
Chapter 5

Testing the synchronous filter on experimental data

5.1 Introduction
In this chapter the synchronous filter for time domain averaging of gear vibration data

that was developed in Chapter 4 is implemented on a new data set from the accelerated

gear life test rig. The data set was measured at two-hour intervals throughout the gear

life. Taking measurements over the entire gear life serves the purpose of demonstrating

the suitability of the developed filter in predicting the time domain average over the

entire gear life. Secondly, we want to evaluate the suitability of the developed

synchronous filter for time domain averaging for use in cases where the applied load is

not constant as would be the case in a typical industrial application. In this a brief

background on the data is presented. This is followed by simulation using the developed

models for MLP, RBF and SVM, respectively. The results are compared to those that

are obtained using direct time domain averaging approach, focusing on the practical

implications. The synchronous filter is also tested on data from a test conducted under

varying load conditions.

5.2 Data representation

The gear was expected to have a life of 30 hours; therefore vibration measurements

were taken in two-hour intervals until failure occurred so as to properly monitor the

progression of gear failure. The data was sampled at a frequency of 51,2 kHz to get a

full representation of the frequencies of interest, in our case, the gear mesh frequency

(GMF) and its side bands (SB). The GMF is defmed by

where Sf is the shaft frequency and NT is the number of gear teeth. The side bands (SB)

occur at a frequency Fr defined by

 
 
 



where k is an integer and Sf is the shaft frequency. For the accelerated gear life test rig

the GMF, SB and operating properties are given in Table 5.1.

Rotational Speed GMF SB.] SB.2

[revs/min] [Hz] [Hz] [Hz]

311 223.0 217.2 228.2

From Table 5.1 it is observed that the highest frequency of interest is 228.2 Hz theref.ore

the measured acceleration was low-pass filtered at 300 Hz. In a gearbox where the

applied load is constant, the amplitude of the side bands of the meshing frequency (SBj

and gear mesh frequency (GMF) in the frequency spectrum are expected to increase as

the vibration increases. This observation supplies a means of representing the

progression of gear life using gear vibration. In this work the SB is normalised with the

GMF and then plotted over the gear life. Figure 5.1 shows the FFT spectrum of the

measured vibration signals from one of the test signals. This plot clearly shows the

GMFandSB.
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Figure 5.2 below shows the representation of the gear vibration over the entire gear life

using normalised SB.2. This plot shows the normalised SB and a fourth order

 
 
 



polynomial fitted onto the normalised SB data. The fitted curve closely resembles the

well known bath- tub curve (Norton, 1989) that models the life of most mechanical

systems. The first 5 hours in operation show the running in stage of the gear life. The

gear vibration level stabilises from 5 hours until 25 hours, which can be considered as

constant gear wear stage. From 25 hours the gear vibration increases until the gear fails

after 33 hours. The final stage can be considered as the wear out stage of the gear life.
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This paragraph presents the results obtained using Model 1 for test data obtained from

different stages of the gear life for tests conducted under constant load conditions as

presented by Table 4.2. Model 1 with MLP, RBF and SVM formulations is tested and

the results obtained for each of the formulations are compared to the TDA calculated

using the direct time domain averaging approach after 160 gear rotations. For Modell,

40 gear rotations are considered as the optimum number of inputs as discussed in

Chapter 4. This is a reduction of 75 percent of the data that would be used when the

direct averaging approach is used to calculate the TDA.

5.3.1 Modell with MLP feedforward network

Figure 5.3 (a) to Figure 5.3 (c) shows the prediction from Model 1 with MLP

feedforward networks superimposed on the time domain average (TDA) of the gear

vibration signals obtained using direct averaging. The simulations were done using

 
 
 



unseen validation sets as presented in Table 4.3. From Figure 5.3 (a) to Figure 5.3 (c), it

is observed that Model 1 with MLP feedforward networks can correctly predict with 40

gear rotations the TDA for 160 gear rotations over the entire gear life. The FFT of the

TDA calculated by direct averaging and the FFT of the simulation results are exact fits

throughout the life of the gear. This indicates that Model 1 with MLP feedforward

networks retains the diagnostic enhancing capabilities of TDA.
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Figure 5.3 (a) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken during the running in stage of the gear.
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Figure 5.3 (b) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken during the constant wear in stage of the

gear.
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Figure 5.3 (c) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken in the wear out stage of the gear.

5.3.2 Modell with RBF Feedforward network

Figure 5.4 (a) to Figure 5.4 (c) show the prediction of Modell with RBF feedforward

neural networks. The simulation results are superimposed on the TDA of the gear

vibration signals calculated using the direct averaging. The validation set had 40 inputs.
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Figure 5.4 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations. The measurements were taken during the running in stage of the gear.
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Figure 5.4 (b) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken during the constant wear stage of the
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Figure 5.4 (c) Model I prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken during the wear out stage of the gear.

The above plots show in both frequency domain and time domain representation, that

Model I with a RBF feedforward network with 40 gear rotations can correctly predict

the TDA for 160 gear rotations over the entire life of the gear. This is because the

selected RBF network can effectively map the input to the output space. The FFT of the

TDA calculated by direct averaging and the FFT of the simulation results are exact fits
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throughout the life of the gear. This indicates that Model 1 with RBF feedforward

networks retains the diagnostic enhancing capabilities .ofTDA.

5.3.3 Modell with SVMs

Figure 5.5 (a) to Figure 5.5 (c) show the prediction obtained using Modell with SVMs

superimposed on the TDA of the gear vibration signals calculated by direct averaging.

The following plots show the Model 1 with SVMs with an input of 40 gear rotation

signals can correctly predict the TDA for 160 gear rotations over the entire life of the

gear.
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Figure 5.5 (a) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA for 160 rotations. The measurements were taken during the running in stage ofthe gear.
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Figure 5.5 (b) Mode] 1 prediction with validation set of 40 gear rotations superimposed on the

TDA obtained after 160 rotations. The measurements were from the constant wear gear stage.
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Figure 5.5 (c) Model 1 prediction with validation set of 40 gear rotations superimposed on the

TDA after 160 rotations. The measurements were taken from the wear out stage of the gear.

The FFT of the TDA calculated by direct averaging and the FFT of the simulation

results are exact fits throughout the life of the gear. This indicates that Model 1 with

SVMs retains the diagnostic enhancing capabilities of TDA. The good performance of

SVMs is due to their superior ability to train and generalise (Gunn, 1998).

This paragraph presents the results obtained using Model 2 from measurements taken at

different stages of the gear life. The measurements were taken while the gearbox was

operating under constant load conditions. Model 2 with MLP, RBF and SVMs is

simulated with unseen validation data sets as presented in Table 4.4. The obtained

results for each of the formulations are compared to the TDA calculated using the-direct

averaging for 160 gear rotations. In Model 2 all 160 rotation synchronised gear

vibration signals are sequentially used in batches of 10 rotations. The rotation signals

that have already been passed through the first stage of the model are deleted from the

memory of the data acquisition system, while their output is saved for use in the second

stage of the model. After simulation with all 160 gear rotations, there are 16 signals that

will be stored in the data acquisition system. This means that the highest number of

signals that will be stored in the data acquisition system is 1 batch of 10 signals and 16

outputs from the first stage of Model 2. This results in 26 signals instead of 160 rotation

 
 
 



synchronised gear vibration signals. This is effectively a reduction of 83.75 % of the

data that needs to be stored in the data acquisition system during the time domain

averaging process for this test data set.

5.4.1 Model 2 with MLP feedforward network

Figure 5.6 (a) to Figure 5.6 (c) show the prediction from Model 2 with MLP

feedforward networks superimposed on TDA of the gear vibration signals calculated

using direct averaging.
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Figure 5.6 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.6 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.6 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.

The above plots show in both frequency domain and time domain representation, that

Model 2 with a MLP feedforward network can correctly predict the TDA for 160 gear

rotations over the entire life of the gear. This is because in model 2 the network is

exposed to the entire data set, therefore, it simulates more effectively.

5.4.2 Model 2 with RBF feedforward network

Figure 5.7 (a) to Figure 5.7 (c) show the prediction from Model 2 with RBF

feedforward networks superimposed on the TDA of the gear vibration signals calculated

using direct averaging.
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Figure 5.7 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.7 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.7 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.

Figure 5.7 (a) to Figure 5.7 (c) show that Model 2 with a RBF feedforwardnetwork can

correctly predict the TDA for 160 gear rotations over the entire gear life. This is because

in Model 2 the network is exposed to the entire data set, therefore, it simulates more

effectively.

5.4.3 Model 2 with SVMs

Figure 5.8 (a) to Figure 5.8 (c) show the prediction from Model 2 with SVMs

superimposed on the TDA of the gear vibration signals calculated using the direct

averaging.
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Figure 5.8 (a) Model 2 prediction with a validation set measured during the running in stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (b) Model 2 prediction with a validation set measured during the constant wear stage

of the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA calculated with 160 gear rotations.
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Figure 5.8 (a) to Figure 5.8 (c) show that Model 2 with a SVM feedforward network can

correctly predict the TDA for 160 gear rotations over the entire life of the gear.

5.4.4 Discussion

In Figures 5.3 (a) to Figure 5.8 (a) it is observed that the TDA of the vibration from the

running in stage of the gear life is fairly random. The amplitude of the TDA in the

running in stage of the gear life is less than the amplitude of the TDA in the other two

stages of the gear life. The random noise content of the vibration results in the presence

of prominent side bands as observed frequency spectrums in Figures 5.3 (a) to Figure

5.8 (a). In Figures 5.3 (b) to Figure 5.8 (b) it is observed that the amplitude of the TDA

increased and the signal is more periodic because of the constant loading condition. The

reduced random noise in the signal is shown by the reduction in the side bands of the

gear mesh frequency observed in the frequency spectrums in Figures 5.3 (b) to Figure

5.8 (b). Figures 5.3 (c) to Figure 5.8 (c) show an increase in the amplitude of the TDA.

This is expected as one would expect the vibration would to increase as the gear fails.

There is also evidence of impulse in the TDA signal. This may be because some of the

gear teeth may have cracked resulting in the reduction of the meshing stiffness of those

meshing tooth sets. The introduction of impulses in the TDA results in the increase in

the side bands of the gear mesh frequency as observed in Figures 5.3 (c) to Figure 5.8

(c).

5.5 Assessing simulation accuracy and diagnostic capabilities
Up to this point the developed models have been used to predict the TDA of the gear

vibration signal without quantifying the quality of the prediction and the diagnostic

capability of the model outputs. This section presents some parameters that will be used

to assess the quality of the prediction and establish whether the model predictions retain

the diagnostic capabilities of the TDA.

To quantify the quality the simulation accuracy a 'fit' parameter 17sim (Raath, 1992) is

defined. First the response error is defined as

esim ( k ) = Y desired ( k ) - Yachieved ( k ) ,
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The defined 'fit' parameter 1]sim is attractive in that it gives a single value for each

simulation, therefore it can be used to compare the performance of the different

formulations over the entire life of the gear. A low value of 'fit' parameter 1]sim implies a

good fit while a high value implies a bad fit, therefore, a 'fit' parameter value of

1]sim = 0% implies a perfect fit. In this work it was established experimentally that

To establish whether the model predictions retain the diagnostic capabilities of the TDA

two parameters are used. The first parameter is the peak value of the vibration x,nax
during a given interval T. This parameter can be used where the analyst is interested

only in the overall magnitude of the vibration to distinguish between acceptable and

unsatisfactory vibration states (Heyns, 2002). The second parameter is the kurtosis. The

kurtosis is the fourth statistical moment of the vibration signal and it is given by

1 fTkurtosis = -4-.b x4dt.
a-T

where T is a given interval, (J is the variance and x is the vibration data. The kurtosis of

a signal is very useful for detecting the presence of an impulse within the signal

(Norton, 1989). The peak value of the vibration Xmax and the kurtosis of the TDA

calculated using direct averaging is compared to the TDA from Modell and Mode 2

with all three formulations.

5.5.1 Comparison of the performance of the different formulations

The performance of the three formulations in Model 1 and Model 2 was assessed using

the fit parameter to determine which of the formulations is best suited for this
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application. Figure 5.9 shows the simulation accuracy 1]sim plotted against the gear life

for Modell.
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From this plot it is observed that the performance Model I with RBF network and

Model 1 with SVMs is the same. Their performance is slightly better than the

performance of Model 1 with MLP networks. The performances of all three

formulations are acceptable because 1]sim is less than the cut-off value for all the

formulations.
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From Figure 5.10 it is observed that the performance of the formulations for Model 2 is

practically the same. The performances of all three formulations are acceptable because

1]sim is less than the cut-off value for all the formulations.

Next the performance of Model 1 and Mode 2 for each of the formulation is assessed.

Figure 5.11 shows the performance of the two models with MLP feedforward networks.

From Figure 5.11 it is observed that Model 2 performs better than Modell. This is

because when simulating with Model 2 the whole data set is used as opposed to Model

1 in which only a section of the data is used.

Figure 5.12 shows that for RBF networks Modell performs better than that Model 2 in

the running in stages of the gear life. After this stage the performance of Model 2 is
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better than the performance of Modell. This is because the vibration signature in the

running in stages of the gear is much different to the vibration during the rest of the gear

life as discussed in Section 5.4.4.

Figure 5.13 shows the performance of the two models with SVM. From this plot it is

observed that Model 2 performs much better than Modell. This is because although the

vibration signatures in different stages of the gear life are different, the SVM has good

generalisation properties and also the fact that when simulating with Model 2 the whole

data set is used.

From Figure 5.11 to Figure 5.13 it is concluded that the performances of Model I and

Model 2 for the different formulations are quite comparable over the whole life of the

gear tested under constant load conditions.

5.5.2 Comparison of the diagnostic properties of the TDA calculated by direct

averaging and the TDA predicted by the developed models

To establish whether the TDA predicted by the developed models retain the diagnostic

capabilities of the TDA calculated by direct averaging the peak value Xmax and the

kurtosis are used. Figure 5.14 and Figure 5.15 are plots of Xmax and kurtosis calculated

from the TDA predicted by the developed models superimposed on the Xmax and

kurtosis calculated from the TDA obtained using direct averaging for data measured

under constant loading conditions. Figure 5.14 shows the results obtained using Model

1 for MLP, RBF and SVMs throughout the life of the gear.
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Figure 5.14 Comparison of kurtosis and peak values for the TDA calculated by direct averaging

(solid line) and the TDA predicted by Modell (dotted line) with MLP, RBF and SVMs.
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Figure 5.15 Comparison of kurtosis and peak values for the TDA calculated by direct averaging

(solid line) and the TDA predicted by Model 2 (dotted line) with MLP, RBF and SVMs.

From Figure 5.14 it is observed that for all three formulations the kurtosis is an almost

exact fit. This implies that the TDA predicted by Model 1 can be used to monitor the

presence of impulses in the gear vibration. It is observed from this plot that there are
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lots of impulses in the gear vibration during the running in and wear out stages of the

gear life. On the other hand, only the peak values obtained from Model 1 with MLP and

SVM are close fits and can be used to monitor the amplitude of the overall vibration.

The bad performance of Model 1 with RBF is because the RBF network selected in this

simulation was not optimal, therefore generalised badly to changes in the measured

vibration as gear failure progressed.

Figure 5.15 shows the results obtained using Model 2 for MLP, RBF and SVMs

throughout the life of the gear. It is observed from Figure 5.16 that for all three

formulations the kurtosis is an exact fit therefore the TDA predicted by Modell can be

used to monitor the presence of impulses in the gear vibration. The peak values obtained

for all three formulations are close fits, therefore they can be used to monitor the

amplitude of the overall vibration. The better performance on the peak values is because

Model 2 uses the entire gear vibration during its simulation, therefore the network is

exposed to all the underlying dynamics within the measured vibration.

5.6 Performance of developed models under varying load conditions
This topic of gearboxes operating under varying load conditions has been studied in

great detail. Stander and Heyns (2001) noted the influence of varying loads on vibration

monitoring of gears. Stander et al. (2002)b conducted an experimental investigation to

observe the influence of fluctuating load conditions on the measured acceleration signal.

They concluded that the load variation manifests itself as a low-frequency modulation

on the measured acceleration signal. In this section the performance of the developed

model for time domain averaging on data obtained from test conducted under varying

load conditions is assessed. A random load with frequencies varying between 2 Hz and

5 Hz was applied. Measurements were taken at three different stages of the gear life, the

running in stage, the constant wear stage and the wear out stage. The acquired data was

processed as described in Chapter 4 and simulations were done using unseen validation

sets for Model 1 and Model 2.

5.6.1 Simulations with Modell

This paragraph presents the results obtained using Model 1 for test data obtained from

different stages of the gear life of tests conducted under varying load conditions. Figure

 
 
 



5.16 (a) to Figure 5.16 (c) show the results obtained when Modell with MLP network

is simulated with a validation set of 40 unseen gear rotations for the three different gear

life stages.
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Figure 5.16 (a) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.16 (b) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.16 (c) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.

 
 
 



The above plots show that Model 1 with 40 gear rotations can predict the TDA for 160

gear rotations fairly well over the different life stages of the gear under varying load

conditions. This is because of the good generalisation capabilities of the MLP network.

The frequency spectrum in this plot indicates that Model 1 with MLP can pick up the

side bands of the gear mesh frequency.

Figure 17 (a) to Figure 17 (c) show the results obtained when Model 1 with RBF

network is simulated using 40 unseen gear rotations for the three different gear life

stages.
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Figure 5.17 (a) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.17 (b) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.17 (c) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.

From above plots it is observed that Model 1 with RBF and 40 gear rotations can

predict the TDA for 160 gear rotations fairly well but the prediction of the running in

stage of the gear life is poor. This is because the vibration signature of the gear vibration

are different and the generalisation capabilities of the selected RBF architecture was not

as good as that of MLP network.

Figure 18 (a) to Figure 18 (c) show the results obtained when Model 1 with SVM is

simulated using 40 unseen gear rotations for the three different gear life stages.
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Figure 5.18 (a) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken during the running in stage of the gear.
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Figure 5.18 (b) Model I prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken from the constant wear stage of the gear.
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Figure 5.18 (c) Modell prediction with validation set of 40 gear rotations superimposed on the

TDA from 160 rotations from measurements taken in the wear out stage of the gear.

Model 1 with SVMs produces poor results for the running in stage of the gear life. This

is because the vibration signatures of the gear vibration are different in the different

stages and the SVM does not generalise well enough.

5.6.2 Simulations with Model 2

In this paragraph Model 2 simulations with unseen validation data from different stages

of the gear life are presented.

Figure 19 (a) to Figure 19 (c) show the results obtained when Model 2 with a MLP

network is simulated with unseen gear rotations for the three gear life stages.
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Figure 5.19 (a) Model 2 prediction with a validation set measured during the running in stage

of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.19 (b) Model 2 prediction with a validation set measured during the constant wear

stage of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.19 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.19 (a) to Figure 5.19 (c) show that Model 2 with a MLP feedforward network

can correctly predict the TDA for 160 gear rotations over the entire life of the gear. This

is because Model 2 uses the whole data set as opposed to Model 1 that uses only a

section of the data set.

Figure 20 (a) to Figure 20 (c) show the results obtained when Model 2 with a RBF

network is simulated with unseen gear rotations for the three gear life stages.
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Figure 5.20 (a) Model 2 prediction with a validation set measured during the running in stage

of the gear life superimposed on the TDA obtained after 160 gear rotations
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Figure 5.20 (b) Model 2 prediction with a validation set measured during the constant wear

stage of the gear life superimposed on the TDA obtained after 160 gear rotations

 
 
 



Testing the synchronous filter on experimental data

~2
E

"'"-0

..E 0a.
~-1

-2o

0.06
<I>
-0:e 0.04
a.
~0.02

Figure 5.20 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA obtained after 160 gear rotations

Figure 5.20 (a) to Figure 5.20 (c) show that Model 2 with a RBF feedforward network

can correctly predict the TDA for 160 gear rotations over the entire life of the gear. The

good performance can again be attributed to the fact that Model 2 uses the whole data

during simulation as opposed to Model 1 that uses only a section of the data set.

Figure 21 (a) to Figure 21 (c) show the results obtained when Model 2 with SVMs is

simulated with unseen gear rotations for the three gear life stages.
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Figure 5.21 (a) Model 2 prediction with a validation set measured during the running in stage

of the gear life superimposed on the TDA obtained after 160gear rotations
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Figure 5.21 (b) Model 2 prediction with a validation set measured during the constant wear

stage of the gear life superimposed on the IDA obtained after 160 gear rotations
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Figure 5.21 (c) Model 2 prediction with a validation set measured during the wear out stage of

the gear life superimposed on the TDA obtained after 160 gear rotations

Figure 5.21 (a) to Figure 5.21 (c) show that Model 2 with a SVM network correctly

predicts the TDA for 160 gear rotations over the entire life of the gear. The good

performance is attributed to the fact that Model 2 uses the whole data during simulation

as opposed to Model 1 that uses only a section of the data set.

It is observed from the above plots that ANNs and SVMs can correctly predict the TDA

under varying load conditions. This is because when properly trained, ANNs and SVMs

can map nonlinearity between an input and output space with good generalisation.

Secondly, the applied load was random, therefore, the load modulation on the vibration

signature was not synchronous with the vibration of the shaft. This load modulation
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condition is called non-synchronous load modulation (Stander and Heyns, 2003) and the

TDA can suppress load modulation under non-synchronous fluctuating load conditions

because of its randomness relative to the rotation ofthe gear.

5.6.3 Comparison of the performance of the different formulations under varying

load

The performance of the three formulations in Model 1 and Model 2 was assessed using

the fit parameter to determine which of the formulations is best suited for this

application. Figure 5.22 and Figure 5.23 shows the simulation accuracy 1Jsim plotted

against the gear life for Modell and Model 2, respectively.
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For Model 1 it is observed that SVMs perform best for varying load conditions and

MLP gives the worst performance. This is because of the structural risk minimisation

used in SVMs, which is said to generalise better than the empirical risk minimisation
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used in neural networks (Vapnik 1995; Gunn, 1998). For Model 2 the performance of

the formulation is the same. This is because Model 2 uses the whole vibration during

simulation therefore the network is exposed to all the transient effects within the data.

The following set of plots compare the performance Model 1 and Model 2 for the

different formulations.
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The above plots show that for varying load condition Model 2 performs much better

than Model I for all three formulations. This is due to the fact that although Model 2

only uses 10 inputs at a time, it still uses the whole data for simulation as opposed to

Model 1 that uses only a section of the data set for simulation. This allows Model 2 to

train and simulate more efficiently since it is exposed to all the underlying dynamics

within the data set.

5.6.4 Comparison of the diagnostic properties of the TDA calculated by direct

averaging and the TDA predicted by the developed models

This paragraph presents the Xmax and kurtosis to establish whether the TDA predicted by

the developed models retains the diagnostic capabilities of the TDA calculated by direct

averaging the peak value Xmax and the kurtosis are used. Figure 5.27 and Figure 5.28 are

plots of Xmax and kurtosis calculated from the TDA predicted by the developed models

superimposed on the Xmax and kurtosis calculated from the TDA calculated using direct

averaging for data measured under varying load conditions.

Figure 5.27 shows the results obtained using Model I for MLP, RBF and SVMs. In

Figure 5.27 and Figure 5.28 Xmax and kurtosis are only plotted for the running in,

constant wear and wear out stages of the gear life. It is observed that the kurtosis is not a

good fit. This implies that Model 1 cannot be used to monitor the presence of impulses

in the gear vibration. The peak values for TDA calculated using direct averaging and the

peak values for TDA obtained using Model I fit well. This implies that the peak values

of the TDA obtained using Model 1 can be used to monitor the overall vibration of the

gear signal.
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Figure 5.27 Comparison of kurtosis and peak values for the TDA calculated by direct averaging

(solid line) and the TDA predicted by Modell (dotted line) with MLP, RBF and SVMs.

Figure 5.28 shows the results obtained using Model 2 for MLP, RBF and SVMs during

the running in, constant wear and wear out stages of gear life.
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Figure 5.28 Comparison of kurtosis and peak values for the TDA calculated by direct averaging

(solid line) and the TDA predicted by Modell (dotted line) with MLP, RBF and SYMs.
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It is observed from Figure 5.28 that both the kurtosis and the peak: values are not far off.

This implies that the IDA predicted by Model 2 can be used to monitor impulses and

the overall gear vibration. The superior performance of Model 2 is attributed to the fact

that Model 2 exposes the formulations to the entire vibration during the simulation

process. Table 5.2 and Table 5.3 present a summary of the properties of Model 1 and

Model 2 for the three formulations.

Strength Weaknesses Ideal application

MLP Good generalisation under Depends on training and Monitoring of overall vibration and

constant load conditions generalisation of selected impulses in a gear vibration under constant

Good generalisation under network load conditions

varying load conditions Monitoring of peak values under varying

load conditions

RBF Good generalisation under Poor generalisation under Monitoring of overall vibration and

constant load conditions varying load conditions impulses constant loading conditions

Depends on generalisation of Monitoring of peak values under varying

selected network load conditions

SVM Good generalisation under Depends on generalisation of Monitoring of overall vibration and

constant load conditions SVM impulses under constant loading conditions

Good generalisation under Monitoring of peak values under varying

varying load conditions load conditions

Strength Weaknesses Ideal application

MLP Good generalisationunder Looses diagnostic capability for Monitoring of overall vibration and

constant load conditions overall vibration under varying loads impulses in under both constant and

Goodgeneralisation under Depends on generalisation of varying load conditions

varying load conditions selected network

RBF Good generalisation under Poor generalisation under varying Monitoring of overall vibration and

constant load conditions load conditions impulses in under both constant and

Good generalisation under Looses diagnostic capability for varying load conditions

varying load conditions overall vibration under varying loads

Depends on generalisation of

selected network

SVM Good generalisation under Depends on generalisationof SVM Monitoring of overall vibration and

constant load conditions impulses in under both constant and

Good generalisation under varying load conditions

varying load conditions
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5.7 Conclusion

In this chapter the synchronous filter for time domain averaging of gear vibration data

developed in Chapter 4 is tested on a new vibration data set from the accelerated gear

life test rig to assess its suitability for use over the entire life of the gear. For

measurements from tests carried out under constant load conditions the performances of

Modell and Model 2 are practically the same over the entire life of the gear. For

measurements from a test carried out under varying load conditions Model 2 performs

better than Model lover the entire life of the gear. The superior performance of Model

2 is because Model 2 uses the whole data set for training and simulation as opposed to

Model 1, which uses only a section of the data set. Using the whole data set during

training and simulation exposes the formulations in the model to all transient effects

within the data resulting in a more accurate IDA prediction. The performance of Model

1 strongly depends on the generalisation capabilities of the formulation that is used.
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