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232 Pickup and Delivery

We consider existing pickup and delivery problems to determine the similarity
between it and multiple routes per vehicle. The Pickup and Delivery Problem
with Time Windows (PDPTW) models the situation in which a fleet of vehicles
must service a collection of transportation requests. Each request specifies a
pickup and delivery location. The multiple routes per vehicle problem can be
seen as a pickup from the depot and delivery to the customer. The route can stop
several times at the depot to pickup goods for more customers. The depot must
now also have a service time. While VRPTW is well studied, there is relatively less
literature on PDPTW. Moreover, no one has developed comprehensive

benchmark PDPTW instances that facilitate experimentation of new approaches.

Lau and Liang [35] presented a two-staged method to solve the pickup and
delivery problem with time windows (PDPTW). In the first phase, they apply a
novel construction heuristics to generate an initial solution. In the second phase,
a tabu search method is proposed to improve the solution. In their model, they
assume there is an unlimited number of vehicles and all vehicles have the same
capacity. Lau and Liang implement a partitioned insertion heuristic, which is a
hybrid heuristic combining the advantages of the standard insertion heuristic and
sweep heuristic. The stops are inserted into the route as pairs, ensuring that a
pickup stop is always on same route as the delivery route. They introduce three
different neighbourhood moves, namely, Single Pair Insertion (SPI), Swap Pairs

between Routes (SBR) and Within Routes Insertion (WRI).

The study of this method indicates that the VRPTW was adapted to work in
pairs. Implementing the VRPTW with multiple routes per vehicle is less complex
than the PDPTW. This thesis presents a similar approach as was presented by
Lau et al [35]. From the results of Lau et al [35] study we conclude that some

minor changes to the operators in our problem would be sufficient to solve the
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additional constraint of allowing multiple routes per vehicle. Where the PDPTW
needs to check for pairs, we will be force to check the affect of route alterations

on subsequent routes.
233, V'RP with Multiple use of vehicles

The Vehicle routing problem with muldple use of vehicles is a variant of the
standard vehicle routing problem in which the same vehicle may be assigned to
several routes during a given planning period. Taillard et al, [49] presented a tabu

search heuristic for this problem.

One drawback of the standard VRP definition is that it implicitly assumes each
vehicle is used only once over a planning period of duration M. For example, M
could correspond to an eight-hour working day. In several contexts, once the
vehicle routes have been designed, it may be possible to assign several of them to
the same vehicle and thus use fewer vehicles. When m is given a prion and Q is
relatively small, this will often be the only practical option. However, this
possibility is not directly accounted for in the problem statement and more otten
than not, an efficient “packing” of the routes into working days will be hard to
achieve. Designing routes with multiple uses of the vehicles is rather important in
practice, but this problem (denoted by the abbrevianon VRPM) has received very

little attention in the Operational Research literature.

In recent years, several powerful tabu search algorithms have been proposed for
the VRP. As a rule, these algorithms produce very good and sometimes optimal
solutions. Rochat and Taillard presented an algorithm that allows diversificaion
of the search process to take place by generating and combining promising
solutions, not unlike what is done in genetic algorithms. More precisely, the route
generation procedure first produces several good VRP solutions using tabu

search. It then extracts single vehicle routes from this population of solutions,

41



e

3

\ 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

and combines some of these routes to define a partial starting solution for
another application of tabu search. This process is repeated a number of times
and some of the vehicle routes generated are selected as candidates for the final
VRP solution. Note that each application of tabu search has the effect of
producing a full VRP solution starting from a limited set of routes and it may also

modify these seed routes through the local search process.

Taillard et al [49] proposed a heuristic for the VRPM based on the algorithm of
Rochat and Taillard. The proposed heuristic is made up of three parts. It first
generates a large set of good vehicle routes satisfying the VRP constraints. It then
makes a selection of a subset of these routes using an enumerative algorithm.
Finally, it assembles the selected routes into feasible working days using several

applications of a bin packing heuristic.
2.34. Heterogeneons Fleet

We considered work done on heterogeneous fleet for obvious reasons. The
vehicle routing problem with a heterogeneous fleet of vehicles (VRPHE) 1s a
major optimization problem. Indeed, most companies that have to deliver or
collect goods own a heterogeneous fleet of vehicles. We will not consider
composition of vehicles, although it is relevant to some of the problems in the

industry.

The problem of compositon of vehicles includes the addinonal problem of
deciding which trailer goes with which vehicle. We solve this problem by building
a vehicle set beforehand, and checking the vehicle capacity after routing. It the
capacity is enough for the vehicle alone, the trailer is left at home and the total

route cost 1s reduced.
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The VRPHE has attracted much less attention than the VRP or VRPTW. Thus 15
mainly due to the fact that the VRPHE is much harder to solve than the classical

VRP. Taillard [46] propose a heuristic column generation method for the
VRPHE.

Taillard [46] defines the heterogeneous fleet as follows: In the heterogeneous
problems, we have a set ¥ = {1, ..., K} of different vehicle types. A vehicle of
type k €y has a carrying capacity Q,. The number of vehicles of type £ available
1s #;. The cost of the travel from customer 7 to / (1, / = 0, ..., #) with a vehicle of
type £ is d,. The use of one vehicle of type £ implies a fixed cost f,. Our

implementation defines a fleet in a similar way.

A special case of VRPHE is the fleet size and mix vehicle routing problem
(Golden et al,, 1984 in Taillard [46]) also called the fleet size and composition
VRP or the vehicle fleet mix (VFM, Salhi et al., 1992 in Taillard [46]). The goal of
this problem is to determine a fleet of vehicles such that the sum of fixed costs

and travel costs is minimized. This problem is a particular VRPHE for which :

1) The travel costs are the same for all vehicle types (d, = dy,k. gk ew).

2) The number #, of vehicles of each type is not limited (n, =%,k ey).

We view this kind of problem as a strategic optimization and it will not be
considered. Our problem is more concerned with the current situation at the
depot, i.e. the fleet is already there, we cannot make major alterations on the fleet,
but we must still try and optimise the vehicle use as best as we can. If results
continuously show that a certain vehicle is not necessary, it can be considered to
remove the vehicle from the system and determine if the algorithm sull returns

feasible solutions.
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Another special case of the VRPHE is the VFM with variable unit running costs
(VEMVRC, Salhi et al., 1992 in Taillard [46]). The VFMVRC is a particular
VRPHE for which (n, =0,k ey). Several papers on the VFM have been
published. Golden et al. (1984) were among the first to address this problem.
This problem’s goal is similar to the VFM and is also strategic. We will not
consider this implementation. Much less work has been done for the VRPHE.
Let us quote the taboo searches of Semet and Taillard (1993) and Rochat and
Semet (1994) (in Taillard [46]) for reallife problems including many other

constraints.

“For homogeneous VRPs, many heuristic methods have been proposed. Among
the most efficient ones, are the adaptive memory procedure (AMP) of Rochat
and Taillard (1995) and the taboo search of Taillard (1993). This last method uses
a local search mechanism based on the move of one customer from one tour to
another or the exchange of two customers that belong to different tours. Since
the vehicles are identical, it 1s easy to check the feasibility of a move and to
evaluate its cost. For the VRPHE, the feasibility check or the evaluation of a
move requires finding a new assignment of the vehicles to the new solution’s
tours. In Semet and Taillard (1993), several techniques have been proposed to
simplify and accelerate the re-assignment of vehicles to tours. However, the re-
assignment problem is very simple in the case of the VFM: each tour is
performed with the cheapest vehicle type that is able to carry all the orders of the
tours. This is certainly a reason that the VFM has been more studied than the

VRPHE.”

The above quote is a warning on the addition of heterogeneous fleet to our VRP,
especially if we do not apply it in the sense of the VFM. We will show, however,
that the methods used in our implementation are sufficient enough and effectve

in a reasonable time period.
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Taillard presents a heuristic column generation method for solving the VRPHE.
The column generation is based on the AMP of Taillard (1994), which uses an
embedded taboo search. Taillard proposes to treat the VRPHE by solving a
succession of homogeneous VRPs, since the solution methods for homogeneous
VRPs are becoming more and more efficient. For each type of vehicle, they solve
a homogeneous VRP (without limitation on the number of vehicles available)
with an AMP. The tours of the homogeneous VRP solutions are then combined

to produce a solution to the VRPHE.

The AMP first generates a set of good solutions using the taboo search. It then
extracts single vehicle tours from this set of solutions, and combines some of
these tours to define a partial starting solution for another application of taboo
search. This process is repeated a number of times and the tours are memorized
as candidates for the final VRPHE solution. Once the homogeneous VRPs are
solved for each vehicle type, one has a set T of tours that have been memorized.
The useless tours of T are removed: only one copy of each tour is kept in T} the
dominated tours are eliminated (a tour is dominated if it is more expansive than
another tour of T servicing the same customers). In the case of the VFM, the
algorithm always produces a feasible solution if the iterative search used to solve

the homogeneous VRP succeeds in finding feasible solutions.

In our objective, the proposed solution is not considered for the following

reasons:

e In the case of the VFM, an unlimited number of vehicles exist to solve
the problem. Whatever feasible tour is selected from the homogeneous
solution list is possible, as the vehicle exist. In our instance, it might
happen that the selected vehicle route cannot be used, as the number of

routes for the type of vehicle already equals the number of vehicles
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available. Another vehicle must be selected for this route, which might

not result in the best solution.

If we start to make alterations to the selection of vehicles, it mught
happen that the routes in the list for a specific vehicle on a specific stop
are exhausted by the other vehicles. Al the routes, which included this
stop, 1s removed from the possible route list. This can result in stops not
being visited, because there is no vehicle available, or so it seems. We can
build up a route, which consist of the unrouted stops to insure a feasible

solution, but this will result in a solution that is not the best.

As mentioned previously, we cannot guarantee that Taillard’s method will
result in the best soluton. If we add to that the additonal complexity of
our problem, it can really get tme consuming to rebuild the solution
from a set of feasible homogeneous vehicle routes. This implies that the
heuristic method applied on the homogeneous vehicle solution will be
applied a few tmes. With the available computer power as well as the
complexity of the data sets we work with, it will be more effective to
implement the vehicle selecdon method into the heuristic. Taillard found
that for problem instances involving very few vehicles, there was a higher
probability that a run would not produce a good or even a feasible

solution.

Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) is by far the most

popular implementation of the VRP. Our problem implements various

extensions on the original idea of a ime window. The customers to be visited can

have multple time windows. The vehicles to be used will also have available ame

windows that will allow the user to schedule certain vehicles for long hauls where
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necessary. There exist a wide varety of implementaton methods for the

VRPTW.

A Hybrid Search Based On Genetic Algorithms And Tabu Search For
Vehicle Routing

Ombuki er al, [39] presented a hybrid search technique based on meta-heuristics
for approximately solving the VRPTW. The approach is two phased; a global
customer clustering phase based on genetic algorithms (GAs) and a post-
optimization local search technique based on Tabu search (TS). They also devised
a new crossover operator for the VRPTW and compare its performance with two
well-known crossover operators for VRPTW and related problems.
Computational experiments show that the GA is effective in setting the number
of vehicles to be used while the Tabu search is better suited for reducing the total
number of distance travelled by the vehicles. Through their simulations, they
conclude that the hybrd search technique is more suitable for the multi-objective
optimization for the VRPTW than applying either the GA or Tabu search
independenty. We definitely take this from their research and will also implement

a hybrid approach.

[n this paper a hybrid search technique is proposed which is suitable for multi-
objective optimization. Their approach is two phased; a global customer
clustering phase based on genetic algorithm and a post-optimization local search
technique based on Tabu search. The objective function states that costs should
be minimized. In this case the objective is to minimize the number of vehicles
used and the distance travelled to meet the demand of all the customers while not
exceeding capacity of the vehicle and the latest ime for serving each customer.

Thus this problem can be treated as a multi-objective optimization problem.

In the GA, each chromosome in the population pool is transformed into a cluster

of routes. The chromosomes are then subjected to an iterative evolutionary
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process untl a minimum possible number of clusters are attained or the
termination condition is met. The transformation process is achieved by the
routing scheme whereas the evolutionary part is carried out like in ordinary GAs,
that is, in each generation, genetic operadons, crossover and selection are applied
upon chromosomes. We represent each chromosome as sequence of cluster of
routes. A route is composed of a sequence of nodes (customers). FHach

chromosome represents a possible solution for the VRPTW.

The following figure shows the petrformance of the genetic algorithm compared
to that of the Tabu search technique. In the case of Figure 3, the main objective
under scrutiny is how GA and Tabu search performs respectively in defining the
final number of vehicles to be used to service the customers for the VRPTW.
Likewise, Figure 4 demonstrates their performance when the main objective
observation is to minimize distance travelled. The vertical axis in both figures
shows the number of customers not served. The motre customers served, the
better. From Figure 3 we observe that GA petforms better than the Tabu search
in searching the "optimal" number of vehicles to service the customers. As the
figure shows, the GA manages to employ a smaller number of vehicles and also

to serve more customers than the Tabu search approach.
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Figure 3: GA vs. Tabu Search for
Minimizing Vehicles

On the other hand, Figure 4 depicts that the Tabu search outperforms the GA
when it comes to minimizing the total distance travelled. Clearly, this is a case of
conflicting objectives. In-order to reduce the travelled distance; one would need
to increase the number of vehicles. On the other hand, to reduce the cost of
employing more vehicles, one needs to increase the distance travelled per vehicle
(which does not necessarily solve the problem as the cost of gas and other

resources comes into play as well).
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Figure 4: GA vs. Tabu Search for
Minimizing Distance

In our problem we are not concerned about reducing vehicles as a main
objective, although we would like to utilise a vehicle as good as possible. Instead
of making use of GA for vehicle reduction, we implement methods to handle
heterogeneous fleet, as well as multiple scheduling. The GA method in this
implementation as a heuristic and not a meta-heutistic. What we are looking for is

a method to handle the meta of our algorithm.
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Although they do not specify the side constraints, except for the time windows,
additional side constraints can be implemented and will affect the algorithm in
testing for feasibility. We can expect similar results for our problem as in this

instance.

A Network Flow-Based Tabu Search Heuristic for the VRP

Xu and Kelly [54] introduced a network flow model as a general local search
strategy to solve the VRP. They used a straightforward model by relaxing the
hard side constraints and introducing a dynamic penalty system, and efficiently
update and frequently solve the network flow model to find the best customers
to insert into new routes without the use of the generalized assignment problem.
The penalty parameters are changed such that the feasibility of the search is

controlled.

The network flow model implements Tabu Search restriction to prevent the
method from getting trapped in local optima. TS restrictions with randomly
generated tabu tenures are applied to them three neighbourhood moves:
dropping a customer from its cutrent route, inserting a customer into a different
route and swapping two customers between routes. For the swap, in addition to
Tabu restrictions on future swaps, the associated ejections and insertions are also
subject to tabu restricions. When a customer is moved to a new route, a tabu
restriction that prevents its removal from that route is only activated when there

are only a few customers (less than a pre-determined number) in the route.

From their implementation we conclude that each operation can have its own
tabu tenure. Ideally we would like to set the tabu tenure during execution for each
operation. We also conclude that the execution of an operation might result in
tabu moves for other operatons. We must identify the dependencies of

operations beforehand.
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Xu and Kelly [54] also implement an intensification strategy that we inhetit from
them based on advanced restart/recovery procedure. The set of best feasible
solutions produced by the search are defined as elite solutions. A repository of
elite solutions is maintained. Advanced restart is executed periodically during the
late stages of the search. When restarting, the current solution is obtained from
the repository and all tabu restrictions are released. This strategy is based on the
assumption that there may exist short relinking paths in the search process from
the restart points to new local or global optima. However, these paths may not be
detected during prior search due to the tabu restricdons. The advanced
restart/recovery strategy may find these paths and thereby lead the search to new

local or global optima.

Vehicle Routing in Constraint Programming

De Backer and Furnon [18] consider constraint programming for solving VRPs.
However, this raises many problems. Search in constraint programming is usually
based on depth-first search. This means that the domains of each varable are
monotonically reduced by propagation during the search. Although this approach
can be useful for finding a first solution for the VRP, it is not practicable when an
optimized solution is sought. This is the reason why much research has been
devoted to the design and the implementation of local search techniques in the

context of routing problems.

The paper presents basic principles for implementing local search techniques and
meta-heuristics in constraint programming. These principles have been applied to
Tabu Search. We consider the basic VRP with additional side constraints.
Expressing such constraints as what we are considering, can be tedious, and yield
problems with huge models, especially in the case of traditional linear
programming (I.P) models, or make programs solving VRP very complex and

difficult to maintain.
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In standard L.LP models, decision variables usually belong to a set of Boolean
. k : ik i v = i
variables x; which take the value 1 if the vehicle £ 1s used to travel from visit / to

J- Therefore, these models use O(mn,) decision variables, where # is the number

of vehicles and # is the number of visits to perform.

We implement the VRP with a number of variables that is linear (instead of
quadratic) with respect to the number of visits. Each visit 7 is associated with two
finite-domain variables zext, and veh, representing respectively the possible visits
following 7 and the vehicle serving visit z This method allows us to quickly access
the feasibility of a route by traversing only a part of the route depending on

where the alteration took place.

De Backer and Furnon [18] devise a generic way of taking into account
constraints on dimensions that can be a diverse as weight, time, or volume. They
introduce the notion of a path constraint, which are similar to the way that we
implement constraints on a route. Path constraints are able to propagate

accumulated quantties such as ime and weight along a vehicle tour.

We implement a similar method to test for feasibility of a route. Constraints are
prioritised according to ease of calculation and importance on failing, e.g. to
insert a node in a route, the vehicle capacity must be sufficient to accept the new
node as well. It is quick to test the current capacity of the route plus the new load

of the stop against the capacity of the vehicle.

Time Window Compatibility

Time Window Compatbility (TWC) refers to the compatbility of the time
window(s) of one stop with regards to another. A good TWC figure indicates
that the two nodes are likely to be inserted in sequence on the same route. In

many cases two customers can be located next to each other, but their time
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windows is not compatible. The trade-off between distance (Le. cost) and time

(Le. customer delight) 1s an inherent part of the problem.

Insertion of stops in a heuristic fashion requires a selection process that result in a
possible next stop. The TWC can assist us in ruling out infeasible stops from the
start. We define the term neighbour for a stop. A neighbour is a stop that can be
visited from the current stop. If we know that a stop is not a neighbour of the
current stop, we do not even waste time of trying to implement that stop as a
next stop. The neighbours of a stop are made up of all the tme window
compatible stops. We utilise the TWC principle as proposed by Van Schalkwyk
[52], but we implement it in a different fashion. A discussion of the TWC follows

and Chapter 3 will discuss the implementation of this concept in our solution.

The figure below illustrates a scenario where we evaluate the time adjacency of
node 7 and node /. This scenario assumes that there will be a definite overlap in
time windows between the two nodes. Other scenarios will subsequently be

discussed.
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scheduling period
} f + i f - time
06:00 08:00 11:00 15:00 18:00

Figure 5: The basic TWC calculation -
Scenario 0

Scenario 0: [/F (1:" >e, AND air % 2

Customer i specified a time window (e,./,) between 8:00 and 12:00, and
customer j requires service between 9:00 and 16:00 (e;..[ ; ) If serviced started

at node 7 at e, (the earliest feasible time), its arrival at j would be:
€; > o5

a; =e+s8,+1;

In this scenario equals 11:00.

Similarly, al would be the arrival at j if service started at node i at the latest
possible time (/,):

b =
ai =l 48+

In this scenano equals 15:00.
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e g T, . i
I'he difference between af and @ will yield the amount of time overlap between

i and j:
™WC, = a’f‘ ~@

In this scenario it equals 4 hours. The significance of this value is that the bigger
the overlap, the better we can insert the two nodes in sequence. This also

ensures that the customer with a big overlap is routed first (more flexible).

A number of different scenarios will be illustrated in the following figures.
Scenario 1: If ai.' g I’I.

If the earliest arrival time at node / is inside the acceptable ime window, but the
latest arrival time is outside of the acceptable time window of node j, the two
customers only partly overlap. The TWC, is then calculated by the following

equation:

WG, =1, —aj

scheduling period
——» time
06:00 08:00 11:00 13:00 18:00

Figure 6: Scenario 1 TWC calculation
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Scenario 2: If af" <,

If the vehicle arrives at the earliest feasible tme and this is before the acceptable
tme window of node j, and the arrival of the latest feasible time at node ; 1s
inside the acceptable time window, the two customers only partly overlap. The
vehicle has to wait to service customer j. The TWC, is then calculated by the
following equation:

TWC, = a_’, —e

/

€

I

'L

|

|

|

1

|

|

|

:

LS+t

v

. scheduling period

} } } } 4 - time
06:00 08:00 11:00 15:00 18:00

Figure 7: Scenario 2 TWC calculation
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; - e I
Scenario 3: If ¢} <e, and a; <e;

If the latest arrival time at node / is earlier than the start of the acceptable time

window at node j, the vehicle always waits at node j, irrespectable of the artival
time at node i. The arrival at j is always before its acceptable start time. This

value will be negative, and calculated as follows:

™WC, = a‘, =g,

€
K node |
|
|
l €; [
: , ! |:| node j
o il i
* 4 9 |
|
, | B |
& = A scheduling period
} : - : i - time
06:00 08:00 11:00 15:00 18:00

Figure 8: Scenario 3 TWC calculation
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Scenario 4: If a, >/, and a, >/,

If the arrival ime at j is always bigger than the latest acceptable time at j, the
node-combination 1s infeasible. The nodes forming part of this combination will
typically be eliminated before starting the algorithm, as they can obviously not be

included in the current route under construction.

€; :
= node
i
I
e : l,-
node _j '| - : 4i e
| | a
1 P
| |
L s+t 1 NO T,
scheduling period
: —— y ; L time
06:00 10:00 12:00 16:30 18:00

Figure 9: Scenario 4 - infeasible
combination
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