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Chapter 3

3 PROBLEM SOLVING METHODOLOGY

Solving the vehicle routing problem in its basic format is already an NP-hard
problem. Exact methods have proved to be inefficient and tme-consuming in
trying to solve this problem. Previous attempts on solving the VRP have
indicated that heuristic methods result in the best feasible soluton in an
acceptable time. When we add additional constraints to the basic VRP, we
increase the difficulty of the solution exponentially. We must also consider the

size of the data set their needs to be optimised.

Heuristic methods search only part of the solution space. This result in the
quicker termination of the algorithm, but does not guarantee a best solution.
Previous results have shown that heuristic methods can achieve optimal or near
optimal results repeatedly. The meta-heuristic method has a guidance procedure
of some sort to help it traversing through the solution space. The guidance
procedure is dependent on the type of heuristic selected for the solution, as well
as additional knowledge from the problems space implemented by the algorithm.
This additional information about the problem beforehand can assist the
algorithm in more effective search paths. A meta-heuristic is the implementation

of a heuristic method with a guidance procedure.
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Soiution Space -

Better Salution

Initial Solution

O

Best Solution

Operation

Possible Sclution ———

Figure 10: Solution Space

Figure 10 explains the methodology of heuristic methods for solving the
particular problem. The solution space consists of all possible solutions for the
specific problem. Theoretically we can develop an algorithm that has the ability to
generate all of the possible solutions such as branch and bound methods. As we
have already seen, this method will take an eternity on the complex problem that
we are trying to solve. A meta-heuristic can search effectively through the

solution space.

A circle which size reflects the total cost of the solution represents a solution.
The smaller the citcle, the better the solution. This indicates that there are
possible solutions that is not cost-effective and which we do not want to consider

as an end result.

Let S be a set of solutions to a particular problem, and let f be a cost function

that measures the quality of each solution in S. The neighbourhood N(s) of a
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solution s in S 1s defined as the set of soludons which can be obtained from s by
performing simple modifications. Roughly speaking, a local search algorithm
starts off with an initial solution in 8 and then continually tres to find better
solutions by searching neighbourhoods. A local search process can be viewed as a
walk in a directed graph G=(§,A) where the vertex set S is the set of solutions
and there is an arc (s,8") in A if and only if s' is in N(s). By considering the cost

function as an altitude, one gets a topology on G=(8,A).

The efficiency of a local search method depends mostly on the modelling. A fine-
tuning of parameters will never balance a bad definidon of the solution set, of the

neighbourhood, or of the cost function.

The topology induced by the cost function on G=(8,A) should not be too flat.
The cost functon can be considered as an altitude, and it therefore induces a
topology on G=(§,A) with mountains, valleys and plateaus. It is difficult for a
local search to escape from large plateaus since any solution that is not in the
boarder of such a plateau has the same cost value as its neighbours, and it is
therefore impossible to guide the search towards an optimal solution. A common
way to avoid this kind of topology on G=(§,A) is to add a component to the cost
function which discriminates between solutions having the same value according

to the original cost functdon.

Our evolutionary metaheuristic makes use of the well-known two-stage and
multi-start local search (MLS) frameworks. In two-stage framework the initial

solution created 1n the first stage is subsequently improved in the second one.

In the first stage we generate an initial solution with the help of a construction
heuristic, in this case we make use of the sequental insertion heuristic (SIH). This

method results in a solution that is feasible but not necessarily the best. The
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feasibility of the solution ensures that it existing our solution space (see the initial

solution in Figure 10).

The improvement stage traverse from our current position to a neighbour's
solution. Because solutions do not truly exist in our environment, we need to
generate a new feasible solution. This is done by applying an operation on the
current solution. As we progress it can happen withour an already existing
solution 1s generated by an operation. This can result in cycles in our search path,
which leads to revisiting existing solutions and result in unnecessary
computatonal tme. One of our objectives will be to prevent such cycling. After a
specified number of iterations we have visited a number of solutions from which
the best solution is kept. The solution is not necessarily the best solution for the
problem, but represents the best-visited solution. Our goal is to guide the search

path in such a way that we cover as wide as possible area of the solution space.

From the figure we can see that the path to the best solution might have to go
through a not so good solution before the best solution is reached. Operations
applied on a solution can result in a not feasible solution. We can consider this as
a stepping-stone towards the next solution, or it can be seen as a waste of

computational time.

The improvement phase is implemented with the Tabu Search Method. Tabu
search has a rationale that is transparent and natural: its goal is to emulate
ntelligent uses of memory, particularly for exploiting structure. Since we are
creatures of memory ourselves, who use a variety of memory functions to help
thread our way through a maze of problem-solving considerations, it would seem

reasonable to try to endow our solution methods with similar capabilities.

The following sections will discuss i1n more detail the specific methods used to

traverse through the solution space. It will also point out where knowledge about
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the problem beforehand can have an effect on the implementation of the
solution. The sections consist of the problem representadon in objects, the
approach of the solution, a discussion on the constructon heuristic and

improvement heuristic.
3.1, Obijects.

In the previous chapter we presented the problem in a mathematical model. This
model has the purpose of describing the parameters of the problem as well as the
conditions it has to meet. Implementing a solution for the problem is not as easy
as describing it. This section will explain the components we udlise for solving

the problem. The solution was designed in an object orientated way.

The object model is divided into two areas. Model will describe the problem
objects or the input data. The second model will describe the alterations on the
problem objects and the additional objects required to produce a solution. An

object consists of properties, methods and relations.
411, Problem objects.

This section will discuss the mapping from the input data to the objects in the
solution. We need to identify all the objects represented in the input data. Let us

consider the vehicle routing problem again.

The basic VRP consist mainly of a depot, stops and vehicles. A depot can be seen

as a specific stop with certain properties.
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Stops
LLStop
-Volume : double LLNode

-TimeWindows : LLTimeWindowList D - int
-Name : string D_x - double
-FixedService : double -y : double
-VariableService : double -
-Neighbours

Figure 11: Problem object Stop

The above object represents a stop. A stop must comply with the basic
functionality of a graph node. The figure indicates that a stop inherits all the

properties and methods of a node. The properties of a stop is as follows:
e ID - a unique value to identify the stop.
e X, Y - the spatial representation of the node
¢ Volume - the volume that a stop will utlise on a vehicle

e Time Windows — a list of available time windows that a stop can be

visited 1n.

e Name — a descriptive name for the stop for display and report purposes

e Fixed Service — the fixed service time for a stop in minutes. This
represents the stopping time required at a stop without loading or

unloading anything.

e Variable Service — this represents the volume per minute rate of loading
or unloading goods at the stop. The total service time at the stop consist

of the fixed service time + (volume * variable service tme)
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e Neighbours — this is a list of neighbours that a vehicle can visit from a
stop. In the basic VRP this list will consist of all the other stops. In our
problem that includes time windows, it might happen that it will never be
feasible for a vehicle to travel from one stop to another because of time
window compatibility (see description of time window compatibility),
which basically means that the following stop has time windows that ends
before the current stop’s ime windows begin. Science has shown that we
cannot travel back in time and thus we will not consider this stop as a

neighbour.

Operations required by the problem model for stops can be defined as followed:

e ‘Travel Time - working with the restriction of time widows, we need to
know that time it will take to travel from one stops to another to ensure
that we arrive at a feasible time. We implement travel time between stops
in a matrix. One of the additional constraints to our problem is the
requirement to calculate the travel time depending on the time of the day.
The travel time function accepts the two stops in the rravelling sequence
and the time of departure from the first stop. See this section on the cost

matnx for further detail.

e Distance - distance is calculated in a similar way as travel ime. Distance is
also dependent on time of day because the travel time between two stops
determines the route between the stops. This means basically that a

quicker route might not be the shortest.
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Depot
The properties and methods of a depot is exactly the same as for a stop. In
defining a depot, we define a single stop. Travel time and distance calculations

applied on the depot in the same manner as for a stop.

Our solution considers only one depot, which implies that all the existing vehicles
and stops belong to that depot. Extending this problem to a mult- depot
problem would require the depot object to be reconstructed by adding a stop list

as well as vehicle list to the depot object.

Vehicle

LLVehicle

-ID :int

-Name : string

-Capacity : double

-FixedCost : double

-VariableCost : double
-TimeWindows : LLTimeWindowList

Figure 12: Problem object Vehicle

The vehicle object in our implementation consist of the following properties:

e ID - aunique key for identifying the vehicle

e Name - a descriptive name for display and reporting purposes

® Capacity - the total volume that a vehicle is capable to handle

e Fixed Cost - the cost of utilising this vehicle without even travelling

e Variable Cost - the running cost of the vehicle. Part of the cost of the

route is calculated by Fixed Cost + (Variable Cost * Distance).
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o Time Windows - a list of available time widows that the vehicle can be

utilised.

There does not exist specific operations for a vehicle in the problem object

model.

Time Windows

LLTimeWindowList LLTimeWindow
-TimeWindow : LLTimeWindow -OpenTi_me : DateTi_me
+AddTimeWindow(in TimeWindow : LLTimeWindow) : bool a el P
+IsTimeCompatible(in Time : double) : bool +Double0penT|me( ) : double
+GetCompatibleTime(in Time : double) : double +DoubleCloseTime() : double
+SpanTime() : int

Figure 13: Problem object Time
Window

Time widows play an important role in the problem. All of the problem objects,
namely depot, stops and vehicles, are associated with a time window list to

indicate availability for the object’s specific function.

Time window consist basically of an open and close time. This time is saved in a
datetime format to allow for implementing problems that span across mulaple

days. Operations on the time window includes:

e DoubleOpenTime - returns the number of minutes after specific date
tme from a fixed time. This is done to allow the algorithm to work in a
linear reference environment. Let us for example say that the open time 1s
07:00 on today's date. Calculating the linear time consist of the difference
between the open time and today at midnight, which results in 7 hours.
Converting the hours to minute’s results in a linear open time of 7 * 60 =
420. If the open time was specified as yesterday at 07:00 the difference

between today at midnight and the open time is —17 hours. Converting
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the hours to minute’s results in a linear open time of -17 * 60 = -1020.

Although the value is negative is still valid for a linear scale.

DoubleCloseTime - returns the number of minutes after a specific date

time, same as DoubleOpenTime.

SpanTime - returns the difference between the open and close time in

minutes.

What we can see from the ime window properties is that our linear timescale

consists of minutes. The fixed point on the scale to calculate the linear values

from is today's date.

The time window list object consists of a list of time windows. Operations on

this list include:

312,

IsTimeCompatble - this function accepts a time and determines if there
exists 2 ime window that include the time, i.e. the ame is after the open

time and before the close time for a specific ime window in the list.

GetCompatibleTime — this function accepts a time and calculates the
earliest available ime according to the time window list. If no such tme

exists, an exception is thrown, which indicates incompatible time.

Solution Objects

This section will give an overview of the solution objects used in the algorithm. It

is important to understand this basic building blocks in order to see how the

algorithm functons. Solution objects consist of extensions of problem objects to

handle new information required by the solution, as well as help objects that play

a role in solving the problem.
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Route Vehicle

The implemented solution focus on deterministic data, 1.e. all the demands and
vehicles are available and known before the start of the soluton. In terms of the
vehicles the algorithm will not propose a best-suited fleet from a set of vehicles,
but accept the vehicles as existing and ready to use according to their
specifications. It can be simplified by allocating a route to a vehicle before we

even start. The solution is therefore made up of a set of vehicles that contain

routes.

One of the additonal requirements of the problem is to allow for multiple routes

on a vehicle. A vehicle can thus have multiple routes.

A vehicle with routes will be the main output of the system. A route vehicle 1s the

input vehicle with routes associated to it.

Routes

A route can be seen as a sequence of stops that is visited by a particular vehicle at

a specific time.
1.1.2.3 Route Stops

The determining of a best soluton relies mainly on the handling of the stops. | A

route stop consist of a stop with additional info such as:
e Arnval Time — the time a vehicle arrives at a stop

e Wait Time — the time a vehicle must wait at a stop before it can start

servicing the stop.

e Service Time — as specified by the stop service time.
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® Departure Time — the time the vehicle leave a stop for its next stop. This

must be equals to the Arrival Time + Wait Time + Service Time.

® Next Stop — An indication on where to go next in the route. This method
is the principle method of providing information on the route. Adding or
deleting a stop from a route is made easy by just replacing the next stop.
Adding a new stop requires replacing the current stop’s next stop with
the new stop and the new stop’s next stop to the current stop’s next stop.
Deleting 1s as easy as setung the previous stop’s next stop value to the
current stop’s next stop value. This only indicates the method of
inserting and deleting a stop from a route and not the validity of the

move.

VRP Base

The main purpose is to solve the VRP. There exist several ways to solving a VRP.
This object i1s the base object for the solution. The object contains all the
necessary data and manipulates all the necessary methods applied on the data.
The end result of the algorithm is the VRP object, which contains multiple

solutions.

Cost
Cost is defined as the cost in terms of distance and travel dme from one stop to

another. A cost matrix is used for storing the values.

The solution implements a cost function with time windows to represent the
difference of cost on a link depending on the time. This basically result in a cost
function that is a function of the time of day. When the algorithm requests a
travel tme from the cost function, the function first determines the cost matrix
to use. This is done by finding a cost matrix, which time windows will contain the

time provided. The cost for that time is returned.
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It 1s important to notice the influence of such dme dependent cost function in
the solution. The advantage is that a more accurate route can now be constructed,
which is very important for the success of the algorithm. When a vehicle travels
from point A to point B, it will definitely take him longer during traffic peak
periods. The use of an average travel time on a link will no be sufficient to take
care of this problem. When a vehicle travels during peak time, his actual arrival
time at the customer will be later than planned. Although the vehicle might make
up this time during the off-peak time, the use of multiple ime windows can result
in a lateness that fall berween two time windows, which result in additional wait

ume, which makes it more difficult to make up during the off-peak times.
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Figure 14: Peak and Off-Peak travel
time influence
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Figure 14 explains the importance of a time dependent cost function in the
solving of the VRP. The figure represents a typically delivery day with stops that
has similar time windows. The patterned areas represent peak traffic tme. A

route is constructed from the depot on the left back to the depot on the right.

The green arrow line represents the route making use of an average travel time on
a link. The red line represents the actual travel ume. Starting of, we can
immediately see that the average route departs later that the actual route. This is
because the departure time from the depot is determined by the open time of the
first stop. The slope of the red line is steeper than the green one, which indicates

a longer time to travel from the depot to the first stop in the actual route.

The algorithm will ensure that the arrival time at the first stop is as early as
possible. In the above case, both routes arrive at the open time of the first stop.
The service time is not affected by the cost function and both routes depart from

the first stop at the same time.

Durnng the peak travel time, the actual route requires a bit more time to travel
than the average travel time. At stop 3, the actual time arrives too late to be
serviced in the first ime window and has to wait for the second time window to
take effect. Although the actual travel time is quicker than the average time
during off-peak periods, the aggregated loss due to lateness cannot be recovered.

This is mainly due to the synchronisation of the stop time windows.

The example above is proof that we need to implement a time dependent cost

function in the algorithm to produce more realistic results.

The VRP is a NP-hard problem, which suggest that it is difficult to solve.
Heuristic methods can provide feasible solutions in reasonable time, but

additional constraints will increase computational time. The addition of a time
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dependent cost functon requires the algorithm to recalculate the travel time
between two stops every time a new stop is added to the route or a stop 1s
removed from the route. This is necessary for all stops after the added or
removed stop, as the addition of a stop will alter the arrival time of all subsequent

StOPS.

Solution

A soluton object represents a possible solution to the VRP problem. The
solution contains route vehicles and their corresponding routes and stops, as well
as an orphan list of stops. A solution object is used to generate more solutions

from through an operation.

Although the algorithm considers all the main influential parameters, we cannot
ignore the human factor. There might still exist a preference from the user
regarding a specific solution. During the execution of the algorithm the proposed
methodology requires a list of solutdons to be able to traverse through the
solutions space. We propose that the algorithm does not only present the user
with the best to solution found, but provide the option of selecting one of the
best solutions. Practical implementation has shown that the best calculated
solution might not always be the most feasible for the client. This might be

because of the customer driver relationships, driver knowledge of areas, etc.

Construction Heuristic

The proposed solution requires some possible solution to start working from.
There exist multple methods of constructing an initial solution. In a later section
the selected construction heuristic namely the Sequential Inserton Heuristic
(STH) will be discussed. The algorithm can function from an existing solution. In

those cases, the construction heuristic would not be necessary.
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Working in the ASP environment implies dynamic acquisiion of data from
clients. The solution has to take into consideration the possible extension of the
current implementation, i.e. there might exist a better construction heuristc for
the specified problem. For that specific reason we propose the implementation of
a construction heuristic in the main algorithm. This will allow the addition of
other construction heuristics in the future. The current construction heuristic

already produces multiple solutions for the improvement heuristic to work on.

Improvement Heuristic

The implementation of an improvement heuristic is the focus area of this
research topic. The VRP object contains an Improvement Heuristic method. As
in the case of the construction heuristic, the VRP is force the existence of such a

method, but does not determine the implementation detail.
313 Problem Helper Methods

This section will discuss the systematic approach in solving the problem.
Although the focus of this thesis is on designing a new VRP solution, we cannot
ignore the implementation environment. The ASP environment has a major
influence on the line and implementation of the solution algorithm. The main

reason 1s because of the unpredictability of the data.

The next paragraphs will discuss information flow and manipulation through the

process.

Input Data and Object Generation
The first step towards a feasible solution is to acquire data from the client. There
exist multiple methods of transferring data from the client information service to

the ASP server. This is the topic of another study.
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What is important is that the data must be complete. This means that the
incoming data must contain all the necessary information. In addition, we must
know where the incoming data is headed for, e.g. the client must specify which

value from a stop is the demand and which is the time windows etc.

The client data must now be constructed in the defined objects. The algorithm
requires data that is relevant to one depot and one instance of a routing schedule.
This means that a stop will only be visited once during the tme windows

specified.
After this step, the algorithm will contain all the necessary data.

Solution methods

As explained in previous sections, a route consists of a sequence of stops. The
manner in which the structure is maintained is important in the manipulation
procedures of the algorithm. This paragraph describes basic actions allowed on a
soluton. The implementation of the construction and improvement heuristics

will depend on the stability of these actions.

Route stop addition
As mentioned previously in the discussion of the time dependent cost function,
the addition of a stop on a route has several consequences on the subsequent

srops.

The addition of a stop in a route results in this shift of the arnval time of
subsequent stops, which can result in ime window incompatibility, i.e. the arrival
time is not sufficient anymore to be able to serve the stop in its available time
windows. An action of inserting a stop in a route that result in incompatible time

windows must flag the route as invalid.
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The removal of a stop on a route has less dramatic results, i.e. if a route was valid
before the removal of a stop, it can still be valid. It might not be as efficient, but

it will sall exist in the solution space.

The addition of a stop on a route also has an effect on the vehicle volume.
Adding a stop increase the volume required on the vehicle. The addition of a stop
can result in a route that exceeds the vehicle capacity. This action must flag the

route as invalid.

The removal of a stop result in the decrease in the required volume for the
vehicle. The removal of a stop from a route cannot result in a vehicle that

exceeds capacity.

It is important to know that the weight and arrival time calculations have to be
executed on each insertion and removal of a stop in a route. The implementation

of these methods must be effecave.

Vehicle stop addition.
The addition of a stop on a route has an effect on the overall routes associated

with the vehicle.

When a stop 1s added on a route, the route’s departure and arrival tme from the
depot change. This can result in a delay in the departure of a next route from the
depot. The new departure time for the next route can result in incompatible tme
windows at stops, or even an incompatible time window for the route vehicle.
The addition of a stop on a route can result in the invalidity of subsequent routes

and the route must be flagged accordingly.

Time Window Compatibility
The concept of a time window compatibility matrix as proposed by van

Schalkwyk, [52] has not been proven, but has a logic sense to it. The calculaton
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of such a matrix can be done at the beginning of the algorithm, which adds to the

setup time, but not the running time.

An aspect not catered for in the proposal of the TWCM is the variation in the
travel time depending on the time of the day. The additon of variable travel time
adds some complexity to the problem. In Figure 15 we show effect of the

variable travel time.

| "/ node /

scheduling period
f l } f + »  time
06:00 08:00 11:00 15:00 18:00

Figure 15: Variable Travel Time on
Time Window Compatibility

From the figure we can depict the effect of the variable travel time. In this
implementation, the travel time function is not a continuous function, but a
disjunctive function consisting of constant times at specific intervals. In our
calculation of the TWC, we need to overlay the travel time function’s time
windows with that of the source stop. We determine travel time from the source

stop’s departure time.
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3.2. Approach

The approach consists of different phases, which will be discussed in more detail
in the following paragraphs. The first phase consist of the generaton of the
required distance and time matrices for specific ime periods. The second phase is
the generaton of an intial solution through a constructon heuristc. This 1s
necessary for the improvement heuristic that follows. The improvement heunstc
will follow the guidelines of the Tabu Search. The heunstic will search for a good
solution by diversifying and intensifying the solution area. After a predetermined
number of iterations, or if a termination parameter is met, the post optimizatdon

phase will ensure that the current best solution is optimised to its Jocal minimum.

Generate distance and time matrices for
specified time periods.

Creating an initial solution through SIH.

: : Determine next
‘ Apply tabu with mulitple moves. —_— tabi nove

N S
Add to move weight |
Finishing criteria met? > depending on |
effectiveness.

Optimize Solution ta local minimum

4

Figure 16: Algorithm Phases
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3.3. Initial Solution

High quality initial heuristics often allow local searches and metaheuristics to
achieve better solutions more quickly. Marius Solomon was one of the first
researchers to consider the VRPTW. He designed and analysed a number of
algorithms to find initial feasible solutions for the VRPTW (Solomon, 1987). His
sequential insertion heuristic (SIH) gave very good results in most environments,
and most current heurisic methods make use of this heuristic (or a vanation

thereof) to effectively find a feasible starting solution.

BEach customer 7 has a known demand ¢, to be serviced (either for pickup or
delivery) at time &, chosen by the carrer. Because time windows are hard, 4, is
chosen within a time window, starting at the earliest time ¢ and ending at the
latest time / that customer 7 permits the start of service. A vehicle arriving too
early and customer /, has to wait until ¢, If 7, represents the direct travel ime from
customers / to customer /, and s the service time add customer 7, then the
moment at which service begins at customer /, b, equals max{e, 4, + s, + 7, } and

the waiting time »; is equal to max{0, ¢— (b, + 5, + 7)) }.

After initialising the route, the insertion critetion ¢, (, #, j) determines the cheapest
insertion place for all remaining, unrouted customers between two adjacent
customers / and / in the current partial route (4, 7, ..., ,). Each route is assumed
to start and end at the depot 7, = 7,. The indices p = 1, ... g7 are used to denote a
customer’s position in the route. The insertion cost is a weighted average of the

addiional distance and time needed to insert the customer in the route. The

parameters &,,a,, 4 and A ate used to guide the heuristic.

Inserting customer # between 7 and ; increases the length of the route by the

distance insertion, o, + d,- md, After inserting a customer u between the

1
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adjacent customers /7 and j, a push forward can be calculated for each consecutive

node £,
PF,=b"-b,

in which &, (5"") denotes the beginning of service at customer k in the route
before (after) inserting customer u. The value of PF, is maximal for the direct
successor £ = ;j of #. The sequential insertion heuristic uses the maximal push
forward to measure the ume needed to insert customer # in the route, the so

called time insertion.

The next step of the sequental insertion heuristic decides on which customer to
nsert the route. The selection criteron ¢, (7 # j) selects the customer for which
the cost difference between insertion in the current or a new route is the largest.
This customer is inserted in its cheapest insertion position in the current route. If
all remaining unrouted customers have no feasible insertion positions, a new

route is initialised and identified as the current route.

We extend the Solomon criteria by utilising the neighbour stop information in
testing for a suitable stop to add to the route. Using only stops that have a ume
window compatibility value, reduce the number insertion positions to test for
each stop. When testing for the insertion position in the current route fails
because of the TWC, inserting customer u between adjacent nodes for the rest of
the route will fail as well. This method will increase the speed of the construction

heuristic without diminish the quality of the result.

We also extend the criteria by a Push Backward if a customer is inserted between
the depot and the first customer as proposed by Dullaert and Braysy (2003) [21].
If customer u is inserted between the depot 4, = 7 and the first customer 7, = 7, a

push backward is introduced in the schedule. Since all vehicles are assumed to
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leave the depot at the earliest possible time ¢, and travelling from 7 to j takes 7,
units of time, a waiting time of max{0, ¢ — 4 } is generated at j = 7,. Unlike the
waiting time at all other customers i, p <r <m in the route, it is fictitious. After

finishing the route, it can be eliminated by adjusting the depot departure dme.
High waiting times stored at customers that used to be scheduled at the first
position during the solution construction, cannot be removed this easily. By
assuming all vehicles leave the depot at ¢, and by equalling the time insertion to
the maximum push forward, the time needed to insert a customer before 7, = ;

can be underestimated. It may even be wrongly equalled to zero.

We also extend the Push Backward to incorporate the vehicle time windows.
Inserting a customer u as the first stop in the route advances the departure time
at the depot depending on the open time of the depot, the best available time of
the vehicle and the open time of the customer # The vehicle would leave the
depot at max{s=0, b,, b, — 1;} where b=0 is the open time of the depot, 4, the

open time of the vehicle and 4, — #, the open time of u retracting the travel ime

from 7 to /.
34. Improvement Heuristic

Chapter 2 discussed heuristic techniques we considered for implementing a
solution for the specified VRP problem. It suggested the use of a meta-heuristic
technique. Meta-heuristics use information of the problem environment and the
nature of the objective function to direct the search process to regions that

promise better solutions.

Although there exist many alternatives in selecting the appropriate tool, the
success of these methods depends on many factors, like their ease of
implementation, their ability to consider specific constraints that arise in practical

applications and the high quality of solutions they produced.
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A distinguishing feature of Tabu search is its exploitaton of adaptive forms of
memory, which equips it to penctrate complexities that often confound
alternative approaches. The rich potential of adaptive memory strategies is only
beginning to be tapped, and the discoveries that lie ahead promise to be as
important and exciting as those made to date. Principles that have emerged from
the TS framework give a foundation to create practical systems whose capabilities
markedly exceed those available earlier. Conspicuous features of Tabu search are
its dynamic growth and evolving character, which are benefiting from important

contributions by many researchers.

Tabu search provides a range of strategic options, involving various levels of
short term and long-term memory. Consequently, it can be implemented in
corresponding levels ranging from the simpler to the more advanced. Generally,
the more advanced versions exhibit the greatest problem solving power, though
simple ones often afford good results as well. The convenience of building
additional levels in a modular design, allowing a TS procedure to be evolved from
the "ground up," is a feature that also provides a way to see and understand the

relevant contributions of different memory based strategies.

Implementing a specific strategy for the specified problem is complicated by the
fact we cannot or should not rely on the manner of the problem. As mentioned
in the introduction, input data can vary from long haul to short haul, long time
windows or short multiple tme windows, heterogeneous fleet of similar fleet. To
solve the VRP with all its side constraints and unpredictable in put data, we
implement new operations and add some statistical selection method in the

guidance algorithm.
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341 Operations

Insert Operator

The msert operator tries to insert an orphan stop into an existing route. The
method loops through the orphan list of the current solution and calculates a best
msertion position. The orphan stop’s neighbours ate tested for inserdon cost.
This 15 done by selecting a neighbour, determining the route the neighbour
belongs to and calculates the cost of inserting the orphan stop after the
neighbour. If the neighbour is an orphan itself, the test is not done. The method
locates a set of closest geographic neighbours from the stop and test the validity
of the insertion of the orphan stop after the neighbour stop. The move is

accepted if the insertion is valid.

S1 - ) —e o | E

Y /— Unrouted Stops

Figure 17: Insert Operation

Tour depletion operator

The purpose of this move is to reduce the number of vehicles required to serve
all the stops. If it is possible to remove a vehicle, the probability that total
distance will decrease is high. It might not be the result in some situations, but the

heuristic also depends on diversification.
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The procedure looks for the vehicle that contains the least number of stops
allocated to routes for the vehicle and is not Tabu. We qualify the routes of a
vehicle for removal if the number of stops is less than a percentage of the average
number of stops in all the vehicle routes. This is done on the assumption that
stops and vehicles have similar characteristics. The difference between stops in

terms of volume is assumed to be in a reasonable tolerance.

The first step is to select a tour for depletion according to the criteria specified.

Figure 18: Tour Depletion Step 1

The tour 1s removed from the solution and the stops belonging to the tour 15

added to the orphan list.
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Figure 19: Tour Depletion Step 2

The insert operator is executed to insert the newly created orphans into existing

routes.

Figure 20: Tour Depletion Step 3

An addidonal criteria for the tour depletion operator to execute is the non-
existence of orphans in the solution. We implement the logic before we even start
with actions on the operator, as we assume that if an orphan exists, the current

solution is already in such a state that the current route vehicles cannot service all
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the stops. The meta-heuristic guidance algorithm must execute other operations

to optimise the solution that tour depletion is possible.

Relocare operator

The relocate operator (Or-opt) removes one stop from a route and inserts it into
another route. The implementation group routes to a vehicle and therefore we
randomly select a vehicle to add a stop to. Next we randomly select one of the
vehicle routes. For each stop on the current vehicle route, an attempt is made to
insert a neighbout of the current stop on the current vehicle route. The

neighbour is relocated from its route to the current route.

The relocate operator can relocate a stop from the same route to another

position.

Figure 21: Relocate on same route

Or relocate a stop from one route to another.
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Figure 22: Relocate between routes

Exchange Operator

The exchange operator randomly selects a vehicle and corresponding route. The
neighbours of the selected route’s stops are tested for exchange between the
corresponding routes. The operator acts on single stops from different or same

routes only.

Figure 23: Exchange on single route

The exchange from one route to another simulates a relocate from the one route

to the other and vice versa.
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Figure 24: Exchange between routes

Cross operator

This operator cuts two routes at a position and swaps the second part of the
routes. This is done by selectng a source vehicle and a source route randomly.
Fach stop in the source route is tested for the move. The stop’s neighbours are
tested for validity by checking if the stop is not on the same route. If not, the
source route consisting of the stops up to the selected stop is combined with the
target route consisting of the stops from the neighbour stop to the end to form a
new route. The second new route consist of the target route from the beginning
to the stop before the neighbour stop and the source route from the stops after
the selected stop to the end. If the swap is valid in the current Tabu environment,

it will be accepted.

S1jf—e—e—e

2 —e—o—o

Figure 25: Cross operation
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Vehicle Fir
This operator exchange vehicles on routes. The operation is added to handle the
heterogeneous fleet optimization problem. A vehicle can be swapped between

routes if the capacity and ime windows allow for the routes qualify.

If there exist vehicles that have not been used, the vehicles can be tested on
existing routes to result in better optimization. Tour depletion can result in a
more effective vehicle to become available, and the vehicle fit operator will

reinsert an available vehicle in the solution.

Double Fit

The operation tries to fit routes or segments of routes as additional routes on a

vehicle. This action will result in the use of fewer vehicles.

The double fit operator has the purpose of filling up a vehicle to its time window
capacity. The operator will test form time available on a vehicle and if there exist
a continuous time that is greater than a minimum tme specified, the operator can
look for stops that fit in that ime frame. If a route can be constructed to fill the
open time slot, the move is accepted and results in other routes that have fewer
stops. This move can now result in probable tour depletion after some

optimization on the routes.
342 Guidance Algorithm

Meta-heuristics use information of the problem environment and the nature of
the objective functdon to direct the search process to regions that promise better
solutions. The implementation of the guidance algorithm has an important etfect

on the effectiveness of the algorithm.

The implementation of the guidance algorithm utilise aspects from different

sources. A simulated annealing approach is followed in an oscillating fashion.
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Neighbourhood search methods are also selected randomly in a statistical

learning fashion. Each operation has its own tabulist.

Statistical Selection
The implementation of all the specified operations can lead to inefficient
computational time utilisation. Depending on the manner if the input data, some

operations can be more effective than other, or can be ineffective in situations.

When the input data has customers with tight ime windows, the capacity of the
vehicle does not really play an important role in the solution, as the vehicle does
not have time to visit enough stops to load the vehicle to capacity. The double fit
operation will not be effective on these types of data. The statistical selection will

eliminate the use of this operation.

The idea of the statistical selection is to determine the success rate of an
operation. When we randomly select an operation, the probability of the selection
of a specific operation depends on the success rate. When we start the
improvement heuristic, we assign an equal value to the success rate of all the
operations in the list. On the first iteration, the probability for an operation to be
selected is the same for all. If the operation completes successful, we increase the
success rate by a value depending on the type of success. This increase will not
have a major effect in the beginning, but after a number of iterations, the more
successful operation’s success rate will increase, and that will increase the

probability of the selection.

Simulated Annealing

Another control mechanism implemented by the guidance algorithm is derived
from the simulated annealing procedure. In the modified version of SA, the
algorithm starts with a relatively good solution resulting from a construction

heuristic. Inital temperature is set at Ty = 100, and 1s slowly decreased by
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T.)/A+7T,.) (1)

Where T, is the current temperature at iteration £ and 7 is a small time constant.
The square root of T is introduced in the denominator to speed up the cool
process. Here we use a simple monotonously decreasing function to replace the
1/log £ scheme. It is found that the scheme, gives fairly good results in much less
time. The algorithm attempts solutions in the neighbourhood of the current
solution randomly or systematically and calculates the probability of moving to

those solutions according to:

P(accepting amove) =" 2

This is a modified version of the annealing equation, where A= C(5) - C(§), C(S)
is the cost of the current solution and C'(S) is the cost of the new solution. If
A <0 the move is always warranted. One can see that as the temperature cools,
the probability of accepting a non-cost-saving move is getting exponentially
smaller. When the temperature has gone to the final temperature T = 0.001 or
there is no more feasible moves in the neighbourhood, we reset the temperature

o
T =max(T,/2,T,) ©)

where T, is the reset temperature, and was originally set to T, and T, 1s the
temperature at which the best current solution was found. Final temperature is
not set at zero because as temperature decreases to infinitesimally close to zero,
there is virtually zero probability of accepting a non-improving move. Thus a
final temperature not equal but close to zero is more realistic. The Tabu Search is

used to search the local neighbourhood.
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3.5. Conclusions

This chapter describe the design of a solution algorithm that is capable to solve
the VRP in an ASP environment. The additional constraints imposed by the ASP

environment are incorporated in the design of the algorithm.

The problem 1s partially solved by the introduction of new operations on the
solution as well as extensions of current exisung operations. The guidance
algorithm implements multiple operations, which allows it to be effective on all
types of input data. The statistical selection of operations is believed to improve

the effectiveness of the algorithm.
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