e

UNIVERSITEIT VAN P
UNIVERSITY OF PR
P

W YUNIBESITHI YA PRE

RETO
E I
I

R
TOR
TOR

= 3= 3=

30

Chapter 2

FunGIMS Design and Implementation

2.1. Overview

The FunGIMS (Functional Genomics Information Management System) is a web-based
system designed to integrate most of the major data types that a researcher might en-
counter in a modern functional genomics experiment. These data types include sequence
data, protein structure data, microarray data, small molecule data and literature data.
In addition, it also provides online access to some of the more commonly used tools in
each of the data type subsections. This allows the user access to data and analysis tools
in one, centralized location as well as providing storage for the data generated by the

analysis tools in FunGIMS.

The following sections will discuss the technologies used in FunGIMS as well as the design

process and the data model used.

2.2. FunGIMS Design and Technologies

During the design phase of FunGIMS, every effort was made to find the most appropriate
technologies for each section of the project. Every section involved exhaustive investiga-
tions and testing of the options currently provided by software manufacturers. Important
decisions such as a specific programming language, were only made after extensive re-
search into the support provided and the ability to allow the programmer to do a specific

job.

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 31

= 3= 3=

2.2.1. Technologies

For the success of a large project such as FunGIMS, various technologies are needed
to work in unison to produce the final outcome. FKEach of these technologies will be
discussed shortly in the following few sections. For the programming languages, Java
and Python were investigated extensively as well as the availability of software packages
which allow for interaction with databases. Different language-dependant web frame-
works were also investigated. These included JBoss, TurboGears, Java Struts and cus-
tom Python scripts on top of a CherryPy server or Apache web server. The ability of a
language to interact with databases and facilitate easy data persistence led to investiga-
tions into Java Beans, Hibernate, SQLODbject and SQLAlchemy. Architectures such as
the Model-View-Controller and Server-Client designs were investigated to find the most
suitable option for delivering data and interactivity to users. In the software world it is
important to choose your technologies wisely due to the rapid rate of new developments
and the decline of once-popular software. The following sections will discuss the choices

made for each of the technology aspects of the project.

2.2.1.1. Python

The programming language chosen for this project was Python (http://python.org).
Python has been developed by Guido van Rossum since 1991 and is a mature and stable
development language. This maturity has led to it being used by the biggest search engine
company at the moment, Google (http://www.google.com), on a wide range of services.
The widespread use of Python and the ease with which it is learned has resulted in an
extremely wide code base that caters for a vast amount of functionalities. In the last
few years Python was used in developing games such as Civilization IV (Firaxis Games,
http://www.2kgames.com /civ4 /home.htm), high performance scientific computing pack-
ages (NumPy, http://numpy.scipy.org; SciPy, http://www.scipy.org), web development
platforms (TurboGears, http://www.turbogears.org; Pylons, http://pylonshq.com), movie
animations (Blender3D, http://www.blender.org) and being supported in commercial sci-
entific packages such as Discovery Studio IT (Accelrys Inc.). Python was chosen due to

its stability, ease-of-use and multitude of packages.

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 32

= 3= 3=

Python is also widely used in Bioinformatics due to its ease of use. Examples over and
above scripting include: PySCeS (Olivier et al., 2005) that is used very successfully in
modelling the kinetics and substrate flow through enzymatic pathways (Uys et al., 2006),
PyMol (http://pymol.sourceforge.net) that is a very successful open source python-based
3D protein structure viewer, and PyQuante (http://pyquante.sourceforge.net/) when do-

ing quantum mechanics.

2.2.1.2. Web Development Framework

For FunGIMS it was decided to use the TurboGears web development platform. Turbo-
Gears is mature, well developed and written in Python and allows for development of
projects using all the possibilities provided by the Python language. Development in Tur-
boGears takes some time to master but should a person have previous Python program-
ming skills, the process is far quicker. TurboGears is based on the Model-View-Controller
architecture (see section 2.2.2) and uses various other packages to perform the different
functions. The use of Python and the MVC architecture in TurboGears made it the
perfect choice for FunGIMS, which uses the same technologies and thus allows for easy

integration. Figure 2.1 shows a diagrammatic layout of the functioning of TurboGears.

2.2.1.3. Object-Relational Mapper

Often a time consuming step in programming is constructing code to represent the data
queried from a database. To overcome this problem, Object-Relational Mapping (ORM)
was developed. This is a method whereby a query to a relational database can be rep-
resented in an object-orientated way in the code. The programmer defines all the tables
in the database using code and also defines classes for working with the tables. The
ORM then uses this information to transparently connect to the database, and provide
the programmer with access to the data using the predefined classes. The ORM also
provides some methods, native to the database, as normal methods owned by the classes.
Thus the programmer does not have to learn the syntax needed to manage the database
natively, only the concepts need to be known. These methods allow the programmer to

continue programming in the same style, without the need to write his own mapper be-

e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 33
; web
Machikit runs in browser — ‘ il «—»| server
| JavaScript Code sl indad software
(- - ———

{could be
CherryPy's
included
server)

incoming request

g Your

) controller
direct JSON output code

/ output

a

Your ! %RBO

empratas Your model
objects

:

s

How it
all fits
together

Your database

Figure 2.1: A schematic representation of how the different parts work together in TurboGears
(http://docs.turbogears.org/1.0/GettingStarted /BigPicture). The user makes a request for data
in the browser. This request gets directed by the controller to the model. The ORM then
connects to the database, retrieves the data and returns it to the controller. The controller then
provides the data to the appropriate template, which is served up as HI'ML code to the user’s
browser.

tween the database and the program. For FunGIMS it was decided to use SQLAlchemy
(http://www.sqlalchemy.org). SQLAlchemy is supported in TurboGears and uses the
model.py file to define the database, link the tables in the database to code classes
and implement data class specific methods. SQLAlchemy was chosen in preference to
SQLODbject as it provided more advanced functions such as polymorphic joins and class
creation via introspection of the database. At the time of writing, SQLAlchemy was also
slated to become the default ORM for the TurboGears project. It was decided to use
MySQL (http://mysql.org) as the relational database for FunGIMS. This was chosen the
preferred choice rather than PostgreSQL as SQLAlchemy provided slightly better support

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 34

= 3= 3=

for MySQL than for PostgreSQL when the project was started. Most of the developers
also had more exposure to MySQL than PostgreSQL. MySQL provides a way to store
vast amounts of data, while providing extremely fast search access to the data. All the
data are stored in rows in user-defined tables, and a user can search over all fields in the

tables. This provides a very powerful way of storing and querying data.

2.2.1.4. Version Control

In a project of this scope, version control is essential. Version control provides a way
for the system to be backed up in increments as each part of the system changes. A
developer can check out a certain part of code, work on it and then check it back into
the system. The system then checks whether there was any conflict in the code, and
store the changes made to the code. It also tracks the changes each developer makes
as well as any changes to files. Furthermore, it prevents changes made by the different
developers on the same piece of code to be checked in prior to validation thereof. An
essential feature is the ability to rollback changes made to the system. It was decided

to use Subversion (http://subversion.tigris.org) for this project rather than Concurrent

Version System (CVS).

2.2.1.5. Templating Language

Web browsers display pages written in HyperText Markup Language (HTML). HTML
uses a static code to represent items on a web page. To overcome the static element
of HTML, programmers developed templating languages. These languages allow a pro-
grammer to generate static HI'ML content based on decisions made by the algorithm or
program or even based on user input. The Kid templating system (http://www.kid.org)
was used for FunGIMS. Kid is a templating system that is based on eXtensible Markup
Language (XML), of which HTML is a derivative, and allows for the incorporation of
Python code in the template. KID will take the XML template and the data provided by

the controller, combine it and render it into HI'ML that is then sent to the web server.

The user will then see the page as normal HTML in his browser.

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 35

= 3= 3=

2.2.2. Development and Design

The design of a large system such as FunGIMS is a complex task and requires careful de-
velopment and planning to prevent a cluttered and complex code base. This is especially
important when there are multiple programmers working on a project and coordination
between them is vital. The first step in planning such a project is to identify the potential
users and analyze their requirements. These requirements must then be implemented in
a logical way to benefit the user. The programming task must also be divided amongst

the programmers to speed up development.

As a first step, the use of object-orientated programming was implemented. This results in
code blocks that can be reused throughout the project and facilitates faster development.
A Model-View-Controller architecture was also followed (Fig. 2.2) for the software design
of FunGIMS. This architecture separates a project into three different sections on the basis

of the function of each section:

e Model - this contains all the code necessary for the storage of results and managing
the database back end as well as handling queries to the database.

e View - this section contains all the code used in displaying results/output from the
system. It contains mostly templates and usually contains very little logic code.

e Controller - this is the section in which all the functionality and the majority of the
code resides. All the decision making processes in the system are stored here, and it
controls input and output to the model and view. It “controls” the entire system and

directs traffic and requests to the appropriate subcontrollers.

Following the MVC architecture, the project was divided into three sections namely
model.py, controller.py and a folder for all the templates entitled templates. These
are each discussed in more detail in sections 2.2.2.1, 2.2.2.2 and 2.2.2.3. In Figure 2.3 the
overall design and implementation of the MVC architecture in FunGIMS is shown. This

high level overview provides a clear depiction of how each part of FunGIMS fits together.

e

UMIVERSITEIT VAN P
UNIVERSITY OF PR
P

W YTUNIBESITHI YA RE
Chapter 2. FunGIMS Design and Implementation 36

v

RETORI
ETORI
TORI

= 3= 3=

View <> Controller

MVC system

Figure 2.2: The Model-View-Controller (MVC) architecture. The Model contains the data
model needed by the ORM to interact with the database. The View contain all the templates
needed to display the data and the Controller controls and handles all communication between
the Model and the View. The controller also calls any external programs that are needed.

During the development process, the spiral development methodology was followed. This
methodology is based upon small improvements and step-wise additions of features, fol-
lowed by rapid deployment and testing of the new features. This cycle is repeated as
each new feature or functionality is added. The advantage of this methodology is that
errors in the code and feedback from the users can be corrected and implemented quickly,
which results in less effort compared to corrected errors in a project where the release
and testing cycle is longer. Most of the modules were developed in conjunction with user
input. Thus at each stage in the development, the user was consulted. The user was
asked which functionalities he wanted, where after the programmer would implement it

and the user would test it and give feedback.

During the design of FunGIMS, the usability and users of the system were always kept
in mind. This forced the coding process, and the code itself, to be far more efficient
and intelligent in the manner in which the different applications and functionalities were
implemented. A good example of this is the System ID (sid) that is assigned to every

entry of a data type. The sid should identify the specific record in such a way as to

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 37

Browser

View Browse

A
HTTP

— =

Web server

CherryPy

TurboGears

Controller

Sequence module

Literature module
* Genotyping module
© Additional modules

Web Service Interface

Model

L[Exisng |/ EBl | [NeBI |
) |_=Iat L packages i -
. [Custombuilt | | !

tools

Local data sources Local analysis tools External sources

Figure 2.3: The overall design of the FunGIMS system. The design follows the
Model-View-Controller architecture and uses TurboGears as the web development environment.
Various other modules such SQLAlIchemy provide interfaces and methods to access data and call
external programs. The View provides the interface the user sees when using the system. The
Controller controls and directs all requests within the system and the Model stores all the data.

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 38

= 3= 3=

facilitate easy use during coding, as well as for easy understanding thereof by the user.
With FunGIMS the number of records of different data types was huge. To assist users
as well as facilitate easier coding, it was decided to use a common sid format. The
format, <data type:id>, consists of a data type identifier, followed by a :, followed by a
unique number for user-generated data or the id assigned by the specific public database
e.g. PDB file leye would have the sid: pdb:leye. This identifies the record as a protein
coordinate file and uses the more well known public database id as well. The PDB is
a good example of the efficient use of a system-wide, unique id. The unique number is
generated by taking the system time, in seconds since 1 January 1970, and multiplying

it by a factor of ten million to get an integer number.

At the time of writing, FunGIMS catered for the following data type identifiers:

e seq - user generated/uploaded sequence

e ¢gi - sequence from GenBank public database

e sp - sequence from SwissProt public database

e pri - user generated primer sequence

e pdb - protein structure file from the PDB

e pmid - article from the PubMed public database
e file - user uploaded generic file

e chebi - small molecule from the ChEBI database
e note - user generated note

e blast - BLAST results file

e g0 - Gene Ontology term

e taxon - NCBI taxon term

e trace - DNA sequence chromatogram files

These data type identifiers makes it easy for the user to see which entry they are currently
working on or which entry’s results they are looking at. To make the development process
faster, each programmer was given responsibility for a module on FunGIMS, while core

modules were developed together as they were needed.

e

UNIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI

Que® YUNIBESITHI YA PRETORI
Chapter 2. FunGIMS Design and Implementation 39

= 3= 3=

Coding was not the main area where ease of use was of primary importance. Ease of use
is the most important in the user interface. Throughout FunGIMS the interfaces were
designed to be clean, intuitive and easy to use. This implies that pages do not show
unnecessary information to the user. Future releases may have the option to display
extra information contained in the relevant files. Each page is designed to show only the
information the user needs at that moment. In the case of analysis tools, the user is asked

for only the necessary information before the analysis is run.

2.2.2.1. The View

The views in FunGIMS are responsible for interacting with the user and presenting data
to him. Although the views only present data, in some instances decisions on display
items can only be made once the data is rendered or to alleviate more extensive coding
of templates. Each view is written in the Kid templating language. Each module in
FunGIMS has its own set of views and a shared subset deals with general, administrative
displays such as headers, new user registration and shared items. The view files are stored
in a separate directory (templates) and use the .kid extension. The views are compiled

to Python code as needed using just-in-time (JIT) compilation.

The view also makes use of JavaScript for some visual effects and for managing the
addition and deletion of notes through JSON, an AJAX library (Asynchronous JavaScript
and XML) used in TurboGears to connect Python functions and JavaScript. The view
also allows the inclusion of applets such as Jmol, which is used in the Structural module.

These applets allow for extra functionality in the browser.

2.2.2.2. The Controller

The controller is that part of FunGIMS that regulates all the decisions regarding flow
control. The controller decides what data must be retrieved, what data must be sent to the
view and which commands to execute with regard to the given variables. In essence, the
controller controls everything in the application. All code that make a decision resides in
the controllers. In FunGIMS the responsibility of the controller has been split to facilitate

collaborative coding as well as to decrease the amount of code residing in one main con-

e

UNIVERSITEIT VAN P

UNIVERSITY OF PRE

W YUNIBESITHI YA PRE

Chapter 2. FunGIMS Design and Implementation 40

RETO
E I
I

R
TOR
TOR

= 3= 3=

Table 2.1: The technical specifications of FunGIMS.

| Feature |
Programming Language Python 2.4
Development Framework TurboGears 1.0.2
Code Revision Control Subversion 1.2.3
HTML Templating Kid 0.9.6
Object Relational Mapping | SQLAlchemy 1.3.9
Documentation Epydoc 3.0betal
Back end Database MySQL 5.0

troller. The main controller (controller.py) in FunGIMS decides which sub-controller
(located either in the view_controllers or search_controllers folders) receives the

data and which sub-controller is responsible for executing the user’s commands.

In FunGIMS the following tasks are under the direct responsibility/control of the main

controller:

e Deciding which view to present to the user

e Managing the search functionality

e Managing user access (logging in/out) and security

e Making decisions on which analysis interface to send data to
e Upload/download of files

e Generic saving of results produced by analysis methods

e Web services

The technical specifications of FunGIMS are given in Table 2.1. The choice of language
(2.2.1.1), development platform (2.2.1.2) and other decisions have been discussed in the

relevant sections.

2.2.2.3. The Model

The model forms the basis of all the interactions between the controller and the database
in the MVC architecture. All the table definitions, table-class mappings and class-specific
methods are defined in the model.py file. This file is used by the ORM to interact with

the database and return the relevant data to the controller. The details of the data

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 41

= 3= 3=

model will be discussed in section 2.4.1. There are a few main model-related methods
that are used across FunGIMS. These include retrieving data for a specific entry while
considering security and access restrictions on the entry, deleting privately owned data

and generating new, unique identifiers for data inserted into the system.

2.3. FunGIMS Core Functionalities

FunGIMS contains a few core functionalities that are used across the board in all the
different modules. These include managing users and groups, new registrations and

searching of data.

2.3.1. User and Group Management

Common practice in laboratories is to divide people into work-related groups. This con-
cept was also used in FunGIMS to manage access to data. When starting a TurboGears
project, it provides you with default identity handlers. These are divided into users and
groups. Each user can belong to one or multiple groups. For FunGIMS this definition
was extended so that groups can also belong to other groups e.g. the different groups in
an academic department. An example would be a supervisor who wants to share data
with her students as well as between the students, but also wants her own private group.
Under the FunGIMS identity scheme this would mean that the supervisor belongs to two
groups, her own private group and the student group. This would allow the students to
share data but also allow the supervisor to have private data. It is basically a concept
of group of groups. Although this complicates the identity management, the advantages

thereof are far more than the extra effort required to program it.

In FunGIMS each data entry belongs to either a specific user or group or, in the case
of publicly available data, to the “world” group. The “world” group is accessible to
everyone and all users can view and use entries belonging to this group. When data
belongs to a certain group, all the users who are members of that group may access, view
and use the data. This hierarchical implementation of access restrictions allows for the

separation of visible data to each group. A user may also decide to browse and analyse

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 42

= 3= 3=

data anonymously. This will allow him to see all public data and do analysis, but not

save any results, or add notes to any entries.

To manage users, a registration section was included. This enables the user to add new
users, add users to groups and to create groups. Some restrictions are also implemented,

which gives only certain users the right to add or delete users.

2.3.2. Result Management

When users generate results in FunGIMS, they are presented with the option of either
storing the results in the FunGIMS database or viewing them without saving. This func-
tionality allows users to use the FunGIMS database as a data repository. User-generated
results are stored as uploaded files in the database. When the user wants to save results,
they are presented with an option of selecting to which group the results will belong. The
group listing includes all the groups to which the user belongs . This allows the user to
share generated results with other members of the group. These results are included in
any future searches that might be done against the database. If a user is browsing and

analyzing data while not logged in, results cannot be saved.

2.3.3. Searching of Data and Results

FunGIMS contains a large amount of data and the best way to access a specific piece
of data is to search for it. FunGIMS provides a search facility across all the data and
results saved by the user. This allows the user to search for entries by means of a
keyword or phrase, or simply access stored results. A user can select to search across
all the data types with a keyword or a specific identifier can be entered e.g. search
for “dihydropteroate synthase” or search for PDB id “leye”. The search is implemented
on two levels. The first level is a case insensitive text search across all the fields in
Identifiable and Description. The results from this search are then filtered in the
second level of the search, to exclude entries that the user may not see. Users can search
a keyword or sid against a specific data type or across all data types. At the time of
writing, FunGIMS provided searches across protein structures, sequences, literature and

small molecule data sets. A keyword search across all data types will produce a page

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation

Keyword search resulis - Mozilla Firefox

File Edit View History Bookmarks Toels Help

| Genomic results: 0 || Medline results: 31 || Sequence results: 8 || Structure results: 5 || Small Molecule results: 0

& - - @ = [| £ nttpsvroomfandel:8B0/searchIsearch_type=gi%23seqh23pmid%23pdbth23CHEBI% 23magsearch_term=dihyc |« | | [C]+]
’@ Functional ics Infi ion M, 1t System
Login Search:lAH data j| Search I l View ‘
Genomics module Sequence module ch i ics module module Literature
+ Home
+ Logout Keyword search results across all data:
+ APl docs

* SID: pdb:1aj2
< TITLE: CRYSTAL STRUCTURE OF A BINARY COMPLEX OF E. COLI DIHYDROPTEROATE SYNTHASE
b3

< Score: 0
+ SID: pdb:ieye
MYCOBACTERIUM TUBERCULOSIS IN COMPLEX WITH 6- HYDROXYMETHYLPTERIN MONOPHOSPHATE
°

< Score: 0

+ SID: pdb:1ajo
o TITLE: CRYSTAL STRUCTURE OF A TERNARY COMPLEX OF E. COL| DIHYDROPTEROATE SYNTHASE
°

© Score: 0
* SID: pdb:2bmb
SYNTHASE FROM SACCHAROMYCES CEREVISIAE
o

© Score: 0

* SID: pdb:1926
© TITLE: DIHYDROPTEROQATE SYNTHASE FROM BACILLUS ANTHRACIS
o

© Score: 0

o TITLE: 1.7 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF 6- HYDROXYMETHYL-7,8-DIHYDROPTEROATE SYNTHASE (DHPS) FROM

< TITLE: X-RAY STRUCTURE OF THE BIFUNCTIONAL 6-HYDROXYMETHYL-7,8- DIHYDROXYPTERIN PYROPHOSPHOKINASE DIHYDROPTEROATE

Version Mambo - released 15 September 2007

43

Figure 2.4: The result of a search for “dihydropteroate synthase”. The results are ordered

according to data type.

with results sorted according to the section they belong to e.g. sequences in the Sequence

section and any structure hits in the Structure section. Should a user search for a specific

identifier and it is found to be unique, the user will automatically be redirected to a view

of the requested entry. Access restrictions are implemented on the searches and thus a

user will not see any matches in restricted data. Figure 2.4 shows the results of a search

for the keywords “dihydropteroate synthase”.

2.4. FunGIMS Data Model

2.4.1. The Data Model

FunGIMS was designed to use one database that contains all the data for each data type

in separate tables. In order to incorporate the large amount of data and relationships

in FunGIMS, an extensive data model had to be developed. The Functional Genomics

e

UNIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI

Que® YUNIBESITHI YA PRETORI
Chapter 2. FunGIMS Design and Implementation 44

= 3= 3=

Experiment (FuGE) data model was used as a starting point (Jones et al., 2007, Jones
et al., 2006) as discussed in Chapter 1. The FunGIMS data model was extended by
inheriting from the Identifiable class in FuGE. This allowed for features in FuGE such
as Security, Description and Audit to be accommodated in FunGIMS. Security
implements various features related to the FuGE data model with regard to ownership of
the record. Audit tracks changes made to a record and Description provides a way to
add free text descriptions of the record. Identifiable consists of a sid, data typename,
user id, group id and description id fields. These fields link an Identifiable entry to
a user, a group, a specific description (which is linked to the Description class) and a
specific data type. The data typename field is used when constructing the polymorphic
joins for a specific module. When a new file or data entry is created in Identifiable,
the user must also supply the fields required for Description. Description implements
fields for id, description text, keywords and synonyms. When searching the database

using a keyword, it is searched against Description.

The core data model for FunGIMS extended the FuGE data model by including additional
classes to FunGIMS, all of which all inherited from Identifiable. These classes include
Note, File and Relationship. Note is a free text field that allows a user to add free text
notes to an entry. More than one Note may be associated with a unique Identifiable
entry. File is a class that caters for any files uploaded by the user such as protein
models, documents or sequences. One File object is linked to one Identifiable object.
Relationship is a class used to link two Identifiable entries. This relationship is either
user generated or automatically generated from the parsed data. Each specific module
extends the FunGIMS data model further and by inheriting from the Identifiable
class, allows a consistent data model to be maintained. FunGIMS currently implements
the following main data type classes: Structure, Sequence, MedlineReference and
Compound. The specific data model used for the Structural module will be discussed
in section 2.5.2. The information in Identifiable was also used by SQLAlchemy to
create groups of tables in the data model that contains only a certain data type using
polymorphic identity joins (creating one object by joining different subclasses from the

database).

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 45

= 3= 3=

The TurboGears user tracking/validation data model was used to allow the login of users
and to maintain session ids during usage. TurboGears employs a set of tables for users
and groups and allows users to belong to more than one group. When a user logs in,
they are validated against this data model. When retrieving data belonging to a certain
group, the group table is checked to assess whether a user may see the data. A unique
session id is generated every time a user logs in and this allows the user to remain logged

in to the system for a set amount of time (default is 20 minutes).

2.5. Structural Module

2.5.1. Overview

The Structural module caters for all protein structure data. It allows the user to inves-
tigate the protein structures, to conduct analysis on the protein sequences and structure
and to generate simulation scripts for proteins. The design of the Structural module was
based on the MVC design as shown and used in the rest of FunGIMS. This allows for an

extensible and easily upgradable system and further allows for a maintainable code base.

The vast majority of the data in the Structural module is parsed from the MSD discussed
in Chapter 1. Most protein structure data is represented in a standard column-based for-
mat known as the PDB format (http://www.pdb.org/docs.html). This text format pro-
vides structural and administrative information about the protein as well as the Cartesian
coordinates of every atom in the protein. Figure 2.5 shows the column layout and an

example of the latest PDB file format.

2.5.2. Data Model

The main data model used for the Structural module is based on the MSD (Boutselakis
et al., 2003) from the EBI at Cambridge. The MSD provides a very extensive data model
to deal with protein structure data. All the data are parsed from PDB and are also linked

to primary sequence providers such as GenBank.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

A 4

Chapter 2. FunGIMS Design and Implementation

1234567890123456789012345678901234567890123456789012345678901234567890

ATOM

46

66 N VAL A 14 22.866 0.219 42.591 1.00 20.77 N
ATOM 67 CA VAL A 14 21.639 -0.157 43.253 1.00 26.59 C
ATOM 68 C VAL A 14 20.898 1.039 43.832 1.00 43.97 C
ATOM 69 0 VAL A 14 19.894 0.894 44.535 1.00 44.07 O
ATOM 70 CB VAL A 14 21.834 -1.310 44.228 1.00 29.30 C
ATOM 71 CG1 VAL A 14 22.197 -2.582 43.471 1.00 28.10 C
ATOM 72 CG2 VAL A 14 23.022 -0.961 45.095 1.00 36.14 C
COLUMNS DATA TYPE FIELD DEFINITION
1 -6 Record name “ATOM Record name
7 -11 Integer serial Atom serial number
13-16 Atom name Atom name
17 Character altLoc Alternate location indicator
18-20 Residue name resName Residue name
22 Character chainID Chain identifier
23-26 Integer resSeq Residue sequence number
27 AChar iCode Code for insertion of residues
31-38 Real(8.3) X Orthogonal coordinates for X in Angstroms
39-46 Real(8.3) v Orthogonal coordinates for Y in Angstroms
47-54 Real(8.3) z Orthogonal coordinates for Z in Angstroms
55-60 Real(6.2) occupancy Occupancy
61-66 Real(6.2) tempFactor Temperature factor
77-78 LString(2) element Element symbol, right-justified
79-80 LString(2) charge Charge on the atom

Figure 2.5: Top: A protein structure file example (Valine residue 14 from leye.pdb). Bottom:

the PDB file format specification for ATOM entries.

The MSD data model tries to provide a logical view of protein structure. It is orga-

nized into one main entity (Structure) that consists of 6 sub-entities (Active Sites,

Secondary Structure, External Database Links, Header, Taxonomy and Ligands).

Each of these sub-entities are divided into logical groups e.g. Header is made up of ta-

bles containing information on authors, keywords, X-ray data, etc. In this fashion each

sub-entity contains different levels of information. What makes MSD unique and different

from the PDB is that for every different feature in MSD, detailed data are available e.g.

for every protein atom, the binding order, predicted atom valence, atom type, residue it

A

UNIVERSITEIT VAN PRETO
UNIVERSITY OF PRETO
Qu” YUNIBESITHI YA PRETO
Chapter 2. FunGIMS Design and Implementation 47

R
R
RI

= 3= 3=

identifiable -
¥ id: INTEGER(11)

& sid: WYARCHAR(100)

& typename: WARCHAR(100)
< user_id: INTEGER(11)

& group_id: INTEGER(11)

& description_jid: INTEGER(11) |— description S =

3 s . # id: INTEGER(11) (FK)
= ?@.;I' P & description_text: TEXT
° u;er d & keywords: TEXT
= .s'tesm'm;fbn i @ synnn_\;rr!s: TEXT
< description_id G ﬁzﬁiﬁﬁ—c‘;ﬁ;m
2 gﬂgtliaf_id structure
3 tizart
& sid structure -
LE. gascrirtiay G2 F id: INTEGER{11) (FK)
< description_id < pdbld; WARCHARIS)
& exp_type: WARCHAR(1O)
< resolution: FLOAT
& rel_date: wARCHAR(20)
% header: VARCHAR(Z5S)
& pmid: INTEGER(11)
3 i
& prnid

Figure 2.6: The relationship between the Structure object and the FuGE data model.
Identifiable is the main data object in FuGE. Description provides some additional data
about Identifiable. The Structure object inherits from Identifiable and thus also has
Description data.

belongs to, other atoms it makes contact with, etc. This makes it one of the most complete
structure databases currently available. A complete user-friendly web accessible front end

to MSD has been written and is accessible at the EBI’s website.

The MSD data model (figure 1.2) was extensively modified before being incorporated into
FunGIMS. The Structural module data model consists of the following classes: Residue,
Helix, Sheet, Strand, Turn, SecondarySummary, Tstruc, Chain, PfamInt, ScopInt, Go,
Ec,CathInt, SwissprotInt and Interpro. All the classes inherit from Structure either
directly or indirectly from another class. The data extracted and stored from MSD are
PDB entry information (Structure), protein secondary structure (SecondarySummary)
including a-helices (Helix), (-strands (Strand), (-sheets (Sheet) and [-turns (Turn),
protein fold (Tstruc) information from CATH (CathInt) and SCOP (ScopInt), protein
classification information from GO (Go), Interpro (Interpro), Pfam (PfamInt) and Swis-

sprot (SwissprotInt) as well as EC numbers (Ec). Information such as the energy types

e

UNIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI

Que® YUNIBESITHI YA PRETORI
Chapter 2. FunGIMS Design and Implementation 48

= 3= 3=

of each atom and atom types were not extracted, as the Structural module only caters for
a higher level of protein structure. A second set of scripts was then run on the MSD data
to extract basic relationships between data types such as linking the Pubmed id with
a protein entry and these were stored in the Relationship class. Stored relationships
are between the protein, Swissprot and GO numbers as well as between the protein and
Pubmed. All these generated links were also added to the FunGIMS database. Section
2.5.2.1 discusses other data sources. Most data relating to the detail such as atoms,
residue planarity and energy types were omitted. This was due to the fact that the
Structural module provides a basic introduction to a structure. Its main purpose is for

exploratory analysis and investigation.

The FunGIMS structure data model was constructed to closely represent the actual struc-
ture levels in a protein in a top down fashion. This ensures that a protein model can
be browsed by starting with the assembly, followed by the local fold, the chain specific
secondary structure and finally by residue data (Figs. 2.6, 2.8 and 2.7).

2.5.2.1. Data Sources

The majority of the data in the Structure module, and also FunGIMS, are derived and
parsed from public databases such as the PDB, GenBank and SwissProt. In the case of
the Structure module, Python scripts were used to parse the flat file format of MSD and
to add the data to the FunGIMS database.

FunGIMS also caters for user-generated data. In the Structure module specifically,
user-generated data makes up a very small portion of the stored data. This is due to the
fact that a model that a user generates will not be parsed and stored in the database
as there is no experimental validation of the structure. All generated modelling scripts
and models will be stored as files belonging to a specific user and group should the user

choose to save the files.

2.5.3. Functionalities

The Structural module has various different functionalities. A user can investigate a pro-

tein structure and retrieve information about structural elements, perform motif searches

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 49

= 3= 3=

and structural analysis on a protein sequence, generate homology models or generate
scripts for modelling and molecular dynamics. Each of these features will be discussed
separately. For the first release of the Structural module it was decided to include tools
that are often used by biologists and some tools that are less used but equally valuable
and that can provide new insights into their work. The design of FunGIMS and the

Structural module allows for the easy addition of new tools by programmers.

The browser-based molecular viewer known as Jmol (http://jmol.sourceforge.net) is one
of the features that makes the Structural module very useful. Jmol is a Java-based
three dimensional molecular view that can run inside a browser as a Java applet. It
uses software to render the proteins and thus does not need expensive hardware such
as graphics cards. Jmol was specifically written to allow protein structure files to be
displayed and manipulated inside browsers. The user can rotate the protein, zoom in,
select different representations of the protein, and various other miscellaneous functions.
Jmol can also be run as a standalone Java application, which allows users to download

the protein files and work with them in a familiar environment.

In the Structural module, Python is used to parse the data such as residue start and end
numbers in a turn or helix, and then use this data to generate buttons which controls

various Jmol representations.

2.5.3.1. Structural Data Representation

The Structural module includes all structural data such as primary structure, secondary
structure, tertiary structure and atomic coordinates. The first view a user would see
when querying a protein is the primary sequence data. This includes the sequence of the
protein, the name of the protein and other data parsed from the header such as resolution
(Fig. 2.9). The primary view also shows any notes added to the specific protein as well
as an atom representation (based on the coordinates in the crystallized structure) of the

protein loaded into Jmol.

From the primary view the user can navigate to the secondary and tertiary structure
views. The main secondary view contains a summary of all the secondary structure

features found in each chain in the protein and provides links to a more detailed view

e

UMIVERSITEIT VAN PRETORI
UNIVERSITY OF PRETORI
Wame® YUNIBESITHI YA PRETORI

Chapter 2. FunGIMS Design and Implementation 50

= 3= 3=

of each feature. When a specific chain is selected, it takes the user to a summary of the
secondary structural features for that specific chain (Fig. 2.10). This includes data on

a-helices, §-strands, sheets, turns and other chain features.

A user can also see a summary of all the strands in a specific protein chain by clicking on
the strand link in the secondary structure summary (Fig. 2.11). This will provide a page
with a summary of the strands found in the protein chain together with their position,
length and sheet id as classified in the MSD. A cartoon representation is presented in
Jmol and buttons are provided to select the specific strands. These buttons are not
always 100% accurate as Jmol interprets residue numbers differently than those found
in the MSD due to missing residues in the protein crystal structure. This is due to the
fact that sometimes part of the protein does not crystallize or only a truncated peptide
was used. Thus, those residues do not get used when assigning numbers to the residues
found in the crystal structure. A user can also select the sheet link and see the number

of sheets in a protein structure.

A user can also access data about the a-helices in the protein chain (Fig. 2.12) from
the secondary structure summary. This view gives an overview of the number of helices
as well as their length, start and end residue numbers. A cartoon representation is also
displayed with Jmol buttons for highlighting the helices. Information about (-strands

and [(-sheets can also be accessed from the secondary structure summary.

Information about all the turns in a protein can also be accessed from the secondary
structure summary page. This option presents a user with a table of all the turns that
occur in the protein as well as the turn type and class, start residue, end residue and a

Jmol representation with Jmol buttons to select all the turns (Fig. 2.13).

In addition to the secondary structure summary, a user can also access information about
the tertiary structure of the protein (Fig. 2.14). This view includes the Pfam (Finn et al.,
2006), CATH (Pearl et al., 2005), SCOP (Conte et al., 2000), GO (Ashburner et al., 2000)
and Interpro id’s (Zdobnov and Apweiler, 2001) associated with each chain. Once again
Jmol is also present but in this case the protein is shown in a ribbon representation

coloured by chain.

e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
Chapter 2. FunGIMS Design and Implementation ol

The Structural module of FunGIMS contains tools related to secondary and tertiary
structure as well as protein sequence feature prediction. Although the database (see
section 2.5.2.1) provides most of the structurally derived data, a user may want to do a
re-analysis of a structure or use the tools to analyze a new structure or model or protein
sequence. At the time of writing, only X-ray data was supported. The structural module

can be divided into roughly two parts, a structural data part and a analysis tools part.

UNIVERSITEIT VAN PRETORIA
UMNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA
Chapter 2. FunGIMS Design and Implementation 52
sec_struc i
F id: INTEGER{11) (FK)
(@ pdbld: VARCHARES)
& chainld: VARCHAR(S)
@ surnrmary: YARCHAR(1000)
(3 pabid
@ pobld
3 chatud
@ chainid
turn; helix strand
¢
turn. vl |helx vl [strand x
|9 id: INTEGER{11) (FK) % id: INTEGER{11) (FK) F id: INTEGER{11) (FK)
[% pdbld: VARCHAR(S) | % pobid:; VARCHAR(S) | pobid:; VARCHAR(S)
@ chainld: VARCHAR(S) & chainld: VARCHAR(S) & sheetld: INTEGER(11)
| @ turmnld: INTEGER{11) & helisbum: INTEGER(11) & chainld: WARCHAR(S)
@ turnType: WARCHAR(1O) @ start; INTEGER(11) @ strandiurm: INTEGER(11)
@ turnTypeClass: VARCHAR(1O) & end: INTEGER{11) @ start: INTEGER(11)
|4 start: INTEGER(11) 13 povig o % end: INTEGER(11)
& and: INTEGER(11) % pobid @i
3 paid I3 chand & pobrd
& pdbld 4 chainld 1.3 chaiid
13 chatnid |3 pahid 2 | @ chainid
& chainid & pdbid |3 sheatid
3 pabid 2 |3 chamig 2 @ sheetld
| @ pdbid @ chainld |3 pobid 2
13 chainid 2 | @ pdbid
G chainld 1.3 chatid 2
@ chainld
residue
residue residug
b d
~F b
resiclue -

|7 idi INTEGER(11) [FK)
& chainld: VARCHAR(S)
@ resld: INTEGER(11)
@ resMame: WARCHARIZ)
@ reshum; INTEGER(11)
& pdhid
13 chgiid
@ chainld

Figure 2.7: The relationship between different secondary structures in a chain and the residues
in a protein. This provides the clearest example of how the data model organization follows
the logical, hierarchical organization seen in a protein structure. Each secondary structure
(sec_struc) object has several features such as a helix or a strand or a turn. And each of
these specific secondary structural features also consists of a residue thus following the inherent
logic in a protein structure. Due to the levels of inheritance, each residue object still has an
identifiable and description object associated with it.

UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI

YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 53
structure. 7
F id: INTEGER(11) (FK)
‘& pobId: YWARCHAR(S)
@ exp_type: WARCHAR(10)
@ resolution: FLOAT
@ rel_date: VARCHAR(Z0)
@ header: waRCHAR(ZSS)
19 pmil;i: INTEGER(11)
reference 3 omid
@ priid
mediine_reference - LIEN |go i
| % it INTEGER(11) (FK) swissprot ¢ | i INTE.@ER‘(U-) (FK)
[@ pmid: INTEGER{11) |@ pobld: VARCHAR(S)
& article_title; TEXT A gold: VARCHAR(LO)
| abstract_text: TEXT e I3 ,?GW
| journal_title: TEXT <> @ pdbld
: linterpro -
prert . | id: INTEGER{11) (FK)
| id: INTEGER(11) (FK) [& pdhId: VARCHAR(S)
\.) Ddbld-: SARRE) @ interprold: WARCHAR(10)
@ sp_primary: YARCHAR(LS) — 'i;a.-bﬂﬁfc}im Bt b Bl St
@ sp_secondary: VARCHAR(25S) e obid
.3 pabid
& pobld = -
: ! ¢ ¥ id: INTEGER(11) (FK)
[tetruc o Y| | tertiary structure | @ pdbld: YARCHAR(S)
@ i INTEGER(11) (FK) : | @ echumber: VARCHAR(36)
& pobld: VARCHAR(S) chain 3 pobic
@ chainld: YARCHAR(S) @ pdbld
@ summary; VARCHAR(1000)
3 pabi sheet
@ pdbld —
I3 chainic <p
@ chainld)
chain ¥ |sheet -

% id: INTEGER{11) (FK)
& pobld: WARCHAR(S)
@ chainld: VARCHAR(S)
% sequence: VARCHAR(20)
I3 i
@ pdbid
I3 sequence
& sequence

| idh INTEGER(11) (FK)
% pdbld: WARCHARIS)
& sheetId: INTEGER(11)
@ strands: WARCHAR (100}
_a. 'p-dbfd-

@ pdbld

Figure 2.8: The data model for the high level Structure class. A Structure entry is linked to
its reference (Pubmed) as well to high level classifiers such as Interpro and GO. The different

organization levels can be seen clearly e.g. a Structure consists of one/many Chain objects and
each Structure object also has other high level features such as a SwissProt id (swissprotid).

2.5.3.2. Data Analysis

The second part of the structural module is the data analysis tools (Fig. 2.15). This

provides web interfaces to some commonly used tools in protein structural analysis. All

these tools are external programs that are called using Python 2.4 system calls, and the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation

File Edit View History Bookmarks Tools Help

s N

@ -=-& & I [htpisvioomiondel 8080/ view?sid=pdb Teye [=[B] [Ee[o000 [SJ

@FunGIMS

Functional ics Infarmation N\ System

Add Note

" Entry ¥ secondary Structure ¥ Tertiary Structure

Welcome sir James E Watson. Logout Search: | All data Search | View ‘

Genomics module Sequence module c ics module module Literature I
« Home
o Stuctre Entry: leye
« Modelling
« Mutation

R 1.7 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF 6- Right click on the protein to view Jmol options.

« Dynamics Entry title: HYDROXYMETHYL-7,8-DIHYDROPTEROATE SYNTHASE (DHPS) FROM MYCOBACTERIUM
o TMHMM TUBERCULOSIS IN COMPLEX WITH 6- HYDROXYMETHYLPTERIN MONOPHOSPHATE
* STWMHMM PDB Id: Teye
« Hmmer 1.7 ANGSTROM RESOLUTION CRYSTAL STRUCTURE OF 6-
o Prosite Header HYDROXYMETHYL-7,8-DIHYDROPTEROATE SYNTHASE (DHPS) FROM MYCOBACTERIUM
« PROCHECK TUBERCULOSIS IN COMPLEX WITH 6- HYDROXYMETHYLPTERIN MONGPHOSPHATE
« WHATIE Release
« DSSP Date: ARRBLHTY
¢ APl docs Resolution: 1.7A

Pubmed Id: 11007651

Notes:

P}:u:nnwsouansam Delete !
is is the uberculosis DHPS protein.
Add a note

o4

Figure 2.9: The primary view when a user views a protein. Note the general FunGIMS feature

where an entry can be annotated by a note.

results are displayed to the user. Each program has a unique script located in the utils

folder of the FunGIMS.

Users are able to analyze a protein sequence using these tools.

implemented in the Structural module are:

The tools currently

e Hmumer search against Pfam - Hmmer is a hidden markov model-based (HMM) search

tool that tries to identify a protein sequence by matching it to a database of protein

families (Finn et al., 2006). Hmmer takes the sequence, an E-value cut-off and a

database to search against. The output contains a list of families that matches the

user submitted sequence. It also includes confidence values for every hit found to a

protein family. The hmmer.py script in utils is used.

e TMHMM - TMHMM is a HMM-based tool for searching for transmembrane helices

based on the amino acid sequence found in a protein sequence (Sonnhammer et al.,

1998). It takes a protein sequence as input and produces a graph showing which areas

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 59

Eile Edit View History Bookmarks Tools Help

& - - \g' Q ¢ 'Jﬁ an”\/mnmfnndelBDBD/V\:W?sld pdb‘\eye&wewtype chain'A | = B [[Gl=} oo
) Functional ics Information N System
Welcome sir James E Watson. Logout Search: [All data Search | | View ||
Genomics module Sequence module c i module module Literature [
+ Home
+ Structure Entry:]_eye
+ Modelling
+ Mutation 2
e Chaina Right click on the protein to view Jmol options.
o B Secondary Siructure summary
& TMHMM [Sequence: MSPAPVQVMGYLNVTDDSFSDGGCYLDLDDAVKHGIAMAAAGAGI VDVGGES SREGATRY|
& STMHMM [DEAVETSR' VVKELARQGITVSIDTHRADVARAALQN GAQNVNDVSGGRADPANGPLLY
& Hmmer |AEADVPWVLMHWRAVSAD TPHVPVRY GNVVAEVRADLLASVADAVAAGVD PARLVLDPGL)
* Prosite (GFAKTAQHNWAI LHALPELVATGI PVLVGASRKRFLGALLAGPDGVMRP TDGRD TA TAVI)|
. [SALAALHGAWGVRVHDVRASVDAI KVVEAWMGAERIERDG
. ISCOPId: |c1211
. Pfam Id: IPFO0B0Y
. ICATH id: _|1eyeAQ

[Secondary |Strands
Istructure " |sheets

=l

ahelices:
310 helices
f-ums
y-ums:
Bulges
Hairpins

% strands: 13.2812
% helices: 50.0

=

comlg |

Figure 2.10: The chain summary view for a specific chain in a protein.

are predicted to contain transmembrane helices. The tmhmm.py script in utils is
used.

S-TMHMM - This tool tries to predict the topology (inside/outside) of any transmem-
brane helices found in a protein sequence (Viklund and Elofsson, 2004). It takes a
protein sequence as input and produces a table showing the probability of each residue
being inside or outside the membrane. The stmhmm.py script in utils is used.
Prosite - Prosite is a database of protein motifs (de Castro et al., 2006). These include
short motifs such as glycosylation sites as well as longer motifs that can identify a
specific protein family. To search Prosite, the ps scan.pl script from the EBI is used.
Using a protein sequence as input, it produces a list of motifs found in the protein.
Flags can be set to exclude motifs with a high probability of occurrence, but this has
not been implemented in the Structural module. The prosite.py script in utils is
used.

PROCHECK - This allows a user to check a protein structure file for any abnormal

structural errors (Laskowski et al., 1993). The checks are based on a set of normal

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 56

inds n Teye chain A =M
File Edit View History Bookmarks Tools Help
Pl

& - < (& I [ntpvroomfondel Bosoiviewsid=pdb:1 eyeaviewlype=strandsiA [=[w] Q] B
) Functional ics Information A 1t System
Welcome sir James E Watson. Logout Search: [All data Search | View
Genomics module Sequence module E ics module module Literature

+ Home

+ Stucture Entry: leye

+ Modelling

+ Mutation ” i . i

AR Strands in chain A Right click on the protein to view Jmol options

il Secondary Structure summary

* ThHMM ESfLoatied N

TR Strand Id: | Start | End 5

+ Hmmer !

+ Prosite 1 Z |13 | 7 1

+ PROCHECK 2 b 748 N 1

* WHATIE 3 83 | 86 4 i}

el = o5 105 T 4 7 strand 1 | Hide

+ APl doc 5 127 [130 | 4 1 stand 2 | Hide
6 74 [177 | 4 1 strand 3 | Hide
i 2077208 |, 2 L strand 4 | Hide
[251 | 254 | 4 1

strand 5 | Hide
strand 6 | Hide
strand 7 | Hide
strand 8 | Hide

All the columns can be sorted just by clicking on it

He

Figure 2.11: The strand summary page for a protein chain.

structural parameters derived from the PDB. The input is a protein coordinate file
and it produces a set of ten files that include Ramachandran plots, graphs plotting
the deviation of each amino acid type from normal as well as a summary. In the
Structural module the user can download each file for later use. The procheck.py
script in utils is used.

WHAT IF - WHAT IF is a comprehensive set of tools for molecular modelling and for
analyzing proteins in their native environments (Vriend, 1990). The structure checking
tool was implemented in the Structural module and this does a range of checks on a
submitted protein file to identify possible errors and warnings. It produces a detailed
report on the structure analysis that the user can download. The whatif.py script
in utils is used.

DSSP - This program calculates secondary structure based on the coordinates of the
atoms in a PDB file (Kabsch and Sander, 1983). The program takes a pdb file as
input and produces a report that gives the secondary structure of each amino acid.

The dssp.py script in utils is used.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation a7

File Edit View History Bookmarks Tools Help
5

& - < & I [# hipuvroomfondel:80sonviewsid=pdb:1 eyeaviewtype=helixA [+[] G 5
> Functional ics Information N 1t System
Welcome sir James E Watson. Logout Search: [All data search | | View
Genomics module Sequence module c i ics module module Literature

+ Home

+ Stuclure Entry: leye

+ Modelling

ol ol Note that 3-10 helices and a-helices are both displayed here.

Analysis Sl ;

o i Helices in chain A Right click on the protein to view Jmol options.

M Secondary Stucture summany

Y Id: | Start:|End: [Length{

+ Hmmer 1 27 4 15

* Prosite 2 | 65]79] 15

+ PROCHECK 3 89 99 11 helix 1 Hide

* WHATIE 4 |15 (124] 10 helix2 | Hide

* DSSP 5 148 | 167 20 helix 3 Hide

¢ APl docs 6 170 [172 3
5985 [385 | 73 helix 4 | Hide
6 | 195 201 7 helix 5 | Hide
9 1218 |220.] B helix 6 | Hide
10 229 | 232 4
1 Toms o 9= helix 7 | _Hide
12 | 256 [272 | 17 helix8 | Hide

helix 8 | Hide

helix 10 | Hide
helix 11 Hide

helix 12 | Hide

e

Figure 2.12: The a-helix summary view for a protein chain.

All these tools accept either a file or a sequence from the user. The selected tool is then
run via a tool-specific Python script, which thereafter uses Python system calls to run
the appropriate tool on the sequence or file. The scripts for each tool are saved under the
utils directory. All the results are saved on disk during the session. The results are also
displayed to the user and the option to save the results to a certain group is available.
Figures 2.16, 2.17 and 2.18 show the results from an analysis run of TMHMM, Hmmer
against Pfam and a PROCHECK analysis.

2.5.3.3. Modelling and Molecular Dynamics

The third section of the Structural module has functions that allow the user to generate
scripts for homology modelling and molecular dynamics (Fig. 2.15) and build models.
For protein homology modelling the user has a choice between two programs, Modeller
(Fiser and Sali, 2003) and WHAT IF (Vriend, 1990). The module will ask for the relevant
information, pass it to the specific script located in the utils folder, and produce a script,

using Python, which the user can download and run on his or her local machine. This

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 58

File Edit View History Bookmarks Tools Help

@& - -@ (& . |# nipanroomfondel 8080/viewssid=pdb 1 eyegviewtype =tums A [~[] [G-] A
(-> Functional ics Informati System
Welcome sir James E Watson. Logout Search: [All data Search | View ‘
Genomics module Sequence module Chemoinformatics module Structure module Literature [i
+ Home
+ Stucture Entry:]_eye
+ Modeliing
+ Mutation

Tums in chain A

5 ﬁ:ﬁs Secondary Structure summar

o TMEMM Turn Id: [Start[End | Type [Class
© STMHMM 1991396 | 17 | 20 | BETA]

+ Limmer 1991398 | 20 | 23 | BETA 1

+ Prosite 1991400 | 43 | 46 | BETA 1

¢ PROCHECK 1991402 | 106 | 109 | BETA 1

+ WHATIF 1991404 | 108 | 111 | BETA T

0 1991405 | 110 | 113 | BETA

. 1991407 | 111 | 114 | BETA

1991413 | 113 | 116 | BETA

]

]

I
1991415 | 134 | 137 | BETA]
1991416 | 136 | 139 | BETA]
1991417 [137 | 140 | BETA]
1991422 | 139 | 142 | BETA I
]

]

]

I

]

]

1991423 [146 | 149 | BETA
1991424 | 179 | 182 | BETA
1991430 | 181 | 184 | BETA

1001433 | 210 | 213 | BETA
1991435 [222 | 225 | BETA
1991437 | 254 | 257 | BETA
1991499 | 144 | 146 SE]|
1991500 | 272 | 274 SE]

strand 1991416
Hide
strand 1991417
Hide
strand 1991422
Hide
strand 1991423
Hide
strand 1991424
Hide

trand 1001430 |

Figure 2.13: The summary view for all the turns that occur in a protein chain.

precludes the user having to actually set up and understand the scripts and scripting
language. In addition to the modelling scripts, the user may also decide to construct a
model using the automatic method in the Structural module (Fig. 2.20). The user enters
a template PDB id, target name, target sequence and refinement level. This will be
passed to Modeller (version 9v1), which will perform an automatic alignment of the two
sequences and then proceed to build a model. Currently the automated modelling process
uses the first chain in a multi-chain protein as a template. When the model is ready, the
user is alerted and presented with a page to download the model, modelling script and
alignment file. A drawback of the automated modelling is the automated alignment
performed by Modeller. When the sequences display a high identity, alignment is easy
and should be accurate. However in lower identity ranges (less than 40%), automated
alignment is not as accurate and it is advisable to do the alignment with manual curation

of the results.

The module can also generate basic scripts, using Python, for three different molecular

dynamics suites, (NAMD (Phillips et al., 2005), CHARMM (Brooks et al., 1983) and

UMNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

A 4

Chapter 2. FunGIMS Design and Implementation 59

) Protein Tertiary Structure - Mozilla Firefox [—T=x]

File Edit View History Bookmarks Tools Help

@ »-¢ i) #) i //vioomfondel 8080Nview?sid=pdb 1 au7 &viewtype=ts ¥ G- a

r> Functional ics Information A 1t System
Welcome sir James E Watson. Logout Search [All data Scarch | View ‘
Genomics module Sequence module c ics module module Literature I

+ Home
+ Stuclure Tertiary Structure
+ Modelling

* Mutation
Analysis
+ Dynamics
* TMHMM
* S-TWHMM
.
.

Hmmer
Prosite
+ PROCHECK
*+ WHATIE

PDB id:
Title:
Pfam id:

SwissProt id:

SCOP id:

Tau7
PIT-1 POU DOMAIN COMPLEXED TO A 28 BASE PAIR DNA ELEMENT

CATH id: 1.10.10.60.15
1.10.10.60.15
1.10.26040.4
1.10.26040.4

GO id: GO:0043565

GO:0006350
IPRO0D0327
IPROD1356
IPROD7103
IPRODSOS7
IPRO10882
IPRO12287
EC number:

Interpro id:

Figure 2.14: The tertiary structure view of a protein. This shows information for the complete
protein complex.

Yasara (http://www.yasara.com) given user input. The dynamics section only supports
script generation, not running the actual simulations as this is extremely resource in-
tensive. This allows the user to focus on the research questions without the need for
technical knowledge. Figure 2.20 shows the interface for the molecular dynamics script
generation section. The molecular dynamics scripts will need further editing depending
on the molecule the user wants to investigate and the type of dynamics. All the modelling
functionalities are located in the utils folder and the modelling.py script is used. For
dynamics the dynamics.py script in utils is used. While validated homology programs

are used, the quality of a model is determined by various factors such as template reso-

lution, template-target alignment and the specific algorithm used.

The running of simulations in a UNIX environment will still require some skills and UNIX
knowledge but an I'T support person should be able to assist with the installation of the
programs. The interpretation of the dynamics results are up to the user as automated

analysis is not really a possibility yet. The intent is to provide the user with basic access

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 60
Analysis
Tool User Input FunGIMS DB Method Output
TMHMM Protein sequence ° > tmhmm }—> .png figure
S-TMHMM Protein sequence ® =‘ stmhmm }—» Table
Protein sequence
Hmmer vs Pfam | E-value >} hmmer }—» Table with hits
Database PDB id—
Prosite Protein sequence ® =} prosite ‘4> Table with hits
PROCHECK PDB id—k—»‘ procheck ‘4> .png+.ps figures
WHAT IF model . . o :
analysis Protein model ° > whatif ‘4> .tex+.txt report
DSSP PDB id—e——»| dssp > |Table
Modelling
Tool User Input FunGIMS DB Method Output
Protein sequence - ; : Protein model
Modeller - model |Protein id "mOdEIlmg'mOde”er_scr'pﬁ Script file
Refinement PDB id— Alignment file
Protein sequence
WHAT IF - model | Protein id =\ modelling.whatif_script \0—> WHAT IF script
Model name PDB id— file
Template
Modeller - - . : .
mutation analysis| Mutations >\ modelling.mutate_model \H Modeller script
Script name file
Protein name —
Program
) Minimization steps +—| - Program specific
Dynamics Temperature ® *‘ dynamics "—’ dynamics script
Time step size
Simulation time
Solvation shape

Figure 2.15: The different tools available in the Structural module. Shown are the input (user
and FunGIMS supplied) required for each of the tools, the specific method called in the utils
folder as well as the type of output the tool generates.

to molecular dynamics functionality but guidance in the interpretation of the results is
currently outside the scope of the system. It is always recommended that the user consult

suitable literature when engaging in any form of advanced simulations.

2.5.3.4. Help Section

FunGIMS was designed to assist biologists to conduct faster and easier analysis and
exploration of data. To further this goal, a help page is provided for each function in the
Structural module. This can be accessed by clicking on the link found on each page. To
increase visibility it has been labeled in red. Figure 2.19 shows a typical result when a

user clicked on a help link for a specific function. The help link provides a brief synopsis

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 61

2
File Edit View History Bookmarks Tools

TMHMM re:

Help

Sults - Mozilla Firefox

[-[] [G] &)

@E-o-& @ [_result
’@ Functional System
Welcome sir James E Watson. Logout Search: [All data Search | ‘ View ‘
Genomics module Sequence module ics module module Literature i
+ Home
+ Stucure TMHMM results:
+ Modelling
+ Mutation
Analysis
+ Dynamics ijedichem\sls il
+ TMHMM Save
+ S TMHMM

TMHMM posterior probabilities for test

|

probability

X ulll
150 200

inside outside —

transmembrane

115 September 2007

Figure 2.16: The results from a transmembrane helix prediction on a submitted protein sequence.
The drop-down menu allows the user to save the results to a specific group.

of the tool and the inputs required, as well as the output a user might expect when the

tool runs successfully.

2.5.3.5. Configuration

The Structural module relies on various external programs to provide analysis methods.
Installation locations and execution of these programs usually differ between machines
and programs. To overcome this, a configuration file (utils/config.py) was created
that stores all the program specific settings. This file can be edited by hand to change
program properties. For each program the following properties are specified: the path
to the program (executable file), a program-specific temporary directory for output, and
other program specific parameters and settings. These programs are then called from
inside the Structural module simply by referencing these variables. This makes system
administration far easier as program settings have only to be specified and changed in

one file.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 62

Hmmer results - Mozil a Firefox <

File Edit View History Bookmarks Tools Help

@-o-@ i Fo (S _view P _result [=[%) [E] &)
Functional i f i System
Welcome sir James E Watson. Logout Search: [All data. k|| Search | View ‘
Genomics module Sequence module c ics module module Literature I
* Home
* Stucture Hmmer results:
+ Modelling
S The family to which the sequence belongs
5 *LD s Model Score | E-value |
* TMHIMM MiP IMajor intrinsic protein 174.6| 21e-55|
SR Branch_AA_transjBranched-chain amino acid transport p| 4.2] 0.5
s Simir lLig_chan Ligand-gated ion channel 21 33
+ Prosite mim17 [Tim17/Tim22/Tim23 family 25| 35|
* PROCHECK [SCFA_trans |Short chain fatty acid transporter 03| 39
* WHATIF [SUAS SUAS domain 1.2] 5.9
* DSSP [FecCD FecCD transport famil -0.0| 73]
* APl docs Penaeidin Penaeidin 0.6| B84
1 vCortistatin famil 1.7 10|

The domain to which a match was found

Model Start End | Score | E-value |

IMIP 3| 223 174.6] 21e55
] 3 z% 17] 1q

lLig_chan 3 30 21 EE|
ISUAS 27| 37 12 B
[fim17 &7] m% 29 35|
[FecCD 59| 110 0.0 EE|
ISCFA_trans 12% 148] 03 39
Penacidin 13, 155 ¢l 54
[Branch_AA_trans] 209 226 4.3) 0.25|

Figure 2.17: The results from a Hmmer search across Pfam using the structural module.

2.6. Future Improvements

2.6.1. FunGIMS

A system such as FunGIMS is in a constant flux of development. FunGIMS was designed
to allow for the easy addition of new tools and features. There are a number of areas that
can be improved upon, the database being one of them. Database table optimization
would allow for queries to be dealt with faster. Distributed databases would lessen
the load on the server when the database size increases significantly. In the current
implementation of FunGIMS, the database size presented some challenges and smart
indexing of often-queried columns in tables resulted in a decrease in query time. The
database should also be expanded to include more detailed data types such as protein

chip array data.

Furthermore, smart file recognition and improved file parsers would enable the user to

upload a file, allow FunGIMS to parse it entirely and then insert the data into the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 63

Procheck resulte - Mozilla Firefox.

File Edit View History Bookmarks Tools Help

@& D-@uRdomw

heck_result [=1®&] G &)

£ FunGIMS i

Functional System

Login Search: [PDB data ~| | Search | View ‘

Welcomel |

* TMHMM Procheck results:

You must be logged in to save results.

* WHATIE Results Files
* DSSP

* Modelling e leye 01ps
= Huiaion PROCHECK

A Ramachandran Plot leye_02ps

leye 03ps
* Dynamics leye 0dps
* APl docs

— leye 05ps
leye 06.ps
leye 07ps

k

leye DBps
leye 08ps
leye 10ps

Psi (degrees)

Phi (degrees)

Plol statistics

Residucs i ot fued regions |ABLL E o
mions 3] L 0

Figure 2.18: The results from a PROCHECK analysis run on PDB 1EYE.

database, not merely as a file but as a full data type. This allows queries to be more
accurate as uploaded files will be parsed and stored in a data type specific manner.
Automatic link generation between entries would be another major benefit to FunGIMS.
Currently links between entries are generated when the database is first populated with
public data and when a user links to entries with a note. Automatic link generation would
navigate free text fields, notes and description text and then create the appropriate links.
This automatic link generation tool should run on a daily basis so that links are always

up to date.

2.6.2. Structural Module

In addition to the improvements to FunGIMS mentioned in the previous section, the

Structural module also has some possible improvements.

More analysis methods can be included for different features. Tools such as consensus sec-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation 64

SIMS Help - Mozil1a Firefox

File Edit View History Bookmarks Tools Help

- @ {2 |#) ntpunroomfondel8080/elp |=|&] &l <]

Documentation

This page will provide documentation and assistance to the various funciionaliies available in SIMS

o Investigate
* Analysis
+ Modelling and Molecular Dynamics

Investigate

This sections allows you to investigate proteins structures via the different levels of structure
primary, secondary and tertiary. Each section cames detailed information about that structure
level.

Primary This section allows the user to investigate the protein structure at a basic sequence
level. It shows the name of the protein as derived from the PDB file header, the sequence of the
protein as derived from the protein structure and various other links to extemal data sources. A
prominent features is the 3D visualization of the protein in the browser. This representation is
fully interactive and allows the user o look at the protein, tum it and zoom in. It also allows the
userthe full functionality provided by Jmol

Secondary This seclion provides an overview of the secondary structural elements found in a
specific protein. The data is sourced from the underlying MSD database. A summary is
presented in table form and most of the elements are clickable. When dlicking through to a
secondary stucture element, a detailed summary of the element will be seen, Visualization of
the approximate localion of each element in the prolein structure is provided via buttons for Jmol
These locations are not 100% accurate due te counting inconsistensies between MSD and
Jmol.

Tertiary This section provides a brief overview of teriary structure details of the protein. The
following are provided: Pfam id. SwissProt id, SCOP id, CATH id, GO id. Interpro is and a EC
number. Jmol shows colours the protein by domain thus giving an intuitive overview of the
protein organization.

Analysis

The analysis section provides a few tools with which to analyse either a protein structure or a
protein segeunce.

Protein Sequence Prediction In this seciion two methods for sequence analysis are provided
+ TMHMM (TransMembrane Hidden Markov Model) will predict if any transmebrane helices
accurin the given sequence

Usage: Paste in a protein sequence and press the "Predict' button. The program wil
retum a graph which can be downloaded

Figure 2.19: The help section for the Investigate section. Each function has its own help section
on the Help page.

ondary structure prediction, protein export signal prediction and other protein sequence

analysis tools will be a benefit to the system.

The most improvement is probably in the modelling and simulation section. The current
scripts can be modified to include modelling on the selected chain of a protein, on multiple
templates as well as including ligands in the modelling process. A feature could also
be implemented to use alignments provided by the user. More simulation scripts with
different parameters and environments could also possibly be added. A possible addition
could be the implementation of a module whereby a user can start a simulation on a
cluster or another computer while being able to control it from the FunGIMS system.
This will allow the user to run simulations on various machines without needing the

technical knowledge.

There is scope for the improvement of the user interface of the Structural module. Jmol
buttons for secondary structure elements can be made more accurate. In addition a

visualization library can also be included to generate scalable images of a summary of

e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
Chapter 2. FunGIMS Design and Implementation 65

the secondary structure elements found in a protein and present them to the user in
a downloadable format. A useful improvement would be scripts that facilitate a more
automatic update of the database as soon as the data sources used, are updated. This

would lessen the load on the site administrator and would keep the database up to date.

2.7. Conclusion

FunGIMS consists of various modules dedicated to different data types. The Structural
module currently provides functions to explore structural data for a specific protein, con-
duct analysis on a user-submitted protein structure, including analysis such as transmem-
brane helix prediction, Prosite motif search and also allows the user to create homology
modelling and molecular dynamics scripts. The application of the Structural module to

various problems in FMDYV will be discussed in the next three chapters.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Queff YUNIBESITHI YA PRETORIA

Chapter 2. FunGIMS Design and Implementation

] Building a mods
File Edit View History Bookmarks Tools Help

* PROCHECK | pynamics package] NAMD

* WHATIE
+ DSSP Minimization steps
+ APIdocs Temperature

Time step
simulation length

Solvation shape [Box x|

Generatel

Help

provides a backbone to work from

TN

€ »-@uilEm P [[»] @]
’@ Functional i f ion M System
Login Search: [PDB data | | Search | ‘ View ‘
Welcomel
+ Home
* Modelling Building a model
+ Mutation
e This form will produce either a script that can be downloaded for modelling or it will produce models based on the given
parameters. The Modeller script includes automatic alignment of target and template sequence. The Whatif script requires
an prealigned file. Feel free to edit the scripts afterwards to add more features. Automated mode! building is only supported
through Modeller.
+ PROCHECK Template PDB id
+ WHATIE Targetid
¢ DSSP
+ AP docs
Target Sequence
Refinement very fast v/
Scripts or modelling| Generate script x|
Model
Help
i 22 April 2008
1 Generating a Molecular Dy namics script - Mozilla Firefox
Eile Edit View History Bookmarks Tools Help
@ D@ Sm ype-dynamics [[»] @]
’@ Functional i f ion N System
Login Search: [PDB data ~ | Search || View
+ Home
+ Modelling Generate seripts
+ Mutation
. ﬁﬁs This form will allow you to generate a basic script for molecular dynamics for the chosen program. Some parameters will siil
e have to be calculated and filled in by hand. Selvation is only supported in Yasara and in NAMD only spherical
o solvation
* Hmmer
« Prosite POB entry id

we recommend the following basic tuterials for NAMD and for CHARWMM. Yasara has tutorials included in the program. All of the seripts here are provided as is. Most of these
programs require very specifc input formats and thus may be problematic to start Some may need some additional configuration o give scientific results. The scripts here just

66

Figure 2.20: Top: The automated modelling interface when building a model using Modeller.
The user can decide to generate homology modelling scripts for Modeller or WHAT IF. Bottom:

The molecular dynamics script-generating interface.
programs from the drop-down menu in the form.

Users can select between the different

	Front
	Chapter 1
	CHAPTER 2
	2.1 Overview
	2.2 FunGIMS design and technologies
	2.3 FunGIMS core functionalities
	2.4 FunGIMS data model
	2.5 Structural module
	2.6 Future improvements
	2.7 Conclusions

	Chapter 3
	Chapter 4
	Chapters 5-6
	Back

