk. From the above y can be rewritten:

2 4
U I
azD 64D
(E.3)
= 1-w%~r2 +-’i
Y. i a
The displaced volume can now be calculated:
alr 2 r4
Vo= == 4 |rdBdr
T3]
T2 P
=27y, [r~-sr +—dr
O
4 P
=2ry, [lrz - }.,wr_ + J_} (E4)
2 2at 6a' o
1,
=—may,
3 yL
=1y
3 b Ye

To make provision to test assumption regarding membrane shape the derivation of the equation of
motion will be done in terms of a shape factor S The volume is therefore:
V==584h (E.5)

The change in volume can be calculated by subtracting the initial volume from the current volume. In
Figure E.2 the initial values are denoted by the subscript i, while the current values are without
subscript,

i

Vi U;

Figure E.2: Membrane displacement
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The volume after relative displacement § is:

v, :%A,Jhn A, (hwcS)m%Aa (h, ~h+5)

h =22 (E.8)
Z
Lo g
db

d d
S L SR S A
37"d, ~d, 37d, —d,

The change in volume due to the relative displacement § is;

AV, =V, -V,

_[Adi-Ad, 7,
Tl 3(d,~d) T

(E.9)
= A5

The total displaced volume is a function of the absolute and refative displacements of both x and y as
explained in Figure E.4,

@ (4n- A

A r'.(x - V)
Sesese
PSS (A - A

Figure E.4: Total displaced volume



The continuity is now given by:

[4d -Ad
(1-5 )4 y+S,du= W~Aﬂ}(x—y}+(Ab—A‘,)y+Anxﬂ
L b @
[ Ad,-Ad, A4 4 p
xg=hl—m}(lﬁ—y)+[1—A—in+(l“Sf)fy+Sfji"u
I A!xd!a - Aadﬂ Ab Ahdb - A)do Ab
=|Th " ete g lh o N Pt 3
34,4, ~d,) fAJ “{ 4 (d,—d ) [T

=Cy-Cx+Cu (E.10}

_hdmAd, o4 _1A4(4Y 4
"34,(d,-d) T4, 34.|\4, \ 4

2
Ad, -Ad 4,1(4d d
C, =1-—2t oo ALY L%y
34,(d,-d,) 34,\4d, d,
Ab

¢, =5, -

The kinetic energy is:
T= lmxfcz +~~1«»myy2 +im,jx;
% 2 2 (E.11)

= mexz + ém_vyi’ + -;-m,, (CHy* + Cix* + Cu® = 2C,C,y + 2C,C, pit - 20,0, 31t

The derivatives are:
_[Z_) =m, i +my (C15 = C,C, 5 - C,Cy)

=-—m,C,C, ¥+ (mx + mﬂczz)jé —my, C,Cii

d(ar y - . "
— e =m y+m, |C ¥y -CC,x%+C.Cii
dx[ﬁyJ P E( 1 ¥ Ly i3 ) (E.12)
= (m, +m,C7 ) =y CCo% + myC, G
d{ar ) . .
E[EJJ = my (Clit 4+ C,CJ = O, %)
= 1y G Co ¥ = my CyCod + myCrii
The mass matrix is:
M, M, M, |m+mCl -mCC, mCC,
M, M, M/|=|-m,CC, m +m,C; -mC,C, (E.13)
M, M, M, m,CC,  -mC,C, mCh

The potential energy and Raleigh terms are the same as before (refer to Appendix B). The equation of
motion with v prescribed and no external forces acting on the system is:

MS MG x n ¢ 0 ).’ + k0 x = ky+Cy—M4y (E.i4}
My M| |0 ¢ J|n] [0 & Ju] [ky+ep-My
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By transforming to the frequency domain:
k+imc:m2M5 -o*M, 2 X _ k+imc+mziv!4 v (E.15)
-0 M, k, +iwc, ~o M, || U k, +iwe, +o° M,
The membrane displacement is:

(k+imc+sz4)_-};):§:+i“’C”sz5)X (E.16)
&

U=

The transmissibility is:

X w* M, (k, + ioc, +a)2M3)+(kn +ime, - &' M, )(k +ioc+ o’ M,)

A - (E.17)
¥ (k“ +imc, —a)zMg)(k+imc—w2M5)~(aJ2Mﬁ)
The following natural frequencies can be defined:
:  k k
0)‘ :—:—————2-—
1”1 m, +mBC1 (EES)
The transmissibility can now be non-dimensionalised:
M, k M M
0 Lol 1rioe Sy o T3 g 1rip St - 0?22 1+inSrat
X K kK, k k, k, k k
Yo M MY
1+ia)-c’—'~—a)2~hj3 1+im£—a}2-——§- -—k—“ wzm‘iﬁm
k, k, k k k k,
-’ m GG I+ia)££”—+ o’ LSS +1+iod - o myCs T+ios -’ GGy
k, k k, k k, k) k k
= z
1+.f'a)fi—a)2 mmﬁCf ]+ia)£-—a)1———————m‘ +mBC22 —-]fﬁn w* my GGy
k!-‘ k}l k k k k"
2 2z 2 2
! k
Glollspeh, LGlo) 1 p@,y (23 11n% (£
C, \ w; k kEC\ o, @, 1, @, ar,
) o PRY @ oY| k|ClaY i
vz (2] e -(2T]£[()
@, , ;g @ k| C;\ oy
k k 2 k k I kn ku
m‘ e a1 A — - a wG — P
M, mGC M, mC/C, M, myC,C,
k k C k C
ﬂ);2=~A:}f—= "2, §:k—3 9’2, w, =-k—= T ézm—-‘lﬂ)gzz
PR e k, C, My m, +mgCy G
[ c C
= L = , = (E.19)
2m,Cloo)” 7 2(m, +m,C} ), & 2m,C,C,m,

The equation of motion with x prescribed and no external forces acting on the system is:

M, M, y+ c+c, -c, ):J+ k+k &k |ly _ kx+c.7'c—.1."|42)'c' (E.20)
M, M, || i -, e, ||# -k k u -M,

" u
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By transforming to the frequency domain:

k+k, +io(cte)-o’M, -k ~iwc, —0'M, |[V] [k+ivc+o’M, ¥ E21)
~k, —iwe, — o' M, k +iwe, —o’M, U w* M, '

The membrane displacement can be found from the second equation in the set defined above:
(k" +ime, + ﬂJZMZ)X ~[k +k, +iw(c+c, )~ szi] 4

_(ku +iec, +m2M3) (E.22)

The transmissibility is:

v (b +ioe, +of My’ M, + (K, +ioc, - oM, ) (k+iwc+o" M, ) (E.23)

X (kn +iwe, —culMg)[kJrk" +im(c+c”)-a:2M]:|—(ku +iwe, +m2M3)2

The transmissibility can now be non-dimensionalised:

o Mo 1+im£’i—f¥#+ml~% + 1+iaJ-c—”——a;2y~9~ E+z‘m5+m2—ﬂi€
Y I, k k k, k, k k
X k K i MY
1vinSmwr Mol B ] £ Bl cot M R S s
k, k| k Kk ok, K|k k, k,
2 mBC?,CE 1+ @ ] c!f + 2 mBCECB + 1+iw u wl mﬂc'_’»z l+1’ Emml mBClCZ
k" H N kll k
2

’ k
2 2 2 2
««93{3’,—} 1+isz’;--’fitgy+5&§i(f7] + 1+f2-"—"7g"w[ﬂ,J 1+f2—“’—¢2—(—“’m”
C,\ &y w, k k C\ o, w, @, @, w,
2
k

0)2_ k - k @ _______]E____ k J2__kn___ kn 12 W ku
M, mCGo M, mCC,~ M, mCC~ T M, mCi
C k k C
‘:‘)32 ='k—_3m(;2! 3,2 = _3%,2’ a’lz == 7 [:2 = '_360‘;2
k, C 1 M, m, +m,C G,
¢ c c
£, = o = £, = i (E.24)
2m,Croy” T 2{my + myCl o, I am,C @,
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