
30
Chapter 2FunGIMS Design and Implementation2.1. OverviewThe FunGIMS (Fun
tional Genomi
s Information Management System) is a web-basedsystem designed to integrate most of the major data types that a resear
her might en-
ounter in a modern fun
tional genomi
s experiment. These data types in
lude sequen
edata, protein stru
ture data, mi
roarray data, small mole
ule data and literature data.In addition, it also provides online a

ess to some of the more 
ommonly used tools inea
h of the data type subse
tions. This allows the user a

ess to data and analysis toolsin one, 
entralized lo
ation as well as providing storage for the data generated by theanalysis tools in FunGIMS.The following se
tions will dis
uss the te
hnologies used in FunGIMS as well as the designpro
ess and the data model used.2.2. FunGIMS Design and Te
hnologiesDuring the design phase of FunGIMS, every e�ort was made to �nd the most appropriatete
hnologies for ea
h se
tion of the proje
t. Every se
tion involved exhaustive investiga-tions and testing of the options 
urrently provided by software manufa
turers. Importantde
isions su
h as a spe
i�
 programming language, were only made after extensive re-sear
h into the support provided and the ability to allow the programmer to do a spe
i�
job.

 
 
 



Chapter 2. FunGIMS Design and Implementation 312.2.1. Te
hnologiesFor the su

ess of a large proje
t su
h as FunGIMS, various te
hnologies are neededto work in unison to produ
e the �nal out
ome. Ea
h of these te
hnologies will bedis
ussed shortly in the following few se
tions. For the programming languages, Javaand Python were investigated extensively as well as the availability of software pa
kageswhi
h allow for intera
tion with databases. Di�erent language-dependant web frame-works were also investigated. These in
luded JBoss, TurboGears, Java Struts and 
us-tom Python s
ripts on top of a CherryPy server or Apa
he web server. The ability of alanguage to intera
t with databases and fa
ilitate easy data persisten
e led to investiga-tions into Java Beans, Hibernate, SQLObje
t and SQLAl
hemy. Ar
hite
tures su
h asthe Model-View-Controller and Server-Client designs were investigated to �nd the mostsuitable option for delivering data and intera
tivity to users. In the software world it isimportant to 
hoose your te
hnologies wisely due to the rapid rate of new developmentsand the de
line of on
e-popular software. The following se
tions will dis
uss the 
hoi
esmade for ea
h of the te
hnology aspe
ts of the proje
t.2.2.1.1. PythonThe programming language 
hosen for this proje
t was Python (http://python.org).Python has been developed by Guido van Rossum sin
e 1991 and is a mature and stabledevelopment language. This maturity has led to it being used by the biggest sear
h engine
ompany at the moment, Google (http://www.google.
om), on a wide range of servi
es.The widespread use of Python and the ease with whi
h it is learned has resulted in anextremely wide 
ode base that 
aters for a vast amount of fun
tionalities. In the lastfew years Python was used in developing games su
h as Civilization IV (Firaxis Games,http://www.2kgames.
om/
iv4/home.htm), high performan
e s
ienti�
 
omputing pa
k-ages (NumPy, http://numpy.s
ipy.org; S
iPy, http://www.s
ipy.org), web developmentplatforms (TurboGears, http://www.turbogears.org; Pylons, http://pylonshq.
om), movieanimations (Blender3D, http://www.blender.org) and being supported in 
ommer
ial s
i-enti�
 pa
kages su
h as Dis
overy Studio II (A

elrys In
.). Python was 
hosen due toits stability, ease-of-use and multitude of pa
kages.

 
 
 



Chapter 2. FunGIMS Design and Implementation 32Python is also widely used in Bioinformati
s due to its ease of use. Examples over andabove s
ripting in
lude: PySCeS (Olivier et al., 2005) that is used very su

essfully inmodelling the kineti
s and substrate �ow through enzymati
 pathways (Uys et al., 2006),PyMol (http://pymol.sour
eforge.net) that is a very su

essful open sour
e python-based3D protein stru
ture viewer, and PyQuante (http://pyquante.sour
eforge.net/) when do-ing quantum me
hani
s.2.2.1.2. Web Development FrameworkFor FunGIMS it was de
ided to use the TurboGears web development platform. Turbo-Gears is mature, well developed and written in Python and allows for development ofproje
ts using all the possibilities provided by the Python language. Development in Tur-boGears takes some time to master but should a person have previous Python program-ming skills, the pro
ess is far qui
ker. TurboGears is based on the Model-View-Controllerar
hite
ture (see se
tion 2.2.2) and uses various other pa
kages to perform the di�erentfun
tions. The use of Python and the MVC ar
hite
ture in TurboGears made it theperfe
t 
hoi
e for FunGIMS, whi
h uses the same te
hnologies and thus allows for easyintegration. Figure 2.1 shows a diagrammati
 layout of the fun
tioning of TurboGears.2.2.1.3. Obje
t-Relational MapperOften a time 
onsuming step in programming is 
onstru
ting 
ode to represent the dataqueried from a database. To over
ome this problem, Obje
t-Relational Mapping (ORM)was developed. This is a method whereby a query to a relational database 
an be rep-resented in an obje
t-orientated way in the 
ode. The programmer de�nes all the tablesin the database using 
ode and also de�nes 
lasses for working with the tables. TheORM then uses this information to transparently 
onne
t to the database, and providethe programmer with a

ess to the data using the prede�ned 
lasses. The ORM alsoprovides some methods, native to the database, as normal methods owned by the 
lasses.Thus the programmer does not have to learn the syntax needed to manage the databasenatively, only the 
on
epts need to be known. These methods allow the programmer to
ontinue programming in the same style, without the need to write his own mapper be-

 
 
 



Chapter 2. FunGIMS Design and Implementation 33

Figure 2.1: A s
hemati
 representation of how the di�erent parts work together in TurboGears(http://do
s.turbogears.org/1.0/GettingStarted/BigPi
ture). The user makes a request for datain the browser. This request gets dire
ted by the 
ontroller to the model. The ORM then
onne
ts to the database, retrieves the data and returns it to the 
ontroller. The 
ontroller thenprovides the data to the appropriate template, whi
h is served up as HTML 
ode to the user'sbrowser.tween the database and the program. For FunGIMS it was de
ided to use SQLAl
hemy(http://www.sqlal
hemy.org). SQLAl
hemy is supported in TurboGears and uses themodel.py �le to de�ne the database, link the tables in the database to 
ode 
lassesand implement data 
lass spe
i�
 methods. SQLAl
hemy was 
hosen in preferen
e toSQLObje
t as it provided more advan
ed fun
tions su
h as polymorphi
 joins and 
lass
reation via introspe
tion of the database. At the time of writing, SQLAl
hemy was alsoslated to be
ome the default ORM for the TurboGears proje
t. It was de
ided to useMySQL (http://mysql.org) as the relational database for FunGIMS. This was 
hosen thepreferred 
hoi
e rather than PostgreSQL as SQLAl
hemy provided slightly better support

 
 
 



Chapter 2. FunGIMS Design and Implementation 34for MySQL than for PostgreSQL when the proje
t was started. Most of the developersalso had more exposure to MySQL than PostgreSQL. MySQL provides a way to storevast amounts of data, while providing extremely fast sear
h a

ess to the data. All thedata are stored in rows in user-de�ned tables, and a user 
an sear
h over all �elds in thetables. This provides a very powerful way of storing and querying data.2.2.1.4. Version ControlIn a proje
t of this s
ope, version 
ontrol is essential. Version 
ontrol provides a wayfor the system to be ba
ked up in in
rements as ea
h part of the system 
hanges. Adeveloper 
an 
he
k out a 
ertain part of 
ode, work on it and then 
he
k it ba
k intothe system. The system then 
he
ks whether there was any 
on�i
t in the 
ode, andstore the 
hanges made to the 
ode. It also tra
ks the 
hanges ea
h developer makesas well as any 
hanges to �les. Furthermore, it prevents 
hanges made by the di�erentdevelopers on the same pie
e of 
ode to be 
he
ked in prior to validation thereof. Anessential feature is the ability to rollba
k 
hanges made to the system. It was de
idedto use Subversion (http://subversion.tigris.org) for this proje
t rather than Con
urrentVersion System (CVS).2.2.1.5. Templating LanguageWeb browsers display pages written in HyperText Markup Language (HTML). HTMLuses a stati
 
ode to represent items on a web page. To over
ome the stati
 elementof HTML, programmers developed templating languages. These languages allow a pro-grammer to generate stati
 HTML 
ontent based on de
isions made by the algorithm orprogram or even based on user input. The Kid templating system (http://www.kid.org)was used for FunGIMS. Kid is a templating system that is based on eXtensible MarkupLanguage (XML), of whi
h HTML is a derivative, and allows for the in
orporation ofPython 
ode in the template. KID will take the XML template and the data provided bythe 
ontroller, 
ombine it and render it into HTML that is then sent to the web server.The user will then see the page as normal HTML in his browser.

 
 
 



Chapter 2. FunGIMS Design and Implementation 352.2.2. Development and DesignThe design of a large system su
h as FunGIMS is a 
omplex task and requires 
areful de-velopment and planning to prevent a 
luttered and 
omplex 
ode base. This is espe
iallyimportant when there are multiple programmers working on a proje
t and 
oordinationbetween them is vital. The �rst step in planning su
h a proje
t is to identify the potentialusers and analyze their requirements. These requirements must then be implemented ina logi
al way to bene�t the user. The programming task must also be divided amongstthe programmers to speed up development.As a �rst step, the use of obje
t-orientated programming was implemented. This results in
ode blo
ks that 
an be reused throughout the proje
t and fa
ilitates faster development.A Model-View-Controller ar
hite
ture was also followed (Fig. 2.2) for the software designof FunGIMS. This ar
hite
ture separates a proje
t into three di�erent se
tions on the basisof the fun
tion of ea
h se
tion:
• Model - this 
ontains all the 
ode ne
essary for the storage of results and managingthe database ba
k end as well as handling queries to the database.
• View - this se
tion 
ontains all the 
ode used in displaying results/output from thesystem. It 
ontains mostly templates and usually 
ontains very little logi
 
ode.
• Controller - this is the se
tion in whi
h all the fun
tionality and the majority of the
ode resides. All the de
ision making pro
esses in the system are stored here, and it
ontrols input and output to the model and view. It �
ontrols� the entire system anddire
ts tra�
 and requests to the appropriate sub
ontrollers.Following the MVC ar
hite
ture, the proje
t was divided into three se
tions namelymodel.py, 
ontroller.py and a folder for all the templates entitled templates. Theseare ea
h dis
ussed in more detail in se
tions 2.2.2.1, 2.2.2.2 and 2.2.2.3. In Figure 2.3 theoverall design and implementation of the MVC ar
hite
ture in FunGIMS is shown. Thishigh level overview provides a 
lear depi
tion of how ea
h part of FunGIMS �ts together.

 
 
 



Chapter 2. FunGIMS Design and Implementation 36

Figure 2.2: The Model-View-Controller (MVC) ar
hite
ture. The Model 
ontains the datamodel needed by the ORM to intera
t with the database. The View 
ontain all the templatesneeded to display the data and the Controller 
ontrols and handles all 
ommuni
ation betweenthe Model and the View. The 
ontroller also 
alls any external programs that are needed.During the development pro
ess, the spiral development methodology was followed. Thismethodology is based upon small improvements and step-wise additions of features, fol-lowed by rapid deployment and testing of the new features. This 
y
le is repeated asea
h new feature or fun
tionality is added. The advantage of this methodology is thaterrors in the 
ode and feedba
k from the users 
an be 
orre
ted and implemented qui
kly,whi
h results in less e�ort 
ompared to 
orre
ted errors in a proje
t where the releaseand testing 
y
le is longer. Most of the modules were developed in 
onjun
tion with userinput. Thus at ea
h stage in the development, the user was 
onsulted. The user wasasked whi
h fun
tionalities he wanted, where after the programmer would implement itand the user would test it and give feedba
k.During the design of FunGIMS, the usability and users of the system were always keptin mind. This for
ed the 
oding pro
ess, and the 
ode itself, to be far more e�
ientand intelligent in the manner in whi
h the di�erent appli
ations and fun
tionalities wereimplemented. A good example of this is the System ID (sid) that is assigned to everyentry of a data type. The sid should identify the spe
i�
 re
ord in su
h a way as to

 
 
 



Chapter 2. FunGIMS Design and Implementation 37

Figure 2.3: The overall design of the FunGIMS system. The design follows theModel-View-Controller ar
hite
ture and uses TurboGears as the web development environment.Various other modules su
h SQLAl
hemy provide interfa
es and methods to a

ess data and 
allexternal programs. The View provides the interfa
e the user sees when using the system. TheController 
ontrols and dire
ts all requests within the system and the Model stores all the data.

 
 
 



Chapter 2. FunGIMS Design and Implementation 38fa
ilitate easy use during 
oding, as well as for easy understanding thereof by the user.With FunGIMS the number of re
ords of di�erent data types was huge. To assist usersas well as fa
ilitate easier 
oding, it was de
ided to use a 
ommon sid format. Theformat, <data type:id>, 
onsists of a data type identi�er, followed by a :, followed by aunique number for user-generated data or the id assigned by the spe
i�
 publi
 databasee.g. PDB �le 1eye would have the sid: pdb:1eye. This identi�es the re
ord as a protein
oordinate �le and uses the more well known publi
 database id as well. The PDB isa good example of the e�
ient use of a system-wide, unique id. The unique number isgenerated by taking the system time, in se
onds sin
e 1 January 1970, and multiplyingit by a fa
tor of ten million to get an integer number.At the time of writing, FunGIMS 
atered for the following data type identi�ers:
• seq - user generated/uploaded sequen
e
• gi - sequen
e from GenBank publi
 database
• sp - sequen
e from SwissProt publi
 database
• pri - user generated primer sequen
e
• pdb - protein stru
ture �le from the PDB
• pmid - arti
le from the PubMed publi
 database
• �le - user uploaded generi
 �le
• 
hebi - small mole
ule from the ChEBI database
• note - user generated note
• blast - BLAST results �le
• go - Gene Ontology term
• taxon - NCBI taxon term
• tra
e - DNA sequen
e 
hromatogram �lesThese data type identi�ers makes it easy for the user to see whi
h entry they are 
urrentlyworking on or whi
h entry's results they are looking at. To make the development pro
essfaster, ea
h programmer was given responsibility for a module on FunGIMS, while 
oremodules were developed together as they were needed.

 
 
 



Chapter 2. FunGIMS Design and Implementation 39Coding was not the main area where ease of use was of primary importan
e. Ease of useis the most important in the user interfa
e. Throughout FunGIMS the interfa
es weredesigned to be 
lean, intuitive and easy to use. This implies that pages do not showunne
essary information to the user. Future releases may have the option to displayextra information 
ontained in the relevant �les. Ea
h page is designed to show only theinformation the user needs at that moment. In the 
ase of analysis tools, the user is askedfor only the ne
essary information before the analysis is run.2.2.2.1. The ViewThe views in FunGIMS are responsible for intera
ting with the user and presenting datato him. Although the views only present data, in some instan
es de
isions on displayitems 
an only be made on
e the data is rendered or to alleviate more extensive 
odingof templates. Ea
h view is written in the Kid templating language. Ea
h module inFunGIMS has its own set of views and a shared subset deals with general, administrativedisplays su
h as headers, new user registration and shared items. The view �les are storedin a separate dire
tory (templates) and use the .kid extension. The views are 
ompiledto Python 
ode as needed using just-in-time (JIT) 
ompilation.The view also makes use of JavaS
ript for some visual e�e
ts and for managing theaddition and deletion of notes through JSON, an AJAX library (Asyn
hronous JavaS
riptand XML) used in TurboGears to 
onne
t Python fun
tions and JavaS
ript. The viewalso allows the in
lusion of applets su
h as Jmol, whi
h is used in the Stru
tural module.These applets allow for extra fun
tionality in the browser.2.2.2.2. The ControllerThe 
ontroller is that part of FunGIMS that regulates all the de
isions regarding �ow
ontrol. The 
ontroller de
ides what data must be retrieved, what data must be sent to theview and whi
h 
ommands to exe
ute with regard to the given variables. In essen
e, the
ontroller 
ontrols everything in the appli
ation. All 
ode that make a de
ision resides inthe 
ontrollers. In FunGIMS the responsibility of the 
ontroller has been split to fa
ilitate
ollaborative 
oding as well as to de
rease the amount of 
ode residing in one main 
on-

 
 
 



Chapter 2. FunGIMS Design and Implementation 40Table 2.1: The te
hni
al spe
i�
ations of FunGIMS.FeatureProgramming Language Python 2.4Development Framework TurboGears 1.0.2Code Revision Control Subversion 1.2.3HTML Templating Kid 0.9.6Obje
t Relational Mapping SQLAl
hemy 1.3.9Do
umentation Epydo
 3.0beta1Ba
k end Database MySQL 5.0troller. The main 
ontroller (
ontroller.py) in FunGIMS de
ides whi
h sub-
ontroller(lo
ated either in the view_
ontrollers or sear
h_
ontrollers folders) re
eives thedata and whi
h sub-
ontroller is responsible for exe
uting the user's 
ommands.In FunGIMS the following tasks are under the dire
t responsibility/
ontrol of the main
ontroller:
• De
iding whi
h view to present to the user
• Managing the sear
h fun
tionality
• Managing user a

ess (logging in/out) and se
urity
• Making de
isions on whi
h analysis interfa
e to send data to
• Upload/download of �les
• Generi
 saving of results produ
ed by analysis methods
• Web servi
esThe te
hni
al spe
i�
ations of FunGIMS are given in Table 2.1. The 
hoi
e of language(2.2.1.1), development platform (2.2.1.2) and other de
isions have been dis
ussed in therelevant se
tions.2.2.2.3. The ModelThe model forms the basis of all the intera
tions between the 
ontroller and the databasein the MVC ar
hite
ture. All the table de�nitions, table-
lass mappings and 
lass-spe
i�
methods are de�ned in the model.py �le. This �le is used by the ORM to intera
t withthe database and return the relevant data to the 
ontroller. The details of the data

 
 
 



Chapter 2. FunGIMS Design and Implementation 41model will be dis
ussed in se
tion 2.4.1. There are a few main model-related methodsthat are used a
ross FunGIMS. These in
lude retrieving data for a spe
i�
 entry while
onsidering se
urity and a

ess restri
tions on the entry, deleting privately owned dataand generating new, unique identi�ers for data inserted into the system.2.3. FunGIMS Core Fun
tionalitiesFunGIMS 
ontains a few 
ore fun
tionalities that are used a
ross the board in all thedi�erent modules. These in
lude managing users and groups, new registrations andsear
hing of data.2.3.1. User and Group ManagementCommon pra
ti
e in laboratories is to divide people into work-related groups. This 
on-
ept was also used in FunGIMS to manage a

ess to data. When starting a TurboGearsproje
t, it provides you with default identity handlers. These are divided into users andgroups. Ea
h user 
an belong to one or multiple groups. For FunGIMS this de�nitionwas extended so that groups 
an also belong to other groups e.g. the di�erent groups inan a
ademi
 department. An example would be a supervisor who wants to share datawith her students as well as between the students, but also wants her own private group.Under the FunGIMS identity s
heme this would mean that the supervisor belongs to twogroups, her own private group and the student group. This would allow the students toshare data but also allow the supervisor to have private data. It is basi
ally a 
on
eptof group of groups. Although this 
ompli
ates the identity management, the advantagesthereof are far more than the extra e�ort required to program it.In FunGIMS ea
h data entry belongs to either a spe
i�
 user or group or, in the 
aseof publi
ly available data, to the �world� group. The �world� group is a

essible toeveryone and all users 
an view and use entries belonging to this group. When databelongs to a 
ertain group, all the users who are members of that group may a

ess, viewand use the data. This hierar
hi
al implementation of a

ess restri
tions allows for theseparation of visible data to ea
h group. A user may also de
ide to browse and analyse

 
 
 



Chapter 2. FunGIMS Design and Implementation 42data anonymously. This will allow him to see all publi
 data and do analysis, but notsave any results, or add notes to any entries.To manage users, a registration se
tion was in
luded. This enables the user to add newusers, add users to groups and to 
reate groups. Some restri
tions are also implemented,whi
h gives only 
ertain users the right to add or delete users.2.3.2. Result ManagementWhen users generate results in FunGIMS, they are presented with the option of eitherstoring the results in the FunGIMS database or viewing them without saving. This fun
-tionality allows users to use the FunGIMS database as a data repository. User-generatedresults are stored as uploaded �les in the database. When the user wants to save results,they are presented with an option of sele
ting to whi
h group the results will belong. Thegroup listing in
ludes all the groups to whi
h the user belongs . This allows the user toshare generated results with other members of the group. These results are in
luded inany future sear
hes that might be done against the database. If a user is browsing andanalyzing data while not logged in, results 
annot be saved.2.3.3. Sear
hing of Data and ResultsFunGIMS 
ontains a large amount of data and the best way to a

ess a spe
i�
 pie
eof data is to sear
h for it. FunGIMS provides a sear
h fa
ility a
ross all the data andresults saved by the user. This allows the user to sear
h for entries by means of akeyword or phrase, or simply a

ess stored results. A user 
an sele
t to sear
h a
rossall the data types with a keyword or a spe
i�
 identi�er 
an be entered e.g. sear
hfor �dihydropteroate synthase� or sear
h for PDB id �1eye�. The sear
h is implementedon two levels. The �rst level is a 
ase insensitive text sear
h a
ross all the �elds inIdentifiable and Des
ription. The results from this sear
h are then �ltered in these
ond level of the sear
h, to ex
lude entries that the user may not see. Users 
an sear
ha keyword or sid against a spe
i�
 data type or a
ross all data types. At the time ofwriting, FunGIMS provided sear
hes a
ross protein stru
tures, sequen
es, literature andsmall mole
ule data sets. A keyword sear
h a
ross all data types will produ
e a page

 
 
 



Chapter 2. FunGIMS Design and Implementation 43

Figure 2.4: The result of a sear
h for �dihydropteroate synthase�. The results are ordereda

ording to data type.with results sorted a

ording to the se
tion they belong to e.g. sequen
es in the Sequen
ese
tion and any stru
ture hits in the Stru
ture se
tion. Should a user sear
h for a spe
i�
identi�er and it is found to be unique, the user will automati
ally be redire
ted to a viewof the requested entry. A

ess restri
tions are implemented on the sear
hes and thus auser will not see any mat
hes in restri
ted data. Figure 2.4 shows the results of a sear
hfor the keywords �dihydropteroate synthase�.2.4. FunGIMS Data Model2.4.1. The Data ModelFunGIMS was designed to use one database that 
ontains all the data for ea
h data typein separate tables. In order to in
orporate the large amount of data and relationshipsin FunGIMS, an extensive data model had to be developed. The Fun
tional Genomi
s

 
 
 



Chapter 2. FunGIMS Design and Implementation 44Experiment (FuGE) data model was used as a starting point (Jones et al., 2007, Joneset al., 2006) as dis
ussed in Chapter 1. The FunGIMS data model was extended byinheriting from the Identifiable 
lass in FuGE. This allowed for features in FuGE su
has Se
urity, Des
ription and Audit to be a

ommodated in FunGIMS. Se
urityimplements various features related to the FuGE data model with regard to ownership ofthe re
ord. Audit tra
ks 
hanges made to a re
ord and Des
ription provides a way toadd free text des
riptions of the re
ord. Identifiable 
onsists of a sid, data typename,user id, group id and des
ription id �elds. These �elds link an Identifiable entry toa user, a group, a spe
i�
 des
ription (whi
h is linked to the Des
ription 
lass) and aspe
i�
 data type. The data typename �eld is used when 
onstru
ting the polymorphi
joins for a spe
i�
 module. When a new �le or data entry is 
reated in Identifiable,the user must also supply the �elds required for Des
ription. Des
ription implements�elds for id, des
ription text, keywords and synonyms. When sear
hing the databaseusing a keyword, it is sear
hed against Des
ription.The 
ore data model for FunGIMS extended the FuGE data model by in
luding additional
lasses to FunGIMS, all of whi
h all inherited from Identifiable. These 
lasses in
ludeNote, File and Relationship. Note is a free text �eld that allows a user to add free textnotes to an entry. More than one Note may be asso
iated with a unique Identifiableentry. File is a 
lass that 
aters for any �les uploaded by the user su
h as proteinmodels, do
uments or sequen
es. One File obje
t is linked to one Identifiable obje
t.Relationship is a 
lass used to link two Identifiable entries. This relationship is eitheruser generated or automati
ally generated from the parsed data. Ea
h spe
i�
 moduleextends the FunGIMS data model further and by inheriting from the Identifiable
lass, allows a 
onsistent data model to be maintained. FunGIMS 
urrently implementsthe following main data type 
lasses: Stru
ture, Sequen
e, MedlineReferen
e andCompound. The spe
i�
 data model used for the Stru
tural module will be dis
ussedin se
tion 2.5.2. The information in Identifiable was also used by SQLAl
hemy to
reate groups of tables in the data model that 
ontains only a 
ertain data type usingpolymorphi
 identity joins (
reating one obje
t by joining di�erent sub
lasses from thedatabase).

 
 
 



Chapter 2. FunGIMS Design and Implementation 45The TurboGears user tra
king/validation data model was used to allow the login of usersand to maintain session ids during usage. TurboGears employs a set of tables for usersand groups and allows users to belong to more than one group. When a user logs in,they are validated against this data model. When retrieving data belonging to a 
ertaingroup, the group table is 
he
ked to assess whether a user may see the data. A uniquesession id is generated every time a user logs in and this allows the user to remain loggedin to the system for a set amount of time (default is 20 minutes).
2.5. Stru
tural Module2.5.1. OverviewThe Stru
tural module 
aters for all protein stru
ture data. It allows the user to inves-tigate the protein stru
tures, to 
ondu
t analysis on the protein sequen
es and stru
tureand to generate simulation s
ripts for proteins. The design of the Stru
tural module wasbased on the MVC design as shown and used in the rest of FunGIMS. This allows for anextensible and easily upgradable system and further allows for a maintainable 
ode base.The vast majority of the data in the Stru
tural module is parsed from the MSD dis
ussedin Chapter 1. Most protein stru
ture data is represented in a standard 
olumn-based for-mat known as the PDB format (http://www.pdb.org/do
s.html). This text format pro-vides stru
tural and administrative information about the protein as well as the Cartesian
oordinates of every atom in the protein. Figure 2.5 shows the 
olumn layout and anexample of the latest PDB �le format.2.5.2. Data ModelThe main data model used for the Stru
tural module is based on the MSD (Boutselakiset al., 2003) from the EBI at Cambridge. The MSD provides a very extensive data modelto deal with protein stru
ture data. All the data are parsed from PDB and are also linkedto primary sequen
e providers su
h as GenBank.

 
 
 



Chapter 2. FunGIMS Design and Implementation 461234567890123456789012345678901234567890123456789012345678901234567890...ATOM 66 N VAL A 14 22.866 0.219 42.591 1.00 20.77 NATOM 67 CA VAL A 14 21.639 -0.157 43.253 1.00 26.59 CATOM 68 C VAL A 14 20.898 1.039 43.832 1.00 43.97 CATOM 69 O VAL A 14 19.894 0.894 44.535 1.00 44.07 OATOM 70 CB VAL A 14 21.834 -1.310 44.228 1.00 29.30 CATOM 71 CG1 VAL A 14 22.197 -2.582 43.471 1.00 28.10 CATOM 72 CG2 VAL A 14 23.022 -0.961 45.095 1.00 36.14 C...COLUMNS DATA TYPE FIELD DEFINITION1 - 6 Re
ord name �ATOM � Re
ord name7 -11 Integer serial Atom serial number13-16 Atom name Atom name17 Chara
ter altLo
 Alternate lo
ation indi
ator18-20 Residue name resName Residue name22 Chara
ter 
hainID Chain identifier23-26 Integer resSeq Residue sequen
e number27 AChar iCode Code for insertion of residues31-38 Real(8.3) x Orthogonal 
oordinates for X in Angstroms39-46 Real(8.3) y Orthogonal 
oordinates for Y in Angstroms47-54 Real(8.3) z Orthogonal 
oordinates for Z in Angstroms55-60 Real(6.2) o

upan
y O

upan
y61-66 Real(6.2) tempFa
tor Temperature fa
tor77-78 LString(2) element Element symbol, right-justified79-80 LString(2) 
harge Charge on the atomFigure 2.5: Top: A protein stru
ture �le example (Valine residue 14 from 1eye.pdb). Bottom:the PDB �le format spe
i�
ation for ATOM entries.The MSD data model tries to provide a logi
al view of protein stru
ture. It is orga-nized into one main entity (Stru
ture) that 
onsists of 6 sub-entities (A
tive Sites,Se
ondary Stru
ture, External Database Links, Header, Taxonomy and Ligands).Ea
h of these sub-entities are divided into logi
al groups e.g. Header is made up of ta-bles 
ontaining information on authors, keywords, X-ray data, et
. In this fashion ea
hsub-entity 
ontains di�erent levels of information. What makes MSD unique and di�erentfrom the PDB is that for every di�erent feature in MSD, detailed data are available e.g.for every protein atom, the binding order, predi
ted atom valen
e, atom type, residue it

 
 
 



Chapter 2. FunGIMS Design and Implementation 47

Figure 2.6: The relationship between the Stru
ture obje
t and the FuGE data model.Identifiable is the main data obje
t in FuGE. Des
ription provides some additional dataabout Identifiable. The Stru
ture obje
t inherits from Identifiable and thus also hasDes
ription data.belongs to, other atoms it makes 
onta
t with, et
. This makes it one of the most 
ompletestru
ture databases 
urrently available. A 
omplete user-friendly web a

essible front endto MSD has been written and is a

essible at the EBI's website.The MSD data model (�gure 1.2) was extensively modi�ed before being in
orporated intoFunGIMS. The Stru
tural module data model 
onsists of the following 
lasses: Residue,Helix, Sheet, Strand, Turn, Se
ondarySummary, Tstru
, Chain, PfamInt, S
opInt, Go,E
,CathInt, SwissprotInt and Interpro. All the 
lasses inherit from Stru
ture eitherdire
tly or indire
tly from another 
lass. The data extra
ted and stored from MSD arePDB entry information (Stru
ture), protein se
ondary stru
ture (Se
ondarySummary)in
luding α-heli
es (Helix), β-strands (Strand), β-sheets (Sheet) and β-turns (Turn),protein fold (Tstru
) information from CATH (CathInt) and SCOP (S
opInt), protein
lassi�
ation information from GO (Go), Interpro (Interpro), Pfam (PfamInt) and Swis-sprot (SwissprotInt) as well as EC numbers (E
). Information su
h as the energy types

 
 
 



Chapter 2. FunGIMS Design and Implementation 48of ea
h atom and atom types were not extra
ted, as the Stru
tural module only 
aters fora higher level of protein stru
ture. A se
ond set of s
ripts was then run on the MSD datato extra
t basi
 relationships between data types su
h as linking the Pubmed id witha protein entry and these were stored in the Relationship 
lass. Stored relationshipsare between the protein, Swissprot and GO numbers as well as between the protein andPubmed. All these generated links were also added to the FunGIMS database. Se
tion2.5.2.1 dis
usses other data sour
es. Most data relating to the detail su
h as atoms,residue planarity and energy types were omitted. This was due to the fa
t that theStru
tural module provides a basi
 introdu
tion to a stru
ture. Its main purpose is forexploratory analysis and investigation.The FunGIMS stru
ture data model was 
onstru
ted to 
losely represent the a
tual stru
-ture levels in a protein in a top down fashion. This ensures that a protein model 
anbe browsed by starting with the assembly, followed by the lo
al fold, the 
hain spe
i�
se
ondary stru
ture and �nally by residue data (Figs. 2.6, 2.8 and 2.7).2.5.2.1. Data Sour
esThe majority of the data in the Stru
ture module, and also FunGIMS, are derived andparsed from publi
 databases su
h as the PDB, GenBank and SwissProt. In the 
ase ofthe Stru
ture module, Python s
ripts were used to parse the �at �le format of MSD andto add the data to the FunGIMS database.FunGIMS also 
aters for user-generated data. In the Stru
ture module spe
i�
ally,user-generated data makes up a very small portion of the stored data. This is due to thefa
t that a model that a user generates will not be parsed and stored in the databaseas there is no experimental validation of the stru
ture. All generated modelling s
riptsand models will be stored as �les belonging to a spe
i�
 user and group should the user
hoose to save the �les.2.5.3. Fun
tionalitiesThe Stru
tural module has various di�erent fun
tionalities. A user 
an investigate a pro-tein stru
ture and retrieve information about stru
tural elements, perform motif sear
hes

 
 
 



Chapter 2. FunGIMS Design and Implementation 49and stru
tural analysis on a protein sequen
e, generate homology models or generates
ripts for modelling and mole
ular dynami
s. Ea
h of these features will be dis
ussedseparately. For the �rst release of the Stru
tural module it was de
ided to in
lude toolsthat are often used by biologists and some tools that are less used but equally valuableand that 
an provide new insights into their work. The design of FunGIMS and theStru
tural module allows for the easy addition of new tools by programmers.The browser-based mole
ular viewer known as Jmol (http://jmol.sour
eforge.net) is oneof the features that makes the Stru
tural module very useful. Jmol is a Java-basedthree dimensional mole
ular view that 
an run inside a browser as a Java applet. Ituses software to render the proteins and thus does not need expensive hardware su
has graphi
s 
ards. Jmol was spe
i�
ally written to allow protein stru
ture �les to bedisplayed and manipulated inside browsers. The user 
an rotate the protein, zoom in,sele
t di�erent representations of the protein, and various other mis
ellaneous fun
tions.Jmol 
an also be run as a standalone Java appli
ation, whi
h allows users to downloadthe protein �les and work with them in a familiar environment.In the Stru
tural module, Python is used to parse the data su
h as residue start and endnumbers in a turn or helix, and then use this data to generate buttons whi
h 
ontrolsvarious Jmol representations.2.5.3.1. Stru
tural Data RepresentationThe Stru
tural module in
ludes all stru
tural data su
h as primary stru
ture, se
ondarystru
ture, tertiary stru
ture and atomi
 
oordinates. The �rst view a user would seewhen querying a protein is the primary sequen
e data. This in
ludes the sequen
e of theprotein, the name of the protein and other data parsed from the header su
h as resolution(Fig. 2.9). The primary view also shows any notes added to the spe
i�
 protein as wellas an atom representation (based on the 
oordinates in the 
rystallized stru
ture) of theprotein loaded into Jmol.From the primary view the user 
an navigate to the se
ondary and tertiary stru
tureviews. The main se
ondary view 
ontains a summary of all the se
ondary stru
turefeatures found in ea
h 
hain in the protein and provides links to a more detailed view

 
 
 



Chapter 2. FunGIMS Design and Implementation 50of ea
h feature. When a spe
i�
 
hain is sele
ted, it takes the user to a summary of these
ondary stru
tural features for that spe
i�
 
hain (Fig. 2.10). This in
ludes data on
α-heli
es, β-strands, sheets, turns and other 
hain features.A user 
an also see a summary of all the strands in a spe
i�
 protein 
hain by 
li
king onthe strand link in the se
ondary stru
ture summary (Fig. 2.11). This will provide a pagewith a summary of the strands found in the protein 
hain together with their position,length and sheet id as 
lassi�ed in the MSD. A 
artoon representation is presented inJmol and buttons are provided to sele
t the spe
i�
 strands. These buttons are notalways 100% a

urate as Jmol interprets residue numbers di�erently than those foundin the MSD due to missing residues in the protein 
rystal stru
ture. This is due to thefa
t that sometimes part of the protein does not 
rystallize or only a trun
ated peptidewas used. Thus, those residues do not get used when assigning numbers to the residuesfound in the 
rystal stru
ture. A user 
an also sele
t the sheet link and see the numberof sheets in a protein stru
ture.A user 
an also a

ess data about the α-heli
es in the protein 
hain (Fig. 2.12) fromthe se
ondary stru
ture summary. This view gives an overview of the number of heli
esas well as their length, start and end residue numbers. A 
artoon representation is alsodisplayed with Jmol buttons for highlighting the heli
es. Information about β-strandsand β-sheets 
an also be a

essed from the se
ondary stru
ture summary.Information about all the turns in a protein 
an also be a

essed from the se
ondarystru
ture summary page. This option presents a user with a table of all the turns thato

ur in the protein as well as the turn type and 
lass, start residue, end residue and aJmol representation with Jmol buttons to sele
t all the turns (Fig. 2.13).In addition to the se
ondary stru
ture summary, a user 
an also a

ess information aboutthe tertiary stru
ture of the protein (Fig. 2.14). This view in
ludes the Pfam (Finn et al.,2006), CATH (Pearl et al., 2005), SCOP (Conte et al., 2000), GO (Ashburner et al., 2000)and Interpro id's (Zdobnov and Apweiler, 2001) asso
iated with ea
h 
hain. On
e againJmol is also present but in this 
ase the protein is shown in a ribbon representation
oloured by 
hain.

 
 
 



Chapter 2. FunGIMS Design and Implementation 51The Stru
tural module of FunGIMS 
ontains tools related to se
ondary and tertiarystru
ture as well as protein sequen
e feature predi
tion. Although the database (seese
tion 2.5.2.1) provides most of the stru
turally derived data, a user may want to do are-analysis of a stru
ture or use the tools to analyze a new stru
ture or model or proteinsequen
e. At the time of writing, only X-ray data was supported. The stru
tural module
an be divided into roughly two parts, a stru
tural data part and a analysis tools part.

 
 
 



Chapter 2. FunGIMS Design and Implementation 52

Figure 2.7: The relationship between di�erent se
ondary stru
tures in a 
hain and the residuesin a protein. This provides the 
learest example of how the data model organization followsthe logi
al, hierar
hi
al organization seen in a protein stru
ture. Ea
h se
ondary stru
ture(se
_stru
) obje
t has several features su
h as a helix or a strand or a turn. And ea
h ofthese spe
i�
 se
ondary stru
tural features also 
onsists of a residue thus following the inherentlogi
 in a protein stru
ture. Due to the levels of inheritan
e, ea
h residue obje
t still has anidentifiable and des
ription obje
t asso
iated with it.

 
 
 



Chapter 2. FunGIMS Design and Implementation 53

Figure 2.8: The data model for the high level Stru
ture 
lass. A Stru
ture entry is linked toits referen
e (Pubmed) as well to high level 
lassi�ers su
h as Interpro and GO. The di�erentorganization levels 
an be seen 
learly e.g. a Stru
ture 
onsists of one/many Chain obje
ts andea
h Stru
ture obje
t also has other high level features su
h as a SwissProt id (swissprotid).
2.5.3.2. Data AnalysisThe se
ond part of the stru
tural module is the data analysis tools (Fig. 2.15). Thisprovides web interfa
es to some 
ommonly used tools in protein stru
tural analysis. Allthese tools are external programs that are 
alled using Python 2.4 system 
alls, and the

 
 
 



Chapter 2. FunGIMS Design and Implementation 54

Figure 2.9: The primary view when a user views a protein. Note the general FunGIMS featurewhere an entry 
an be annotated by a note.results are displayed to the user. Ea
h program has a unique s
ript lo
ated in the utilsfolder of the FunGIMS.Users are able to analyze a protein sequen
e using these tools. The tools 
urrentlyimplemented in the Stru
tural module are:
• Hmmer sear
h against Pfam - Hmmer is a hidden markov model-based (HMM) sear
htool that tries to identify a protein sequen
e by mat
hing it to a database of proteinfamilies (Finn et al., 2006). Hmmer takes the sequen
e, an E-value 
ut-o� and adatabase to sear
h against. The output 
ontains a list of families that mat
hes theuser submitted sequen
e. It also in
ludes 
on�den
e values for every hit found to aprotein family. The hmmer.py s
ript in utils is used.
• TMHMM - TMHMM is a HMM-based tool for sear
hing for transmembrane heli
esbased on the amino a
id sequen
e found in a protein sequen
e (Sonnhammer et al.,1998). It takes a protein sequen
e as input and produ
es a graph showing whi
h areas

 
 
 



Chapter 2. FunGIMS Design and Implementation 55

Figure 2.10: The 
hain summary view for a spe
i�
 
hain in a protein.are predi
ted to 
ontain transmembrane heli
es. The tmhmm.py s
ript in utils isused.
• S-TMHMM - This tool tries to predi
t the topology (inside/outside) of any transmem-brane heli
es found in a protein sequen
e (Viklund and Elofsson, 2004). It takes aprotein sequen
e as input and produ
es a table showing the probability of ea
h residuebeing inside or outside the membrane. The stmhmm.py s
ript in utils is used.
• Prosite - Prosite is a database of protein motifs (de Castro et al., 2006). These in
ludeshort motifs su
h as gly
osylation sites as well as longer motifs that 
an identify aspe
i�
 protein family. To sear
h Prosite, the ps_s
an.pl s
ript from the EBI is used.Using a protein sequen
e as input, it produ
es a list of motifs found in the protein.Flags 
an be set to ex
lude motifs with a high probability of o

urren
e, but this hasnot been implemented in the Stru
tural module. The prosite.py s
ript in utils isused.
• PROCHECK - This allows a user to 
he
k a protein stru
ture �le for any abnormalstru
tural errors (Laskowski et al., 1993). The 
he
ks are based on a set of normal

 
 
 



Chapter 2. FunGIMS Design and Implementation 56

Figure 2.11: The strand summary page for a protein 
hain.stru
tural parameters derived from the PDB. The input is a protein 
oordinate �leand it produ
es a set of ten �les that in
lude Rama
handran plots, graphs plottingthe deviation of ea
h amino a
id type from normal as well as a summary. In theStru
tural module the user 
an download ea
h �le for later use. The pro
he
k.pys
ript in utils is used.
• WHAT IF - WHAT IF is a 
omprehensive set of tools for mole
ular modelling and foranalyzing proteins in their native environments (Vriend, 1990). The stru
ture 
he
kingtool was implemented in the Stru
tural module and this does a range of 
he
ks on asubmitted protein �le to identify possible errors and warnings. It produ
es a detailedreport on the stru
ture analysis that the user 
an download. The whatif.py s
riptin utils is used.
• DSSP - This program 
al
ulates se
ondary stru
ture based on the 
oordinates of theatoms in a PDB �le (Kabs
h and Sander, 1983). The program takes a pdb �le asinput and produ
es a report that gives the se
ondary stru
ture of ea
h amino a
id.The dssp.py s
ript in utils is used.

 
 
 



Chapter 2. FunGIMS Design and Implementation 57

Figure 2.12: The α-helix summary view for a protein 
hain.All these tools a

ept either a �le or a sequen
e from the user. The sele
ted tool is thenrun via a tool-spe
i�
 Python s
ript, whi
h thereafter uses Python system 
alls to runthe appropriate tool on the sequen
e or �le. The s
ripts for ea
h tool are saved under theutils dire
tory. All the results are saved on disk during the session. The results are alsodisplayed to the user and the option to save the results to a 
ertain group is available.Figures 2.16, 2.17 and 2.18 show the results from an analysis run of TMHMM, Hmmeragainst Pfam and a PROCHECK analysis.2.5.3.3. Modelling and Mole
ular Dynami
sThe third se
tion of the Stru
tural module has fun
tions that allow the user to generates
ripts for homology modelling and mole
ular dynami
s (Fig. 2.15) and build models.For protein homology modelling the user has a 
hoi
e between two programs, Modeller(Fiser and Sali, 2003) and WHAT IF (Vriend, 1990). The module will ask for the relevantinformation, pass it to the spe
i�
 s
ript lo
ated in the utils folder, and produ
e a s
ript,using Python, whi
h the user 
an download and run on his or her lo
al ma
hine. This

 
 
 



Chapter 2. FunGIMS Design and Implementation 58

Figure 2.13: The summary view for all the turns that o

ur in a protein 
hain.pre
ludes the user having to a
tually set up and understand the s
ripts and s
riptinglanguage. In addition to the modelling s
ripts, the user may also de
ide to 
onstru
t amodel using the automati
 method in the Stru
tural module (Fig. 2.20). The user entersa template PDB id, target name, target sequen
e and re�nement level. This will bepassed to Modeller (version 9v1), whi
h will perform an automati
 alignment of the twosequen
es and then pro
eed to build a model. Currently the automated modelling pro
essuses the �rst 
hain in a multi-
hain protein as a template. When the model is ready, theuser is alerted and presented with a page to download the model, modelling s
ript andalignment �le. A drawba
k of the automated modelling is the automated alignmentperformed by Modeller. When the sequen
es display a high identity, alignment is easyand should be a

urate. However in lower identity ranges (less than 40%), automatedalignment is not as a

urate and it is advisable to do the alignment with manual 
urationof the results.The module 
an also generate basi
 s
ripts, using Python, for three di�erent mole
ulardynami
s suites, (NAMD (Phillips et al., 2005), CHARMM (Brooks et al., 1983) and

 
 
 



Chapter 2. FunGIMS Design and Implementation 59

Figure 2.14: The tertiary stru
ture view of a protein. This shows information for the 
ompleteprotein 
omplex.Yasara (http://www.yasara.
om) given user input. The dynami
s se
tion only supportss
ript generation, not running the a
tual simulations as this is extremely resour
e in-tensive. This allows the user to fo
us on the resear
h questions without the need forte
hni
al knowledge. Figure 2.20 shows the interfa
e for the mole
ular dynami
s s
riptgeneration se
tion. The mole
ular dynami
s s
ripts will need further editing dependingon the mole
ule the user wants to investigate and the type of dynami
s. All the modellingfun
tionalities are lo
ated in the utils folder and the modelling.py s
ript is used. Fordynami
s the dynami
s.py s
ript in utils is used. While validated homology programsare used, the quality of a model is determined by various fa
tors su
h as template reso-lution, template-target alignment and the spe
i�
 algorithm used.The running of simulations in a UNIX environment will still require some skills and UNIXknowledge but an IT support person should be able to assist with the installation of theprograms. The interpretation of the dynami
s results are up to the user as automatedanalysis is not really a possibility yet. The intent is to provide the user with basi
 a

ess

 
 
 



Chapter 2. FunGIMS Design and Implementation 60

Figure 2.15: The di�erent tools available in the Stru
tural module. Shown are the input (userand FunGIMS supplied) required for ea
h of the tools, the spe
i�
 method 
alled in the utilsfolder as well as the type of output the tool generates.to mole
ular dynami
s fun
tionality but guidan
e in the interpretation of the results is
urrently outside the s
ope of the system. It is always re
ommended that the user 
onsultsuitable literature when engaging in any form of advan
ed simulations.2.5.3.4. Help Se
tionFunGIMS was designed to assist biologists to 
ondu
t faster and easier analysis andexploration of data. To further this goal, a help page is provided for ea
h fun
tion in theStru
tural module. This 
an be a

essed by 
li
king on the link found on ea
h page. Toin
rease visibility it has been labeled in red. Figure 2.19 shows a typi
al result when auser 
li
ked on a help link for a spe
i�
 fun
tion. The help link provides a brief synopsis

 
 
 



Chapter 2. FunGIMS Design and Implementation 61

Figure 2.16: The results from a transmembrane helix predi
tion on a submitted protein sequen
e.The drop-down menu allows the user to save the results to a spe
i�
 group.of the tool and the inputs required, as well as the output a user might expe
t when thetool runs su

essfully.2.5.3.5. Con�gurationThe Stru
tural module relies on various external programs to provide analysis methods.Installation lo
ations and exe
ution of these programs usually di�er between ma
hinesand programs. To over
ome this, a 
on�guration �le (utils/
onfig.py) was 
reatedthat stores all the program spe
i�
 settings. This �le 
an be edited by hand to 
hangeprogram properties. For ea
h program the following properties are spe
i�ed: the pathto the program (exe
utable �le), a program-spe
i�
 temporary dire
tory for output, andother program spe
i�
 parameters and settings. These programs are then 
alled frominside the Stru
tural module simply by referen
ing these variables. This makes systemadministration far easier as program settings have only to be spe
i�ed and 
hanged inone �le.

 
 
 



Chapter 2. FunGIMS Design and Implementation 62

Figure 2.17: The results from a Hmmer sear
h a
ross Pfam using the stru
tural module.2.6. Future Improvements2.6.1. FunGIMSA system su
h as FunGIMS is in a 
onstant �ux of development. FunGIMS was designedto allow for the easy addition of new tools and features. There are a number of areas that
an be improved upon, the database being one of them. Database table optimizationwould allow for queries to be dealt with faster. Distributed databases would lessenthe load on the server when the database size in
reases signi�
antly. In the 
urrentimplementation of FunGIMS, the database size presented some 
hallenges and smartindexing of often-queried 
olumns in tables resulted in a de
rease in query time. Thedatabase should also be expanded to in
lude more detailed data types su
h as protein
hip array data.Furthermore, smart �le re
ognition and improved �le parsers would enable the user toupload a �le, allow FunGIMS to parse it entirely and then insert the data into the

 
 
 



Chapter 2. FunGIMS Design and Implementation 63

Figure 2.18: The results from a PROCHECK analysis run on PDB 1EYE.database, not merely as a �le but as a full data type. This allows queries to be morea

urate as uploaded �les will be parsed and stored in a data type spe
i�
 manner.Automati
 link generation between entries would be another major bene�t to FunGIMS.Currently links between entries are generated when the database is �rst populated withpubli
 data and when a user links to entries with a note. Automati
 link generation wouldnavigate free text �elds, notes and des
ription text and then 
reate the appropriate links.This automati
 link generation tool should run on a daily basis so that links are alwaysup to date.2.6.2. Stru
tural ModuleIn addition to the improvements to FunGIMS mentioned in the previous se
tion, theStru
tural module also has some possible improvements.More analysis methods 
an be in
luded for di�erent features. Tools su
h as 
onsensus se
-

 
 
 



Chapter 2. FunGIMS Design and Implementation 64

Figure 2.19: The help se
tion for the Investigate se
tion. Ea
h fun
tion has its own help se
tionon the Help page.ondary stru
ture predi
tion, protein export signal predi
tion and other protein sequen
eanalysis tools will be a bene�t to the system.The most improvement is probably in the modelling and simulation se
tion. The 
urrents
ripts 
an be modi�ed to in
lude modelling on the sele
ted 
hain of a protein, on multipletemplates as well as in
luding ligands in the modelling pro
ess. A feature 
ould alsobe implemented to use alignments provided by the user. More simulation s
ripts withdi�erent parameters and environments 
ould also possibly be added. A possible addition
ould be the implementation of a module whereby a user 
an start a simulation on a
luster or another 
omputer while being able to 
ontrol it from the FunGIMS system.This will allow the user to run simulations on various ma
hines without needing thete
hni
al knowledge.There is s
ope for the improvement of the user interfa
e of the Stru
tural module. Jmolbuttons for se
ondary stru
ture elements 
an be made more a

urate. In addition avisualization library 
an also be in
luded to generate s
alable images of a summary of

 
 
 



Chapter 2. FunGIMS Design and Implementation 65the se
ondary stru
ture elements found in a protein and present them to the user ina downloadable format. A useful improvement would be s
ripts that fa
ilitate a moreautomati
 update of the database as soon as the data sour
es used, are updated. Thiswould lessen the load on the site administrator and would keep the database up to date.2.7. Con
lusionFunGIMS 
onsists of various modules dedi
ated to di�erent data types. The Stru
turalmodule 
urrently provides fun
tions to explore stru
tural data for a spe
i�
 protein, 
on-du
t analysis on a user-submitted protein stru
ture, in
luding analysis su
h as transmem-brane helix predi
tion, Prosite motif sear
h and also allows the user to 
reate homologymodelling and mole
ular dynami
s s
ripts. The appli
ation of the Stru
tural module tovarious problems in FMDV will be dis
ussed in the next three 
hapters.

 
 
 



Chapter 2. FunGIMS Design and Implementation 66

Figure 2.20: Top: The automated modelling interfa
e when building a model using Modeller.The user 
an de
ide to generate homology modelling s
ripts for Modeller or WHAT IF. Bottom:The mole
ular dynami
s s
ript-generating interfa
e. Users 
an sele
t between the di�erentprograms from the drop-down menu in the form.

 
 
 


	Front
	Chapter 1
	CHAPTER 2
	2.1 Overview
	2.2 FunGIMS design and technologies
	2.3 FunGIMS core functionalities
	2.4 FunGIMS data model
	2.5 Structural module
	2.6 Future improvements
	2.7 Conclusions

	Chapter 3
	Chapter 4
	Chapters 5-6
	Back



