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Summary

Interaction of various components in rotating machinery like gearboxes may generate
excitation forces at various frequencies. These frequencies may sometimes overlap with
the frequencies of the forces generated by other components in the system.
Conventional vibration spectrum analysis does not attenuate noise and spectral
frequency band overlapping, which in many applications masks the changes in the

structural response caused by the deterioration of certain components in the machine.

This problem is overcome by the use of time domain averaging (synchronous
averaging). In time domain averaging, the vibration signal is sampled at a frequency
that is synchronised with the rotation of the gear of interest and the samples obtained for
each singular position of the gear are ensemble-averaged. When sufficient averages are
taken, all the vibration from the gearbox, which is asynchronous with the vibration of
the gear, is attenuated. The resulting time synchronously averaged signal obtained
through this process indicates the vibration produced during one rotation of the
monitored gear. This direct time domain averaging process essentially acts as a
broadband noise synchronous filter, which filters out the frequency content that is

asynchronous with the vibration of the gear of interest provided that enough averages




Summary

are taken. The time domain averaging procedure requires an enormous amount of
vibration data to execute, making it very difficult to develop online gearbox condition
monitoring systems that make use of time domain averaging to enhance their diagnostic

capabilities since data acquisition and analysis cannot be done simultaneously.

The objective of this research was to develop a more efficient way for calculating the
time domain average of a gear vibration signal. A study of Artificial Neural Networks
(ANNSs) and Support Vector Machines (SVMs) was conducted to assess their suitability
for use in time domain averaging. Two time domain averaging models that use ANNs
and SVMs were developed. Model 1 uses a single feedforward network configuration to
map the input which are rotation synchronised gear vibration signals to the output which
is the time domain average of the gear vibration signal, using only a section of the input
space. Model 2 operates in two stages. In the first stage, it uses a feedforward network
to predict the instantaneous time domain average of the gear vibration after 10 inputs
(10 rotation synchronised gear vibration signals) to predict the instantaneous average of
the gear rotation. The outputs from the first stage are used as inputs to the second stage,
where a second feedforward network is used to predict the time domain average of the

entire vibration signal.

When ANNs and SVMs were implemented, the results indicated that the amount of gear
vibration data that is required to calculate the time domain average using Model 1 can
be reduced by 75 percent and the amount of gear vibration data that needs to be stored

in the data acquisition system when Model 2 is used can be reduced by 83 percent.

Keywords:  Artificial Neural Networks, Time Domain Averaging, Synchronous
average, Multi-layer, Perceptron, Radial Basis Function, Support Vector Machines,

Gearbox and Vibration
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Chapter 1

Introduction and literature survey

1.1 Introduction

Gears and gearbox systems are vital components in many industrial mechanical
applications. A gearbox failure in a large mechanical system could easily lead to
production losses. Early detection of incipient failure in gearboxes is, therefore, of great
practical and commercial importance. It permits the plant operators and maintenance
personnel to schedule shutdown and repair of the gearbox instead of unscheduled

catastrophic failure.

Different signal processing techniques have been employed by operators and engineers
to gather information about the condition of gearboxes to schedule maintenance
activities. These techniques include oil debris analysis, vibration analysis, visual
inspection and various non-destructive testing techniques. In recent years, neural
networks have been used with much success in pattern recognition and fault
identification (Bishop, 1995; Zhong et al., 2003; Fidéncio et al., 2003).
Vibration based analysis has been used with success in detection of damage in
structures and rotating machinery. Vibration-monitoring techniques are based on the
assumption that changes in the measured structural response can be linked to the
deterioration in the condition of the structure (McFadden, 1987). Recent advances in
integrated circuit technology and digital signal processing has allowed for real time
analysis of vibration response, in both the frequency and the time domain to be
performed. If permanent transducers can be mounted on the structures, online condition
monitoring of the vibrating structure could be possible, resulting in a much safer

working environment.

This is however not necessarily true when monitoring incipient failure on rotating
machinery such as gearboxes, especially when they are operating under varying load

conditions. Varying load conditions amplitude modulate the measured vibration signal

1 Chapter 1
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and cause the rotation speed of the system to change. The change in system speed
results in frequency modulation of the gear mesh frequency (Stander et al., 2001;
Stander et al., 20027 Stander et al., 2002").

When using vibration signatures for condition monitoring of gearboxes it is difficult to
extract meaningful information from raw time domain vibration data. This is because
the characteristic frequencies generated by newly developed faults in gearboxes can be
very low in amplitude and are therefore often overshadowed, or masked, by other
vibration components such as random noise and interference from additional vibration
sources in the machine or neighbouring machines. To overcome this problem the
vibration signal is sampled at a frequency that is synchronised exactly with the rotation
of the gear of interest and the samples obtained for each singular position of the gear are
then ensemble-averaged. When sufficient averages are taken, all the vibration from the
gearbox, which is asynchronous with the vibration of the gear, cancels out, leaving only
the vibration produced during one rotation of the gear of interest. Local variations in the
meshing pattern and modulation in the gear of interest are therefore made visible
(McFadden, 1987; McFadden et al., 1985; Stewart, 1977). This procedure is called time

domain averaging or synchronous averaging.

The resulting time synchronously averaged signal obtained through the time domain
averaging process indicates the vibration produced during one rotation of the monitored
gear. The synchronous vibration signal can be related to the meshing stiffness of the
gear being monitored. Variations in the meshing stiffness of the gear indicate wear and
or incipient local defects that are related to a variation in gear teeth stiffness. Time
domain averaging is an extremely effective technique, but it requires an enormous
amount of vibration data to calculate. This problem makes time domain averaging less
attractive on online gearbox condition monitoring system. The challenge remains to
develop a synchronous time domain averaging filter that reduces the amount of
vibration data that is required for direct synchronous time domain averaging of gear
vibration data. A reduction in the amount of input gear vibration data required for
synchronous time domain averaging of gear vibration brings us closer to the successful
implementation of synchronous time domain averaging on an online gearbox condition

monitoring system.

2 Chapter 1
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1.2 Literature survey
The objective of this research is to develop a filter for synchronous time domain
averaging of gear vibration using computational intelligence. The purpose of the filter is
to reduce the amount of gear vibration data that needs to be stored in the data
acquisition system in order to calculate the time domain average of a gear vibration
signal. The literature survey addresses the following topics:

e Signal processing techniques for early detection of gear failure through vibration

measurements.
e Digital filtering.
e Application Artificial Neural Networks and Support Vector Machines in pattern

recognition.

1.2.1 Signal processing techniques for early detection of gear failure through
vibration measurements.

In this section, as background, different signal processing techniques for early detection
of gear failure through vibration measurements are discussed. The underlying premise
of vibration analysis is that changes in the mechanical condition of the system produce
changes in the vibration that the system produces. In extremely simple systems, these
changes take the form of an increase in the amplitude of the total vibration, which can
be easily detected with simple instruments. For more complex systems, changes in the
total vibration due to the deterioration of a single machine element are less significant
and more sophisticated vibration-processing techniques are needed to detect the damage
(McFadden, 1987).

One of the most popular techniques for early detection of gear failure through vibration
measurements over the last four decades has been spectral analysis, in which the
amplitude spectrum of the measured vibration spectrum is measured and displayed.
Spectral analysis is a particularly powerful technique because different elements of a

mechanical system generally produce vibration at different frequencies.

In 1977 Stewart presented some useful data analysis techniques for gear diagnostics.
These techniques enhance the clarity of the changes on the time domain average using

digital signal processing, by removing the normal vibration from the time domain

3 Chapter 1
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average. In one of these techniques all of the tooth meshing components and their
harmonics are eliminated from the spectrum of the time domain averaging and the
remaining time signal is reconstructed to produce the “residual” signal. Stewart showed
that the residual signal often shows evidence of a defect long before it can be seen in the

time domain average.

In 1985 McFadden and Smith applied modulation theory to a model of gear vibration
and showed that band pass filtering the “residual” signal about the dominant meshing
harmonics and developing the envelope produced a function that describes the
amplitude and phase modulation present in the original averaged signal. The application
of this technique to the vibration produced by a gear known to contain incipient fatigue
cracks suggested that this method is highly effective, and demonstrate that the phase
modulation of the vibration is a more important indicator of a crack than amplitude

modulation.

McFadden (1986) illustrated that the signal average can be completely demodulated by
simple signal processing techniques to produce separate approximations to the
amplitude and phase modulation functions. He demonstrated the effects of both early
and advanced fatigue cracks on the modulation functions using signal averages of

vibration on spiral bevel pinion in a helicopter gearbox.

In another publication McFadden (1987) presented time domain averaging as an
alternative approach for early detection of failure in gears. This author stated that, if a
second signal is acquired which is synchronised with the rotation of the gear of interest,
and the ensemble average of the vibration is calculated with the start of each frame
being determined by the synchronised signal, all the vibration that is asynchronous with
the rotation of the gear cancels out, leaving an estimation of the vibration of the gear of
interest during one gear revolution. Time domain averaging therefore reduces a complex
system such as a gearbox into a simpler system as it eliminates vibration from other

system element (McFadden, 1987).

In his paper White (1991) demonstrated the use of a signal demodulator unit for
extracting meaningful information from rolling element bearing and gearbox vibration

for predictive maintenance.

4 Chapter 1
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Wang and McFadden (1993) examined the application of the spectrogram to calculate
the time-frequency distribution of gear vibration signals. The spectrogram represents the
energy distribution of the signal over the frequency and time. Their results suggest that
the spectrogram may provide a powerful tool for the early detection of local gear

damage.

In a later publication Wang and McFadden (1995) investigated the use of the orthogonal
wavelet transform to detect the abnormal transients generated by early gear damage
from gearbox casing vibration. Orthogonal wavelets, such as Daubechies 4 and
harmonic wavelets, are used to transform the time domain synchronous vibration signal
into the time-scale domain. The orthogonal wavelet transform uses fast algorithms and
decomposes the signal into the minimum number of wavelets series. These authors
discovered through comparison with non-orthogonal wavelet transform for same length
of discrete data, that the description of the signal in the 3-dimensional map of the

wavelet transform is not sufficiently comprehensive due to limited scales.

McFadden et al. (1999), described the generalised S transform, a variant of the wavelet
transform, which allows the calculation of the instantaneous phase signal, and its
application to decomposition of vibration signals from gearbox systems for early
detection of failure. They demonstrated the decomposition of a signal using the
generalised S transforms and a new window function with a numerically generated test

signal and experimentally measured gear vibration data.

Baydar and Ball (2000) used another time-frequency distribution called the
Instantaneous Power Spectrum (IPS) in the detection of local faults in helical gears.
Their paper describes the IPS and then examines its capability of extracting condition
indicating information from gear vibration signals and also assessing the severity of the
fault. The paper further examines the ability of the IPS to detect faults under varying
load conditions. Their results show that the IPS can be used to detect faults both under

constant and varying load conditions.

In a later study Baydar and Ball (2001) conducted a comparative study of acoustic and

vibration signals in the detection of gear failure using Wigner-Ville distributions. Their

5 Chapter 1
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results suggest that acoustic signals are very effective for early detection of faults and
may provide a powerful tool for indicating the various types of progressing faults in

gears.

Staszewski and Tomlinson (1994) presented an application of the wavelet transform to
fault detection in spur gears. In further work these authors use a moving window

procedure for local fault detection in gearboxes (Staszewski and Tomlinson, 1997).

Staszewski et al. (1997) presented a study of the use of the Wigner-Ville distribution in
gearbox condition monitoring. In contrast to other applications of the Wigner-Ville
distribution, their paper reported on the application of statistical and neural network

pattern recognition procedures to reliably detect gear tooth faults.

Wang and Wong (2000) developed a linear prediction method that is based on the
assumption that the vibration caused by a sound pair of gears can be modelled as a
stationary autoregressive process. These authors stated that the approach is independent
of the operating conditions, but the precise influence of varying loads is not
documented. The results of their paper indicate that the linear prediction method can be

used effectively in the detection and diagnosis of gear failure.

Stander and Heyns (2001) noted the influence of varying loads on vibration monitoring
of gears. Stander et al. (2002)° conducted an experimental investigation to observe the
influence of fluctuating load conditions on the measured acceleration signal. They
concluded that the load variation manifests itself as a low-frequency modulation on the
measured acceleration signal. In another publication Stander and Heyns (2002)
investigated the use of the Instantaneous Shaft Speed (ISS) in condition monitoring of
gearboxes. They postulated that the integrity of the gear tooth in the mesh could be
monitored through the utilisation of the ISS measurement. The authors concluded that a
natural separation between different levels of damage could be obtained by monitoring
the instantaneous gear shaft speed under various fluctuating load conditions.

Paya et al. (1997) investigated the use of artificial neural networks based fault
diagnostics of rotating machinery using wavelet transforms as a pre-processor. The real

time domain vibration signal obtained from the gearbox transmission were pre-
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processed by wavelet transforms for neural networks to perform fault detection and
identify the exact kind of fault occurring in the transmission. They showed that by using
multi-layer artificial neural networks on the set of data pre-processed by wavelet
transforms, single and multiple faults could be successfully detected and classified into

specific groups.

Zacksenhouse et al. (2000) conducted a series of tests on a helicopter transmission for
the purpose of generating a database that can be used to evaluate general diagnostic
tools, particularly neural networks. They demonstrated that the meshing vibrations
induced by a large collector gear located on the quill shaft are significant and may
interact with the vibrations induced by other elements attached to the same shaft. An
appropriate model is developed and the effect of the collector gear, called cross-gear-

pair interaction, is studied using different signal processing tools.

Decker (2002)? conducted a survey of standard vibration diagnostic parameters for
crack detection in spur gears used in the Health and Usage Monitoring Systems
(HUMS). The results of his study indicated that detection methods used in HUMS are
not robust or repeatable. The cracks actually progressed at a much faster rate than

anticipated reducing the available time for detection.

In another study Decker (2002)b proposed a new gear failure analysis feature and two
new detection techniques. The time synchronous averaging concept was extended from
being revolution-based to tooth-engagement based. The detection techniques were based
on statistical comparison among the averages for the individual teeth. The results
indicated that these techniques do not produce an indication of damage that significantly

exceeds experimental scatter.

Dempsey et al. (2002) developed a diagnostic tool for detecting damage on a spiral
bevel gear by integrating two different monitoring technologies, oil debris analysis and
vibration analysis. Their results showed that combining vibration and oil debris
measurement technologies improves the detection of pitting damage on spiral bevel

gears.

7 Chapter 1
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The literature indicates that gear condition monitoring is now in its mature stages.
Almost all the vibration analysis methods mentioned above require some form of pre-
processing with synchronous time domain averaging to increase their diagnostic
capabilities. It is because of this very reason that efficient methods for synchronous time

domain averaging are required.

1.2.2 Digital filtering

Signal processing can be defined as the processing performed on signals to extract
useful information. Of the many signal processing methods currently available, digital
filtering is one of the most powerful. In order to understand the principles used in the
development of the synchronous filter for time domain averaging it is necessary to
understand of the fundamental theory and some of the recent developments of digital
filter technology. In this section a brief history and some relevent applications of filter

technology are presented.

Digital filters evolved from simulation of analog filters on the early digital computers of
the 1940s. Their first application was in geological exploration of oil fields where the
data was collected and stored for future processing. The seismologists found that analog
signal-processing methods did not help them distinguish signal from noise. However,
through discrete convolution and other noise elimination techniques, they were able to
process the seismograms digitally to yield a filtered form that was much easier to

interpret, and thus new oil sources were identified.

In signal processing, the function of a filter is to remove unwanted parts of the signal,
such as random noise, or to extract useful parts of the signal, such as the components
lying within a certain frequency range. This basic idea can be illustrated by the block
diagram in Figure 1.

x(n)

y(n)
Raw
Unfiltered |, Filter || Filtered
Signal Signal

Figure 1 Basic filter concept

8 Chapter 1
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In general a filter takes an input sequence x(n) and produces an output sequence y(n) as
shown in Figure.l. More recent developments in filter technology include the
development of intelligent filters and adaptive filters. Some relevant filter developments

are presented in the following paragraphs.

Zhong et al. (2003) tackled the fault detection problem in dynamic systems with
modelling errors and unknown inputs. In this paper the robust fault detection filter
design problem for uncertain linear time-invariant systems with both unknown inputs
and modelling errors is studied. The main results include the development of an optimal
reference residual model, the formulation of robust fault detection filter design problem,
the derivation of a sufficient condition for the existence of a robust fault detection filter
and its construction based on the linear matrix inequality solution parameters, and the

determination of adaptive threshold for fault detection.

Augustyn et al. (2003) presented a new method for filtering signals using the Modified
Recursive Discrete Fourier Transform (MRDFT). The basic idea of this method is the
application of the user-defined context to the recursive form of the Discrete Fourier
Transform (DFT) and filtration data or signals. The context is defined in the frequency
domain and the mathematical implementation of the context in a recursive DFT is
presented. The method is controlled by an intelligent decision making system, which
decides what context present in predefined base of context can be applied to the
algorithm. This means that the filtration process extracts only the desired signal
features.

Another important concept in the context of this work is that of averaging. Braun (1975)
analysed the extraction of a periodically repeating signal from noise coherent averaging.
He considered the averaging process as a filtering process and conducted most of his
analysis in the frequency domain. He described a general approach for dealing with

digital comb filters, enabling the design and analysis of related signal processors.

McFadden (1987) showed that the comb filter model for time domain averaging does

not correctly describe the extraction of periodic waveforms from additive noise because

9 Chapter 1
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it assumes knowledge of the signal over an infinite time and the result it produces is not
exactly periodic. He presented a revised model which requires only a finite number of
samples of the signal and which produces a result that is periodic. He also demonstrated
that the rejection of periodic noise of a known frequency could be optimised by the

appropriate selection of the number of averages.

Moczulski (1987) described the digital synchronous filtering technique. The digital
synchronous filtering technique makes it possible to estimate the time history of
periodic components of the signal being analysed and the corresponding frequencies
which are integer multiples of some triggering frequency. The signal components,
which are not synchronous with the triggering signal, are simultaneously attenuated.
The digital synchronous filtering technique is based upon the time domain averaging
technique. The bank of filters obtained by Moczulski makes it possible to estimate the
averaged time courses of the periodic components of the signal and the amplitude and
phase characteristics of the filters are given. Only simple fixed-point arithmetic

operations were used in order to prepare the necessary software for signal processing.

McFadden (1989) presented an interpolation technique for time domain averaging of
gear vibration by digital computer. This technique provides an alternative to the phase-
locked frequency multiplier for the calculation of the time domain average of gear
vibration signals. Higher-order interpolation techniques produce flatter pass bands and
lower side lobes in the stop band but require longer calculation times. Aliasing errors
are introduced into the result by replication of the side lobes during interpolation, but in

general are attenuated by time domain averaging.

1.2.3 Application of artificial neural networks and support vector machines in
pattern recognition

Artificial Neural Networks (ANNs) can be defined as an information-processing
paradigm inspired by the way the densely interconnected, parallel structure of the
human brain processes information. They are also referred to by other names, such as
connectionism, parallel distributed processing, neuro-computing, natural intelligent
systems and machine learning algorithms. The key element of the ANN paradigm is the

novel structure of the information processing system. It is composed of a large number
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of highly interconnected processing elements that are analogous to neurons and are tied

together with weighted connections that are analogous to synapses.

There are numerous neural networks that have been investigated. Some of the more
popular neural networks include the Perceptron, Multi-Layer Perceptron (MLP),
Learning Vector Quantization (LVQ), Radial Basis Function (RBF), Hopfield networks,
and Kohonen’s self-organizing feature maps (SOM). ANNs are also classified as
feedforward, or recurrent (implement feedback) depending on how data are processed
through the network. Sometimes ANNSs are classified by the method of learning or
training they use. Some ANNs such as MLP and RBF employ supervised training, in
which the network’s error function minimisation involves both the input and the target
values. Other ANNs such as the SOM networks employ unsupervised learning, which
only involves the input during the training. ANNs are attractive in digital signal

processing for the following reasons:

e ANNSs can form arbitrary decisions so that any complex mapping from a set of
noise-contaminated signal to a noise free signal can be realized.

e ANN:s can easily be implemented as software or in specialized hardware.

e ANNs are quite resilient against distortions in the input data and have a
capability to learn and generalize when properly trained.

e ANN:s are often good at solving problems that are too complex for conventional
technologies and are often well suited to problems that people are good at
solving, but for which traditional methods are not suitable, such as character

recognition.

Neural networks have found extensive application in pattern recognition, signal
classification, and image processing. In this work the idea is to apply ANNs and SVMs
in a pattern recognition or predictive task. The idea is to train the ANN to predict the
ensemble average (time domain average) of a large input matrix (rotation synchronised
gear vibration signals) without using the entire input matrix. The successful application
of ANNs and SVMs in this sense holds potential of massive reduction in the amount of
data required in the synchronous time domain averaging task. In this application, this
means a reduction in the amount of data that needs to be collected and stored in the data

11 Chapter 1
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acquisition systems before the synchronous time domain averaging can be calculated.
Some of the more popular ANN formulations for applications related to this work
include the MLP, RBF networks and more recently the Support Vector Machines
(SVMs). Some of the most relevant applications to this work include work by the

following researchers:

Gaudart et al. (2002) compared the performance of MLP and linear regression (LR)
with regards to the quality of prediction and estimation and the robustness to deviations
from underlying assumptions of normality, equality of variance and independence of
errors. The comparison between connectionist and linear models was achieved by
graphic means including prediction intervals, as well as by classical criteria including
goodness-of-fit and relative errors. The empirical distribution of estimations and the
stability of MLP and LR were studied by re-sampling methods. MLP and LR
comparable performance and robustness despite the flexibility of the connectionist

models.

Gardner and Dorling (1999) trained MLP neural networks to model hourly NO, and
NO; pollutant concentrations in Central London from basic hourly meteorological data.
Their results show that the models perform well when compared to previous attempts to
model the same pollutants using regression based models. Their work also illustrates
that MLP neural networks are capable of resolving complex patterns of source

emissions without any explicit external guidance.

Walde et al. (2003) investigated the impact of sample size and sample randomness on
the predictive accuracy of MLP. The MLP proved to be useful for classification
problems although they are dependent on the sample size and the non-linearity of the
underlying problem. A saturation curve describes the dependency of the network
performance on the sample size used. This function enables the user to evaluate the
achieved network performance and the usefulness of additional data. It is demonstrated
that the network leads to narrower confidence intervals of the performance measures in
comparison to classical methods even for small sample sizes. The experimental results
show the validity of the law, for even relatively small sample sizes, that the standard

error of the hit ratio decreases by one over the square root of the sample size.
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Taurino et al. (2003) showed the capability of a sol-gel based electronic nose to be used
in qualitative and quantitative analysis with the aim to recognize common volatile
compounds usually present in the headspace of foods. They showed how linear
technique, such as the Principal Component Analysis (PCA) algorithm can be used for
inspecting data distribution in simple cases like cluster discrimination. They also used
MLP and RBF networks for difficult non-linear regression problems. Their results

showed that the MLP gives better performance for their application.

Fidéncio et al. (2003) used the RBF and MLP networks for non-parametric regression
of organic matter content in soils determined by conventional chemical measurements
and by diffuse reflectance spectra in the near infrared region. The observed results using
RBF were better than those obtained by Partial Least Squares (PLS) regression and
MLP feedforward networks with a back-propagation learning algorithm. These authors
concluded that RBF is a suitable tool for their application, with additional advantages

over MLP, since the training procedure is less dependent on the initial conditions.

Alsing et al. (2002) introduced a multinomial selection problem procedure as an
alternative to classification accuracy and receiver operating characteristic analysis for
evaluating competing pattern recognition algorithms. The multinomial selection
problem procedure demonstrates increased differentiation power over traditional
classifier evaluation methods when applied to three “toy” problems of varying
difficulty. The multinomial selection problem procedure is also used to compare the
performance of statistical classifiers and artificial neural networks on three real-world
classification problems. The results provide confidence in the multinomial selection
problem procedure as a useful tool for distinguishing between competing classifiers and

providing insights on the strength of conviction of a classifier.

Another promising method for tackling regression and prediction problems is Support
Vector Machines (SVMs). Yang et al. (2002) applied the SVMs in financial prediction
of noisy, time-varying financial data. Their experimental results showed that the use of
standard deviation to calculate a variable margin results in a good predictive result in

the prediction of Hang Seng Index.
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Ramesh et al. (2003) presented a hybrid Support Vector Machines-Bayesian Network
(SVM-BN) model that seeks to address the issue that most error models developed thus
far generally employ neural networks to map the input to the output and give no account
for the specific conditions that apply to the process being modelled. In their model the
experimental data is first classified using a Bayesian Network model. Once the
classification has been effected, the error is predicted using a SVM model. Their hybrid
error model thus predicts the error according to the specific operating conditions. This

concept leads to a more generalised prediction model.

Gunn (1998) wrote a comprehensive technical report on the support vector machines for
classification and regression. Another similar publication is a tutorial by Burges (1998)
entitled Tutorial on Support Vector Machines For Pattern Recognition in which the

author presents in the light of regression and classification problems.

1.3 Research objectives

The literature indicates that pre-processing gear vibration data with synchronous time
domain averaging can increase the diagnostic capabilities of the measured gear
vibration data. This is important to the engineer because it bears the potential of
increasing the reliability, repeatability and the diagnostic capability of gearbox
condition monitoring strategies. Time Domain Averaging (TDA) is an extremely
effective technique for the extraction of periodic data from the vibration signals of
rotating machinery. TDA, however, requires an enormous amount of gear vibration data
to calculate. This makes it unattractive for on-line gearbox condition monitoring
systems.

The literature also indicates that ANNs and SVMs can be successfully used in the non-
linear mapping of some input space to an output space. This observation is important to
this work in that it bears the potential of reducing the amount of input gear vibration
that is required for calculating the TDA of the gear vibration. The time domain
averaging process can itself be viewed as a broadband noise filter that eliminates all the

vibration that is asynchronous to the vibration of the gear of interest.

The purpose of this study is therefore to investigate and develop a synchronous filter for

time domain averaging of gear vibration data using of ANNs and SVMs.
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e The developed filter should provide a considerable reduction in the amount of
vibration data that needs to be collected and stored in the data acquisition system
in order to calculate synchronous time domain average of a gear vibration signal.

o The developed synchronous time domain averaging filter model should retain
the diagnostic enhancement capabilities of the TDA calculated by direct
averaging.

o The filtering and diagnostic capabilities of the developed filter should be
validated for both constant and varying load conditions on experimental gear
vibration data.

e Comparison should be made between the performance of the developed filter

model and direct time domain averaging.

1.4 Document overview
The theory and mathematics of existing time domain averaging models is presented in
Chapter 2. This chapter also presents some simulations that highlight the strengths and

weaknesses of some of the popular time domain averaging models.

In Chapter 3 the theory of the MLP neural network, the RBF neural network and SVMs
in the context of this work is presented. Simulations on experimental gear vibration data
are conducted to investigate the suitability of these formulations for application in the

synchronous time domain averaging filter model.

Chapter 4 presents the development process of the synchronous filter for time domain
averaging of gear vibration data. Two different synchronous filtering models are
developed. Gear vibration data from previous tests is used to investigate the influence of
different model parameters on the prediction capability for each of the developed

synchronous filtering models.

In Chapter 5 the developed synchronous filtering models are tested on experimental data
from accelerated gear life test rig for constant and varying load conditions. The results
confirm the suitability of the developed synchronous filtering models for time domain

averaging of gear vibration. A comparative study of these models is presented
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In Chapter 6 the conclusion to the research and recommendations for further work are

presented
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Chapter 2

Time domain averaging models

2.1 Introduction

Time domain averaging is a signal processing technique that may be used to extract the
synchronous periodic content of a measured vibration signal from the measured
vibration signal. This process requires either accurate knowledge of the repetition
frequency of the desired frequency, if periodic, or else a second signal that is
synchronous with the first signal, but free of noise. Using either the repetition frequency
or the synchronous signal, successive blocks of the noisy signal may be sampled and
ensemble averaged. When sufficient averages are taken, it is found that the noise in the
ensemble averaged signal cancels out, leaving an improved estimate of the desired
repetitive signal (McFadden, 1989). One important application in which the periodic
signal must be extracted from the noise is the mechanical engineering problem of
analysis of vibration from gearboxes. When analysing gearbox vibration, it is
sometimes necessary to extract a periodic signal such as the tooth meshing vibration of
a single gear from the vibration of the machine. Some understanding of the time domain
averaging technique is required for the analyst to appreciate its limitations and
successfully optimise its performance for a particular application. This chapter,

therefore, presents some of the most commonly used time domain averaging models.

2.2 Existing models

2.2.1 Comb filter model

For many years, time domain averaging has been modelled by the convolution of the
noisy signal with a finite train of impulses in which the time between the impulses is
equal to the period of the desired signal. It has been shown that this process is
equivalent in the frequency domain to the multiplication of the Fourier transform of the
noisy signal by a comb filter, thus passing only the frequency components which fall at
the fundamental and harmonic frequencies of the desired signal (Trimble, 1968). In this
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section the application of the comb filter model for time domain averaging in the

extraction of periodic signals is presented.

It can be shown that calculation of the synchronous time domain using a trigger signal

having a frequency f; is equivalent to the convolution

y(6)=c(t)*x(r) @.1)

where ¢(r) is a train of N impulses of amplitude 1/ N,spaced at T, =1/ f;, given by

c(t)=%§§(t+nT,). 2.2)

n=0

The convolution of c¢(?) and x(#) is given by

c(t)*x(t)=1/NNZ—:1x(t+nT,)

r? (2.3)
=[x(@)+x@+T)+L +x(t+(N-DIT)]/N.
The time domain average y(?) of the signal is then defined by
l N-1
() =J—V—Zx(t+n7:). (2.4)
n=0

This equation has the same form as that of the existing comb filter model (Braun, 1975;

McFadden, 1987). In the frequency domain this is equivalent to the multiplication of the
Fourier transform of the signal X (/) by the Fourier transform of the impulse signal

C(f)- This operation is represented by

Y(f)=C(f)-X(f). (2.5)

The Fourier transform of ¢(t) is C(f), which is a comb filter function of the form
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c(f)= —]%,—————S;"Hfz'g}’;) )
Increasing the value of N in Equation (2.6) narrows the teeth of the comb. For very large
values of N, only frequencies at exact multiples of the trigger frequency f, are passed.
Equation (2.6), therefore, implies that in the frequency domain, for large values of N,
synchronous time domain averaging can be viewed as a complete removal of all

components within the signal that occur at integer multiples of the trigger frequency f,.

Figures 2.1 (a) to 2.1 (d) show a form of the amplitude spectrum IC( f )| for N=1,2,4

and 8 of a comb filter plotted against the normalised Nyquist frequency. The spectrum
takes the form of a comb with the teeth of the comb spaced at intervals £ =1/7,. The

teeth of the comb have unit amplitude regardless of N.
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Figure 2.1 (a) Amplitude response of comb filter vs. normalised Nyquist frequency for N = 1.
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Figure 2.1 (b) Amplitude response of comb filter vs. normalised Nyquist frequency for N = 2.
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Figure 2.1 (¢) Amplitude response of comb filter vs. normalised Nyquist frequency for N = 4.
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Figure 2.1 (d) Amplitude response of comb filter vs. normalised Nyquist frequency for N = 8.
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There are two features of the comb filter model that restrict its application to the
extraction of periodic waveforms using digital computers. The first of these factors is
that in the comb filter model there are bounds placed on the time signal. The model
assumes that the signal x(t) is known over infinite time ¢ and that the time domain
average y(t) is defined over all time ¢, even though only a finite number of averages are
calculated. In practice, the signal x(?) can only be defined over a finite time. Noise

components that are not harmonically related to the repetition frequency f may be

passed by the comb filter, therefore, the estimate of the time domain average will not be

exactly periodic.

Figure 2.2 shows the performance of a comb filter in the extraction of a signal and its

harmonics from a numerically generated signal z(¢) = x,(¢) +e(f) where x,(f) is known

periodic component defined by:

x,(1) = sin(2750¢)+sin (27100¢)-0.45 cos(27200¢ ) +2.1sin (27150¢ ) +...
sin(27600¢) - 2.5 cos (27250¢) + sin(27300¢) +sin (27350t ) + ... 2.7
cos(27400¢) + sin (27450¢ ) + sin (27500¢ ) + 0.25 cos (27550¢ )

where ¢ = (1: 0.001: 6), and the additive noise component e(?), the noise content of the

signal is defined by:

e(t) = 0.3randn(6000) - 0.48randn (6000)+0.1randn (6000) + ...

2.8)
0.33randn(6000) +0.17randn(6000),

where randn is a MATLAB function that defines a set of normally distributed random

numbers selected from a normal distribution with a mean of zero and variance of one.

"11512U1Y

bieuzeayy
21 Chapter 2




W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
@u#” YUNIBESITHI YA PRETORIA . . .
Time domain averaging models
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Figure 2.2 (a) Noise corrupted signal; (b) FFT of noise corrupted signal; (c) Signal
filtered with a comb filter to remove 50 Hz and all the related harmonics; (d) FFT of
filtered signal.

From Figure 2.2 (c) it is observed that the amplitude of the signal decreased after
filtering but nothing much can be said about the frequency content of the resultant
signal. Figure 2.2 (d) shows the frequency spectrum of filtered signal. It is observed
that the amplitude of the frequency spectrum has decreased from 80 to 3 and 50 Hz and
all its harmonics have been filtered out leaving only the noise content that does not

coincide with 50 Hz.

2.2.2 Double comb filtering
Another attractive model for extracting the time domain averaging is the double comb
filtering approach as documented by Braun and Seth (1980). In this model the time

domain signal x(?) is decomposed as follows:
x(t) = x,(O)+x,() + n(f) (2.9)

where y (¢)is the periodic term and x,()=x, (t +T ) ; x,(¢) is a random repetitive term

and n(r)is a residual term that is time-locked to a basic period 7. A truly periodic
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component can only be generated by a truly periodic mechanism. This can only exist in
an ideal system because any process involving some sort of friction, liquid or gas flow,
and some non-reversible fatigue processes would include to some extent a component

like x (f)(Braun and Seth, 1980). For a “more or less” periodic process this would
show gross periodic character, but no exact repetition of the nature
x,(t)=x, (t+T)w0uld occur. The parameter x, (¢) thus describes a repetitive non-
periodic process as opposed to x,(f). The periodic component x,(r) can be computed

using the comb filter model as described in Section 2.2.1. The extraction of the random

repetitive term x,(¢) is based on the expression

Y. () = g(6)x, (1) (2.10)

In Equation (2.10) x, denotes a continuous random process of no obvious time pattern,
and g(?) is a deterministic periodic function of period T, (i.e. g(/) = g(t + 7)). Fora
case where x_ (¢) is derived from a narrow band continuous process, where narrow band
refers to a band limited process whose bandwidth is small relative to its centre

frequency, where x_(f) contains negligible energy above frequency fmax such that

2f. <fo=UT 2.11)

a possible computation scheme for detecting the components of x, () consists of using a

comb filter tuned to the narrow bands located around multiples of the fundamental

frequencies. A schematic diagram of the computation scheme is shown in Figure 2.3.

Comb filter 1 i @

- v X, ()+n@) x,(t)
I Comb N
filter2

@) +

Figure 2.3 Double comb filtering model
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The first stage is used to compute x,(f) and then x,(#) is subtracted from the original
signal x(¢). After subtraction, a second comb filter extracts x, (). Both these stages will

be computed for the same period 7.

2.2.3 Revised window model

The revised window model was suggested by McFadden (1987) to address some of the
problems encountered with the comb filter described in Section 2.2.1. This model
overcomes the problems with the comb filter model in that it requires knowledge of
only a finite block of the noisy data and it produces a result that is exactly periodic. This
model includes the effect of the signal’s sampling frequency f;. In this section the

revised window model is briefly discussed.

Consider a rectangular window o(?)of unit amplitude and width Tk centred at =0

with Fourier transform V( /) are defined by

V(f)=T,sin(zT,f) [(xT,f). 2.12)

Shifting the window o(f) to the positive direction by an amount(7,/2)—(7,/2)=
(T, —T,)/2 where T, =1/ f; is the period between the samples of the input signal

therefore the edges of the window are located midway between the sampling of the
impulses. This avoids the problem of an impulse occurring at the edge of the window.

The shifted window w(¢) and its Fourier transform W/(¥) are, respectively, defined by
wit)=v(t—(T,-T;)/2) (2.13)

W)=V (e =™, (2.14)

Consider now the sampling of the signal x(f) at a frequency f; over the window of
duration T,. The window, defined by w(f —nT,), consists of the window w(f) shifted
by ¢t =nT,. The sampling of the signal is produced by multiplication of x(¢), w(¢) and
c(?), where c() is the pulse signal defined by Equation (2.2). The result is convolved
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with the unit impulse by 8(t +nT,) located at ¢ =—nT,, thus performing a shift of the

sampled signal by n7T, in the negative time direction. The result is given by

St +nT,) *[x()- w(t —nT,)- c(t)] = x(¢ + nT) - w(t) - c(t +nTy). 2.15)

Now the function c(¢) is periodic in T}. If T} is chosen such that an integral number M
of samples is taken per repetition period Tk thenT, = MT,. This implies that c(f) will
also be periodic to T, so that c(f)=c(t+nT,). By replacing c(f+nT,) in equation

(2.15) one gets
O(t+nT,)*[x(t)-w(t —nT,)-c(t)] = x(t + nT,) - w(t) - c(2). (2.16)

An estimate of time domain average a(¢) is given by

a(t)= l/NNZ_] x(t+nT,)-c(t) -w(t), 2.17)
which is equivalent to
a(t)=c(t)-w(t)/N g x(t+nTy), (2.18)

therefore, the revised window model is defined by

a(t) = s(t)-w(t)- x(1). (2.19)

Note that although x(¢) is not bound in time, a(¢) is bounded in time because of the
effect of the window w(¢). This model therefore satisfies the requirement of knowledge
of the signal over only a finite time. Analysis of a(?)in the frequency domain by
convolution theorem (Bringham, 1974) shows that a(f) can be forced to be periodic by
sampling its Fourier transform A(f) in the frequency domain. This is achieved by

multiplying A(f) by an infinite train of ideal impulses R(f), with the impulses spaced
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at a repetition frequency f,. An estimate of the revised window time domain averaging

model is given by
h(t)=a@)*r(t) (2.20)

The revised window model remarkably changes the result that is predicted by the
original comb filter model. Over and above requiring knowledge of the signal over

finite time, it also ensures that the obtained result is periodic.

2.2.4 Using direct averaging
Again consider a signal z(f) composed of a periodic signal x,(#) with known period

T, and an additive noise component e(t)
z(8) =x, () +e(?). (2.21)

The periodic component x,(f) of signal z() can be extracted by direct time domain

averaging. To calculate the direct time domain average of a vibration signal, a rotational
signal from a sensor mounted on the input shaft or some other suitable location on the
rotating machine is used. This rotational signal is used either to control the sampling of
the total vibration signal or to determine the accurate period of the vibration of the
component of interest and to separate out that vibration component. When the rotational
signal is used to control the sampling of the total vibration, a phase locked frequency
multiplier is used to convert the rotational signal to the required sampling control signal,
which consists of a pulse train synchronised with the rotation of the required gear.
When the rotational signal is used to determine the accurate period of the vibration of
the component of interest, both the total vibration signal and the rotational signal are
sampled simultaneously at fixed clock frequency. When monitoring a gearbox, the
rotational signal can be obtained from a sensor like a shaft encoder mounted on the
input shaft to the gearbox. The accurate period of the rotating signal can be easily
obtained from the shaft encoder signal, and the accurate period of the vibration of the

required gear can then be calculated using the transmission ratio.
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After the correct period of the rotating signal has been obtained, there are two different
approaches that can be followed to calculate the time-domain average of the vibration to
separate out the required vibration component. The first approach is by directly
averaging some segments of the total vibration (Braun, 1975, Braun and Seth, 1980).
The second approach is to first interpolate the total vibration and resample it in the
interval that can exactly divide the calculated period, and then averaging the
interpolated signal (McFadden, 1989).

In direct time domain averaging, the rotational signal obtained from a sensor mounted
on the input shaft to the component of interest is used to synchronise the measured
vibration signal with the rotation of that component. This operation gives the vibration
produced by that specific rotating component over each rotation. The vibration signals
from the rotations are simply averaged to obtain the time domain average after k
revolutions. Figure 2.4 illustrates the direct time domain averaging procedure using
vibration data from the accelerated gear life test rig developed by Stander and Heyns
(2002% for their work on gearboxes operating under fluctuation load conditions. The

details of the accelerated gear life test rig are presented in Section 4.2.1.

Figure 2.4 (a) shows a plot of the once per revolution pulse signal that would typically
be obtained from a shaft encoder to compute the period of each shaft rotation. This
signal was measured over a period of 32 seconds in which time the shaft rotated 165
times therefore the shaft encoder gives 165 pulses. Each pulse represents the start of a
new gear rotation. This signal is used to synchronise the vibration data measured from
the gearbox casing with the rotation of the gear. In Figure 2.4 (a) only 2 seconds of the
pulse signal are shown to enhance clarity. Figure 2.4 (b) shows the time domain
representation of the measured acceleration signal from the gearbox casing. The
acceleration signal was measured in the vertical direction over a period of 32 seconds at
a sampling frequency of 51200 Hz, but to enhance the clarity of the figure only 0.5
seconds of measured vibration are shown. Figure 2.4 (c) shows the vibration signals
produced by five rotations superimposed on the time domain average that is calculated
from 160 gear rotations. From this plot it is observed that the amplitude of the time
domain average is less than that of the original signals. This is because the broad-

spectrum noise component e(¢) has been filtered out through the time domain averaging
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process. Another way of looking at this is by observing the RMS value of the TDA as a

function of the number of input rotations. Figure 2.4 (d) is a plot of the RMS of the
TDA against the number of signals that are used to compute the TDA (number of
averages). From this plot it is observed that the RMS value of the TDA decreases as the
number of inputs (gear rotations) that are used to calculate the TDA is increased. This is

because the non-synchronous component of the gear vibration is filtered out as the

number of inputs is increased.

':A;Amplitl.fdda WYl

0z 04 08 0.8 1.2 1.4 16 1.8 2

Tir|ne [si

Figure 2.4 (a) One pulse per revolution shaft encoder signal used to synchronise the gear

vibration with the gear rotation.
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Figure 2.4 (b) Measured gear vibration signal over 0.5 seconds.
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Figure 2.4 (c) Five rotation synchronised gear vibration signals superimposed on the TDA

obtained after 160 gear rotations (red signal).
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Figure 2.4 (d) TDA RMS vs. number of averages used to calculate TDA

Figure 2.5 illustrates the broad band filtering capabilities of TDA. The FFT spectrum of
the TDA after 160 shaft rotations superimposed on the FFT spectrum of the original
gear vibration signal. It is observed from Figure 2.5 that the noise content of the original
signal e(#) and the frequency content that is asynchronous to the rotation of the gear of
interest have been filtered out. Only the gear mesh frequency (GMF) and its sidebands
(SB.1 and SB.2) remain in the spectrum of the TDA. It is also observed that the
amplitude of the GMF and SB.2 has increased. The amplitude of the spectrum of the
TDA is generally less than the amplitude of the spectrum of the original signal at the
frequencies that are not synchronous to the rotation of the gear of interest. These
observations confirm the fact that calculating the TDA by direct averaging isolates the
vibration produced by the rotation of a specific component, therefore the TDA
calculated by direct averaging can be utilised to improve the diagnostic capability of a

condition monitoring system.

| GMF —— FFT ol TDA |
n.zsr ~ FFT of original signal | |
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Figure 2.5 FFT of TDA after 160 gear rotation superimposed on the FFT the original gear

vibration measured from the gearbox casing.
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Another important observation is that calculating the TDA by direct averaging has
filtered over an overlapping frequencies because it removed the noise over the entire
frequency spectrum, while retaining all the frequency content that is related to the gear
interest, in this case, the gear mesh frequency and its side bands. This capability gives
calculating the TDA by direct averaging an advantage over other TDA models and
linear filters, which can only retain or reject specific frequency bands.

2.3 Conclusion

In this chapter different approaches for calculating the TDA are presented. It is
demonstrated that the comb filter model for time domain averaging is suitable for
extracting specific frequencies and their harmonics from a signal when the period of the
signal is known and constant. This model is, however, not effective when the frequency
content of the noise coincides with that of the required signal as is commonly the case
in many industrial applications. For gearboxes, a more suitable model for calculating
the TDA is direct averaging. It is demonstrated that the direct averaging approach can
filter out broadband noise over the entire spectrum of the signal leaving only the
vibration content that is synchronous with the rotation of the gear of interest. This
capability gives calculating the TDA by direct averaging an advantage over other TDA
models and linear filters; therefore, in this study the TDA is calculated by direct
averaging. Calculating the TDA by direct averaging requires an enormous amount of
vibration data, and therefore, would still remain the main bottleneck in the development
of an online gear condition monitoring system that utilises the TDA calculated by direct
averaging to enhance its diagnostic capability. The TDA models developed later in this
work seek to reduce the amount of vibration data that is required to calculating the TDA

by direct averaging while retaining all the properties of the TDA.
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Chapter 3

Artificial neural networks and support vector machines

3.1 Introduction

Neural networks have found extensive use in many industrial applications for pattern
recognition. In this thesis the aim is to apply the ANNs and SVMs in pattern recognition
as a predictive tool. The idea is to train ANNs and SVMs to predict the ensemble
average of a large number of rotation synchronised gear vibration signals using only a
portion of the total number of signals. This is in essence non-linear mapping between
the input and output space, a task that ANNs and SVMs have handled with success
(Fidéncio et al, 2002; Gunn, 1988). The averaging of the rotation synchronised vibration
signals is called time domain averaging as discussed in Chapter 2. It was also
demonstrated that calculating the TDA by direct averaging can filter out broadband
noise over the entire spectrum of the signal leaving only the vibration content of
interest. The ANNs and SVMs mapping should therefore retain the non-linear filtering
achieved in the frequency domain by the TDA calculated by direct averaging. Before a
synchronous time domain averaging model can be developed for gear vibration using
ANNs and SVMs, it is essential to have thorough understanding of their underlying
mathematics. In this chapter, the theory of Multi-layer Perceptron (MLP) networks,
Radial Basis Function (RBF) networks (Bishop, 1995) and Support Vector Machines
(SVM) (Vapnik, 1995; Vapnik et al.,, 1997; Gunn, 1998) in the light of this work is
presented. This chapter also presents simulation results based on a preliminary study
conducted on a data set from an accelerated gear life test rig. The preliminary study is
used to investigate the suitability of these methods for application in the development of

a time-domain averaging model for gear vibration.

3.2 Artificial neural networks

In this work neural networks are viewed as parameterised non-linear mapping of input
data to the output data. Learning algorithms are viewed as methods for finding
parameter values that look probable in the light of the data. The learning process occurs
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by training the network through supervised learning. Supervised learning is the case
where the input data set (X) and the output data set (¥) are both known and neural
networks are used to approximate the functional mapping between the two data sets. In
this section the theory and application of MLP and RBF networks formulations are
presented. Simulations to assess the suitability of each of these formulations for use in
the development of a synchronous time domain averaging model using a data set from

the accelerated gear life test rig (Stander and Heyns, 2002°) are presented.

3.2.1 Multi-layer perceptron

The MLP provides a distributed representation with respect to the input space due to the
cross-coupling between hidden units. In this study, the MLP architecture contains a
hyperbolic tangent basis function in the hidden units and linear basis functions in the
output units (Bishop, 1995). A schematic illustration of a 2-layer MLP network is
shown in Figure 3.1.

hidden
units

Figure 3.1 Feed-forward network with two layers of adaptive weights (Bishop, 1995).

The MLP network architecture in Figure 3.1 contains hidden units, output units, and one
hidden layer. The bias parameters in the first layer are shown as weights from an extra

input having a fixed value of x, =1. The bias parameters in the second layer are shown

as weights from an extra hidden unit, with the activation fixed at z, =1. The model in
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Figure 3.1 is able to take into account the intrinsic dimensionality of the data. Models
of this form can approximate any continuous function to arbitrary accuracy if the
number of hidden units M is sufficiently large. The size of a MLP network can be
expanded by considering several layers but this is not necessary because it has been
demonstrated through the Universal Approximation Theorem (Haykin, 1999) that a
two-layered architecture is adequate for the multi-layer perceptron. As a result of this

theorem, in this study a two-layered network shown in Figure 3.1 is chosen.

The output of the MLP network represented in Figure 3.1 is given by Equation 3.1.

M d
yk =fouler[zwl(g‘2)fmer(zwl(ql')xi)+w:ﬁ)) (31)
Jj=0 i=0

where f

outer

and f

inner

are activation functions, w';’denotes a weight in the first layer,
going from input i to hidden unit j, w{> is the bias for the hidden unit k and
wf;) denotes a weight in the second layer. In this work f,,.,is a hyperbolic tangent

function “tanh” and £, is linear. The linear activation function is defined by Equation

ter

(3.2) and it maps the interval (-o0,00) onto the interval (-00,00).

-fouter (V) =V (3 '2)
The hyperbolic tangent function is defined by

-y

(3.3)

e' —e
v

f;nner (V) = tanh(V) =
e +e

il d

and it maps the interval (-00,00) onto the interval (-1,1). Figure 3.2 below shows the two

activation functions used in this study.
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Figure 3.2 (a) Plot of the linear activation function given by equation (3.2). (b) Plot of the
‘tanh’ activation function given by Equation (3.3).

Training the neural network is achieved by calculating the weights in Equations (3.1).
There are two principal approaches that can be used to train neural networks. These
methods are the maximum-likelihood approach and the Bayesian approach (Bishop,
1995). In maximum-likelihood training, optimisation methods are used to identify a set
of parameter values that maximises the ability of a network to predict the output
whenever presented with the input data. The Bayesian method uses Bayes’s theorem
(Bishop, 1995) to identify the probability distribution of weights in the light of the
training data that are initially set to some prior distribution. The maximum-likelihood
method may be viewed as a special case of the Bayesian method. In this work the

maximum-likelihood method is implemented for computational efficiency.

3.2.2 Maximum-likelihood-based cost function

In the maximum-likelihood approach an optimisation procedure is used to identify the
weights and biases of the neural networks in Equation (3.1). A cost function is chosen
in order to use the optimisation technique. A cost function is a mathematical
representation of the overall objective of the problem (Marwala, 2001). In this work,
the overall objective is to identify a set of neural network weights, that can map the
rotation synchronised gear vibration signal (input) to the ensemble average of the
rotation synchronised gear vibration signals (TDA obtained from the k signals). The
mapping should use less rotation synchronised gear vibration signals than would

otherwise be required to calculate the TDA using direct averaging. In other words,
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predicting the TDA of a rotating gear using only a fraction of the number of rotation
synchronised gear vibration signals that would be used in the direct averaging approach.

If the training set D ={X k,tk}il is used and assuming that the targets #; are sampled

independently given the inputs X; and the weight parameters, wy;, the cost function, E,

may be written as

E=Y S{tu-ya} +5 2w (3.4

n Kk

where, # is the index for the training pattern and k is the index for the output units. The
first term in Equation (3.4) is the sum-of-square-of-errors cost function, which tends to
give similar absolute errors for each pattern. This results in poor performance on target
values of small magnitude. The other cost function that has been used is the cross-
entropy cost function (Hopfield, 1987; Hinton, 1987). Minimisation of the cross-
entropy cost function tends to give the same relative errors for small and large targets.
The cross-entropy cost function plus the weight decay regularisation parameters may be

written as follows:

E=-3 5 ) + (-t 1=y}

n k

| R

3w (3.5)

The cost function in Equation (3.5) has been found to be suited for classification
problems while the one in Equation (3.4) has been found to be suited for regression
problems (Bishop, 1995). Since the application in this work is a type of regression

Equation (3.4) is used.

3.2.3 Regularisation

The second term in Equation (3.4) is the regularisation parameter. The regularisation
parameter in Equation (3.4) penalises large weights and ensures that the mapping
function is smooth (Vapnik, 1995). This regularisation parameter is called the weight
decay and its coefficient, a, determines the relative contribution of the regularisation
term on the training error. The inclusion of the regularisation parameter has been found

to give significant improvements in network generalisation (Hinton, 1987).
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In neural networks, to produce an over-fitted mapping with regions of large curvature
requires large weights. The weight decay regularisation penalises large weights thereby
encouraging the weights to be small and avoiding an over-fitted mapping between the
inputs and the outputs. If a is too high then the regularisation parameter over-smoothes
the network weights and as result giving inaccurate results. If a is too small then the
effect of the regularisation parameter is negligible and unless other measures that
control the complexity of the model, such as the early stopping method (Bishop 1995)
are implemented, the trained network becomes too complex and thus performs poorly

on validation sets.

3.2.4 MLP network training

Before minimisation of the cost function is performed, the network architecture needs to
be constructed by choosing the number of hidden units, M. If M is too small, the neural
network will be insufficiently flexible and will give poor generalisation of the data
because of high bias. However, if M is too large, the neural network will be
unnecessarily flexible and will give poor generalisation due to a phenomenon known as
overfitting caused by high variance (Geman et al.,1992). The weights (w;) and biases in
the hidden layers are varied using optimisation methods until the cost function is
minimised. Gradient descent methods are implemented and the gradient of the cost
function is calculated using the back-propagation method (Bishop, 1995). The details of
the back-propagation method are found in Appendix B. In this work it was decided to
use the Scaled Conjugate Gradient (SCG) method over Conjugate Gradient (CG). This
choice was made because SCG method is more computational efficient than CG while
retaining the essential advantages of the CG method (Haykin, 1999; Marwala, 2001).

The details of these optimisation methods are explained in Appendix C.

3.2.5 MLP simulation results from a preliminary investigation using data from the
accelerated gear life test rig
This section seeks to validate the suitability of the MLP network for use in synchronous
TDA model using gear vibration data from the accelerated gear life test rig. This was
done in the following steps.

e Data pre-processing. The acceleration signal measured from the gearbox casing

was synchronised with the rotation of the gear using the one pulse per revolution
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shaft encoder signal. This resulted in 160 rotation synchronised gear vibration
signals. Each signal contained 8192 sample points. The rotation synchronised
gear vibration signals were resampled to 1024 points per signal to reduce

computational load. This results in an input space X, of dimension (160x1024).
The target ¢, is the TDA of the gear vibration calculated using the direct

averaging approach for 160 gear rotations. The dimensions of the target are
(1x1024).

o Selecting type of network. A two-layer network was selected because the
Universal approximation Theorem (Haykin, 1999) states that a two-layered
network is sufficient for mapping data of arbitrary complexity (Marwala, 2001).

o Selecting number of hidden units. The number of hidden units was chosen
between 3 and 15 and the one that resulted in the least square errors when
simulating with unseen validation sets was selected. In this application 10
hidden units were selected because they resulted in a small error without severe
computational penalties.

e Selected activation functions. The hyperbolic tangent function was selected as
the inner activation function and a linear function was selected as the outer
activation function.

e Type of optimisation technique used. The scaled conjugate gradient optimisation
technique was used to optimise the cost function because of its computational
efficiency.

e Selecting number of inputs. The number of inputs was chosen between 1 and 50
and the one that resulted in the least square errors when simulating with unseen
validation sets was selected.

e The regularisation coefficient,ar , was selected by trial and error, starting at a
value of @ = 0, and increasing « sequentially in steps « = 0.1 until satisfactory
smoothness of the predicted result was obtained from simulations with unseen

data. In this work @ =1.5 was found to be most suitable.

The following plots show the performance of MLP neural network on a preliminary
study conducted using vibration data from the accelerated gear life test rig (Stander and
Heyns, 2002). Figure 3.3 shows MLP simulation results for a network of 10 hidden

units and 40 input vectors (40 rotation synchronised vibration signals), each signal with
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signal has 1024 points resulting in an input space of (40 [11024). From this simulation it
is clearly evident that this MLP network architecture is suitable for use in a synchronous
TDA model in that it correctly predicts the target (time domain average after 160 gear

rotations with only 40 gear rotation signals).
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Figure 3.3 MLP simulation results for network with 40 inputs and 10 hidden units

superimposed on TDA calculated by direct averaging.

Figure 3.4 shows the simulation results of validation sets as a function of the number of
inputs. It is observed that the RMS error stabilises after 40 input vectors, therefore, 40
inputs are selected as the optimum number of inputs, therefore the amount of data that is

required to calculate the TDA is reduces by 75 percent.
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Figure 3.4 RMS of MLP simulation results for network with 10 hidden units vs. Number of
input signals.
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3.2.6 Radial basis functions

The radial basis function has its origin in techniques for performing exact interpolation
of a set of data points in a multi dimensional space (Powell, 1987). The exact
interpolation problem requires every input vector to be mapped exactly to the
corresponding vector and will be used in the discussion of Radial Basis Function (RBF)
network (Bishop, 1995). The RBF neural network can be obtained by introducing a
couple of modifications to the exact interpolation process (Broomhead, 1988; Moody
and Darken, 1989). The RBF neural networks provide a smooth interpolating function
for which the number of basis functions is determined by the complexity of the mapping
to be represented rather than the data set as in exact interpolation. In this work, the
objective is to identify a set of basis functions, that can map the rotation synchronised
gear vibration signal (input) to the ensemble average of the rotation synchronised gear
vibration signals (TDA obtained from the k signals). The mapping should use less
rotation synchronised gear vibration signals than would otherwise be required to

calculate the TDA using direct averaging.

The RBF neural network mapping is given by given
M
Y (x) =2 0,8, (x)+ 040 (3.6)
j=1

where @, are the biases, w,,are the basis function weights, x is the d-dimensional input

vector and ¢, () is the j™ basis function. Several forms of basis functions have been

considered, the most common being the Gaussian given by

b, (5)=exp| -t (.7

J

where x is the d-dimensional input vector with elements x; , and p; is the vector

determining the centre of the basis function ¢, and has elements x,. For further detail
on the selection of the basis function centres u;, see Bishop (1995). The parameter &

controls the smoothness properties of the basis function. The Gaussian interpolation
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function is a localised basis function with the property that ¢ — 0 as |x| — . Another

basis function that shares the properties of the Gaussian is given by

a

(3.8)

¢, (x)= (x +0')

It is, however, not necessary for this function to be localised. Other possible choices are

the thin-plate spline function given by

¢,(x) =x* In(x), (3.9)

the function
¢,(x)=x"In(x), (3.10)

the function
4,(x)=(x +o?Y, 0<B<l, (3.11)

which for # =1/2 is known as the multi-quadratic function, the cubic function

¢,(x)=x (3.12)

and the ‘linear’ function

¢, (x)=x (3.13)

which all have the property that ¢ —> o as x — . The RBF network is represented by
the diagram in Figure 3.3.
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basis

bias functions

inputs

Figure 3.5 Architecture of a radial basis function network (Bishop, 1995).

In Figure 3.5 each basis function acts like a hidden unit. The lines connecting basis

function ¢, to the inputs represent the corresponding element u, of the vector u,. The
weights o, are shown as lines from the basis functions to the output units, and the

biases are shown as weights from an extra ‘basis function’ ¢, whose output is fixed to 1.

The Gaussian radial basis function considered above can be generalised to allow for

arbitrary covariance matrix 2. ; by changing the form of the basis function to
1 T -1
3 (x):exp{——z-(x—p_,) Z, (x—,u_,)}. (3.19)

Since the covariance matrices 2. ; are symmetric, each basis function has d(d +30)/2

independent adjustable parameters (where d is the dimensionality of the input space)

(Bishop, 1995).

3.2.7 RBF network training
The training of the radial basis function takes place in two stages. In the first stage the
input data set x" alone is used to determine the parameters of the (x4 and o; for the

spherical radial basis function). After the first stage of training the basis functions are
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then kept fixed and the second layer of weights are found in the second training phase
presented below. When the bias parameters in Equation (3.6) are absorbed into the

weights the resulting equation is
M
5(x)= 049, (3) G.15)
j=0

where ¢,is an extra ‘basis function’ with activation value fixed at ¢, =1. In matrix

form this equation is
y(x)=Wq) (3.16)

where W =(w,y.) and ¢ =(¢j). Since the basis functions are considered fixed, the

network is equivalent to a single-layer network that can be optimised by minimisation

of a suitable error function. The sum-of-square error function is given by

E=%ZZ{yk (x)-1} (3.17)

where 7] is the target value for the unit £ when the network is presented with input

vector x”. Since the error function is a quadratic function of the weights, its minimum
can be found in terms of the solution of a set of linear equations. The weights are

determined by the linear equation
O'OW' =®'T (3.18)

where (T),, =t/and (®) =4, (x") . The formal solution of the weights is given by

W' =@'T, where @' =(0"®) ®". (3.19)

®'is the pseudo-inverse of @ . In practice Equations (3.18) are solved using singular
value decomposition, to avoid problems due to possible ill conditioning of the matrix

D.
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For regression the basis function parameters can be found by treating the basis function
centres and widths, along with the second-layer weights, as adaptive parameters to be
determined by the minimisation of an error function. For the case of the sum-of-squares
error, and spherical Gaussian basis functions Equation (3.7), the following expressions

are obtained for the derivatives of the error function with respect to the basis function

parameters
2 2
oF o\ X"l |IX" -y,
aT‘_j=;zk:{yk(x )—t,,}wk,- exp| —- 20_};" - = . (3.20)

2 2
n n
- | -a)
2 2

20'1. o;

(3.21)

where u, denotes the ith component of u,. These expressions for the derivative are

used in conjunction with standard optimisation strategies. The setting of the basis
function parameters by supervised learning represents a non-linear optimisation
problem that is computationally expensive and may be prone to finding local minima in
the error function but if the relevant basis functions are identified the training

procedures can be significantly speeded up (Bishop, 1995).

3.2.8 RBF simulation results from a preliminary investigation using data from the
accelerated gear life test rig

In this section the suitability of the RBF neural networks for use in synchronous TDA
model is assessed using gear vibration data from the accelerated gear life test rig. To

achieve this the following steps were followed.

e Data pre-processing. The data was pre-processed as explained in Section 3.2.5
resulting in an input space X, of dimension (160x024) and a ¢, of dimensions
(1x1024).

e Selecting number of basis. The number of number of basis was chosen between

1 and 10 and the one that resulted in the least square errors when simulating with

unseen validation sets was selected. In this application 5 number of basis were
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selected because they resulted in a small error without severe computational
penalties.
e Selected type of basis functions. The activation functions that were investigated

for setting the radial basis function structures were: the radially symmetric

Gaussian function, the thin plate splines ‘tps’ ¢(x)=x"In(x),and the
#(x)=x"In(x) activation functions. The output error function was defined as

linear. The type that resulted in the least square errors when simulating with
unseen validation sets was selected was the thin plate splines therefore it was
implemented in this study.

e Selecting number of inputs. The number of inputs was chosen between 1 and 40
and the one that resulted in the least square errors when simulating with unseen
validation sets was selected. In this application 40 inputs resulted in the smallest

square errors, therefore resulting in a data reduction of 75 percent for calculating
the TDA.

Figures 3.6 and 3.7 show the performance of RBF neural network on a preliminary

study conducted using vibration data from the accelerated gear life test rig.
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Figure 3.6 RBF simulation results for network with 40 inputs and 5 basis functions

superimposed on TDA obtained by direct averaging.

44 Chapter 3



UNIVERSITEIT VAN PRETORIA
ﬁ UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA D) .
Artificial neural networks and support vector machines

- P
-e~ rlog()

25+

051 b

Figure 3.7 Performance of the thin plate spline ‘tps’ and the @ = x* In(x) basis functions on 13

validation sets.

Figure 3.6 shows the simulation results of a RBF neural network with 5 basis functions
and 40 input vectors simulated using an unseen validation data set. From this simulation
it is observed that the RBF network can be used to predict the time domain average of
the gearbox signal using less data. Figure 3.7 shows the performance of thin-plate
spline‘tps’ ¢ (x)=x"In(x), and the ¢(x)=x"In(x), using the validation sets. From this
simulation it is observed that the ‘tps’ activation function performs better than the
¢(x)=x"In(x) activation function because it results in a constant prediction error for
all the validation sets. This is because the ‘tps’ activation generalises well to all the
validation sets as opposed to the ¢(x)=x"In(x) activation function that does not

generalise resulting in a peak in prediction error between validation set 5 and validation
set 10. This is because the validation sets that were used during simulation were taken
from different stages of the gear life and had different vibration signatures representing
the progression in the level of damage. In this work ‘tps’ activation function is therefore

selected for all RBF analysis.

3.3 Support vector machines
Traditional neural network approaches have suffered difficulties with generalisation,
producing models that can overfit the data. This is a consequence of the optimisation

algorithms used for parameter selection and the statistical measures used to select the

‘best” model (Gunn, 1998). The foundations of Support Vector Machines (SVMs) have
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been developed by Vapnik (1995) and are gaining popularity due to many attractive
features, and promising empirical performance. The SVM formulation embodies the
Structural Risk Minimisation (SRM) principle, which has been shown to be superior
(Gunn et al., 1997), to traditional Empirical Risk Minimisation (ERM) principle,
employed by conventional neural networks. SRM minimises an upper bound on the
expected risk, as opposed to ERM that minimises the error on the training data. It is this
difference that equips SVMs with a greater ability to generalise, which is the goal in
statistical learning. SVMs were originally developed for classification problems, but
recently have been extended to regression problems (Vapnik et al., 1997). In this work
we are interested in the regression properties of support vector machines and therefore
the term support vector machines refers to SVMs applied to regression problems. The
objective is to map the rotation synchronised gear vibration signal (input) to the
ensemble average of the rotation synchronised gear vibration signals (TDA obtained
from the k signals) using less rotation synchronised gear vibration signals than would

otherwise be required to calculate the TDA using direct averaging.

3.3.1 Linear regression

When considering a simple linear regression problem of approximating a set of data,
Dz{(xl,yl),K,(xl,y’)}, xej",yei, (3.22)
with a linear function ,
F(x)={w.x)+b. (3.23)

The optimal regression function is given by the minimum of the functional,
g A
®(w.8) =[] +CY (& +¢&7), (3.24)

where C is a pre-specified value, ware the weights and &7 ,&"are slack variables

representing the lower and upper constraints on the outputs of the system. When support
vector machines are applied to regression problems loss functions that include a

distance measure are used. Figure 3.8 below shows some of the possible loss functions.
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(a) Quadratic (b) Laplace

(c) Huber (d) e-insensitive

Figure 3.8 Possible loss functions support vector regression.

The loss function in Figure 3.8 (a) corresponds to the conventional least squares error
criterion. The loss function in Figure 3.8 (b) is a Laplacian loss function that is less
sensitive to outliers than the quadratic loss function. The Huber loss function in Figure
3.8 (¢) is a robust loss function with optimal properties when the underlying distribution
of the data is not known. These three loss functions produce no sparseness in the
support vector. To address this issue Vapnik proposed the loss function in Figure 3.8 (d)
as an approximation to the Huber loss function. The e-insensitive enables the sparse set
of support vectors to be obtained.

Using the e-insensitive loss function in Figure 3.8 (d),

0 for lf(x)—y|<£

3.25
‘f(x) - yl —-£ Otherwise e

L(y)=

the solution to the optimal regression function in Equation (3.24) is given by,

47 Chapter 3



UNIVERSITEIT VAN PRETOR
UNIVERSITY OF PRETOR
YUNIBESITHI YA PRETOR

(QE}R-

A
A
n .

Artificial neural networks and support vector machines

mag(W(a,a')= mag(—-;—ZZ(a,» —a:)(a,— _a;)<xi’xl>

aa a.a i=l j=1 (3 .26)
I
+Y a(y-¢€)-a (y+e)
i=l1
or alternatively,

!

/
@, ~argmip-33 3 (a3 ) 2, -4 ) x.1,)
E i=1 j=1 (3.27)

_z’:(al_ _a:)yi +i(a,+a,')e

i=1 i=1

with constraints,

, ‘ (3.28)

Solving Equation (3.26) with constraints in Equation (3.28) determines the Lagrange

multipliers, &, and the regression function is given by Equation (3.23), where
i o (3.29)

The Karush-Kuhn-Tucker (KKT) conditions (Vapnik, 1995) that are satisfied by the

solution are,
aa =0, i=1LK L (3.30)

Therefore the support vectors are points where exactly one of the Lagrange multipliers

are greater than zero. When e€=0, we get the L; loss function and the optimisation

problem is simplified to

48 Chapter 3



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

it
W UNIVERSITEIT VAN PRETORIA
Qo

Artificial neural networks and support vector machines

[

min=> > 6, (x.%,)~ 2. £, (331)

i=l j=1 i=1
with constraints,

—C<B<C, i=1K,

! (3.32)
25 =0,
i=l
and the regression function is given by Equation (3.23), where
/
w= Z Bx,
1 (3.33)

b=

<Tv,(x, +xs)>.

N = 5

Details for the implementation of the other three loss functions are presented in

Appendix D.

3.3.2 Non-linear regression

In cases where non-linear regression is required, non-linear mapping is used to map the
data to a higher dimensional feature space where linear regression is performed. The
kernel approach is employed to address the curse of dimensionality. The non-linear

support vector regression solution, using the g-insensitive loss function is given by

magW(a,a‘): mag(Z[:zl:a,' (v—€)-a,(y+e)
’ coeA (3.34)

S (e -a)(w - K (s

=l j=l

with constraints,

, (3.35)
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Solving Equation (3.34) with the constraints in Equation (3.35) determines the Lagrange

multipliers, @, and the regression function is given by

f(X)=i(54~tZ')K(x,,x)+17 (3.36)

i=1

where

(W,x)=2(a,—a,')l((x,,xj)

Svs (3.37)

b= —é—i(a,. —a,')(K(x,.,x,)+K(x,.,xs)).

i=l

The optimisation criteria for other loss functions are similarly obtained by replacing the
dot product with kernel functions. The e-insensitive loss function is attractive because
unlike the quadratic and Huber cost functions, where all the data points will be support
vectors, the support vector solution can be sparse, therefore the e-insensitive loss
function was selected in this work. Different kernels were investigated for mapping the

data to a higher dimensional feature space where linear regression is performed.

3.3.3 SVM simulation results from a preliminary investigation using data from the
accelerated gear life test rig

In this section the suitability of SVMs for use in synchronous TDA model is assessed
using gear vibration data from the accelerated gear life test rig. To achieve this the
following steps were followed.

e Data pre-processing. The data was pre-processed as explained in Section 3.2.5
resulting in an input space X, of dimension (160x1024) and a ¢, of dimensions
(1x1024).

e Selected type of Kernel functions. The Kemel functions that were investigated
in this study were: Exponential Radial Basis Function (ERBF), the Gaussian
Radial Basis function (RBF), the spline and the b-spline kernels and the one that
resulted in the smallest error was selected. (see Appendix E).

e Selecting number of inputs. The number of inputs was chosen between 1 and 40

and the one that resulted in the least square errors when simulating with unseen
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validation sets was selected. In this application 40 inputs resulted in a smallest

square errors. This is effectively a data reduction of 75 percent.

Figures 3.9 to 3.11 show the performance SVMs on a preliminary study conducted

using vibration data from the accelerated gear life test rig.
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Figure 3.10 RMS of SVM simulation vs. Number of input signals
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Figure 3.11 Prediction of SVM with 40 inputs and ERBF kernel superimposed on target

Figure 3.9 shows the performance of different Kernel functions on 13 validation sets
from different stages of the gear life. It is observed that the ERBF Kernel gives the best
mapping for all the validation sets. It is also observed that the RBF, spline and b-spline
Kernel functions have a peak at validation set 8 and validation set 12. This is because
the SVMs were trained with data from the early stages of the gear life. As the gear life
progresses the vibration signature changes significantly. The peaks at validation set 8
and validation set 12 indicate that SVMs with RBF, spline and b-spline Kernel
functions do no generalise well to the vibration signatures at these stages of gear life.
Figure 3.10 shows the performance of SVM with an ERBF kernel as a function of
number of input vectors on validation sets. From this plot it is observed that the RMS
decreases as the number of inputs increases. Figure 3.12 shows the simulation results
SVM with an ERBF Kernel and 40 unseen input signal superimposed on the TDA
calculated using the direct time domain averaging approach. This plot indicates that
SVMs can be effectively used to predict the TDA of the gearbox signal using less data
than would be used to calculate the TDA using the direct averaging approach.

3.4 Conclusion

From the simulation results obtained in the preliminary study, it is observed that all
three formulations can successfully map the input space to the TDA calculated by time
domain averaging using only 25 percent of the input data. It is therefore concluded from
the preliminary study that all three formulations are suitable for use in the development
of a synchronous filter for time domain averaging of gear vibration data. Chapter 4

deals with the development issues for the synchronous filter.
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Chapter 4

Development process for synchronous filter

4.1 Introduction

One of the main objectives for the development of a synchronous filter for gear
vibration is to reduce the amount of gear vibration data that needs to be stored in the
data acquisition system in order to calculate the time-domain average (synchronous
average) of the gear vibration data. This space saving can bring us a step closer to the
development of a truly online gear condition monitoring system that utilises time
domain averaging to enhance the diagnostic capability. The reduction in the amount of
data that needs to be stored in the data acquisition system allows for data acquisition
and analysis to be executed simultaneously. In Chapter 3 the theory of MLP, RBF
networks and SVMs in the light of this work was presented. Their suitability for use in a
time domain averaging task was also assessed. In this chapter, two models for
synchronous filtering of gear vibration are presented. The proposed models are
implemented using each of the three mathematical formulations and their performances

are compared. A detailed explanation of the experimental set-up is also presented.

4.2 ANNs and SVMs synchronous filtering model

In neural networks input space reduction is achieved by transforming the input data
space into a lower dimensional space or trimming off the redundant features in the input
space. Transformation of the input space to lower dimensional space is achieved by
using a procedure like Principal Component Analysis (PCA) (Bishop, 1995).
Engineering judgement and procedures like Automatic Relevance Determination (ARD)
(MacKay, 1994; Neal, 1996; Neal, 1998) are used to prune the input space. Mdlazi et al.
(2003) compared the performance of ARD to PCA focusing on the practical
implementation issues of the two input-selection schemes using practical vibration
examples.In this work, the interest is in the time domain representation of the gear
vibration data and moreover, it is undesirable to lose any of the underlying dynamics

within the input space, which could be the case when the input space is pruned.
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The requirement for time domain representation of the gear vibration data and input
space reduction results in the requirement of efficiently mapping the input space
(rotation synchronised gear vibration signal) to the output space (time domain average
of the vibration signal) using less data than would otherwise be used in the direct time-

domain averaging procedure.

ANNSs and SVMs are suitable in such applications because of their non-linear mapping
and generalisation capabilities (Bishop, 1995; Gunn, 1998). In this paragraph the
developed filtering technique is described. The main idea is to simulate direct TDA
using artificial intelligence, in this case ANNs and SVMs. This approach has the
potential of reducing the amount of vibration data that is required to calculate the TDA
by direct averaging if the ANNs and SVMSs can successfully map a fraction of the input
pace to the output (TDA calculated by direct averaging of all the input data) as shown in
Chapter 3. The performance of this filtering approach will therefore depend the non-
linear mapping and generalisation capabilities of ANNs and SVMs. This filtering
concept operates in two stages as shown in the block diagram in Figure 4.1.

- Rotation Non-linear mapping
Pre-processing synchronised Using ANNs and

Input Sy;‘;l:s?ﬂl:éng vibration SVMs to map a Output

Raw _ measure signals fraction of the input TDA of
unfiltered P v1b'ra tion signal »  spacetothe TDA P input

signal with the once calculated by direct signal

per/r ev pulse averaging of all the
signal input data

Figure 4.1 ANNs and SVMs base filtering concept.

More detail the different stages of this filtering technique are discussed later on in this
chapter. Before much more is said about the data it is appropriate to describe the

experimental set-up.

4.2.1 Experimental set-up
The data used in this study was obtained from the accelerated gear life test rig
developed by Stander and Heyns (2002% for their work on condition monitoring of

gearboxes under fluctuating load conditions.
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This experimental set-up consists of three Flender Himmel Motor helical gearboxes,
driven by a 5.5 kW three-phase four pole WEG squirrel cage electric motor. A 5.5 kVA
Mecc alte spa three-phase alternator was used for applying the load. The gear test rig
was designed to conduct accelerated gear life tests on the Flender E20A gearbox under
varying load conditions. Two additional Flender E60A gearboxes were incorporated in
the design in order to increase the torque applied to the small Flender E20A gearbox.
The rated load of the gears in the Flender E20A gearbox was 20 Nm. The Direct
current (DC) fields of the alternator were powered by an external DC supply in order to
control the load that was applied to the gears. A Hengstler R176T01 1024ED
4A20KF shaft encoder, which produced 1024 pulses, and 1 pulse per revolution in the
form of an analog push-pull signal was used to measure the shaft speed. The reference
point for synchronous averaging is measured as a single pulse from the shaft encoder.
Acceleration measurements were taken in the vertical direction with a 5 V/g PCB
integrated circuit piezoelectric industrial accelerometer and a Siglab model 20-42
signal analyser (Stander and Heyns, 2002%). The accelerated gear life test rig is shown in
Figure 4.2.

Figure 4.2 Accelerated gear life test rig.

The gears used in this experiment were manufactured in accordance with DIN3961,

Quality 3. The gear specifications are given in Table 4.1 (Davel, 2003).
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Table 4.1 Gear Specifications for gears used in accelerated gear life test rig.

Description Specification
Helix angle at reference circle 30°
Number of teeth (Pinion) 22

| Number of teeth (Gear) 43
Nominal Module 1.250 mm
Base circle radius (Pinion) 14.64 mm
Base circle radius (Gear) 28.61 mm
Tip radius (Pinion) 17.55 mm
Tip radius (Gear) 0.331 mm

A typical signal obtained from the accelerometer is given in Figure 4.3 (a). This signal
is synchronised with the pulse signal given in Figure 4.3 (b) in order to isolate the

vibration that is produced by each gear rotation.
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j | |
0.05 011 0.'15 OjE OA‘BS 0.‘3 0.‘35 0:4 0.‘45 ﬂi5 0.‘2 DT4 056 0:8 : |f2 |f4 18 1.8 2‘
Time [sl Time [s]
Figure 4.3 (a) Measured acceleration Figure 4.3 (b) One pulse per/rev shaft encoder
signal over 0.5 seconds. signal for synchronising the gear vibration.

In order to assess the performance of the developed synchronous filter under both
constant and varying load conditions, the measurements were also taken under different
load conditions over the entire life of a gear. The load on the gearbox was applied by
changing the current supplied to the alternator. The different loading conditions are

given in Table 4.2.
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Table 4.2 Experimental load conditions

Type of Accelerated | Constant Sine Square Random
loading life test load function | function function
Frequency [Hz] 0.0 0.0 0.5 0.3 2.0-5.12
Amplitude [V] 0.0 0.0 2.0 2.0 2.0
Offset [V] 5.0 3.0 3.0 3.0 3.0
4.2.2 Data processing

The acceleration data obtained from the gear test rig is passed through an eighth order
low pass Butterworth filter with a cut-off frequency of 300 Hz. The acceleration signal
is sampled at 51.2 kHz to ensure a true data representation. The filtered acceleration
signal is synchronised with the pulse signal. The signals obtained after synchronising
the low pass filtered acceleration signal with the pulse signal are not the same length
because of inaccuracies with the pulse signal. The signals are therefore resampled so
that they can have exactly the same period. In this work the signals were resampled to
8192 sample points per gear rotation. There were 165 gear rotations per test.
Synchronising the measured acceleration signal with the shaft encoder signal and
resampling each signal to 8192 resulted in an input space of (165x8192). For
convenience, in this work an input space of (160x8192) was selected. We seek to
predict the time domain average (synchronous average) of the gear vibration using only

a fraction of this input space.

In Chapter 3 it was shown that 40 rotation synchronised gear vibration signals are
suitable for predicting TDA of the gear vibration signals. This result implies that an
input space of dimensions (40x8192) can be used to calculate the TDA instead of the
input space of (160x8192) that would otherwise be used when the direct time domain
averaging approach is used to calculate the TDA. Using 40 rotation synchronised gear
vibration signals instead of 160 rotation synchronised gear vibration signals is a
reduction of 75 percent in the input data requirement. This result also has some
implications in terms of the training and validation data sets. As stated above each test
produces 165 rotation synchronised gear vibration signals. If 40 of the rotation
synchronised gear vibration signals are used to train the neural network then the other
- 125 rotation synchronised gear vibration signals can be grouped in sets of 40 and used
as validation sets. For this section of the work measurements were taken under constant

load at different stages of gear life.
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4.2.3 Model 1

In this section a model that utilises ANNs and SVMs to predict the TDA of gear
vibration is presented. A sensitivity study to assess the sensitivity of the proposed model
to number of inputs, number of hidden units, number of sample points per revolution
and percentage noise in the validation sets is also presented. The training and validation

data sets for Model 1 are tabulated in Table 4.3.

Table 4.3. Model 1 training and validation data sets for tests conducted under constant

loading.

Test 1 Test 2 Test 3 Test 4
Gear life stage New gear Running in gear Midlife Advanced damage
Training set 1x(160x8192) 0 0 0
Validation sets | 3x(160x8192) | 4x(160x8192) | 4x(160x8192) | 4x(160x8192)

The first model (Model 1) utilises a simple feedforward network structure as shown in
Figure 4.4. This model attempts to map the input space (rotation synchronised gear
vibration signals) to the target (time domain average of the rotation synchronised gear

vibration signal) using feedforward network structure in a single step.

Input
Output
25 % of the
rotation ® FF TDA
synchronized == @ P Network - Synchronous
gear vibration ® Configuration average
signals

Figure 4.4 Model 1 with feedforward network structure.

Model 1 was investigated for all the formulations discussed in Chapter 3. The analysis
of Model 1 with RBF and MLP was carried out in the following steps:
e The most suitable network architecture for mapping the input to the target is

selected.
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e The optimum number of inputs to the selected network architecture that
correctly predicts the TDA of the gear vibration data using validation data sets
are determined. ,

o The sensitivity of Model 1 with MLP or RBF networks to the number of sample
points per revolution is assessed.

e A sensitivity study to assess the robustness of Model 1 with MLP or RBF

networks with respect to noise is conducted.

4.2.3.1 Model 1 with MLP feedforward network
The first network formulation that was investigated is the MLP network. For
convenience, the root mean square error given in Equation (4.1) was used to assess the

performance of the neural network for the proposed model.

N,
RMSE, = \/NLZ(@‘,” -5Y 4.1)

v i

N, is the number of validation data, " is the target and y{” is the network output. The
optimum number of nodes and inputs were determined in order to correctly approximate
the time domain averaging process while avoiding overfitting and thus bad

generalisation.

A suitable network architecture was selected by first randomly choosing a network
structure. The randomly selected structure was optimised sequentially by changing the
network parameters while monitoring the RMSE, until a satisfactory time domain
average prediction was obtained. The results obtained for analysis of the MLP using 20
unseen validation sets of dimensions (40x8192) are presented below. Figure 4.5 is a plot

of RMSE against the number of hidden units.
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Figure 4.5 RMSE vs. Number of hidden units for 20 validation sets.

This plot shows that simulation with the training set is insensitive to the number of
hidden units. When simulating with the validation sets there is general decrease in the
RMSE, then it stabilises at four hidden units. This is because increasing the number of
hidden units increases the flexibility of the network, thus increasing its capability to
map the input to the output. This plot also shows the average of all the simulations with
validation sets. The average shows insensitivity to the number of hidden units because
most of the validation sets are fairly insensitive to the number of inputs. The average is
somehow deceptive because some of the validation sets are sensitive to the number of
inputs. The average can, however, still be useful for comparison purposes because the
majority of the validation sets are insensitive to the number of hidden units. In this
study an MLP network with 5 hidden units was selected. Figure 4.6 shows the RMSE
plotted against the number of inputs for Model 1 simulated with 20 unseen validation

sets.

Simulation with training set

' )
10 15 20

2 %
Number of Inputs

Figure 4.6 RMSE vs. Number of inputs for simulation with 20 validation sets.

60 Chapter 4



P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
Development process for synchronous filter

Figure 4.6 shows the RMSE plotted against the number of inputs. In Chapter 3 it was
established that 40 inputs were the optimal number of inputs for mapping the rotation
synchronised gear vibration signals to the TDA, therefore, 40 inputs were selected as
the maximum number of inputs in this analysis. In Figure 4.6 it is observed that the
RMSE decreases as the number of inputs is increased. This is expected because the
network is exposed to more of the underlying system dynamics, and therefore, trains
and predicts more efficiently than would otherwise be the case with less inputs. The
average of simulations with the validation sets and the simulation with the training set
are also plotted. These plots also confirm the fact the as the network is exposed to more
inputs, its prediction capabilities are enhanced. One of the objectives of this work is to
decrease the number of inputs that are required to calculate the TDA, therefore, the
analyst needs to make a compromise between the network accuracy and the number of
inputs that are used. Figure 4.7 shows the RMSE plotted against the number of sample

points per gear rotation.

0.035
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0.025

W 0.02H

S 0.015 -
Average

0.01

0.005 -

Simulation with Training set

1000 2000 3000 4000 5000 6000 7000 8000
Number of sample points per revolution

Figure 4.7 RMSE vs. number of sample points per revolution for 20 validation sets.

To assess the sensitivity to the number sample points per rotation synchronised gear
vibration signal, the 20 validation sets with 40 inputs were resampled from 8192 sample
points down to 4096, 2048, 1024, 512 and 256 respectively. Figure 4.7 shows the
RMSE plotted against the number of sample points per revolution. The RMSE decreases
until 2048 points per revolution, and thereafter remains constant. For the MLP
simulation 1024 points per revolution were used to reduce computational load though

2048 sample points per revolution would have been more suitable. In Figure 4.7 it is
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observed that there is a plot that is an outlier. This plot corresponds to the validation set
that corresponds to the damaged gear. This is because vibration produced by the
damaged gear is very different to that produced throughout the life of the gear, and the
selected network did not generalise well to this condition. Figure 4.8 shows the RMSE

plotted against percentage noise in the validation set.

0.45

Simulation with Training set
04 o @i @ o o o o o
o L L . . . . L .
10 20 30 40 50 60 70 80 9 100
% Noise

Figure 4.8 RMSE vs. percentage Noise in validation set for simulation with 20 validation sets.

Figure 4.8 shows the RMSE plotted against the percentage of random noise that is
superimposed on the validation sets. The random noise is chosen from a normal
distribution with a zero mean and variance of one. There is a direct relationship between
the noise level and the RMSE. From this analysis Model 1 that has a MLP feedforward

network was found to be fairly tolerant to noise.

4.2.3.2 Model 1 with RBF feedforward network

The second network formulation that was investigated for use in Model 1 is the RBF
network. The procedure that was followed in the analysis of the MLP network was used
for the RBF network. This section presents the results from the analysis of Model 1 with
the RBF network. The sensitivity of Model 1 to number of inputs, number of hidden
units, number of sample points per revolution and percentage noise superimposed on the
validation sets is also presented. Figure 4.9 shows the RMSE plotted against number of

hidden units (number of basis functions).
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Figure 4.9 RMSE vs. number of hidden units for 20 validation sets.

Figure 4.9 shows the RMSE plotted against the number of hidden units (Number of
basis functions). It is observed from this plot that the RBF is very sensitive to the
number of basis functions. From Figure 4.9 it is observed that Model 1 with RBF
network results in best generalisation at 4 basis functions, therefore 4 basis functions
were selected for this study. It is possible that there is another optimum when more than
5 basis functions are used. To keep the computational load at a minimum it was decided
to settle for 4 basis functions. Figure 4.10 shows the RMSE plotted against the number

of inputs for Model 1 simulated with 20 unseen validation sets.

Simulation with Training set

01r

115 2‘0 25 30
Number of Inputs

Figure 4.10 RMSE vs. number of inputs for simulation with 20 validation sets.

Figure 4.10 shows the RMSE plotted against the number of inputs. Again as observed

for MLP network, the number RMSE decreases as the number of inputs is increased. For
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RBF, there is a definite minimum for all the validation sets at 40 inputs. For this work
40 inputs were selected as the optimum number of inputs for Model 1 with RBF. Figure
4.11 shows the RMSE plotted against the number of sample points per gear rotation.

Simulation with Training set

' L ' . 1 L L s
1000 2000 3000 4000 5000 6000 7000 8000

Sampling Frequency

Figure 4.11 RMSE vs. number of sample points per revolution for 20 validation sets.

From this plot it is observed that the optimum number of sample points per revolution is
2048 but for computational efficiency 1024 points were selected. In Figure 4.12 the
RMSE is plotted against the percentage noise in the validation set.

"t i
g

Simulation with Training set

s s ' 1
80 70 80 920 100

50
% Noise

Figure 4.12 RMSE vs. percentage Noise in validation set for simulation with 20 validation sets.
Figure 4.12 is a plot of the RMSE against the percentage of random noise that is

superimposed on the validation sets. There is again a direct relationship between the

percentage noise and the RMSE. As the percentage noise increases so does the RMSE.

64 Chapter 4



&

3

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
LUNIBESITRI A PRETOR LN

Development process for synchronous filter

4.2.3.3 Model 1 with SVMs

This section presents the results from the analysis of Model 1 with SVMs. The
sensitivity of Model 1 to number of inputs, number of hidden units, number of sample
points per revolution and percentage noise superimposed on the validation sets is also

presented.

The analysis of Model 1 with SVMs was carried out in the following steps:
e The most suitable Kernel function for mapping the input space to the target was
selected.
e The optimum number of inputs for correctly predicting the TDA of the rotation
synchronised gear vibration signals was determined.
e The sensitivity of Model 1 with SVMs to percentage noise in the validation sets
was assessed.
Figure 4.13 shows the plot of the performance of different Kernel functions that were
investigated in this study for the non-linear SVM regression task. In Figure 4.13 the
RMSE produced by each of the Kernel function on an unseen validation set is plotted
against the order of the Kernel function. From this plot, it is observed that the
Exponential Radial Basis Function (ERBF) Kernel function outperforms the other
Kernel functions. It is also observed that the ERBF Kernel function is insensitive to the
order of the Kernel function. In this study the ERBF Kernel function with an order of 10

was therefore selected.

45+

6 8
Order of Kemel Function

Figure 4.13 RMSE vs. Order of Kernel function an unseen validation sets.
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Figure 4.14 shows the RMSE plotted against the number of inputs for Model 1
simulated with 20 unseen validation sets. It is observed from Figure 4.14 that simulation
with the training set has a constant prediction error irrespective of the number of inputs.
This is an indication of the robustness of the SVM algorithm. Simulation with
validation sets indicates that there is an inverse proportionality between the number of
inputs and the prediction error. This is because the SVM is exposed to more of the
system dynamics as the number of inputs is increased; therefore, it trains more

effectively.

SVMs are computationally expensive, therefore, in this work 256 points per rotation

synchronised gear vibration signal were selected for all SVM analyses.

L I L L L L
10 15 20 25 30 35 40

Number of Inputs

Figure 4.14 RMSE vs. number of inputs for 20 validation sets.

Figure 4.15 shows the RMSE plotted against percentage noise. A direct relationship
between the RMSE and the percentage noise is observed. This is expected because the
introduction of noise to the validation sets increases the degree of nonlinearity between

the input and output space.
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Figure 4.15 RMSE vs. percentage noise in validation set for simulation with 20 validation sets.

4.2.4 Model 2

In this section a second model (Model 2) that utilises ANNs and SVMs to predict TDA
of gear vibration is presented. Model 2 estimates the TDA of the input space in small
sequential steps, analogous to taking a running average of the input space. This model
consists of a number of small feedforward networks similar to those in Model 1 but
instead of the networks being used to predict the TDA of the whole input space in one
step, the small feedforward networks are used to first sequentially predict the average of
subsections of the input space (instantaneous averages). The output of the first set of
feedforward networks are used as inputs into a second feedforward network that
predicts the time domain average of the whole input space. All the feedforward
networks are trained off-line to reduce computational time. In this model all the data
that have already been used can be discarded immediately. This means that one does not
need to store large amounts of data in the data collection system. The training and

validation data sets for Model 2 are tabulated in Table 4.4.

Table 4.4. Model 2 training and validation data sets for tests conducted under constant

loading.

Test 1 Test 2 Test 3 Test 4
Gear life stage New gear Running in gear Midlife Advanced damage
Training set 1x(10x8192) 0 0 0
Validation sets | 15x(10x8192) 16x(10x8192) 16x(10x8192) 16x(10x8192)
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In this section a sensitivity study to assess the sensitivity of the proposed model to

number of inputs, number of hidden units, number of sample points per revolution and

percentage noise in the validation sets is presented. A schematic diagram of Model 2 is

shown in Figure 4.16.

Input

Rotation
synchronized
gear vibration

signals

>

FF
Network 1
FF
Network 2 \ Output
FF TDA
Network [P Synchronous
average
FF /
Network 3
FF
Network N

Figure 4.16 Model 2

Model 2 was investigated for all the formulations discussed in Chapter 3. The analysis

of Model 2 with RBF and MLP was carried out in the following steps:

e The most suitable network architecture for mapping a small section of the input

to its average (target) is selected.

e The sensitivity of Model 2 with MLP or RBF networks to noise is assessed.
e In Section 4.2.3.1 and Section 4.2.3.1 the sensitivity of Model 1 with MLP and

RBF networks to the number of sample points per rotation synchronised gear

vibration was assessed. It was concluded the 1024 points per revolution are

suitable, therefore 1024 sample points per rotation synchronised gear vibration

signal are selected for Model 2.
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4.2.4.1 Model 2 with MLP feedforward networks

This section presents the results from the analysis of Model 2 with MLP feedforward
networks. Figure 4.17 shows the simulation results of Model 2 with MLP network
simulated using an unseen validation set. The simulation result is superimposed on TDA

calculated using the direct time domain averaging approach.

T T T T T Y
= Target
5 == Simulation =

~ Amplitude [m/s?]

L L . . . \
[+] 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time [s]

Figure 4.17 Model 2 with MLP network simulation result for an unseen validation set

superimposed on TDA after 160 gear rotations.

This plot shows that Model 2 with MLP feedforward networks is very suitable for
predicting the time domain average of the gear vibration. This is because Model 2 uses
the whole input space to predict the TDA as opposed to Model 1 that uses only a section
of the input space. Figure 4.18 shows the RMSE plotted against percentage noise in the
training and validation sets. The random noise content is again chosen from a normal
distribution with a zero mean and variance of one. For the simulation with the training
set it is observed that the model is fairly insensitive to noise. This is, however, not the
case when simulating with validation sets. There is a direct relationship between the
RMSE and the percentage noise superimposed in the data. This is because addition of
noise to the training and validation sets increases the degree of non-linearity between

the input space and the output.
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Figure 4.18 RMSE vs. percentage noise in training and validation sets for 3 unseen validation
sets.

4.2.4.2 Model 2 with RBF feedforward networks

This section presents the results from the analysis of Model 2 with RBF feedforward
network. In Figure 4.19 the simulation results of Model 2 with RBF network simulated
using an unseen validation set is superimposed on the TDA calculated using direct
averaging. The predicted TDA in Figure 4.19 is almost an exact fit. This is because
Model 2 uses the whole input space to predict the TDA; therefore the network is

exposed to all the transient effects in the data.

8

~ Target
== Simulation

 Amplitude [m/s”]
e

)

L L L L . L L
o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time [s]

Figure 4.19 Model 2 with RBF network simulation result for an unseen validation set

superimposed on TDA after 160 gear rotations

Figure 4.20 shows the RMSE from 3 validation sets plotted against percentage noise in
the training and the validation sets. Both the training and the validation sets exhibit a

linear relationship between the RMSE and the percentage noise superimposed in the
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data. This is again because addition of noise to the training and validation sets increases

the degree of non-linearity between the input space and the output.

' N L n
60 70 80 80 100

L ' L L L
o 10 20 30 40

50
% Noise

Figure 4.20 RMSE vs. percentage noise in training and validation sets for 3 unseen validation

sets.

4.2.3.3 Model 2 with SVMs

This section presents the results from the analysis of Model 2 with SVMs in place of
feedforward neural networks. Figure 4.21 shows that the SVM is also suitable for use in
this modal with its only drawback being computational inefficiency. The good
performance of Model 2 is because it uses the whole input space to predict the TDA;
therefore the SVM is exposed to all the transient effects in the data. To maintain the
computation time at a minimum, 256 samples points per rotation synchronised gear

vibration signal were selected.

=

Amplitude [m/¢]

[} 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16
Time [s]

Figure 4.21 Model 2 with SVM simulation results with an unseen validation set superimposed

on TDA after 160 gear rotations
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Figure 4.22 shows the RMSE from 3 validation sets plotted against percentage noise in
the training and the validation sets. With SVM the simulation with training set shows
that the support vector machine is fairly insensitive to noise. This is not the case when
simulating with the validation sets. Simulations with the validation sets indicate a direct
relationship between the RMSE and the percentage noise in the data. The observed
direct relationship is due to the fact that the addition of noise to the training and

validation sets increases the degree of non-linearity between the input space and the

output.
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Figure 4.22 RMSE vs. percentage Noise in training and validation sets for 3 unseen validation

sets.

4.2.5 Discussion

In this section a comparison between the different mathematical formulations is
presented. The comparison is based on the average RMSE of simulation with a
population of 20 validation sets (validation examples) for Model 1 and 3 validation sets

(validation examples) for Model 2 an computation time.

4.2.5.1 Model 1

Figure 4.23 to Figure 4.26 show the results obtained for different formulations as
functions of some network parameters. Figure 4.23 shows the RMSE plotted against the
number of hidden units. From this plot it is observed that the MLP network performs
better than the RBF network. The RBF network is very sensitive to the number of
hidden units while the MLP is fairly insensitive. The insensitivity of MLP to the number

of hidden units is desirable because it implies that smaller and more computationally
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of hidden units is desirable because it implies that smaller and more computationally
efficient networks can be used to calculate the TDA. Figure 4.24 shows the RMSE
plotted against the number of inputs for Model 1 with MLP, RBF networks and SVM
respectively. From this plot is observed that Model 1 with SVMs results in the best

performance especially at higher number of inputs. The superior performance is because

of the structural risk minimisation used in SVMs is superior in generalisation to the

empirical risk minimisation used in neural network (Gunn et al., 1998). The

performance of Model 1 with RBF and MLP networks are comparable although the

RBF performs slightly better than MLP.

'
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Figure 4.23 RMSE vs. number of hidden units for Model 1 with MLP and RBF networks.
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Figure 4.24 RMSE vs. number of inputs for Model 1 with MLP, RBF and SVMs.
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In Figure 4.24 the reduction in RMSE as the number of inputs is increased is because the
formulations are exposed to more of the underlying system dynamics as the number of
inputs is increased, therefore they train more efficiently. Figure 4.25 shows RMSE
plotted against the number of sample points per revolution. This plot shows that Model
1 with MLP network performs better than Model 1 with RBF network, which is very
sensitive to the number of sample points per revolution. Figure 4.26 shows the
performance of the three formulations as a function of percentage noise in the training
and validation sets. This plot shows that the SVM again performs better than both MLP
and RBF although the performances are fairly comparable. This is due to the superior

performance of the structural risk minimisation used in SVMs (Vapnik, 1995; Gunn,
1998).
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Figure 4.25 RMSE vs. number of sample points per revolution for Model 1 with MLP and RBF

networks.
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Figure 4.26 RMSE vs. percentage noise in training and validation sets for Model 1 with MLP,
RBF and SVMs.
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4.2.5.2 Model 2

Figure 4.27 and Figure 4.28 show the performance of Model 2 with the three
formulations. Figure 4.27 shows the RMSE produced by 3 different validation sets. The
SVM performs very well when simulating with the training set but performs poorly for
validation sets. MLP and RBF both perform better than the SVMs for the validation
sets. The poorer performance of Model 2 with SVM as compared to Model 2 with MLP
and RBF networks is due to the fact that MLP and RBF are more suited to Model 2.
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Figure 4.27 RMSE vs. validation set for 3 validation sets

Figure 4.28 shows the performance Model 2 with MLP, RBF and SVMs as a function of
the percentage noise in the training and validation sets. It is observed that the
performance of these formulations is the same. The observed direct relationship
between the percentage noise in the training and validation sets and the RMSE is
because the addition of noise increases the degree of non-linearity between the input

space and the output.
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Figure 4.28 RMSE vs. percentage noise in training and validation sets for Model 2 with MLP,
RBF and SVMs.
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4.2.5.3 Computation time

To put the proposed methods in perspective, a comparison of computation times for the
existing time domain averaging method and the proposed models is done. A Pentium 4
computer with a 1.60 GHz processor was used. The computation times are presented in

Table 4.5.

It is observed that the required pre-processing time for Model 1 is less than the required
pre-processing time for the TDA calculated by direct averaging. This is because Model
1 uses 25 percent of the vibration data as opposed to the original TDA process, which
uses the all the vibration data. The required pre-processing time for Model 2 is equal to
the pre-processing time for the TDA calculated by direct averaging. This is because
both models use the same amount of vibration data. When Model 1 and Model 2 are
used, RBF and MLP give the best performance in terms of simulating time and SVMs
gives the poorest performance. The models are trained off-line therefore the training
time does not influence the simulating time in a real time applications. When the models
are used with MLP and RBF networks, they perform much better than original TDA
calculated by direct averaging in terms of simulation time. It is however, observed that
when the models are used with SVMs, the performance is much poorer than the

performance of the TDA computed by direct averaging.

The poor performance in SVMs is because the training problem is a quadratic
optimisation problem with 2N variables, where N is the number of data training points.
Thus the more the data that is used when train, the longer it takes. This is much slower
than the MLP and RBF neural networks in which only the weights and biases or the

basis centres are obtained by minimising error functions.

Table 4.5 Computation time

TDA MLP RBF SVM
Model 1 Pre-processing time [s] 1.011 0.703 0.703 0.703
Model 1 Training time [s] - 22.24 2.219 497.0
Model 1 simulating time [s] 0.75 0.016 0.047 5.500
Model 2 Pre-processing time [s] 1.011 1.011 1.011 1.011
Model 2 Training time [s] - 1.14 1.015 963.8
Model 2 simulating time[s] - 0.08 0.078 83.76
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4.3 Conclusion

In this chapter the use of MLP, RBF neural networks and SVMs in the development of a
time domain averaging filter for gear vibration was investigated. It was shown that the
amount of input vibration data required to calculate the TDA can be effectively reduced

using ANNs and SVMs to predict the TDA of a gear vibration signal.

Two different filter models are considered. The first model (Model 1) uses a
feedforward ANNs or SVMs to map input space (rotations synchronised gear vibration
signals) to the target (time domain average after 160 shaft rotations). Using Model 1 a
data reduction of 75 percent was achieved with all the formulations because Model 1
predicted the TDA using 40 of the 160 rotation synchronised gear vibration signals.
Any of the three formulations can be used in this model because their performances are
comparable although the SVMs may seem to be more attractive. Its attractiveness is
reduced by the fact that it is more computationally expensive than MLP and RBF,
therefore, the analyst will need to be cautious when SVMs are implemented in an online
system that is required to retrain regularly. On the other hand the MLP and RBF
networks are quick and easy to train, therefore they are suitable for implementation in

an online system even when required to retrain online.

The second model (Model 2) operates in two stages. In the first stage it uses 10 inputs
(10 rotations synchronised gear vibration signals) to predict the instantaneous time
domain average of the gear vibration. The input data to the first stage is deleted from the
memory of the data acquisition system after it has been used. The output of the first
stage is used as input to a second feedfoward network to predict the TDA. This means
that the largest number of rotation synchronised gear vibration signals that will be
stored in the data acquisition system is 26 inputs. This is a reduction of 83 percent in the
amount of data that needs to be stored in the data acquisition system. It must be noted
however that, with Model 2, the entire data set is used although it use sequentially.
Model 2 was found to be very effective at predicting the time domain average for all

three formulations. In Model 2 the MLP and RBF perform better than SVMs.
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Chapter 5

Testing the synchronous filter on experimental data

5.1 Introduction

In this chapter the synchronous filter for time domain averaging of gear vibration data
that was developed in Chapter 4 is implemented on a new data set from the accelerated
gear life test rig. The data set was measured at two-hour intervals throughout the gear
life. Taking measurements over the entire gear life serves the purpose of demonstrating
the suitability of the developed filter in predicting the time domain average over the
entire gear life. Secondly, we want to evaluate the suitability of the developed
synchronous filter for time domain averaging for use in cases where the applied load is
not constant as would be the case in a typical industrial application. In this a brief
background on the data is presented. This is followed by simulation using the developed
models for MLP, RBF and SVM, respectively. The results are compared to those that
are obtained using direct time domain averaging approach, focusing on the practical
implications. The synchronous filter is also tested on data from a test conducted under

varying load conditions.

5.2 Data representation

The gear was expected to have a life of 30 hours; therefore vibration measurements
were taken in two-hour intervals until failure occurred so as to properly monitor the
progression of gear failure. The data was sampled at a frequency of 51,2 kHz to get a
full representation of the frequencies of interest, in our case, the gear mesh frequency

(GMF) and its side bands (SB). The GMF is defined by
GMF =S, xN,, (5.1)

where S, is the shaft frequency and N, is the number of gear teeth. The side bands (SB)

occur at a frequency F, defined by
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F, =GMF -kS,, (5-2)

where £ is an integer and S, is the shaft frequency. For the accelerated gear life test rig

the GMF, SB and operating properties are given in Table 5.1.

Table 5.1 Operating properties for test data (Davel, 2003)

Rotational Speed GMF SB.1 SB.2
[revs/min] [Hz] [Hz] [Hz]
311 2230 2172 228.2

From Table 5.1 it is observed that the highest frequency of interest is 228.2 Hz therefore
the measured acceleration was low-pass filtered at 300 Hz. In a gearbox where the
applied load is constant, the amplitude of the side bands of the meshing frequency (SB)
and gear mesh frequency (GMF) in the frequency spectrum are expected to increase as
the vibration increases. This observation supplies a means of representing the
progression of gear life using gear vibration. In this work the SB is normalised with the
GMF and then plotted over the gear life. Figure 5.1 shows the FFT spectrum of the
measured vibration signals from one of the test signals. This plot clearly shows the

GMF and SB.
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Figure 5.1 FFT plot measured acceleration signal after 9 hours in operation.

Figure 5.2 below shows the representation of the gear vibration over the entire gear life

using normalised SB.2. This plot shows the normalised SB and a fourth order
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polynomial fitted onto the normalised SB data. The fitted curve closely resembles the
well known bath- tub curve (Norton, 1989) that models the life of most mechanical
systems. The first 5 hours in operation show the running in stage of the gear life. The
gear vibration level stabilises from 5 hours until 25 hours, which can be considered as
constant gear wear stage. From 25 hours the gear vibration increases until the gear fails

after 33 hours. The final stage can be considered as the wear out stage of the gear life.

. :
"+ Normalised Side Band
07} e Fourth Order F ial Fit

Amplitude

tl': 10 15 20
Operating Time [ Hours]

Figure 5.2 Testing data representation

In this chapter data sets from different stages of the gear life are used.

5.3 Model 1

This paragraph presents the results obtained using Model 1 for test data obtained from
different stages of the gear life for tests conducted under constant load conditions as
presented by Table 4.2. Model 1 with MLP, RBF and SVM formulations is tested and
the results obtained for each of the formulations are compared to the TDA calculated
using the direct time domain averaging approach after 160 gear rotations. For Model 1,
40 gear rotations are considered as the optimum number of inputs as discussed in
Chapter 4. This is a reduction of 75 percent of the data that would be used when the

direct averaging approach is used to calculate the TDA.

5.3.1 Model 1 with MLP feedforward network
Figure 5.3 (a) to Figure 5.3 (c) shows the prediction from Model 1 with MLP
feedforward networks superimposed on the time domain average (TDA) of the gear

vibration signals obtained using direct averaging. The simulations were done using
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unseen validation sets as presented in Table 4.3. From Figure 5.3 (a) to Figure 5.3 (c), it
is observed that Model 1 with MLP feedforward networks can correctly predict with 40
gear rotations the TDA for 160 gear rotations over the entire gear life. The FFT of the
TDA calculated by direct averaging and the FFT of the simulation results are exact fits
throughout the life of the gear. This indicates that Model 1 with MLP feedforward
networks retains the diagnostic enhancing capabilities of TDA.
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Figure 5.3 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken during the running in stage of the gear.
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Figure 5.3 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the
TDA from 160 rotations. The measurements were taken during the constant wear in stage of the

gear.
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Figure 5.3 (¢) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken in the wear out stage of the gear.

5.3.2 Model 1 with RBF Feedforward network

Figure 5.4 (a) to Figure 5.4 (c) show the prediction of Model 1 with RBF feedforward

neural networks. The simulation results are superimposed on the TDA of the gear

vibration signals calculated using the direct averaging. The validation set had 40 inputs.
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Figure 5.4 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken during the running in stage of the gear.
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Figure 5.4 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken during the constant wear stage of the

gear.
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Figure 5.4 (¢c) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken during the wear out stage of the gear.

The above plots show in both frequency domain and time domain representation, that
Model 1 with a RBF feedforward network with 40 gear rotations can correctly predict
the TDA for 160 gear rotations over the entire life of the gear. This is because the
selected RBF network can effectively map the input to the output space. The FFT of the

TDA calculated by direct averaging and the FFT of the simulation results are exact fits
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throughout the life of the gear. This indicates that Model 1 with RBF feedforward

networks retains the diagnostic enhancing

5.3.3 Model 1 with SVMs

capabilities of TDA.

Figure 5.5 (a) to Figure 5.5 (c) show the prediction obtained using Model 1 with SVMs

superimposed on the TDA of the gear vibration signals calculated by direct averaging.

The following plots show the Model 1 with SVMs with an input of 40 gear rotation

signals can correctly predict the TDA for 160 gear rotations over the entire life of the

gear.
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Figure 5.5 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA for 160 rotations. The measurements were taken during the running in stage of the gear.
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Figure 5.5 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA obtained after 160 rotations, The measurements were from the constant wear gear stage.
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Figure 5.5 (¢) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken from the wear out stage of the gear.

The FFT of the TDA calculated by direct averaging and the FFT of the simulation
results are exact fits throughout the life of the gear. This indicates that Model 1 with
SVMs retains the diagnostic enhancing capabilities of TDA. The good performance of
SVMs is due to their superior ability to train and generalise (Gunn, 1998).

5.4 Model 2

This paragraph presents the results obtained using Model 2 from measurements taken at
different stages of the gear life. The measurements were taken while the gearbox was
operating under constant load conditions. Model 2 with MLP, RBF and SVMs is
simulated with unseen validation data sets as presented in Table 4.4. The obtained
results for each of the formulations are compared to the TDA calculated using the direct
averaging for 160 gear rotations. In Model 2 all 160 rotation synchronised gear
vibration signals are sequentially used in batches of 10 rotations. The rotation signals
that have already been passed through the first stage of the model are deleted from the
memory of the data acquisition system, while their output is saved for use in the second
stage of the model. After simulation with all 160 gear rotations, there are 16 signals that
will be stored in the data acquisition system. This means that the highest number of
signals that will be stored in the data acquisition system is 1 batch of 10 signals and 16
outputs from the first stage of Model 2. This results in 26 signals instead of 160 rotation
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synchronised gear vibration signals. This is effectively a reduction of 83.75 % of the
data that needs to be stored in the data acquisition system during the time domain

averaging process for this test data set.

5.4.1 Model 2 with MLP feedforward network
Figure 5.6 (a) to Figure 5.6 (¢) show the prediction from Model 2 with MLP
feedforward networks superimposed on TDA of the gear vibration signals calculated

using direct averaging.
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Figure 5.6 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.6 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.6 (¢) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.

The above plots show in both frequency domain and time domain representation, that
Model 2 with a MLP feedforward network can correctly predict the TDA for 160 gear
rotations over the entire life of the gear. This is because in model 2 the network is

exposed to the entire data set, therefore, it simulates more effectively.

5.4.2 Model 2 with RBF feedforward network
Figure 5.7 (a) to Figure 5.7 (c) show the prediction from Model 2 with RBF

feedforward networks superimposed on the TDA of the gear vibration signals calculated

using direct averaging.
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Figure 5.7 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.7 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.7 (¢) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.

Figure 5.7 (a) to Figure 5.7 (c) show that Model 2 with a RBF feedforward network can

correctly predict the TDA for 160 gear rotations over the entire gear life. This is because

in Model 2 the network is exposed to the entire data set, therefore, it simulates more

effectively.

5.4.3 Model 2 with SVMs

Figure 5.8 (a) to Figure 5.8 (c) show the prediction from Model 2 with SVMs

superimposed on the TDA of the gear vibration signals calculated using the direct

averaging.
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Figure 5.8 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (¢) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (a) to Figure 5.8 (c) show that Model 2 with a SVM feedforward network can
correctly predict the TDA for 160 gear rotations over the entire life of the gear.

5.4.4 Discussion

In Figures 5.3 (a) to Figure 5.8 (a) it is observed that the TDA of the vibration from the
running in stage of the gear life is fairly random. The amplitude of the TDA in the
running in stage of the gear life is less than the amplitude of the TDA in the other two
stages of the gear life. The random noise content of the vibration results in the presence
of prominent side bands as observed frequency spectrums in Figures 5.3 (a) to Figure
5.8 (a). In Figures 5.3 (b) to Figure 5.8 (b) it is observed that the amplitude of the TDA
increased and the signal is more periodic because of the constant loading condition. The
reduced random noise in the signal is shown by the reduction in the side bands of the
gear mesh frequency observed in the frequency spectrums in Figures 5.3 (b) to Figure
5.8 (b). Figures 5.3 (¢) to Figure 5.8 (¢) show an increase in the amplitude of the TDA.
This is expected as one would expect the vibration would to increase as the gear fails.
There is also evidence of impulse in the TDA signal. This may be because some of the
gear teeth may have cracked resulting in the reduction of the meshing stiffness of those
meshing tooth sets. The introduction of impulses in the TDA results in the increase in

the side bands of the gear mesh frequency as observed in Figures 5.3 (c) to Figure 5.8

(©).

5.5 Assessing simulation accuracy and diagnostic capabilities

Up to this point the developed models have been used to predict the TDA of the gear
vibration signal without quantifying the quality of the prediction and the diagnostic
capability of the model outputs. This section presents some parameters that will be used
to assess the quality of the prediction and establish whether the model predictions retain

the diagnostic capabilities of the TDA.

To quantify the quality the simulation accuracy a ‘fit’ parameter 7, (Raath, 1992) is

defined. First the response error is defined as

esim (k) = ydesired (k) = yachieved (k)’ (5’3)
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Assume that we have N data points. The simulation accuracy may then be defined as

(k)

77.&‘"11 =100 T/(L— [%] (5 4)

; ly desired (k )‘

The defined ‘fit’ parameter 7, is attractive in that it gives a single value for each
simulation, therefore it can be used to compare the performance of the different
formulations over the entire life of the gear. A low value of ‘fit” parameter 7, implies a
good fit while a high value implies a bad fit, therefore, a ‘fit’ parameter value of

M., =0% implies a perfect fit. In this work it was established experimentally that

Nym = 40% s a suitable upper cut-off of the simulation accuracy.

To establish whether the model predictions retain the diagnostic capabilities of the TDA
two parameters are used. The first parameter is the peak value of the vibration X
during a given interval 7. This parameter can be used where the analyst is interested
only in the overall magnitude of the vibration to distinguish between acceptable and
unsatisfactory vibration states (Heyns, 2002). The second parameter is the kurtosis. The
kurtosis is the fourth statistical moment of the vibration signal and it is given by

1
kurtosis = x*dr. 5.5
o'T -[)I e

where 7 is a given interval, ¢ is the variance and x is the vibration data. The kurtosis of
a signal is very useful for detecting the presence of an impulse within the signal
(Norton, 1989). The peak value of the vibration X, and the kurtosis of the TDA
calculated using direct averaging is compared to the TDA from Model 1 and Mode 2

with all three formulations.

5.5.1 Comparison of the performance of the different formulations
The performance of the three formulations in Model 1 and Model 2 was assessed using

the fit parameter to determine which of the formulations is best suited for this
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application. Figure 5.9 shows the simulation accuracy 7, plotted against the gear life

for Model 1.
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Figure 5.9 Model 1 Simulation Accuracy 7, vs. gear life.

From this plot it is observed that the performance Model 1 with RBF network and

Model 1 with SVMs is the same. Their performance is slightly better than the
performance of Model 1 with MLP networks. The performances of all three

formulations are acceptable because 7, is less than the cut-off value for all the

formulations.

Figure 5.10 shows the simulation accuracy 7, plotted against the gear life for Model 2.
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Figure 5.10 Model 2 Simulation Accuracy 7, vs. gear life.
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From Figure 5.10 it is observed that the performance of the formulations for Model 2 is
practically the same. The performances of all three formulations are acceptable because
7sim 18 less than the cut-off value for all the formulations.

Next the performance of Model 1 and Mode 2 for each of the formulation is assessed.

Figure 5.11 shows the performance of the two models with MLP feedforward networks.
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Figure 5.11 Performance of Model 1 and Model 2 with MLP feedforward networks.

From Figure 5.11 it is observed that Model 2 performs better than Model 1. This is

because when simulating with Model 2 the whole data set is used as opposed to Model
1 in which only a section of the data is used.

Figure 5.12 shows the performance of the two models with RBF feedforward networks.
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Figure 5.12 Performance of Model 1 and Model 2 with RBF feedforward networks.

Figure 5.12 shows that for RBF networks Model 1 performs better than that Model 2 in
the running in stages of the gear life. After this stage the performance of Model 2 is
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better than the performance of Model 1. This is because the vibration signature in the
running in stages of the gear is much different to the vibration during the rest of the gear
life as discussed in Section 5.4.4.

Figure 5.13 shows the performance of the two models with SVM. From this plot it is
observed that Model 2 performs much better than Model 1. This is because although the
vibration signatures in different stages of the gear life are different, the SVM has good

generalisation properties and also the fact that when simulating with Model 2 the whole

data set is used.
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Figure 5.13 Performance of Model 1 and Model 2 with SVM.

From Figure 5.11 to Figure 5.13 it is concluded that the performances of Model 1 and
Model 2 for the different formulations are quite comparable over the whole life of the

gear tested under constant load conditions.

5.5.2 Comparison of the diagnostic properties of the TDA calculated by direct
averaging and the TDA predicted by the developed models

To establish whether the TDA predicted by the developed models retain the diagnostic
capabilities of the TDA calculated by direct averaging the peak value X, and the
kurtosis are used. Figure 5.14 and Figure 5.15 are plots of X, and kurtosis calculated
from the TDA predicted by the developed models superimposed on the X and
kurtosis calculated from the TDA obtained using direct averaging for data measured
under constant loading conditions. Figure 5.14 shows the results obtained using Model

1 for MLP, RBF and SVMs throughout the life of the gear.
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Figure 5.14 Comparison of kurtosis and peak values for the TDA calculated by direct averaging
(solid line) and the TDA predicted by Model 1 (dotted line) with MLP, RBF and SVMs.
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Figure 5.15 Comparison of kurtosis and peak values for the TDA calculated by direct averaging
(solid line) and the TDA predicted by Model 2 (dotted line) with MLP, RBF and SVMs.

From Figure 5.14 it is observed that for all three formulations the kurtosis is an almost
exact fit. This implies that the TDA predicted by Model 1 can be used to monitor the

presence of impulses in the gear vibration. It is observed from this plot that there are
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lots of impulses in the gear vibration during the running in and wear out stages of the
gear life. On the other hand, only the peak values obtained from Model 1 with MLP and
SVM are close fits and can be used to monitor the amplitude of the overall vibration.
The bad performance of Model 1 with RBF is because the RBF network selected in this
simulation was not optimal, therefore generalised badly to changes in the measured

vibration as gear failure progressed.

Figure 5.15 shows the results obtained using Model 2 for MLP, RBF and SVMs
throughout the life of the gear. It is observed from Figure 5.16 that for all three
formulations the kurtosis is an exact fit therefore the TDA predicted by Model 1 can be
used to monitor the presence of impulses in the gear vibration. The peak values obtained
for all three formulations are close fits, therefore they can be used to monitor the
amplitude of the overall vibration. The better performance on the peak values is because
Model 2 uses the entire gear vibration during its simulation, therefore the network is

exposed to all the underlying dynamics within the measured vibration.

5.6 Performance of developed models under varying load conditions

This topic of gearboxes operating under varying load conditions has been studied in
great detail. Stander and Heyns (2001) noted the influence of varying loads on vibration
monitoring of gears. Stander et al. (2002)° conducted an experimental investigation to
observe the influence of fluctuating load conditions on the measured acceleration signal.
They concluded that the load variation manifests itself as a low-frequency modulation
on the measured acceleration signal. In this section the performance of the developed
model for time domain averaging on data obtained from test conducted under varying
load conditions is assessed. A random load with frequencies varying between 2 Hz and
5 Hz was applied. Measurements were taken at three different stages of the gear life, the
running in stage, the constant wear stage and the wear out stage. The acquired data was
processed as described in Chapter 4 and simulations were done using unseen validation

sets for Model 1 and Model 2.

5.6.1 Simulations with Model 1
This paragraph presents the results obtained using Model 1 for test data obtained from

different stages of the gear life of tests conducted under varying load conditions. Figure

96 Chapter 5



P

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
WO YUNIBESITHI YA PRETORIA Testing the synchronous filter on experimental data

5.16 (a) to Figure 5.16 (c) show the results obtained when Model 1 with MLP network
is simulated with a validation set of 40 unseen gear rotations for the three different gear

life stages.
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Figure 5.16 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.16 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.16 (¢) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.
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The above plots show that Model 1 with 40 gear rotations can predict the TDA for 160
gear rotations fairly well over the different life stages of the gear under varying load
conditions. This is because of the good generalisation capabilities of the MLP network.
The frequency spectrum in this plot indicates that Model 1 with MLP can pick up the

side bands of the gear mesh frequency.

Figure 17 (a) to Figure 17 (c) show the results obtained when Model 1 with RBF

network is simulated using 40 unseen gear rotations for the three different gear life

stages.
3
Lo —— TDAafter 160 revs
W 2 — with 40 revs
£
o 1F
3
=~ 0
o
£ 4
<
i3 . L i . ) .
0 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16
Time [s]
0121 ~ TDA after 160 revs
01l ~== Simulation with 40 revs
e°
S o008 4
E_OAOS
< 0.041 e
0.02+ ~
0 g l l l l l I l l l i L & &
- T T T ; } ! ! Y
180 190 200 210 220 230 240 250 260 270
Frequency [Hz]

Figure 5.17 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.17 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.17 (c) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.

From above plots it is observed that Model 1 with RBF and 40 gear rotations can

predict the TDA for 160 gear rotations fairly well but the prediction of the running in

stage of the gear life is poor. This is because the vibration signature of the gear vibration

are different and the generalisation capabilities of the selected RBF architecture was not

as good as that of MLP network.

Figure 18 (a) to Figure 18 (c) show the results obtained when Model 1 with SVM is

simulated using 40 unseen gear rotations for the three different gear life stages.
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Figure 5.18 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.18 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.18 (c) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.

Model 1 with SVMs produces poor results for the running in stage of the gear life. This
is because the vibration signatures of the gear vibration are different in the different

stages and the SVM does not generalise well enough.

5.6.2 Simulations with Model 2
In this paragraph Model 2 simulations with unseen validation data from different stages

of the gear life are presented.

Figure 19 (a) to Figure 19 (c) show the results obtained when Model 2 with a MLP

network is simulated with unseen gear rotations for the three gear life stages.
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Figure 5.19 (b) Model 2 prediction with a validation set measured during the constant wear

stage of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.19 (a) to Figure 5.19 (c) show that Model 2 with a MLP feedforward network
can correctly predict the TDA for 160 gear rotations over the entire life of the gear. This
is because Model 2 uses the whole data set as opposed to Model 1 that uses only a

section of the data set.

Figure 20 (a) to Figure 20 (¢) show the results obtained when Model 2 with a RBF

network is simulated with unseen gear rotations for the three gear life stages.
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Figure 5.20 (a) Model 2 prediction with a validation set measured during the running in stage

of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.20 (b) Model 2 prediction with a validation set measured during the constant wear

stage of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.20 (a) to Figure 5.20 (c) show that Model 2 with a RBF feedforward network

can correctly predict the TDA for 160 gear rotations over the entire life of the gear. The

good performance can again be attributed to the fact that Model 2 uses the whole data

during simulation as opposed to Model 1 that uses only a section of the data set.

Figure 21 (a) to Figure 21

(c) show the results obtained when Model 2 with SVMs is

simulated with unseen gear rotations for the three gear life stages.
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stage of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.21 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA obtained after 160 gear rotations

Figure 5.21 (a) to Figure 5.21 (c) show that Model 2 with a SVM network correctly
predicts the TDA for 160 gear rotations over the entire life of the gear. The good
performance is attributed to the fact that Model 2 uses the whole data during simulation

as opposed to Model 1 that uses only a section of the data set.

It is observed from the above plots that ANNs and SVMs can correctly predict the TDA
under varying load conditions. This is because when properly trained, ANNs and SVMs
can map nonlinearity between an input and output space with good generalisation.
Secondly, the applied load was random, therefore, the load modulation on the vibration

signature was not synchronous with the vibration of the shaft. This load modulation
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condition is called non-synchronous load modulation (Stander and Heyns, 2003) and the
TDA can suppress load modulation under non-synchronous fluctuating load conditions

because of its randomness relative to the rotation of the gear.

5.6.3 Comparison of the performance of the different formulations under varying
load

The performance of the three formulations in Model 1 and Model 2 was assessed using
the fit parameter to determine which of the formulations is best suited for this

application. Figure 5.22 and Figure 5.23 shows the simulation accuracy 7, plotted
against the gear life for Model 1 and Model 2, respectively.
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Figure 5. 22 Model 1 Simulation Accuracy 7, vs. gear life
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Figure 5. 23 Model 2 Simulation Accuracy 7, vs. gear life

For Model 1 it is observed that SVMs perform best for varying load conditions and
MLP gives the worst performance. This is because of the structural risk minimisation

used in SVMs, which is said to generalise better than the empirical risk minimisation

105 Chapter 5



P

UNIVERSITEIT VAN PRETORIA
a UNIVERSITY OF PRETORIA
@ YUNIBESITHI YA PRETORIA Testing the synchronous filter on experimental data

used in neural networks (Vapnik 1995; Gunn, 1998). For Model 2 the performance of
the formulation is the same. This is because Model 2 uses the whole vibration during

simulation therefore the network is exposed to all the transient effects within the data.

The following set of plots compare the performance Model 1 and Model 2 for the

different formulations.
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Figure 5.24 Performance of Model 1 and Model 2 with MLP feedforward networks
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The above plots show that for varying load condition Model 2 performs much better
than Model 1 for all three formulations. This is due to the fact that although Model 2
only uses 10 inputs at a time, it still uses the whole data for simulation as opposed to
Model 1 that uses only a section of the data set for simulation. This allows Model 2 to
train and simulate more efficiently since it is exposed to all the underlying dynamics

within the data set.

5.6.4 Comparison of the diagnostic properties of the TDA calculated by direct
averaging and the TDA predicted by the developed models

This paragraph presents the X, and kurtosis to establish whether the TDA predicted by
the developed models retains the diagnostic capabilities of the TDA calculated by direct
averaging the peak value X, and the kurtosis are used. Figure 5.27 and Figure 5.28 are
plots of X, and kurtosis calculated from the TDA predicted by the developed models
superimposed on the X, and kurtosis calculated from the TDA calculated using direct

averaging for data measured under varying load conditions.

Figure 5.27 shows the results obtained using Model 1 for MLP, RBF and SVMs. In
Figure 5.27 and Figure 5.28 X, and kurtosis are only plotted for the running in,
constant wear and wear out stages of the gear life. It is observed that the kurtosis is not a
good fit. This implies that Model 1 cannot be used to monitor the presence of impulses
in the gear vibration. The peak values for TDA calculated using direct averaging and the
peak values for TDA obtained using Model 1 fit well. This implies that the peak values
of the TDA obtained using Model 1 can be used to monitor the overall vibration of the

gear signal.
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Figure 5.27 Comparison of kurtosis and peak values for the TDA calculated by direct averaging
(solid line) and the TDA predicted by Model 1 (dotted line) with MLP, RBF and SVMs.

Figure 5.28 shows the results obtained using Model 2 for MLP, RBF and SVMs during

the running in, constant wear and wear out stages of gear life.
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Figure 5.28 Comparison of kurtosis and peak values for the TDA calculated by direct averaging
(solid line) and the TDA predicted by Model 1 (dotted line) with MLP, RBF and SVMs.
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It is observed from Figure 5.28 that both the kurtosis and the peak values are not far off.
This implies that the TDA predicted by Model 2 can be used to monitor impulses and
the overall gear vibration. The superior performance of Model 2 is attributed to the fact
that Model 2 exposes the formulations to the entire vibration during the simulation
process. Table 5.2 and Table 5.3 present a summary of the properties of Model 1 and
Model 2 for the three formulations.

Table 5.2 Summary of properties for Model 1 with MLP, RBF and SVMs.

Strength Weaknesses Ideal application
MLP | Good generalisation under | Depends on training and Monitoring of overall vibration and
constant load conditions generalisation of selected impulses in a gear vibration under constant
Good generalisation under | network load conditions
varying load conditions Monitoring of peak values under varying
load conditions
RBF | Good generalisation under | Poor generalisation under Monitoring of overall vibration and
constant load conditions varying load conditions impulses constant loading conditions
Depends on generalisation of | Monitoring of peak values under varying
selected network load conditions
SVM | Good generalisation under | Depends on generalisation of | Monitoring of overall vibration and
constant load conditions SVM impulses under constant loading conditions
Good generalisation under Monitoring of peak values under varying
varying load conditions load conditions

Table 5.3 Summary of properties for Model 2 with MLP, RBF and SVMs

Strength Weaknesses Ideal application
MLP | Good generalisation under | Looses diagnostic capability for Monitoring of overall vibration and
constant load conditions overall vibration under varying loads | impulses in under both constant and
Good generalisation under { Depends on generalisation of varying load conditions
varying load conditions selected network
RBF | Good gencralisation under | Poor generalisation under varying Monitoring of overall vibration and
constant load conditions load conditions impulses in under both constant and
Good generalisation under | Looses diagnostic capability for varying load conditions
varying load conditions overall vibration under varying loads
Depends on generalisation of
selected network
SVM | Good generalisation under | Depends on generalisation of SVM | Monitoring of overall vibration and
constant load conditions impulses in under both constant and
Good generalisation under varying load conditions
varying load conditions
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5.7 Conclusion

In this chapter the synchronous filter for time domain averaging of gear vibration data
developed in Chapter 4 is tested on a new vibration data set from the accelerated gear
life test rig to assess its suitability for use over the entire life of the gear. For
measurements from tests carried out under constant load conditions the performances of
Model 1 and Model 2 are practically the same over the entire life of the gear. For
measurements from a test carried out under varying load conditions Model 2 performs
better than Model 1 over the entire life of the gear. The superior performance of Model
2 is because Model 2 uses the whole data set for training and simulation as opposed to
Model 1, which uses only a section of the data set. Using the whole data set during
training and simulation exposes the formulations in the model to all transient effects
within the data resulting in a more accurate TDA prediction. The performance of Model

1 strongly depends on the generalisation capabilities of the formulation that is used.
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Chapter 6

Conclusions and recommendations for future work

6.1 Conclusions

The monitoring of incipient failure in gears and gearbox systems is of outmost
importance to engineers since failures in large gearboxes without any backup systems
could easily lead to production losses that can quickly amount to millions of Rands.
Most of the vibration analysis techniques for gearboxes require time domain or
synchronous averaging. Although direct time domain averaging has been around for
decades, it still remains a challenge to develop an efficient time domain averaging filter
(synchronous filter) that is suitable for implementation on an online gear condition
monitoring system. This is particularly so because direct time domain averaging
requires a large amount of data to be collected and stored in the data acquisition system

before the TDA is calculated.

In this work the use of ANNs and SVMs in the development of a synchronous filter for
time domain averaging of gear vibration data is investigated. Two models that utilise
ANNs and SVMs for time domain averaging are developed. The first model (Model 1)
utilises a feedforward network structure to map the input space (rotation synchronised
gear vibration signals) to the target (TDA of the rotation synchronised gear vibration
signals) in a single step. The second model (Model 2) estimates the TDA of the input
space in small sequential steps, analogous to taking a running average of the input
space. Model 2 consists of a number of small feedforward networks but instead of the
networks being used to predict the TDA of the whole input space in one step, are used
to first sequentially predict the average of subsections of the input space (instantaneous
averages). The output of the first set of feedforward networks are used as inputs into a

second feedforward network that predicts the TDA of the whole input space.

The developed models considerably reduce the amount of gear vibration data that needs
to be stored in the data acquisition system to execute synchronous averaging. This

characteristic of the developed synchronous filtering models brings us yet another step
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closer to the development of an online vibration based gearbox condition monitoring

system that makes use of TDA to enhance its diagnostic capabilities.

Chapter 1 of this work presents a literature study of different vibration based gear
condition monitoring techniques, filtering and the application ANNs and SVMs in
pattern recognition. ANNs and SVMs are attractive in study because of the following
properties:

e They can form arbitrary decisions so that any complex mapping from a set of

noise-contaminated signals to a noise-free signal can be realized.
e They can easily be implemented as software or in specialized hardware
e They are quite resilient against distortions in the input data and have a capability

to learn and generalize well when they are properly trained.

In Chapter 2 the theory and mathematics of existing time domain averaging models are
presented. The characteristics of some of the existing time domain averaging models
are investigated using numerical examples and experimental vibration data from the
accelerated gear life test rig. From this analysis it is concluded that calculating the TDA
by direct averaging is most suitable for filtering out the vibration content that is not

synchronous with the rotation of the gear of interest.

In Chapter 3 the theories of the MLP neural network, the RBF neural network and
SVMs are presented. Preliminary simulations using data from the accelerated gear life
test rig to investigate the suitability of these formulations for use in the synchronous
filter are conducted. It is concluded from the simulation results that MLP, RBF and
SVMs are all suitable for use in the synchronous filtering model.

Chapter 4 presents the actual development process for the synchronous filter for time
domain averaging of gear vibration data. Two different filter models are developed.
Using Model 1, which utilises ANN or SVMs to map input space (rotations
synchronised gear vibration signals) to the target (TDA calculated with 160 rotation
synchronised gear vibration signals by direct averaging) in one step an input vibration
data reduction of 75 % was achieved. At first glance SVMs seem to be a more attractive

option because of the slightly better TDA prediction they produce. Their attractiveness
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is reduced by the fact that they are more computationally expensive than MLP and RBF,
therefore the analyst needs to be cautious when SVMs are implemented in an online
system that requires retraining regularly. On the other hand the MLP and RBF networks
are much quicker and easier to train, therefore can be suitable for online systems even
when required to retrain online. Model 2 operates in two stages. In the first stage it uses
10 inputs (10 rotations synchronised gear vibration signals) to predict the instantaneous
TDA of the gear vibration. The input data to the first stage can immediately be deleted
from the memory of the data acquisition system after use. The outputs of the first stage
are saved and used as inputs to a second feedforward network to predict the TDA of the
entire gear vibration signal. In this work this results in an effective data reduction of
83.75 % in the amount of data that needs to be stored in the data acquisition system in

order to calculate the TDA.

In Chapter 5 the developed synchronous filters for time domain averaging of gear
vibration data are tested on a new data set from the accelerated gear life test rig to assess
their diagnostic capabilities and suitability for use over the entire gear life. The
performances of the different formulations on the developed models are found to be
equal for data measured under constant load conditions for both Model 1 and Model 2.
For data measured under varying load conditions Model 2 performs much better than
Model 1 over the entire gear life for all three formulations. This is because Model 2 uses
the whole data set for training and simulation therefore it exposes the used formulation
to all the transient effects within the data set. The performance of Model 1 depends on

the generalisation capabilities of the formulation that is used.

6.2 Recommendations for future work

As future work on the development of a synchronous filter for time domain averaging

of gear vibration data the following issues still need to be addressed:

e The two models that were proposed in this work should be made more robust by
implementing proper optimisation schemes for the network architecture for a
specific data set.

e The developed models should be implemented in a DSP board for use in actual

online gear condition monitoring system.
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The test data that was used to test the developed models was from a controlled
experimental set-up. The developed models should be tested on data from an
industrial application.

An investigation of the suitability of the developed models for use in condition
monitoring of other rotating machinery that require time domain averaging

should be conducted.
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Appendix A

A.1 Experimental set-up

A schematic diagram of the accelerated gear life test rig used in this work is presented

in Figure A.1. Figure A.2 shows a diagram of the accelerated gear life test rig.
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Figure A.1 Schematic diagram of experimental set-up
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Figure A.2 Accelerated gear life test rig.

Table A1l give the specifications of the accelerated gear life test rig.
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Table A.1 Accelerated life gear test rig Specifications

Item Item Description

Number

1 PC

F Gearbox Flender Himel Type E20A Ratio
1:96:1

3 Gearbox Flender Himel Type E60A Ratio
4:72:1

4 Motor WEG 380V / 50 Hz, three-phase

5 Alternator Mecc alte 5.5 kVA, three-phase

6 Flywheel Fenner 2517-25

7 Current controller JEC current controller

8 DC Power supply 0-5V

9 Anti-aliasing low pass filter | 4™ order low pass Butterworth filter
with 300Hz cut-off

10 Signal conditioner PCB ICP Model 482A22

11 Siglab analyser Siglab model 20-42

12 Flexible couplings

13 PCB accelerometer 5V/g

14 Shaft encoder Hengstler Himel type 0053 163 /10-
30V DC /30mA
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Figure A.3 Monitored gear inside the gearbox.

Accelerometer

Monitored
Gearbox

Figure A.4 Measurement point and mounting of accelerometer .
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Figure A.5 Shaft encoder mounted on input to shaft to the monitored gearbox.
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Appendix B

B.1 Back-Propagation method
In this study, the output is the time domain average of the rotation synchronised gearbox
vibration data. In Figure 3.1 the output of the / hidden unit is obtained by calculating

the weighted linear combination of the d input values.
d
a,=> WX, B.1
i=1

Where W indicates weights in the first layer, going from input i to hidden unit j while

W) indicates the bias for the /* hidden unit. The activation of the j* hidden unit is

obtained by transforming the output g; in equation (B.1) into z;, which is shown in

Figure 3.1, is
2, = fimer () (B.2)

The output of the second layer is obtained by transforming the activation of the second
hidden layer using the second layer weights. Given the output of the hidden layer z; in
equation (B.2), the output of unit £ is given by

M
4= Wy, (B.3)
j=0

Similarly equation (B.3) may be transformed into the output units by using some

activation function as follows:

Vi = Fouter (@) (B4

Combining equations (B.1), (B.2), (B.3) and (B.4) the input x to the output y can be
related by a two-layered non-linear mathematical expression, which may be written as

follows:
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M d
(o))
i=0

=0

yk :fouter(

Where d is the number of input units, M is the number of hidden units, w; is the weight-
vector, the function f,u., is linear and fi..r is a hyperbolic tangent function. These

functions are defined as:
fouter (V) =V (B'6)

and

—y

fou (V) = tanh(v) = &= (B.7)

e 4

e +e

The weights w; and in the hidden layers are varied until the error between the network

prediction and the output from the training data is minimised.
Given the training set D = {X ,{,tk}j:'=1 and assuming that the targets 7, are sampled

independently given the inputs x; and the weight parameters wy; the sum of square of

error cost function E is given by

E=2 Y S0t ®B3)

Where n is the index for the training pattern and £ is the index for the output units.

The minimisation of E is achieved by solving for the derivative of the error in equations
(B.8) with respect to the weights. The derivative of the error is calculated with respect
to the weights that connects the hidden layer to the output layer and may be written

using the chain rule as follows:

OE  OF Oa,
ow,  Oa, ow,
_ 9E %, ba, (B.9)
oy, Oa, Ow,;
. OF
= ;f;wer(ak)a:k_zj
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where z; is given in equation (B.2). The derivative of the error with respect to the
weights which connects the hidden layer to the output layer may be written using the

chain rule is given by

OE OF 0aq,
My O OWy (B.10)
OE : . OE
= ; a. W, a, )—
awkl Zn: f;nner ( J )2/,: kjf;)uter( k ) aynk
The derivative of the sum of square cost function in equation (B.8) is written as
OE
=t,~Vu (B.11)
nk
The derivatives of the linear activation function in equation (B.6) is:
Joue(@)=c (B.12)
while the derivative of the hyperbolic tangent function is:
f;;mer(aj)=seCh2(aj) (B'13)

This appendix shows the derivatives of the errors with respect to weights. Equation
(B.11) shows the derivative of the cost functions that could be incorporated into
equations (B.9) and (B.10). Equations (B.12) and (B.13) show the derivatives of the

two possible activation functions.
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Appendix C

C.1 Gradient method

In this appendix the scaled conjugate optimisation method is described. Before
introducing the scaled conjugate gradient method the conjugate gradient method is
introduced. In supervised neural network training, the main goal is to identify weights
that give the best prediction of the output whenever presented with the input. The
scaled conjugate gradient method is used to sample through the weight space until the
weight vector that minimises the distance between the neural network prediction and the

target data is obtained.

C.2 Conjugate gradient method
The weight vector that gives the minimum error is obtained by taking successive steps

through the weight space as follows:
w(n+1) = w(n)+ Aw(n) (C.1)

where n is the iteration step and A represents change. Different algorithms choose this
step size differently. In this section, gradient descent method will be discussed,
followed by how it is extended to the conjugate gradient method. For the gradient

descent method, the step size in equation (C.1) is defined as:
Aw" = —npVE(w(n)) (C2)

where the parameter 7 is the learning rate and the gradient of the error is calculated
using the back-propagation technique described in Appendix B. If the learning rate is
sufficiently small, the value of error will decrease at each successive step until a
minimum is obtained. The disadvantage with this approach is that it is computationally
expensive compared to other techniques.

For the conjugate gradient method the quadratic function of error is minimised at each
iteration over a progressively expanding linear vector space that includes the global
minimum of the error. For the conjugate gradient procedure, the following steps are
followed (Haykin, 1999; Marwala, 2001):
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¢ Choose the initial weight w(0).
e Calculate the gradient vector VE(w(0)).

At each step 7 use the line search to find 7(n) that minimises E(7) representing the cost

function expressed in terms of 7 for fixed values of w and —VE(w(0)) .

e Check that the Euclidean norm of the vector —VE(w(n)) is sufficiently less than
that of —-VE(w(0)).

e Update the weight vector w(n+1)=w(n)—n(n)VE(w(n)). For w(n+1) compute
the updated gradient VE(w(n+1)).

e Use Polak-Ribiére method to calculate f(n +1)

VE(w(n+1))" (VE(w(n+1)) - VE(w(N))))

(C.3)
VE(w(n))” VE(w(n))

B(n+1)=

e Update the direction vector VE(w(n+1)) = VE(w(n+1))— f(n+1)VE(w(n)).
e Setn=(n+1)and go back to step 3.
e Stop when the condition HVE(w(n))" = £"VE(W(O))|| is satisfied in which gis a

small number.

C.3 Scaled conjugate gradient method
The scaled conjugate gradient method differs from conjugate gradient method in that it
does not involve the line search described in step 3 in the previous section.

The step-size (see step 3) is calculated by using the following formula (Meller, 1993):

(C.4)

VE(n)" H(n)VE + n(n) ||VE(n)||2 J

n(n)=2| n(n)- .
( IVE®m)|

where H is the Hessian matrix of the gradient.
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Appendix D

D.1 Feature space

This appendix discusses the methods that can be used to construct a mapping into a high
dimensional feature space by the use of reproducing kernels and implementation issues
with regards to SVM. The idea of kernel functions is to enable operations to be
performed in the input space rather than a potentially higher dimensional feature space.
This provides a way of addressing the curse of dimensionality. The computation is
however still critically dependent upon the number of training patterns and to provide a
good data distribution for the high dimensional problem will generally require a large

training set.

D.1 Kernel functions

The following theory is based on the Reproducing Kernel Hilbert Space (RKHS)
(Aronszajn, 1950; Gunn , 1998). An inner product in the feature space has an equivalent

kernel in input space,

K(x,x") = (g(x).4(x")), (D.1)

provided certain conditions hold. If K is a symmetric positive definite function, which

satisfies Mercer’s condition,
K(nx)=Y ad, (W, (x), a,20, D2)

[[& (x.x) g (x)g (x)dxdx' >0, gelL, (D.3)

Then the kernel represents a legitimate product in feature space. Valid functions
satisfying the Mercer’s conditions that were investigated in this study are given below.

These functions are valid for all real x and x' unless otherwise stated.
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D.2.1 Gaussian radial basis function
Radial basis functions have received significant attention, most commonly with a

Gaussian of the form,

K(x,x")= exp[—ﬂ)—c;)—cz-'—"-—} (D.4)

Classical techniques utilising radial basis functions employ some method of
determining a subset of centres. Typically the method of clustering is employed to
select the subset of centres. An attractive feature of the SVN is that this selection is
implicit, with each support vector contributing one local Gaussian function, centred at
that data point. By further consideration it is possible to select the global basis function
width, s, using the SRM principle (Vapnik, 1995).

D.2.2 Exponential radial basis function

The form below defines an exponential radial basis function,

K(xx')= exp(—"—x-l’zf—'uj. (D.5)

20

This form produces a piecewise solution that can be attractive when discontinuities are

acceptable.

D.2.3 Splines

Splines are a popular choice for modelling because of their flexibility. A finite spline, of

order «, with N knots located at 7, is given by,

K(x,x')zz’c:x'x"+§:(x——‘rs): (x'—‘rs):. (D.6)

r=0

An infinite spline is defined on the interval [0, 1) by

K(x,x")= Zx:x’x "+ j(x— 7, )j (x'-7, )j dr. D.7)

r=0
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In the case where « = 1,(S1°° ), the kernel is defined by,
K(x,x")= 1+(x,x')+—;—(x,x')min(x,x')—%min(x,x')3 , (D.8)

where the solution is piecewise cubic.

D.2.4 B-splines
Bsplines are another popular spline formulation. The B-splines kernel is defined on the

interval [-1, 1], by the attractive closed form

K(x,x") =By, (x—x"). (D.9)

D.3 Loss functions

Using the quadratic loss function in Figure 3.6 (a),

Lot (f (x)=2)=(F (x)-») . (D-10)

The solution is given by,

= = (D.11)

+Z(a, —-a')y, ——2—152(61,2 +(a,.*)2).

i=1

The corresponding optimisation can be simplified by exploiting the KKT conditions,

and noting that these imply g = | ,8,.| . The resultant optimisation problem is,

R L ! 1 &,
m,}ngzzliﬂ,(xnx,)—;ﬂ,y,+§—C—Zﬂ, (D.12)

i=1 j=1 i=1

with constraints,
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>.B=0 (D.13)
i=1
For the Huber loss function in Figure 3.6 (c),
1
~(F(x)-») for |f(x)-)|<n
Lyer (f(x)-¥)= , . (D.14)
,ulf(x)—yl—% Otherwise
the solution is given by,
1 [
maxW(a,a )= max—— a-ao la, —a x,x
nax ¥ (@) =max=23 3 (o ~a)(, -4 ){xox ) D.15)
/
+ Z(a, —a,')y, —%Z(aﬁ +(a, )2),u
i=1 i=l
The resultant optimisation is
1 [ / 1 /
m;HEZZﬁ,ﬂ, (xi’xj>_2ﬂiyi+EZﬂizlu (D.16)
=l =1 i= i=1
with constraints,
-C<p <C, i=1K,/
! (D.17)

D.4 Implementation issues

For SVM the resulting optimisation problems are dependent upon the number of

training examples. For large data sets methods have been proposed for speeding up the

algorithm by decomposing the problem into smaller ones. The optimisation problem for

an e-insensitive loss function can be expressed in matrix format as,

1
mmExTHx+ch

X

(E.18)
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where
xxT xxr +Y a
H= P e A (E.19)
-xx*  xx* e-Y a
with constraints
x-(l,K ,1,-1LK ,—1) =0, a,.,a,.' =20, i=1K,l (E.20)
where
x1 yl
X=M|, Y=|M (E.21)
X, Y
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