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Summary

Interaction of various components in rotating machinery like gearboxes may generate
excitation forces at various frequencies. These frequencies may sometimes overlap with
the frequencies of the forces generated by other components in the system.
Conventional vibration spectrum analysis does not attenuate noise and spectral
frequency band overlapping, which in many applications masks the changes in the

structural response caused by the deterioration of certain components in the machine.

This problem is overcome by the use of time domain averaging (synchronous
averaging). In time domain averaging, the vibration signal is sampled at a frequency
that is synchronised with the rotation of the gear of interest and the samples obtained for
each singular position of the gear are ensemble-averaged. When sufficient averages are
taken, all the vibration from the gearbox, which is asynchronous with the vibration of
the gear, is attenuated. The resulting time synchronously averaged signal obtained
through this process indicates the vibration produced during one rotation of the
monitored gear. This direct time domain averaging process essentially acts as a
broadband noise synchronous filter, which filters out the frequency content that is

asynchronous with the vibration of the gear of interest provided that enough averages




Summary

are taken. The time domain averaging procedure requires an enormous amount of
vibration data to execute, making it very difficult to develop online gearbox condition
monitoring systems that make use of time domain averaging to enhance their diagnostic

capabilities since data acquisition and analysis cannot be done simultaneously.

The objective of this research was to develop a more efficient way for calculating the
time domain average of a gear vibration signal. A study of Artificial Neural Networks
(ANNSs) and Support Vector Machines (SVMs) was conducted to assess their suitability
for use in time domain averaging. Two time domain averaging models that use ANNs
and SVMs were developed. Model 1 uses a single feedforward network configuration to
map the input which are rotation synchronised gear vibration signals to the output which
is the time domain average of the gear vibration signal, using only a section of the input
space. Model 2 operates in two stages. In the first stage, it uses a feedforward network
to predict the instantaneous time domain average of the gear vibration after 10 inputs
(10 rotation synchronised gear vibration signals) to predict the instantaneous average of
the gear rotation. The outputs from the first stage are used as inputs to the second stage,
where a second feedforward network is used to predict the time domain average of the

entire vibration signal.

When ANNs and SVMs were implemented, the results indicated that the amount of gear
vibration data that is required to calculate the time domain average using Model 1 can
be reduced by 75 percent and the amount of gear vibration data that needs to be stored

in the data acquisition system when Model 2 is used can be reduced by 83 percent.

Keywords:  Artificial Neural Networks, Time Domain Averaging, Synchronous
average, Multi-layer, Perceptron, Radial Basis Function, Support Vector Machines,

Gearbox and Vibration
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Nomenclature

"
HE
R[f]
Ry [ /]
K(x.x')

(x),

0]

Description

Euclidian distance between x and x"

Square matrix with elements ¢, = ¢5(”x -x" ”)

Pseudo inverse

Slack parameter presenting the lower and upper constraints
Risk function

Empirical risk minimisation function

Kernel functions

The positive part of x

Column vector of zeros

Loss function

Weight decay coefficient in MLP

Lagrange multipliers

Variance

Basis function

Rectangular window of unit amplitude

Extra basis function with activation fixed to 1
Simulation accuracy

Convolution

Revised window model time domain average
Fourier transform of a(t)

SVM tolerance parameter

Impulse signal

Fourier transform of impulse signal

Training data set
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TORIA

e(t)
Esim
f

Jr
Sfinner
Smax
Jouter
Is
g()
h(x")
k

M
N

n

ny
r(t)
R()

Cost function

Noise signal

Response error

Frequency

Frequency of trigger signal

Inner activation function

Maximum frequency

Outer activation function

Sampling frequency

Deterministic periodic function of period T
Interpolation functions

Number of gear rotations

Number of hidden units

Number of impulses in impulse train
Index for training pattern in MLP
Residual signal that is time locked to period T
Infinite train of impulses

Fourier transform of infinite train of impulses
Time

Period

Training target

Target consisting of N input vectors
Period of rectangular window

Period between the sample points

Period of impulse signal

Fourier transform of rectangular window
Matrix of weights (wy)

Bias for hidden unit ;

First layer weights

Radial basis function biases

Weight parameters

Basis function weights
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x(1)
X(t)

Xmax

Y
Vachieved
Vdesired
Vi

z(t)

Abbreviations

RMSE
SB
SCG
SVMs
TDA

ETORIA Nomenclature
ETORIA

Input to neural network

Input space

Time signal

Fourier transform of time signal
Training input

Maximum value of vibration during a given interval
Repetitive component of noise signal
Data set consisting of N input vectors
Periodic component of signal
Continuous random process

Output of neural network

Time domain average

Obtained output

Desired output

Output of MLP network

Numerically generated time signal

Conjugate gradient

Digital signal processing
Karush-Kuhn-Tucker condition
Multi-layer peceptron

Radial basis function

Root mean square

Root mean square error

Side band frequency

Scaled conjugate gradient
Support vector machines

Time domain average
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