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3.1 Introduction
Neural networks have found extensive use in many industrial applications for pattern

recognition. In this thesis the aim is to apply the ANNs and SVMs in pattern recognition

as a predictive tool. The idea is to train ANNs and SVMs to predict the ensemble

average of a large number of rotation synchronised gear vibration signals using only a

portion of the total number of signals. This is in essence non-linear mapping between

the input and output space, a task that ANNs and SVMs have handled with success

(Fidencio et al, 2002; Gunn, 1988). The averaging of the rotation synchronised vibration

signals is called time domain averaging as discussed in Chapter 2. It was also

demonstrated that calculating the TDA by direct averaging can filter out broadband

noise over the entire spectrum of the signal leaving only the vibration content of

interest. The ANNs and SVMs mapping should therefore retain the non-linear filtering

achieved in the frequency domain by the IDA calculated by direct averaging. Before a

synchronous time domain averaging model can be developed for gear vibration using

ANNs and SVMs, it is essential to have thorough understanding of their underlying

mathematics. In this chapter, the theory of Multi-layer Perceptron (MLP) networks,

Radial Basis Function (RBF) networks (Bishop, 1995) and Support Vector Machines

(SVM) (Vapnik, 1995; Vapnik et al., 1997; Gunn, 1998) in the light of this work is

presented. This chapter also presents simulation results based on a preliminary study

conducted on a data set from an accelerated gear life test rig. The preliminary study is

used to investigate the suitability of these methods for application in the development of

a time-domain averaging model for gear vibration.

3.2 Artificial neural networks

In this work neural networks are viewed as parameterised non-linear mapping of input

data to the output data. Learning algorithms are viewed as methods for finding

parameter values that look probable in the light of the data. The learning process occurs
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by training the network through supervised learning. Supervised learning is the case

where the input data set (X) and the output data set (Y) are both known and neural

networks are used to approximate the functional mapping between the two data sets. In

this section the theory and application of MLP and RBF networks formulations are

presented. Simulations to assess the suitability of each of these formulations for use in

the development of a synchronous time domain averaging model using a data set from

the accelerated gear life test rig (Stander and Heyns, 2002b
) are presented.

3.2.1 Multi-layer perceptron

The MLP provides a distributed representation with respect to the input space due to the

cross-coupling between hidden units. In this study, the MLP architecture contains a

hyperbolic tangent basis function in the hidden units and linear basis functions in the

output units (Bishop, 1995). A schematic illustration of a 2-layer MLP network is

shown in Figure 3.1.

hidden
units

The MLP network architecture in Figure 3.1 contains hidden units, output units, and one

hidden layer. The bias parameters in the first layer are shown as weights from an extra

input having a fixed value of Xo = 1. The bias parameters in the second layer are shown

as weights from an extra hidden unit, with the activation fixed at Zo = 1. The model in
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Figure 3.1 is able to take into account the intrinsic dimensionality of the data. Models

of this form can approximate any continuous function to arbitrary accuracy if the

number of hidden units M is sufficiently large. The size of a MLP network can be

expanded by considering several layers but this is not necessary because it has been

demonstrated through the Universal Approximation Theorem (Haykin, 1999) that a

two-layered architecture is adequate for the multi-layer perceptron. As a result of this

theorem, in this study a two-layered network shown in Figure 3.1 is chosen.

(M (d ) )_ (2) (I) (2)
Yk - fOuler ~ Wq f inner t;Wq Xj + WkO

where fOUler and hnner are activation functions, w;:) denotes a weight in the first layer,

going from input i to hidden unit j, wi~ is the bias for the hidden unit k and

w~) denotes a weight in the second layer. In this work hnner is a hyperbolic tangent

v -ve -e
hnner(v) = tanh(v) = _

eV +e v

and it maps the interval (-00,00) onto the interval (-1,1). Figure 3.2 below shows the two

activation functions used in this study.
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Figure 3.2 (a) Plot of the linear activation function given by equation (3.2). (b) Plot of the

'tanh' activation function given by Equation (3.3).

Training the neural network is achieved by calculating the weights in Equations (3.1).

There are two principal approaches that can be used to train neural networks. These

methods are the maximum-likelihood approach and the Bayesian approach (Bishop,

1995). In maximum-likelihood training, optimisation methods are used to identify a set

of parameter values that maximises the ability of a network to predict the output

whenever presented with the input data. The Bayesian method uses Bayes's theorem

(Bishop, 1995) to identify the probability distribution of weights in the light of the

training data that are initially set to some prior distribution. The maximum-likelihood

method may be viewed as a special case of the Bayesian method. In this work the

maximum-likelihood method is implemented for computational efficiency.

3.2.2 Maximum-likelihood-based cost function

In the maximum-likelihood approach an optimisation procedure is used to identify the

weights and biases of the neural networks in Equation (3.1). A cost function is chosen

in order to use the optimisation technique. A cost function is a mathematical

representation of the overall objective of the problem (Marwala, 2001). In this work,

the overall objective is to identify a set of neural network weights, that can map the

rotation synchronised gear vibration signal (input) to the ensemble average of the

rotation synchronised gear vibration signals (TDA obtained from the k signals). The

mapping should use less rotation synchronised gear vibration signals than would

otherwise be required to calculate the TDA using direct averaging. In other words,
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predicting the TDA of a rotating gear using only a fraction of the number of rotation

synchronised gear vibration signals that would be used in the direct averaging approach.

If the training set D = {Xk,tk}:=l is used and assuming that the targets tk are sampled

independently given the inputs Xk and the weight parameters, w~, the cost function, E,

may be written as

where, n is the index for the training pattern and k is the index for the output units. The

first term in Equation (3.4) is the sum-of-square-of-errors cost function, which tends to

give similar absolute errors for each pattern. This results in poor performance on target

values of small magnitude. The other cost function that has been used is the cross-

entropy cost function (Hopfield, 1987; Hinton, 1987). Minimisation of the cross-

entropy cost function tends to give the same relative errors for small and large targets.

The cross-entropy cost function plus the weight decay regularisation parameters may be

written as follows:

a w 2
E =-II{tnkIn(Ynk)+ (l-tnk)ln(l- Ynk)} +- I W;

n k 2 j

The cost function in Equation (3.5) has been found to be suited for classification

problems while the one in Equation (3.4) has been found to be suited for regression

problems (Bishop, 1995). Since the application in this work is a type of regression

Equation (3.4) is used.

3.2.3 Regularisation

The second term in Equation (3.4) is the regularisation parameter. The regularisation

parameter in Equation (3.4) penalises large weights and ensures that the mapping

function is smooth (Vapnik, 1995). This regularisation parameter is called the weight

decay and its coefficient, a., determines the relative contribution of the regularisation

term on the training error. The inclusion of the regularisation parameter has been found

to give significant improvements in network generalisation (Hinton, 1987).
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In neural networks, to produce an over-fitted mapping with regions of large curvature

requires large weights. The weight decay regularisation penalises large weights thereby

encouraging the weights to be small and avoiding an over-fitted mapping between the

inputs and the outputs. If a is too high then the regularisation parameter over-smoothes

the network weights and as result giving inaccurate results. If a is too small then the

effect of the regularisation parameter is negligible and unless other measures that

control the complexity of the model, such as the early stopping method (Bishop 1995)

are implemented, the trained network becomes too complex and thus performs poorly

on validation sets.

3.2.4 MLP network training

Before minimisation of the cost function is performed, the network architecture needs to

be constructed by choosing the number of hidden units, M. If M is too small, the neural

network will be insufficiently flexible and will give poor generalisation of the data

because of high bias. However, if M is too large, the neural network will be

unnecessarily flexible and will give poor generalisation due to a phenomenon known as

overfitting caused by high variance (Geman et aI., 1992). The weights (Wi) and biases in

the hidden layers are varied using optimisation methods until the cost function is

minimised. Gradient descent methods are implemented and the gradient of the cost

function is calculated using the back-propagation method (Bishop, 1995). The details of

the back-propagation method are found in Appendix B. In this work it was decided to

use the Scaled Conjugate Gradient (SCG) method over Conjugate Gradient (CG). This

choice was made because SCG method is more computational efficient than CG while

retaining the essential advantages of the CG method (Haykin, 1999; Marwala, 2001).

The details of these optimisation methods are explained in Appendix C.

3.2.5 MLP simulation results from a preliminary investigation using data from the

accelerated gear life test rig

This section seeks to validate the suitability of the MLP network for use in synchronous

TDA model using gear vibration data from the accelerated gear life test rig. This was

done in the following steps.

• Data pre-processing. The acceleration signal measured from the gearbox casing

was synchronised with the rotation of the gear using the one pulse per revolution
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shaft encoder signal. This resulted in 160 rotation synchronised gear vibration

signals. Each signal contained 8192 sample points. The rotation synchronised

gear vibration signals were resampled to 1024 points per signal to reduce

computational load. This results in an input spaceXkof dimension (160xl024).

The target tk is the TDA of the gear vibration calculated using the direct

averaging approach for 160 gear rotations. The dimensions of the target are

(1x 1024).

• Selecting type of network. A two-layer network was selected because the

Universal approximation Theorem (Haykin, 1999) states that a two-layered

network is sufficient for mapping data of arbitrary complexity (Marwala, 2001).

• Selecting number of hidden units. The number of hidden units was chosen

between 3 and 15 and the one that resulted in the least square errors when

simulating with unseen validation sets was selected. In this application 10

hidden units were selected because they resulted in a small error without severe

computational penalties.

• Selected activation functions. The hyperbolic tangent function was selected as

the inner activation function and a linear function was selected as the outer

activation function.

• Type of optimisation technique used. The scaled conjugate gradient optimisation

technique was used to optimise the cost function because of its computational

efficiency.

• Selecting number of inputs. The number of inputs was chosen between 1 and 50

and the one that resulted in the least square errors when simulating with unseen

validation sets was selected.

• The regularisation coefficient, a , was selected by trial and error, starting at a

value of a = 0, and increasing a sequentially in steps a = 0.1 until satisfactory

smoothness of the predicted result was obtained from simulations with unseen

data. In this work a = 1.5 was found to be most suitable.

The following plots show the performance of MLP neural network on a preliminary

study conducted using vibration data from the accelerated gear life test rig (Stander and

Heyns, 2002). Figure 3.3 shows MLP simulation results for a network of 10 hidden

units and 40 input vectors (40 rotation synchronised vibration signals), each signal with

 
 
 



signal has 1024 points resulting in an input space of (40 01024). From this simulation it

is clearly evident that this MLP network architecture is suitable for use in a synchronous

TDA model in that it correctly predicts the target (time domain average after 160 gear

rotations with only 40 gear rotation signals).
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Figure 3.3 MLP simulation results for network with 40 inputs and 10 hidden units

superimposed on TDA calculated by direct averaging.

Figure 3.4 shows the simulation results of validation sets as a function of the number of

inputs. It is observed that the RMS error stabilises after 40 input vectors, therefore, 40

inputs are selected as the optimum number of inputs, therefore the amount of data that is

required to calculate the TDA is reduces by 75 percent.

Figure 3.4 RMS ofMLP simulation results for network with 10 hidden units vs. Number of

input signals.
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3.2.6 Radial basis functions

The radial basis function has its origin in techniques for performing exact interpolation

of a set of data points in a multi dimensional space (Powell, 1987). The exact

interpolation problem requires every input vector to be mapped exactly to the

corresponding vector and will be used in the discussion of Radial Basis Function (RBF)

network (Bishop, 1995). The RBF neural network can be obtained by introducing a

couple of modifications to the exact interpolation process (Broomhead, 1988; Moody

and Darken, 1989). The RBF neural networks provide a smooth interpolating function

for which the number of basis functions is determined by the complexity of the mapping

to be represented rather than the data set as in exact interpolation. In this work, the

objective is to identify a set of basis functions, that can map the rotation synchronised

gear vibration signal (input) to the ensemble average of the rotation synchronised gear

vibration signals (TDA obtained from the k signals). The mapping should use less

rotation synchronised gear vibration signals than would otherwise be required to

calculate the TDA using direct averaging.

M

Yk (x) = LmAj~Ax)+mkO
}=1

where mkOare the biases, mAjare the basis function weights, x is the d-dimensional input

vector and ~}(.) is the jth basis function. Several forms of basis functions have been

considered, the most common being the Gaussian given by

where x is the d-dimensional input vector with elements Xi , and ).1j is the vector

determining the centre of the basis function ~}and has elements Pji. For further detail

on the selection of the basis function centres Pji see Bishop (1995). The parameter a

controls the smoothness properties of the basis function. The Gaussian interpolation

 
 
 



function is a localised basis function with the property that fjJ ~ 0 as Ixl ~ 00. Another

basis function that shares the properties of the Gaussian is given by

It is, however, not necessary for this function to be localised. Other possible choices are

the thin-plate spline function given by

fjJj (x) = x4ln(x),

which all have the property that fjJ ~ 00 as x ~ 00. The RBF network is represented by

the diagram in Figure 3.3.
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basis
functions

In Figure 3.5 each basis function acts like a hidden unit. The lines connecting basis

function tPj to the inputs represent the corresponding element Ilji of the vector Ilj. The

weights (1)kj are shown as lines from the basis functions to the output units, and the

biases are shown as weights from an extra 'basis function' tPo whose output is fixed to 1.

The Gaussian radial basis function considered above can be generalised to allow for

arbitrary covariance matrix L j by changing the form of the basis function to

Since the covariance matrices Lj are symmetric, each basis function has d(d+30)/2

independent adjustable parameters (where d is the dimensionality of the input space)

(Bishop, 1995).

3.2.7 RBF network training

The training of the radial basis function takes place in two stages. In the first stage the

input data set xD alone is used to determine the parameters of the ~ and OJ for the

spherical radial basis function). After the first stage of training the basis functions are
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then kept fixed and the second layer of weights are found in the second training phase

presented below. When the bias parameters in Equation (3.6) are absorbed into the

weights the resulting equation is

M

Yt (x) = I{j)~?j (x)
j=O

where ?o is an extra 'basis function' with activation value fixed at ?o = 1. In matrix

form this equation is

y(x}=WfP

where W = ({j)~/) and fP= (?j ). Since the basis functions are considered fixed, the

network is equivalent to a single-layer network that can be optimised by minimisation

of a suitable error function. The sum-of-square error function is given by

E =.!-II {Yt (xn )_t;}2
2 n k

where t; is the target value for the unit k when the network is presented with input

vector xn
• Since the error function is a quadratic function of the weights, its minimum

can be found in terms of the solution of a set of linear equations. The weights are

determined by the linear equation

where (Ttk = t;and (tIltl =?j (x n ). The formal solution of the weights is given by

tilt is the pseudo-inverse of tIl. In practice Equations (3.18) are solved using singular

value decomposition, to avoid problems due to possible ill conditioning of the matrix

tIl.
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For regression the basis function parameters can be found by treating the basis function

centres and widths, along with the second-layer weights, as adaptive parameters to be

determined by the minimisation of an error function. For the case of the sum-of-squares

error, and spherical Gaussian basis functions Equation (3.7), the following expressions

are obtained for the derivatives of the error function with respect to the basis function

parameters

where Ii}; denotes the ith component of Ii}. These expressions for the derivative are

used in conjunction with standard optimisation strategies. The setting of the basis

function parameters by supervised learning represents a non-linear optimisation

problem that is computationally expensive and may be prone to finding local minima in

the error function but if the relevant basis functions are identified the training

procedures can be significantly speeded up (Bishop, 1995).

3.2.8 RBF simulation results from a preliminary investigation using data from the

accelerated gear life test rig

In this section the suitability of the RBF neural networks for use in synchronous TDA

model is assessed using gear vibration data from the accelerated gear life test rig. To

achieve this the following steps were followed.

• Data pre-processing. The data was pre-processed as explained in Section 3.2.5

resulting in an input spaceXkof dimension (160x024) and a (kof dimensions

• Selecting number of basis. The number of number of basis was chosen between

1 and 10 and the one that resulted in the least square errors when simulating with

unseen validation sets was selected. In this application 5 number of basis were

 
 
 



selected because they resulted in a small error without severe computational

penalties.

• Selected type of basis functions. The activation functions that were investigated

for setting the radial basis function structures were: the radially symmetric

Gaussian function, the thin plate splines 'tps' ¢ (x) = x2In(x), and the

¢(x ) = x4 In(x) activation functions. The output error function was defIned as

linear. The type that resulted in the least square errors when simulating with

unseen validation sets was selected was the thin plate splines therefore it was

implemented in this study.

• Selecting number of inputs. The number of inputs was chosen between 1 and 40

and the one that resulted in the least square errors when simulating with unseen

validation sets was selected. In this application 40 inputs resulted in the smallest

square errors, therefore resulting in a data reduction of 75 percent for calculating

the TDA.

Figures 3.6 and 3.7 show the performance of RBF neural network on a preliminary

study conducted using vibration data from the accelerated gear life test rig.
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Figure 3.6 RBF simulation results for network with 40 inputs and 5 basis functions

superimposed on TDA obtained by direct averaging.
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Figure 3.6 shows the simulation results of a RBF neural network with 5 basis functions

and 40 input vectors simulated using an unseen validation data set. From this simulation

it is observed that the RBF network can be used to predict the time domain average of

the gearbox signal using less data. Figure 3.7 shows the performance of thin-plate

spline'tps' ¢(x) = x2In(x), and the ¢(x) = x4In(x), using the validation sets. From this

simulation it is observed that the 'tps' activation function performs better than the

¢(x ) = x4 In(x) activation function because it results in a constant prediction error for

all the validation sets. This is because the 'tps' activation generalises well to all the

validation sets as opposed to the ¢(x) = x4In(x) activation function that does not

generalise resulting in a peak in prediction error between validation set 5 and validation

set 10. This is because the validation sets that were used during simulation were taken

from different stages of the gear life and had different vibration signatures representing

the progression in the level of damage. In this work 'tps' activation function is therefore

selected for all RBF analysis.

3.3 Support vector machines

Traditional neural network approaches have suffered difficulties with generalisation,

producing models that can overfit the data. This is a consequence of the optimisation

algorithms used for parameter selection and the statistical measures used to select the

'best' model (Gunn, 1998). The foundations of Support Vector Machines (SVMs) have
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been developed by Vapnik (1995) and are gaining popularity due to many attractive

features, and promising empirical performance. The SVM formulation embodies the

Structural Risk Minimisation (SRM) principle, which has been shown to be superior

(Gunn et aI., 1997), to traditional Empirical Risk Minimisation (ERM) principle,

employed by conventional neural networks. SRM minimises an upper bound on the

expected risk, as opposed to ERM that minimises the error on the training data. It is this

difference that equips SVMs with a greater ability to generalise, which is the goal in

statistical learning. SVMs were originally developed for classification problems, but

recently have been extended to regression problems (Vapnik et aI., 1997). In this work

we are interested in the regression properties of support vector machines and therefore

the term support vector machines refers to SVMs applied to regression problems. The

objective is to map the rotation synchronised gear vibration signal (input) to the

ensemble average of the rotation synchronised gear vibration signals (TDA obtained

from the k signals) using less rotation synchronised gear vibration signals than would

otherwise be required to calculate the TDA using direct averaging.

3.3.1 Linear regression

When considering a simple linear regression problem of approximating a set of data,

f(x)={w,x/+b.

<I> (w,q) = ~ Ilwlll +CI(qj- +qj+)'
I

where C is a pre-specified value, ware the weights and q-, q+ are slack variables

representing the lower and upper constraints on the outputs of the system. When support

vector machines are applied to regression problems loss functions that include a

distance measure are used. Figure 3.8 below shows some of the possible loss functions.
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(c) Huber (d) ~-insensitive

Figure 3.8 Possible loss functions support vector regression.

The loss function in Figure 3.8 (a) corresponds to the conventional least squares error

criterion. The loss function in Figure 3.8 (b) is a Laplacian loss function that is less

sensitive to outliers than the quadratic loss function. The Huber loss function in Figure

3.8 (c) is a robust loss function with optimal properties when the underlying distribution

of the data is not known. These three loss functions produce no sparseness in the

support vector. To address this issue Vapnik proposed the loss function in Figure 3.8 (d)

as an approximation to the Huber loss function. The ~-insensitive enables the sparse set

of support vectors to be obtained.

Using the ~-insensitive loss function in Figure 3.8 (d),

for If(x) - yl < &
Otherwise
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1 I I

m~W(a,a·)=m~-- LL(a; -a;)(aj -a;)(x;,xj)
a,a a,a 2 ;=1 j=1

I

+La; (Y;- E)-a; (Y;+E)
;=1

o ::::;apaj• ::::; C, i = I,K ,1
I

L(a;-an=o.
;=1

Solving Equation (3.26) with constraints in Equation (3.28) determines the Lagrange

multipliers,a,a· and the regression function is given by Equation (3.23), where

I

w= L(a; -a;)x;
;=1

b=-~(w,(xr+xs)).

The Karush-Kuhn-Tucker (KKT) conditions (Vapnik, 1995) that are satisfied by the

solution are,

ii;ii;. = 0,

Therefore the support vectors are points where exactly one of the Lagrange multipliers

are greater than zero. When E= 0, we get the L1 loss function and the optimisation

problem is simplified to
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I

w= Ip;Xi
i=1

Ii =.!.(W,(X
r

+x
s
))'

2

Details for the implementation of the other three loss functions are presented in

AppendixD.

3.3.2 Non-linear regression

In cases where non-linear regression is required, non-linear mapping is used to map the

data to a higher dimensional feature space where linear regression is performed. The

kernel approach is employed to address the curse of dimensionality. The non-linear

support vector regression solution, using the E-insensitive loss function is given by

I I

m~ W(a,a *) = m~ I I a;*(y; - E) - a; (y; + E)
a,a a,a i=1 j=1

1 I I

-"2 ~~(a: -a; )(a; -a.;}K(x;,xj)

o ~ a;,a;*~ C,
I

I(a; -a:)=O.
;=1
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Solving Equation (3.34) with the constraints in Equation (3.35) determines the Lagrange

multipliers, a, a * and the regression function is given by

I

f(x)= L(a; -~*)K(xi'x)+b
;=1

(w,x) = L( a; -a;*)K(x;,xj)

SVs

b =_!I(a; -a;)(K(x;,xr)+K(x;,xs))'
2 ;=1

The optimisation criteria for other loss functions are similarly obtained by replacing the

dot product with kernel functions. The E-insensitive loss function is attractive because

unlike the quadratic and Huber cost functions, where all the data points will be support

vectors, the support vector solution can be sparse, therefore the E-insensitive loss

function was selected in this work. Different kernels were investigated for mapping the

data to a higher dimensional feature space where linear regression is performed.

3.3.3 SVM simulation results from a preliminary investigation using data from the

accelerated gear life test rig

In this section the suitability of SVMs for use in synchronous TDA model is assessed

using gear vibration data from the accelerated gear life test rig. To achieve this the

following steps were followed.

• Data pre-processing. The data was pre-processed as explained in Section 3.2.5

resulting in an input spaceXkof dimension (160xI024) and a tkof dimensions

(lxI024).

• Selected type of Kernel functions. The Kernel functions that were investigated

in this study were: Exponential Radial Basis Function (ERBF), the Gaussian

Radial Basis function (RBF), the spline and the b-spline kernels and the one that

resulted in the smallest error was selected. (see Appendix E).

• Selecting number of inputs. The number of inputs was chosen between 1 and 40

and the one that resulted in the least square errors when simulating with unseen

 
 
 



validation sets was selected. In this application 40 inputs resulted in a smallest

square errors. This is effectively a data reduction of75 percent.

Figures 3.9 to 3.11 show the performance SVMs on a preliminary study conducted

using vibration data from the accelerated gear life test rig.

.••• ERBF
_RBF
+- Spline

..0 .. bspline

0.25

~ 02

15 20 25 30

Number of Inputs

 
 
 



Artificial neural networks and support vector machines

~
f'

02

Figure 3.9 shows the performance of different Kernel functions on 13 validation sets

from different stages of the gear life. It is observed that the ERBF Kernel gives the best

mapping for all the validation sets. It is also observed that the RBF, spline and b-spline

Kernel functions have a peak at validation set 8 and validation set 12. This is because

the SVMs were trained with data from the early stages of the gear life. As the gear life

progresses the vibration signature changes significantly. The peaks at validation set 8

and validation set 12 indicate that SVMs with RBF, spline and b-spline Kernel

functions do no generalise well to the vibration signatures at these stages of gear life.

Figure 3.10 shows the performance of SVM with an ERBF kernel as a function of

number of input vectors on validation sets. From this plot it is observed that the RMS

decreases as the number of inputs increases. Figure 3.12 shows the simulation results

SVM with an ERBF Kernel and 40 unseen input signal superimposed on the TDA

calculated using the direct time domain averaging approach. This plot indicates that

SVMs can be effectively used to predict the TDA of the gearbox signal using less data

than would be used to calculate the TDA using the direct averaging approach.

From the simulation results obtained in the preliminary study, it is observed that all

three formulations can successfully map the input space to the TDA calculated by time

domain averaging using only 25 percent of the input data. It is therefore concluded from

the preliminary study that all three formulations are suitable for use in the development

of a synchronous filter for time domain averaging of gear vibration data. Chapter 4

deals with the development issues for the synchronous filter.
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