
CHAPTER 3 

Theory 

This section will provide an overview of aspects of the theory of the models 

and signal processing techniques used in this dissertation . This will include an 

explanation of, and an introduction to: 

Hidden Markov models and how they are used for recognition 

Signal processing, feature extraction and selection 

3.1 Hidden Markov models 

Physical processes generally produce observable outputs that can be represented by signal 

models. These models allow us to learn a great deal about the process, without having 

the actual signal source around. There are several choices for a user when it comes to 

the types of signal model that can be used to characterise the properties of the signal 

of interest. According to Rabiner (1989), signal models can broadly be divided into two 

groups: 

• Deterministic models which exploit the known properties of the signal (e.g. the 

signal is a sine wave or a sum of exponentials). 

• Statistical models where one tries to characterise only the statistical properties of 

the process. (e.g. Gauss processes, Poisson processes, Markov processes). 

Under the statistical model it is assumed that the process can be described by a 

parametric random process for which the parameters can be estimated by means of a 

well defined formulation . 

These signals can further be divided into discrete and continuous signals. Statistical 

models can also be stationary (statistical properties are time invariant) or non-stationary 

20 



CHAPTER 3. THEORY 21 

(statistical properties vary with time). Hidden Markov models (or Markov source in older 

literature) falls into the category of non-stationary statistical models. 

3.1.1 Defining the HMM 

A hidden Markov model can be defined as finit e state machine that functions in discrete 

time. Each state in the HMM contains the definition of some stochastic process (i.e. 

a Probability Density Function (PDF) or an AR-model). At each time step the HMM 

emits an observation from one of its states. A signal/observation sequence may then be 

produced by taking a random walk (defined by a Markov process) "within" the states. 

This random walk is depe.ndant on the transition probabilities. To clarify this consider 

figure 3.1 which shows a network diagram of a 3-state HMM. The lines connecting the 

states (numbered 1 - 3) represent state transition probabilities. The state transition 

probabilities are the probabilities that the HMM, currently in state i will transit to state 

j for the next time . step. An HMM can also stay in its current state for the next time 

step. This is shown as little "loopbacks" on the figure. The HMM is therefore a doubly 

stochastic process in the fact that it is a random process for which the variables are 

determined by a random Markov process. The Hi\'IM is also in actual fact, a statistical 

signal generator although it is not used as a signal source. It is rather used as a vehicle 

for probabilistic inference. This will be explained later on in this chapter. 

The reason for its name is that, during training the state sequence cannot be observed 

from the training sequences. The state sequence is therefore "hidden", hence the name. 

The training goal is therefore to infer the state sequence and to determine the state process 

parameters from the training sequences. It should be noted here that training sequences 

are the same as the observation sequences. Once the state transition probabilities and 

the state process parameters are determined the model can be used for classification. 

The technique for classification used in this study is called "scoring" and is described on 

page 13. 

The emissions from the states can be of a continuous or a discrete nature. Discrete 

emissions are usually symbols while continuous emissions may be a real valued numbers 

within a certain range. 

Definitions 

The HMM used for this project will have discrete emissions and discrete states. This is 

a very specific subclass of HMMs and the interested reader should consult Elliott et al. 

(1995) for a more advanced and general description of HMMs 1 2. The notation used 

lSome additional theory on HMMs can be found in appendix A 
2These definitions are from Narada Warakagoda's website at http://jedlik.phy.bme.hu/ -gerjanos/H­

MM/node3.htm. 
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Figure 3.1: A directed state-transition graph of an ergodic 3-state HMM 
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throughout this text will be that of Rabiner (1989)3 

An HMM is completely defined by the following parameters: 

• State transition matrix, A. This defines the probability that the model, currently 

in state i will transit to state j for the next time step. This will be written as aij' 

The reader is again referred to figure 3.1. A will thus always be square and have 

the form: 

(

all a12 ... ) 

A = a21 a22 .. . 

· . · . · . 

(3.1) 

The number of states that the model can then assume, N is equal to the number 

of columns in A. A is also subjected to the normal stochastic constraints namely: 

a· > 0 tJ - with 0 :S i,j :S N 

and 
N 

La'ij = 1 for all i 
j=l 

• Probability distribution for each state. This probability distribution will be denoted 

with B and is defined as follows: bik is the probability that the model, currently 

at state i will emit the k-th symbol in the defined alphabet of discrete emissions. 

As was previously mentioned the HMM will have discrete emissions defined within 

an alphabet with total number of M symbols. For a HMM with i states and M 

symbols, B will then have the form : 

(3.2) 

As with A, B is also subjected to the normal stochastic constraints: 

with 0 :S i, k :S M 

and 

for all i 

• Initial state probability distribution named 7r. 7f is the probability distribution that 

describes the likelihood that a HMM will start in state i. The normal stochastic 

constraints apply. 

3This is also a very good starting place for readers who are new to the subject of HMMs. 
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Once A, Band 71" are defined, one has a complete HMM. To shorten the notation a 

specific model will be denoted as A. A = f(A, B, 71") ,viz. Given A, the HMM can be used 

to generate a sequence of observations, 

o is a vector that contains the emitted observations from time, t = . 1 to time t = T , with 

T being the length of the sequence in discrete-time. When an Ht-.·1M is to be trained, the 

signals need to be segmented into these observation sequences. 

3.1.2 The three problems of HMMs 

Once one has defined a HMM, A, there are certain things that one usually wants to be 

able to do with it. In HMM literature one will read of the three problems of HMMs, 

which describe what the HMM will be used for. These are discussed in Rabiner (1989) 

in the form of 3 problems. These are: 

1. Given a HMM model , A and an observation sequence, 0 = {Ol' 02, 03, .. . , On}, how 

is the probability, P(OIA) efficiently calculated? (P(OIA) is the probability that 

the HMM, A produces the emission sequence, 0.) 

2. Given a HMM model, A and an observation sequence, 0 = {Ol ' 02, 03 ,·· ·, On}, 

how is the state sequence, that in some way optimally describes the observation 

sequence, chosen? 

3. How can the model parameters A ,B and 7r be chosen so as to maximise P(O IA)? 

The solution to problem 1 is used in this dissertation to score HMMs. Consider the 

scenario where one has different competing models that describe an observation set. The 

solution to problem 1 can then be used to select the model with the highest probability 

of producing the observation set in question. 

The solution to problem 2, called the Viterbi algorithm is not used in this dissertation 

and thus falls outside of the scope of discussion. The reader is referred to Rabiner (1989) 

and Bengio (1999) for an in-depth description of this procedure. 

Problem 3 does not have a known analytical solution to choose the model that max­

imises P(OIA). This makes it the most difficult problem of the HMMs. 

The Forward Procedure 

It was mentioned previously that classification can be done with HMMs with a technique 

called scoring. This is a procedure where the probability is calculated that a given 

HMM, say Al, will emit a certain sequence. In order to do this one needs to calculate 
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the emission probabilities for the given sequence, for each possible state sequence. This 

quickly becomes intractable. Fortunately there exists an efficient recursive algorithm to 

do this. This algorithm is called the forward procedure and is discussed in Rabiner (1989). 

The result of the Forward procedure is called the forward probability and is denoted with 

an Q. 

For an HMM with N states and a sequence length of T the procedure works as follows: 

1. Initialisation: 

(3.3) 

2. Induction: 

N 

at+l(j) ~ ["L at (i)aij] bj(Ot+l), 1:S t:S T -1 and 1:S j:S N (3.4) 
,=1 

3. Termination: 

N 

P(OI>') = "L ar(i) (3.5) 
i=l 

There is no analytical solution to show what number of states will produce the best 

HMM for a specific application. It can however be said that a model with more states 

may perform better. This is because the amount of states in the HMM is directly related 

to its ability to model signal non-stationarities. More states unfortunately require more 

training data which may be difficult to come by. 

Another problem encountered with the calculation of probabilities using HMMs is that 

of underflow. The numbers tend to be extremely small, well under machine precision 

for most computers. For this reason the probabilities are scaled and use is made of 

logarithmic probabilities. As the name implies, the logarithm of the probabilities are 

calculated and used in the algorithms. The properties of the probabilities are now slightly 

different . Whereas in the normal case where probabilities lie between 0 and 1, logarithmic 

probabilities lie between - 00 and o. With HMMs it is usually not strange to work with 

probabilities in the range of -100, which is a very small number indeed! 

Training the hidden Markov model 

This is the most difficult problem of the HMM. According to Rabiner (1989) there is no 

known way to analytically solve for the model parameters that maximises the probabil­

ity of the observation sequence. The most common technique usually employed is the 

Baum-Welch method which, locally maximises>. for P(OI>'). This method is equivalent 

the Expectation-Modification (EM) algorithm, which is a maximum likelihood approach. 
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There also exists some gradient based methods but usually the EM algorithm is preferred 

for its fast convergence properties. The EM technique also guaranties a finite improve­

ment on each iteration. Conditions can be formulated so that gradient based method can 

be applied to the HMM and this is presented by Rabiner (1989). Kwon and Kim (1999) 

have devised a method that uses the EM algorithm together with a genetic algorithm to 

train the HMM and to a select a state topology. Good results are achieved but training 

is slow. 

As with neural networks, HMMs also have an architecture that needs to decided on, 

ego the number of states and the state topology. Faced with this problem Bicego et al. 

(2003) presented a strategy to sequentially prune the number of states in an HMM. 

It is important to know what is being done when one trains an HMM. 'Ifaining implies 

that the parameters that define the HMM are updated. As mentioned previously these 

parameters are: 

• the state transition matrix, A 

• the emission probability density function for each state B 

• the initial state distribution, 7f 

To do this the a-parameter is once again used. Three other similar variables are also 

introduced in order to make training possible. It is because of these three other quantities 

that the training algorithm will not be shown here. A thorough description can be found 

in Rabiner (1989). Alternatively there is also a shorter version in appendix A. 

3.2 Signal processing 

In order for any intelligent system to be applied to the data, the data first needed to 

be processed into a different form that would be usable by the system. There are some 

similarities between speech data and vibration data and the signals processing techniques 

used on them. Bunks et al. (2000) compares speech data to acceleration data from a 

helicopter gearbox. This can unfortunately not be used directly because machining data 

is fundamentally different from acceleration data form gearboxes. An altered version will 

be presented. 

Data from machining processes and speech ar~ PQth quasi-stationary. The speech 

data however stays stationary over intervals of appro:x.imately 10ms, according to Bunks 

et al. (2000). Cutting processes may be of one of two types. Interrupted cutting, in which 

the cutting tool is in contact with the workpiece for only a fraction of each revolution, 

produce signals which are stationary for intervals of milliseconds. Continuous cutting, 

where the tool is in contact with the workpiece for the whole period of each revolution, 

on the other hand produce cutting signals which are stationary for longer periods of time . 

. " ~ ...... -. . - . - . - --:-- .' 
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Another difference is that speech data is recorded in relatively "quiet" environments. 

Vibration data from working environments may, in the very worst cases, have a signal to 

noise ratio, orders of magnitude lower than that of speech data. 

Another is difficulty is that changes in tool condition produce only slight changes in 

the response of the tool holder which are recorded. This necessitates the use of signal 

features which compress the information content of the signal. This is also why, in this 

study, features for NN studies will be investigated for the use of HMM applications. 

Therefore owing to the different nature of the data from speech signals, the raw signal 

was not used. The data had to undergo a number of preprocessing steps. These were: 

• Segmentation of the raw signals into intervals for which the features are calculated. 

• Detrending, which removes the most dominant linear trend from the data. This is 

usually done for FFT analysis. After this the observation sequences have a mean 

of zero. 

• Feature extraction whereby the salient features of the signals are extracted. 

• Feature Selection, is applied so that only the features with the most information 

with respect to tool wear is used. 

• Feature space reduction which condenses the selected features into the final product 

which was a I-dimensional feature vector. 

• Discretisation and Construction of observation sequences. The signals are firstly 

discretized into a number of levels then consecutive samples from the feature space 

are constructed into rows of observation sequences of a specific length. 

3.2.1 Feature extraction 

In order to learn most about tool wear, certain features are extracted from the data. Each 

feature has a characteristic behaviour that can be followed over time to reveal information 

about the health of the tool. It is in this way that features will be used in this study. 

The extraction of features also compresses the data into a form, which can be handled 

with much more ease and efficiency. This is important for real-time implementation, 

which is the longterm goal for any project that hopes to see an industrial application. 

Two types of features were investigated, time domain and frequency domain. These 

two will be discussed in the sections. 

Features in the time domain 

Features in time are usually figures that one would normally find in most statistical anal­

yses. As a tool wears, in the case of flank wear, the wear land increases. The interaction 
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surface of the workpiece and tool is then changed. This also alters the interaction of 

frictional forces between the two elements in the syst~m . The result of this are changes 

in the .dynamic characteristics of the system. 

The features of the time domain are usually of a statistical nature. These features are 

also very fast to calculate which makes them very attractive for on-line applications. The 

interested reader may also review the implications of some of the statistical parameters 

used in a text such as Miller and Miller (1999) . 

The features that were investigated were: 

• Variance, which is the second statistical moment of the data. Because of detrending 

the mean of the data is 0 which makes the variance of the .data equal to the square 

of the RMS of the data. RMS is an indicator of energy content of a signal. As tool 

wear progresses, more energy is needed to drag the tool insert through the work­

piece, it follows to reason that the RMS (or variance in this case) should increase. 

The variance is calculated using: 

linT (12 = - x(t)2dt 
T 0 

(3.6) 

In equation 3.6 (1 is the standard deviation. The variance is by definition the square 

of this. T is the time interval for which the integral is calculated. x(t) is the signal 

for which the variance is calculated. 

• Skewness is the third statistical moment and describes the distribution of the data 

in terms of symmetry or lack thereof, hence the term skewness . The skewness is 

calculated using: 

(3.7) 

• Kurtosis is the fourth statistical moment and is very popular in bearing condition 

monitoring. The kurtosis is a measure of the relative peakedness of the distribu­

tion, this is similar to the variance. The kurtosis is also a measure of how close the 

distribution is to the Gaussian distribution. It thus carries valuable information for 

condition monitoring. The kurtosis is calculated using: 

(3.8) 

• Crest factor is another feature which is widely used in bearing condition monitoring 

and is a measure of the impulsiveness of a vibration signal. A truly random signal 

has a crest factor generally less than 3. The crest factor is calculated using: 

CF = Xmax (3 .9) 
X rms 
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• Entropy is a measure of the uncertainty or disorder of of a given signal. One can 

intuitively see that a signal with a higher energy content, as in the case of a worn 

tool, will display more disorder. The entropy measure used was Shannon entropy 

which is often used in wavelet analysis. Shannon entropy is calculated using: 

N-l 

E = - L x?log(x?) (3.10) 
i=l 

In 3.10, Xi is the value of X at time t = i . . N is the number samples the feature is 

calculated for. This is the same as the time interval for the statistical features . 

• Dynamism is a measure of the rate of change of a quantity. This feature also cap­

tures dynamic behaviour of a signal in a similar way to the crest factor. Dynamism 

was used for speech and music segmentation by Ajmera et al. (2003). Dynamism is 

calculated with: 

(3.11) 

Features in the frequency domain 

Of the more salient features are usually those in the frequency domain. These features 

are directly connected to changes in the dynamic behaviour These are calculated from 

the one-sided power spectral density (PSD) using: 

J
ih 

W = Sx(J)df 
II 

(3.12) 

In eq. 3.12 Sx is the one-sided PSD function and f1 and fh are the frequency band for 

which this number is calculated. \II can increase, or decrease with increasing tool wear. 

The case where W increases is where the cutting process changes from smooth cutting to 

a breakaway process. This causes an increase in vibration amplitudes. The case where W 

decreases is where the dynamics of the process is altered so much by the change in the 

contact interaction caused by tool wear, that a shift in the peak occurs. vVhen the peak 

starts to move out of the frequency band, the spectral energy decreases. 

Hakansson et al. (2001) showed that the frequency bands that are most likely to 

show an increase, are those around the natural frequencies of the tool holder. Other 

characteristics of the cutting process, such as the chip forming frequency may also be 

monitored for signs of tool wear. On the whole there is not a method that can be used to 

predict which frequency bands are most likely to be useful in TCM. Allen and Shi (2001) 

suggested monitoring two frequency bands. A lower and a higher. The higher band then 

captures the natural frequencies of the system. Scheffer (2003), Lim (1993) and Jiang 

et al . (1987) have each derived their own frequency bands which were useful for their 
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work. These band are also process specific and also dependant on cutting parameters. 

In this study frequency bands are also derived. This was done by hand and was 

therefore more of an art than a science. The approach that was used to find these 

frequency bands was firstly a summing algorithm. This algorithm summed the PSD 

functions of the tool during its lifetime. Peaks on this summed PSD show the regions 

where the most energy in the system is at. The search for relevant peaks were then 

focused on these areas. Two types of peaks in the energy spectrum my be found in these 

high energy regions: 

1. peaks that are insensitive to tool wear and subsequently do not significantly increase 

or decrease during the life of the tool. 

2. peaks that grow with tool wear. 

It is because of this that the selection of frequency bands has not yet been automated. 

3.2.2 Feature selection 

Having extracted a number of features from the data, one usually wishes to reduce the 

number of features. This is because not all the features are sensitive to tool wear. To 

do this Scheffer (2001) proposed that the correlation coefficient be used for this selection 

process. 

It is assumed that the progression of tool wear over time can be approximated by a 

straight line with a arbitrary gradient. This was chosen to be 40°. The correlation coef­

ficient for each feature and the theoretical tool wear is then calculated. The correlation 

coefficient is a measure that describes to what degree certain values of one signal occurs 

with certain other values of another signal. The correlation coefficient is calculated using: 

n 

2:)Xi - X)(Yi - y) 

corr(X, Y) = [ n i=l n ] 1/2 

~(Xi - X)2 ~(Yi _ y)2 
(3 .13) 

X and Yare the two signals which are to be compared. x and y denote the mean 

values of the variables. 

A value close to 1 is indicative that high values of one signal occurs with high values of 

the other signal. In the case where the correlation coefficient is close to -1, large values 

of one signal coincides with small values of the other signal. 

Once the correlation coefficients have been calculated the highest ones can be chosen 

as the ones that carry the most information on tool wear. Correlation coefficients in the 

negative range are also very valuable because it guaranties the independence of features 

on each other. A combination of both was thus used for the recognition system. 
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3.2.3 Feature space reduction 

From the theory of HMMs it has been implied that this technique uses I-dimensional 

arrays for training and recognition. The theory of HMMs may be extended to use mul­

tidimensional arrays, but it was decided to use an existing HMM toolbox, feature space 

reduction is necessitated. 

Dimensional reduction is a common technique in pattern recognition . These tech­

niques reduce the dimensionality of the data for easier handling. According to Fugate 

et al. (2000) it is futile to expect good estimates from the tails of multidimensional data 

unless there is a very large amount of independent data available. This is what is re­

ferred to as "the curse of dimensionality.". The curse of dimensionality is simply that 

the amount of data required for training increases exponentially if the dimensionality is 

increased. 

A simple and well known method namely, principal component decomposition was 

applied to the data. All the data is then projected onto the first principal component to 

reduce the dimensionality from N dimensions to 1 dimension. This was chosen conve­

niently in order to use the HMM toolbox directly on the application. If needed another 

set of HMM could be created. These HMM would then use the some of the other princi­

pal components. The output of the HMM committees could then be combined to form a 

more robust recognition. This study will use only one principal component to establish 

the technique. 

The principal component analysis (peA) is a standard function in the statistics tool­

box for MATLAB that uses a singular value decomposition to calculate the principal 

components of a data matrix. The principal components can also be calculated as the 

eigenvectors of the covariance matrix of the feature space. The eigenvector with the 

highest corresponding eigenvalue will then be the unit vector of the first principal com­

ponent. When the feature space is projected onto this vector it becomes the first principal 

component. The eigenvalues are then a measure of the total variance explained by each 

principal component . 

3.2.4 Discretisation and construction 

To accommodate the DHMM the dimensionally reduced feature is discretized into a 

number of levels. This is done with respect to the maximum and minimum values of 

the samples used for training. All the values that fall in-between these two values are 

rounded to the "nearest" level. These levels are similar to the bins in a histogram. 

The observation sequences are constructed from the discretized feature vector. This is 

simply done by segmenting the feature vector into lengths of N consecutive samples. This 

number N is a parameter that determines how much temporal information is contained 

in the sequence. The strength of HMM recognition lie in these observation sequences. 


