

HIDDEN MARKOV MODELS FOR TOOL WEAR MONITORING IN TURNING OPERATIONS

Gideon van den Berg

Hidden Markov models for tool wear monitoring in turning operations

by

Gideon van den Berg

A dissertation submitted in partial fulfillment of the requirements for the degree

Master of Engineering

in the

Department of Mechanical and Aeronautical Engineering Faculty of Engineering, the Built Environment and Information Technology

> University of Pretoria Pretoria

> > July 2004

Synopsis

Author	Gideon van den Berg
Supervisor	Prof P.S. Heyns
Department	Mechanical and Aeronautical Engineering
Degree	M.Eng

The classification of the condition of a machining tool has been the focus of research for more than a decade. Research is currently aimed at online methods that can process multiple features from more than one sensor signal. The most popular technique so far has been neural networks.

A new technique, very popular in speech recognition namely, hidden Markov models has recently been proposed for studies in classification of faults in mechanical systems. Hidden Markov models have excellent ability to capture spatial as well as temporal characteristics of signals, which is harder to do with neural networks.

This study applies the techniques of hidden Markov models to turning operations from strain signals recorded on a tool holder during cutting. Two classes of tool condition, "sharp" and "worn" are appointed in the data. A hidden Markov model is trained for each class and classification is done.

From unseen data the "sharp"-model achieved a 95.5% correct classification and the "worn"-model achieved a 94.5% correct classification. This is compared to a maximum likelihood classifier that achieved a "sharp" classification of 96.8% correct and a "worn" classification of 72.7% correct.

Dimensional reduction was done on the feature space extracted from the data in order that it may be used by the hidden Markov model. This technique shows how multiple features from more than one sensor signal can be used by a hidden Markov model for robust recognition.

KEYWORDS: dimensional reduction, hidden Markov model, HMM, principal component analysis, PCA, strain signals, turning, tool wear, tool condition monitoring.

Sinopsis

Outeur	Gideon van den Berg
Promotor	Prof P.S. Heyns
Departement	Meganiese en Lugvaartkundige Ingenieurswese
Graad	M.Ing

Klassifikasie van die werkstoestand van snygereedskap in die vervaardiningsindustrie is al vir meer as 'n dekade die fokus van navorsing. Huidige navorsing konsentreer op prosesse wat die seineienskappe van meervoudige sensors aanlyn kan verwerk. Kunsmatige neurale netwerke is op die oomblik die mees populêre tegniek wat hiervoor gebruik word.

Baie onlangs is 'n tegniek wat algemeen vir outomatiese spraakherkenning gebruik word genaamd, verskuilde Markov modelle, voorgestel vir klassifikasie van foute in megnaniese stelsels. Verskuilde Markov modelle se vermoë om die temporale en ruimtelike kenmerke van seine vas te vat maak hulle baie geskik vir die taak.

In hierdie studie word tegnieke van verskuilde Markov modelle toegepas op vervormingsseine vanaf 'n beitelhouer tydens 'n snyproses op 'n draaibank. Twee toestande naamlik, "skerp" en "stomp" is aangewys vanuit die data. 'n Verskuilde Markov model is opgelei vir elk van die twee toestande.

Die modelle is getoets met data wat nie vir die opleiding gebruik is nie. Die "skerp" model het 'n korrekte klassifikasie van 95.5% behaal terwyl die "stomp" model 'n korrekte klassifikasie van 94.5% behaal het. Hierdie resultate is vergelyk met die van 'n maksimum waarskynlikheid klassifiseerder. Dié tegniek het 'n korrekte klassifikasie van 96.8% behaal op "skerp" beitels en 72.7% op "stomp" beitels.

'n Tegniek van dimensionele reduksie is gebruik om die dimensionaliteit van die seineienskappe te verminder, sodat dit deur die verskuilde Markov model gebruik kon word. Hierdie tegniek toon aan hoe seineienskappe van verskillende sensors deur 'n verskuilde Markov model gebruik kan word vir 'n kragtige klassifikasietegniek.

SLEUTELWOORDE: beitelslytasie, dimensionele reduksie, draaiproses, PCA, toestandmonitering, verskuilde Markov model, vervormingsseine, HMM

Acknowledgements

I would like to thank the following people:

- Professor Stephan Heyns for his belief in me and the lively guidance for the project.
- Dr Cornie Scheffer for the solid foundation he left for the project as well as the suggestion to apply hidden Markov models.
- Frans Windell, Jan Brand and At du Preez for technical expertise with strain gauges, preparation of the workpieces, etc.
- AIDC for financial support of this project.

Gratitude toward my friends, especially: Reghard, Dewald, Servaas, Flubber, Mariechen and Dirk, for forming and inspiring me. And Carl for the help with $IAT_FX 2_{\varepsilon}$.

Also I would like to thank my parents for love and support and an almost blind belief in me.

Finally in humble submission, utmost gratitude to my Saviour and Lord, Jesus Christ for the talents and abilities with which He has graced me. James 1:17 (Afrikaans version)

"Elke goeie gawe en elke volmaakte geskenk kom van Bo. Dit kom van die Vader wat die hemelligte geskep het, maar wat self nie soos hulle verander of verduister nie."

CONTENTS

	Syno	opsis .		
	Sino	psis .		
	Ack	nowledg	gements	
	List	of sym	bols	
1	Intr	oducti	on 1	
	1.1	Backg	round	
		1.1.1	Sensor selection and deployment	
		1.1.2	Generation of features sensitive to tool wear	
		1.1.3	Classification of signals to establish tool wear	
	1.2	Compl	lexity	
	1.3	Some	trends in tool condition monitoring	
	1.4	Docun	nent overview	
2	Lite		Study 9	
	2.1	A sens	or integrated tool holder 9	
	2.2	Hidden	n Markov models and condition monitoring 12	
		2.2.1	Scoring of the forward probabilities	
		2.2.2	Relevant literature	
	2.3	Scope	of the research	
		2.3.1	Summary of research goal	
		2.3.2	Measuring of forces	
		2.3.3	More on features for HMMs 18	
3	The	eory	20	
	3.1	Hidder	n Markov models	
			Defining the HMM	

v

		3.1.2	The three problems of HMMs	24
	3.2	Signal	processing	26
		3.2.1	Feature extraction	27
		3.2.2	Feature selection	30
		3.2.3	Feature space reduction	31
		3.2.4	Discretisation and construction	31
4	Exp	erime	ntal setup	32
	4.1		-	32
	4.2			32
		4.2.1		34
		4.2.2		38
		4.2.3		38
		4.2.4	Machining material	39
-	Ð			
5	Res			41
	5.1			41
	5.2		1 0	42
		5.2.1	0	42
		5.2.2		43
	5 0	5.2.3		45
	5.3			46
	E 4	5.3.1	*	48
	5.4	5.4.1	0	54 54
		5.4.1 5.4.2		55
		5.4.2 5.4.3		55
		5.4.5		55 56
	5.5	0.4.4 The M		57
	5.6			61
	5.0	neuuo		01
6	Con	clusior	a (64
	6.1	Review	v of results	64
	6.2	Sugges	stions on Improvements	65
A	A -1 -1	1:4: 1		2 17
A			5	67 67
	A.1		1	67
	A.2	Irainii	ng the hidden Markov model	68
в	Trai	ning o	f the HMMs	70

vi

\mathbf{C}	C Measurement of tool wear	
	C.1 Nose wear	72
D	The setup	76

LIST OF FIGURES

1.1	A taxonomy of continuous tool condition monitoring systems	3
1.2	A generic TCM system setup	6
2.1	The tool holder by Santochi et al. (1996) uses strain gauges to measure	
	cutting force.	10
2.2	The smart tool produced by Min et al. (2002). \ldots \ldots \ldots \ldots	11
2.3	This is almost the generic setup for sensor/actuator tool holders. This is	
	also the setup that Lägo et al. (2002), used	11
2.4	Hidden Markov model based fault diagnosis system based on scoring	14
3.1	A directed state-transition graph of an ergodic 3-state HMM $\ .$	22
4.1	The approximate location of the strain gauges	33
4.2	A schematic of the data acquisition program	35
4.3	The schematic overview of the data acquisition system used for the experiment	s. 36
4.4	A typical shaving from a cut.	37
4.5	A histogram for the depth of cut	37
4.6	The boring bar was instrumented with strain gauges on one side	38
4.7	The nose of an insert under a microscope. Nose wear is shown on this photo.	39
4.8	The nose of a new tool insert.	40
5.1	A typical cutting signal from the feed direction.	42
5.2	The final signal after segmentation and detrending.	44
5.3	A magnified region of figure 5.2	44
5.4	A scatter plot of two signal to show the increase in variance. \ldots .	45
5.5	A noise signal from the system. Superimposed on the signal is a normalised	
	histogram	46
5.6	The time domain features extracted from the processed signals	47

5.7	The frequency domain features extracted from the processed signals	47
5.8	The PSDs of the cutting signals during the life of a tool.	48
5.9	The magnified region and the summed PSDs.	49
5.10	Another view of the progression of the PSD peaks.	49
5.11	The selection of the features using the correlation coefficient.	50
5.12	The final combined feature from which the training sequences for the HMM	
	will be extracted.	53
5.13	The training sequences after discretisation.	53
5.14	A training data set	54
5.15	The histograms for the different classes	55
5.16	The number of states vs the recognition faults	56
5.17	The behaviour of the classification performance	57
5.18	The prediction probabilities of the HMMs $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	58
5.19	The classification results	58
5.20	The Gaussian PDFs fitted onto the data and the decision boundary	59
5.21	The training data with the decision boundary applied. \ldots	60
5.22	The performance of the maximum likelihood classifier over a number of	
	iterations.	60.
5.23	The histogram of the two classes in the reduced data set	62
5.24	The classification performance as a function of the number of states	62
5.25	The behaviour of the classifications	63
B.1	Some convergence histories of the model training	71
C.1	The photo angle for figures C.2 and C.3.	73
C.2	Nose of a sharp tool	73
C.3	Nose of a tool where wear has started	74
C.4	A ruler calibrated in millimetres.	75
D.1	The cutting tool in action.	76
D.2	The housing for the strain gauges and filters	77
D.3	The PC with the outside connectors shown in the upper right half	78

LIST OF TABLES

1.1	Requirements of a TCMS	4
1.2	Common features for TCM	4
	The machining parameters for the experiment	
4.2	The mechanical properties of EN 19 steel.	40
5.1	The sorted correlation coefficients	51
5.2	The selected features	51
5.3	The principal components and the amount of the total variance the represent.	52

List of symbols

Acronyms

TCM	Tool Condition Monitoring
HMM	Hidden Markov Model
AR	Auto Regressive
ARMA	Auto Regressive Moving Average
RMS	Root Mean Square
NN	Neural Network
KBES	Knowledge Based Expert System
ANNBFIS	Artificial Neural Network Based Fuzzy Inference System
ANN	Artificial Neural Network
RF	Radio Frequency
SOM	Self-Organising Map
BMU	Best Matching Unit
DWT	Digital Wavelet Transform
SSE	Sum of Squares of Error
\mathbf{EM}	Expectation Modification
PDF	Probability Density Function
AI	Artificial Intelligence
DHMM	Discrete hidden Markov model

Mathematical symbols

- A State transition probability matrix
- a_{ij} State transition probability
- B State probability distribution matrix
- b_{ik} i th state k th symbol emission probability
- π Initial state distribution vector
- λ HMM model
- O Observation sequence vector
- o_i Observation
- α forward probability
- T Time vector
- t_i Time instant
- N Integer denoting number
- P() Probability
- σ Standard deviation
- x sample
- S Skewness (Third statistical moment)
- K Kurtosis (Fourth statistical moment)
- CF Crest factor
- E Shannon Entropy
- D Dynamism
- Ψ Energy contained in a frequency band
- fl Lower frequency band
- fh Higher frequency band
- S_x One sided power spectral density
- M Dimensionally reduced feature set
- P Transformation vector
- f Frequency
- f_s Sampling frequency