
CHAPTER 5 

Results 

The results from the cutting experiments are shown in this chapter. The tech­

niques for signal processing shown in previous chapters are implemented and clas­

sification is done using HMM techniques. This is compared with results from a 

Bayesian classifier. 

5.1 Wear progression 

One of the problems with measuring in machining environments is the adverse conditions. 

To shield the delicate strain gauges an epoxy covering was applied over the gauges. This 

may sometimes have the effect that the strain gauge comes lose from the tool holder. 

This happens when the epoxy covering constrains the strain gauge during large strains 

and causes a complete tear of the strain gauge glue. The strain gauge is then completely 

lose from the tool holder. In such a case the measuring device becomes completely useless 

and has to be replaced. 

Such a "release" of the strain gauge happened during this experiment . The photos 

from the microscope suggest that the tool has worn from Omm to o.lmm at its nose. This 

is a third of the usually allowable O.3mm for flank wear and represents about a third of 

its useful life. It was decided to use the data from an incomplete tool life anyway. The 

rationale for this is, that if very accurate classification can be achieved at this stage, then 

surely better classification will be achieved with full tool life data. 

If a full tool life is available then, using the same techniques, more wear levels can be 

appointed. This will ultimately point the system in the direction of a continuous wear 

estimator. 

For the rest of the classification procedures, this wear level will be referred to as the 

"worn" condition. 
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5.2 Signal processing 

5.2.1 The raw signal 

Software for the recording of the signals were written in a such a manner that a software 

trigger can be set to initialise the recording process. This was set to start recording 

1 second before cutting starts. Figure 5.1 shows a typical cutting signal in the feed 

direction. The little 1 second buffer in the beginning of signal can be seen. This part of 

the signal has its use to categorise noise of the system when no cutting is taking place. 

A noise filter can be implemented from information of this noise. 

Used part of the sig nal 

o 

-1 

-1.5 

_2~ __ ~ ____ ~ __ ~ ____ -L ____ L-__ -L ____ L-__ ~ ____ ~ __ ~ 

o 10 30 40 50 60 70 80 90 
Cutting time [sl 

Figure 5.1: A typical cutting signal from the feed direction. 

Since the cut is always made to be approximately the same length , a collar is formed 

on the workpiece. When the insert exits the workpiece, it "rubs" against the workpiece. 

The erratic nature of the last part of the signal is therefore caused by the exit procedure 

of the insert from the workpiece. 

Another interesting observation from figure 5.1, is the effect of temperature at the 

tool tip on the signal. This effect can be seen as by the phenomenon that looks like 

an exponential decay on the signal. If recording of the signal was continued till long 

after the cut, the signal returned to a position very close to the original zero. This 

seemingly suggests a first order response which is indicative of temperature effects. This 

temperature response may be useful for the monitoring of tool wear in further studies, 
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but it is not nearly consistent enough. This "cutting temperature" is a strong function 

of the depth of the cut, and although it has been argued that inconsistencies in the data 

may prove the system to be more robust, the cutting temperature is considered to be too 

sensitive for practical use. 

5.2.2 Segmentation and preparation 

The signal shown in figure 5.1 is as such not yet very useful and still needs to be processed 

into a usable form. The first step was the removal of the temperature effects so that all 

digital drift effects are removed. This is done by removing a linear trend from the data 

so that the start and end of the signal are at the same voltage. 

No use will be made of the transients at the beginning and end of the signal and they 

will also be removed. The transients may also contain valuable information but there are 

only two transients and their length is less than a thirtieth of the total signal length. The 

focus and emphasis will be on the continuous part of the cutting signal which is easier to 

monitor and segment. 

Since the mean of the signal is very dependant on the depth of the cut it will also not 

be used for the processing since this features was very much influenced by the operators 

own expertise. This makes the segmentation and the removal of the temperature effects 

and the mean very easy. All signals will be segmented as shown into the useful parts 

as shown in figure 5.1. After this the signal is detrended thus removing the dominant 

linear trend . Detrend is a standard MATLAB function that is often used for processing 

of data for FFT analysis. This was done piece wise to ensure that the signal had a mean 

of zero. The remaining signal looks like figure 5.2. Figure 5.3 shows a magnified region 

of figure 5.2. 

To show that these signals still carry information and are not just random noise 

signals, figure 5.4 is provided. This shows a scatter plot of two signals removed by some 

time. The plot has an oval shape which means that the variance of one of the signals has 

increased. This is also shown on the histograms plotted on the figure. These histograms 

have the tops of the bins connected to form a curve. They are also normalised in order 

to fit into the figure. These histogram have therefore no correlation with the figure axes . . 

The two figures were normalised with the same factors. The figure was aimed to prove 

that there was still useful information captured in the signals. 

To facilitate on-line monitoring the signal is, after detrending, segmented further 

again into smaller "snippets." It is on these snippets that feature extraction will be done. 

Each sample in the observation sequences is composed of the features of these snippets. 

Because frequency domain features are extracted, the snippets needs a certain length in 

order to contain a usable frequency resolution when the FFT is calculated. A length of 

211 = 2048 was chosen, rather arbitrarily so that, with a sampling rate of is = 20kHz, a 
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Figure 5.2: The final signal after segmentation and detrending. 
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Figure 5.3: A magnified region of figure 5.2 
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Figure 5.4: A scatter plot of two signal to show the increase in variance. 

frequency resolution of f = 9.76H z can be achieved. 
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5.2.3 Critique on signal processing results and signal quality 

It has been mentioned that the experimental condi tions were not kept exactly constant. 

This was because of the nature of the machining process and the ability of the machine 

operator . Another interest ing factor which has not been mentioned up to now. is that of 

the workpiece material. When the feature space is viewed. there are certain discontinuities 

in the signal. After the discont inui ties the signal seems to follow a stationary trend until 

the next discontinuity. These regions each signify a new workpiece. The etup of the 

workpiece together with differences in chemical composition may be the cause of this. 

Figure 5.5 show a pure noise signal produced by the machine. A normalised histogram 

is shown on top of the noise signal. Clearly the noise of a Gaussian nature and slightly 

skewed to the lower values. The signal to noise ratio can be calculated from this signal 

and the one in figure 5.1. Using the equation: 

S - 201 RMSsignal - oglo 
RMSnoi•e 

(5.1) 

In equation 5.1. S is the signal- ta-noise ratio, in decibels. of the root mean squares of the 

noise and the signal. RM Snoi'. was calculated to be 0.005 and RJII S"gnal = 0.0168. S 

can then be calculated to be S = 1O.5dB. This can be regarded a rather noisy signal if it 
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is considered that FM radio transmissions may have signal-to-noise rat ios of S = 50dB. 

This all implies that for future work a noise filter might be applied to great advantage 

on this system. 
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Figure 5.5: A noise signal from the system. Superimposed on the signal is a normalised 
histogram. 

5.3 Feature selection and dimensional reduction 

Features from the time domain 

Figures 5.6 to 5.7 shows the features that were calculated from the snippets of the de­

trended signals. A total of twelve features were extracted, six from the t ime domain and 

six from the frequency domain. The sample number is indicated on the x-axis of the 

feature-figures. Each of these samples represents a time interval for which the feature 

was calcu lated. 

Figure 5.8 shows the PSDs of the cutting signals of one tool. The frequency axis is 

displayed up to the cut-off frequency of the anti-aliasing fil ter. This figure shows some 

peaks in the range below 300 fl z. These peaks are magnified in figure 5.9. This plot also 

shows a dot ted line which is a sum of all the PSDs. (The sum is divided by a factor 100 

in order to make it visible on this plot ) This is helpful for finding regions where there is 

more energy present . Magnifying one of these regions shows the increase of one of the 

regions. The legend explains how the colour of the line is connected to the time "into" the 
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Figure 5.6: The time domain features extracted from the processed signals. 
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Figure 5.7: The frequency domain features extracted from the processed signals. 
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tool life. Peaks that may be used will then start out as a small dark hump and gradually 

"transform" via grey into a light grey peak. Peaks that shrink via this same process are 

also useful. Figure 5.10 represents these transformations of the peaks in figure 5.9. 
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Figure 5.8: The PSDs of the cutting signals during the life of a tool. 

5.3.1 The selection process 

The selection process is shown in figure 5.11. Features were selected according to their 

relation to the theoretical tool wear function calculated by the correlation coefficient. 

The ideal trend function is then taken as a straight line with a slope of 40°. This slope . 

was chosen arbitrarily and any positive figure may be used for this. This slope is chosen 

to be more steep than any of the slopes from the other features . This is then helpful to 

select the features that have most consistent correlation with the theoretical tool wear 

function. The effectiveness of the feature selection process is subsequently dependant on 

the assumption that the tool wear can be approximated by a straight line. This technique 
was proposed by Scheffer and Heyns (2001). 

The sorted correlation coefficients are shown in table 5.1. Entropy and Crest factor 

were chosen from this list because of their obvious inverse relationship with the theoretical 

tool wear. It seems that only the skewness, the kurtosis and the 3110 - 3505Hz peak are 

unusable in this application because their correlation coefficients are a whole order less 

than that of the rest of the features. Selecting both negative and positive coefficients has 

the advantage of ensuring that the selected features contain minimal mutual information. 



CHAPTER 5. RESULTS 

0.5 '\ 
1\ 
I \ 

0.45 I \ 

0.1 

I 
I 

\ 
\ 

20 

\ 

\ I 
\ I 

I 
I 

/\ 
/ \ 

f 

40 

\ 

\ 

\ I 

\I 

60 

, 
I , 

, 
\ 

\ 

\ 

80 

r 
I' 

I ' 

100 120 140 
Frequency [Hz] 

\ 

\ 

- - Summed PSD 
- Sharp tool PSD 

Worn tool PSD 

\ 

160 180 200 
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Figure 5.10: Another view of the progression of the PSD peaks. 
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Figure 5.11: The selection of the features using the correlation coefficient. 
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Table 5.1: The sorted correlation coefficients. 

Feature Correlation Coefficient 

Entropy -0.651 
Crest factor -0.596 
Kurtosis -0.057 
Peak 3110-3505 Hz 0.037 
Skewness 0.085 
Peak 175 Hz 0.379 
Dynamism 0.405 
Peak 185-214 Hz 0.445 
Peak 126-244 Hz 0.516 
Peak 3600-3800 Hz 0.540 
Peak 30-85 Hz 0.601 
Std deviation 0.704 

All the other features, except for the above named three were used for the classification 

process. The final selection of features are listed in tabel 5.2. 

Table 5.2: The selected features 

Final features 

Entropy 
Crest factor 
Peak 175 Hz 
Dynamism 

Peak 185-214 Hz 
Peak 126-244 Hz 

Peak 3600-3800 Hz 
Peak 30-85 Hz 
Std deviation 

Preparation for the feature reduction 

Before a feature reduction can be done a whitening transform is done on the data. After 

the whitening transform all the features in the data have a mean of 0 and a variance of 

1. This transform is similar to the normalisation techniques used in neural networks. A 

normalisation is done on the data to ensure that the data is not biased toward one of the 

features. 

Using the principal component decomposition, the selected features are combined 

into a single feature which will be used to train the HMMs. This feature is shown in 

figure 5.12. The final correlation coefficient of the universal feature is -0.695 which is 

very close to that of best feature. Table 5.3 shows the total variance explained by each 
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principal component after the decomposition. It can be seen from this that the first 

principal component explains more than 70% of the variance. On page 31 the use of only 

this one principal component is mentioned. The classification system is to be trained on 

data from this figure. The "noisy" figure shows why a threshold method for classification 

will produce many false alarms. The "spikes" seem to jump arbitrarily and may trigger a 

"worn-tool alarm." There is fortunately a trend that can been seen in the data. The lower 

values of the dimensionally reduced feature vector correlates with worn-tool conditions. 

This figure also shows why an advanced classification system is needed for machining 

data. 

Table 5.3: The principal components and the amount of the total variance the represent. 

Principal component no. Percentage of total variance 

1 73.57 
2 10.53 
3 7.17 
4 3.81 
5 2.45 
6 2.45 
6 1.07 
7 0.84 
8 0.50 
9 0.02 

The first third of the data was selected to be the first class and the last third to be 

the second class. These two thirds of the data was used to calculate the P-vector for the 

dimensional reduction. These same thirds will be used in the next section for the training 

and testing. 

The last preparation before the HMMs are applied is the discretisation. Because 

discrete HMMs are used, it is necessary to discretize the data. It was decided to quantise 

the data into 150 levels. At this level there is still ample detail left in the universal feature. 

A lower discretisation level will have sharper decision boundaries, this will probably give 

better classification results. More advanced HMM techniques however use continuous 

PDFs. Using a high number of discretisation levels therefore will give a better indication 

how future and more advanced models may perform. A better platform for comparison 

for the performance between discrete and continuous models is also created. 

Figure 5.13 shows a few training sequences for sharp and worn tools. These figures 

were already discretized and represent the final product that is fed to the HMM models. 
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Figure 5.12: The final combined feature from which the training sequences for the HMM will 
be extracted. 
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5.4 HMM training and classification 

During the training, one HMM was trained for each of the identified classes. Each HMM 

was then t rained on the data it is to be associated with . Afterwards the HMM were tested 

on mixed, unseen data. A HMM toolbox for MATLAB is used for the data classification 

techniques presented in this section.! 

5.4.1 Selecting samples for training 

Having already selected the classes to be recognised, it is necessary to select samples for 

training and for testing. From each class , one t hird of the samples are randomly selected 

and removed from the set. The remaining data is used for training. After training the 

models are tested with the remaining data. Figure 5.14 shows set of randomly selected 

training data samples. The different colours indicate different classes. 
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Figure 5.14: A training data set 

The histograms in figure 5.15 show the areas of likelihood for samples in the different 

classes. Once again the tops of the bins were connected to form a curve. The second peak 

with the small variance in the histogram of the sharp tool, is an example of differences in 

workpiece composition and setup that affects the signal quality. From this figure it can 

lHidden Markov Model (HMM) Toolbox written by Kevin Murphy (1998). See 
http: //www.aLmit.edur murphyk/Software/hmm.html for details. 



CHAPTER 5. RESULTS 55 

be seen that the PDFs of the sharp tools and the worn tools have a large overlap area. 

This will make recognition difficult. 
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Figure 5.15: The histograms for the different classes 

5.4.2 Condition for correct classification 

2 4 

At this point it is relevant to describe what is deemed to be a correct classification. After 

the HMM are t rained they are tested . The testing entails that the HMMs are shown 

an unknown sequence. The sequences are similar to the ones shown in figure 5.13. The 

probability that each of the HMMs will produce the sequence is then calculated. The 

sequence is then classified in the class of the HMM with the highest probability. Since 

the testing data will have known labels (eg. the user has a prior knowledge of the class 

of the data). a correct classification wi ll be when the HMM associated with the correct 

class has the highest probability. 

5.4.3 The HMM topology 

As with neural networks, there is no analytical way of predicting what HMM topology wi ll 

produce the best results. An iterative procedure was followed where the whole training 

and testing procedure was repeated for an incrementally changing number of states. For 

each number of states. the training and testing was repeated five times and a mean was 

calculated. The results are shown in 5.16 . 
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Figure 5.16: The number of states vs the recognition faults 

From figure 5.16 the optimal number of states for each HMM with its associated class 

can be read off. This number will however be a trade off between complexity of the model 

and the performance. It was decided to select for: 

• the HMM on worn tool data, the number of states as, 2 

• the HMM on sharp tool data, the number of states as, 7. 

With these parameters chosen, one can show more results of the HMM classification 

such as the forward probabilities. 

5.4.4 Recognition and results 

In order get an idea of the behaviour of the recognition of the HMMs, the test was 

repeated twenty with the chosen parameters. This is shown in figure 5.17. The mean of 

the performances are indicated on this figure. This figure shows that the behaviour is 

somewhat erratic, and can be ascribed to the quality of the data. 

Figure 5.18 shows the probabilities that the HMMs will produce the testing data. 

The first half of the data is of class one and the second part is of class two. One then 

expects to see that the lines of the HMMs should cross in the middle somewhere. The 

probabilities of the HMMs are however a little more chaotic. The extreme dips in the 

data are caused by zeros in the probability density functions of the states. Since the data 
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is discretized it implies that the probability density functions are discretized as well. It 

may therefore happen that, in the PDF one of these "symbols" may have a probability 

of O. The prediction probability of the HMM then drops to -00. A bound of -130 was 

put on this. 

The outcome of this can be seen more clearly in figure 5.19. Once again in this figure, 

the data of the first class was shown in the first half and that second class in the second 

half. Correct classifications are therefore shown as red circles in the first half and the 

blue circles in the second half. On average this quantifies into: 

• 6.5% incorrect classifications of sharp tools 

• 7.5% incorrect classifications of worn tools 

5.5 The Maximum Likelihood classifier 

To create a basis for comparison, the recognition was also to be done with another 

maximum likelihood technique. The maximum likelihood was chosen for this . This type 

of classifier is easy to implement and usually very robust. The maximum likelihood 

classifier works by creating a decision boundary using the PDFs of the different classes . 

The training data in this case is used to fit Gaussian PDFs onto the data. Because of the 

smooth decision boundaries that this method creates, it is easy to predict the behaviour 
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of the system. The performance of this system is dependant on the quality of the fit of 

the Gaussian PDFs on the data classes. 

Formally the maximum likelihood classifier works as follows: if Pa( x) is the PDF of 

class a and similarly, Pb(x) is the PDF for class b. then the decision boundary will be 

where: 

Pa(X) - Pb(x) = 0 (5.2) 

Classification can then be done on any arbit rary value of x. If equation 5.2 is calculated 

for a value of x and the answer is a posit ive number, then x belongs the class a, otherwise 

class b. Figure 5.20 shows the PDFs for the two classes and the decision boundary. 
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Figure 5.20: The Gaussian PDFs fi tted onto the data and the decision boundary. 

The training of t he maximum likelihood classifier is done by simply drawing the 

histograms from a training data set with the defined classes. The decision boundary is 

then applied to a testing set. An example of this decision boundary. plotted on a t raining 

set in figure 5.21. 

The training and testing is repeated a number of times and the performance and the 

behaviour of the performance is shown in figure 5.22 . 

From this figure, it can be seen that the performance is rather stable. The average 

performance for the maximum likelihood classifier turns out to be: 

• 3. 2% incorrect classifica lions for a sharp tool 

• 27, 3% incorrect classificat ions for a worn tool 
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Figure 5.21: The training data with the decision boundary applied . 
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Figure 5.22: T he performance of the maximum likelihood classifier over a number of iterations. 
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The low classification result for worn tool shows that a Gaussian PDF is not a very 

good approximation for the likelihood function of the worn tool. The reason for the low 

result is the high amount of overlap between the two PDFs, which is clear in figure 5.20. 

In figure 5.15 it can be seen that there is an amount of overlap between the histograms. 

This overlap is a lack of separation between classes. The observation sequences that the 

HMMs use is one way to overcome this problem because temporal characteristics are 

taken into account. Comparison between the two methods of classification shows that 

the HMM classification is not as influenced by this lack of separation. 

5.6 Red uced dataset 

The performance of any classification algorithm is dependant on the quality and the 

quantity of the data that is used to train the system. It has been argued that the 

performance of the HMM recognition system will improve if there is more data and 

better quality data available for training. In order to show that this was the case, the 

data set ,vas reduced and the training and testing of the HMM classification system was 

repeated. 

For this trail the first 75% of the data was used. Again the data was divided into 

three classes of which the last and first were used in the classification tests. Again two 

thirds of the data of each class were randomly selected to train the system and the last 

third was used to test the system. 

A principal component decomposition was once again applied to ,the two classes to 

achieve separation and dimensional reduction. After the dimensional reduction, two 

histograms were drawn up of each class. This is shown is figure 5.23. It can be seen that 

less prominent separation is achieved between the two classes. 

Once again the whole classification procedure was done exhaustively to find the "op­

timal" number of states for this application. According to figure 5.24 the optimal for this 

case is: 

• 2 states for the worn tool data 

• 8 states for the sharp tool data 

It is evident that there is much less of a trend between classification performance and the 

number of states of the HMMs. Each data point on the graph represents the mean of an 

average of 5 classification iterations. 

When these figures for optimal classification are applied for investigation into the 

behaviour of the classification test results, figure 5.25 is the result. As with the previous 

result, the performance behaviour of the HMM classification is rather erratic, much more 

than with the full data set. 
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Figure 5.23: The histogram of the two classes in the reduced data set. 
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Figure 5.24: The classification performance as a function of the number of states. 
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Figure 5.25: The behaviour of the classifications , 

The average result of the classification for the reduced data set was: 

• 35% incorrect classifications for worn tools 

• 8% incorrect classifications for sharp tools 

From this it shows that with less data there is lack of separation between classes which 

hampers the performance of the HMM classifier. This also validates the claim that more 

data will enable more, and better class allocation and separation, and ultimately better 

classification 
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