
2.3.2. Pickllp alld Delivery 

We consider existing pickup and delivery problems to determine the similarit), 

between it and multiple routes per vehicle. The Pickup and Delivery Problem 

with Time Windows (pOPT\XI) models the situation in which a fleet of vehicles 

111ust service a collection of transportation requests. Each request specifies a 

pickup and delivery location. The multiple routes per vehicle problem can be 

seen as a pickup from the depot and delivery to d,e customer. The route can stop 

se,'eral times at the depot to pickup goods for more customers. '11,e depot must 

now also have a se1'\~ce time. While VRPT\V is weU studied, there is relatively less 

literature on POPTW. Moreover, no one has developed comprehensive 

benchmark POPT\\1 instances that facilitate e:'1Jerimentation of new approaches . 

Lau and Liang [35J presented a two-staged method to solve the pickup and 

delivery problem with time windows (POPT\XI). In d,e first phase, they apply a 

novd consttuction heuristics to generate an initial solution. In the second phase, 

a tabu search method is proposed to improve the solution. In their model, they 

assume there is an unlimited number of vehicles and all vehicles have the same 

capacity. Lau and Liang implement a partitioned insertion heuristic, which is a 

hybrid helllistic combining d,e advantages of the standard insertion heuristic and 

sweep heuristic. The stops are inserted into d,e route as pairs, ensuring dlat a 

pickup stop is always on same route as the delivery route. They introduce three 

different neighbourhood moves, namely, Single Pair Insertion (SP!), Swap Pairs 

between Routes (SBR) and Widoin Routes Insertion (\\IRJ). 

'l1,e study of this medlod indicates that the VRPT\,' was adapted to wotk in 

pairs. Implementing the VRPTW widl multiple routes per vehicle is less complex 

dlan the POPT\V This thesis presents a similar approach as was presented by 

Lau et 0.1 [35]. From the results of Lau et al [35] study we conclude that some 

minor changes to d,e operators in our problem would be sufficient to solve the 
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additional constraint of allowing multiple rolltes per vehicle. Where rhe PDPT\V 

needs to check for pairs, we will be force to check the affect o f route alterations 

on subsequent routes. 

2.3.3. V RP ,pitb MII/lip/e lise 0/ wbides 

·ll,e Vehicle routing problem wirh multiple use of vehicles is a Valiant of the 

standard vehicle routing problem in which the same vehicle may be assigned to 

several routes during a given planning peliod. TailJard et al, 149] presented a tabu 

search heUlistic for this problem. 

One drawback of rhe standard VRP definition is that it implicitly assumes each 

vehicle is used only once over a planning period of duration M. For example, M 

could correspond to an eight-hour working day. In several contexts, once the 

vehicle routes have been designed, it may be possible to assign several of them to 

rhe same vehicle and rhus use fewer vehicles. When m is given a priori and Q is 

relatively small, tlus will often be the only practical option. However, tlus 

possibility is not directly accounted for in rhe problem statement and more often 

tllan not, an efficient " packing" of tl,e routes into working days will be hard to 

aclueve. Desigtung routes with multiple uses o f the velucles is rather important in 

practice, but this problem (denoted by the abbreviation VRPM) has received vcry 

little attention in the Operational Research literature. 

I.n recent years, several powerful tabu search algorithms have been proposed for 

tl,e VRP. ,\s a rule, these algolirhms produce very good and sometimes optimal 

solutions. Rochat and TailJard presented an algorithm that allows diversification 

of the search process to take place by generating and combilung pronlising 

solutions, not unlike what is done in genetic algorithms. More precisely, the route 

generation procedure first produces several good VRP solutions using tabu 

search. It then extracts single velucle routes from tlUs population of solutions, 
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and combines some of these routes to defme a partial starting solution for 

another application of tabu search. This process is repeated a number of times 

and some of the veh.icle routes generated are selected as candidates for the final 

VRJ) solution. Note that each application of tabu search has the effect of 

producing a flill VRP solution starting from a limited set of routes and it may also 

modify these seed routes through the local search process. 

Taillard et al [49] proposed a beuristic for the VRPM based on the algorithm of 

Rochat and Taillard. 11,e proposed heuristic is made up of du:ee parts. It fust 

generates a large set of good vehicle routes satisfying the VRP constraints . It then 

tnakcs a selection of a subset of these routes using an enumerative algolidlm. 

Finally, it assembles the selected routes into feasible working days using several 

applications of a bin packing heuristic. 

2.3.4. H ele/vgeneolls Fleet 

We considered work done on beterogeneous fleet for ob\~ous teasons. Tbe 

vebicle routing problem with a heterogeneous fleet of vehicles (VRPHE) is a 

major opUlTIlzanon problem. Indeed, most companies that have to deliver or 

collect goods own a heterogeneous fleet of vehicles. We will not consider 

composition of vehicles, although it is relevant to some of the problems in the 

industly. 

The problem of composition of vehicles includes the additional problem of 

decicling which trailer goes with which vehicle. We solve this problem by building 

a vehicle set beforehand, and checking the vehicle capacity after routing. I f the 

capacity is enough for the vehicle alone, the trailer is left at home and the total 

route cost is reduced. 
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Tne VRPf-IE has amacted much less attention than the VR.P or VRPT\,\'. This is 

mainly due to the fact that the VRPI-I E is much harder to solve than the classical 

VRP. Taillard 146] propose a heuristic column generation method for the 

VIU) [ IE. 

Taillard [46] defines the heterogeneous fleet as follows: In d,e heterogeneous 

problems, we have a set IIJ = {I, ... , K} of c1ifferent vehicle t)1)es. A vehicle of 

type k E V/ has a carrying capaciry Q,. The nwnber of vehicles of type k available 

is "k. The cost of the travcJ from customer i to j (i,j = 0, ... , II) wid1 a vehicle of 

rype k is d" . 11,e use of one vehicle of rype k in1plies a fixed cost J,. Our 

implementation defines a fleet in a similar way. 

r\ special case of VRPl-lE is the fleet size and mix vehicle routing problem 

(Golden et a1., 1984 in Taillard [46]) also caLled d,e fleet size and composition 

VIU> or the vehicle fleet mix (VFM, Sall-u et aI., 1992 in Taillard [46]). The goal of 

d1.is problem is to detennine a fleet of ve1-ucles such that the swn of fixed costs 

and travcJ costs is tnininlized. This problem is a particular VRPl-lE for which: 

1) T1,e travel costs are the same for all vcJ-ucle rypes (dif, = d'Jk ' k, k· E VI) . 

2) The number "k of vehicles of each rype is not limited (11, = 00, k E V/) . 

We \~ew tl-us kind of problem as a strategic optitnization and it will not be 

considered. Our problem is more concerned wid1 the current situation at the 

depot, i.e. d,e fleet is already there, we cannot make major alterations on d,e fleet, 

but we mUSt still try and optin1.ise d,e vehicle use as best as we can. Tf results 

continuously show d1at a certain vehide is not necessary, it can be considered [0 

remove the vel-ucle from the system and detennine if the a1gorid1ll1 still rentrns 

feasible solutions. 
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Another special case of the VRPI-IE is the VFM with variable unit running costs 

(VFl\IVRC, Salhi et al., 1992 in Taillard [46]). The VFMVRC is a particular 

VRPf-lE for which (II, = 00, k E 11/). Several papers on the VFl\[ have been 

published. Golden et al. (1984) were among the first to address tlus problem. 

This problem's goal is sirnilar to the VFM and is also strategic. \'( 'e will not 

consider this implementation. Much less work has been done for the VRPf-lE. 

Let us quote the taboo searches of Semet and TaiJlard (1993) and Rochat and 

Semet (1994) (in Taillard [46]) for real-life problems including many other 

constraints. 

"For homogeneous VRPs, many heuristic methods have been proposed. r\mong 

the most efficient ones, are the adaptive memory procedure (AMP) of Rochat 

and Taillard (1995) and the taboo search ofTaillard (1993). This last metllod uses 

a local search ll1CchamS111 based on tbe tll0Ve of one customer from one tow' [0 

anotl,er or the exchange of two customers that belong to different tours. Since 

tloe vehicles arc identical, it is easy to check the feasibility of a move and to 

evaluate its cost. For the VRPJ-lE, the feasibility check or ti,e evaluation of a 

ITIOVe requires finding a new assignment of the vehicles to the new solution's 

tours. In Semet and TaiJlard (1993), several techniques h,,-e been proposed to 

sinlplify and accelerate the re-assignment of velucles to tours. However, ti,e re­

assignment problem is very simple in the case of the VFM: each tour is 

perfomled with the cheapest vehicle type that is able to carry all the orders of the 

tours. This is certainly a reason d,at ti,e VFM has been more studied tllan the 

VRPHE." 

-nle above quote is a watlung on d,e addition of heterogeneous fleet to our VRP, 

especially if we do not apply it in the sense of the VFM. We will show, however, 

that tile methods used in our implementation are sufficient enough and effective 

in a reasonable time period. 
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Taillard presents a heuristic calmnn generation method for solving the VRPIIE. 

The column generation is based on the Mv[P of Taillard (1994), which uses an 

embedded taboo search. Taillard proposes to treat the VRPf IE by sohong a 

succession of homogeneous VlU)s, since the solution methods for homogeneous 

VRl's arc becoming more and more efficient. For each type of vehicle, they solve 

a homogeneous VR.P (witilout limitation on tile nwnber of vehicles available) 

with an Al'vIP. The tours of the homogeneous VRP solutions are then combi.ned 

to produce a solution to ti,e VIU)HE. 

The AMP first generates a set of good solutions using ti,e taboo search. It ti, en 

extracts single ,-elude tours from this set of solutions, and cot11bincs some of 

ti,ese tours to define a partial starting solution for another application of taboo 

search. This process is repeated a t1U1nber of times and the tours arc ll1cmorized 

as candidates for tile fmal VRP HE solution. Once the homogeneous VlU)s are 

solved for each vehicle type, one has a set T of tours tilat have been memorized. 

The useless tours o f T are removed: only one capy of each tour is kept in T; tile 

dotlnnarcd [ours are elin1inated (a [OUf is dotmnared if it is more expansive than 

another tour of T servicing tile same customers). In the case of the VFl\ I, the 

algOritlull always produces a feasible solution if ti,e iterative search used to solve 

tile homogeneous VRP succeeds i.n fmding feasible solutions. 

In our objective, the proposed solution is not considered for the followi ng 

reasons: 

• In ti,e case of the VFM, an unlimited number of vehicles exist to solve 

the problem. Whatever feasible tour is selected from tile homogeneous 

solution list is possible, as the vehicle exist. In our instance, it might 

happen that the selected vchicle route cannot be used, as the ntunbcr of 

routes for the type of verucle already equals the I1lU11ber of vehicles 
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available. Another vehicle must be selected for this route, which might 

not result in the best solution. 

• If we start to make alterations to the selection of vehicles, it might 

happen d1at d,e routes in the list for a specific vehicle on a specific stop 

arc exhausted by the othet ,'elucles. Al d,e routes, which included dlis 

stop, is removed from the possible route list. This can result in stops not 

being visited, because there is no vehicle available, or so it seems. \,\/e can 

build up a route, which consist o f the unrouted stops ro insure a feasible 

solution, but this will result in a solution that is not the best. 

• As mentioned previously, we cannot guarantee that Taillard's method will 

result in the best solution. If we add to that d,e additional complexity of 

our problctTI, it can really get time consunung to rebuild the solution 

from a set of feasible homogeneous vehicle rolltes. This inlplies dut the 

heuristic method applied on the homogeneous vehicle solution wiU be 

applied a few times. With the a,'ailable computer power as weU as the 

complexity of the data sets we work widl, it wi ll be more effective to 

implement the vehicle selection method into d,e heuristic. Taillard found 

d,at for problem instances involving very few vehicles, there was a higher 

probability that a nm would not produce a good or even a feasible 

solurion. 

2.3.5. Ti1lle IVi"dolvs 

The Vehicle Routing Problem with Tinle Windows (VRPT\XI) is by far d,e most 

popular inlplementation of d,e VRP. Our problem implements various 

extensions on the oliginal idea o f a rime window. The cust01l1CrS to be visited can 

have multiple time windows. The vehicles to be used will also have available time 

windows d,at will allow the user to schedule certain vehicles for long hauls where 
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necessaty. 11,ere exist a wide variety of implementation methods for the 

VRPIW. 

A rIy brid Searcb Based On Genetic AIgoriduDs And Tabu Search For 

Vehicle Routing 

Ombuki et ai, (39) ptesented a hybrid search technique based on meta-heuristics 

for approximately soh~ng the VIUJT\V The approach is two phased; a global 

customer clustering phase based on genetic algOlithms (Gr\s) and a post­

optimiza tion local search technique based on Tabu search ( f5). 'Illey also de\~sed 

a new crossovet opetator for rhe VRPT\,(! and compare its performance wirh two 

well-known crossover operators for VRPT\'i! and related problems. 

Computational experiments show that the GA is effective in setting the number 

of vehicles to be used while the Tabu search is better suited for reducing the total 

11lU11ber of clistance travelled by rhe vehicles. Through rhei..t· sirm~ations, they 

conclude rhat the hybrid search technique is more suitable for rhc mwti-objective 

optimization for rhe VRPT\'(1 than applyirlg ciuler U1C Gr\ or Tabu search 

independenuy. We definitely take this from uleir research and \~ll also implement 

a hybrid approach. 

In uus paper a hybrid search technique is proposed wluch is suitable for multi­

objecti\'e optimization. Thcir approach is two phased; a global customer 

clustering phase based on genetic algOlithm and a post-optimization local search 

technique based on Tabu search. The objectivc function statcs ulat costs showd 

be milumized. Tn this case the objective is to mini.mizc the ntullber of vehicles 

used and ule clistance travelled to meet ule demand of all the customers while not 

exceecling capacity of the vehicle and the latest time for serving each customer. 

'I1ms ulis problem can be treated as a mwti-objective optimization problem. 

In rhe GA, each chromosome in ule popwation pool is transfOlmed into a cluster 

of routes. The chromosomes are thcn subjected to an iterativc evolutionary 
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process until a minimum possible nU1nber of clusters are attained or the 

termination condition is tnet. The transfotmation process is achieved by the 

routing scheme whereas the evolutionary part is carried out like in ordinary GAs, 

that is, in each generation, genetic operations, crossover and selection are applied 

upon ciuolnosolnes. We represent each chrOtnoson1c as scguence of cluster of 

routes. A route is composed of a sequence of nodes (customers). Each 

chromosome represents a possible solution for the VRPT\V 

The following figure shows the performance of the genetic algoritlml compared 

to tI,at of the Tabu search rechnique. In the case of Figure 3, ti,e main objective 

under scrutiny is how GA and Tabu search perfonns respectively in defirting the 

final number of vehicles to be used to service the customers for ti,e VRPTwr. 

Likewise, Figurc 4 demonstrates their perfonnance when the main objective 

obsetvation is to minunize distance travelled. The vertical axis U1 both figures 

shows the nU111ber of customers not served. The more custOlners served, the 

better. From Figure 3 we observe tint GA perfonns better than the Tabu search 

in searching the Itoptimat nmnber of vehicles to service the customers. As the 

figure shows, the GA manages to employ a smaller number of vehicles and also 

to serve 1110re customers than the Tabu search approach. 
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On the other hand, Figure 4 depicts that the Tabu search outperfOlms the GA 

when it comes to minimizing the total distance travelled. Clearly, this is a case of 

conflicting objectives. In-order (0 reduce d1e travelled distance; one would need 

to increase the number of vehicles. On the other hand, to reduce the cost of 

enlploying more vehicles, one needs to increase tJle distance travelled per vehicle 

(which does not necessarily solve the problem as the cost of gas and other 

resources comes into playas well). 
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In our problctll we are not concerned about reducing vehicles as a lTIall1 

objective, ald10Ugh we would like to utilise a vehicle as good as possible. Tnstead 

of making use of GA for vehicle reduction, we implement med10ds to handle 

heterogeneous fleet, as well as multiple scheduling. . 111e G A memod in dus 

implctnentation as a heuristic and not a meta-heuristic. \\fhat we are looking for is 

a med10d to handle me meta of our algoridun. 
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Although they do not specify the side constraints, except fo r the time windows, 

additional side constraints can be implemented and will affect Ole algorimm in 

testing for feasibility. We can expect similar results for our problem as in this 

lI1stancc. 

A Network Flow-Based Tabu Search Heuristic for the VRP 

AU and Kelly [54] introduced a network flow model as a general local search 

strategy to solve the VRP. They used a straightforward model by relaxing the 

hard side constraints and introducing a dynamic penalty system, and efficiently 

update and frequenoy solve the network £Jow model to fmd Ole best cllstomers 

to insert into new toutes wiOlout the usc of the generalized assignment problem. 

The penalt), parameters arc changed such Olat Ole feasibilit)· of the search is 

controlled. 

The network £Jow model implements Tabu Search restriction to prevent the 

method from getting trapped in local oprin1a. TS restrictions wiol randomly 

generated tabu tenures are applied to olem three neighbourhood moves: 

dropping a customer frol11 its current route, inserting a cust0l11Cr i.nto a different 

route and swapping two customers between routes. For the swap, in addition to 

Tabu resttictions on future swaps, the associated ejections and insertions are also 

subject to tabu restrictions. \X'hen a customer is 1110ved to a new rOllte, a tabu 

rcsrncrion that prevents its removal from that route is only activated when there 

are only a few customers Ocss than a prc-dctennined I1lunber) in thc route. 

rrOlTI their in1plementarion wc conclude that each operation can have its own 

tabu tenure. Ideally we would like to set Ole tabu tenure during execution for each 

operation. \Y/e also conclude that the execution of an operation might result in 

tabu moves for other operations. We must identify the dependencies of 

operations beforehand. 
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Xu and Kelly [54] also implement an intensification strategy that we inhelit from 

them based on advanced restart/recovery procedure. The set of best feasible 

solutions produced by the search are defined as elite solutions. A repositOlY of 

elite solutions is maintained. Ad"anced restart is executed perioclically during the 

late stages of the search. \Xfhcn restarting, the em-rent solution is obtained frOl1l 

the repository and all tabu restrictions are released. This strategy is based on the 

assumption that there may exist short relinking paths in the search process from 

the restart points to new local or global optima. However, these padls may not be 

detected during prior search due to the tabu restrictions. The advanced 

res tart/ recovelY strategy may find dlese paths and dlereby lead the search to new 

local or global optima. 

Vebicle R OUtiJlg in Constraint Progranlming 

De Backer and Furnon [18] consider constraint programming for solving VRPs. 

However, this raises many problctTIs. Search in constraint prograrruning is usually 

based on depth-first search. This means that the domains of each vatiable arc 

monotonically reduced by propagation dming dle search. r\ldl0Ugh dus approach 

can be usen.ll for finding a first solution for the VRP, it is not practicable when an 

optimized solution is sought. This is dle reason why much research has been 

devoted to dle design and dle implementation of local search techniques in the 

context of routing problems. 

The paper presents basic principles for implementing local search techniques and 

meta-heuristics in constraint ptogramming. These principles have been applied to 

Tabu Search. \\'e consider the basic VRP ,vidl additional side constraints. 

Expressing such constraints as what we arc considering, can be tediolls, and yield 

problems with huge models, especialll' in dle case of traditional linear 

programming (LP) models, or make programs sohcing VRP very complex and 

difficult to maintain. 
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In standard LP models, decision variables usually belong to a set of Boolean 

variables x~ which take dlC value 1 if the vchicle k is used to travel from visit i to 

j. ll1crcfo rc, these 1110dcls usc 0{1Jl11d decision variables, where III is the number 

of vehicles and 11 is the nUlnbcr of visits to perfonn. 

\'(Ie implement the VRP with a number of variables that is linear (instead of 

quadratic) with respect to the number of visits. Each \isit i is associated with twO 

finite-domain variables next, and I/Cb" representing respectiycly the possible visits 

following i and the vehide sen~ng visit i. 'Ilus method allows us to quickly access 

the feasibility of a route by traversing only a part of the route depending on 

where the alteration took place. 

D e Backer and Furnon [18] devise a genetic way of taking into accowlt 

constraints on dimensions that can be a diverse as weight, time, or vollllnc. They 

introduce rhe notion of a path constraint, which arc similar to the way that we 

implement constraints on a route. Path constraints are able to propagate 

accwnulatcd quantities such as tlll1 C and weight along a vehicle tour. 

We implement a similar method to tcst for feasibility of a route. Constrainrs arc 

prioritised according to ease of calculation and importance on failing, e.g. to 

insert a node in a route, the ve!ucJe capacity must be sufficient to accept the new 

node as weU. It is quick to tcst the current capacity of the route plus the new load 

of the stop against the capacity of the velude. 

Time Window Compatibility 

Time Window Compatibility (T\'(IC) rcfers to d,e compatibility of the time 

\vindow(s) of onc stop \vith regards to another. r\ good TWC figure inclieates 

that the two nodes are likely to be inserted in sequence on the sam e ro ute. In 

many cases two customers can be located next to each adler, but their time 
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windows is not compatible. The trade-off between distance (i.e. cost) and time 

(i.e. customer delight) is an inherent part of the problem. 

Inscrrion of stOps in a heuristic fashion requires a selection process d1ar result in a 

possible next stop. The T\VC can assist us in ruling out infeasible stops from the 

start. We define the te1111 neighbour for a stop. A neighbom is a stop that can be 

visited frolll the current stop. If we know that a stop is not a neighbour of rhe 

current stop, we do not even waste time of trying to implclnenr that stop as a 

next stop. The neighbours of a stop are made up of all the time window 

compatible stops. We utilise the T\'VC principle as proposed by Van Schalkwyk 

[52], but we implement it in a different fashion . II discussion of the T\'iIC follows 

and Chapter 3 will discuss the implementation of this concept in our solution. 

The figure below illustrates a scenario where we evaluate the time adjacency of 

node i and node j. This scenario assumes that there will be a defuute overlap in 

time windows between the two nodes. Other scenarios will subsequently be 

discussed. 

54 

 
 
 



ei 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
IE 

06:00 08:00 

Ii 
node i 

e ~ Ij Ii node j 
la ~i I I 
I i la ~ 
I I i 
I 

TWCij 
I 

S, + lij I I 

)~ ~ 

11 :00 15:00 18:00 

Figure 5: The basic TWC calculation -
Scenario 0 

Scenario 0: iF a;' > ej AND a; < Ij 

s;heduling period 

~ time 

Customer i specified a time window (e,'/,) bet\veen 8:00 and 12:00, and 

customer j requires service bet\vcen 9:00 and 16:00 (e i,lJ. If sclviccd started 

at node i at e, (the earliest feasible time), its anival at j would bc: 

a? =e,+ s'+; /j 

In this scenatio equals 11 :00. 

Similarly, al would be the arrival at j if service started at node i at the latest 

possible time (I,): 

In this scenario equals 15:00. 
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The difference between a;' and a;- will yield the amount of time overlap between 

i and j : 

I n this scenario it equals 4 hours. 'll,e significance of this value is that the bigger 

the overlap, the better we can insert the two nodes in seguence. This also 

enSilles that the customer with a big overlap is routed first (more flexible). 

A number of different scenarios will be illustrated in the following figures. 

Scenario 1: If aj > I J 

If the earliest arrival time at nodej is inside the acceptable time window, but the 

latest an;val time is outside of the acceptable time window of node j, the two 

CUStomers only partly overlap. The TWCij is tl,en calculated by the following 

e'Juanon: 

node i 

I ej~ I 
I 

), 
node j 

I ta ~i (. 
I I a ' 
I I ) I J 
I I I 

I I 
TWCij 

I 

I S; + t ij I I 

( )~ ~ g;heduling period 

~----+-----------+-------~------------------+----..~ time 
06:00 08 :00 11 :00 13:00 18:00 

F ig ure 6: Sce nar io 1 TWe calcula tion 
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Scenario 2: If a? < ej 

If the vehicle arrives at the earliest feasible rime and this is before the acceptable 

rime window of node j, and the arrival of the latest feas ible rime at node j is 

inside the acceptable rime window, the two customers only partly overlap. The 

\Thicle has to wai t to service customet j. TI,e TWC ij is tl,en calculated by the 

following equation: 

e 1 

r~~, 
I a ei' I I , . a " I ) I I ., 

, " i , 
I 1 I I 
, S;+fu' , TWC;; J 

~~~'(~~~~Y~~~~~~'~7~~~~~~~ g;heduling period 

~ time 

node j 

06:00 08:00 11 :00 15:00 18:00 

Figure 7: Scenario 2 TWC calculat ion 
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Scen ario 3: If a;' < e} and aj < e} 

If Ole latest arri,'al rime at node) is earlier olan the start of the acceptable rime 

window at node), the vehicle always waits at node j, lrrespectable of the arrival 

tim e at node i. The arrival at j is always before its acceptable smrt rime. This 

!£heduling period 

~----~----------+--------------+------------+---~.. t ime 
18:00 

Figure 8: Scenado 3 TWe calculation 
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Scenario 4: If G, > I
J 

and G , > I
J 

If the arrival time at j is always bigger than the latest acceptable time at j, the 

node-combination is infeasible. 11,e nodes fOnTullg part of tills combination will 

typically be clinlinated before starting the algOlithm, as they can ob\~ous ly not be 

included in dle current route under constrllction. 

node} 
e f). ~ 
11=) ===1==1 ae, 

I . 
I ) 
I 
I 

node i 

ai, 
) 

~~~~~~~~,(~s~; ~+~t;ij~)::~~N~O~T~W~C~ij ~~~~::~ s:heduling period 

~ time 

06:00 10:00 12:00 16:30 18:00 

Figure 9: Scenario 4 - infeas ible 
combination 
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