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Introduction and literature survey

1.1 Introduction

Gears and gearbox systems are vital components in many industrial mechanical

applications. A gearbox failure in a large mechanical system could easily lead to

production losses. Early detection of incipient failure in gearboxes is, therefore, of great

practical and commercial importance. It permits the plant operators and maintenance

personnel to schedule shutdown and repair of the gearbox instead of unscheduled

catastrophic failure.

Different signal processing techniques have been employed by operators and engineers

to gather information about the condition of gearboxes to schedule maintenance

activities. These techniques include oil debris analysis, vibration analysis, visual

inspection and various non-destructive testing techniques. In recent years, neural

networks have been used with much success in pattern recognition and fault

identification (Bishop, 1995; Zhong et aI., 2003; Fidencio et al., 2003).

Vibration based analysis has been used with success in detection of damage in

structures and rotating machinery. Vibration-monitoring techniques are based on the

assumption that changes in the measured structural response can be linked to the

deterioration in the condition of the structure (McFadden, 1987). Recent advances in

integrated circuit technology and digital signal processing has allowed for real time

analysis of vibration response, in both the frequency and the time domain to be

performed. If permanent transducers can be mounted on the structures, online condition

monitoring of the vibrating structure could be possible, resulting in a much safer

working environment.

This is however not necessarily true when monitoring incipient failure on rotating

machinery such as gearboxes, especially when they are operating under varying load

conditions. Varying load conditions amplitude modulate the measured vibration signal
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and cause the rotation speed of the system to change. The change in system speed

results in frequency modulation of the gear mesh frequency (Stander et aI., 2001;

Stander et al., 20028
; Stander et al., 2002b).

When using vibration signatures for condition monitoring of gearboxes it is difficult to

extract meaningful information from raw time domain vibration data. This is because

the characteristic frequencies generated by newly developed faults in gearboxes can be

very low in amplitude and are therefore often overshadowed, or masked, by other

vibration components such as random noise and interference from additional vibration

sources in the machine or neighbouring machines. To overcome this problem the

vibration signal is sampled at a frequency that is synchronised exactly with the rotation

of the gear of interest and the samples obtained for each singular position of the gear are

then ensemble-averaged. When sufficient averages are taken, all the vibration from the

gearbox, which is asynchronous with the vibration of the gear, cancels out, leaving only

the vibration produced during one rotation of the gear of interest. Local variations in the

meshing pattern and modulation in the gear of interest are therefore made visible

(McFadden, 1987; McFadden et al., 1985; Stewart, 1977). This procedure is called time

domain averaging or synchronous averaging.

The resulting time synchronously averaged signal obtained through the time domain

averaging process indicates the vibration produced during one rotation of the monitored

gear. The synchronous vibration signal can be related to the meshing stiffness of the

gear being monitored. Variations in the meshing stiffness of the gear indicate wear and

or incipient local defects that are related to a variation in gear teeth stiffness. Time

domain averaging is an extremely effective technique, but it requires an enormous

amount of vibration data to calculate. This problem makes time domain averaging less

attractive on online gearbox condition monitoring system. The challenge remains to

develop a synchronous time domain averaging filter that reduces the amount of

vibration data that is required for direct synchronous time domain averaging of gear

vibration data. A reduction in the amount of input gear vibration data required for

synchronous time domain averaging of gear vibration brings us closer to the successful

implementation of synchronous time domain averaging on an online gearbox condition

monitoring system.
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1.2 Literature survey

The objective of this research is to develop a filter for synchronous time domain

averaging of gear vibration using computational intelligence. The purpose of the filter is

to reduce the amount of gear vibration data that needs to be stored in the data

acquisition system in order to calculate the time domain average of a gear vibration

signal. The literature survey addresses the following topics:

• Signal processing techniques for early detection of gear failure through vibration

measurements.

• Digital filtering.

• Application Artificial Neural Networks and Support Vector Machines in pattern

recognition.

1.2.1 Signal processing techniques for early detection of gear failure through

vibration measurements.

In this section, as background, different signal processing techniques for early detection

of gear failure through vibration measurements are discussed. The underlying premise

of vibration analysis is that changes in the mechanical condition of the system produce

changes in the vibration that the system produces. In extremely simple systems, these

changes take the form of an increase in the amplitude of the total vibration, which can

be easily detected with simple instruments. For more complex systems, changes in the

total vibration due to the deterioration of a single machine element are less significant

and more sophisticated vibration-processing techniques are needed to detect the damage

(McFadden, 1987).

One of the most popular techniques for early detection of gear failure through vibration

measurements over the last four decades has been spectral analysis, in which the

amplitude spectrum of the measured vibration spectrum is measured and displayed.

Spectral analysis is a particularly powerful technique because different elements of a

mechanical system generally produce vibration at different frequencies.

In 1977 Stewart presented some useful data analysis techniques for gear diagnostics.

These techniques enhance the clarity of the changes on the time domain average using

digital signal processing, by removing the normal vibration from the time domain

 
 
 



average. In one of these techniques all of the tooth meshing components and their

harmonics are eliminated from the spectrum of the time domain averaging and the

remaining time signal is reconstructed to produce the "residual" signal. Stewart showed

that the residual signal often shows evidence of a defect long before it can be seen in the

time domain average.

In 1985 McFadden and Smith applied modulation theory to a model of gear vibration

and showed that band pass filtering the "residual" signal about the dominant meshing

harmonics and developing the envelope produced a function that describes the

amplitude and phase modulation present in the original averaged signal. The application

of this technique to the vibration produced by a gear known to contain incipient fatigue

cracks suggested that this method is highly effective, and demonstrate that the phase

modulation of the vibration is a more important indicator of a crack than amplitude

modulation.

McFadden (1986) illustrated that the signal average can be completely demodulated by

simple signal processing techniques to produce separate approximations to the

amplitude and phase modulation functions. He demonstrated the effects of both early

and advanced fatigue cracks on the modulation functions using signal averages of

vibration on spiral bevel pinion in a helicopter gearbox.

In another publication McFadden (1987) presented time domain averaging as an

alternative approach for early detection of failure in gears. This author stated that, if a

second signal is acquired which is synchronised with the rotation of the gear of interest,

and the ensemble average of the vibration is calculated with the start of each frame

being determined by the synchronised signal, all the vibration that is asynchronous with

the rotation of the gear cancels out, leaving an estimation of the vibration of the gear of

interest during one gear revolution. Time domain averaging therefore reduces a complex

system such as a gearbox into a simpler system as it eliminates vibration from other

system element (McFadden, 1987).

In his paper White (1991) demonstrated the use of a signal demodulator unit for

extracting meaningful information from rolling element bearing and gearbox vibration

for predictive maintenance.
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Wang and McFadden (1993) examined the application of the spectrogram to calculate

the time-frequency distribution of gear vibration signals. The spectrogram represents the

energy distribution of the signal over the frequency and time. Their results suggest that

the spectrogram may provide a powerful tool for the early detection of local gear

damage.

In a later publication Wang and McFadden (1995) investigated the use of the orthogonal

wavelet transform to detect the abnormal transients generated by early gear damage

from gearbox casing vibration. Orthogonal wavelets, such as Daubechies 4 and

harmonic wavelets, are used to transform the time domain synchronous vibration signal

into the time-scale domain. The orthogonal wavelet transform uses fast algorithms and

decomposes the signal into the minimum number of wavelets series. These authors

discovered through comparison with non-orthogonal wavelet transform for same length

of discrete data, that the description of the signal in the 3-dimensional map of the

wavelet transform is not sufficiently comprehensive due to limited scales.

McFadden et al. (1999), described the generalised S transform, a variant of the wavelet

transform, which allows the calculation of the instantaneous phase signal, and its

application to decomposition of vibration signals from gearbox systems for early

detection of failure. They demonstrated the decomposition of a signal using the

generalised S transforms and a new window function with a numerically generated test

signal and experimentally measured gear vibration data.

Baydar and Ball (2000) used another time-frequency distribution called the

Instantaneous Power Spectrum (IPS) in the detection of local faults in helical gears.

Their paper describes the IPS and then examines its capability of extracting condition

indicating information from gear vibration signals and also assessing the severity of the

fault. The paper further examines the ability of the IPS to detect faults under varying

load conditions. Their results show that the IPS can be used to detect faults both under

constant and varying load conditions.

In a later study Baydar and Ball (2001) conducted a comparative study of acoustic and

vibration signals in the detection of gear failure using Wigner- Ville distributions. Their
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results suggest that acoustic signals are very effective for early detection of faults and

may provide a powerful tool for indicating the various types of progressing faults in

Staszewski and Tomlinson (1994) presented an application of the wavelet transform to

fault detection in spur gears. In further work these authors use a moving window

procedure for local fault detection in gearboxes (Staszewski and Tomlinson, 1997).

Staszewski et al. (1997) presented a study of the use of the Wigner-Ville distribution in

gearbox condition monitoring. In contrast to other applications of the Wigner- Ville

distribution, their paper reported on the application of statistical and neural network

pattern recognition procedures to reliably detect gear tooth faults.

Wang and Wong (2000) developed a linear prediction method that is based on the

assumption that the vibration caused by a sound pair of gears can be modelled as a

stationary autoregressive process. These authors stated that the approach is independent

of the operating conditions, but the precise influence of varying loads is not

documented. The results of their paper indicate that the linear prediction method can be

used effectively in the detection and diagnosis of gear failure.

Stander and Heyns (2001) noted the influence of varying loads on vibration monitoring

of gears. Stander et al. (2002)b conducted an experimental investigation to observe the

influence of fluctuating load conditions on the measured acceleration signal. They

concluded that the load variation manifests itself as a low-frequency modulation on the

measured acceleration signal. In another publication Stander and Heyns (2002t

investigated the use of the Instantaneous Shaft Speed (ISS) in condition monitoring of

gearboxes. They postulated that the integrity of the gear tooth in the mesh could be

monitored through the utilisation of the ISS measurement. The authors concluded that a

natural separation between different levels of damage could be obtained by monitoring

the instantaneous gear shaft speed under various fluctuating load conditions.

Paya et al. (1997) investigated the use of artificial neural networks based fault

diagnostics of rotating machinery using wavelet transforms as a pre-processor. The real

time domain vibration signal obtained from the gearbox transmission were pre-
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processed by wavelet transforms for neural networks to perform fault detection and

identify the exact kind of fault occurring in the transmission. They showed that by using

multi-layer artificial neural networks on the set of data pre-processed by wavelet

transforms, single and multiple faults could be successfully detected and classified into

specific groups.

Zacksenhouse et al. (2000) conducted a series of tests on a helicopter transmission for

the purpose of generating a database that can be used to evaluate general diagnostic

tools, particularly neural networks. They demonstrated that the meshing vibrations

induced by a large collector gear located on the quill shaft are significant and may

interact with the vibrations induced by other elements attached to the same shaft. An

appropriate model is developed and the effect of the collector gear, called cross-gear-

pair interaction, is studied using different signal processing tools.

Decker (2002)3 conducted a survey of standard vibration diagnostic parameters for

crack detection in spur gears used in the Health and Usage Monitoring Systems

(HUMS). The results of his study indicated that detection methods used in HUMS are

not robust or repeatable. The cracks actually progressed at a much faster rate than

anticipated reducing the available time for detection.

In another study Decker (2002)b proposed a new gear failure analysis feature and two

new detection techniques. The time synchronous averaging concept was extended from

being revolution-based to tooth-engagement based. The detection techniques were based

on statistical comparison among the averages for the individual teeth. The results

indicated that these techniques do not produce an indication of damage that significantly

exceeds experimental scatter.

Dempsey et al. (2002) developed a diagnostic tool for detecting damage on a spiral

bevel gear by integrating two different monitoring technologies, oil debris analysis and

vibration analysis. Their results showed that combining vibration and oil debris

measurement technologies improves the detection of pitting damage on spiral bevel

gears.
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The literature indicates that gear condition monitoring is now in its mature stages.

Almost all the vibration analysis methods mentioned above require some form of pre-

processing with synchronous time domain averaging to increase their diagnostic

capabilities. It is because of this very reason that efficient methods for synchronous time

domain averaging are required.

1.2.2 Digital filtering

Signal processing can be defined as the processing performed on signals to extract

useful information. Of the many signal processing methods currently available, digital

filtering is one of the most powerful. In order to understand the principles used in the

development of the synchronous filter for time domain averaging it is necessary to

understand of the fundamental theory and some of the recent developments of digital

filter technology. In this section a brief history and some relevent applications of filter

technology are presented.

Digital filters evolved from simulation of analog filters on the early digital computers of

the 1940s. Their first application was in geological exploration of oil fields where the

data was collected and stored for future processing. The seismologists found that analog

signal-processing methods did not help them distinguish signal from noise. However,

through discrete convolution and other noise elimination techniques, they were able to

process the seismograms digitally to yield a filtered form that was much easier to

interpret, and thus new oil sources were identified.

In signal processing, the function of a filter is to remove unwanted parts of the signal,

such as random noise, or to extract useful parts of the signal, such as the components

lying within a certain frequency range. This basic idea can be illustrated by the block

diagram in Figure 1.

y(n)
Raw

Unfiltered ~ Filter - Filtered
Signal

-.. •.. Signal
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In general a filter takes an input sequence x(n) and produces an output sequence y(n) as

shown in Figure. 1. More recent developments in filter technology include the

development of intelligent filters and adaptive filters. Some relevant filter developments

are presented in the following paragraphs.

Zhong et al. (2003) tackled the fault detection problem in dynamic systems with

modelling errors and unknown inputs. In this paper the robust fault detection filter

design problem for uncertain linear time-invariant systems with both unknown inputs

and modelling errors is studied. The main results include the development of an optimal

reference residual model, the formulation of robust fault detection filter design problem,

the derivation of a sufficient condition for the existence of a robust fault detection filter

and its construction based on the linear matrix inequality solution parameters, and the

determination of adaptive threshold for fault detection.

Augustyn et al. (2003) presented a new method for filtering signals using the Modified

Recursive Discrete Fourier Transform (MRDFT). The basic idea of this method is the

application of the user-defined context to the recursive form of the Discrete Fourier

Transform (DFT) and filtration data or signals. The context is defmed in the frequency

domain and the mathematical implementation of the context in a recursive DFT is

presented. The method is controlled by an intelligent decision making system, which

decides what context present in predefmed base of context can be applied to the

algorithm. This means that the filtration process extracts only the desired signal

features.

Another important concept in the context of this work is that of averaging. Braun (1975)

analysed the extraction of a periodically repeating signal from noise coherent averaging.

He considered the averaging process as a filtering process and conducted most of his

analysis in the frequency domain. He described a general approach for dealing with

digital comb filters, enabling the design and analysis of related signal processors.

McFadden (1987) showed that the comb filter model for time domain averaging does

not correctly describe the extraction of periodic waveforms from additive noise because
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it assumes knowledge of the signal over an inftnite time and the result it produces is not

exactly periodic. He presented a revised model which requires only a ftnite number of

samples of the signal and which produces a result that is periodic. He also demonstrated

that the rejection of periodic noise of a known frequency could be optimised by the

appropriate selection of the number of averages.

Moczulski (1987) described the digital synchronous ftltering technique. The digital

synchronous ftltering technique makes it possible to estimate the time history of

periodic components of the signal being analysed and the corresponding frequencies

which are integer multiples of some triggering frequency. The signal components,

which are not synchronous with the triggering signal, are simultaneously attenuated.

The digital synchronous ftltering technique is based upon the time domain averaging

technique. The bank of ftlters obtained by Moczulski makes it possible to estimate the

averaged time courses of the periodic components of the signal and the amplitude and

phase characteristics of the ftlters are given. Only simple ftxed-point arithmetic

operations were used in order to prepare the necessary software for signal processing.

McFadden (1989) presented an interpolation technique for time domain averaging of

gear vibration by digital computer. This technique provides an alternative to the phase-

locked frequency multiplier for the calculation of the time domain average of gear

vibration signals. Higher-order interpolation techniques produce flatter pass bands and

lower side lobes in the stop band but require longer calculation times. Aliasing errors

are introduced into the result by replication of the side lobes during interpolation, but in

general are attenuated by time domain averaging.

1.2.3 Application of artificial neural networks and support vector machines in

pattern recognition

Artiftcial Neural Networks (ANNs) can be deftned as an information-processing

paradigm inspired by the way the densely interconnected, parallel structure of the

human brain processes information. They are also referred to by other names, such as

connectionism, parallel distributed processing, neuro-computing, natural intelligent

systems and machine learning algorithms. The key element of the ANN paradigm is the

novel structure of the information processing system. It is composed of a large number
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of highly interconnected processing elements that are analogous to neurons and are tied

together with weighted connections that are analogous to synapses.

There are numerous neural networks that have been investigated. Some of the more

popular neural networks include the Perceptron, Multi-Layer Perceptron (MLP),

Learning Vector Quantization (LVQ), Radial Basis Function (RBF), Hopfield networks,

and Kohonen's self-organizing feature maps (SaM). ANNs are also classified as

feedforward, or recurrent (implement feedback) depending on how data are processed

through the network. Sometimes ANNs are classified by the method of learning or

training they use. Some ANNs such as MLP and RBF employ supervised training, in

which the network's error function minimisation involves both the input and the target

values. Other ANNs such as the SaM networks employ unsupervised learning, which

only involves the input during the training. ANNs are attractive in digital signal

processing for the following reasons:

• ANNs can form arbitrary decisions so that any complex mapping from a set of

noise-contaminated signal to a noise free signal can be realized.

• ANNs can easily be implemented as software or in specialized hardware.

• ANNs are quite resilient against distortions in the input data and have a

capability to learn and generalize when properly trained.

• ANNs are often good at solving problems that are too complex for conventional

technologies and are often well suited to problems that people are good at

solving, but for which traditional methods are not suitable, such as character

recognition.

Neural networks have found extensive application in pattern recognition, signal

classification, and image processing. In this work the idea is to apply ANNs and SVMs

in a pattern recognition or predictive task. The idea is to train the ANN to predict the

ensemble average (time domain average) of a large input matrix (rotation synchronised

gear vibration signals) without using the entire input matrix. The successful application

of ANNs and SVMs in this sense holds potential of massive reduction in the amount of

data required in the synchronous time domain averaging task. In this application, this

means a reduction in the amount of data that needs to be collected and stored in the data
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acquisition systems before the synchronous time domain averaging can be calculated.

Some of the more popular ANN formulations for applications related to this work

include the MLP, RBF networks and more recently the Support Vector Machines

(SVMs). Some of the most relevant applications to this work include work by the

following researchers:

Gaudart et al. (2002) compared the performance of MLP and linear regression (LR)

with regards to the quality of prediction and estimation and the robustness to deviations

from underlying assumptions of normality, equality of variance and independence of

errors. The comparison between connectionist and linear models was achieved by

graphic means including prediction intervals, as well as by classical criteria including

goodness-of-fit and relative errors. The empirical distribution of estimations and the

stability of MLP and LR were studied by re-sampling methods. MLP and LR

comparable performance and robustness despite the flexibility of the connectionist

models.

Gardner and Dorling (1999) trained MLP neural networks to model hourly NOx and

N02 pollutant concentrations in Central London from basic hourly meteorological data.

Their results show that the models perform well when compared to previous attempts to

model the same pollutants using regression based models. Their work also illustrates

that MLP neural networks are capable of resolving complex patterns of source

emissions without any explicit external guidance.

Walde et at. (2003) investigated the impact of sample size and sample randomness on

the predictive accuracy of MLP. The MLP proved to be useful for classification

problems although they are dependent on the sample size and the non-linearity of the

underlying problem. A saturation curve describes the dependency of the network

performance on the sample size used. This function enables the user to evaluate the

achieved network performance and the usefulness of additional data. It is demonstrated

that the network leads to narrower confidence intervals of the performance measures in

comparison to classical methods even for small sample sizes. The experimental results

show the validity of the law, for even relatively small sample sizes, that the standard

error of the hit ratio decreases by one over the square root of the sample size.
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Taurino et al. (2003) showed the capability of a sol-gel based electronic nose to be used

in qualitative and quantitative analysis with the aim to recognize common volatile

compounds usually present in the headspace of foods. They showed how linear

technique, such as the Principal Component Analysis (PCA) algorithm can be used for

inspecting data distribution in simple cases like cluster discrimination. They also used

MLP and RBF networks for difficult non-linear regression problems. Their results

showed that the MLP gives better performance for their application.

Fidencio et al. (2003) used the RBF and MLP networks for non-parametric regression

of organic matter content in soils determined by conventional chemical measurements

and by diffuse reflectance spectra in the near infrared region. The observed results using

RBF were better than those obtained by Partial Least Squares (PLS) regression and

MLP feedforward networks with a back-propagation learning algorithm. These authors

concluded that RBF is a suitable tool for their application, with additional advantages

over MLP, since the training procedure is less dependent on the initial conditions.

Alsing et al. (2002) introduced a multinomial selection problem procedure as an

alternative to classification accuracy and receiver operating characteristic analysis for

evaluating competing pattern recognition algorithms. The multinomial selection

problem procedure demonstrates increased differentiation power over traditional

classifier evaluation methods when applied to three "toy" problems of varying

difficulty. The multinomial selection problem procedure is also used to compare the

performance of statistical classifiers and artificial neural networks on three real-world

classification problems. The results provide confidence in the multinomial selection

problem procedure as a useful tool for distinguishing between competing classifiers and

providing insights on the strength of conviction of a classifier.

Another promising method for tackling regression and prediction problems is Support

Vector Machines (SVMs). Yang et al. (2002) applied the SVMs in financial prediction

of noisy, time-varying financial data. Their experimental results showed that the use of

standard deviation to calculate a variable margin results in a good predictive result in

the prediction of Hang Seng Index.
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Ramesh et al. (2003) presented a hybrid Support Vector Machines-Bayesian Network

(SVM-BN) model that seeks to address the issue that most error models developed thus

far generally employ neural networks to map the input to the output and give no account

for the specific conditions that apply to the process being modelled. In their model the

experimental data is first classified using a Bayesian Network model. Once the

classification has been effected, the error is predicted using a SVM model. Their hybrid

error model thus predicts the error according to the specific operating conditions. This

concept leads to a more generalised prediction model.

Gunn (1998) wrote a comprehensive technical report on the support vector machines for

classification and regression. Another similar publication is a tutorial by Burges (1998)

entitled Tutorial on Support Vector Machines For Pattern Recognition in which the

author presents in the light of regression and classification problems.

1.3 Research objectives
The literature indicates that pre-processing gear vibration data with synchronous time

domain averaging can increase the diagnostic capabilities of the measured gear

vibration data. This is important to the engineer because it bears the potential of

increasing the reliability, repeatability and the diagnostic capability of gearbox

condition monitoring strategies. Time Domain Averaging (TDA) is an extremely

effective technique for the extraction of periodic data from the vibration signals of

rotating machinery. TDA, however, requires an enormous amount of gear vibration data

to calculate. This makes it unattractive for on-line gearbox condition monitoring

systems.

The literature also indicates that ANNs and SVMs can be successfully used in the non-

linear mapping of some input space to an output space. This observation is important to

this work in that it bears the potential of reducing the amount of input gear vibration

that is required for calculating the TDA of the gear vibration. The time domain

averaging process can itself be viewed as a broadband noise filter that eliminates all the

vibration that is asynchronous to the vibration of the gear of interest.

The purpose of this study is therefore to investigate and develop a synchronous filter for

time domain averaging of gear vibration data using of ANNs and SVMs.
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• The developed filter should provide a considerable reduction in the amount of

vibration data that needs to be collected and stored in the data acquisition system

in order to calculate synchronous time domain average of a gear vibration signal.

• The developed synchronous time domain averaging filter model should retain

the diagnostic enhancement capabilities of the TDA calculated by direct

averagmg.

• The filtering and diagnostic capabilities of the developed filter should be

validated for both constant and varying load conditions on experimental gear

vibration data.

• Comparison should be made between the performance of the developed filter

model and direct time domain averaging.

1.4 Document overview

The theory and mathematics of existing time domain averaging models is presented in

Chapter 2. This chapter also presents some simulations that highlight the strengths and

weaknesses of some of the popular time domain averaging models.

In Chapter 3 the theory of the MLP neural network, the RBF neural network and SVMs

in the context of this work is presented. Simulations on experimental gear vibration data

are conducted to investigate the suitability of these formulations for application in the

synchronous time domain averaging filter modeL

Chapter 4 presents the development process of the synchronous filter for time domain

averaging of gear vibration data. Two different synchronous filtering models are

developed. Gear vibration data from previous tests is used to investigate the influence of

different model parameters on the prediction capability for each of the developed

synchronous filtering models.

In Chapter 5 the developed synchronous filtering models are tested on experimental data

from accelerated gear life test rig for constant and varying load conditions. The results

confirm the suitability of the developed synchronous filtering models for time domain

averaging of gear vibration. A comparative study of these models is presented

 
 
 



In Chapter 6 the conclusion to the research and recommendations for further work are

presented
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Chapter 2

Time domain averaging models

2.1 Introduction

Time domain averaging is a signal processing technique that may be used to extract the

synchronous periodic content of a measured vibration signal from the measured

vibration signal. This process requires either accurate knowledge of the repetition

frequency of the desired frequency, if periodic, or else a second signal that is

synchronous with the first signal, but free of noise. Using either the repetition frequency

or the synchronous signal, successive blocks of the noisy signal may be sampled and

ensemble averaged. When sufficient averages are taken, it is found that the noise in the

ensemble averaged signal cancels out, leaving an improved estimate of the desired

repetitive signal (McFadden, 1989). One important application in which the periodic

signal must be extracted from the noise is the mechanical engineering problem of

analysis of vibration from gearboxes. When analysing gearbox vibration, it is

sometimes necessary to extract a periodic signal such as the tooth meshing vibration of

a single gear from the vibration of the machine. Some understanding of the time domain

averaging technique is required for the analyst to appreciate its limitations and

successfully optimise its performance for a particular application. This chapter,

therefore, presents some of the most commonly used time domain averaging models.

2.2.1 Comb filter model

For many years, time domain averaging has been modelled by the convolution of the

noisy signal with a finite train of impulses in which the time between the impulses is

equal to the period of the desired signal. It has been shown that this process is

equivalent in the frequency domain to the multiplication of the Fourier transform of the

noisy signal by a comb filter, thus passing only the frequency components which fall at

the fundamental and harmonic frequencies of the desired signal (Trimble, 1968). In this

 
 
 



section the application of the comb filter model for time domain averaging in the

extraction of periodic signals is presented.

It can be shown that calculation of the synchronous time domain using a trigger signal

having a frequency J; is equivalent to the convolution

y(t) = c(t)*x(t)

where c (t) is a train of N impulses of amplitude 1/ N, spaced at 1',= 1/ J;, given by

1 N-I

c(t)=-I8(t+n1',).
N n=O

N-I

c(t) * x(t) = 1/NIx(t+n1',)
n=O

=[x(t)+x(t+1',)+L +x(t+(N -1)1',)]/ N.

1 N-I

yet) =-Ix(t + n1',).
N n=O

This equation has the same form as that of the existing comb filter model (Braun, 1975;

McFadden, 1987). In the frequency domain this is equivalent to the multiplication of the

Fourier transform of the signal X(/) by the Fourier transform of the impulse signal

C(/). This operation is represented by

Y(/) = C(/)·X(/).

The Fourier transform of c(t) is C (I), which is a comb filter function ofthe form
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()
1 sin(JrNT,/)c 1 =-----.
N sin(JrT,/)

Increasing the value of N in Equation (2.6) narrows the teeth of the comb. For very large

values of N, only frequencies at exact multiples of the trigger frequency !r are passed.

Equation (2.6), therefore, implies that in the frequency domain, for large values of N,

synchronous time domain averaging can be viewed as a complete removal of all

components within the signal that occur at integer multiples of the trigger frequency !r.

Figures 2.1 (a) to 2.1 (d) show a form of the amplitude spectrum Ie(/)1 for N =1,2,4

and 8 of a comb filter plotted against the normalised Nyquist frequency. The spectrum

takes the form of a comb with the teeth of the comb spaced at intervals !r = 1/ T, . The

teeth of the comb have unit amplitude regardless of N.
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There are two features of the comb filter model that restrict its application to the

extraction of periodic waveforms using digital computers. The first of these factors is

that in the comb filter model there are bounds placed on the time signal. The model

assumes that the signal x(t} is known over infinite time t and that the time domain

average y(t} is defined over all time t, even though only a finite number of averages are

calculated. In practice, the signal x(t} can only be defined over a finite time. Noise

components that are not harmonically related to the repetition frequency 1; may be

passed by the comb filter, therefore, the estimate of the time domain average will not be

exactly periodic.

Figure 2.2 shows the performance of a comb filter in the extraction of a signal and its

harmonics from a numerically generated signal z(t) = xp(t) + e(t) where xp(t) is known

periodic component defined by:

xp(t) = sin (27r50t ) + sin (27r100t)- 0.45cos( 27r200t) + 2.1sin( 27r150t) + ...

sin (27r600t) - 2.5cos(27r250t) +sin (27r300t) + sin (27r350t) + ... (2.7)

cos(27r400t)+ sin (27r450t ) + sin (27r500t ) + 0.25cos(27r550t)

where t = (1: 0.001: 6), and the additive noise component e(t}, the noise content of the
signal is defined by:

e(t) = 0.3randn(6000)-0.48randn( 6(00)+ O.lrandn (6000)+ ...

0.33randn( 6000)+ 0.17randn( 6000),

where randn is a MATLAB function that defmes a set of normally distributed random

numbers selected from a normal distribution with a mean of zero and variance of one.
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Figure 2.2 (a) Noise corrupted signal; (b) FFT of noise corrupted signal; (c) Signal

filtered with a comb filter to remove 50 Hz and all the related harmonics; (d) FFT of

filtered signal.

From Figure 2.2 (c) it is observed that the amplitude of the signal decreased after

filtering but nothing much can be said about the frequency content of the resultant

signal. Figure 2.2 (d) shows the frequency spectrum of filtered signal. It is observed

that the amplitude of the frequency spectrum has decreased from 80 to 3 and 50 Hz and

all its harmonics have been filtered out leaving only the noise content that does not

coincide with 50 Hz.

2.2.2 Double comb filtering

Another attractive model for extracting the time domain averaging is the double comb

filtering approach as documented by Braun and Seth (1980). In this model the time

domain signal x(t) is decomposed as follows:

where y/t) is the periodic term and x/t) = xp (t+T); xn(t) is a random repetitive term

and n(t) is a residual term that is time-locked to a basic period T. A truly periodic
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component can only be generated by a truly periodic mechanism. This can only exist in

an ideal system because any process involving some sort of friction, liquid or gas flow,

and some non-reversible fatigue processes would include to some extent a component

like xn(t)(Braun and Seth, 1980). For a "more or less" periodic process this would

show gross periodic character, but no exact repetition of the nature

x/t}=xp(t+T)would occur. The parameter xn(t) thus describes a repetitive non-

periodic process as opposed to xp(t). The periodic component xp(t) can be computed

using the comb filter model as described in Section 2.2.1. The extraction of the random

repetitive term xn (t) is based on the expression

In Equation (2.10) Xr denotes a continuous random process of no obvious time pattern,

and g(t) is a deterministic periodic function of period T, ( i.e. g(t) = get + 1)). For a

case where xn (t) is derived from a narrow band continuous process, where narrow band

refers to a band limited process whose bandwidth is small relative to its centre

frequency, where x, (t) contains negligible energy above frequency /max such that

a possible computation scheme for detecting the components of xn (t) consists of using a

comb filter tuned to the narrow bands located around multiples of the fundamental

frequencies. A schematic diagram of the computation scheme is shown in Figure 2.3.

Comb
rIlter2
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The first stage is used to compute xp(t) and then x/t) is subtracted from the original

signal x(t). After subtraction, a second comb filter extracts xn (t). Both these stages will

be computed for the same period T.

2.2.3 Revised window model

The revised window model was suggested by McFadden (1987) to address some of the

problems encountered with the comb filter described in Section 2.2.1. This model

overcomes the problems with the comb filter model in that it requires knowledge of

only a finite block of the noisy data and it produces a result that is exactly periodic. This

model includes the effect of the signal's sampling frequency Is. In this section the

revised window model is briefly discussed.

Consider a rectangular window u(t) of unit amplitude and width TR centred at t = 0

with Fourier transform V(f) are defined by

Shifting the window u(t) to the positive direction by an amount (TR /2) - (T: /2) =

(TR - Ts) / 2 where Ts = 1/ Is is the period between the samples of the input signal

therefore the edges of the window are located midway between the sampling of the

impulses. This avoids the problem of an impulse occurring at the edge of the window.

The shifted window w(t) and its Fourier transform W(f) are, respectively, defined by

Consider now the sampling of the signal x(t) at a frequency Is over the window of

duration TR• The window, defined by w(t - nTR), consists of the window w(t) shifted

by t = nTR• The sampling of the signal is produced by multiplication of x(t), w(t) and

c(t), where c(t) is the pulse signal defined by Equation (2.2). The result is convolved
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with the unit impulse by 8(t+nTR) located at t=-nTR, thus performing a shift of the

sampled signal by nTR in the negative time direction. The result is given by

Now the function e(t) is periodic in Ts. If Ts is chosen such that an integral number M

of samples is taken per repetition period TR thenTR = MTs. This implies that e(t) will

also be periodic to TR, so that e(t) = e(t + nTR). By replacing e(t + nTR) in equation

N-I

aCt) = 1/NL x(t + nTR)· e(t)· wet),
n=O

N-I

aCt)= e(t)· wet) / NL x(t + nTR),

n=O

Note that although x(t) is not bound in time, aCt) is bounded in time because of the

effect of the window wet). This model therefore satisfies the requirement of knowledge

of the signal over only a finite time. Analysis of aCt)in the frequency domain by

convolution theorem (Bringham, 1974) shows that a(t) can be forced to be periodic by

sampling its Fourier transform A(f) in the frequency domain. This is achieved by

multiplying A(f) by an infinite train of ideal impulses R(f), with the impulses spaced
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at a repetition frequency fRo An estimate of the revised window time domain averaging

model is given by

h(t) = a(t) * r(t)

The revised window model remarkably changes the result that is predicted by the

original comb filter model. Over and above requiring knowledge of the signal over

finite time, it also ensures that the obtained result is periodic.

2.2.4 Using direct averaging

Again consider a signal z(t) composed of a periodic signal xp (t) with known period

TR and an additive noise component e(t)

The periodic component xp(t) of signal z(t) can be extracted by direct time domain

averaging. To calculate the direct time domain average of a'vibration signal, a rotational

signal from a sensor mounted on the input shaft or some other suitable location on the

rotating machine is used. This rotational signal is used either to control the sampling of

the total vibration signal or to determine the accurate period of the vibration of the

component of interest and to separate out that vibration component. When the rotational

signal is used to control the sampling of the total vibration, a phase locked frequency

multiplier is used to convert the rotational signal to the required sampling control signal,

which consists of a pulse train synchronised with the rotation of the required gear.

When the rotational signal is used to determine the accurate period of the vibration of

the component of interest, both the total vibration signal and the rotational signal are

sampled simultaneously at fixed clock frequency. When monitoring a gearbox, the

rotational signal can be obtained from a sensor like a shaft encoder mounted on the

input shaft to the gearbox. The accurate period of the rotating signal can be easily

obtained from the shaft encoder signal, and the accurate period of the vibration of the

required gear can then be calculated using the transmission ratio.
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After the correct period of the rotating signal has been obtained, there are two different

approaches that can be followed to calculate the time-domain average of the vibration to

separate out the required vibration component. The first approach is by directly

averaging some segments of the total vibration (Braun, 1975, Braun and Seth, 1980).

The second approach is to first interpolate the total vibration and resample it in the

interval that can exactly divide the calculated period, and then averaging the

interpolated signal (McFadden, 1989).

In direct time domain averaging, the rotational signal obtained from a sensor mounted

on the input shaft to the component of interest is used to synchronise the measured

vibration signal with the rotation of that component. This operation gives the vibration

produced by that specific rotating component over each rotation. The vibration signals

from the rotations are simply averaged to obtain the time domain average after k

revolutions. Figure 2.4 illustrates the direct time domain averaging procedure using

vibration data from the accelerated gear life test rig developed by Stander and Heyns

(2002a) for their work on gearboxes operating under fluctuation load conditions. The

details of the accelerated gear life test rig are presented in Section 4.2.1.

Figure 2.4 (a) shows a plot of the once per revolution pulse signal that would typically

be obtained from a shaft encoder to compute the period of each shaft rotation. This

signal was measured over a period of 32 seconds in which time the shaft rotated 165

times therefore the shaft encoder gives 165 pulses. Each pulse represents the start of a

new gear rotation. This signal is used to synchronise the vibration data measured from

the gearbox casing with the rotation of the gear. In Figure 2.4 (a) only 2 seconds of the

pulse signal are shown to enhance clarity. Figure 2.4 (b) shows the time domain

representation of the measured acceleration signal from the gearbox casing. The

acceleration signal was measured in the vertical direction over a period of 32 seconds at

a sampling frequency of 51200 Hz, but to enhance the clarity of the figure only 0.5

seconds of measured vibration are shown. Figure 2.4 (c) shows the vibration signals

produced by five rotations superimposed on the time domain average that is calculated

from 160 gear rotations. From this plot it is observed that the amplitude of the time

domain average is less than that of the original signals. This is because the broad-

spectrum noise component e(t) has been filtered out through the time domain averaging

 
 
 



process. Another way of looking at this is by observing the RMS value of the TDA as a

function of the number of input rotations. Figure 2.4 (d) is a plot of the RMS of the

TDA against the number of signals that are used to compute the TDA (number of

averages). From this plot it is observed that the RMS value of the TDA decreases as the

number of inputs (gear rotations) that are used to calculate the TDA is increased. This is

because the non-synchronous component of the gear vibration is filtered out as the

number of inputs is increased.

c' ,
"

c.

Figure 2.4 (a) One pulse per revolution shaft encoder signal used to synchronise the gear

vibration with the gear rotation.

"F,
oS I

<D
~ 0.5:a
E« 0

Figure 2.4 (c) Five rotation synchronised gear vibration signals superimposed on the TDA

obtained after 160 gear rotations (red signal).
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Figure 2.5 illustrates the broad band filtering capabilities of TDA. The FFT spectrum of

the TDA after 160 shaft rotations superimposed on the FFT spectrum of the original

gear vibration signal. It is observed from Figure 2.5 that the noise content of the original

signal e(t) and the frequency content that is asynchronous to the rotation of the gear of

interest have been filtered out. Only the gear mesh frequency (GMF) and its sidebands

(SB.l and SB.2) remain in the spectrum of the TDA. It is also observed that the

amplitude of the GMF and SB.2 has increased. The amplitude of the spectrum of the

TDA is generally less than the amplitude of the spectrum of the original signal at the

frequencies that are not synchronous to the rotation of the gear of interest. These

observations confirm the fact that calculating the TDA by direct averaging isolates the

vibration produced by the rotation of a specific component, therefore the TDA

calculated by direct averaging can be utilised to improve the diagnostic capability of a

condition monitoring system .

••~O.'5.,
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Figure 2.5 FFT ofTDA after 160 gear rotation superimposed on the FFT the original gear

vibration measured from the gearbox casing.
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Another important observation is that calculating the TDA by direct averaging has

filtered over an overlapping frequencies because it removed the noise over the entire

frequency spectrum, while retaining all the frequency content that is related to the gear

interest, in this case, the gear mesh frequency and its side bands. This capability gives

calculating the TDA by direct averaging an advantage over other TDA models and

linear filters, which can only retain or reject specific frequency bands.

2.3 Conclusion
In this chapter different approaches for calculating the TDA are presented. It is

demonstrated that the comb filter model for time domain averaging is suitable for

extracting specific frequencies and their harmonics from a signal when the period of the

signal is known and constant. This model is, however, not effective when the frequency

content of the noise coincides with that of the required signal as is commonly the case

in many industrial applications. For gearboxes, a more suitable model for calculating

the TDA is direct averaging. It is demonstrated that the direct averaging approach can

filter out broadband noise over the entire spectrum of the signal leaving only the

vibration content that is synchronous with the rotation of the gear of interest. This

capability gives calculating the TDA by direct averaging an advantage over other TDA

models and linear filters; therefore, in this study the IDA is calculated by direct

averaging. Calculating the TDA by direct averaging requires an enormous amount of

vibration data, and therefore, would still remain the main bottleneck in the development

of an online gear condition monitoring system that utilises the TDA calculated by direct

averaging to enhance its diagnostic capability. The IDA models developed later in this

work seek to reduce the amount of vibration data that is required to calculating the TDA

by direct averaging while retaining all the properties of the IDA.
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