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The classification of the condition of a machining tool has been the focus of research 

for more than a decade. Research is currently aimed at online methods that can process 

multiple features from more than one sensor signal. The most popular technique so far 

has been neural networks . 

A new technique, very popular in speech recognition namely, hidden Markov models 

has recently been proposed for studies in classification of faults in mechanical systems. 

Hidden Markov models have excellent ability to capture spatial as well as temporal char­

acteristics of signals , which is harder to do with neural networks. 

This study applies the techniques of hidden Markov models to turning operations from 

strain signals recorded on a tool holder during cutting. Two classes of tool condition, 

"sharp" and "worn" are appointed in the data. A hidden Markov model is trained for 

each class and classification is done. 

From unseen data the "sharp"-model achieved a 95.5% correct classification and the 

"worn" -model achieved a 94.5% correct classification. This is compared to a maximum 

likelihood classifier that achieved a "sharp" classification of 96.8% correct and a "worn" 

classification of 72.7% correct . 

Dimensional reduction was done on the feature space extracted from the data in order 

that it may be used by the hidden Markov model. This technique shows how multiple 

features from more than one sensor signal can be used by a hidden Markov model for 

robust recognition. 

KEYWORDS: dimensional reduction, hidden Markov model, HMM, principal compo­

nent analysis, peA, strain signals, turning, tool wear, tool condition monitoring. 
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Klassifikasie van die werkstoestand van snygereedskap in die vervaardiningsindustrie 

is al vir meer as 'n dekade die fokus van navorsing. Huidige navorsing konsentreer op 

prosesse wat die seineienskappe van meervoudige sensors aanlyn kan verwerk. Kunsmatige 

neurale netwerke is op die oomblik die mees populere tegniek wat hiervoor gebruik word. 

Baie onlangs is 'n tegniek wat algemeen vir outomatiese spraakherkenning gebruik 

word genaamd, verskuilde Markov modelle, voorgestel vir klassifikasie van foute in meg­

naniese stelsels. Verskuilde Markov modelle se vermoe om die temp orale en ruimtelike 

kenmerke van seine vas te vat maak hulle baie geskik vir die taak. 

In hierdie studie word tegnieke van verskuilde Markov modelle toegepas op vervorm­

ingsseine vanaf 'n beitelhouer tydens 'n snyproses op 'n draaibank. Twee toestande 

naamlik, "skerp" en "stomp" is aangewys vanuit die data. 'n Verskuilde Markov model 

is opgelei vir elk van die twee toestande . 

Die modelle is getoets met data wat nie vir die opleiding gebruik is nie. Die "skerp" 

model het 'n korrekte klassifikasie van 95 .5% behaal terwyl die "stomp" model 'n korrekte 

klassifikasie van 94.5% behaal het. Hierdie resultate is vergelyk met die van 'n maksimum 

waarskynlikheid klassifiseerder. Die tegniek het 'n korrekte klassifikasie van 96.8% behaal 

op "skerp" beitels en 72.7% op "stomp" beitels. 

'n Tegniek van dimensionele reduksie is gebruik om die dimensionaliteit van die 

seineienskappe te verminder, sodat dit deur die verskuilde Markov model gebruik kon 

word. Hierdie tegniek toon aan hoe seineienskappe van verskillende sensors deur 'n ver­

skuilde Markov model gebruik kan word vir 'n kragtige klassifikasietegniek. 
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