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4.1 Introduction

One of the main objectives for the development of a synchronous filter for gear

vibration is to reduce the amount of gear vibration data that needs to be stored in the

data acquisition system in order to calculate the time-domain average (synchronous

average) of the gear vibration data. This space saving can bring us a step closer to the

development of a truly online gear condition monitoring system that utilises time

domain averaging to enhance the diagnostic capability. The reduction in the amount of

data that needs to be stored in the data acquisition system allows for data acquisition

and analysis to be executed simultaneously. In Chapter 3 the theory of MLP, RBF

networks and SVMs in the light of this work was presented. Their suitability for use in a

time domain averaging task was also assessed. In this chapter, two models for

synchronous filtering of gear vibration are presented. The proposed models are

implemented using each of the three mathematical formulations and their performances

are compared. A detailed explanation of the experimental set-up is also presented.

4.2 ANNs and SVMs synchronous filtering model
In neural networks input space reduction is achieved by transforming the input data

space into a lower dimensional space or trimming off the redundant features in the input

space. Transformation of the input space to lower dimensional space is achieved by

using a procedure like Principal Component Analysis (PCA) (Bishop, 1995).

Engineering judgement and procedures like Automatic Relevance Determination (ARD)

(MacKay, 1994; Neal, 1996; Neal, 1998) are used to prune the input space. Mdlazi et al.

(2003) compared the performance of ARD to PCA focusing on the practical

implementation issues of the two input-selection schemes using practical vibration

examples.In this work, the interest is in the time domain representation of the gear

vibration data and moreover, it is undesirable to lose any of the underlying dynamics

within the input space, which could be the case when the input space is pruned.
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The requirement for time domain representation of the gear vibration data and input

space reduction results in the requirement of efficiently mapping the input space

(rotation synchronised gear vibration signal) to the output space (time domain average

of the vibration signal) using less data than would otherwise be used in the direct time-

domain averaging procedure.

ANNs and SVMs are suitable in such applications because of their non-linear mapping

and generalisation capabilities (Bishop, 1995; Gunn, 1998). In this paragraph the

developed filtering technique is described. The main idea is to simulate direct TDA

using artificial intelligence, in this case ANNs and SVMs. This approach has the

potential of reducing the amount of vibration data that is required to calculate the TDA

by direct averaging if the ANN s and SVMs can successfully map a fraction of the input

pace to the output (IDA calculated by direct averaging of all the input data) as shown in

Chapter 3. The performance of this filtering approach will therefore depend the non-

linear mapping and generalisation capabilities of ANNs and SVMs. This filtering

concept operates in two stages as shown in the block diagram in Figure 4.1.
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More detail the different stages of this filtering technique are discussed later on in this

chapter. Before much more is said about the data it is appropriate to describe the

experimental set-up.

4.2.1 Experimental set-up

The data used in this study was obtained from the accelerated gear life test rig

developed by Stander and Heyns (20028
) for their work on condition monitoring of

gearboxes under fluctuating load conditions.
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This experimental set-up consists of three Flender Himmel Motor helical gearboxes,

driven by a 5.5 kW three-phase four pole WEG squirrel cage electric motor. A 5.5 kVA

Mecc alte spa three-phase alternator was used for applying the load. The gear test rig

was designed to conduct accelerated gear life tests on the Flender E20A gearbox under

varying load conditions. Two additional Flender E60A gearboxes were incorporated in

the design in order to increase the torque applied to the small Flender E20A gearbox.

The rated load of the gears in the Flender E20A gearbox was 20 Nm. The Direct

current (DC) fields of the alternator were powered by an external DC supply in order to

control the load that was applied to the gears. A Hengstler R176TO1 1024ED

4A20KF shaft encoder, which produced 1024 pulses, and 1 pulse per revolution in the

form of an analog push-pull signal was used to measure the shaft speed. The reference

point for synchronous averaging is measured as a single pulse from the shaft encoder.

Acceleration measurements were taken in the vertical direction with a 5 V/g PCB

integrated circuit piezoelectric industrial accelerometer and a Siglab model 20-42

signal analyser (Stander and Heyns, 2002a). The accelerated gear life test rig is shown in

Figure 4.2.

The gears used in this experiment were manufactured in accordance with DIN3961,

Quality 3. The gear specifications are given in Table 4.1 (Davel,2003).

 
 
 



Description Specification

Helix angle at reference circle 30°

Number of teeth (Pinion) 22

Number of teeth (Gear) 43

Nominal Module 1.250 mm

Base circle radius (Pinion) 14.64 mm

Base circle radius (Gear) 28.61 mm

Tip radius (Pinion) 17.55 mm

Tip radius (Gear) 0.331 mm

A typical signal obtained from the accelerometer is given in Figure 4.3 (a). This signal

is synchronised with the pulse signal given in Figure 4.3 (b) in order to isolate the

vibration that is produced by each gear rotation.

Figure 4.3 (a) Measured acceleration
signal over 0.5 seconds.

"
"

Figure 4.3 (b) One pulse per/rev shaft encoder
signal for synchronising the gear vibration.

In order to assess the performance of the developed synchronous filter under both

constant and varying load conditions, the measurements were also taken under different

load conditions over the entire life of a gear. The load on the gearbox was applied by

changing the current supplied to the alternator. The different loading conditions are

given in Table 4.2.

 
 
 



Table 4.2 Experimental load conditions

Accelerated Constant Sine Square
life test load function function

0.0 0.0 0.5 0.3
0.0 0.0 2.0 2.0
5.0 3.0 3.0 3.0

Random
function
2.0-5.12

2.0
3.0

4.2.2Data processing

The acceleration data obtained from the gear test rig is passed through an eighth order

low pass Butterworth filter with a cut-off frequency of 300 Hz. The acceleration signal

is sampled at 51.2 kHz to ensure a true data representation. The filtered acceleration

signal is synchronised with the pulse signal. The signals obtained after synchronising

the low pass filtered acceleration signal with the pulse signal are not the same length

because of inaccuracies with the pulse signal. The signals are therefore resampled so

that they can have exactly the same period. In this work the signals were resampled to

8192 sample points per gear rotation. There were 165 gear rotations per test.

Synchronising the measured acceleration signal with the shaft encoder signal and

resampling each signal to 8192 resulted in an input space of (l65x8192). For

convenience, in this work an input space of (l60x8192) was selected. We seek to

predict the time domain average (synchronous average) of the gear vibration using only

a fraction of this input space.

In Chapter 3 it was shown that 40 rotation synchronised gear vibration signals are

suitable for predicting TDA of the gear vibration signals. This result implies that an

input space of dimensions (40x8192) can be used to calculate the TDA instead of the

input space of (l60x8192) that would otherwise be used when the direct time domain

averaging approach is used to calculate the TDA. Using 40 rotation synchronised gear

vibration signals instead of 160 rotation synchronised gear vibration signals is a

reduction of 75 percent in the input data requirement. This result also has some

implications in terms of the training and validation data sets. As stated above each test

produces 165 rotation synchronised gear vibration signals. If 40 of the rotation

synchronised gear vibration signals are used to train the neural network then the other

125 rotation synchronised gear vibration signals can be grouped in sets of 40 and used

as validation sets. For this section of the work measurements were taken under constant

load at different stages of gear life.

 
 
 



4.2.3 Model 1

In this section a model that utilises ANNs and SVMs to predict the IDA of gear

vibration is presented. A sensitivity study to assess the sensitivity of the proposed model

to number of inputs, number of hidden units, number of sample points per revolution

and percentage noise in the validation sets is also presented. The training and validation

data sets for Modell are tabulated in Table 4.3.

Table 4.3. Model I training and validation data sets for tests conducted under constant

loading.

Test 1 Test 2 Test 3 Test 4
Gear life stage New gear Running in gear Midlife Advanced damage

Training set I x(160x8192) 0 0 0

Validation sets 3x(160x8192) 4x(160x8192) 4x(160x8 I92) 4x(160x8192)

The first model (Model I) utilises a simple feedforward network structure as shown in

Figure 4.4. This model attempts to map the input space (rotation synchronised gear

vibration signals) to the target (time domain average of the rotation synchronised gear

vibration signal) using feedforward network structure in a single step.

25 % of the
rotation

synchronized
gear vibration

signals

FF
Network

Configuration

TDA
Synchronous

average

Modell was investigated for all the formulations discussed in Chapter 3. The analysis

of Modell with RBF and MLP was carried out in the following steps:

• The most suitable network architecture for mapping the input to the target is

selected.
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• The optimum number of inputs to the selected network architecture that

correctly predicts the TDA of the gear vibration data using validation data sets

are determined.

• The sensitivity of Model 1 with MLP or RBF networks to the number of sample

points per revolution is assessed.

• A sensitivity study to assess the robustness of Model 1 with MLP or RBF

networks with respect to noise is conducted.

4.2.3.1 Modell with MLP feedforward network

The first network formulation that was investigated is the MLP network. For

convenience, the root mean square error given in Equation (4.1) was used to assess the

performance of the neural network for the proposed model.

Nv is the number of validation data, tii) is the target and yii) is the network output. The

optimum number of nodes and inputs were determined in order to correctly approximate

the time domain averaging process while avoiding overfitting and thus bad

generalisation.

A suitable network architecture was selected by first randomly choosing a network

structure. The randomly selected structure was optimised sequentially by changing the

network parameters while monitoring the RMSE, until a satisfactory time domain

average prediction was obtained. The results obtained for analysis of the MLP using 20

unseen validation sets of dimensions (40x8192) are presented below. Figure 4.5 is a plot

of RMSE against the number of hidden units.
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This plot shows that simulation with the training set is insensitive to the number of

hidden units. When simulating with the validation sets there is general decrease in the

RMSE, then it stabilises at four hidden units. This is because increasing the number of

hidden units increases the flexibility of the network, thus increasing its capability to

map the input to the output. This plot also shows the average of all the simulations with

validation sets. The average shows insensitivity to the number of hidden units because

most of the validation sets are fairly insensitive to the number of inputs. The average is

somehow deceptive because some of the validation sets are sensitive to the number of

inputs. The average can, however, still be useful for comparison purposes because the

majority of the validation sets are insensitive to the number of hidden units. In this

study an MLP network with 5 hidden units was selected. Figure 4.6 shows the RMSE

plotted against the number of inputs for Model I simulated with 20 unseen validation

sets.

..•...... Average
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Figure 4.6 shows the RMSE plotted against the number of inputs. In Chapter 3 it was

established that 40 inputs were the optimal number of inputs for mapping the rotation

synchronised gear vibration signals to the TDA, therefore, 40 inputs were selected as

the maximum number of inputs in this analysis. In Figure 4.6 it is observed that the

RMSE decreases as the number of inputs is increased. This is expected because the

network is exposed to more of the underlying system dynamics, and therefore, trains

and predicts more efficiently than would otherwise be the case with less inputs. The

average of simulations with the validation sets and the simulation with the training set

are also plotted. These plots also confirm the fact the as the network is exposed to more

inputs, its prediction capabilities are enhanced. One of the objectives of this work is to

decrease the number of inputs that are required to calculate the TDA, therefore, the

analyst needs to make a compromise between the network accuracy and the number of

inputs that are used. Figure 4.7 shows the RMSE plotted against the number of sample

points per gear rotation.
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To assess the sensitivity to the number sample points per rotation synchronised gear

vibration signal, the 20 validation sets with 40 inputs were resampled from 8192 sample

points down to 4096, 2048, 1024, 512 and 256 respectively. Figure 4.7 shows the

RMSE plotted against the number of sample points per revolution. The RMSE decreases

until 2048 points per revolution, and thereafter remains constant. For the MLP

simulation 1024 points per revolution were used to reduce computational load though

2048 sample points per revolution would have been more suitable. In Figure 4.7 it is
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observed that there is a plot that is an outlier. This plot corresponds to the validation set

that corresponds to the damaged gear. This is because vibration produced by the

damaged gear is very different to that produced throughout the life of the gear, and the

selected network did not generalise well to this condition. Figure 4.8 shows the RMSE

plotted against percentage noise in the validation set.

Simulation with Training sel

o. .." """.."•. """"",,". "" ""...• """" ".• """. ""...•... ".."""...• "" "."""" ..".."."" " "

ow ~ ~ ~ ~ 00 ro 00 00 B
% Noise

Figure 4.8 shows the RMSE plotted against the percentage of random noise that is

superimposed on the validation sets. The random noise is chosen from a normal

distribution with a zero mean and variance of one. There is a direct relationship between

the noise level and the RMSE. From this analysis Model 1 that has a MLP feedforward

network was found to be fairly tolerant to noise.

4.2.3.2 Modell with RBF feedforward network

The second network formulation that was investigated for use in Model 1 is the RBF

network. The procedure that was followed in the analysis of the MLP network was used

for the RBF network. This section presents the results from the analysis of Modell with

the RBF network. The sensitivity of Model 1 to number of inputs, number of hidden

units, number of sample points per revolution and percentage noise superimposed on the

validation sets is also presented. Figure 4.9 shows the RMSE plotted against number of

hidden units (number of basis functions).
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Figure 4.9 shows the RMSE plotted against the number of hidden units (Number of

basis functions). It is observed from this plot that the RBF is very sensitive to the

number of basis functions. From Figure 4.9 it is observed that Model 1 with RBF

network results in best generalisation at 4 basis functions, therefore 4 basis functions

were selected for this study. It is possible that there is another optimum when more than

5 basis functions are used. To keep the computational load at a minimum it was decided

to settle for 4 basis functions. Figure 4.10 shows the RMSE plotted against the number

of inputs for Model 1 simulated with 20 unseen validation sets.

Figure 4.10 shows the RMSE plotted against the number of inputs. Again as observed

for MLP network, the number RMSE decreases as the number of inputs is increased. For

 
 
 



RBF, there is a definite minimum for all the validation sets at 40 inputs. For this work

40 inputs were selected as the optimum number of inputs for Model 1 with RBF. Figure

4.11 shows the RMSE plotted against the number of sample points per gear rotation.

From this plot it is observed that the optimum number of sample points per revolution is

2048 but for computational efficiency 1024 points were selected. In Figure 4.12 the

RMSE is plotted against the percentage noise in the validation set.

",,,,,,,,,,".,,,,,,,,,,,,,,,,,.",,,,,,,,"",,.,,,.,,''''''''', ..,,..,,...,,....•',,,,,,.""""
Simulation with Training set

Figure 4.12 is a plot of the RMSE against the percentage of random noise that is

superimposed on the validation sets. There is again a direct relationship between the

percentage noise and the RMSE. As the percentage noise increases so does the RMSE.
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4.2.3.3 Modell with SVMs

This section presents the results from the analysis of Model 1 with SVMs. The

sensitivity of Model 1 to number of inputs, number of hidden units, number of sample

points per revolution and percentage noise superimposed on the validation sets is also

presented.

The analysis of Model 1 with SVMs was carried out in the following steps:

• The most suitable Kernel function for mapping the input space to the target was

selected.

• The optimum number of inputs for correctly predicting the TDA of the rotation

synchronised gear vibration signals was determined.

• The sensitivity of Model 1 with SVMs to percentage noise in the validation sets

was assessed.

Figure 4.13 shows the plot of the performance of different Kernel functions that were

investigated in this study for the non-linear SVM regression task. In Figure 4.13 the

RMSE produced by each of the Kernel function on an unseen validation set is plotted

against the order of the Kernel function. From this plot, it is observed that the

Exponential Radial Basis Function (ERBF) Kernel function outperforms the other

Kernel functions. It is also observed that the ERBF Kernel function is insensitive to the

order of the Kernel function. In this study the ERBF Kernel function with an order of 10

was therefore selected.

1IJ2.5
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Figure 4.14 shows the RMSE plotted against the number of inputs for Model 1

simulated with 20 unseen validation sets. It is observed from Figure 4.14 that simulation

with the training set has a constant prediction error irrespective of the number of inputs.

This is an indication of the robustness of the SVM algorithm. Simulation with

validation sets indicates that there is an inverse proportionality between the number of

inputs and the prediction error. This is because the SVM is exposed to more of the

system dynamics as the number of inputs is increased; therefore, it trains more

effectively.

SVMs are computationally expensive, therefore, in this work 256 points per rotation

synchronised gear vibration signal were selected for all SVM analyses.
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Figure 4.15 shows the RMSE plotted against percentage noise. A direct relationship

between the RMSE and the percentage noise is observed. This is expected because the

introduction of noise to the validation sets increases the degree of nonlinearity between

the input and output space.
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4.2.4 Model 2

In this section a second model (Model 2) that utilises ANNs and SVMs to predict TDA

of gear vibration is presented. Model 2 estimates the TDA of the input space in small

sequential steps, analogous to taking a running average of the input space. This model

consists of a number of small feedforward networks similar to those in Model 1 but

instead of the networks being used to predict the TDA of the whole input space in one

step, the small feedforward networks are used to first sequentially predict the average of

subsections of the input space (instantaneous averages). The output of the first set of

feedforward networks are used as inputs into a second feedforward network that

predicts the time domain average of the whole input space. All the feedforward

networks are trained off-line to reduce computational time. In this model all the data

that have already been used can be discarded immediately. This means that one does not

need to store large amounts of data in the data collection system. The training and

validation data sets for Model 2 are tabulated in Table 4.4.

Table 4.4. Model 2 training and validation data sets for tests conducted under constant

loading.

Test 1 Test 2 Test 3 Test 4
Gear life stage Newgear Runningingear Midlife Advanceddamage

Training set lx(10x8192) 0 0 0

Validation sets 15x(10x8192) 16x(lOx8192) 16x(10x8192) 16x(10x8192)

 
 
 



In this section a sensitivity study to assess the sensitivity of the proposed model to

number of inputs, number of hidden units, number of sample points per revolution and

percentage noise in the validation sets is presented. A schematic diagram of Model 2 is

shown in Figure 4.16.
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Model 2 was investigated for all the formulations discussed in Chapter 3. The analysis

of Model 2 with RBF and MLP was carried out in the following steps:

• The most suitable network architecture for mapping a small section of the input

to its average (target) is selected.

• The sensitivity of Model 2 with MLP or RBF networks to noise is assessed.

• In Section 4.2.3.1 and Section 4.2.3.1 the sensitivity of Model 1 with MLP and

RBF networks to the number of sample points per rotation synchronised gear

vibration was assessed. It was concluded the 1024 points per revolution are

suitable, therefore 1024 sample points per rotation synchronised gear vibration

signal are selected for Model 2.
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4.2.4.1 Model 2 with MLP feedforward networks

This section presents the results from the analysis of Model 2 with MLP feedforward

networks. Figure 4.17 shows the simulation results of Model 2 with MLP network

simulated using an unseen validation set. The simulation result is superimposed on TDA

calculated using the direct time domain averaging approach.

I-T ...get I
_._. SifTlJlation

Figure 4.17 Model 2 with MLP network simulation result for an unseen validation set

superimposed on TDA after 160 gear rotations.

This plot shows that Model 2 with MLP feedforward networks is very suitable for

predicting the time domain average of the gear vibration. This is because Model 2 uses

the whole input space to predict the TDA as opposed to Model 1 that uses only a section

of the input space. Figure 4.18 shows the RMSE plotted against percentage noise in the

training and validation sets. The random noise content is again chosen from a normal

distribution with a zero mean and variance of one. For the simulation with the training

set it is observed that the model is fairly insensitive to noise. This is, however, not the

case when simulating with validation sets. There is a direct relationship between the

RMSE and the percentage noise superimposed in the data. This is because addition of

noise to the training and validation sets increases the degree of non-linearity between

the input space and the output.
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Figure 4.18 RMSE vs. percentage noise in training and validation sets for 3 unseen validation

sets.

4.2.4.2 Model 2 with RBF feedforward networks

This section presents the results from the analysis of Model 2 with RBF feedforward

network. In Figure 4.19 the simulation results of Model 2 with RBF network simulated

using an unseen validation set is superimposed on the TDA calculated using direct

averaging. The predicted TDA in Figure 4.19 is almost an exact fit. This is because

Model 2 uses the whole input space to predict the TDA; therefore the network is

exposed to all the transient effects in the data.

Figure 4.19 Model 2 with RBF network simulation result for an unseen validation set

superimposed on TDA after 160 gear rotations

Figure 4.20 shows the RMSE from 3 validation sets plotted against percentage noise in

the training and the validation sets. Both the training and the validation sets exhibit a

linear relationship between the RMSE and the percentage noise superimposed in the
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data. This is again because addition of noise to the training and validation sets increases

the degree of non-linearity between the input space and the output.

llJ 0.2
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Figure 4.20 RMSE vs. percentage noise in training and validation sets for 3 unseen validation

sets.

4.2.3.3 Model 2 with SVMs

This section presents the results from the analysis of Model 2 with SVMs in place of

feedforward neural networks. Figure 4.21 shows that the SVM is also suitable for use in

this modal with its only drawback being computational inefficiency. The good

performance of Model 2 is because it uses the whole input space to predict the TDA;

therefore the SVM is exposed to all the transient effects in the data. To maintain the

computation time at a minimum, 256 samples points per rotation synchronised gear

vibration signal were selected.
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Figure 4.21 Mode] 2 with SVM simulation results with an unseen validation set superimposed

on TDA after 160 gear rotations
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Figure 4.22 shows the RMSE from 3 validation sets plotted against percentage noise in

the training and the validation sets. With SVM the simulation with training set shows

that the support vector machine is fairly insensitive to noise. This is not the case when

simulating with the validation sets. Simulations with the validation sets indicate a direct

relationship between the RMSE and the percentage noise in the data. The observed

direct relationship is due to the fact that the addition of noise to the training and

validation sets increases the degree of non-linearity between the input space and the

output.
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Figure 4.22 RMSE vs. percentage Noise in training and validation sets for 3 unseen validation

sets.

4.2.5 Discussion

In this section a companson between the different mathematical formulations is

presented. The comparison is based on the average RMSE of simulation with a

population of20 validation sets (validation examples) for Modell and 3 validation sets

(validation examples) for Model 2 an computation time.

Figure 4.23 to Figure 4.26 show the results obtained for different formulations as

functions of some network parameters. Figure 4.23 shows the RMSE plotted against the

number of hidden units. From this plot it is observed that the MLP network performs

better than the RBF network. The RBF network is very sensitive to the number of

hidden units while the MLP is fairly insensitive. The insensitivity of MLP to the number

of hidden units is desirable because it implies that smaller and more computationally

 
 
 



of hidden units is desirable because it implies that smaller and more computationally

efficient networks can be used to calculate the TDA. Figure 4.24 shows the RMSE

plotted against the number of inputs for Model I with MLP, RBF networks and SVM

respectively. From this plot is observed that Model 1 with SVMs results in the best

performance especially at higher number of inputs. The superior performance is because

of the structural risk minimisation used in SVMs is superior in generalisation to the

empirical risk minimisation used in neural network (Gunn et aI., 1998). The

performance of Model 1 with RBF and MLP networks are comparable although the

RBF performs slightly better than MLP.
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In Figure 4.24 the reduction in RMSE as the number of inputs is increased is because the

formulations are exposed to more of the underlying system dynamics as the number of

inputs is increased, therefore they train more efficiently. Figure 4.25 shows RMSE

plotted against the number of sample points per revolution. This plot shows that Model

1 with MLP network performs better than Model 1 with RBF network, which is very

sensitive to the number of sample points per revolution. Figure 4.26 shows the

performance of the three formulations as a function of percentage noise in the training

and validation sets. This plot shows that the SVM again performs better than both MLP

and RBF although the performances are fairly comparable. This is due to the superior

performance of the structural risk minimisation used in SVMs 01apnik, 1995; Gunn,

1998).

Figure 4.25 RMSEvs. number of sample points per revolution for Modell with MLP and RBF

networks.

~
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Figure 4.26 RMSE vs. percentage noise in training and validation sets for Model 1 with MLP,

RBF and SVMs.
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4.2.5.2 Model 2

Figure 4.27 and Figure 4.28 show the performance of Model 2 with the three

formulations. Figure 4.27 shows the RMSE produced by 3 different validation sets. The

SVM performs very well when simulating with the training set but performs poorly for

validation sets. MLP and RBF both perform better than the SVMs for the validation

sets. The poorer performance of Model 2 with SVM as compared to Model 2 with MLP

and RBF networks is due to the fact that MLP and RBF are more suited to Model 2.
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Figure 4.28 shows the performance Model 2 with MLP, RBF and SVMs as a function of

the percentage noise in the training and validation sets. It is observed that the

performance of these formulations is the same. The observed direct relationship

between the percentage noise in the training and validation sets and the RMSE is

because the addition of noise increases the degree of non-linearity between the input

space and the output.
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Figure 4.28 RMSE vs. percentage noise in training and validation sets for Model 2 with MLP,

RBF and SVMs.

 
 
 



4.2.5.3 Computation time

To put the proposed methods in perspective, a comparison of computation times for the

existing time domain averaging method and the proposed models is done. A Pentium 4

computer with a 1.60 GHz processor was used. The computation times are presented in

Table 4.5.

It is observed that the required pre-processing time for Model 1 is less than the required

pre-processing time for the TDA calculated by direct averaging. This is because Model

1 uses 25 percent of the vibration data as opposed to the original TDA process, which

uses the all the vibration data. The required pre-processing time for Model 2 is equal to

the pre-processing time for the TDA calculated by direct averaging. This is because

both models use the same amount of vibration data. When Model 1 and Model 2 are

used, RBF and MLP give the best performance in terms of simulating time and SVMs

gives the poorest performance. The models are trained off-line therefore the training

time does not influence the simulating time in a real time applications. When the models

are used with MLP and RBF networks, they perform much better than original TDA

calculated by direct averaging in terms of simulation time. It is however, observed that

when the models are used with SVMs, the performance is much poorer than the

performance of the TDA computed by direct averaging.

The poor performance in SVMs is because the training problem is a quadratic

optimisation problem with 2N variables, where N is the number of data training points.

Thus the more the data that is used when train, the longer it takes. This is much slower

than the MLP and RBF neural networks in which only the weights and biases or the

basis centres are obtained by minimising error functions.

TDA MLP RBF SVM
Model 1 Pre-processing time [s] 1.011 0.703 0.703 0.703
Model 1 Training time [s] - 22.24 2.219 497.0
Model 1 simulating time [s] 0.75 0.016 0.047 5.500
Model 2 Pre-processing time [s] 1.011 1.011 1.011 1.011
Model 2 Training time [s] - 1.14 1.015 963.8
Model 2 simulating time [s] - 0.08 0.078 83.76

 
 
 



Development process for synchronous filter

4.3 Conclusion
In this chapter the use of MLP, RBF neural networks and SVMs in the development of a

time domain averaging filter for gear vibration was investigated. It was shown that the

amount of input vibration data required to calculate the TDA can be effectively reduced

using ANNs and SVMs to predict the TDA of a gear vibration signal.

Two different filter models are considered. The first model (Model 1) uses a

feedforward ANNs or SVMs to map input space (rotations synchronised gear vibration

signals) to the target (time domain average after 160 shaft rotations). Using Model 1 a

data reduction of 75 percent was achieved with all the formulations because Model 1

predicted the TDA using 40 of the 160 rotation synchronised gear vibration signals.

Any of the three formulations can be used in this model because their performances are

comparable although the SVMs may seem to be more attractive. Its attractiveness is

reduced by the fact that it is more computationally expensive than MLP and RBF,

therefore, the analyst will need to be cautious when SVMs are implemented in an online

system that is required to retrain regularly. On the other hand the MLP and RBF

networks are quick and easy to train, therefore they are suitable for implementation in

an online system even when required to retrain online.

The second model (Model 2) operates in two stages. In the first stage it uses 10 inputs

(10 rotations synchronised gear vibration signals) to predict the instantaneous time

domain average of the gear vibration. The input data to the first stage is deleted from the

memory of the data acquisition system after it has been used. The output of the first

stage is used as input to a second feedfoward network to predict the IDA. This means

that the largest number of rotation synchronised gear vibration signals that will be

stored in the data acquisition system is 26 inputs. This is a reduction of 83 percent in the

amount of data that needs to be stored in the data acquisition system. It must be noted

however that, with Model 2, the entire data set is used although it use sequentially.

Model 2 was found to be very effective at predicting the time domain average for all

three formulations. In Model 2 the MLP and RBF perform better than SVMs.
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