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3 PROBLEM SOLVING METHODOLOGY 

Solving the vehicle routing problem in its basic fonnat is already an NP-hard 

problem. Exact medlods have proved to be inefficient and time-consuming in 

tryIng to solve dus problem. Previous attempts on solving dle VRP have 

indicated that heuristic methods result in dle best feasible solution in an 

acceptable time. When we add additional constraints to dle basic VRJ>, we 

increase dle difficulty of the solution exponentially. We must also consider the 

size of the data set their needs to be optin1ised. 

Heuristic methods search only part of the solution space. Tlus result in the 

quicker termination of the algotidU1l, but does not guarantee a best solution. 

Previous results have shown that heuristic methods can ach ieve optin1al or ncar 

optimal results repeatedly. The meta-heuristic method has a guidance procedure 

of some sort to help it traversing through the solution space. The guidance 

procedure is dependent on the type of helllistic selected for the solution, as well 

as additional knowledge from dle problems space implemented by the algotithm. 

Tlus additional infotTI1ation about dle problem beforehand can assist the 

algorithm in more effective search pad,s. A meta-heluistic is dle implementation 

of a hernistic medlod with a guidance procedure. 
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Figure 10: Solution Space 

Figure 10 explains the methodology of heuristic methods for soh-ing the 

particular problem. -Il,e solution space consists of all possible solutions for the 

specific problem. Theoretically we can develop an algOLithm that has the abili ty to 

generate all of the possible solutions such as branch and bound methods . , \ s we 

have already seen, tlus method will take an etenuty on ti,e complex problem that 

we are Ir)"ng to solve. A meta-heuristic can search effectiYe1y tllIough the 

solution space. 

r\ circle which size reflects the total cost of the solution represents a solution. 

The smaller the circle, the better the solution. This indicates tI"t there arc 

possible solutions that is not cost-effecti ve and wluch we do not want to consider 

as an end result. 

Let S be a set of solutions ro a particular problem, and let f be a cost function 

tI"t measures ti,e quality of each solution in S. 11,e neighbourhood N(s) of a 
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solution s in S is defined as the set of solutions which can be obtained from s by 

perfomling simple modifications. Roughly speaking, a local search algoritlml 

starts off with an initial solution in S and then continually tries to find better 

solutions by searching neighbourhoods. A local search process can be viewed as a 

walk in a directed graph G=(S,.iI) where the vertex set S is tl,e set of solutions 

and there is an arc (s,s) in A if and only if s' is in N (s). By considering rhe cosr 

function as an altirude, one gets a topology on G=(S,A). 

The efficiency of a local search method depends mostly on the modelling. A fine­

tuning of parameters will never balance a bad definition of tl,e solution set, of the 

neighbourhood, or of the cost function. 

,[1,e topology induced by tl,e cost function on G=(S"iI) should not be too flat. 

The cost function can be considered as an altitude, and it therefore induces a 

topology on G=(S,A) with mountains, valleys and plateaus. It is difficulr for a 

local search to escape from large plateaus since any solution tl,at is nor in the 

boarder of such a plateau has the same cost value as irs neighbours, and ir is 

therefore i.mpossible to guide the search towards an oprilnal solution. r\ C0111.111on 

way to avoid tlus kind of topology on G=(S,A) is to add a component ro tl,e cost 

function which discritninates between solutions having the Saine value according 

to the original cost function. 

OUf evolutionary metahewistic tnakes use of the well-known two-stage and 

multi-start local search (MLS) frameworks. In two-stage framework rhe ilutial 

solution created in the first stage is subsequently improved in tl,e second one. 

In the first stage we generate an initial solution with the help of a construction 

heUllstic, in rhis case we make use of the sequential insertion heuristic (SII-l) . Tlus 

method results in a solution thar is feasible but not necessarily the best. The 
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feasibility of the solution ensures that it existing our solution space (sec the initial 

solution in Figure 10). 

TI1e inlprovcrnent stage traverse from our current position to a neighbour1s 

solution. Because solutions do not truly exist in OUf enviromnent, we need to 

generate a new feasible solution. This is done by applying an operation on the 

current solution. As we progress it can happen widlout an already existing 

solution is generated by an operation. This can result in cycles in our search path, 

which leads to revisiting existing solutions and result in unnecessary 

computational time. One of our objectives will be to prevent such cycling. r\fter a 

specified nWllber of iterations we have visited a number of solutions from which 

the best solution is kept. "l1,e solution is not necessatily d,e best solution for the 

problem, but represents the besr-\~sited solution. Our goal is to guide me search 

path in such a way dlat we cover as wide as possible area of dle solution space. 

From the figure we can see that d,e pam to d,e best solution might have to go 

through a not so good solution before d,e best solution is reached. Operations 

applied on a solution can result in a not feasible solution. \~'e can consider this as 

a stepping-stone towards the next solution, or it can be seen as a waste of 

cOlnputationai time. 

The improvement phase is implemented wid1 me Tabu Search Method. Tabu 

search has a rationale d,at is transparent and natural: its goal is to emulate 

intelligent uses of memory, particularly for exploiting structure. Since we are 

creatlU"es of memory ourselves, who use a variety of ll1ClTIOC)' functions to help 

thread our way through a tnaze of problem-solving considerations, it would sectn 

reasonable to try to endow our solution mcd10ds with similar capabilities. 

The following sections will discuss in more detail d,e specific methods used to 

traverse through the solution space. It will also point out where knowledge about 
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the problem beforehand can have an effect on the implementation of the 

solution. The sections consist of d1C problem representation in objects, the 

approach of the solution, a discussion on the cOnstnlCOon hClUiscic and 

improvctnent heuristic. 

3.1. Objects . 

In the previous chapter we presented the problem in a mathematical model. This 

model has the pUlvose of describing the parameters of the problem as well as the 

conditions it has ro meet. Implementing a solution for the problem is not as easy 

as describing it. This section will explain the components we utilise for solving 

d,e problem. The solution was designed in an object Otlentated way. 

The object model is di"ded into two areas. Model will desClibe the problem 

objects or the input data. The second model will desClibe the alterations on the 

problem objects and the additional objects required to produce a solution. An 

object consists of properties, methods and relations. 

3.1.1. PlVbl'1lI objetls. 

11,is section will discuss d,e mapping from d,e input data to the objects in the 

solution. We need to identify all the objects represented in the input data. Let us 

consider the vehicle routing problem again. 

11,e basic VRP consist mainly of a depot, stops and vehicles. A depot can be seen 

as a specific stop \,vith certain properties. 
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Stops 

llStop 

-Volume: double LlNode 
-TimeWindows : LL TimeWindowUst -to: jnt 
-Name: string ..)', -x: double 
-Fixed Service : double v 

-y : double 
-Variable Service : double 
-Neighbours 

Figure 11: Problem objec t Stop 

The above object represents a stop. r\ stop must comply with the basic 

functionality of a graph node. The figure indicates that a stop inherits all the 

properties and methods of a node. The properties of a stop is as follows: 

• ID - a unique value to identify the stop. 

• X, Y - the spatial representation of the node 

• Volume - the vollllne that a stop will utilise on a vehicle 

• Time Windows - a list of available time ,v;ndows that a stop can be 

visited in. 

• Name - a descriptive name for the stop for display and report pwposes 

• Fixed Service - the fixed service rinlC for a stop in minutes. This 

represents dle stopping time required at a stop \Vidlout loading or 

unloading anydung. 

• Variable Service - t1us represents the volume per minute rate of loading 

or unloading goods at dle stop. The total service time at the stop consist 

of the fixed service time + (volwne * variable service time) 
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• Neighbours - this is a list of neighbours that a vehicle can visit from a 

stop. In the basic VRP this list will consist of all the other stops. [n our 

problem that includes time windows, it might happen that it will never be 

feasible for a vehicle to travel from one stop to another because of time 

window compatibility (sec description of time window compatibility), 

which basically means that the following stop has time windows that ends 

before the current stop's rime windows begin. Science has shown that we 

cannot tra,ycl back in time and thus we will not consider this stop as a 

neighbour. 

Operations required by d,e problem model for stops can be defIned as followed: 

• Travel Tinle - working with the restliction of time widows, we need to 

know that rune it will take to travel from one stops to another to ensure 

that we arrive at a feasible tUnc. \'{,Ie unplcmcnt travel rime between stops 

in a matrix. One of the adrlitional constraints to om problem is the 

requirement to calculate d,e travel time depenrling on d,e time of the day. 

The travel time hmction accepts d,e two stops in the travelling sequence 

and the time of departure from the fIrst stop. See dus section on d,e cost 

matl1x for furdler detail. 

• Distance - distance is calculated in a similar way as travel titne. Dist::tnce is 

also dependent on time of day because the travel time between two stops 

dete111Unes the route between the stops. T lus means basically that a 

quicker route might not be d,e shortest. 
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Depot 

The properties and methods of a depot is exactly tl,e same as for a stop. In 

defIning a depot, we define a single stop. Travel time and distance calculations 

applied on the depot in the same manner as for a stOp. 

Our solution considers only one depot, which inlplies tllat all the existing vehicles 

and stops belong to that depot. Extending this problem to a multi- depot 

problem would require tl,e depot object to be reconstmcted by adding a stop list 

as well as vehicle list to tl,e depot object. 

Vehicle 

LLVehicle 

-ID: int 
-Name : string 
-Capacity: double 
-FixedCost : double 
-VariableCost : double 
-TimeWindows : LL TimeWindowLisl 

F igure 12: Problem object Vehicle 

The vehicle object in our implementation consist of the following properties: 

• TO - a unique key for identifying tl,e vehicle 

• Name - a descriptive name for display and reporting purposes 

• Capacity - tl,e to tal volume tllat a vehicle is capable to hanrlle 

• Fixed Cost - the cost of utilising this vehicle without even travelling 

• VaLiable Cost - the running cost of tI,e vehicle. Part of the cost of the 

route is calculated by I'ixed Cost + (Variable Cost * Distance). 
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• Time Windows - a list of available time widows that the vehicle can be 

utilised. 

There docs not exist specific operations for a vehicle in the problem object 

model. 

Tim e WIndows 

LLTimeWindowlist 

-TimeWindow : LL TimeWindow 

+AddTimeWindow(in TimeWindow : LL TimeWindow) : bool 
+lsTimeCompatible(in Time: double) : bool 
+GetCompatibleTime(in Time: double) : double 

Fig ure 13: Problem object T ime 
Window 

LL TimeWindow 

-Open Time : OateTime 
-Close Time : DateTime 
+DoubJeOpenTime(): double 
+DoubleCloseTime(): double 
+SpanTimeO : int 

Time widows play an important role in the problem. r\U o f the problem objects, 

natl1ely depot, stops and vehicles, arc associated with a rllllC window list to 

indicate availability for the object's specific function. 

Tune window consist basically of an open and close time. ~nus rime is saved in a 

datetime fonnat to allow for implementing problems that span across multiple 

days. Operations on Ole time window includes: 

• D oubleOpenTime - returns the number of minutes after specific date 

time from a fixed time. 'This is done to allow the algorithm to work in a 

linear reference environment. Let us for example say that the open tUnc is 

07:00 on today's date. Calculating the linear time consist of the difference 

between the open time and today at midnight, which results in 7 hours. 

Converting the hours to minute's results in a linear open time of 7 * 60 = 

420. r f the open time was specified as yesterday at 07:00 the difference 

between today at midnight and the open time is -17 hours. Converting 
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the hours to minute's results in a linear open time of -17 * 60 =: -1020. 

Although the value is negative is stili valid for a linear scale. 

• DoubleCioseTime - returns the nwnber of minutes after a specific date 

time, same as DoubleOpenTime. 

• SpanTul1c - rCUlrns the difference betwcen the open and close tJnlC in 

rrunutes. 

\'(fhar we can see from the tinlC window properties is that our linear timescale 

consists of minutes. ·The fixed point on the scale to calCl~ate the linear values 

from is today's date. 

The time window List object consists of a list of time windows. Operations on 

cllls list include: 

• TsTimeCompatible - tllls function accepts a time and detelmines jf there 

exists a tirne window that include the tUlle, i.c. the rime is after the open 

time and before the close time for a specific time window in the li st. 

• GetCompatibleTime - tills function accepts a time and calculates the 

earliest ,,"ailable time according to the time window list. If no such time 

exists, an exception is thrown, which indicates incompatible orne. 

3.1.2. S OlllliOIl Objects 

This section will give an overview of cl,e solution objects used in cl,e algorithm. It 

is important to understand tills basic building blocks in order to sec how the 

algmithm functions. Solution objects consist of extensions of problem objects to 

handle new information required by the solution, as well as help objects that play 

a role in solving ti,e problem. 
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R oute Vehicle 

The inlpicmcnrcd solution foclls on detcnrunisnc data, i.c. all the demands and 

vehicles are available and known before the start of the solution. In tenns of the 

vehicles the algorithm will not propose a best-suited fleet from a set of vehicles, 

but accept the vehicles as existing and ready to use according to their 

specifications. It can be simplified by allocating a route to a vehicle before we 

even start. The solution is therefore made up of a set of vehicles that contain 

routes. 

One of the adrlitional requirements of the problem is to allow for multiple routes 

on it vehicle. A vehicle can thus have multiple routes. 

1\ vehicle with routes will be the main output of the system. r\ route "ehicle is the 

input vehicle with routes associated to it. 

ROlltes 

j \ route can be seen as a sequence of stops that is visited by a particular vehicle at 

a specific time. 

1.1.2.3 Route Stops 

The detennining of a best solution relies mainly on the handling of the stops. I r\ 
route stOP consist of a stop with additional info such as: 

• Anivru Time - the time a vehicle arrives at a stop 

• \Xi'ait Tinlc - the tUlle a vchicle tllUS! wait at a stop before it can start 

sen~cing the stop. 

• Sen~ce Time - as specified by the stop sen,ice time. 
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• Departure Time - the time the vehicle leave a stop for its next stop. This 

must be equals to the Arrival Time + \'('ait Time + Service Time. 

• Next Stop - An indication on where to go next in the toute. This method 

is the principle method of providing information on the route. Adding or 

deleting a stop ftom a route is made easy by just replacing the next stop. 

Adding a new stop requires replacing the current stop's next stop with 

the new stop and the new stop'S next stop to the current stop's next stop. 

Deleting is as easy as setting the previous stop's next stop value to the 

current stop's next stop value. This only indicates the method of 

inserting and deleting a stop from a route and not the validity of the 

move. 

VRPBase 

The ma.in purpose is to solve the VRP. There exist several ways to solving a VRP. 

This object is the base object for the solution. The object contains all the 

necessary data and manipulates all the necessary methods applied on the data. 

]l,e end result of the algorithm is the VRP object, which contains multiple 

solutions. 

Cost 

Cost is defined as the cost in terms of distance and travel time from one stop to 

anod1cr. A cost matri. ... is llsed for storing the values. 

The solution implements a cost function with time \vindows to represent the 

difference of cost on a link depending on the time. This basically tesult in a cost 

function that is a function of the time of day. When the algorithm requests a 

travel time from the cost function, the function first determines the cost mau-ix 

to use. This is done by [Ulding a cost mau1x, which time windows will contain the 

time prov-idcd. The cost for that time is returned. 
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It is inlponant to noticc the influence of such rune dependent cost function in 

the solution. '111c advantage is that a more accurate route can now be constnlCted, 

which is very imponant for tile success of me algmitilm. \'\'hen a vehicle travels 

from point A to point B, it will definitely take him longer dming traffic peak 

petiods. The use of an average travel time on a link will no be sufficient to take 

care of rhis problem. \Vhen a vehicle travels dming peak time, his acnlal arrival 

time at tile customer will be later man planned. r\ltil0ugh tile ,-ehicle lTught make 

up tilis time during me off-peak time, the use of multiple time windows can result 

in a lateness that fall betwcen two time windows, which result in additional wait 

time, which makes it more difficult to make up dming rhe off-peak times. 

05:00 Depot 

n~·M I"-

07:00 .~ 
08:00 

09:00 

10:00 

11 :00 

12:00 

13:00 

14:00 

15:00 

17:00 
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~ 
~ 

~ 

~ ~ ~ ~ 

Fig ure 14: Peak and Off- Peak travel 
time influence 
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Figure 14 explains the importance of a time dependent cost function in the 

solving of the VRI>. 11,e figure represents a typically delivel)' day with stops that 

has sitnilar rime windows. The patterned areas represent peak tJ'affic tinle . ..A 

route is constmcted from the depot on the left back to the depot on the right. 

The green arrow line represents the rOllte makjng use of an average travel time on 

a link. Thc red line represents the actual travel time. Starting of, we can 

immccliately see that d,e average route departs later that the actual route. 'nus is 

because d,e departure time from d,e depot is detelmined by the open time of the 

fust stop. The slope of the red line is steeper than the !,'Teen one, which inclicates 

a longcr time to tra,"el from the depot to thc first stop in the actual rollte. 

The algorithm will ensure that the arrival time at the fust stop is as early as 

possible. Tn the above case, both routes arrive at d,e open time of d,C fust stop. 

The selvice time is not affected by the cost flUlction and both routcs depart from 

d,e first stop at the same time. 

During the peak travel time, the actual route requires a bit more time to travel 

than the average travel ntne. At stop 3, the acrual tin1C arrives too late to be 

serviced in the fust time window and has to wait for d,e second time window to 

take effect. Aldlough d,e actual travel time is quickcr d,an the average time 

dUl;ng off-peak periods, d,e aggregated loss due to lateness cannot be recovered. 

This is mainly due to d,e synchronisation of the stop time windows. 

The example above is proof that we need to implement a timc dependent cost 

function in thc algorithm to produce more realistic results. 

The VRI> is a NP-hard problem, wluch suggest d,at it is clifficult to solve. 

I Jeuristic medlods can provide feasible solutions in reasonable time, but 

additional constraints will increase computational time. The addition of a time 
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dependent cost function requires the algotitlun to recalculate ti,e travel time 

between two stops every arne a new stop is added to the route or a stop is 

removed from the rOute. This is neceSSalY for all srops after ti,e added or 

removed stop, as the addition of a stop will alter ti,e arrival time of all subsequent 

stops. 

Solution 

A solution object represents a possible solution ro ti,e VRP problem. The 

solution contains route vehicles and thei.l' corresponding routes and stops, as well 

as an orphan Jjst of stops. A solucion object is used to generate 1110rc solutions 

from tlllough an operation. 

Although the algotithm considers all ti,e main influential parameters, we cannot 

ignore ti,e human factor. There might still exist a preference from the user 

regarding a specific solution. During the execution of the algolitlU11 ti,e proposed 

metl10dology requires a list of solutions to be able to traverse through the 

solutions space. \)(Ie propose tllat the algoritlun does not only present ti,e user 

with the best to solution found, but provide ti,e option of selecting one of the 

best solutions. Practical implementation has shown that the best calculated 

solution might not always be the mOSt feasible for the client. This might be 

because of the customer driver relationships, driver knowledge of areas, etc. 

COl1s truction HelJristic 

11,e proposed solution requires some possible solution to start working ftom. 

There exist multiple metl10ds of constructing an initial solution. In a later section 

the selected construction heuristic namely the Sequential Insertion Heuri stic 

(Sill) will be discussed. The algOritlU11 can function from an existing solution. In 

those cases, the constlucnon heuristic would not be necessaly. 
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Working in the I\SP environment implies dynamic acquisition of data from 

clients. The solution has to take into consideration the possible extension of the 

current implen1cnrarion, i.e. there Hlight exist a better construction heuristic for 

the specified problem. For that specific reason we propose the implementation of 

a construction heuristic in the main algOlithm. This will allow the addition of 

other COnSll'1.lCtion heuristics in dle funrrc . The current construction heuristic 

already produces tnultiple solutions for the improvement heuristic to work 011. 

Improvem ent Heuris tic 

The implementation of an improvement heuristic is the focus area of this 

research topic. The VR.P object contains an Improvement Helilistic method. As 

in the case of the construction heuristic, the VRP is force the existence of such a 

method, but does not detennine the impiemenL1tion detail. 

3.1.3. Problem Helper Methods 

Tlus section will discuss the systematic approach in solving Ole problem. 

f\lthough the focus of ous thesis is on desigtung a new VR.P solution, we cannot 

ignore dle ilnplementation environment. 11le J-\SP env1.rOnnlCnr has a major 

influence on the line and implementation of the solution algorithm. The main 

reason is because of Ole unpredictability of Ole data . 

The next paragraphs will discuss infonnation flow and manipulation dlrough the 

process. 

Input DElta Elnd Object GenerEltiol1 

The first step towards a feasible solution is to acquire data from the client. There 

exist multiple methods of transfening data from Ole client information service to 

Ole ASP server. This is Ole topic of anooler srudy. 
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\'iI1,at is important is that the data must be complete. This means that the 

incoming data OlLIst contain all the necessruy infonnation. In addition, we must 

know where the incoming data is headed for, e.g. the client must specify which 

value from a stop is the demand and wruch is the tlll lC windows etc. 

The client data must now be constructed ill the defined objects. The algmithm 

requires data that is relevant to one depot and one instance of a routing schedule. 

Th.is means that a stop will only be visited once dUling the time windows 

specified. 

r\fter this step, the a1g01ithm will contain all me necessary data. 

Sollltion methods 

f\S explained in previous sections, a route consists of a sequence of stops. The 

tnanner in which the suucturc is maintained is important i.n the tnanipulation 

procedures of the algorithm. 'ntis paragraph describes basic actions allowed on a 

solution. The itnplenlcntacion of the constnlCtion and impro\"ement heuristics 

\ViU depend on me stability of these actions. 

ROllle .ftop additioll 

r\ S mentioned pre"iously in the discussion of me time dependent cost function, 

the addition of a stop on a route has several consequences on the subsequent 

stops. 

The addition of a stOP in a route results in this sh.ift of the arrival time of 

subsequent stops, which can result in nnlc window incolnpatibility, i.c. the arrival 

nIne is nor sufficient anymore to be able to serve dlC stop in its available time 

windows. r\n action of inserting a stop in a route mat result in incompatible time 

windows must flag the route as illvalid. 
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The removal of a stop on a route has less dramatic results, i.e. if a route was valid 

before the removal of a stop, it can still be valid. I t might not be as efficient, but 

it will still exist in the solution space. 

'11,e addition of a stop on a route also has an effect on the vehicle volume. 

r\dding a stop increase the volume required on the vehicle. TI,e addition of a srop 

can result in a route that exceeds the vehicle capacity. This action must flag the 

route as invalid. 

'T'he removal of a stop result in the decrease in the required volu111c for the 

vehicle. The removal of a stop from a route cannot result in a vchicle that 

exceeds capacity. 

It is important to know that the weight and arrival time calculations have to be 

executed on each insertion and rClTIOval of a stop in a route. The implementation 

of these methods must be effective. 

Vebide slop addi/ioJl. 

The addition of a stop on a route has an effect on the overall routes associated 

with the vehicle. 

\'\",en a stop is added on a route, the route's departure and ani val time from the 

depot change. 'Ibis can result in a delay in the departure of a next route from the 

depot. The new departure time for the next route can result in incompatible time 

windows at stops, o r even an incompatible rune window for the route \'chicle. 

The addition of a stop on a route can result in the invalidity of subsequent routes 

and the route must be flagged accordingly. 

Tltlle 117iJldol/! Compa/ibility 

The concept of a time window compatibility matrix as proposed by van 

Schalkwyk, [52] has not been proven, but has a logic sense to it. The calculation 
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of such a matrix can be done at the beginning of the algorithm, which adds to the 

scnlp rune, but not the running rime. 

An aspect not catered for in the proposal of the T\X1CM is the variation in the 

travel rime depending on the rime of the day. The addition of variable travel time 

adds some complexity to the problem. In Figure 15 we show effect of the 

\'ariable travel rime. 
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Figure 15: Variable Travel Time on 
Time Window Compatibility 

18:00 

From the figure we can depict the effect of the variable travel rime. In this 

i..mplclllcntarioll, the travel tinlC function is not a continuous function, but a 

disjunctive function consisting of consta nt tUlles at specific intervals. I n ow: 

calculation of the T\'(!C, we need to overlay the travel tUnc function's rime 

windows with that of the source stop. \X1e determine tra\Tel tlll1C froln the source 

stop'S departure UnlC. 
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3.2. Approach 

"Il,e approach consists of different phases, which will be discussed in more detail 

in the following paragraphs. "l1,e first phase consist of the generation of the 

required distance and time matrices for spccific time periods. The second phase is 

the generation of an initial solution through a construction heU11stic. This is 

necessary for the imprm'ement heurisric that follo\\·s. The improvement heuristic 

will follow the guidelines of the Tabu Search. The hcuristic will search for a good 

solution by di,.ersifying and intensifying the solution area. ,\ fter a predetellTuned 

nW11ber of iterations, or if a tennination paranlcrer is met, d1C post optimization 

phase will ensure that the current best solution is oprinused to its local m.inimutn. 

Generate distance and time matrices for 
specified time periods 

I 

Creating an inrtlal solution through 51H . 

Apply tabu with mulitple moves. 

I 

Determine next 
tabu move 

,--------

Finishing criteria met? >-------.;. 

Optimize Solution to local minimum 

Figure 16: Algorithm Phases 
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3.3. Initial Solution 

Higb quality initial hewistics often allow local searcbes and metaheLUistics to 

achieve better solutions more quickly. i\Iarius SolO1TIon was onc of the first 

researcbers to consider the VIU)TW. J Ie designed and analysed a number of 

algOlithms to find initial feasible solutions for the VRJ>T\V (Solomon, 1987). His 

sequential insertion heuristic (SIll) gave very good results in most environnlcnts, 

and most current heuristic methods tnake usc of this heuristic (or a variation 

thereof) to effectively find a feasible starting solution. 

Each customer i has a known demand q; to be serviced (either for pickup or 

dclivclY) at timc V, chosen by the carrier. Becausc time windows are hard, V, is 

chosen within a rime windo\\", starring at the earLiest rime ei and ending at the 

latcst time I, tbat customer i permits thc start of service. A vebicle arriving too 

early and customer j, has to wait until ' j. 1 f I,; represents the direct travel time from 

cllstomers i to customer j, and 51 dle service rune add CLlstolner i, then the 

moment at which service begins at customer J~ bp equals max {e" v/ + I, + /'1 } and 

dle waiting time w)s equal to max{O, e;- (bi + Sf + I;)}. 

r\fter initialising the route, the insertion criterion '., (i, II,)) determines tbc cheapest 

insertion place for all remaining, un routed custon1ers between two adjacent 

cus tomers i and) in the Cllirent partial route (iO! ill "" l~). Each route is assumed 

to start and end at the depot in::: 1~, TI1e indices p::: I, ... ,Ill are used to denote a 

customer's position in the route, ]be insertion cost is a weightcd avcrage of the 

additional distancc and rin1c needed to insert thc custOmer in the route. The 

parameters a" a" JI and A arc used to guide the heuristic. 

Inserting customer /I between i and j increases the length of thc route by the 

distance 111sera0l1, (~" + r/,,/ - /JI ~I ~ \fter inserting a CllstOlner u between the 
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adjacent customers; and j, a push forward can bc calculated for each consecutive 

node k, 

I'F, = b/~' - b, 

in which u, (b,"~) denotes the beginning of service at customer k in the route 

before (after) inserting customcr u. The value of PI", is maximal for the direct 

Sllccessor k = j of /I. ~nle sequential insertion hCU1;SOC uses the maximal push 

forward to measure the rime needed to insert custo111cr II in the route, the so 

caDee! rime insertion. 

Thc next step of the sequential insertion heuristic decides on which customer to 

insert the route. 111C selection criterion t'z (l~ //,)) selects the customer for which 

the cost difference between insertion in the current or a new route is the largest. 

This custolllcr is inserted in its cheapest insertion position in the current route. If 

all remaining unrouted custotners have no feasible InsertIon posmons, a new 

route is initialised and identified as rhe current route. 

We extend the Solomon Clltclla by utilising the neighbour stop infolmation in 

testing for a suitable stop to add to the route. Using only stops that have a time 

window cOll1paribiliry value, reduce the nutnbcr insertion positions to test for 

each stop. When testing for the insertion position in the current route fails 

because of the TWC, inserting customer u between adjacent nodes for the rest of 

the route will fail as wclJ. Tbis method will increase the speed of tile construction 

heU11stic witi,out diminish the quality of the result. 

We also extend the criteria by a Push Back'ward if a customer is inserted between 

tile depot and the first customer as proposed by Dullaert and Braysy (2003) [21]. 

If customer u is inserted between the depot ill = i and the first customer i, = j, a 

push backward is introduced in ti,e schedule. Since all vehicles arc assumed to 
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leave the depot at the earliest possible time ei, and travelling from i ro j takes I, 

units of time, a waiting titne of Inax{O, e.,. - !!J } is generated atj = i/o Unlike the 

waiting Onle at all other CUS[01ners ir , P < r :s; In in the route, it is fictitious. £\fter 

finishing the route, it can be eliminated by adjusting the depot departure time. 

High waiting times stored at customers that used to be scheduled at the flIst 

position during the solution construction, cannot be removed tlus easily. By 

assunung all velucles leave ti,e depot at eo and by equalling the time insertion to 

the lllaXUTlUm push forward, the tUne needed to insert a cust0t11Cr before i, = J 

can be underestimated. It may even be wrongly equalled to zero. 

We also extend the Push Back"ward to incorporate ti,e vehicle time windows . 

Inserting a customer u as ti,e first stop in ti,e route advances the departure time 

at the depot depending on ti,e open time of ti,e depot, ti,e best available time of 

ti,e vehicle and ti,e open time of ti,e customer II. 11,e velucle would leave Ole 

depot at max{bi=O, bk, ~. - I;.) where bi=O is ti,e open time of the depot, bk the 

open time of the velucle and bj - I, the open time of u retracting ti,e travel time 

from ito). 

3.4 . Improvement Heuristic 

Chapter 2 discussed heuristic techniques we considered for inlplementing a 

solution for ti,e specified VRP problem. It suggested the use of a meta-heUli stic 

technique. Meta-hcutistics use info1111ation of the problem envir0l1111enr and the 

nature of ti,e objective flmction to direct the search process ro regions that 

promise better solutions. 

Although there exist many alternatives in selecting the appropriate tool, the 

success of these methods depends on many factors, like tI,eir ease of 

inlplementation, their ability to consider specific constraints tI,at arise in practical 

applications and ti,e lugh quality of solutions tlley produced. 
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r\ distinguishing feature of Tabu search is its exploitation of adaptive fonns of 

memory, which eguips it to penetrate complexities that often confound 

altemative approaches. The rich potential of adaptive mem01), strategies is onl)' 

begit111.ing to be tapped, and the discoveries that lie ahead promise to be as 

important and exciting as those 111ade to date. Principles that have emerged from 

the TS framework give a foundation to create practical systems whose capabilities 

markedly exceed those available earlier. Conspicuous features of Tabu search are 

its dynamic growth and evolving character, which are benefiting from important 

contributions by many researchers. 

Tabu search provides a range of strategic options, invoh~ng vaJ.ious levels of 

short tenn and long-tenl1 lnemory. Consequently, it can be inlp]emenred 111 

corresponding levels ranging [rom the simpler to d,e more advanced. Generally, 

the more advanced versions exhibit the greatest problem solving power, though 

simple ones often afford good results as well. The convenience of building 

additional levels in a modular design, allowing a TS procedure to be evoked from 

the "ground up," is a feature that also pro\~des a way to see and understand the 

relevant contributions of different memory based strategies . 

Implementing a specific strategy for the specified problem is complicated by the 

fact we cannot or should nOt rely on the manner of the problem . 1\S mentioned 

in d,e introduction, input data can vary from long haul to short haul, long time 

windo\vs or shorr 111ulciple oIne windows, heterogeneous £leer of silnilar HeeL To 

solve the YRP with aU its side constraints and unpredictable in put data, we 

implelnenr new operacions and add S0t11C statistical selection method in the 

guidance alg011dun. 
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3.4.1. Opera/iolls 

Ills-ert Operator 

The insert operator tries to insert an orphan stop into an exisring route. The 

method loops through the orphan list of the current solution and calculates a best 

insertion position . The orphan stop's neighbours are tested for insertion cost. 

Tlus is done by selecting a neighbour, detennining the route d,e neighbour 

belongs to and calculates the cost of inserting the oq)han stop afte r the 

neighbour. If the neighbour is an orphan itself, d,e test is not clone. The medlod 

locates a set of closest geograpluc neighbours from d,e stop and test the validity 

of the insertion of the orphan stop after the neighbour stop. The move is 

accepted if d,e insertion is valid. 

S1 

Tour depletioll operator 

y - . 
, , 

• 

• , 

, , , , , 

• 
r Un routed Stops 

• 

Figure 17: Insert Operation 

• E1 

The purpose of tlus move is to reduce d,e number of vehicles required to serve 

all the stops. If it is possible to remove a velucle, the probability tI,at total 

distance will decrease is high. It l1ught not be the result in some simations, but the 

hCluistic also depends on diversification. 
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The procedure looks for the vehicle that contains the least number of stops 

allocated to routes for the vehicle and is not Tabu. We qualify the routes of a 

vehicle for rCI110val if the number of stops is less ci1an a percentage of me average 

number of stOps in all the vehicle routes. This is done on the assumption that 

stOps and vehicles have similar characteristics. The difference between stops 111 

tenns of volwne is assumed to be in a reasonable tolerance. 

The first step is to select a tour for depletion according to the nltella specitled. 

Figure 18: Tour Depletion Step 1 

The tour is removed from the solution and the stopS belonging to the tour is 

added to the orphan list. 
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• 

Figure 19: Tour Depletion Step 2 

The insert operator is executed to insert the newly created orphans into existing 

routes. 

Figure 20: Tour Depletion Step 3 

An additional cntelia for the tour depletion operator to execute is the non­

existence of olvhans in dle solution. W/e inlp1cmcnt dle logic before we even start 

with actions on the operator, as we aSSUlne that if an orphan exists, the current 

solution is aheady in such a state that the current route vehicles cannot service all 
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the stops. The meta-heuristic guidance algorithm must execute other operations 

to optimise the solution that tour depletion is possible. 

Reloca te operaror 

·The relocate operator (Or-opt) removes one stop from a route and inserts it into 

another route. The itnplementation group routes to a vehicle and therefore we 

randomly select a vehide to add a stop to. Next we randomly select one of the 

vehicle routes. For each stop on dle current vehicle route, an attenlpt IS made to 

insert a neighbour of the current stop on d,e current vehicle route. The 

neighbour is relocated fron1 its route to the current route. 

The relocate operator can relocate a stop from the saIne route to another 

poslOon. 

s 

E 

Figure 21: Relocate on same route 

Or relocate a stop from one route to another. 
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S1 E1 

S2 E2 

Figure 22: Relocate between routes 

Exchange Operator 

"n1e exchange operator randomly selects a vehicle and corresponding route. The 

neighbours of the selected route's stops are tested for exchange between the 

corresponding routes. The operator acts on single stops &om different or same 

routes only. 

S 

E 

Figure 23: Exchange on single route 

The exchange from one route to another simulates a relocate fron1 the one route 

to the other and vice versa. 
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S1 E1 

S2 E2 

Figure 24: Exchange between routes 

Cross operator 

This operator cuts two routes at a position and swaps the second pan of the 

routes. 11us is done by selecting a source vehicle and a source route randomly. 

Each stop in d,e source route is tested for d,e move. 11,e stop's neighbours are 

tested for validity by checking if d,e StOp is not on the same route. If not, the 

SOLlrce route consisting of d,e stOps up to the selected stop is combined widl the 

target route consisting of the stOpS from the neighbour stop to the end to fom1 a 

new route. The second new route consist of d,e target route from the beginning 

to d,e stop before the neighbour stOp and the source route from the stOps after 

d,e selected stop to the end. If the swap is valid in the current Tabu enviroJUnent, 

it will be accepted. 

S1 E1 

S2 E2 

Figure 25: Cross operation 
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Vehic1eFit 

This operator exchange vehicles on routes. The operation is added to handle the 

heterogeneous fleet optimization problem. A vehicle can be swapped between 

routes if the capacity and time windows allow for the routes qualit),. 

If there exist vehicles that have not been used, the vehicles can be tested on 

eXlsang routes to result in better opritnization. Tour depletion can result in a 

more effective vehicle to become available, and dlC vehicle fit operator will 

reinsert an available vehicle in the solution. 

D ouble Fit 

The operation nics [0 fit routes or segments of routes as additional routes on a 

vehicle. -nus action will result in the use of fewer velucles. 

The double fit operator has dle pll1vose of filling up a vehicle to its time window 

capacity. The operator will test form time available on a vehicle and if there exist 

a continuolls titne that is greater than a lTlinllTIlllTI nn1c specified, the operator can 

look for stops dlat fit in that time frame. If a route can be constructed to fill rhe 

open tlll1C slot, the move is accepted and results in other rOlltes that have fewer 

stops. Tlus move can now result in probable tour depletion after some 

optinUzation on dle routes. 

3.+.2. Guidance AIgoI;tb", 

Meta-heuristics use infonnation of the problem environment and the nature of 

the objective function to direct the search process to regions dlat pronuse better 

solutions. The implementation of the guidance algorithm has an important effect 

on dle effectiveness of the algoridlm. 

The implementation of the guidance algorithm utilise aspects fr0111 different 

sources. i\ simulated annealing approach is followed in an oscillating fashion. 
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Neighbourhood search medlods are also selected randomly in a statistical 

learning fashion . Each operation has its own tabulist. 

Statistical Selection 

The implcmentation of all me specified opcrations can lead to inefficient 

C0l11putationai time utilisation. Depending on the manner if the input data, some 

operations can be lnorc effective than other, or can be ineffective in situations. 

\X,11cn the input data has custotners with tight nnlc windows, the capacity of the 

vehicle docs not really play an important role in the solution, as d,e vehicle does 

not havc time to ,~sit enough stops to load d,C vehicle to capacity. The double fit 

operation will not be effcctive on mese types of data. The statistical selcction will 

eliminate thc use of this operation. 

The idea of the statistical selection is to detennine d,e success rate of an 

opcration. When we randomly select an operation, me probability of d,e selection 

of a spccific operation depends on thc succcss tate. \'(Ihen wc start the 

improvetnenr heuristic, we assign an equal value to the success rate of all the 

operations in d,e list. On the first iteration, the probability for an opetation ro be 

selected is the sanlC for all. 1 f the operation COll1plctcs successful, we increase the 

succcss ratc by a value depending on the type of success. This increase will nor 

have a major effect in d,e beginning, but aftcr a number of iterations, the more 

successful operation's success rate will increase, and that will increase the 

probability of the selection. 

Sim ulated Ann ealing 

Another control mechanism implemented by d,e guidance algorithm is derivcd 

from d,C simlJated annealing procedure. In the modified version of SA, rhe 

algorithm starts \Vim a relatively good solution rcsulting from a consuuction 

hcutistic. J nitial temperarure is set at Ts = 100, and is slowly decreased by 
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(1 ) 

\'(rt.lere Tk is the current tCIllpcrature at iteration k and I is a SIllali olne constant. 

The square root of T, is introduced in the denominatOr to speed up the cool 

process. I !ere we use a simple monotonously decreasing function to replace the 

l / log k scheme. It is found that the scheme, gives fairly good results in much less 

time. The algorithm attempts solutions in the neighbourhood of the current 

solution randomly or systematically and calculates the probability of moving to 

those solutions according to: 

P(acceplillg a lIIove) = e(-·''') (2) 

11us is a modified version of the annealing equarion, where I'> = C(S) - C(S), C(S) 

is the cost of the current solution and C(S) is the COSt of the new soluti on. J f 

6. < 0 the tnovc is always warranted. One can sec that as the temperature cools, 

the probability of accepting a non-cost-saving move is getting exponentially 

smaller. \Vhen the temperature has gone to the final temperature T = 0.001 or 

there is no more feasible moves in the neighbourhood, we reset the temperature 

to 

T, = max( T, / 2, 7',') (3) 

where Tr is the reset renlperarure, and was originally set to Tu and T b is the 

rcmperarure at which dle best current solution was found. Final temperature is 

not set at zero because as tctnperamre decreases to infirutesul1ally close to zero, 

there is virtually zero probability of accepting a non-improving move. Thus a 

final temperature not equal but close to zero is more realistic. The Tabu Search is 

used to search the local neighbourhood. 
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3.5. Conclusions 

Tlus chapter desClibe the design of a solution algoritlun that is capable to solve 

tile VRP in an ASP envirorunent. The additional constraints imposed by the r\SP 

environment arc incorporated in the design of tile algorithm. 

The problem is partially solved by the introduction of new operations on the 

solution as well as extensions of current existing operations. The guidance 

algoritlUTI in1plclnents multiple operations, which allows it to be effective on all 

types of input data. The statistical selection of operations is believed to improve 

tile effectiveness of tile algorithm. 
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