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The classification of the condition of a machining tool has been the focus of research 

for more than a decade. Research is currently aimed at online methods that can process 

multiple features from more than one sensor signal. The most popular technique so far 

has been neural networks . 

A new technique, very popular in speech recognition namely, hidden Markov models 

has recently been proposed for studies in classification of faults in mechanical systems. 

Hidden Markov models have excellent ability to capture spatial as well as temporal char­

acteristics of signals , which is harder to do with neural networks. 

This study applies the techniques of hidden Markov models to turning operations from 

strain signals recorded on a tool holder during cutting. Two classes of tool condition, 

"sharp" and "worn" are appointed in the data. A hidden Markov model is trained for 

each class and classification is done. 

From unseen data the "sharp"-model achieved a 95.5% correct classification and the 

"worn" -model achieved a 94.5% correct classification. This is compared to a maximum 

likelihood classifier that achieved a "sharp" classification of 96.8% correct and a "worn" 

classification of 72.7% correct . 

Dimensional reduction was done on the feature space extracted from the data in order 

that it may be used by the hidden Markov model. This technique shows how multiple 

features from more than one sensor signal can be used by a hidden Markov model for 

robust recognition. 

KEYWORDS: dimensional reduction, hidden Markov model, HMM, principal compo­

nent analysis, peA, strain signals, turning, tool wear, tool condition monitoring. 
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Klassifikasie van die werkstoestand van snygereedskap in die vervaardiningsindustrie 

is al vir meer as 'n dekade die fokus van navorsing. Huidige navorsing konsentreer op 

prosesse wat die seineienskappe van meervoudige sensors aanlyn kan verwerk. Kunsmatige 

neurale netwerke is op die oomblik die mees populere tegniek wat hiervoor gebruik word. 

Baie onlangs is 'n tegniek wat algemeen vir outomatiese spraakherkenning gebruik 

word genaamd, verskuilde Markov modelle, voorgestel vir klassifikasie van foute in meg­

naniese stelsels. Verskuilde Markov modelle se vermoe om die temp orale en ruimtelike 

kenmerke van seine vas te vat maak hulle baie geskik vir die taak. 

In hierdie studie word tegnieke van verskuilde Markov modelle toegepas op vervorm­

ingsseine vanaf 'n beitelhouer tydens 'n snyproses op 'n draaibank. Twee toestande 

naamlik, "skerp" en "stomp" is aangewys vanuit die data. 'n Verskuilde Markov model 

is opgelei vir elk van die twee toestande . 

Die modelle is getoets met data wat nie vir die opleiding gebruik is nie. Die "skerp" 

model het 'n korrekte klassifikasie van 95 .5% behaal terwyl die "stomp" model 'n korrekte 

klassifikasie van 94.5% behaal het. Hierdie resultate is vergelyk met die van 'n maksimum 

waarskynlikheid klassifiseerder. Die tegniek het 'n korrekte klassifikasie van 96.8% behaal 

op "skerp" beitels en 72.7% op "stomp" beitels. 

'n Tegniek van dimensionele reduksie is gebruik om die dimensionaliteit van die 

seineienskappe te verminder, sodat dit deur die verskuilde Markov model gebruik kon 

word. Hierdie tegniek toon aan hoe seineienskappe van verskillende sensors deur 'n ver­

skuilde Markov model gebruik kan word vir 'n kragtige klassifikasietegniek. 
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CHAPTER 1 

I ntrod uction 

1.1 Background 

Economic forces drive the need for high availability of machining equipment, and demands 

high quality of machined parts. Tool Condition Monitoring (TCM) is a means to this 

end. Through the optimised use of cutting tools and process monitoring, TCM supports 

this trend of economic forces. A spin off of TCM is of course the potential for substantial 

cost savings in terms of less scrapped parts and more efficient use of expensive machine 

tools . The lack, on the other hand of a proper TCM may include excessive power take­

off, inaccurate tolerances, serrations and an uneven workpiece surface finish. This may 

eventually lead to machine tool and/or machine peripheral damage, according to Dimla 

(2000). Research into these systems has been continuing for some time now and as sensor 

and computing technology have advanced, their presence is starting to be felt in industry. 

To quote Byrne et al. (1995): 

Despite the huge amount of research, not many of these strategies for TCM 

have found their way into commercial products. This is mainly due to the 

following: 

• Th e nature of machining processes, which can be complex and chaotic. 

• Non-linear relationships between tool wear and process parameters. 

• Changes in sensor signals due to tool wear are very small in some cases. 

• An adequate sensor that can satisfy all the requirements for TCM does 

not exist yet. 

• A number of different tool wear modes exist which cannot always be mon­

itored with the same strategy. 

1 
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The above quote is given from an international perspective. In a small country like 

South Africa this lack of TCM is even more apparent. According to Scheffer (2003) , 

South Africa does not have any commercial tool condition monitoring systems currently 

installed anywhere in the country. The reason for this is that manufacturers consider 

the currently available systems still too unreliable and/or too expensive. The need for 

cheap and efficient TCM systems is clear. Scheffer et al. (2003) developed such a system 

and have proved it to be both effective and cheap. As research progresses, more and 

more techniques become available for process modelling and monitoring. This forces us 

to review our current methods and explore new options that are made available as time 

progresses. This dissertation will do just that, and explore TCM using hidden Markov 

models. 

The methods used in this dissertation belong to the continuous, indirect methods of 

TCM. There exist a number of philosophies on how TCM should be done. The first 

two schools of thought are continuous and intermittent TCM. The former advocates that 

monitoring should be done continuous, while the latter encourages monitoring at intervals 

(e.g surface finish of every 10th component manufactured) . The next level of separation 

is that of the type of monitoring scheme used, direct or indirect. Direct monitoring is 

concerned with volumetric loss at the tool tip. This may be done by electrical sensing 

methods or visually. Indirect methods seek patterns in sensor data from the process, 

e.g. torque on spindle increasing when a cutting tool becomes blunted. A taxonomy is 

presented in figure 1.1 , which should give a brief overview of some methods in TCM. rvIost 

research in TCMhave gone into continuous systems and only the continuous branch is 

expanded in the figure. 

Various authors ( Byrne et al. (1995); Scheffer and Heyns (2001) and Leem and Dorn­

feld (1996)) state that the establishment of a TCM system can be divided into a number 

of stages: 

1. Sensor selection and deployment 

2. Generation of a set of features indicative of tool condition 

3. Classification of the collected and processed information to determine the amount 

of tool wear. 

In the next three subsections, these stages will be elaborated on. 

1.1.1 Sensor selection and deployment 

Byrne et al. (1995) has described the requirements for a tool condition monitoring system. 

This is listed in table 1.1 on the selection and deployment of sensors for TCM. 
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Figure 1.1: A taxonomy of continuous tool condition monitoring systems 
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Table 1.1: Requirements of a TCMS 

Requirements 

Measurement as close to the machining point as possible. 
No reduction in the static and dynamic stiffness on the machine tool. 
No restriction of working space and cutting parameters. 
Wear and maintenance free, easily replaceable and cost-effective. 
Resistant to dirt, chips and mechanical, electromagnetic and thermal influences. 
Function independent of tool and workpiece. 
Adequate metrological characteristics. 
Reliable signal transmission , e.g. form rotating to fixed machine components . 

4 

Table 1.1 puts in full view what is ideally expected of a sensor and how it should be 

employed. A real sensor system will always end up as a trade-off between performance 

and cost. 

1.1.2 Generation of features sensitive to tool wear 

This subsection deals with the generation of suitable features that are indicative of tool 

wear and will be continued in the next chapter on the theory of feature extraction and 

selection. Features are also referred to as monitoring indices. This requires that one keeps 

in mind the disadvantages of using certain sensors on a TCM-system (e.g. the reduction 

in stiffness of the tool holder when using a dynamometer) . Some common monitoring 

indices are listed in table 1.2 

Common Features 

Mean 
Variance 

Table 1.2: Common features for TCM 

Root mean squares (RMS) 
Skewness 
Kurtosis 
Crest factor 
Power in a specific frequency band 
Auto Regressive (AR) and Auto Regressive Moving average (ARMA) coefficients 
Wavelet packet energy 

Sensor fusion is also applied in order to get the most from the measured data. During 

sensor fusion the signals from different sensors are combined. According to Dimla (2000) , 

sensor fusion serves the following purposes: 

• Enhances the richness of the underlying wear-level information contained in each 

signal. 
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• Increases the reliability of the monitoring process as loss of sensitivity in one signal 

could be offset by that from another. 

1.1.3 Classification of signals to establish tool wear 

In this stage a signal model classifies the features from the collected data to obtain a 

useful conclusion about the tool life. This is a decision making technique. There are a 

variety of methods, which include trending, threshold and force ratios methods. One such 

is by Choudhury and Kishore (2000) who used different force ratios. Artificial intelligence 

(AI) approaches, however are arguably the most popular method currently used for signal 

classification. Park and Kim (1998) provide an introduction and a review of the use of 

AI. Broadly, the methods of classification can be put into two categories: 

1. Weighting methods. Which include: 

• Neural networks (NN) . This seems to be the most popular method because of 

its robustness to noise and its ability to handle more than one simultaneous 

input and to extract underlying information. An excellent review of online 

and indirect tool wear monitoring methods with artificial neural networks was 

done by Sick (2002). 

• Fuzzy logic. Fuzzy systems have the advantage of being able to directly encode 

structured knowledge. A number of fine articles can easily be found on the 

web. One such is by Li and Elbestawi (1996) . 

2. Decomposition methods. These are: 

• Signal understanding. Signal understanding is a t echnique based on the black­

board system, which was an artificial intelligence technique created in the 

1980's. Du (1999) gives an application of signal understanding in tool condi­

tion monitoring. 

• Decision trees 

• Knowledge-based expert system (KBES) 

These decision making techniques are often combined, so as to ensure a more robust 

output from the decision making algorithm. An excellent example of this is the work done 

by Balazinski et al. (2002). In this work, a fuzzy inference system and a backpropagation 

network were compared with an Artificial Neural Network Based Fuzzy Inference System 

(ANNBFIS). The neuro-fuzzy system was found to be quite adequate for wear prediction 

because of its short training time. 

The three stages highlighted above are also given in a schematic form in figure 1.2. 

This is the generic form of a TCM setup. 

. .• _. _clL ' > " - . ~ ___ _ 



CHAPTER 1. INTRODUCTION 6 

---:-
I ---
i 

V 001 Condition i Machine tool 
I 
I 

J --. 
I 
I 
I 

T 

I 

Signal 
I 
I 

Classification i 
I , 

--l----- Workpiece 

I Signal Data Acquisition 

I Processing from sensors 

I 

Figure 1.2: A generic TCM system setup 

1.2 Complexity 

An important issue which must be addressed is that of complexity. Does a TCM system 

really have to be so complicated, could similar results not be achieved by a simpler system? 

The answer to this is negative. There are numerous reasons for this; the non-linear nature 

of the machining process and the information lost in sensing and the signal processing 

corrupts the monitored indices. Measured signals are also not only correlated with tool 

wear, but also with machining conditions. On the other hand, monitoring tool indices 

that are only related to tool wear (methods of direct monitoring) are very expensive. 

Another reason is that the definition of tool condition is typically vague. There are also 

a number of different tool wear patterns, each with its own characteristics. Condition 

indices are also usually very small changes in processes with very wide dynamic ranges, 

which make them very hard to track. This, as Byrne et al. (1995) has stated, is why 

TCM has not yet properly found its way into commercial systems. 

1.3 Some trends in tool condition monitoring 

According to Sick (2002) the most popular method for tool condition monitoring III 

turning operations are methods that use neural networks. One reason for this is because 

of the emphasis that has been placed on online, indirect methods for TCM. Another reason 

is that usually during monitoring, several process parameters have to be measured and 

evaluated. Neural networks provide a very natural way to do this. 
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Sick (2002) also states that the most popular sensor signals are cutting force signals 

and the second most popular are vibration signals. Most of these sensor signals are from 

the cutting force and almost as much from the feed force. The reason why the monitoring 

of cutting forces is effective is because it provides a direct link to the cutting tool and 

workpiece interaction. 

Also clear from the literature survey from Sick (2002), is the fact that most research 

into online and indirect tool wear monitoring has gone into systems that only classify 

wear. The author states that systems that use only two states may be sufficient to 

establish a practical tool monitoring strategy. 

Currently (as previously mentioned) in TCM, neural networks that use a feature set 

generated from fused signals from the process have become the "state of the art." Be­

cause the understanding of cutting processes and neural networks has increased, the way 

in which neural networks are applied has moved toward the continuous wear estimation. 

Practical systems have recently achieved by Scheffer et al. (2003) and Balazinski et al. 

(2002). Scheffer et al. (2003) used a neural network configuration proposed by Ghasem­

poor et al. (1999) and reviewed by Sick (2002). Balazinski et al. (2002) used a neuro-fuzzy 

system and compared it to plain neural and plain fuzzy techniques. 

The reason why practical continuous wear estimation has only recently been achieved 

is provided by Leem and Dornfeld (1996). The authors have also identified that the 

main problem with on-line systems is the problem of feature selection and suggest an 

unsupervised method. Indeed the greatest problem with most classification systems or 

methods are that they are sensitive to cutting conditions. Scheffer et al. (2003) also 

suggest that research into TCM using NNs be focused on this area. 

Silva et al. (1998) has shown that there exists a zone of influence where NNs are 

insensitive to a change in cutting parameters. The network recognition then performs 

adequately for system conditions for which it was not trained . This zone is small but 

usable according to the authors. The authors experimented using Adaptive Resonance 

Theory (ART) and Self Organising Maps (SOM) network paradigms. 

In answer to this problem, methods for various force ratios have been proposed 

by Choudhury and Kishore (2000) , Novak and Wiklund (1996), Lee et al. (1998). Empir­

ical formulae were created by Choudhury and Kishore (2000) and Novak and Wiklund 

(1996) for the prediction of tool life. Lee et al. (1998) continues from the force ratios to 

train an 1-step-ahead ANN predictor to forecast tool wear. 

1.4 Document overview 

The document is divided into the following sections. 

1. Introduction. An overview on TCM and the associated problems. 
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2. Literature. Trends in TCM as well as presentation of work done on measuring 

equipment, specifically tool holders. Work done on hidden Markov models as me­

chanical fault identification is also shown. Based on this the scope of the research 

is defined. 

3. Theory. Basic knowledge on hidden Markov models is supplied as well as the process 

of feature selection and extraction. 

4. Experiment. This elaborates on the detail of the equipment used in the experiment 

as well as the operating parameters. 

5. Results. The results of the applications of the theory on the experimental data are 

presented. 

6. Conclusion. The results are discussed and suggestions are made with regard to 

future directions which the research might take. 

..-. 



CHAPTER 2 

Literatu re Study 

An overview of work with relevance and/or similarity to this project is presented 

in this chapter. Reviews will be categorised into: 

The tool holder and the integration of sensors into it. 

Hidden Markov models and Condition monitoring. Finally the scope of the present 

research is presented . 

2.1 A sensor integrated tool holder 

Looking at table 1.1, it is not hard to deduce that in turning operations, a sensible location 

for sensors would be on a tool holder of some sort . This is why a lot of work has been 

done in this area. From this work force and vibrations on the machining equipment have 

been noted to be the most sensitive carriers of tool wear information. The literature is 

explored with regard to measurement techniques on and around the tool holder. Work in 

the literature can be subdivided into two parts, authors who have developed tool holders 

with: 

• sensing capability only, as well as 

• sensing and actuating capability 

This distinction is important since these tool holders were clearly designed with different 

goals in mind. Sensor/actuator tools are usually developed for active vibration control 

applications. Tools with only sensing ability are designed for monitoring. Both can 

however have very useful roles in TCM. 

A sensor integrated tool holder that uses strain gauges to measure cutting forces has 

been developed by Santochi et al. (1996). The latest version of the tool incorporates 

9 
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Figure 2.1: The tool holder by Santochi et al. (1996) uses strain gauges to measure cutting 
force . 

a very clever technique of mechanical amplification, whereby the stress concentration 

caused by a hole in the tool is used to uncouple some of the measured forces. The hole is 

actually a "duct" for wiring of the strain gauges to the inside of the tool holder where the 

electronics are housed. The sensing tool uses a transmitter (RF) to transmit the strain 

to a computer. This tool is only capable of sensing and has no actuating capability. 

The tool is shown schematically in figure 2.1. It is not mentioned whether these holes in 

the structure significantly reduce the stiffness of the tool holder. A smart cutting tool 

for in-line boring was produced by Min et al. (2002) . Feed force is measured using a 

piezoelectric actuator. This piezoelectric element gives the tool the ability of actuation. 

The actuator is used to compensate for the increased compliance of a long boring bar 

without support. A capacitance proximity sensor is used as an observer for controlling of 

the actuator. The actuator can unfortunately measure only force in one direction because 

of the flexure hinge mechanism (see figure 2.2). 

A project which has been going on for a number of years and which is now evolving 

into a commercial product , is a chatter control system for turning and boring applications 

by Lago et al. (2002). (see figure 2.3). The tool holder is capable of sensing as well as the 

active control of machine tool vibration. Because of patent rights very little is revealed 

of the inner working of the tool in the article. It is however mentioned that it uses 

piezo-ceramic actuators that were developed for the tool holder. The tool holder has 

a significant advantage in that the actuators are embedded in the shank of the tool 
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Figure 2.2: The smart tool produced by Min et al . (2002). 
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holder. This means that no alteration of the tool turret on the lathe is needed. It is not 

mentioned whether the tool can measure the forces in more than one direction. Hakansson 

et al. (2001) verified that the vibration pattern of a boring bar is usually dominated by 

the natural frequencies of the bar. 

Controller 

Vibration sensor 

Tool holder 

Secondary excitation 

Figure 2.3: This is almost the generic setup for sensor/actuator tool holders. This is also the 
setup that Liigo et al. (2002), used. 

Li and Ulsoy (1999) developed a method of high-precision vibration measurement of 

a beam using strain gauges. This method is based on the fact that the vibration dis­

placement can be expressed in terms of an infinite number of vibration modes. Vibration 

modes can also be related to the measured strains through the strain-displacement rela­

tionship. By placing multiple sets of strain gauges on a beam, multiple modes could be 

taken into account to achieve high-precision measurement. 

Scheffer (2003) suggested that the following issues should be addressed when one is 

constructing a sensor/tool holder with strain gauges. Keeping this in mind will allow for 
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the easy upgrading of the system into a commercial product. 

l. Optimise the number, size and position of the sensors which are to be used on the 

tool. 

2. If strain gauges are to be used, investigate the possibility of an on-board strain gauge 

amplifier on the tool holder. Mechanical amplification via stress concentrations 

should also be kept in mind. 

3. Develop mechanical protection for sensors. 

4. Investigate the industrial implementation of wireless data transfer. 

5. Attempt constructing a sensor integrated tool for larger tool holders or holders that 

carry more than one tool. 

6. Facilitate Internet monitoring capabilities. 

A very well documented review of sensor signals for tool-wear monitoring in metal 

cutting was done by Dimla (2000). The author provides insights into different phenomena 

encountered with different monitoring techniques. 

2.2 Hidden Markov models and condition monitor-
. 
lng 

The first question that should be answered is why HMMs should be used for condition 

monitoring. According to Blimes (2002) most "state of the art" automatic speech recog­

nition systems today are based on/use HMMs. HMMs provide a method for very robust 

classification of signals that are non-stationary. If it is considered that HMMs can cor­

rectly classify spoken words from time domain data from speakers with different voices, 

one can immediately see that this is indeed a very robust technique. In pattern recogni­

tion problems (such as TCM) there is always some randomness or incompleteness that 

is inherent to the sources. Byrne et al. (1995) places the signals from machining opera­

tions in this category by classifying them as typically chaotic and non-linear. Atlas et al. 

(2000) states that these signals require advanced classification procedures for monitoring 

and prognostication tasks. 

The chaotic and non-linear nature of cutting signals implies that in the time domain 

these signals will be non-stationary. According to Rabiner (1989) the rich mathematical 

structure makes it possible for HMMs to easily handle non-stationary, chaotic data. This 

has also been confirmed by Bunks et al. (2000) who also agree that HMMs are well suited 

to handle quasi-stationary signals. Kwon and Kim (1999) state that NNs cannot provide 

proper solutions for temporal variations in data that are to be classified. The authors 
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also state that: "The notion that artificial neural networks can solve every problem in 

automated reasoning, or even all pattern-recognition problems, is probably unrealistic. " 

. In the light of these facts it is clear that HMMs are very well suit.ed for the purposes 

of tool wear classification although it has not been widely applied. 

HMMs have only been used by a very small group of researchers and some of their 

work is reviewed in this section. For this section to be as lucid as possible one technique 

from the literature needs to be explained beforehand. This technique is called "scoring" 

and is used for classification. 

2.2.1 Scoring of the forward probabilities 

Assume a system needs to be monitored and that in this system, there are certain con­

ditions which the user wants to be able to classify (e.g. immanent bearing failure; shaft 

unbalance; tool breakage; unacceptable tool vibration). Signals that carry information 

about the system condition can then be recorded and relevant signal features can be 

extracted. (Vector quantisation can then be done if needed). One HMM can then be 

trained for each system condition to be classified. Once the HMMs have been trained it 

is possible to calculate the forward probabilities of each HMM for a new signal that needs 

to be classified. The forward probabilities are a measure of how close the signal is to the 

training signals of a particular HMM. A signal with a high correlation to the training 

data of a HMM will produce a high forward probability and vice versa. The signal is t hen 

classified into the category of the HMM with the highest forward probability. Figure 2.4 

shows such a classification system that uses "scoring" . There is another classification 

technique that can be used with HMMs. This is called "alignment", this technique will 

not be discussed here as it is not implemented in this study. 

2.2.2 Relevant literature 

Ertunc et al. (2001) investigated two methods of using HMMs to establish the condition 

of a drilling tool. The first method is the bar graph monitoring of the HMM output 

probabilities. The second method is the multiple model method, whereby three different 

models were trained on data from a drilling process. Each model represented a different 

tool condition (i.e. one model was trained on sharp tool data, while another on workable 

and yet another on worn tool data). The recognition procedure used then was scoring. 

The data signals were typically force and torque data. The authors concluded that thrust 

was a better indicator of tool wear than torque for their particular experimental setup. 

It was also concluded that this technique was suitable for other machining operations as 

long as there are readily available data signals that are sensitive to tool wear. 

Tool wear monitoring on milling processes using hidden Markov models have been 

done by Atlaset al. (2000) . The evolution of vibration signals for the real-time transient 
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Figure 2.4: Hidden Markov model based fault diagnosis system based on scoring 
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classification of tool wear is done using HMMs. The authors stated that tool wear, 

although inherently continuous, can be represented at a quantised level with a HMM with 

a left-to-right state topology. The authors used an alignment method for the recognition 

procedure. Alignment is done with the Viterbi algorithm or a variant thereof. The Viterbi 

algorithm predicts what the most likely state sequence would be if a particular HMM 

were to produce a specific signal. 

An end milling process was used where vibration was measured with accelerometers. 

The accelerometers were mounted on the spindle housing of a CNC machining centre in 

a climb-cutting process for machining notches in hard metal. The data was segmented 

into passes. One pass was defined as the period from when a tool touches the metal until 

it cuts air after it leaves the workpieces. Three time scales were investigated: 

1. The progression of the tool from sharp to worn. 

2. The dynamics of the tool in: 

• entering the workpiece 

• bulk machining 

• leaving the workpiece. 

3. Very short potentially meaningful transients. 

It was found that the HMMs trained with the very short transients did not generalise 

very well and that the models would have to be retrained each time that the t ool was 

changed . For the intermediate time scale the HMMs achieved excellent classification in 

assigning binary ("worn" and "not-worn") wear labels based upon simple RMS energy 

and energy derivative features . 

Another interesting application of hidden Markov models was done by Bunks et al. 

(2000) , where HMMs were implemented for Condition-Based Maintenance (CBi\f). The 

objective was to: 

1. Collect vibrational characteristics which correspond to physical changes (which in­

dicate abnormal operation) in a machine. 

2. Determine the statistics of this vibration data for various defects , either by mod­

elling or by experiment. 

The authors applied this to ' vibration data from a Westland helicopter gearbox. The 

measurements were taken with 8 accelerometers placed on the casing of the helicopter 

gearbox. Measurements were taken in a laboratory environment . Data consisted of 68 

distinct operation conditions. These were obtained from 8 different seeded defects and 9 

different torque levels. From the test it was concluded that the data is not stationary as 
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a function of operating torque levels . This is therefore an ideal place to apply HMMs. An 

HMM with 68 states was created for the classification problem. The state process models 

were 8-dimensional (because of the 8 accelerometers used in the experiments) Gaussian 

distributions. The distributions were estimated using the first 10000 samples from each of 

the operating condition runs. 'When trained the HMMs achieved very good classification 

of the data. The recognition procedure used was alignment. The classification of the 

HMMs is shown to be quite robust. Hidden Markov models are also shown to a provide 

natural framework for diagnostics and prognostics. 

In more recent article on HMMs and mechanical systems, Lee et al. (2003) produced 

a rig on which rotor faults could be created. The authors concentrated on oil whirl 

and unbalance. Time signals were sampled and the autospectrum was used to train the 

HMMs. Both continuous and discrete HMM types were studied. The HMMs were then 

trained with a small set of data. The trained models were then scored with unknown 

data in order to classify the signal. It was found that the continuous H:\IIMs give better 

results from scoring but the discrete HMMs give more robust and hence more consistent 

classification. The authors mentions nothing of the topology of the models that they 

used. 

Kwon and Kim (1999) produced a high level fault detection for nuclear power plants 

using hidden Markov models. The authors advocate HMMs for their ability to model 

temporal as well as spatial information. Rapid accident identification in nuclear power 

plants is very crucial in order for authorities to select appropriate actions to mitigate 

the consequences of the accident . Signals from 22 different sensors are combined into a 

I-dimensional signal using a self organising map (SOM). This is a technique for vector 

quantisation, where the input signals are shown to a fully-trained SOM and the Best 

matching Unit (BMU) is returned as an output. The best matching unit is simply the 

neuron that best matches the input signal. This sequence of BMUs produced is then used 

to train the HMMs. Several HMMs are trained, 1 for each accident type. The authors 

show that this technique correctly identifies the accident types. 

In stamping processes Ge et al. (2003) have produced a hidden Markov model based 

fault diagnosis system. The system diagnoses 6 different operating conditions encoun­

tered during a stamping process. The system uses a strain signal from the press. An 

autoregressive (AR) model is fitted onto the signal from the press. The signals were 

detrended before this was done. The sum of squares of error (SSE) was used as the 

signal feature from which to train the HMMs for the diagnosis. The authors found that 

for their application, a 6-state HMM fitted onto the SSE of an AR-model of 8th order 

showed the best results. Classification results for the six different operating conditions 

ranged between 100% and 70%. The authors do not mention the state topology, but it is 

suspected to be ergodic. It was also found the HMM trained on the AR models showed 

only a marginal improvement over HMM trained directly on the sign,als. 
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Wang et al. (2002) used a 3-state ergodic HMM with discrete outputs to create a 

system for TCM. Accelerometers were mounted on the cutting tool holder to measure 

the vibration in the feed force direction. The HMM was trained on the coefficients of 

a Discrete Wavelet Transform (DWT) for 5 different scales which were derived form 

the acceleration data. The average energy of each scale was calculated and inserted 

into a feature vector. Vector quantisation was then done on this "scale-energy" vector 

and a codebook of size 10 was created. The features are then normalised to make them 

independent of the signal magnitudes. The codebook size is also equivalent to the number 

of distinct observation symbols in the HMM. Any input feature can then be represented 

by simply calculating the index of the pattern in the codebook that best matches it. This 

is done by using the Euclidean distance. A continuous cutting signal was then detrended 

and segmented into non-overlapping parts which were then quantised using the above 

procedure of DWTs. The HMMs were then trained and tested on the observation lengths 

of 5 observations. The HMM achieved a 97% correct classification of the testing data. 

The classification was a worn/sharp decision test. 

2.3 Scope of the research 

The use of HMMs is a very new technique in condition monitoring of mechanical systems. 

The models seem to have great potential in this field but research is only in the beginning 

stage and their actual worth will only be discovered as more study is done in this field. 

It is therefore proposed in this study to firstly create a wear classification system. 

2.3.1 Summary of research goal 

The aim of this research was to apply the techniques of HMMs to create a tool wear 

classification system for turning operations. This system should be able to distinguish 

between two classes of tool condition using signal features that are common in NN research 

for TCM. Attention will be paid to the following considerations. 

• The ability to be to do a sharp/worn classification on sensor signals to bring the 

system in line with what has already been done. 

• For the issue of operating system compatibility as well as continuity of the research, 

it was decided to use an open source software toolbox that runs on MATLAB to train 

and infer the HMMs. No custom algorithms were therefore used for the inferring 

of the HMMs. As it is the case with Wang et al. (2002) a HMM with a discrete 

output will be used. 

• The same technique namely, the "scoring" of the forward probabilities of the HMMs 
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will be used as the method of classification. This is similar to many word recognition 

systems Rabiner (1989) . 

• Because HMMs have mostly been used for speech recognition, there has not been 

very much development in the use of multi-dimensional signals (speech signals are 

recorded with a single sensor). This project is therefore set aside by the fact that is 

uses dimensional reduction on multiple features . A framework is therefore created 

which can be used if more than one sensor is used and where multiple-features from 

the time and frequency domains will be used. A scheme for dimensional reduction 

will be used to fuse the features into a single dimension. This technique differs from 

the work of Bunks et al. (2000) in the fact that it does not use N-dimensional state 

process distributions. 

2.3.2 Measuring of forces 

Dimla (2000) states that the feed and radial forces are influenced more by tool coridition 

that the cutting force itself. The feed force is also known to be rather insensitive to most 

cutting parameters. Therefore: 

• the feed force will be monitored with strain gauges, and 

• because of the constraint to measure as close as possible to the cutting process, as 

few as possible number of sensors will be applied to the tool holder. A single sensor 

consisting of two strain gauges in a rosette will be used for the data acquisition 

system. The use of a single sensor will make the system very minimalistic which is 

ideal for a first study. 

'With regard to the measurement techniques and sensors, this project is in line with 

current measurement techniques. It should however be stated that in the case where force 

measurements are made, that the norm is to use a dynamometer 

2.3.3 More on features for HMMs 

The nature of speech signals are so that HMM can be trained directly on the time domain 

data. This is not exactly the case with signals that are correlated to machine condition. 

The raw signals are usually not directly helpful for the classification of machine condition. 

An exception from this is the work done by Bunks et al. (2000) where classes could be 

identified more clearly. Usually for TCM where the changes in machine dynamics are 

more subtle, features which are sensitive to tool wear need to be extracted from the data. 

The signal features that have been derived by researchers of NN techniques have not been 

investigated in HMM research. These features have been tried and tested and are known 
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to work well. There is therefore a need to investigate (or at least demonstrate) the use 

of features from NN research in the application of HMMs. This study will do this by 

investigating some popular time and frequency domain features. Because DHMMs are 

used it implies that the signals have to be discretized. This will be done with a custom 

nearest neighbour algorithm which is very similar to a histogram algorithm. 



CHAPTER 3 

Theory 

This section will provide an overview of aspects of the theory of the models 

and signal processing techniques used in this dissertation . This will include an 

explanation of, and an introduction to: 

Hidden Markov models and how they are used for recognition 

Signal processing, feature extraction and selection 

3.1 Hidden Markov models 

Physical processes generally produce observable outputs that can be represented by signal 

models. These models allow us to learn a great deal about the process, without having 

the actual signal source around. There are several choices for a user when it comes to 

the types of signal model that can be used to characterise the properties of the signal 

of interest. According to Rabiner (1989), signal models can broadly be divided into two 

groups: 

• Deterministic models which exploit the known properties of the signal (e.g. the 

signal is a sine wave or a sum of exponentials). 

• Statistical models where one tries to characterise only the statistical properties of 

the process. (e.g. Gauss processes, Poisson processes, Markov processes). 

Under the statistical model it is assumed that the process can be described by a 

parametric random process for which the parameters can be estimated by means of a 

well defined formulation . 

These signals can further be divided into discrete and continuous signals. Statistical 

models can also be stationary (statistical properties are time invariant) or non-stationary 

20 
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(statistical properties vary with time). Hidden Markov models (or Markov source in older 

literature) falls into the category of non-stationary statistical models. 

3.1.1 Defining the HMM 

A hidden Markov model can be defined as finit e state machine that functions in discrete 

time. Each state in the HMM contains the definition of some stochastic process (i.e. 

a Probability Density Function (PDF) or an AR-model). At each time step the HMM 

emits an observation from one of its states. A signal/observation sequence may then be 

produced by taking a random walk (defined by a Markov process) "within" the states. 

This random walk is depe.ndant on the transition probabilities. To clarify this consider 

figure 3.1 which shows a network diagram of a 3-state HMM. The lines connecting the 

states (numbered 1 - 3) represent state transition probabilities. The state transition 

probabilities are the probabilities that the HMM, currently in state i will transit to state 

j for the next time . step. An HMM can also stay in its current state for the next time 

step. This is shown as little "loopbacks" on the figure. The HMM is therefore a doubly 

stochastic process in the fact that it is a random process for which the variables are 

determined by a random Markov process. The Hi\'IM is also in actual fact, a statistical 

signal generator although it is not used as a signal source. It is rather used as a vehicle 

for probabilistic inference. This will be explained later on in this chapter. 

The reason for its name is that, during training the state sequence cannot be observed 

from the training sequences. The state sequence is therefore "hidden", hence the name. 

The training goal is therefore to infer the state sequence and to determine the state process 

parameters from the training sequences. It should be noted here that training sequences 

are the same as the observation sequences. Once the state transition probabilities and 

the state process parameters are determined the model can be used for classification. 

The technique for classification used in this study is called "scoring" and is described on 

page 13. 

The emissions from the states can be of a continuous or a discrete nature. Discrete 

emissions are usually symbols while continuous emissions may be a real valued numbers 

within a certain range. 

Definitions 

The HMM used for this project will have discrete emissions and discrete states. This is 

a very specific subclass of HMMs and the interested reader should consult Elliott et al. 

(1995) for a more advanced and general description of HMMs 1 2. The notation used 

lSome additional theory on HMMs can be found in appendix A 
2These definitions are from Narada Warakagoda's website at http://jedlik.phy.bme.hu/ -gerjanos/H­

MM/node3.htm. 
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Figure 3.1: A directed state-transition graph of an ergodic 3-state HMM 
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throughout this text will be that of Rabiner (1989)3 

An HMM is completely defined by the following parameters: 

• State transition matrix, A. This defines the probability that the model, currently 

in state i will transit to state j for the next time step. This will be written as aij' 

The reader is again referred to figure 3.1. A will thus always be square and have 

the form: 

(

all a12 ... ) 

A = a21 a22 .. . 

· . · . · . 

(3.1) 

The number of states that the model can then assume, N is equal to the number 

of columns in A. A is also subjected to the normal stochastic constraints namely: 

a· > 0 tJ - with 0 :S i,j :S N 

and 
N 

La'ij = 1 for all i 
j=l 

• Probability distribution for each state. This probability distribution will be denoted 

with B and is defined as follows: bik is the probability that the model, currently 

at state i will emit the k-th symbol in the defined alphabet of discrete emissions. 

As was previously mentioned the HMM will have discrete emissions defined within 

an alphabet with total number of M symbols. For a HMM with i states and M 

symbols, B will then have the form : 

(3.2) 

As with A, B is also subjected to the normal stochastic constraints: 

with 0 :S i, k :S M 

and 

for all i 

• Initial state probability distribution named 7r. 7f is the probability distribution that 

describes the likelihood that a HMM will start in state i. The normal stochastic 

constraints apply. 

3This is also a very good starting place for readers who are new to the subject of HMMs. 
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Once A, Band 71" are defined, one has a complete HMM. To shorten the notation a 

specific model will be denoted as A. A = f(A, B, 71") ,viz. Given A, the HMM can be used 

to generate a sequence of observations, 

o is a vector that contains the emitted observations from time, t = . 1 to time t = T , with 

T being the length of the sequence in discrete-time. When an Ht-.·1M is to be trained, the 

signals need to be segmented into these observation sequences. 

3.1.2 The three problems of HMMs 

Once one has defined a HMM, A, there are certain things that one usually wants to be 

able to do with it. In HMM literature one will read of the three problems of HMMs, 

which describe what the HMM will be used for. These are discussed in Rabiner (1989) 

in the form of 3 problems. These are: 

1. Given a HMM model , A and an observation sequence, 0 = {Ol' 02, 03, .. . , On}, how 

is the probability, P(OIA) efficiently calculated? (P(OIA) is the probability that 

the HMM, A produces the emission sequence, 0.) 

2. Given a HMM model, A and an observation sequence, 0 = {Ol ' 02, 03 ,·· ·, On}, 

how is the state sequence, that in some way optimally describes the observation 

sequence, chosen? 

3. How can the model parameters A ,B and 7r be chosen so as to maximise P(O IA)? 

The solution to problem 1 is used in this dissertation to score HMMs. Consider the 

scenario where one has different competing models that describe an observation set. The 

solution to problem 1 can then be used to select the model with the highest probability 

of producing the observation set in question. 

The solution to problem 2, called the Viterbi algorithm is not used in this dissertation 

and thus falls outside of the scope of discussion. The reader is referred to Rabiner (1989) 

and Bengio (1999) for an in-depth description of this procedure. 

Problem 3 does not have a known analytical solution to choose the model that max­

imises P(OIA). This makes it the most difficult problem of the HMMs. 

The Forward Procedure 

It was mentioned previously that classification can be done with HMMs with a technique 

called scoring. This is a procedure where the probability is calculated that a given 

HMM, say Al, will emit a certain sequence. In order to do this one needs to calculate 
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the emission probabilities for the given sequence, for each possible state sequence. This 

quickly becomes intractable. Fortunately there exists an efficient recursive algorithm to 

do this. This algorithm is called the forward procedure and is discussed in Rabiner (1989). 

The result of the Forward procedure is called the forward probability and is denoted with 

an Q. 

For an HMM with N states and a sequence length of T the procedure works as follows: 

1. Initialisation: 

(3.3) 

2. Induction: 

N 

at+l(j) ~ ["L at (i)aij] bj(Ot+l), 1:S t:S T -1 and 1:S j:S N (3.4) 
,=1 

3. Termination: 

N 

P(OI>') = "L ar(i) (3.5) 
i=l 

There is no analytical solution to show what number of states will produce the best 

HMM for a specific application. It can however be said that a model with more states 

may perform better. This is because the amount of states in the HMM is directly related 

to its ability to model signal non-stationarities. More states unfortunately require more 

training data which may be difficult to come by. 

Another problem encountered with the calculation of probabilities using HMMs is that 

of underflow. The numbers tend to be extremely small, well under machine precision 

for most computers. For this reason the probabilities are scaled and use is made of 

logarithmic probabilities. As the name implies, the logarithm of the probabilities are 

calculated and used in the algorithms. The properties of the probabilities are now slightly 

different . Whereas in the normal case where probabilities lie between 0 and 1, logarithmic 

probabilities lie between - 00 and o. With HMMs it is usually not strange to work with 

probabilities in the range of -100, which is a very small number indeed! 

Training the hidden Markov model 

This is the most difficult problem of the HMM. According to Rabiner (1989) there is no 

known way to analytically solve for the model parameters that maximises the probabil­

ity of the observation sequence. The most common technique usually employed is the 

Baum-Welch method which, locally maximises>. for P(OI>'). This method is equivalent 

the Expectation-Modification (EM) algorithm, which is a maximum likelihood approach. 
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There also exists some gradient based methods but usually the EM algorithm is preferred 

for its fast convergence properties. The EM technique also guaranties a finite improve­

ment on each iteration. Conditions can be formulated so that gradient based method can 

be applied to the HMM and this is presented by Rabiner (1989). Kwon and Kim (1999) 

have devised a method that uses the EM algorithm together with a genetic algorithm to 

train the HMM and to a select a state topology. Good results are achieved but training 

is slow. 

As with neural networks, HMMs also have an architecture that needs to decided on, 

ego the number of states and the state topology. Faced with this problem Bicego et al. 

(2003) presented a strategy to sequentially prune the number of states in an HMM. 

It is important to know what is being done when one trains an HMM. 'Ifaining implies 

that the parameters that define the HMM are updated. As mentioned previously these 

parameters are: 

• the state transition matrix, A 

• the emission probability density function for each state B 

• the initial state distribution, 7f 

To do this the a-parameter is once again used. Three other similar variables are also 

introduced in order to make training possible. It is because of these three other quantities 

that the training algorithm will not be shown here. A thorough description can be found 

in Rabiner (1989). Alternatively there is also a shorter version in appendix A. 

3.2 Signal processing 

In order for any intelligent system to be applied to the data, the data first needed to 

be processed into a different form that would be usable by the system. There are some 

similarities between speech data and vibration data and the signals processing techniques 

used on them. Bunks et al. (2000) compares speech data to acceleration data from a 

helicopter gearbox. This can unfortunately not be used directly because machining data 

is fundamentally different from acceleration data form gearboxes. An altered version will 

be presented. 

Data from machining processes and speech ar~ PQth quasi-stationary. The speech 

data however stays stationary over intervals of appro:x.imately 10ms, according to Bunks 

et al. (2000). Cutting processes may be of one of two types. Interrupted cutting, in which 

the cutting tool is in contact with the workpiece for only a fraction of each revolution, 

produce signals which are stationary for intervals of milliseconds. Continuous cutting, 

where the tool is in contact with the workpiece for the whole period of each revolution, 

on the other hand produce cutting signals which are stationary for longer periods of time . 

. " ~ ...... -. . - . - . - --:-- .' 
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Another difference is that speech data is recorded in relatively "quiet" environments. 

Vibration data from working environments may, in the very worst cases, have a signal to 

noise ratio, orders of magnitude lower than that of speech data. 

Another is difficulty is that changes in tool condition produce only slight changes in 

the response of the tool holder which are recorded. This necessitates the use of signal 

features which compress the information content of the signal. This is also why, in this 

study, features for NN studies will be investigated for the use of HMM applications. 

Therefore owing to the different nature of the data from speech signals, the raw signal 

was not used. The data had to undergo a number of preprocessing steps. These were: 

• Segmentation of the raw signals into intervals for which the features are calculated. 

• Detrending, which removes the most dominant linear trend from the data. This is 

usually done for FFT analysis. After this the observation sequences have a mean 

of zero. 

• Feature extraction whereby the salient features of the signals are extracted. 

• Feature Selection, is applied so that only the features with the most information 

with respect to tool wear is used. 

• Feature space reduction which condenses the selected features into the final product 

which was a I-dimensional feature vector. 

• Discretisation and Construction of observation sequences. The signals are firstly 

discretized into a number of levels then consecutive samples from the feature space 

are constructed into rows of observation sequences of a specific length. 

3.2.1 Feature extraction 

In order to learn most about tool wear, certain features are extracted from the data. Each 

feature has a characteristic behaviour that can be followed over time to reveal information 

about the health of the tool. It is in this way that features will be used in this study. 

The extraction of features also compresses the data into a form, which can be handled 

with much more ease and efficiency. This is important for real-time implementation, 

which is the longterm goal for any project that hopes to see an industrial application. 

Two types of features were investigated, time domain and frequency domain. These 

two will be discussed in the sections. 

Features in the time domain 

Features in time are usually figures that one would normally find in most statistical anal­

yses. As a tool wears, in the case of flank wear, the wear land increases. The interaction 
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surface of the workpiece and tool is then changed. This also alters the interaction of 

frictional forces between the two elements in the syst~m . The result of this are changes 

in the .dynamic characteristics of the system. 

The features of the time domain are usually of a statistical nature. These features are 

also very fast to calculate which makes them very attractive for on-line applications. The 

interested reader may also review the implications of some of the statistical parameters 

used in a text such as Miller and Miller (1999) . 

The features that were investigated were: 

• Variance, which is the second statistical moment of the data. Because of detrending 

the mean of the data is 0 which makes the variance of the .data equal to the square 

of the RMS of the data. RMS is an indicator of energy content of a signal. As tool 

wear progresses, more energy is needed to drag the tool insert through the work­

piece, it follows to reason that the RMS (or variance in this case) should increase. 

The variance is calculated using: 

linT (12 = - x(t)2dt 
T 0 

(3.6) 

In equation 3.6 (1 is the standard deviation. The variance is by definition the square 

of this. T is the time interval for which the integral is calculated. x(t) is the signal 

for which the variance is calculated. 

• Skewness is the third statistical moment and describes the distribution of the data 

in terms of symmetry or lack thereof, hence the term skewness . The skewness is 

calculated using: 

(3.7) 

• Kurtosis is the fourth statistical moment and is very popular in bearing condition 

monitoring. The kurtosis is a measure of the relative peakedness of the distribu­

tion, this is similar to the variance. The kurtosis is also a measure of how close the 

distribution is to the Gaussian distribution. It thus carries valuable information for 

condition monitoring. The kurtosis is calculated using: 

(3.8) 

• Crest factor is another feature which is widely used in bearing condition monitoring 

and is a measure of the impulsiveness of a vibration signal. A truly random signal 

has a crest factor generally less than 3. The crest factor is calculated using: 

CF = Xmax (3 .9) 
X rms 
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• Entropy is a measure of the uncertainty or disorder of of a given signal. One can 

intuitively see that a signal with a higher energy content, as in the case of a worn 

tool, will display more disorder. The entropy measure used was Shannon entropy 

which is often used in wavelet analysis. Shannon entropy is calculated using: 

N-l 

E = - L x?log(x?) (3.10) 
i=l 

In 3.10, Xi is the value of X at time t = i . . N is the number samples the feature is 

calculated for. This is the same as the time interval for the statistical features . 

• Dynamism is a measure of the rate of change of a quantity. This feature also cap­

tures dynamic behaviour of a signal in a similar way to the crest factor. Dynamism 

was used for speech and music segmentation by Ajmera et al. (2003). Dynamism is 

calculated with: 

(3.11) 

Features in the frequency domain 

Of the more salient features are usually those in the frequency domain. These features 

are directly connected to changes in the dynamic behaviour These are calculated from 

the one-sided power spectral density (PSD) using: 

J
ih 

W = Sx(J)df 
II 

(3.12) 

In eq. 3.12 Sx is the one-sided PSD function and f1 and fh are the frequency band for 

which this number is calculated. \II can increase, or decrease with increasing tool wear. 

The case where W increases is where the cutting process changes from smooth cutting to 

a breakaway process. This causes an increase in vibration amplitudes. The case where W 

decreases is where the dynamics of the process is altered so much by the change in the 

contact interaction caused by tool wear, that a shift in the peak occurs. vVhen the peak 

starts to move out of the frequency band, the spectral energy decreases. 

Hakansson et al. (2001) showed that the frequency bands that are most likely to 

show an increase, are those around the natural frequencies of the tool holder. Other 

characteristics of the cutting process, such as the chip forming frequency may also be 

monitored for signs of tool wear. On the whole there is not a method that can be used to 

predict which frequency bands are most likely to be useful in TCM. Allen and Shi (2001) 

suggested monitoring two frequency bands. A lower and a higher. The higher band then 

captures the natural frequencies of the system. Scheffer (2003), Lim (1993) and Jiang 

et al . (1987) have each derived their own frequency bands which were useful for their 
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work. These band are also process specific and also dependant on cutting parameters. 

In this study frequency bands are also derived. This was done by hand and was 

therefore more of an art than a science. The approach that was used to find these 

frequency bands was firstly a summing algorithm. This algorithm summed the PSD 

functions of the tool during its lifetime. Peaks on this summed PSD show the regions 

where the most energy in the system is at. The search for relevant peaks were then 

focused on these areas. Two types of peaks in the energy spectrum my be found in these 

high energy regions: 

1. peaks that are insensitive to tool wear and subsequently do not significantly increase 

or decrease during the life of the tool. 

2. peaks that grow with tool wear. 

It is because of this that the selection of frequency bands has not yet been automated. 

3.2.2 Feature selection 

Having extracted a number of features from the data, one usually wishes to reduce the 

number of features. This is because not all the features are sensitive to tool wear. To 

do this Scheffer (2001) proposed that the correlation coefficient be used for this selection 

process. 

It is assumed that the progression of tool wear over time can be approximated by a 

straight line with a arbitrary gradient. This was chosen to be 40°. The correlation coef­

ficient for each feature and the theoretical tool wear is then calculated. The correlation 

coefficient is a measure that describes to what degree certain values of one signal occurs 

with certain other values of another signal. The correlation coefficient is calculated using: 

n 

2:)Xi - X)(Yi - y) 

corr(X, Y) = [ n i=l n ] 1/2 

~(Xi - X)2 ~(Yi _ y)2 
(3 .13) 

X and Yare the two signals which are to be compared. x and y denote the mean 

values of the variables. 

A value close to 1 is indicative that high values of one signal occurs with high values of 

the other signal. In the case where the correlation coefficient is close to -1, large values 

of one signal coincides with small values of the other signal. 

Once the correlation coefficients have been calculated the highest ones can be chosen 

as the ones that carry the most information on tool wear. Correlation coefficients in the 

negative range are also very valuable because it guaranties the independence of features 

on each other. A combination of both was thus used for the recognition system. 
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3.2.3 Feature space reduction 

From the theory of HMMs it has been implied that this technique uses I-dimensional 

arrays for training and recognition. The theory of HMMs may be extended to use mul­

tidimensional arrays, but it was decided to use an existing HMM toolbox, feature space 

reduction is necessitated. 

Dimensional reduction is a common technique in pattern recognition . These tech­

niques reduce the dimensionality of the data for easier handling. According to Fugate 

et al. (2000) it is futile to expect good estimates from the tails of multidimensional data 

unless there is a very large amount of independent data available. This is what is re­

ferred to as "the curse of dimensionality.". The curse of dimensionality is simply that 

the amount of data required for training increases exponentially if the dimensionality is 

increased. 

A simple and well known method namely, principal component decomposition was 

applied to the data. All the data is then projected onto the first principal component to 

reduce the dimensionality from N dimensions to 1 dimension. This was chosen conve­

niently in order to use the HMM toolbox directly on the application. If needed another 

set of HMM could be created. These HMM would then use the some of the other princi­

pal components. The output of the HMM committees could then be combined to form a 

more robust recognition. This study will use only one principal component to establish 

the technique. 

The principal component analysis (peA) is a standard function in the statistics tool­

box for MATLAB that uses a singular value decomposition to calculate the principal 

components of a data matrix. The principal components can also be calculated as the 

eigenvectors of the covariance matrix of the feature space. The eigenvector with the 

highest corresponding eigenvalue will then be the unit vector of the first principal com­

ponent. When the feature space is projected onto this vector it becomes the first principal 

component. The eigenvalues are then a measure of the total variance explained by each 

principal component . 

3.2.4 Discretisation and construction 

To accommodate the DHMM the dimensionally reduced feature is discretized into a 

number of levels. This is done with respect to the maximum and minimum values of 

the samples used for training. All the values that fall in-between these two values are 

rounded to the "nearest" level. These levels are similar to the bins in a histogram. 

The observation sequences are constructed from the discretized feature vector. This is 

simply done by segmenting the feature vector into lengths of N consecutive samples. This 

number N is a parameter that determines how much temporal information is contained 

in the sequence. The strength of HMM recognition lie in these observation sequences. 
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Experimental setup 

In this chapter the experimental procedure will be explained and the equipment 

setup will be shown . The technique for wear measurement will also be explained. 

4.1 The procedure 

In order to take a tool insert through its natural life cycle a cutting experiment was set 

up. Cutting parameters were selected and were kept constant as much as possible. The 

experiment consisted of a number of cylindrical workpieces which were cut repetitively on 

a lathe with the depth of the cut being kept constant. A cool-down time of approximately 

2 minutes was allowed for between each cut. The tool inserts were removed during certain 

intervals to measure tool wear. 

4.2 The setup 

The experiments were conducted on a Graziana Tortona SAG 14 lathe. This was a "man­

ual" lathe meaning that the machine is not of the CNC type. Operator experience 

therefore plays a role in the consistency of the data and should be kept in mind when the 

results are shown. 

The type of cut is a very important consideration. During interrupted cutting, the 

shock impulses excite all the natural frequencies of the system. These natural frequencies 

are very strong indicators of tool wear. In the case of a continuous cut, the excitation 

of natural frequencies are not as prominent. This fact also complicates the matter of 

recognition for a TCM system and also influences the quality of the data. 

Cutting was done using a boring bar. Boring bars are used to machine on the inside of 

a component. A boring bar usually has a more slender shape than a normal tool holder. 

32 
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For this project the boring bar was not used for boring but for normal cutting. Boring 

bars are less rigid that normal tool holders for lathes, but it can still be used for normal 

cutting operations. (The availability of the bar also made it a very good choice.) 

The boring bar was instrumented with strain gauges on one side. Figure 4.1 shows 

a schematic of the front end of the tool holder. This figure shows the approximate 

location of the strain gauge rosette. HBM 1.5/120XY91 strain gauges were used for the 

experiments. These strain gauges measure 1, 5mm by 1, 5mm with the complete padding 

and packaging measuring 3mm by 3mm. Each strain gauge rosette contained two strain 

gauges orientated in perpendicular directions. The two strain gauges were connected in 

a half bridge configuration into strain gauge amplifiers. A Clip AE 101 strain gauge 

amplifier was used for this. The fact that the signals of two strain gauges measuring in 

two perpendicular directions were combined implies that sensor fusion was implemented. 

(see also figure 4.6) 

tool insert tool holder shank 

location of strain gauges 

Figure 4.1: The approximate location of the strain gauges. 

Low-pass filtering was done on the signal to prevent aliasing. The filter design was 

that of a 4th order Chebyshev type which had a roll off of -3dB at 4350Hz . The filter 

was built in-house and designed with the FilterLab Low Pass program l
. The filtered 

signal was then captured on a personal computer in a MATLAB environment using the 

Data Acquisition Toolbox (DAQ toolbox). The DAQ toolbox allows for the easy creation 

of rather elaborate monitoring systems. 

To automate the data processing as much as possible the data had to have a uniform 

structure. This means that all the recorded signals had to have the same length. In order 

to achieve this a triggering mechanism is needed. This trigger mechanism was created so 

that recording was started when the signal crossed a certain threshold. Recording was 

then allowed for a set amount of time before it was stopped. This recording time as set 

to be longer that than the cutting time of the each experiment run. 

The experiment went as follows. The tool was set at the correct depth for the cut, 

1 Available from Microchip Corporation at http://www.microchip.com 
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but just "outside" the workpiece so that when the lathe is started and the autofeed is 

engaged, the tool will enter the workpiece within approximately 1 second. When the 

tool touches the workpiece, the recording is triggered and continued until the set time is 

exhausted. The signal is then stored on the computer. This is shown schematically in 

figure 4.2. 

The analog to digital conversion was done with a National Instruments PCI-6024E 

analog to digital card. A schematic of the data acquisition system can be seen in figure 4.3. 

The signals were sampled at a rate of Is = 20kHz. 

In appendix D some photos are shown of the equipment. 

4.2.1 Machining parameters 

The purpose of the experiment was to monitor the progression of wear for a tool during 

a normal life cycle. Parameters were chosen so that they were to fall for the "medium" 

range for most tool inserts. As with some design situations some of the parameters were 

chosen arbitrarily for a first iteration. The machining parameters that were decided on 

are shown in t able 4.1. 

Table 4.1: The machining parameters for the experiment. 

Machining Parameter value unit 

feed 2 mm/rev 
depth of cut 0.5 mm 
cutting speed 120 m/min 

By the nature of a cutting process , there is a fundamental problem with keeping ex­

perimental conditions constant. Each time a cut is made the workpiece looses 0, 5mm 

from the circumference. This changes the circumferential velocity for the next cut. If 

experiments were to be kept 100% constant, cutting could only have been done on work­

pieces of exactly the right circumference. A lot of workpieces would therefore be needed 

for the experiments. This would have been a very expensive experiment. To counteract 

this problem it was decided to introduce a tolerance band of about 8% around the cutting 

speed. This means that for a certain rotational speed on the lathe, a certain amount of 

cuts could be made that all lie within the cutting speed band. 

Tool wear is renowned for its dependence and sensitivity to machining conditions. It 

is therefore desirable to have cutting conditions that are not always exactly the same so 

that a classification algorithm that proves its effectiveness on those signals will also have 

proved its robustness a priori. 

Typical shavings can be seen in figure 4.4. This shows a long continuous chip of about 

1m length. The chip has a bright blue metallic colour, which is indicative of martensite 
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Figure 4.2: A schematic of the dat a acquisition program. 
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Figure 4.3: The schematic overview of the data acquisition system used for the experiments. 

and subsequently a very high cutting temperature. This may also be because of the high 

carbon content of the workpiece material. This continuous chip is actually undesirable 

in real life situations according to (Cho et al., 1999). Continuous chips usually have an 

adverse affect and surface roughness and may cause tangling problems around the tool. 

It is interesting to note that if the depth of cut was increased to 1mm, the cutting 

chips would break up into small curls with lengths of about 25mm. The colour of these 

chips were also the bright metallic blue. If the depth of the cut was however slightly 

decreased, the chips continued to be long but the colour turned silvery and bright. This 

silver colour is an indication that the tool is being utilised to its capacity. 

As was previously mentioned, because the machine is operator driven, the quality of 

the data is dependant on the experience of the operator. The depth of each cut was 

measured directly after each cut with normal vernier callipers. This is shown in figure 4.5 

in the form of a histogram of the depth of cut during the experiment. There is quite a 

large variance around the mean. This large variance has the same effect on tool wear as 

the cutting speed tolerance band. 

The last machining parameter to take into account is that of cooling fluid. On recom­

mendations from technical personnel it was decided to cut the material dry. No cooling 

fluid was used since dimensional stability was not an important issue. Also, the cooldown 

period and the continuous chip that transports the heat away from the workpiece, pro­

vided a steady experimental temperature. 
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Figure 4 .4: A typical shaving from a cut. 
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Figure 4 .5 : A histogram for the depth of Clit. 
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4.2.2 T he too l holder 

Previously it was mentioned that a boring bar was used. This was a IIlitsubishi S160 

SCI P R092 . The boring bar was machined on the side and top so that there would be 

space for the stain gauges. The tain gauges were covered with an epoxy mixture to 

protect them from the machining environment. It will be assumed that the epoxy does 

not change the modal properties of the bar in any significant way. 

In the setup the bar was given an overhang of 30mm. This is almost the minimum 

amount that the geomet ry of the bar and the epoxy coat ing allows for. 

Figure 4.6: The boring bar was instrumented with strain gauges on one side. 

4 .2.3 The insert a nd m easurement of t ool wear 

With the machining parameters listed on page 34. lVlitsubishi suggests a medium finishing 

tool insert. It was decided from references from the II litsubishi \\'ebsite to select a U57020 

M V tool insert. 

In order to measure tool wear during the life of the tool it was necessary to remove the 

tool for inspection during certain time increments. This was adjusted as experience was 

gained with the tool inserts. In the end. wear was measured after every 10 - 15 minutes 

of cutting t ime. 

The measurement of tool wear was done on an optical microscope. Since the machining 

parameters were chosen to be in the "mid range". efforts under the microscope were 

focused on finding traces of flank wear. Flank wear and nose wea r are the most common 

forms of wear to be found on tools. 

2Information on this boring bar can be downloaded in pdf format from: 
http: //wwww.mitsubishicarbide.com 
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It was found from the measurements under the mIcroscope that nose wear is the 

dominant wear mode for the machining parameters and workpiece combination. Nose 

wear is commonly found at low cutting speed and the mechanism of wcar is caused by 

abrasion wear on the cutting tool's major edges. Tool sharpness is caused by plastic 

or elastic deformation of the cutting edge, A built-up edge may also be formed at low 

cutting speeds. In figure 4.7 a plan view the worn nose of the tool is shown. In contrast 

with this, figure 4.8 shows a llew tool insert (this is however at a lower magnification). 

Figure 4 .7: The nose of an insert under a microscope. Nose wear is shown on this photo. 

In a similar situation to the dilemma of the changing cutting speed for each exper­

iment, was that of the removal of the tool insert. The removal and re-insertion of t he 

insert changes the uynarnic charact.eristics of boring bar and insert system. This change 

is caused by the difference in clamping conditions at each (~ iteration" of the wear mea-

5urelnents. This again is once again not necessarily a bad thing 1 since it offers a chance 

to, at least in a qualitative manner , to prove the robustness of the recognition system 

which is to be implcmcnted. 

4.2.4 Machining material 

The experiments were conducted on EN 19 alloy steel. This is a tough steel which is 

mostly used for shafts and gears. Because of its high carbon content this steel is ideal 

for hardening. This can sometimes present a problem [or machining. If the material 
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Figure 4 .8: The nose of a lIew tool insert. 

is not cold cut, it hardens and oecome "lnIDst unusable. This call also happen on the 

surface during cutting if the machining parameters are not correctly set . The mechanical 

properties can bc seen in t able 4.2. 

Table 4.2: The mechanical properties of El': 19 steel. 

Property Lilllit 

Ul t imate tension stress 1089 Il'lPa 
Yield stress 955 MP" 

ElongatiOlI 

12 % 
18 % 

The steel was also oil quenched and tempered to the so-called T-condition, which had 

a Bernell hardn ess between 262 - 296BJ-J N. EN19 is a tough steel alloy and was chosen 

so that the "natural" life of t he tool, in which we are interested would not be to long. 

vVorkpicccs \\T:re 300nuIL 1 ::rounclbarll shafts \\" ith a 80mlll diameter. The shafts were 

covered with a uncut material crust which had to be removed before the experiments 

could begin. After the removal of this crust the shaft had a diameter of approximately 

75mm. 
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Results 

The results from the cutting experiments are shown in this chapter. The tech­

niques for signal processing shown in previous chapters are implemented and clas­

sification is done using HMM techniques. This is compared with results from a 

Bayesian classifier. 

5.1 Wear progression 

One of the problems with measuring in machining environments is the adverse conditions. 

To shield the delicate strain gauges an epoxy covering was applied over the gauges. This 

may sometimes have the effect that the strain gauge comes lose from the tool holder. 

This happens when the epoxy covering constrains the strain gauge during large strains 

and causes a complete tear of the strain gauge glue. The strain gauge is then completely 

lose from the tool holder. In such a case the measuring device becomes completely useless 

and has to be replaced. 

Such a "release" of the strain gauge happened during this experiment . The photos 

from the microscope suggest that the tool has worn from Omm to o.lmm at its nose. This 

is a third of the usually allowable O.3mm for flank wear and represents about a third of 

its useful life. It was decided to use the data from an incomplete tool life anyway. The 

rationale for this is, that if very accurate classification can be achieved at this stage, then 

surely better classification will be achieved with full tool life data. 

If a full tool life is available then, using the same techniques, more wear levels can be 

appointed. This will ultimately point the system in the direction of a continuous wear 

estimator. 

For the rest of the classification procedures, this wear level will be referred to as the 

"worn" condition. 

41 
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5.2 Signal processing 

5.2.1 The raw signal 

Software for the recording of the signals were written in a such a manner that a software 

trigger can be set to initialise the recording process. This was set to start recording 

1 second before cutting starts. Figure 5.1 shows a typical cutting signal in the feed 

direction. The little 1 second buffer in the beginning of signal can be seen. This part of 

the signal has its use to categorise noise of the system when no cutting is taking place. 

A noise filter can be implemented from information of this noise. 

Used part of the sig nal 

o 

-1 

-1.5 

_2~ __ ~ ____ ~ __ ~ ____ -L ____ L-__ -L ____ L-__ ~ ____ ~ __ ~ 

o 10 30 40 50 60 70 80 90 
Cutting time [sl 

Figure 5.1: A typical cutting signal from the feed direction. 

Since the cut is always made to be approximately the same length , a collar is formed 

on the workpiece. When the insert exits the workpiece, it "rubs" against the workpiece. 

The erratic nature of the last part of the signal is therefore caused by the exit procedure 

of the insert from the workpiece. 

Another interesting observation from figure 5.1, is the effect of temperature at the 

tool tip on the signal. This effect can be seen as by the phenomenon that looks like 

an exponential decay on the signal. If recording of the signal was continued till long 

after the cut, the signal returned to a position very close to the original zero. This 

seemingly suggests a first order response which is indicative of temperature effects. This 

temperature response may be useful for the monitoring of tool wear in further studies, 
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but it is not nearly consistent enough. This "cutting temperature" is a strong function 

of the depth of the cut, and although it has been argued that inconsistencies in the data 

may prove the system to be more robust, the cutting temperature is considered to be too 

sensitive for practical use. 

5.2.2 Segmentation and preparation 

The signal shown in figure 5.1 is as such not yet very useful and still needs to be processed 

into a usable form. The first step was the removal of the temperature effects so that all 

digital drift effects are removed. This is done by removing a linear trend from the data 

so that the start and end of the signal are at the same voltage. 

No use will be made of the transients at the beginning and end of the signal and they 

will also be removed. The transients may also contain valuable information but there are 

only two transients and their length is less than a thirtieth of the total signal length. The 

focus and emphasis will be on the continuous part of the cutting signal which is easier to 

monitor and segment. 

Since the mean of the signal is very dependant on the depth of the cut it will also not 

be used for the processing since this features was very much influenced by the operators 

own expertise. This makes the segmentation and the removal of the temperature effects 

and the mean very easy. All signals will be segmented as shown into the useful parts 

as shown in figure 5.1. After this the signal is detrended thus removing the dominant 

linear trend . Detrend is a standard MATLAB function that is often used for processing 

of data for FFT analysis. This was done piece wise to ensure that the signal had a mean 

of zero. The remaining signal looks like figure 5.2. Figure 5.3 shows a magnified region 

of figure 5.2. 

To show that these signals still carry information and are not just random noise 

signals, figure 5.4 is provided. This shows a scatter plot of two signals removed by some 

time. The plot has an oval shape which means that the variance of one of the signals has 

increased. This is also shown on the histograms plotted on the figure. These histograms 

have the tops of the bins connected to form a curve. They are also normalised in order 

to fit into the figure. These histogram have therefore no correlation with the figure axes . . 

The two figures were normalised with the same factors. The figure was aimed to prove 

that there was still useful information captured in the signals. 

To facilitate on-line monitoring the signal is, after detrending, segmented further 

again into smaller "snippets." It is on these snippets that feature extraction will be done. 

Each sample in the observation sequences is composed of the features of these snippets. 

Because frequency domain features are extracted, the snippets needs a certain length in 

order to contain a usable frequency resolution when the FFT is calculated. A length of 

211 = 2048 was chosen, rather arbitrarily so that, with a sampling rate of is = 20kHz, a 
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Figure 5.2: The final signal after segmentation and detrending. 
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Figure 5.3: A magnified region of figure 5.2 
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Figure 5.4: A scatter plot of two signal to show the increase in variance. 

frequency resolution of f = 9.76H z can be achieved. 
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5.2.3 Critique on signal processing results and signal quality 

It has been mentioned that the experimental condi tions were not kept exactly constant. 

This was because of the nature of the machining process and the ability of the machine 

operator . Another interest ing factor which has not been mentioned up to now. is that of 

the workpiece material. When the feature space is viewed. there are certain discontinuities 

in the signal. After the discont inui ties the signal seems to follow a stationary trend until 

the next discontinuity. These regions each signify a new workpiece. The etup of the 

workpiece together with differences in chemical composition may be the cause of this. 

Figure 5.5 show a pure noise signal produced by the machine. A normalised histogram 

is shown on top of the noise signal. Clearly the noise of a Gaussian nature and slightly 

skewed to the lower values. The signal to noise ratio can be calculated from this signal 

and the one in figure 5.1. Using the equation: 

S - 201 RMSsignal - oglo 
RMSnoi•e 

(5.1) 

In equation 5.1. S is the signal- ta-noise ratio, in decibels. of the root mean squares of the 

noise and the signal. RM Snoi'. was calculated to be 0.005 and RJII S"gnal = 0.0168. S 

can then be calculated to be S = 1O.5dB. This can be regarded a rather noisy signal if it 
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is considered that FM radio transmissions may have signal-to-noise rat ios of S = 50dB. 

This all implies that for future work a noise filter might be applied to great advantage 

on this system. 
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Figure 5.5: A noise signal from the system. Superimposed on the signal is a normalised 
histogram. 

5.3 Feature selection and dimensional reduction 

Features from the time domain 

Figures 5.6 to 5.7 shows the features that were calculated from the snippets of the de­

trended signals. A total of twelve features were extracted, six from the t ime domain and 

six from the frequency domain. The sample number is indicated on the x-axis of the 

feature-figures. Each of these samples represents a time interval for which the feature 

was calcu lated. 

Figure 5.8 shows the PSDs of the cutting signals of one tool. The frequency axis is 

displayed up to the cut-off frequency of the anti-aliasing fil ter. This figure shows some 

peaks in the range below 300 fl z. These peaks are magnified in figure 5.9. This plot also 

shows a dot ted line which is a sum of all the PSDs. (The sum is divided by a factor 100 

in order to make it visible on this plot ) This is helpful for finding regions where there is 

more energy present . Magnifying one of these regions shows the increase of one of the 

regions. The legend explains how the colour of the line is connected to the time "into" the 
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Figure 5.6: The time domain features extracted from the processed signals. 
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Figure 5.7: The frequency domain features extracted from the processed signals. 
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tool life. Peaks that may be used will then start out as a small dark hump and gradually 

"transform" via grey into a light grey peak. Peaks that shrink via this same process are 

also useful. Figure 5.10 represents these transformations of the peaks in figure 5.9. 
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Figure 5.8: The PSDs of the cutting signals during the life of a tool. 

5.3.1 The selection process 

The selection process is shown in figure 5.11. Features were selected according to their 

relation to the theoretical tool wear function calculated by the correlation coefficient. 

The ideal trend function is then taken as a straight line with a slope of 40°. This slope . 

was chosen arbitrarily and any positive figure may be used for this. This slope is chosen 

to be more steep than any of the slopes from the other features . This is then helpful to 

select the features that have most consistent correlation with the theoretical tool wear 

function. The effectiveness of the feature selection process is subsequently dependant on 

the assumption that the tool wear can be approximated by a straight line. This technique 
was proposed by Scheffer and Heyns (2001). 

The sorted correlation coefficients are shown in table 5.1. Entropy and Crest factor 

were chosen from this list because of their obvious inverse relationship with the theoretical 

tool wear. It seems that only the skewness, the kurtosis and the 3110 - 3505Hz peak are 

unusable in this application because their correlation coefficients are a whole order less 

than that of the rest of the features. Selecting both negative and positive coefficients has 

the advantage of ensuring that the selected features contain minimal mutual information. 
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Figure 5.11: The selection of the features using the correlation coefficient. 
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Table 5.1: The sorted correlation coefficients. 

Feature Correlation Coefficient 

Entropy -0.651 
Crest factor -0.596 
Kurtosis -0.057 
Peak 3110-3505 Hz 0.037 
Skewness 0.085 
Peak 175 Hz 0.379 
Dynamism 0.405 
Peak 185-214 Hz 0.445 
Peak 126-244 Hz 0.516 
Peak 3600-3800 Hz 0.540 
Peak 30-85 Hz 0.601 
Std deviation 0.704 

All the other features, except for the above named three were used for the classification 

process. The final selection of features are listed in tabel 5.2. 

Table 5.2: The selected features 

Final features 

Entropy 
Crest factor 
Peak 175 Hz 
Dynamism 

Peak 185-214 Hz 
Peak 126-244 Hz 

Peak 3600-3800 Hz 
Peak 30-85 Hz 
Std deviation 

Preparation for the feature reduction 

Before a feature reduction can be done a whitening transform is done on the data. After 

the whitening transform all the features in the data have a mean of 0 and a variance of 

1. This transform is similar to the normalisation techniques used in neural networks. A 

normalisation is done on the data to ensure that the data is not biased toward one of the 

features. 

Using the principal component decomposition, the selected features are combined 

into a single feature which will be used to train the HMMs. This feature is shown in 

figure 5.12. The final correlation coefficient of the universal feature is -0.695 which is 

very close to that of best feature. Table 5.3 shows the total variance explained by each 
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principal component after the decomposition. It can be seen from this that the first 

principal component explains more than 70% of the variance. On page 31 the use of only 

this one principal component is mentioned. The classification system is to be trained on 

data from this figure. The "noisy" figure shows why a threshold method for classification 

will produce many false alarms. The "spikes" seem to jump arbitrarily and may trigger a 

"worn-tool alarm." There is fortunately a trend that can been seen in the data. The lower 

values of the dimensionally reduced feature vector correlates with worn-tool conditions. 

This figure also shows why an advanced classification system is needed for machining 

data. 

Table 5.3: The principal components and the amount of the total variance the represent. 

Principal component no. Percentage of total variance 

1 73.57 
2 10.53 
3 7.17 
4 3.81 
5 2.45 
6 2.45 
6 1.07 
7 0.84 
8 0.50 
9 0.02 

The first third of the data was selected to be the first class and the last third to be 

the second class. These two thirds of the data was used to calculate the P-vector for the 

dimensional reduction. These same thirds will be used in the next section for the training 

and testing. 

The last preparation before the HMMs are applied is the discretisation. Because 

discrete HMMs are used, it is necessary to discretize the data. It was decided to quantise 

the data into 150 levels. At this level there is still ample detail left in the universal feature. 

A lower discretisation level will have sharper decision boundaries, this will probably give 

better classification results. More advanced HMM techniques however use continuous 

PDFs. Using a high number of discretisation levels therefore will give a better indication 

how future and more advanced models may perform. A better platform for comparison 

for the performance between discrete and continuous models is also created. 

Figure 5.13 shows a few training sequences for sharp and worn tools. These figures 

were already discretized and represent the final product that is fed to the HMM models. 
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Figure 5.12: The final combined feature from which the training sequences for the HMM will 
be extracted. 
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5.4 HMM training and classification 

During the training, one HMM was trained for each of the identified classes. Each HMM 

was then t rained on the data it is to be associated with . Afterwards the HMM were tested 

on mixed, unseen data. A HMM toolbox for MATLAB is used for the data classification 

techniques presented in this section.! 

5.4.1 Selecting samples for training 

Having already selected the classes to be recognised, it is necessary to select samples for 

training and for testing. From each class , one t hird of the samples are randomly selected 

and removed from the set. The remaining data is used for training. After training the 

models are tested with the remaining data. Figure 5.14 shows set of randomly selected 

training data samples. The different colours indicate different classes. 
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Figure 5.14: A training data set 

The histograms in figure 5.15 show the areas of likelihood for samples in the different 

classes. Once again the tops of the bins were connected to form a curve. The second peak 

with the small variance in the histogram of the sharp tool, is an example of differences in 

workpiece composition and setup that affects the signal quality. From this figure it can 

lHidden Markov Model (HMM) Toolbox written by Kevin Murphy (1998). See 
http: //www.aLmit.edur murphyk/Software/hmm.html for details. 
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be seen that the PDFs of the sharp tools and the worn tools have a large overlap area. 

This will make recognition difficult. 
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Figure 5.15: The histograms for the different classes 

5.4.2 Condition for correct classification 

2 4 

At this point it is relevant to describe what is deemed to be a correct classification. After 

the HMM are t rained they are tested . The testing entails that the HMMs are shown 

an unknown sequence. The sequences are similar to the ones shown in figure 5.13. The 

probability that each of the HMMs will produce the sequence is then calculated. The 

sequence is then classified in the class of the HMM with the highest probability. Since 

the testing data will have known labels (eg. the user has a prior knowledge of the class 

of the data). a correct classification wi ll be when the HMM associated with the correct 

class has the highest probability. 

5.4.3 The HMM topology 

As with neural networks, there is no analytical way of predicting what HMM topology wi ll 

produce the best results. An iterative procedure was followed where the whole training 

and testing procedure was repeated for an incrementally changing number of states. For 

each number of states. the training and testing was repeated five times and a mean was 

calculated. The results are shown in 5.16 . 
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Figure 5.16: The number of states vs the recognition faults 

From figure 5.16 the optimal number of states for each HMM with its associated class 

can be read off. This number will however be a trade off between complexity of the model 

and the performance. It was decided to select for: 

• the HMM on worn tool data, the number of states as, 2 

• the HMM on sharp tool data, the number of states as, 7. 

With these parameters chosen, one can show more results of the HMM classification 

such as the forward probabilities. 

5.4.4 Recognition and results 

In order get an idea of the behaviour of the recognition of the HMMs, the test was 

repeated twenty with the chosen parameters. This is shown in figure 5.17. The mean of 

the performances are indicated on this figure. This figure shows that the behaviour is 

somewhat erratic, and can be ascribed to the quality of the data. 

Figure 5.18 shows the probabilities that the HMMs will produce the testing data. 

The first half of the data is of class one and the second part is of class two. One then 

expects to see that the lines of the HMMs should cross in the middle somewhere. The 

probabilities of the HMMs are however a little more chaotic. The extreme dips in the 

data are caused by zeros in the probability density functions of the states. Since the data 
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is discretized it implies that the probability density functions are discretized as well. It 

may therefore happen that, in the PDF one of these "symbols" may have a probability 

of O. The prediction probability of the HMM then drops to -00. A bound of -130 was 

put on this. 

The outcome of this can be seen more clearly in figure 5.19. Once again in this figure, 

the data of the first class was shown in the first half and that second class in the second 

half. Correct classifications are therefore shown as red circles in the first half and the 

blue circles in the second half. On average this quantifies into: 

• 6.5% incorrect classifications of sharp tools 

• 7.5% incorrect classifications of worn tools 

5.5 The Maximum Likelihood classifier 

To create a basis for comparison, the recognition was also to be done with another 

maximum likelihood technique. The maximum likelihood was chosen for this . This type 

of classifier is easy to implement and usually very robust. The maximum likelihood 

classifier works by creating a decision boundary using the PDFs of the different classes . 

The training data in this case is used to fit Gaussian PDFs onto the data. Because of the 

smooth decision boundaries that this method creates, it is easy to predict the behaviour 
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of the system. The performance of this system is dependant on the quality of the fit of 

the Gaussian PDFs on the data classes. 

Formally the maximum likelihood classifier works as follows: if Pa( x) is the PDF of 

class a and similarly, Pb(x) is the PDF for class b. then the decision boundary will be 

where: 

Pa(X) - Pb(x) = 0 (5.2) 

Classification can then be done on any arbit rary value of x. If equation 5.2 is calculated 

for a value of x and the answer is a posit ive number, then x belongs the class a, otherwise 

class b. Figure 5.20 shows the PDFs for the two classes and the decision boundary. 
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Figure 5.20: The Gaussian PDFs fi tted onto the data and the decision boundary. 

The training of t he maximum likelihood classifier is done by simply drawing the 

histograms from a training data set with the defined classes. The decision boundary is 

then applied to a testing set. An example of this decision boundary. plotted on a t raining 

set in figure 5.21. 

The training and testing is repeated a number of times and the performance and the 

behaviour of the performance is shown in figure 5.22 . 

From this figure, it can be seen that the performance is rather stable. The average 

performance for the maximum likelihood classifier turns out to be: 

• 3. 2% incorrect classifica lions for a sharp tool 

• 27, 3% incorrect classificat ions for a worn tool 
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The low classification result for worn tool shows that a Gaussian PDF is not a very 

good approximation for the likelihood function of the worn tool. The reason for the low 

result is the high amount of overlap between the two PDFs, which is clear in figure 5.20. 

In figure 5.15 it can be seen that there is an amount of overlap between the histograms. 

This overlap is a lack of separation between classes. The observation sequences that the 

HMMs use is one way to overcome this problem because temporal characteristics are 

taken into account. Comparison between the two methods of classification shows that 

the HMM classification is not as influenced by this lack of separation. 

5.6 Red uced dataset 

The performance of any classification algorithm is dependant on the quality and the 

quantity of the data that is used to train the system. It has been argued that the 

performance of the HMM recognition system will improve if there is more data and 

better quality data available for training. In order to show that this was the case, the 

data set ,vas reduced and the training and testing of the HMM classification system was 

repeated. 

For this trail the first 75% of the data was used. Again the data was divided into 

three classes of which the last and first were used in the classification tests. Again two 

thirds of the data of each class were randomly selected to train the system and the last 

third was used to test the system. 

A principal component decomposition was once again applied to ,the two classes to 

achieve separation and dimensional reduction. After the dimensional reduction, two 

histograms were drawn up of each class. This is shown is figure 5.23. It can be seen that 

less prominent separation is achieved between the two classes. 

Once again the whole classification procedure was done exhaustively to find the "op­

timal" number of states for this application. According to figure 5.24 the optimal for this 

case is: 

• 2 states for the worn tool data 

• 8 states for the sharp tool data 

It is evident that there is much less of a trend between classification performance and the 

number of states of the HMMs. Each data point on the graph represents the mean of an 

average of 5 classification iterations. 

When these figures for optimal classification are applied for investigation into the 

behaviour of the classification test results, figure 5.25 is the result. As with the previous 

result, the performance behaviour of the HMM classification is rather erratic, much more 

than with the full data set. 

- ' .... -. ~ ' .. ' " 
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Figure 5.23: The histogram of the two classes in the reduced data set. 
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Figure 5.25: The behaviour of the classifications , 

The average result of the classification for the reduced data set was: 

• 35% incorrect classifications for worn tools 

• 8% incorrect classifications for sharp tools 

From this it shows that with less data there is lack of separation between classes which 

hampers the performance of the HMM classifier. This also validates the claim that more 

data will enable more, and better class allocation and separation, and ultimately better 

classification 



CHAPTER 6 

Conclusion 

6.1 Review of results 

In this study discrete hidden Markov models were trained for tool wear classification. 

The data was generated manually on a lathe with a cemented carbide tool insert cutting 

an EN19 steel alloy. Some of the parameters, such as the depth of cut and the feed rate 

was kept constant while the cutting speed had some variation. This variation was around 

±8% of the cutting speed. 

This has been the first work where a reduced feature space was used to train the 

HMM . The "essence" of the signals were compressed into a very relevant and robust 

single feature using the principal component analysis which lowers the dimensionality 

of the feature space. If more than one sensor signal is used, this single feature will be 

very robust indeed. Also in the case where more that one sensor is used the feature will 

probably give good results even if some of the other sensors fail. 

The training and testing data was generated from one tool. The data encompassed 

only the first third of the life of the tool. This devalues the statistical integrity of the data. 

The samples for training and testing however , were selected randomly from the respective 

classes, and the performance of the classification is the average result of 20 iterations. 

This mitigates to a degree, the fact that only one tool was used. In cases where more 

than one tool will be used, the performance of the classification might be expected to be 

a little lower. It is however believed that comparable results will be achieved. Also if a 

total tool life might be used, even better separation between classes will be achieved and 

consequently better results will be achieved. 

An HMM classification system was created from the data. This system scored the 

forward probabilities to create a binary, "sharp" / "worn" classification. Two HMMs were 

trained for the system, one corresponding to each wear state to be classified. The system 

64 
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achieved a 91,5% correct classification of sharp tools and a 94,5% correct classification 

of worn tools. This was compared to a Bayesian classifier that achieved 96, 8% correct 

classification for a sharp tool and a 72, 7% correct classification for a worn tool. 

In order to establish the relationship between the amount of available data for training 

and testing and the performance of the system, the whole recognition procedure was 

repeated with a reduced data set . In this reduced data set the separation between classes 

was very poor. The system achieved an average result of 65% correct classifications for 

worn tools and an 92% correct classifications for sharp tools. This is comparable with 

the performance of the Bayesian classifier. This investigation proves that with more data 

there will be more clearly identifiable classes which will make for a better classification 

system. 

Optimal state topology of the HMMs were obtained by an exhaustive method. It was 

found that for this application a 7 state, ergodic HMM works well and for sharp tools 

and a 2 state, ergodic HMM works well for worn tools. The signals were discretized into 

150 levels and this was kept constant through the experiments. Lowering this number 

might actually improve the performance of the system. 

The HMMs achieved very good recognition considering that the tool has only reached 

a third of its total life and that the experimental results could not be kept very constant. 

Even through this, the HMMs achieved a robust recognition. 

Finally, because the data used in this classification scheme is only limited to a part 

of a lifetime of one tool, it compromises the statistical integrity of the data and the 

results. Good generalisation of the classification scheme with the HMMs is therefore not 

guaranteed. The technique is however successfully demonstraded. 

6.2 Suggestions on Improvements 

The nature of HMMs lends itself very much to the detection of wear condition . It is 

however even better suited for discrete event detection. Events like excessive vibration of 

the workpiece (eg. where the workpiece might not be lined up) or self-excited vibration 

of the tool (eg. chatter), or breakage events, might be very well suited to be detected by 

HMMs. No work, to the knowledge of the author, has been done in the area of TCM using 

HMMs to detect these conditions. This may be an interesting future field to explore. 

Measuring in the machining environment is exceedingly difficult and more work is 

needed to produce a cheap sensor integrated machining tool. A problem with strain 

gauges that are covered is that they might be torn off by the very same covering that is 

meant to protect it . This is a future area which could be explored to produce a covering 

for the strain gauges to not hinder their performance. Another option might be to embed 

the sensor into the tool holder itself. 

A problem still relevant to neural network TCM systems is the automation of the 
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process of generation-and-selection features that are sensitive to tool wear. This problem 

is also relevant to systems that will use HMMs for the classification. More research in 

needed in this din'!ction. 

The techniques for using HMM for the classification of tool wear has been proved 

in this study, although the very simplest of the HMM family was used. Investigation 

into more complex models might improve the results. More configurations of the HMMs 

might also be used where Viterbi decoding could be used to determine the tool state. 



A.I 

APPENDIX A 

Additional Theory on HMMs 

Some more theory on HMM are presented in this chapter. The Baum-Welsch 

training procedure for HMMs is also presented in this chapter. Most of the 

information in this chapter is taken from (Rabiner, 1989). 

Assumptions of the hidden Markov model 

It was mentioned earlier that HMMs have a rich mathematical structure. This is again 

evident in the following assumptions. These assumptions are made to keep mathematical 

calculations tractablel
. 

1. The Markov assumption: The Markov assumption is that the probability of 

transition from one state to another is only dependent upon the current state. 

a i j = P(qt+l = jlqt = i) (A.I) 

This is actually called a first order HMM, where a second order HMM would be 

dependent upon the current state and the previous state. Naturally calculations 

become increasingly more complex. 

2. The stationarity assumption: This implies that the state transition matrix is 

invariant with time. This means that: 

(A.2) 

This holds for any tl and t 2. 

IThese definitions are from Narada Warakagoda website at http://jedlik.phy.bme.hu/ gerjanos/HM­
M/node3.htm 

67 



APPENDIX A. ADDITIONAL THEORY ON HMMS 68 

3. The output Independence assumption: This assumption means that the cur­

rent observation is statistically independent of any previous observation. Let: 

o = {01' 02, 03,' .. ,On} Then for a specific HMM model, .A: 

T 

P(0Iq1, q2, Q3,···, Qn,.A) = II (OtIQt,.A) (A.3) 
t=l 

A.2 Training the hidden Markov model 

Together with the forward procedure, another two parameters need to be introduced 

before the Baum-Welch re-estimation procedure can be explained. The first is the back­

ward procedure which is very similar to the forward procedure. This is also calculated 

recursively and works as follows: 

Define: 

(A.4) 

We can solve for {3 inductively: 

1. Initialisation: 

(A.5) 

2. Induction: 

N 

(3t(i) = L aijbj (Ot+l{3t+l (j)) , t = T - 1, T - 2, ... , 1, 1:S i :S N (A.6) 
j=l 

In order to describe the rest of the procedure for re-estimation of the HMM parameters, 

we first define ~t (i, j), the probability of being in state Sj at time t, and state Sj at time 

t + 1, given the model and the observation sequence e.g. 

(A.7) 

This parameter, ~ can now be written in terms of a and {3 

(A.8) 

A final quantity, T needs to be defined. This is the probability of being in state Si at 

time t, given the observation sequence 0, and the model .A. 

(A.9) 
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In terms of a and (3 this is: 
at ( i)(3t (i) 

'Yt ( i) = - N----'-'----'-'--

L at(i)(3t(i) 
j=l 
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(A.10) 

If 'Y is summed over t, the result is the expected number of transitions made from state 

Sj. Similarly, summing of ~t(i,j) over t (from t = 1 to t = T - 1) can be interpreted as 

the expected number of transitions from state Si to state Sj . Using the above formulae 

and the counting of event occurrences a method for re-estimation can be given: 

7ri = expected number of times instate Sj at time (t = 1) = 'Y1(i) 

r - 1 

L 6(i , j) 
t=l 

aij = ":"'r--=--l-- (A.ll) 

L 'Yt(i) 
t=l 

r 

L 'Yt(j) (the number of times in state j and observing symbol Vk) 
bj(k) = -t=-l- ---- - ----

r
=-------_ _____ _ (A.12) 

L 'Yt(j) 
t=l 



APPENDIX B 

Training of the HMMs 

Some results on the training of the HMM are given in this chapter. Convergence 

plots of the training is shown here. 

The training algorithm of the HMM was set to allow no more than 10 iterations. 

Figure B.1 shows 20 convergence-curves from the training of HMM on sharp tool data 

and worn tool data. The Baum-Welch algorithm quickly converges to a local optimum. 

Because the initialisation of the state transition matrix and the state probabilities are 

done randomly, the end result differs slightly after each training. A basic trend can 

however be detected . 

The y-axis of the figure denotes "Logarithmic likelihood" , this is the calculated for 

the whole training batch. The differences between the training outcomes can be ascribed 

to the influence of the following: 

• The data quality of the training samples. (which were selected randomly) 

• The initialisation of the parameters. (which were also selected randomly) 
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x 10~ Convercence of the HMM training 
-1 .. 5 ~---,----,----,----~---.----~~-.----,----, 

_4L-__ -L ____ l-__ ~ ____ ~ __ ~ ____ ~ __ ~ ____ _L __ ~ 

1 2 3 4 5 6 7 8 9 10 
Iteration number 

Figure B . l : Some convergence histories of the model training 



APPENDIX C 

Measurement of tool wear 

This appendix will show the state of wear on the tool nose . 

C.l Nose wear 

It was mentioned on page 39 the dominant wear mode that was detected in this experi­

ment was nose wear. Nose wear is common at slow cutting speeds. 

Tool wear usually has a slow initialisation phase followed by a an almost constant 

wear phase. The last phase is a very rapid wear growth followed by tool breakage. 

In figures C.2 to C.3 the nose of the tool insert is shown. The angle from which is 

was taken is shown in figure C.l. The edge of the nose at the upper left corner is where 

nose wear would be seen. It can be seen that there is very little change between the two 

photos although they were separated by approximately 60 minutes of cutting time. This 

small change is an indication that the tool is still in the first phase of wear. A photo of 

a metal ruler calibrated in millimetres is shown is figure C.4. This photos was taken at 

the same magnification as the rest rest of the photos. 

The scale that is presented in figure C.4 can also be used for figure 4.7 in the chapter 

on the experimental set up . 
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Figure C.l: The photo angle for figures C.2 and C.3. 

Figure C.2: Nose of a sharp tool 
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Figure C.3: Nose of a tool where wear has started 
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Figure C.4: A ruler calibrated in millimetres. 



APPENDIX D 

The setup 

A few photos of the setup is shown in t his cha pter. Some more examples of 

cutt ing chips that we re produced wi ll also be show n. 

The photos of the setup shown in figure 4.3 on page 34 will now be shown in this 

chapter . Figure D.l shows the cutting tool in action. The cables from the strain gauges 

are contained in a shielded cable . This cable carries the wires to the st rain gauge ampli­

fiers. The strain gauge amplifier together with the anti-alias filt ers are housed in a metal 

Figure D.l: The cutting tool in action. 

container . T his is shown in figure D.2. The output of the anti-alias fil ters are fed into the 
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PC via the National Instruments AI D card. The computer with the outside connectors 

for the output from the filters are shown in figu re D.3. 

Figure D.2: The housing for the strain gauges and filters 
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Figure D.3: The PC with t he outside connectors shown in the upper right half 
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