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Chapter 1Introdu
tionProtein stru
ture a�e
ts everything around us from how enzymes work, how 
ells areassembled to how diseases fun
tion and spread. Biologists 
an use this information to
ure diseases, understand how enzymes work and improve the quality of life for peopleall over the world. This study will highlight the important role of stru
tural bioinfor-mati
s in solving modern day problems fa
ing biologists. One of the main reasons forbiologists under utilizing stru
tural bioinformati
s tools, is the per
eived, and sometimesinherent 
omplexity and setup of the tools. This problem 
an be addressed by designingmore intuitive systems for biologists to obtain stru
tural biology results. The problem isnot just making the tools easy to use but also the management of the generated data.Integrating the data management and analysis tools into one, easy-to-use pa
kage wouldgreatly assist biologists in a

elerating knowledge dis
overy in stru
tural bioinformati
sand hen
e in solving pressing problems.A modern stru
tural biology appli
ation 
an be broadly divided into two basi
 
ompo-nents. The a
tual analysis tool whi
h is used to generate the results and a system tomanage the data generated by this appli
ation. Ea
h of these play an integral role inthe end result. If the analysis tool is based on wrong or erroneous data, the results arewrong. If the data is in
orre
tly managed, the analysis tool whi
h relies on the data willgive false results. Ea
h of these roles will be dis
ussed in the next few se
tions.A good example of the role stru
tural bioinformati
s 
an play in solving problems, is thethreat of Foot-and-Mouth Disease Virus (FMDV) to livesto
k all over the world. Thisvirus 
an 
ause massive e
onomi
 losses and a�e
t people from all walks of life. Lo
al

 
 
 



Chapter 1. Introdu
tion 2resear
hers have identi�ed some areas whi
h would help in understanding problems su
has variation in the FMDV 3C protease and 3D RNA polymerase, full proteome variationbetween serotypes and protein fun
tion and stru
ture di�eren
es between various FMDVserotype 
apsid proteins.The ideal solution to FMDV would be a 
apsid-based va

ine, but lo
al resear
hers havefound that there are stability di�eren
es between FMDV serotypes. Identifying the stru
-tural e�e
ts of the di�eren
es found in ea
h serotype, 
ould help to improve va

ine design.The 
apsid proteins are also important in infe
tion and thus understanding what in�u-en
e the di�eren
es have on the stru
ture will provide vital information in understandingFMDV infe
tion. FMDV repli
ation speed di�eren
es have been tra
ked to di�eren
esin the 3C and 3D proteins. Mapping the di�eren
es to a stru
ture and investigating thee�e
t these di�eren
es have on fun
tion, will allow for a better understanding of virusrepli
ation and whi
h areas of the protein are more 
onserved. Full proteome varia-tion analysis will help to identify regions and features whi
h are important to the virus.Comparing serotype-spe
i�
 
hara
teristi
s to proteome variation, di�eren
es betweenthe serotypes 
an be mapped. The variation 
an then be tra
ked to features su
h asse
ondary stru
ture or post translational modi�
ations.This is a typi
al example of where a group would require a

ess to stru
tural biology andbioinformati
s tools, yet la
k the resour
es and knowledge on how to pro
eed. This studyaims to address this issue by providing stru
tural bioinformati
s tools that 
an assist theresear
hers in answering stru
tural biology questions. The results 
an provide answers aswell as guide biologists in designing experiments to verify the results from the tools.The following se
tions will address the issues that biologists and stru
tural bioinformat-i
s programmers fa
e with regard to the massive amount of data produ
ed in modernhigh-throughput biology. Topi
s su
h as biologi
al data management, data storage anddata a

ess will be dis
ussed together with how it in�uen
es biologists and programmersalike. Ea
h se
tion is by no means an exhaustive overview of a topi
 but a dis
ussion ofhow it applies to biologists with stru
tural biology 
hallenges.

 
 
 



Chapter 1. Introdu
tion 3

Figure 1.1: The exponential growth in data deposits as seen in GenBank, the PDB andSWISS-PROT (http://www.n
bi.nlm.nih.gov, http://www.pdb.org, http://expasy.
h).

 
 
 



Chapter 1. Introdu
tion 41.1. Biologi
al Data ManagementData produ
tion in modern biologi
al s
ien
es is growing at an exponential rate. Thisis due to high throughput methods (stru
ture as well as sequen
e-based) and genomesequen
ing proje
ts. Data banks su
h as GenBank (Benson et al., 2006), the ProteinData Bank (PDB, Berman et al., 2000) and Swiss-Prot (Gasteiger et al., 2003) have allshown exponential growth in the last few years (Fig. 1.1). This exponential growth indata produ
tion has resulted in enormous datasets that need to be stored, 
urated andmanaged. Larger databases have over
ome the problem of data management to a 
ertainextent by for
ing data depositors to 
onform to a 
ertain format when depositing data.This allows for a more automated approa
h to data management. Some data banks haveeven gone further and are employing people to verify and 
ross 
he
k data before it isdeposited. A good example of this is Swiss-Prot, whi
h is a database dedi
ated to manual
uration and storage of protein sequen
es. Before a protein sequen
e is a

epted intoSwiss-Prot, a human will verify the fun
tion and des
ription of the protein by looking atvarious papers about the protein and 
omparing the data. If the fun
tion and des
riptionare deemed to be 
orre
t, it is in
luded in Swiss-Prot. This type of data managementis highly labour intensive and takes a long time for ea
h protein sequen
e to be veri�ed.Swiss-Prot also hosts another se
tion of protein sequen
es 
alled TrEMBL. TrEMBL is a
omputer translated version of 
DNA sequen
es found in the EMBL database and thus
ontains very little annotation and may be of variable quality or hypotheti
al.Not only is the storage of these datasets a problem but also the presentation of the datato the user in an e�e
tive way. The large data banks have improved during the last fewyears by presenting users with easy to use web-based interfa
es to sear
h the data. Thisallows the users to easily �nd and a

ess the data lo
ated in a spe
i�
 database. Largerservi
e providers su
h as the PDB and SWISS-PROT, have taken it one step further byin
orporating data from other sour
es as well when a user views a re
ord. The PDBfor example links out to Pubmed, Pub
hem and to protein fold details at SCOP (Conteet al., 2000) and CATH (Pearl et al., 2005), while Swiss-Prot provides links to EMBL,PIR, UniGene, ModBase, InterPro and Pfam among others.

 
 
 



Chapter 1. Introdu
tion 51.2. Data StorageAll data banks/databases rely on the storage and linking of data. Small amounts ofdata are easy to store and pro
ess with the pro
essing power available today, but 
ertaindatasets are just too large e.g. the GenBank dataset in May 2008 was 66 GB and that ofthe PDB 6.5 GB of 
ompressed text �les (approximately 27 GB un
ompressed). Theselarge datasets require an e�
ient and fast way of storing and retrieving data. A goodexample is the Ma
romole
ular Stru
ture Database (MSD, Boutselakis et al., 2003) fromthe European Bioinformati
s Institute (EBI). Their approa
h was to parse out all thedata from the PDB, 
orre
t it as far as possible using external analyti
al 
hemistry tools,enhan
e the data by extra
ting 
ross links between di�erent data types and then storingit in a 
ustom relational database. This has the drawba
k of in
reasing the dataset sizewhen 
ompared to the PDB dataset (27 GB un
ompressed vs. 300 GB un
ompressed forMSD). However the added advantage is that the relevan
e of the data is in
reased andby storing it in a relational database, it also in
reases the speed and e�
ien
y by whi
hthe dataset 
an be queried by users.There are two main types of general data storage: �at-�le based or storage in a relationaldatabase su
h as Ora
le or MySQL. Both have advantages and disadvantages (Table 1.1).Flat-�les are de�ned as data being stored in a single �le on disk with �elds separated bydelimiters. Relational databases are de�ned as databases whi
h de�ne relations betweendata sets using the Stru
tured Query Language (SQL) to perform operations on the data,using a database management system.SQL is a 
omputer language that was designed to fa
ilitate the management and retrievalof data as well as database a

ess 
ontrol and s
hema management. SQL has beenstandardized by Ameri
an National Standards Institute (ANSI, http://www.ansi.org)and the International Organization for Standardization (ISO, http://www.iso.org). Thiswas done to enable appli
ations to be moved between di�erent database systems withoutmajor 
ode rewrites.Another major problem in storing data is redundan
y. A good example of this is Gen-Bank. There is an enormous number of sequen
es whi
h only di�er by one or two bases

 
 
 



Chapter 1. Introdu
tion 6Table 1.1: Comparison between Flat-�le data storage and Relational database data storage(Doyle, 2001). Relational database Flat-�le
Advantages - Data entered only on
e- Files/tables are linked- Can handle 
omplex sear
h
riteria - Fast for storage of stati
information- A

ess speed limited by diskspeed- Can be stored on shared �lesystemDisadvantages - Usually hosted on one �leserver- Se
urity need to be 
onsidered
arefully- Dire
t users need additionaltraining

- Di�
ult to sear
h- Di�
ult to 
hange/updatedata- No relations between di�erent�lesor amino a
ids. These sequen
es are usually Expressed Sequen
e Tags (ESTs) whi
hwere deposited. All of these ESTs are distributed with the full version of GenBank. Thenon-redundant version is distributed without these �dupli
ates�. The PDB has a similarpoli
y with regard to 
rystal stru
tures. One protein sequen
e may have a few di�erent
onformations/stru
tures depending on the 
rystallization 
onditions and ligands present.Some databases remove this redundan
y to 
reate a smaller, more manageable dataset,yet these redundant sequen
es 
ontain a wealth of data that 
an also be utilized. Thuson
e again, there is a trade o� between storing a smaller non-redundant dataset versusstoring a larger, redundant dataset.
1.3. Data ModelsAll of the databases/data banks dis
ussed in the previous se
tions store data in someway or another. Some of these systems su
h as MSD use a data model to store the data.A data model is a des
ription of the organization of, and relationships between, data ina manner that re�e
ts the information stru
ture. This model is also usually used as adatabase stru
ture.

 
 
 



Chapter 1. Introdu
tion 7

Figure 1.2: A high level overview of the data model of MSD(http://www.ebi.a
.uk/msd-srv/do
s/dbdo
/). The main Stru
ture entity is enhan
edby linking it to other data types.The data model used in MSD is based on the hierar
hi
al stru
ture of proteins and worksin a top down manner. A stru
ture serves as the main data obje
t and other types ofdata su
h as a
tive sites, ligands and taxonomy are added (Fig. 1.2). A stru
ture entityis divided into many di�erent se
tions (Fig. 1.3). Through a series of 
ross-links thesedi�erent entities 
ontain all the data about a stru
ture. The MSD data model allows forvarious 
ross-links and external referen
es to be in
orporated into the model thus addingvalue to the pure stru
ture data.The Fun
tional Genomi
s Experiment (FuGE) is an attempt to fa
ilitate data standard
onvergen
e between the di�erent high-throughput te
hniques used in biology (Joneset al., 2006; Jones et al., 2007). FuGE provides a foundation for the des
ription of
omplete laboratory work�ows and provides me
hanisms for developing new data formatsand for the integration of data between te
hniques. FuGE was designed so that di�erentfa
ets of a �'omi
s� experiment 
an be 
aptured and stored. This in
ludes data su
h asproto
ols, sample sour
es and results. Providing a 
ommon platform to store 
ommondata types would allow for data to be shared among di�erent groups. This would, forexample, allow a mi
roarray study using Mi
roArray Gene Expression obje
t (MAGE)data model to share a basi
 set of information with someone doing a study using theProteomi
s Standards Initiative (PSI) data models. The FuGE model also allows for ri
h
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8

Figure1.3:Thedi�erententitiesbelongingtotheStru
tureentityinMSD
(http://www.ebi.a
.uk/msd-srv/do
s/dbdo
).Thisdatamodelisarepresentationofthe
dataaswellasadiagramofthea
tualdatabasestru
ture.

 
  



Chapter 1. Introdu
tion 9Table 1.2: The two 
ategories of FuGE with the pa
kages in ea
h 
ategory (Jones et al., 2007).FuGE Common AuditDes
riptionMeasurementOntologyProto
olReferen
eBio Con
eptualMole
uleDataInvestigationMaterialannotation of samples and be
ause of the underlying standard model, it will allow datasharing between samples and methods.FuGE has 10 di�erent pa
kages 
ontained in two 
ategories: Common and Bio (Jones et al.,2007). The FuGE.Common 
lass 
onsists of Audit, Des
ription, Measurement, Ontology,Proto
ol and Referen
e (Fig. 1.4). Audit provides se
urity settings, Measurement pro-vides slots for values and units, Ontology provides for external referen
ing vo
abularies,Proto
ol provides a model for pro
edures and work�ows and Referen
e provides linksto external database referen
es. Des
ription allows free text annotations and des
rip-tions for all obje
ts and inherits dire
tly from Des
ribable. All obje
ts in FuGE 
an berepresented under the Common 
ategory. FuGE.Common has two base 
lasses: Des
ribableand Identifiable. All FuGE obje
ts belong to either one of these 
lasses.Ea
h of these 
lasses are further separated to provide adequate methods to store proto
olsand samples. The Identifiable base 
lass provides a unique identi�er for ea
h obje
tin the system and Identifiable inherits from Des
ribable. This provides ea
h obje
tin the FuGE system with a unique identi�er whi
h is linked to a free text des
riptionand se
urity settings. Identifiable also provides a logi
al point from whi
h to extendthe FuGE system. FuGE.Bio 
ontains Con
eptualMole
ule, Data, Investigation andMaterial. The Con
eptualMole
ule 
ategory provides 
lasses for the storage of DNA,RNA and amino a
id sequen
es but only in a limited way. In theory this 
an be extendedto other mole
ules. Data provides a way to link to multidimensional experimental datausing the sub
lass ExternalData. Investigation allows for overall experimental design

 
 
 



Chapter 1. Introdu
tion 10

Figure 1.4: The 
lasses of FuGE.Common (http://fuge.sour
eforge.net). These 
lasses allow forthe storage of basi
 information about ea
h sample.storage as well as storage of experimental variables. Material 
aters for sample sour
eidenti�
ation using a 
ontrolled vo
abulary.Both MSD and FuGE are su

essful in storing spe
i�
 data but most users use a rangeof data types. Whereas MSD stores all the stru
tural data, it does not 
ater for storinganalysis results nor does it store the methods used. FuGE stores laboratory pro
eduresand proto
ols but it does not store extensive spe
i�
 data su
h as sequen
es or stru
tures(only basi
 storage is supported). This basi
 storage allows for a model that is very
ompatible between systems and also makes it easy to expand for a spe
i�
 system. Anideal fun
tional genomi
s system would store proto
ols, data and results in a data model
ompatible with models su
h as FuGE and MSD. The Fun
tional Genomi
s InformationManagement System (FunGIMS) utilizes a data model whi
h stores the most importantparts of both FuGE and MSD in one data model without losing the integrity of ea
hseparate model yet provides an interfa
e to both. Some parts of FuGE were not used as

 
 
 



Chapter 1. Introdu
tion 11they represent experimental proto
ols and 
onditions and FunGIMS only 
aters for datastorage and analysis.1.4. Information Management SystemsWhile major databases host publi
 data, laboratories often need to host their own datain a spe
ialized way. Systems that host data in this way are usually referred to asa Laboratory Information Management System (LIMS). The main 
hara
teristi
 of atraditional LIMS is that it manages data and tra
ks samples through the system.The last few years saw an explosion of LIMS, all spe
ialized for dedi
ated tasks. Forexample a LIMS simply 
alled LIMS was developed for tra
king high throughput geneti
sequen
ing and 
andidate mutant s
reening (Voegele et al., 2007), CLIMS (Crystallogra-phy IMS) to organize the large amounts of data generated by 
rystallization experiments(Fulton et al., 2004). PARPs was developed for managing liquid 
hromatography tandemmas spe
trometry and the asso
iated protein identi�
ation and data management (Droitet al., 2007), PACLIMS for managing eukaryoti
 genome-wide mutational s
reens and thefun
tional annotation thereof (Donofrio et al., 2005), a 2-D gel ele
trophoresis LIMS wasdeveloped to deal with large-s
ale proteomi
 studies (Morisawa et al., 2006) and MAC-SIMS for dealing with data mining from multiple sequen
e alignments (Thompson et al.,2006). T.I.M.S is an example of a very spe
i�
 LIMS designed for tra
king genotypingdata �ow and analysis in a laboratory (Monnier et al., 2005).LIMS users are usually fa
ilities or users who generate relatively large quantities of datain e�orts su
h as large-s
ale sequen
ing or high throughput 
rystallographi
 studies. Thelarge amount of data needs to be stored e�
iently and analyzed in a 
onsistent ande�e
tive way. This is one of the major advantages of LIMS but when it 
omes to detaileddata analysis, it 
an also be a disadvantage. The trade o� between being able to storeand do basi
 analysis on a large amount of data and being able to do detailed analysison a small set of data is one of the drawba
ks of LIMS. Some systems like CLIMS 
anstore a large amount of data but does not allow the user to do a detailed analysis of thestru
ture. Other systems su
h as T.I.M.S. provides a very spe
i�
 servi
e for a subset

 
 
 



Chapter 1. Introdu
tion 12Table 1.3: Comparison between the te
hnologies in 
urrently available LIMS.LIMS Main feature LanguageLIMS Automated high throughput mutations
anning MySQL + JavaCLIMS Crystallization pro
edure management MySQL + Java Ri
h
lientPARPs Liquid Chromatography data managementand analysis Ora
le + PerlPACLIMS Managing high throughput sequen
ing dataand proto
ols PostgreSQL + PerlMACSIMS Protein family alignment and data extra
tion ANSI CTIMS Sample management and parsing of TaqMandata Visual Basi
of data. LIMS 
an greatly enhan
e throughput in a lab as they allow for 
entralizedstorage and standardized analysis proto
ols. All data are treated and interpreted in thesame way, providing a big advantage when doing analysis. It also allows users a

ess to
entralized analysis tools. All LIMS need to store data in some way. Most LIMS relyon the proven te
hnology of relational databases with additional data stored as �at-�les(Table 1.3).One of the biggest advantages of LIMS is the ability to organize data. This is in sharp
ontrast to 
lassi
al biology where results were written on paper in laboratory booksand data stored on various CDs and DVDs. LIMS provides a way to store and sear
hthrough data in an organized and systemati
 manner, thus in
reasing e�
ien
y. Theorganization, analysis and data storage abilities of a LIMS will be illustrated in 
hapters3-5 when various stru
tural problems su
h as the 
apsid proteins in FMDV are investi-gated. Web-based systems provide an advantage to novi
e users venturing into stru
turalbioinformati
s, as web interfa
es are experien
ed as a familiar environment, and pre-
lude the need for the installation of lo
al software, whi
h sometimes has 
ompli
ateddependen
ies. Available web-based systems for stru
tural bioinformati
s vary in termsof the level of analysis fun
tionality available and the level of knowledge required foruse. The Spi
e DAS 
lient is an example of a system for viewing and performing basi
exploration of a protein stru
ture, starting with a PDB ID (Prli
 et al., 2005). Spi
e alsoprovides a DAS-based annotation of espe
ially stru
tural properties of the protein being

 
 
 



Chapter 1. Introdu
tion 13viewed. Web helper-based appli
ations su
h as Cn3D also allow extensive visualizationof protein features and stru
tural alignments, together with the preparation of proteinstru
ture �gures for reports and publi
ation (Hogue, 1997). STRAP provides a Javaweb-start appli
ation to perform extensive multiple alignments and superimposition ofprotein stru
tures, together with protein stru
ture views and sequen
e-based analysis ofstru
tural features (Gille and Frömmel, 2001). Various other stru
tural tools are alsoavailable depending on the needs of the user.1.5. Common Stru
tural Analysis Needs of BiologistsThe Holy Grail of stru
tural biology is the ability to predi
t the three dimensional stru
-ture of a protein given only the amino a
id sequen
e. Although it sounds relatively easy,the solution to this problem is one of the most sought after in s
ien
e. As protein stru
tureis inherently linked to protein fun
tion, knowing the stru
ture of a protein allows one toderive the fun
tion of that protein and 
hange it. On
e a stru
ture 
an be predi
teda

urately from sequen
e, it allows the resear
her to do in sili
o mutations and obtaina reliable result in a short spa
e of time. This will not repla
e the need for experimen-tal work, but provide assistan
e to guide experiments better. It will eliminate variousproblems en
ountered with proteins not expressing or not 
rystallizing. Protein stru
ture
an also help guide a resear
her in designing more e�
ient and a

urate experiments toaddress biologi
al problems.Biologists are familiar with working with DNA sequen
es or proteins in vitro. Often dur-ing this pro
ess, very little time is spent thinking about the protein in three dimensions.When keeping a three dimensional pi
ture in mind, it gives a new perspe
tive on theproblem. If the protein stru
ture is known or well studied it allows for mu
h easier dataretrieval, but when working on an unknown stru
ture, the task of getting informationabout a protein 
an be
ome rather daunting. By adding protein stru
tural knowledge,they 
an guide or enhan
e experiments e.g. using a protein stru
ture to identify possiblesites for mutagenesis studies. However, a

essing the protein data 
an sometimes beproblemati
.

 
 
 



Chapter 1. Introdu
tion 14Dis
ussions with biologists have identi�ed a few main problems whi
h often prohibitthem from utilizing protein analysis tools. Two main problems were 
ited, that of a
-
essibility to programs and a la
k of knowledge of new programs/databases. More andmore programs are being released by authors on the Internet and thus the problem ofa

essibility will lessen with time. Biologists are generally 
omfortable with using a fewgeneral purpose programs or servers su
h as Ex
el, Word, NCBI Blast, the Genbankserver and maybe one or two other spe
i�
 programs or servers. Due to the nature ofmodern biology, these are the programs they use on a regular basis and they are not thusexposed to other servers and databases. Most of these programs are either web-basedor are preinstalled on their 
omputers, thereby leaving biologists with very little intera
-tion regarding program installation and setup. This is in 
ontrast to most open sour
estru
tural programs whi
h the user has to install by themselves. These mostly run onUNIX-based systems and requires a basi
 knowledge of the operating system and theprogram's syntax. Although these problems 
an be resolved relatively easily, they areseen as a major barrier to the more widespread usage of protein stru
ture programs. Insome 
ases this 
an be attributed to the per
eived 
omplexity of UNIX-type systems.Some authors of programs have realized this and started releasing their programs for theWindows and Apple Ma
intosh operating systems as well. Although this is a step inthe right dire
tion, it still does not solve the problem of setting up the program and theanalysis. The ideal solution would be to have a system administrator who is 
apable inboth Windows and UNIX environments, and who will assist the users with setting upthese programs. Unfortunately, the responsibility usually falls on the resear
her to installand manage the programs.Another fa
tor mentioned was the la
k of knowledge of available databases or programs.This problem is two-fold. Firstly biologists should strive to read beyond their own �eldof interest, and not be hesitant to sear
h for programs or servers. Se
ondly some pro-grams or databases are simply not published in well known journals. The Nu
lei
 A
idsResear
h journal tries to address both of these problems with a yearly, open a

ess issueof all the known, biologi
al databases and servers but this does not 
over any stru
turalbioinformati
s programs. A good approa
h, however, would be to have someone with

 
 
 



Chapter 1. Introdu
tion 15a strong interest in stru
tural bioinformati
s, keep abreast of developments in the �eld.Even something as simple as subs
ribing to journal alerts, would be helpful. The bestapproa
h would be to have a person su
h as a postdo
toral student or te
hni
al sta�member dedi
ated to looking for new programs, making them available and providingsupport for these programs. Su
h a person should ideally be aware of the di�erent typesof proje
ts in a group, have a good biology ba
kground and be 
apable of installing andmanaging the appli
ation server as well as run the programs for users. He or she 
ouldalso develop a website whi
h allows for easy a

ess to all of these tools to lo
al resear
hers.Most biologists would just need an introdu
tion to the program and a few basi
 guidelinesto get started and 
ontinue on their own.The problem with regards to program use and knowledge lies not only with the usersthereof but also with the programmers. A program that has a good user interfa
e with
learly de�ned fun
tions and a good explanation of ea
h step, is as valuable to the user asthe person guiding them. The onus is on programmers to provide do
umentation, exam-ples and a good interfa
e for users, but unfortunately this is la
king in many programs.Another problem, whi
h 
an be tra
ed to the point-and-
li
k method used in Windows,is the la
k of understanding of �le formats and the amount of information 
ontained in a�le. Many biologists are hesitant to explore inside �les. A good example of this is a PDB�le of a protein. Most users will simply load the protein in a visualization program andignore the valuable information 
ontained in the �le header and 
omments. This problem
an only be addressed by making users aware of the extra information and making them
omfortable with exploring text �les.Biologists have an array of needs that 
an be resolved by using stru
tural biology pro-grams. When an unknown protein sequen
e is identi�ed, most biologists just do a BLASTsear
h in an e�ort to identify it. Although this usually yields results, there are many moretools that 
an be used to gain knowledge about a protein. By simply using the sequen
e, abiologist 
an identify whether the protein is a membrane protein or not, protein fun
tionmay be derived from 
ertain sequen
e patterns 
ontained in the sequen
e and in some
ases even 
ellular lo
alization 
an be determined. This 
an be taken a few levels higherto a three dimensional view of the protein. From a similar protein stru
ture, details su
h

 
 
 



Chapter 1. Introdu
tion 16as a
tive site residue 
onformations, residue intera
tions and sometimes even fun
tion,
an be derived. If a similar protein stru
ture is found, a homology model 
an be builtwhi
h 
an guide the biologist in identifying a
tive sites, important se
ondary stru
turesand guiding site-dire
ted mutagenesis experiments to 
on�rm fun
tion. Analysis of theprotein stru
ture 
an also help in identifying surfa
e areas involved in protein-protein in-tera
tions and identify �exible areas in proteins. These types of data 
an all be 
ombinedto give a far better understanding of the protein and the way it fun
tions. It 
an alsoserve as a starting point for the resear
her to investigate fun
tion or stru
ture in moredetail using mole
ular biology.Some of the fun
tionalities mentioned, are available on web servers around the world.Unfortunately, a la
k of knowledge often prevented biologists from exploring the fullrange of programs available. This was one of the motivations behind this proje
t, toprovide servi
es to lo
al biologists in a 
entralized and lo
ally available solution. If theseservi
es and programs 
an be provided and maintained lo
ally, it would bene�t resear
hersgreatly.1.6. The Fun
tional Genomi
s Information Management System(FunGIMS)The overall FunGIMS proje
t was 
on
eived when resear
hers from the Forestry andAgri
ultural Biote
hnology Institute at the University of Pretoria, approa
hed the Bioin-formati
s and Computational Biology Unit to provide them with bioinformati
s supportservi
es related to the Eu
alyptus genome sequen
ing proje
t. They required a systemwhi
h would allow them to store their sequen
es, annotate the data and do varioustypes of analysis on the sequen
es, all in a lo
al environment. From these requirements,FunGIMS was expanded to in
lude di�erent types of data su
h as protein stru
ture andsmall mole
ule data.The philosophy behind FunGIMS was based on allowing resear
hers a

ess to varioustools and data sour
es in an easy to use environment with extensive data management
apabilities. Various problems related to data sour
es and tool a

ess were identi�ed

 
 
 



Chapter 1. Introdu
tion 17by the resear
hers. These problems in
luded the slow bandwidth in South Afri
a, thehigh 
osts asso
iated with Internet use and the problem of storing data. The problem ofdata storage surfa
ed as one of the primary 
on
erns. Resear
hers were used to sharing
omputers and thus stored data on CDs, laboratory books and memory sti
ks. Thisresulted in data being distributed in various pla
es and formats. It also posed a problemto supervisors when they needed a

ess to the data of students. A 
entral repositorywhere students 
an store and analyze data while still allowing supervisors a

ess, wouldsolve this problem to a large extent. The ability to store data was one of the primaryfa
tors 
onsidered during the design of FunGIMS. To prevent dupli
ation of designing away to store the data, it was de
ided to use FuGE as a starting point. As FunGIMS andFuGE had a similar goal with regard to storing data, it would be a great bene�t to usethis standardized way of storing data. It would also allow resear
hers the ability to sharedata between FunGIMS and FuGE 
ompliant systems.The slow and expensive bandwidth also a�e
ted the design of FunGIMS by for
ing lo
alrepositories of all the major databases to be installed and used. Lo
al repositories of allthe major databases were set up. This allowed very fast, lo
al a

ess to these databaseswhi
h allows for extensive integration between the di�erent databases. All the servi
eswould also be hosted lo
ally, thus providing fast a

ess to data and results for the re-sear
hers. By keeping all the databases in one, 
entral lo
ation, it made administrationand updating of the databases far easier. A system administrator 
ould automate thedownloading of the database updates and keep all the databases up to date.Another major goal of FunGIMS was integration between data types. Usually a databaseonly provides one type of data with a few links to related data. Ideally, a system wouldprovide a user with relevant links to other types of data e.g. when looking at a 
DNAsequen
e, the system would provide the user with links to the protein sequen
e, proteinstru
ture (if present), literature referen
es and possible small mole
ule intera
tions. Thiswould allow the resear
her to get an overall view of the spe
i�
 produ
t, instead of justlooking at the details of a spe
i�
 length of sequen
e. Integration between publi
 andprivate data is also provided but only in the sense that publi
 data is integrated with

 
 
 



Chapter 1. Introdu
tion 18private data. Thus a user with private data 
an makes links to and see publi
 data, useprivate and publi
 data but still prevent a

ess to and integration with the private data.The overall s
ienti�
 goal of FunGIMS is to provide the user with a set of tools and a

essto a large amount of data in one 
onvenient pla
e. The idea is not to repla
e the use ofea
h individual tool but to provide the user with results whi
h 
an serve as a startingpoint. For some biologists this will provide enough information to allow them to 
ontinuedown a spe
i�
 route. Others may want to pursue a spe
i�
 topi
 in more detail. Theseparate modules 
ater for the main types of fun
tional genomi
s data used. Ea
h modulehelps the user to do analysis relevant to that topi
 and tries to provide links to other datatypes in FunGIMS. Currently FunGIMS 
onsists of Sequen
e, Stru
ture, Genomi
 andSmall mole
ule modules and will in the future in
lude modules for Mi
roarray, Genotypeand Literature data. Ea
h of these modules are spe
ialized to deal with a di�erent typeof data. All the modules overlap with ea
h other to some extent, but ea
h still providesunique fun
tions for the spe
i�
 data type e.g. proteins have a sequen
e that is mostlydealt with in the Sequen
e module whereas the stru
tural aspe
ts are dealt with in theStru
ture module. Integration between the di�erent datatypes in ea
h module is of vitalimportan
e. A good example is that of a user interested in a spe
i�
 protein and itsfun
tion. The Stru
tural module will provide a

ess to stru
tural data on the protein,but at the same time it will provide links to DNA sequen
es, genome lo
ations, genotypedata, mi
roarray results and related literature (where available). This will allow the userto see under whi
h 
onditions the protein is up or down-regulated, whi
h SNPs have beenidenti�ed in the 
DNA sequen
e and where the DNA 
oding for the protein is lo
atedon the genome. FunGIMS aim to provide an environment in whi
h a user 
an a

essdi�erent types of data that are all linked by a 
ommon element (in this 
ase, a protein).This type of data integration is fast be
oming the future of all databases and provides afar more 
omplete overview of a spe
i�
 protein.Ea
h of the modules was approa
hed from the view of the resear
hers, what they wouldwant to a

omplish, whi
h tools they would use and how they would use su
h a module.This prevented modules from being designed a

ording to developers rather than to assistthe resear
her. During the design pro
ess, resear
hers were 
onsulted on 
ommonly used

 
 
 



Chapter 1. Introdu
tion 19tools, the way in whi
h they used the tools and ways in whi
h they wanted data to bepresented. Usability was also kept in mind to make the tools easy to use. To fa
ilitateeasy use of the system, it was de
ided to fo
us on a web-based system, rather than astandalone system. This presents the user with a familiar environment (web browser)and allows for minimal hardware and software installations. While bene�ting the user,su
h a system will also bene�t the administrators as they need to install and maintainonly one server, instead of a number of 
omputers at various workstations.FunGIMS supplies a variety of these servi
es but this spe
i�
 study fo
uses on protein andprotein stru
ture-related servi
es. The Stru
tural module of FunGIMS aims to providethe users with three di�erent types of tools: Explorative, Analysis and Modelling tools.Explorative tools allow the user to explore known protein stru
tures and their features,Analysis provides a sele
tion of general tools to allow the user to analyze a sequen
e orpatterns found in a sequen
e and Modelling allows the user to build homology modelsand generate s
ripts for various mole
ular dynami
s programs. The s
ripts are intendedas a stepping stone to en
ourage user-driven investigation.The Analysis se
tion will provide tools su
h as Prosite (de Castro et al., 2006) and HiddenMarkov Model sear
hes against Pfam (Finn et al., 2006). Prosite is a tool used to �ndmotifs in a sequen
e whi
h may aid in identi�
ation of the protein. A motif 
an be de�nedas an element or short stret
h of amino a
ids that is linked to a spe
i�
 fun
tional orstru
tural protein feature su
h as gly
osylation or protein spe
i�
ity. When referring toa motif that identi�es protein spe
i�
ity, the amino a
id sequen
e of the motif must beunique to that spe
i�
 a
tivity. Some motifs are very short and ina

urate. A goodexample of these in
lude gly
osylation sites whi
h are often only one or two residuesin length and may thus o

ur at random on a protein sequen
e. Prosite uses regularexpressions to sear
h the motifs against a sequen
e. A regular expression is a way tomat
h text patterns to strings and �nd the mat
hes. These text patterns may in
ludewild
ards whi
h allows for any spe
i�
 
hara
ter to be found at a position as well asspe
i�
 
ombinations of 
hara
ters.A way to improve the a

ura
y of motifs is to use Hidden Markov Models (HMM). TheHmmer tool used in the Analysis se
tion is a good example of HMM use. A HMM is a

 
 
 



Chapter 1. Introdu
tion 20probabilisti
 model whi
h takes into a

ount the residues before and after the motif aswell as the order of the residues in a motif. In the 
al
ulation it may in
orporate a setamount of residues before or after the 
urrent position and this is referred to as the orderof the HMM. Thus a 5th order HMM would 
onsider �ve residues before and after the
urrent position during a 
al
ulation as well as the order of the residues in the pattern.This implies that the pattern and position of residues in a protein sequen
e 
an be used toidentify it or to generate HMM's that 
an be used to sear
h for other proteins 
ontainingthe same pattern. Using HMMs a model of a protein family 
an be built. HMM's aredis
ussed in detail in Bystro� and Krogh, 2008 This allows programs su
h as Hmmer toa

urately identify the family to whi
h a protein belongs. In the Analysis module, Hmmeris used to sear
h a sequen
e against the Pfam database. Pfam is a database built up ofdomain HMMs of every known protein family. It uses manually 
urated alignments ofprotein families to generate HMMs of the areas that 
an be used to identify ea
h family.The more members in the family, the more a

urate the domain HMM in Pfam.The Tmhmm (Sonnhammer et al., 1998) and S-tmhmm (Viklund and Elofsson, 2004)tools are also in
orporated into the Analysis se
tion. Tmhmm use HMMs to 
lassifywhether a protein has membrane 
rossing α-heli
es. These are re
ognized using HMMsbased on length and hydrophobi
ity. A standard transmembrane helix is usually 20residues long as this is the minimal length needed to 
ross a membrane while the residuesare in a heli
al 
onformation. S-tmhmm uses HMMs to identify the orientation of atransmembrane helix in the membrane. It will give ea
h residue a probability of whetherit is on the inside in the 
ytosol or whether it fa
es the outside of a membrane.Also in
luded in the Analysis se
tion are tools su
h as PROCHECK (Laskowski et al.,1993) and the WHAT IF model 
he
k (Vriend, 1990). These tools use statisti
al dataderived from the PDB to evaluate various parameters in a protein stru
ture or model.These in
lude parameters su
h as bond lengths, bond angles, planarity of atoms andpa
king environments of amino a
ids. Ea
h of the tools will 
ompare the results from thesubmitted stru
ture to the statisti
al values and then judge it as either being within oroutside a

eptable limits. When analyzing models this is very useful as it 
an identifyareas whi
h were badly modelled.

 
 
 



Chapter 1. Introdu
tion 21Most proteins are made up of various se
ondary stru
tural elements. To identify theseelements, the DSSP program (De�ne Se
ondary Stru
tures of Proteins) measures all theangles between the atoms in a protein and 
lassify every residue as either being in a loop,
β-strand or α-helix.The Modelling se
tion in
ludes tools related to homology modelling and mole
ular dy-nami
s simulations. Homology modelling a method whereby a stru
ture of an unknownprotein is built based on the stru
ture of a related or homologous protein. Protein stru
-ture is mu
h more 
onserved than protein sequen
e and this is the basis of homologymodelling. Modelling programs usually take at least two parameters, a known stru
tureand an alignment between the sequen
e for whi
h the model is to be built and thesequen
e of the known stru
ture. The 
oordinates for every region that aligns is then
opied to the new target stru
ture. Where regions don't align or where gaps or deletionsare present, the program will try to build the stru
ture based on statisti
al averages in
ombination with for
e�elds. After a basi
 model has been built, the program needs tore�ne the model. There are various steps and methods but the most well know is thesatisfa
tion of spatial restraints. This method will adjust all the intera
tions betweenatoms to satisfy known restraints su
h as bond lengths and bond angles. An extension tothis method is the modelling of the amino a
id side 
hains. Be
ause the side 
hains 
anrotate and have more rotational degrees of freedom, it is a more 
omplex task to model.One of the approa
hes is to use a library of observed side 
hain 
onformations and modelea
h side 
hain based on those 
onformations. This is fairly qui
k but does not alwaystake the surrounding environment into a

ount and thus some programs optimize theside 
hain 
onformation to in
lude environmental 
onditions. Loop modelling presentsanother 
hallenge as they are very �exible and usually la
k a template. Most programswill either use a library of observed loops to try and model a loop se
tion or, if the loopis short enough, will try ab initio modelling of the loop. Be
ause of the loop �exibility,both these approa
hes have their drawba
ks. Loop libraries do not 
ontain all the known
onformations of a loop as ab initio modelling of loops is in its infan
y.As stru
ture is so 
onserved, this general approa
h is valid for the most proteins. Generalhomology modelling theory holds that when there is 30%-50% sequen
e similarity, the

 
 
 



Chapter 1. Introdu
tion 22ba
kbone of the protein is 
orre
t, when the similarity is between 50-%70%, the side
hains are also 
orre
t, and anything above 75% similarity will result in side 
hain spe
i�

onta
ts, or sometimes atoms, to be 
orre
t. Anything below 25%-30% is 
onsidered tobe in the 'twilight zone'. To build models in this range requires a lot of extra knowledgeabout the protein whi
h 
annot be gained from stru
ture and alignment alone.The �eld of mole
ular dynami
s en
ompasses the movement of proteins as simulated byan algorithm. These simulations provide valuable information regarding the intera
tionsbetween amino a
ids in a protein. It 
an also be used as a guide in designing experimentsto investigate the importan
e of amino a
ids in protein movement and intera
tions. Itmust be kept in mind that mole
ular simulations still have some limitations and it mustbe used as a tool to fa
ilitate and guide experimental work. In order to to improve thesimulations, mu
h better models of the intera
tions between atoms and residues needs tobe built. Tools to generate mole
ular dynami
s s
ripts are also in
luded in the Modellingse
tion. Mole
ular dynami
s is the appli
ation of Newton's Laws of Motion to a setof atoms over time to predi
t how they will move. With proteins the matter be
omesmore 
omplex as 
ertain atoms are bound to one another and undergoes short and longrange intera
tions. Various algorithms and programs have been implemented to deal withthese elements. The general terms in a mole
ular dynami
s for
e�eld in
lude energeti
terms for the following: bond length, bond angle, dihedral angles, long range intera
tions,hydrogen bond intera
tions and Van Der Waals intera
tions. Ea
h program treats theseterms di�erently and assigns di�erent values to ea
h term based on empiri
al or 
al
ulateddata. When starting a simulation, the program will try to perform an energy minimizationon the protein. This is a te
hnique whereby the algorithm tries to obtain the minimumenergy for a protein by adjusting all the physi
al fa
tors su
h as bond length, side 
hainorientations and atom-atom intera
tions. The Modelling se
tion provides the user witha 
hoi
e of programs for dynami
s as well as modelling. For dynami
s only s
ripts areprovided as running simulations are very resour
e intensive and are not feasible on aweb server. Some simulations may run for weeks at a time and thus take up valuableresour
es.All of the tools mentioned will provide the user with extra information about the protein.

 
 
 



Chapter 1. Introdu
tion 23These programs will produ
e data for the user and thus FunGIMS provides data storageand a
t as an interfa
e to the data. In addition to this, it also provides group-linked usermanagement. This feature was requested by lo
al biologists who wanted to 
onsolidatedata storage yet retain individual and group 
ontrol over the data. Su
h a system wouldallow the users to store 
ertain subsets of data on the server and retrieve it for lateranalysis. It also allows a separation between private and publi
 data, whi
h is importantas some individuals may be working on proje
ts that are of 
ommer
ial value. FunGIMSallows these users to keep their data private, yet in
orporate and enri
h their data withpubli
 data from various sour
es. FunGIMS also allows for private and publi
 data to bekept apart in that private data 
annot be a

essed by users who do not have the ne
essarya

ess rights.By providing the user with exploration, analysis and modelling tools in one 
entral lo
a-tion, together with allowing for storage of the results, it fa
ilitates knowledge dis
overy.1.7. Appli
ation to Foot-and-Mouth Disease VirusFoot-and-Mouth Disease Virus (FMDV) is a highly 
ontagious disease found in 
lovenhoofed animals and a range of other hosts. Infe
tions 
an 
ause large e
onomi
 losses aswell as a de
rease in animal produ
tivity. Lo
al resear
hers at the Agri
ultural Resear
hCoun
il (ARC) have been working on a va

ine design against FMDV but have en
oun-tered numerous problems. Most of the va

ine design work is based on the 
apsid proteinsof the virus as these are the main proteins exposed to the humoral immune system ofthe animal although the 
ellular immune system also plays a role. Due to the di�erentserotypes found in FMDV, it is di�
ult to make a general va

ine. Current va

inee�orts are serotype-spe
i�
, sometimes even subtype-spe
i�
. Sequen
e analysis showedthat there are a few sequen
e di�eren
es between the 
apsids of the various serotypes.The 
apsid plays a vital role in virus stability and entry into the 
ell and thus any 
apsidsequen
e variation might have an e�e
t on virus spreading. Some of the problems duringva

ine design were found to be related to stru
tural aspe
ts of the virus 
apsid proteinsand the resear
hers had no means of using experiments to identify the di�eren
es in the

 
 
 



Chapter 1. Introdu
tion 24stru
ture. Sin
e the resear
hers had no real experien
e in dealing with protein stru
turein a three dimensional environment, they required assistan
e and advi
e to use stru
turalbioinformati
s to solve urgent problems. Analysis or simulation programs were run, basedon the advi
e given and interpretation of the results on the basis of the protein stru
turewere provided to them. This 
ollaboration is of vital importan
e as it helps them to dire
texperiments and interpret the results they see in the laboratory. The results have helpedthem to understand how variation in the 
apsid protein sequen
es a�e
t the stru
ture ofthe 
apsid and its e�e
t on virus 
apsid stability.The goal of FunGIMS is to provide tools for resear
hers in this kind of situation, to allowthem to do resear
h in an unfamiliar �eld while minimizing the te
hni
al di�
ulties hin-dering them. Most of the tools in the Stru
tural module of FunGIMS, were spe
i�
ally
hosen to assist the resear
hers in 
ondu
ting the most 
ommon stru
tural bioinformati
sand analysis on the proteins of the di�erent virus strains. The fun
tionality of the Stru
-tural module in FunGIMS was used together with other tools to aid in the investigationof three aspe
ts of FMDV. Ea
h problem additionally illustrates a spe
i�
 feature/s ofFunGIMS and its appli
ation to a spe
i�
 problem. The three problems are:
• Annotation of the FMDV proteome. The FMDV genome is small and 
odes forfourteen proteins on a pre
ursor polypeptide. The motif-�nding tools in FunGIMSwere used to �nd protein motifs in the proteome and 
ompare the distribution of thesemotifs on 9 serotypes.
• Variation in FMDV 3C protease and 3D RNA polymerase. These two enzymes areimportant in the repli
ation of FMDV and are usually highly 
onserved. The homol-ogy modelling tools in FunGIMS were used to build models of various SAT serotypes.The variation found in various subtypes of ea
h of the three SAT serotypes was then
ompared and mapped to the protein stru
ture to lo
ate variation hot spots and toidentify potential surfa
e intera
tion areas.
• FMDV 
apsid stability and variation analysis. The FMDV 
apsid is vital to the virusas it prote
ts the virus from the environment and assists in 
ell entry. It is also themain fo
us of va

ine design and thus understanding the intera
tion and di�eren
esbetween the various 
apsid proteins is highly important. The homology modelling

 
 
 



Chapter 1. Introdu
tion 25and mole
ular dynami
s tools in FunGIMS were used to build models of the 
apsidproteins of various SAT2 subtypes. These models were used to map variation inthe 
apsid and, in 
onjun
tion with mole
ular dynami
s simulations, investigate thestability of the serotype 
apsids at di�ering pH values.The three aspe
ts investigated help to show the variety of problems that FunGIMS 
anbe applied to and the way in whi
h it helps to fa
ilitate knowledge dis
overy in ea
h 
ase.A more detailed introdu
tion about ea
h FMDV topi
 is given at the start of the relevant
hapter.
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Problem StatementFoot-and-Mouth Disease Virus (FMDV) is highly 
ontagious virus infe
ting 
loven-hoofedanimals. A few key problems were identi�ed by lo
al resear
hers, all relating to stru
turalaspe
ts of the virus 
apsid proteins but they had no stru
tural biology experien
e. Asystem 
alled FunGIMS was designed, whi
h attempts to help address these problemsspe
i�
ally in the investigation of FMDV and also to provide other resear
hers with anintrodu
tory environment for stru
tural biology investigations, leading them towards thelater use of more advan
ed tools. FunGIMS is a Fun
tional Genomi
s and InformationManagement System. It provides an easy to use, web-based interfa
e to perform a varietyof analysis on various di�erent data types. This proje
t fo
used on providing easy a

essto stru
tural data as well as intuitive and easy-to-use interfa
es to the most 
ommonlyused stru
tural bioinformati
s tools.The 
omplexity and setup of stru
tural biology tools have long been a barrier for biologistswho want to make use of these tools. Most stru
tural biology tools usually run on a UNIXtype operating system. The vast majority of these tools has been validated extensivelyin literature and by their respe
tive authors. Ea
h program has a di�erent syntax andmethod of operating, whi
h may be frustrating to the normal biologist. By providinga

ess to these tools via the web and by using a simple form-type input, most of thesyntax and related problems are dealt with. An ideal solution would be to provide mostof the tools and data via a web interfa
e, whi
h is a familiar environment for most usersand whi
h will help and guide users to perform independent stru
tural biology work.Although the system makes it easier for the biologist to use the tools, the onus is still onthe user to understand the fun
tion of ea
h tool and how to interpret the results. Theresponsibility of tool setup and installation will be that of an experien
ed person su
h as

 
 
 



Problem Statement 27a system administrator thereby allowing the biologist to fo
us on s
ien
e. The systemwas also designed to fa
ilitate the addition of new tools.The integration and ease of use of the Stru
tural module in FunGIMS is illustrated ina series of investigations performed on FMDV. The �rst problem is the way in whi
hvariation di�ers between FMDV serotypes with regard to their full proteomes. Insightsinto variation 
an help in identifying areas prone to a

umulating variation. The se
ondproblem relates the variation found in two of the most 
onserved proteins in FMDV, 3Cprotease and 3D RNA polymerase. Variation hotspots in these proteins help to identifyareas where intera
tions with other proteins o

ur and 
an help to pinpoint areas vitalto enzymati
 fun
tion. The third problem involves the stability of the FMDV 
apsidproteins under di�erent pH levels and the way in whi
h variability in the VP1-3 proteinsa�e
ts stability. Stability of the 
apsid is vital for virus distribution as well as infe
tion.Although the tools were used on three FMDV 
ases, they are generi
ally appli
able tomost proteins and problems related to protein stru
ture. An integrated system su
h asFunGIMS, will provide a

ess to a variety of tools as well as allow easy appli
ation ofthese tools to various problems related to protein stru
ture.
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Spe
i�
 AimsThe aim of this proje
t is the development of a Stru
tural module in the FunGIMSsystem and its appli
ation spe
i�
 problems in FMDV. The system allows a user toperform protein stru
tural analysis in an environment with a minimal need for lo
al
lient-side 
omputing resour
es. The aims of this proje
t is balan
ed between providinguseful interfa
es and tools for the user and programming a robust, extensible environmentfor protein analysis whi
h 
an be applied to FMDV.In Chapter 2 the development and design methodology of FunGIMS and the Stru
turalmodule will be dis
ussed. The aim was to design a system that is easy to use, easilyexpandable and allows the user to store and analyze data. The problem of tool in
orpo-ration into the module will also be dis
ussed. Tools were in
orporated into the system ina modular manner.Chapters 3-5 ea
h deals with an investigation of a spe
i�
 aspe
t of FMDV, illustratingthe role that FunGIMS was able to play in a spe
i�
 problem/area of interest identi�edby lo
al resear
hers in the study of Foot-and-Mouth Disease Virus (FMDV).Chapter 3 des
ribes the use of protein sequen
e-based tools in the Stru
tural module ofFunGIMS to annotate and identify similar patterns and fun
tions in the FMDV proteome.This was applied to various FMDV serotypes to 
hara
terize the di�erent proteomes andthe fun
tional relationship between them.Chapter 4 uses homology modelling to 
hara
terize the variation seen in the highly 
on-served 3C protease and 3D RNA dependant RNA polymerase proteins of FMDV. Theaim is to identify hotspots in the enzymes whi
h are more or less prone to variation andwhi
h may be linked to fun
tional and stru
tural di�eren
es between the South Afri
anTerritories (SAT) FMDV serotypes.

 
 
 



Spe
i�
 Aims 29Chapter 5 investigates the fun
tional and stru
tural e�e
t of mutations in the 
apsidproteins of FMDV. Capsid proteins are used in FMDV va

ine design and thus a thor-ough understanding of the 
hanges found in these proteins is ne
essary. The homologymodelling and mole
ular dynami
s fun
tionality of the Stru
tural module of FunGIMSwas used to investigate the e�e
t of the various mutations on virus 
apsid and pH stability.
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