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Appendix A

A schematic diagram of the accelerated gear life test rig used in this work is presented

in Figure A.t. Figure A.2 shows a diagram of the accelerated gear life test rig.
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Figure A.2 Accelerated gear life test rig.

Table At give the specifications of the accelerated gear life test rig.

 
 
 



Item Item Description
Number
1 PC

2 Gearbox Flender Himel Type E20A Ratio

1:96:1

3 Gearbox Flender Himel Type E60A Ratio

4:72:1

4 Motor WEG 380V 150 Hz, three-phase

5 Alternator Mecc alte 5.5 kVA, three-phase

6 Flywheel Fenner 2517-25

7 Current controller lEC current controller

8 DC Power supply 0-5V

9 Anti-aliasing low pass filter 4ID order low pass Butterworth filter

with 300Hz cut-off

10 Signal conditioner PCB ICP Model 482A22

11 Siglab analyser Siglab model 20-42

12 Flexible couplings

13 PCB accelerometer 5 V/g

14 Shaft encoder Hengstler Himel type 0053 163/10-

30V DC 130mA

 
 
 



 
 
 



 
 
 



Back-Propagation Method

AppendixB

B.I Back-Propagation method
In this study, the output is the time domain average of the rotation synchronised gearbox

vibration data. In Figure 3.1 the output ofthej'h hidden unit is obtained by calculating

the weighted linear combination of the d input values.

d

aj = LWj~I)Xi
i=1

Where Wj~l) indicates weights in the first layer, going from input i to hidden unitj while

~~) indicates the bias for the j'h hidden unit The activation of the j'h hidden unit is

obtained by transforming the output aj in equation (B.l) into Zj, which is shown in

Figure 3.1, is

The output of the second layer is obtained by transforming the activation of the second

hidden layer using the second layer weights. Given the output of the hidden layer Zj in

equation (B.2), the output of unit k is given by

M- "w.(2)ak - LJ kj Yj
j=O

Similarly equation (B.3) may be transformed into the output units by using some

activation function as follows:

Combining equations (B.l), (B.2), (B.3) and (B.4) the input x to the output Y can be

related by a two-layered non-linear mathematical expression, which may be written as

follows:

 
 
 



Back-Propagation Method

(M (d) J_ (2) (I) (2)
Yk - fouler ~ W-9' hnner t;Wj; + WkO

Where d is the number of input units, M is the number of hidden units, W if is the weight-

vector, the function fouter is linear and finner is a hyperbolic tangent function. These

functions are defmed as:

V -I"e -e
hnner(v) = tanh(v) = _

eV + e v

The weights Wi and in the hidden layers are varied until the error between the network

prediction and the output from the training data is minimised.

Given the training set D = {Xk,tk}:=l and assuming that the targets tk are sampled

independently given the inputs Xk and the weight parameters wig' the sum of square of

error cost function E is given by

Where n is the index for the training pattern and k is the index for the output units.

The minimisation of E is achieved by solving for the derivative of the error in equations

(B.8) with respect to the weights. The derivative of the error is calculated with respect

to the weights that connects the hidden layer to the output layer and may be written

using the chain rule as follows:

 
 
 



Back-Propagation Method

where Zj is given in equation (R2). The derivative of the error with respect to the

weights which connects the hidden layer to the output layer may be written using the

chain rule is given by

BE
::h, = tnk - Ynk
VYnk

, 2
.f.nner(a) = sech (a)

This appendix shows the derivatives of the errors with respect to weights. Equation

(RII) shows the derivative of the cost functions that could be incorporated into

equations (R9) and (RIO). Equations (B.12) and (RB) show the derivatives of the

two possible activation functions.

 
 
 



Appendix C

C.I Gradient method
In this appendix the scaled conjugate optimisation method is described. Before

introducing the scaled conjugate gradient method the conjugate gradient method is

introduced. In supervised neural network training, the main goal is to identify weights

that give the best prediction of the output whenever presented with the input. The

scaled conjugate gradient method is used to sample through the weight space until the

weight vector that minimises the distance between the neural network prediction and the

target data is obtained.

C.2 Conjugate gradient method
The weight vector that gives the minimum error is obtained by taking successive steps

through the weight space as follows:

where n is the iteration step and A represents change. Different algorithms choose this

step size differently. In this section, gradient descent method will be discussed,

followed by how it is extended to the conjugate gradient method. For the gradient

descent method, the step size in equation (C.l) is defined as:

where the parameter 17 is the learning rate and the gradient of the error is calculated

using the back-propagation technique described in Appendix B. If the learning rate is

sufficiently small, the value of error will decrease at each successive step until a

minimum is obtained. The disadvantage with this approach is that it is computationally

expensive compared to other techniques.

For the conjugate gradient method the quadratic function of error is minimised at each

iteration over a progressively expanding linear vector space that includes the global

minimum of the error. For the conjugate gradient procedure, the following steps are

followed (Haykin, 1999; Marwala, 2001):

 
 
 



• Choose the initial weight w(O).

• Calculate the gradient vector VE(w(O)).

At each step n use the line search to find 1](n)that minimises E( 1]) representing the cost

function expressed in terms of 1] for fixed values ofw and -VE(w(O)) .

that of -VE(w(O)).

• Update the weight vector w(n+1) = w(n)-1](n)VE(w(n)). For w(n+1) compute

the updated gradient VE (w( n +1)) .

• Use Polak-Ribiere method to calculate fJ(n +1)

{3(n+1) = VE(w(n+1)f (VE(w(n+1))- VE(w(N))))
VE(w(n))TV E(w(n))

• Update the direction vectorVE(w(n+ 1)) = VE(w(n+ 1)) - {3(n+ l)VE(w(n)).

• Set n = (n +1) and go back to step 3.

• Stop when the condition IIVE(w(n))11= eliV E(w(O))1I is satisfied in which e is a

C.3 Scaled conjugate gradient method
The scaled conjugate gradient method differs from conjugate gradient method in that it

does not involve the line search described in step 3 in the previous section.

The step-size (see step 3) is calculated by using the following formula (M0ller, 1993):

-(n) = 2( n VE(nf H(n)VE +1](n)IIVE(n)11
2 J

1] 1]() IIVE(n )112

 
 
 



Feature space and SVM implementation

AppendixD

D.l Feature space
This appendix discusses the methods that can be used to construct a mapping into a high

dimensional feature space by the use of reproducing kernels and implementation issues

with regards to SVM. The idea of kernel functions is to enable operations to be

performed in the input space rather than a potentially higher dimensional feature space.

This provides a way of addressing the curse of dimensionality. The computation is

however still critically dependent upon the number of training patterns and to provide a

good data distribution for the high dimensional problem will generally require a large

training set.

D.l Kernel functions
The following theory is based on the Reproducing Kernel Hilbert Space (RKHS)

(Aronszajn, 1950; Gunn, 1998). An inner product in the feature space has an equivalent

kernel in input space,

K(x,x') = (¢(x},¢(x'}),

provided certain conditions hold. If K is a symmetric positive definite function, which

satisfies Mercer's condition,

00

K(x,x'}= Lam¢m (x}pm (x'), am ~O,

JJK(x,x'}g(x}g(x'}dxdx' > 0, g E L2,

Then the kernel represents a legitimate product in feature space. Valid functions

satisfying the Mercer's conditions that were investigated in this study are given below.

These functions are valid for all real x and x' unless otherwise stated.

 
 
 



D.2.1 Gaussian radial basis function

Radial basis functions have received significant attention, most commonly with a

Gaussian of the form,

Classical techniques utilising radial basis functions employ some method of

determining a subset of centres. Typically the method of clustering is employed to

select the subset of centres. An attractive feature of the SVN is that this selection is

implicit, with each support vector contributing one local Gaussian function, centred at

that data point. By further consideration it is possible to select the global basis function

width, s, using the SRM principle (Vapnik, 1995).

D.2.2 Exponential radial basis function

The form below defines an exponential radial basis function,

This form produces a piecewise solution that can be attractive when discontinuities are

acceptable.

D.2.3 Splines

Splines are a popular choice for modelling because of their flexibility. A finite spline, of

order K, with N knots located at Ts is given by,

K 1

K(x,x')= Lxrx,r+ J(X-Ts):(X'-Ts):dT.
r=O 0

 
 
 



Feature space and SVM implementation

In the case where K = 1,(Slw ), the kernel is defined by,

K(x,x') = 1+ (x,x')+..!..(x,x')min(x,x')-..!..min(x,x,)3 ,
2 6

D.2.4 B-splines

Bsplines are another popular spline formulation. The B-splines kernel is defined on the

interval [-1, 1], by the attractive closed form

K(x,x') = B2N+1 (x-x').

The corresponding optimisation can be simplified by exploiting the KKT conditions,

and noting that these imply Pi' = Ipi I.The resultant optimisation problem is,

 
 
 



Feature space and SVM implementation

!
.!.(/(X)- yf

LHubber (I (x) - Y) = 2 2

,u II(x) - yl- ~
for II(x ) - yl < ,u

D.4 Implementation issues
For SVM the resulting optimisation problems are dependent upon the number of

training examples. For large data sets methods have been proposed for speeding up the

algorithm by decomposing the problem into smaller ones. The optimisation problem for

an E-insensitive loss function can be expressed in matrix format as,

min .!.xT H x + cT X
2

 
 
 



Feature space and SVM implementation

x .(1,K ,1, -1,K ,-1) = 0,
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