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2 PROBLEM BACKGROUND: VRP WITH MULTIPLE 
CONSTRAINTS 

2.1. The Vehicle Routing Problem 

Logistics can be defined as the pro\~sion of goods and services from a supply 

point to various dClnand points. TIle transportation of raw t11arcl;als from the 

suppliers to the factmy, from the factolY to the depots, and the disu1bution to 

customers can be descl1bed as a complete logistic system. With an effective 

logistic system, cost can be reduced due to less penalties for late dcli\·ery, lowered 

trucking cost, shorter distances and effective use of capacity of the \·ehicle. One 

of the InDst significant 111casures of a logistic systenl is effective vch.icle routing. 

Optimising of routes is the basis of vehicle routing problems. 

The VRP ot-iginated from the Travelling Salesmen Problem (l·S]». r\ccording to 

Winston [53) (p. 519) the TS]> can be define as a problem where a salesperson 

must ';sit each of tcn cities once before returning [0 his home. The cities need [0 

be selected to minimise the total distance the saicslllcn travels. 

According to Barbarosoglu et al. (3) (p. 256) the VRP can be described as the 

problem of designing optimal delivery or collection of routes from one or several 

depors to a number of customers subject to side constraints. ·n,US, the basic VRI' 

can be described as vehicles that depart from the depor, \~sit one or more 

customers and rerum to the depot. 
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The VID) has a finite number of feasible solutions. The VRP solution space 

increase exponentially as the mlllber of customers increases. Thus d,e VIU) is 

known as a non-polynomial hard (N P-hard) problem. 

'n,e basic VIU' is today no more than a classical problem. The advance o f science 

has prompted the industry to ask for more real life solutions The basic vm> is 

given by a set of identical vehicles, a depot, a set of custolners to be visited and a 

directed network connecting d,e depot and customers. Let us aSSLUTIe there are K 

vehicles, V ::: {O,1,2,3, .. X-I }, and N+l customers, C ::: {O,1,2,3, ... N}. We 

denote dle depot as CllS[Qll1er 0, or Co- Each arc in the network corresponds to a 

connection between two nodes. A route is defined as starting fr0111 the depot, 

going through a number of customers and ending at d,e depot. r\ cost ,; and a 

travel time 1,/ are associated with each arc of the network. 

"Il,e problem is to find tours for the vehicles in such a way that: 

• The objective function is minimized. 11,e objective function can be the 

total travel distance, the number of vehicles used, or any cost related 

function. 

Several constraints must be applied on the basie VRP: 

• Only one vehicle handles the deliveries for a given customer. \'(Ie will not 

split delivel;es across multiple vehicles . 1\ customer can only be visited 

once a day. 

• Tl1c llUll1bc[ of vchides is equal to the number of routes, meaning that a 

vehicle can only complete one route per day. 

13 

 
 
 



The VRP has a finite nwnber of feasible solutions. The VRP solution space 

increase exponentially as the l1lunber of customers increases. Thus d,e VRP is 

known as a non-polynomial hard (NP-hard) problem. 

'l1, e basic VR]> is today no more dun a classical problem .. J 'he ad\'a nce of science 

has prompted the industry to ask for more real life solutions The basic VRP is 

given by a set of identical vehicles, a depot, a set of customers to be \~sited and a 

clirected network connecting rile depot and cuStomers. Let us assume there are K 

yehicles, V = {0,1,2,3, ... K-l }, and N+l customers, C = {0,1,2,3, ... N}. \'(Ie 

denote rile depot as customer 0, or C". Each arc in rile network corresponds to a 

connection bct\veen two nodes. A route is defined as starting fr0l11 the depot, 

going through a number of customers and ending at d,e depot. r\ cost ';i and a 

travel rime II) are associated with each arc of the network. 

'l1,e problem is to find tOurs for d,e vehicles in such a way that: 

• The objective function is minimized. 11,e objective fi,nction can be the 

total travel distance, rile number of vehicles used, or any cost related 

funcrion. 

Several constraints must be applied on the basic VRP: 

• Only one vehicle handles the deliveries for a given customer. \'('e will nor 

split deliveries across multiple vehicles. £\ customer can only be visited 

once a day. 

• -n,e l1lunber of vehicles is equal to the number of routes, meaning dur a 

vehicle can only complete one route per day. 
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• 111e demand of the customers on every route is known with certainty. 

111e demand of the customers in total on one route cannot exceed the 

capacity of the specific vehicle that will cover that route. 

• The travelling distance between customer i and j are the Saine as the 

travel distance between) and i. 

• T1,e vehicles have the same capacity widl d,e same fixed and variable 

cost, thus a homogeneous fleet are assUl11ed. 

• The vehicles must complete d,cir route within a maximum length of time, 

usually the time the depot is open. 

• T1,e vehicle returns to d,e depot at d,e end of d,e route. 

The VIlP can be fonnulated as follows: 

• A set of identical vehicles V 

• r\ special node called d,e depot, 

• A set of customers C to be visited 

• r\ directed network connecting the depot and the customers 

Let us assume there are K vehicles, V 

customers, C = {O, 1, 2, ... ,N}. 

{a, 1, 2,., K - 1}, and N + 1 

• For simplicity, we denote the depot as customer 0. 

• Each arc in the network corresponds to a connection between t\vo nodes. 
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• ,\ route is defined as starting from the depot, going to any number of 

customers and ending at the depot. 

• "11,e number of routes in the traffic network is equal to the l1lunber of 

vehicles used, K. Therefore, exactly K directed arcs leave ti,e depot and 

1< arcs renlrn to the depot. 

• 

• 

r\ cost (jj and a travel time 1(/ arc associated with each arc of the network. 

Every customer in the network must be visited only once by one of the 

vehicles. 

• Since each vehicle has a limited capacity q" and each customer has a 

varying demand mi' q, must be greater than or equal to the summation of 

all demands on the route travelled by vehicle k. 

• V chicles are also supposed to complete their individual routes within a 

total route time, which is essentially the time window of ti,e depot. 

There arc two types of decision nriables in a VRP. 

• The decision variable x'lk.(i,j=O, I,2 . .N;k=O,I,2 . .K;iif'j) is 1 if 

vehicle k travels from node i to node J~ and ° otherwise. 

• 'The decision variable 1/ denotes the tUne a veh.icle starts service at node i. 

The triangular inequality, i.e. cij <ci,+c'j and tij s,t,.+t./'dh,i,jEN 

need not apply. 

The objective is to design a set of cost-minimizing routes that service all the 

customers willie all the constraints stated above arc satisfied. The model can be 

mamematically stated as follows: 
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Notation: 

1< = total number of vehicles . 

N = total number of customers. 

t~' = customer i, where i = 1,2, ... ,N. 

'" = the depot. 

c = cost incurred on arc from node ito)· . . , 

t'i = travel titne between node i andj. 

IJJj = demand a [ node i. 

q. = capacity of vehicle k. 

ei = open titne at node i. 

~ = close tUne at node i 

Ii = arrival tUlle at node i. 

J = service tUlle at node i. 

'i = maximWll route tUlle allowed for vehicle k. 

Pi = polar coordinate angle of customer i, i = 1,2, ... , N . 

R, = vchicle route k, k = 1,2, ... , K. 

0 , = total overload for vehicle k, k = 1, 2, ... , K. 
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Tk = total tardiness for vehicle k, k = 1,2, ... , K. 

D, = total travel distance for vehicle k, k = 1, 2, .. , K. 

IV, = total travel time for vehicle k, k = 1, 2, ... , K. 

C(R,) = cost of the route R, based on a cost funccion. 

C(S) = swn total cost of individual routes C(R.,). 

a. = weight factor for the total distance travelled by a vehicle. 

~ = weight factor for the latest arrival time of a customer. 

y = weight factor for the difference ill polar coordinate angles. 

'I' = weight factor for the travel total cime of a vehicle. 

'1 = penal ry weight factor for an overloaded vehicle. 

K = penalty weight factor for the toral tardy rime in a vehicle route. 

Principle decision variable: x = {O I}: 0 if there is no arc between node i ljk ' 

and j and 1 otherwise. 

(1 ) 

Subject to: 

K - I N 

LLx'i' = K for i = 0 (2) 
k=O ) =1 
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N N 

L X", = L X", ~ I for i = O;k e [0, K - IJ 
j= l )=1 

K-l N 

LL XiJk = 1 for i= 1,2 .. N 
k=O /== 1 

N tV 

L X,,,,- L X". =0 'v'h e [I,NJ;k e [O, K - IJ 
I=O.r>'h J= I.J ... h 

(3) 

(4) 

(5) 

1I, -lIj +Nx, ~N- 1 forie [I ,NJ:je [I. N J; i;tj (6) 

N N 

L I17, L X". ~qk 'v'ke [O,K- IJ 
i=O j=O.j"~" 

N N 

L L x'J. (t, +j,+\V, )~rk 'v'ke [O,K - IJ (8) 
i=O j =-O, j"'i 

• The objective function of the problem is given in (1). 

• Constraint (2) specifies that there are exacdr K routes going out of the 

depot. 

• The dlird constraint (3) makes sure that each route leaves the depot and 

return to the depot 

• Constraints (4) and (5) make sure exacdy one vehicle goes to and leaves a 

custolner. 

• Constraint (6) ensures d,at there are no sub-tours in d,e solution. r\ sub­

tour is a toute that does not pass through the depot. 
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• (7) is the capacity constraint. 

• ivlaximWll travel time for each vehicle is assured in Eq. (8). 

The model described in this section is a standard mathematical model for a basic 

VRP problem. \\fhen additional constraints are needed, they must be added to 

the existing constraints in the model or some of the existing constraints must be 

relaxed. 

11,e industry requires additional constra.l1lts on the basic VR.P. Additional 

constraints that we will address include: 

• The limitation of the length, duration or cost of each individual tour. 'Ilus 

restricts a route for nmning too long, which can resllit in overtime costs, 

insufficient fuel , etc. 

• The addition of a service time for each customer. The \'olume of the 

stock to be delivered can have an influence on the service rime at a 

customer. The delivery time will have an influence on the total route time 

and Inust be mken into account. 

• The addition of rime windows during wluch the customers have to be 

visited. TIle problem we will discuss is dlC lise of Illu1tiple DIl1C windows, 

i.e. the customer can specify more than one time period available for 

delivery. 

• Thc \Thiele can return to d1e dcpot and have enough tlll1e for anodlcr 

route before the maximum allowed time is up. Tlus will allow double 

scheduling, which will result in a cost saving, as the second rOllte utilize 

the same vehicle and reduce the number of veludes required to service all 

the custOlners. 
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• 11,e tra\"cl time can vary between customers depending on the time o f 

day. Tlus implies peak and off-peak travel times. 

• The fleet is not necessarily homogeneous, i.e. vehicles can differ in 

capacity and cost. Tlus might result in a good solution to usc the vehicles 

with a large capacity to pick up customers d1at is far away f01111 the depot. 

• A vehicle can have a specified available time. This allows for certain 

,"chicles to be out in the field longer to cater for long routes. The 

implementation will add time window constraints [0 a vehiclc. 

We need to redefine the mathematical model for our problem. We will make usc 

of the base model widl the following changes: 

• Constraint (2) is now invalid and will be replace by 

N 

.l>ijk 5, Pk for i = 0; k E [0, K - I J (2) 
j=d 

where h is d,e maximum number of routes allowed for velucle k. 

The nWl1ber of routes going out of the depot for a specific velucle arc 

constrained to a tnaxitn um of PI , which implies that a vehicle can now have 

multiple routes done in a day. 

• \VJe inlpose nnlc windows at a stop 

I" = 0 (9) 
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(11) 

• \'(.le redefine the service rime at each stop as 

J: = Fixed Time + (Variable Time * tJli ) 

• \'('c also redefine the meaning of travel timc 

1'1 = Travel Time at (I, + J: + 1/1) 

which calculates the travel time from i to j depending on d,C departw-e 

tin1C at i. 

• Wc just make a note d,at 1, is not necessarily the same for cach vehicle. 

• The monetary cost of a route can be calculated as follows 

N 

CCR,,) = (F, ('5.>", ) +(D, * V, ) for i = O;kE [0, K - 1] 
j=l 

where the first tcnn is d,e fixed cos t of the veh.icle di,~ded into the 

number of routes and the second term is the distance of the routc 

multiplied by d,e running cost of the vehiclc. 

2.2. Meta Heuristics 

The implementation of an algoridlm that can efficiendy and in reasonable time 

solves thc aforementioned problem has not been successfully implemented 

before. To embark on a journey to find a sufficient algorithm reguires 

investigation of existing problems and solutions as well as inventing new 

methods. Se,·eral papers have been presented that solve the VRP widl additional 

side constraints. They mainly focus on solving the basic VRP widl one or twO 
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additional side constraints. Some of the most popular problems include d,e VRP 

with timc windows and me VRP wim pickup and delivery. 

Hcuristic methods play an important role in solving problems widl this 

complexity. Most solutions include a heuristic medlod, or a hybrid of heuristic 

me mods at d,C heart of d,e solution. In me next section, we will discuss some of 

me more popular heuristic methods. 

Meta-heuristics, or global optimization heuristics, have a C01111110n feature: they 

guidc a subordinate heUlistic in accordance widl a concept derived from artificial 

intelligcnce, biology, narute or physics to improve d,eir perfOlll1ance. 

Meta-heutistics succeed in lCa\·ing me local optimum by tcmporarily accepting 

exchanges that decrease the objective function value. 1\ [era-heuristics use 

info1111ation of the problem environment and d,e nature of the objective function 

to direct d,e search process to regions d,at promise better solutions. I t is possible 

mat mc meta-heuristic will rerutn to me local optimum without finding a better 

solution. 111is is caUed cycling and can be avoidcd by adjusting the heuristic's 

settings to allow more degrading moves for longer. 

The concept of a hcutistic being trapped at a local optimum can be demonstrated 

in Figure 2. J f a heuristic finds a solution S, widl objective function reS), where S 

is close to point C, d,en it will only improve until it gcts to local optimum C. No 

further improvements in d,e objective fimction will be achievable, because aU 

moves will reduce the objective fW1Crion. However, if a 111cta-heulistic finds a 

solution close to point B, degrading moves will be aUowed d1at may direct the 

search to d,e global optimUln, point A. 
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Figure 2: Global and Local Optima 

Meta-heuristics will be successful on a given optimisation problem if it can 

provide a balance between the exploitation of the accumulated search expelience 

and the exploration of the search space to identify regions with high quality 

solutions in a problem specific, near optimal way. The various o1cta-hcUlistics arc 

classified according to the following clitena: 

• Traject01y methods vs. discontinuous methods: Trajectory methods 

like SA and TS follow one single search trajectory corresponding to a 

closed walk on the neighbourhood graph. Discontinuous methods allows 

larger jump in the neighbourhood graph. 

• Populated-based vs. single-point search: In single-point search only 

one single solution is manipulated at each iteration of the algotithm. TS 
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and SA are single-point search methods. GA and ant colony algOlithms is 

Population-based. 

• M emory usage vs. memoryless methods: l\Icta-heuristics with 

memory are the TS, GA, SS and ant systcms. According to TaiJlard et al. 

[48] these meta-heuristics with memory can be viewed as adaptive 

memory programming (AMP) heuristics. The term "memory" was used 

explicitly for 1'S, but other meta-heUlistics usc mechanisms that can be 

considered as mClTIories. There are tneta-hcU1istics that canllot be entered 

into the AMP methods, such as SA. I lowever dley may be included in the 

improvement procedure of AMP. 

• One vs. va rious neighbourhood structures : SA and 1'S algOlitluns are 

based on one single neighbourhood structure. Other algorithms such as 

Iterated Local Search typically use at least two different neighbourhood 

structures. 

• Dynamic vs . static Objective flmction: Some algOliduns modify the 

evaluation of tl,e single search states during the mn of d,e algoritlun. In 

the use of a dynamic objective fi.lI1ction penalties for d,e inclusion of 

ccrtrun solution aruibutes that nlodi~' the objective function arc 

introduced. TS may be interpreted as using dynamic objective fi.l11ction, as 

some point in t11e search is forbidden, corresponding to infinitely high 

objective function values . The ot11er algoLidullS usc static objective 

functions. 

Evaluation of hCUlisric methods consists of comparing criteria such as lunning 

time, quality of solution, case of implementation, flexibility and robustness. For 

the purpose of our algorit11m, flexibility is an important consideration. The 

algo,idun should be able to handle changes in the data patterns, side constraints 
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and objective function, as each client has his own specific requirement. We arc 

not working on a predetennined set of data with a specified objective function. 

Working in such an em~ronment make it possible to find a method that is 

effective for that specific em"ironment by making use of the kilOwledge about the 

problem. 

Because the heuristic methods arc non dctenTunistic, i.c. we cannot predict rhe 

result even if we apply the same algorithm on the same data with the same 

number of iterations, the algoritlun should not perf 01111 poorly on any instance, 

as well as being able to produce a good solution each time it is applied to the 

satnc l11stancc. 

We will also ny to validate ti,e applicability of the metllod on our problem by 

discussing the design of the method is well as what we see as its advantages and 

disadvantages. With this approach we will filter out certain methods. 

Comparisons discussed in this paper are from existing papers, which mainly 

present the best results found for the metllod. Compatison is also made difficult 

because solutions were not all implemented on the satne computer (ulIlning 

rinlc), and have not all use dlC saIne number of iterations. Existing methods is 

also not designed for our specific problem and thus we cannot really compare 

methods outright to decide on a method to implement for our problem. 

Using only ti,e best results of a non-detenninistic heuristic, as is often done in the 

literanlre, may create a false picture of its real perfonnance. We considered 

avcrage results based on multiple executions on each problem an important basis 

for the comparison of non-deterministic methods. Furtheml0re, it would also be 

important to report the worst-case pcrfonnance. 

Moreover, an algorithm should be able to produce good solutions eyery time it is 

applied to a given instance. This is to be highlighted since any heuristics are non-
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dctenninistic) and contain SOine random components such as ranclolnly chosen 

parameter values. TIle output of separate executions of these non-dctenruniscic 

methods on the sanle probleln is in practice never the sanle. 'nus makes it 

difficult to analyze and compare results. 

Heuristic methods 

An algorithnl is said to be efficient when it fllns in polynomjal titnc, i.e., its 

mnning time is not longer than a polynomial function of the size of the problem. 

An a1goritlun is said to be effective if it produces high-quality solutions, 

preferably in less time tllan any efficient a1goritllm for the problem. The most 

preferred algorithms arc both efficient and effective. If ti,e algoritlun produces 

the mathematically best solution it is called optimal (or exact) if it produces a 

good but not necessarily best solution it is caB cd heuristic. r\ construcrion 

algotithlTI constructs a solution to a problem, whereas an ilnprovemcnt algolitiUll 

works on an existing solution to obtain better levels performance measures. 

According to Laporte [33], heuristics belong to two broad classes: classical 

heuristics and modem heuristics (or meta heuristics). Classical heuristics can be 

broadly classified into three categories. Constructive heuristics gradually build a 

feasible solution wIllie keeping an eye on solution cost, but do not contain an 

improvement phase per se. In two-phase heuristics, ti,e problem is decomposed 

into its two natural components: clustering of vertices into feasible routes and 

actual route construction, with possible feedback loops between the two stages. 

Two-phase heuristics can be divided into twO classes: cluster-first, route-second 

methods and route-first, cluster-second t1lethods. In the first casc) verticcs are 

first organized into feasible clusters, and a vehicle route is constructed for each of 

them. Tn the second case, a tOur is fmt built on all vertices and is then segmented 

into feasible vehicle routes. Finally, improvement methods attempt to upgrade 

any feasible solution by perfonning a sequence of edge or vertex exchanges 
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within or between vehicle routes. The distinction between constnlCtive and 

improven1ents methods is, howcvcr, often blurrcd since tTIost constructive 

algorithtTIS ll1cotporate improycmcnts steps at various stages. 

As far as we arc awarc, six lnaln types of 111etaheUlistics have been applied to the 

VRP: 

1) Simulated r\nnealing (SA), 

2) Detenninistic r\nnealing (DA), 

3) Tabu Search (fS), 

4) Genetic AlgOritlullS (GA), 

5) Ant Systems (AS), and 

6) Neural Networks (NN). 

The first three algorithms, SA, DA and TS, start from an initial solution x, , and 

move at each iteration / from x, to a solution x,+l in the neighborhood N(x,) of 

Xn until a stopping condition is satisfied. If J(x:) denotes the cost of x, tJ,en J(y,+ I) 

is not necessarily less than )(x). As a result, care must be taken to avoid cycling. 

Put paragraph in bullets 

GA exatnines at each step a population of solutions. Each population is de11ved 

from the preceding one by combining its best clements and discarding tbe worst. 

AS is a constnlCtive approach in which several new solutions are crcated at each 

iteration using some of the information gathered at previous iterations. r\S was 

pointed out by Taillard et al. [48], TS, GA and AS arc methods that record, as the 

search proceeds, infonnarion on solutions encountered and use it to obtain 

improved solution. NN is a learning mechanism that gradually adjusts a set of 
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weights until an acceptable solution is reached. "11,e rules governing the search 

differ in each case and these must also be tailored to the shape of d,e problem at 

hand. Also, a fair an10unt of creativity and experimcntarion is required. 

The following sections discuss the most applicable methods. 

2.2.1. simlilated Allllealillg (5/1) 

Simulated Annealing searches the solution space by simulating the atUlealing 

process in metallurgy (Qili et aI [39]). The algorithm jumps to distant location in 

d,e search space initially. 11,e size of d,e jumps reduces as time goes on or as the 

temperature "cools" down. Eventually the process \V~ll tum into local search 

descent 111cthocL 

One of its characteristics is d1at for vcry high temperatures, each state has almost 

equal change to be the current state. At low temperatures only states widl low 

energy have a high probability of being d,e current state. These probabilities are 

derived for a never ending executing of the metropolis loop. The aCI\·antages of 

d,e scheme is: 

• SA can deal with arbitrary systems and cost functions. 

• SA Statistically guarantees fmcli.ng an optimal solution 

• SA is relatively easy to code, even for complex problems. 

• SA generally gives a good solution. 

However this original version from SA has some drawbacks 
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• Repeated annealing with a l /log k schedule is very slow, especially if the 

cost function is expensive to compute, which will be the case for Ollr 

problem. 

• Por problenls where the energy landscape is smoocil, or there afC few 

local minima, SA is an overkill - simpler faster methods works better. 

But usually one does not know what the energy landscape is. 

• Normal heuristic methods, which arc problem specific or take advantage 

of extra information about the system, will often be better than general 

methods. But SA is often comparable to hCUlistics. 

• The method cannot tell if it has found and optimal solution. 

2.2.2. Tabll Sean/} ([5) 

The word Tabu (or taboo) comes from Tongan, a languagc of Polynesia, wherc it 

was used by thc aborigines of Tonga Island to indicate things that cannot be 

touched because dley are sacred.3 According to \X/ebster's Dictionary, the word 

now also means !la prohibition imposed by social custOtTI as a protective 

ll1casurc" or of S0l11Cthing !!banncd as constituting a risk.!! These current lncre 

pragmatic senses of the word accord well with the theme of Tabu search. The 

risk to be avoided in this case is that of following a counter-productive course, 

including one, which may lead to entrapment without hope of escape. On the 

other hand, as in the broader social context where "protective prohibitions" are 

capable of being superseded when the occasion demands, the "taboos" of Tabu 

search are to be overruled when evidence of a preferred alternative beconles 

compelling. 

J Source: Tabu Search Network 1311 
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Tabu Search (rS) is a local search metaheuristic introduced by Glover (1986). TS 

explores the solution space by moving at each iteration from a solution to the 

best solution in a subset of its neighbourhood N(s). Conwuy to classical descent 

methods, the current solution may deteriorate froln one iteration to the next. 

Thus, to avoid cycling, solutions possessing some attributes of recently explored 

solutions arc temporarily declared Tabu or forbidden. The duration that an 

attribute remains Tabu is called its Tabu-tenure and it can vary over different 

intervals of rill1C. The Tabu stanIS can be overridden if certain conditions are mer; 

this is called the aspiration criterion and it happens, for exrunple, when a Tabu 

solution is bettcr than any previously seen solution. Finally, various techniques 

arc often clnployed to diversify or to intensify the search process. 

The 111QS[ important association with traditional usage, however, steIns from the 

fact that taboos as nomlally conceived arc transmitted by means of a social 

Inemory, which is subject to modification over tiJnc. This creates the fundatnental 

link to the meaning of "taboo" in Tabu search. The forbidden elements of Tabu 

search recei\'e dlCir status by reliance on an evolving memory, which allows this 

starns to shift according to time and OrcUInstance. 

TS is the only metaheuristic that has been explicicly devcJoped witll a memory. In 

a sense this metllod imitates the human being looking for a good solution of a 

combinatoliaJ optimization problem. Glover proposed a number of strategies to 

guide the search and make it more efficient. TS is open for any strategy weU 

adapted to the problem on which it is applied. 

rV[ore particularly, Tabu search is based on ti,e premise that problem solving, in 

order to qualify as intelligent, must incorporate adaptive nlcmory and responsive 

exploration. The adaptivc memory fearurc of TS aUows the lll1plenlcntacion of 

procedures that are capable of searching cl,e solution space economically and 

effectively. Since local choices are guided by information collected during the 
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search, TS contrasts with memo11,less designs that heavily rely on semi random 

processes that implement a fonn of sampling. Examples of memoryless methods 

include sen1i greedy heuristics and the prolnlnenr "generic" and "annealing" 

approaches inspired by metaphors of physics and biology. Adaptive memOlY also 

contrasts with rigid memOlY designs typical of branch and bound strategies. (It 

can be argued that some rypes of evolutionalY procedures that operate by 

combining solutions, such as genetic algori t1uns , embody a foml of implicit 

111cmory. 11owcver, this fann of memory is not sufficient to embrace many 

aspects of what we nomlally conceive to be a hallmark of 'intelligent' problem 

solving. Tabu search also has implicit memory features that offer opportunities 

for establishing more effective variants of evolutionary approaches.) 

The cn1phasis on responsive e;"'l Jloration in Tabu search, whether in a 

deterministic or probabilistic implementation, derives from the supposition that a 

bad strategic choice can yield Inore infonnatio n than a good random choice. In a 

system that uses memory, a bad choice based on strategy can provide useful clues 

about how the strategy may profitably be changed. (Even in a space with 

significant randonmess a purposeful design can be more adept at uncove.ing the 

imprint of structure.) 

Responsive eA1Jloration integrates the basic principles of intelligent search, i.e., 

exploiting good solution features while explOling new promising regions . Tabu 

search is concerned with finding new and more effective ways of taking 

advantage of the mechanisms associated with both adaptive memory and 

responsive exploration. TI,e development of new designs and strategic mi~es 

makes TS a fertile area for research and empirical study. 

The main advantage o f the basic version is its aggressiveness: the search 

converges toward the local 0pUmmn and examines the neighbourhood of this 

local optimum very quickly. ((owever, it can easily get trapped in a sub-space 
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containing only solutions of pOOt quality. To diversity the search and force it to 

visit solutions with different characteristics, one basic idea was to increase the 

number of forbidden components when perfollning local modifications to a 

solution. So, the discussion quickly turned around the OptitlllUll tabu list size, 

SillCe the shorr list allows a thorough examination of the neighbourhood of a 

good solution while a long list facilitates the escape from a local optimum to 

explore new regions of the search space. The reactive Tabu search proposed by 

Battiti and Teccruolli (1994) (in Braysy [5J, p. 4) was designed to automatically 

adapt the Tabu list size and avoid the fastidious task of explicitly managing the 

Tabu list. 

The main difficulty with TS is thus to efficiently incorporate diversification and 

intensification lnecharuS111s. The use of a memory that stores good solutions 

visited during the search and ti,e design of a procedure to create pro,~sional 

solutions frotn it is a way to achieve this goal. Indeed, solutions contained in 

memory during ti,e initial search phase present different characteristics, thus 

leading to a diversified search. Later, solutions contained in 111emory are mostly 

representative of one or a few good regions of a solution space. The resL~t is that 

ti,e search gradually shifts from diversification to intensification. 

2.2.3. Cellelic Algorit/;mJ (CA) 

The Genetic Algoritlun (GA) is an adaptive helUistic search method based on 

population genetics. The basic concepts were developed by I1o11and (1975) (in 

Ombuki et al, [39], p.3), wIllie ti,e practicality of using the Gf\ to solve complex 

problems was demonstrated in De Jong (1975) and Goldberg (1989) (in Braysy 

and Gendreau, [8], p. 10). 

GA evolves a population of individuals encoded as chromosomes by creating 

new generations of offspring through an iterative process until some convergence 
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criteria arc nlet. Such critetia might, for instance, refer to a maximum number of 

generations, or cl,e convergence to a homogeneous population composed of 

slrniJal· individuals. Thc best Chr0t110S01ne generated is then decoded, providing 

cl,e corresponding solution. 

The creation o f a new generation of individuals involves three major steps or 

phases: selection, recolllbinatioll and mutation . The selection phase consist of 

randomly choosing two parent individuals from cl,e population for mating 

pill1Joses. T'he probability of selecting a population member is generally 

propo rtional to its fltness in order to emphasize genetic quality while mai ntaining 

genetic diversity. Here, fitness refers to a measure of profit, utility or goodness to 

be maximized while exploring the solution space. The recombination or 

reproduction process makes use of genes of selected parents to produce offspring 

that will form the next generation. As for nlutarion, it consists of randomly 

modifying some gene(s) of a single indi\~dual at a time to furcll er explore the 

solution space and ensure, or preserve, genetic diversity. The occurrence of 

mutation is generally associated wim a low probability. 11 new generation is 

created by repeating the selection, reproduction and mutation processes until all 

chromosomes in me new population replace cl,ose from cl,e old one. r\ proper 

balance between genetic quality and diversity is cllerefore required within the 

population in order to support efficient search. 

Although dleoretical results mat characterize the behaviour of d,e G r\ have been 

obtained for bit-string chromosomes, not all problems lend themselves easily to 

this representation. This is the casc, in particular, for sequencing problet11s, such 

as the vehicle routing problem, where an integer representation is more often 

appropriate. Therefore, in most applications to VlU'T\'(', me genetic operators 

are applied clirecdy to solutions, represented as integer strings, thus avoiding 
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coding issues. In most cases d1C aud10rs use delimiters to separate customers 

served by different routes. 

The genetic algoritbm is very simple, yet it performs well on many different types 

of problcn1s. There are many ways to 1110dify the basic algoti thn1, and many 

parameters that can be \ tweaked". Basically, if the objective funcrion, rhe 

representation and the operators are all right, then va.tiations on the genetic 

algoridun and its parameters will result in only nunor improvements in the overalJ 

resulrs. 

For any GA, there are five important parameters that determine the performance 

of its application: representation of solution, initial population, selection, 

reproduction, and population improvements (Qili, [39], p. 72) . 

.r\dvantages 

• GA is very flexible with a lot of parameters to adjust for different needs; 

• Gr\ generally explores a larger neighbour hood than local search 

heuristics; 

• With proper parameters, GA practices a global optimization that bypasses 

the local optimwn problem; 

• Given enough time, GA usually gives good solution. 

Disadvantages 

• GA is one of d1e slowest algOlitlu11S in finding the optimum; 

• It has no termination criteria o ther than a nwnber of generations; 
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• GA can be trapped in a local plateau, as the movement of the population 

is limited by the crossover operations, if that plateau is big and at enough. 

Coding a solution with a binary vector is not natural and can significancly impact 

cl,e performance. Hence, binary coding was replaced by a more natural 

representation of solutions. TIle dassical cross over operators does not 

correspond to logical operations on solutions. Furthermore, the use of othet 

representations and binary vectors naturally led to the design of specialized 

operators, well adapted to the solution representation and capable of generating 

new feasible solutions. Gr\ can easily identity different solution sub spaces with 

good characteristics, but they lack the "killer instinct" that would allow them to 

intensify the search into these areas. To alleviate this weakness, the mutation 

operation was replaced by repair procedures and local search. 

2.2.4. A III Systems rAS) 

The idea of imitating the beha\~our of ants to fOld solutions to combinatorial 

optimization problems was initiated by Colomi, Dorigo and l\laniezzo (in 

Bullnheimer et ai, [12], p. 1). "n,e metaphor comes from the way ants search for 

food and find a way back to the nest. Initially ants explore the atea surrounding 

their nest in a random manner. £\s soon as an ant finds a source of food, it 

evaluates the interest of the source (quantiry and qualiry) and carries some of 

food to the nest. During the return trip, the ant leaves on the ground a chemical 

pheromone trail whose quantiry depends on the qualiry of the source. The role of 

this pheromone trail is to guide other ants toward the source. After a wIllie, the 

path to a good source of food will be indicated by a large pheromone trial, as a 

trial grows with nUinber of ants that reach the source. Since source is that are 

close to the nest are visited tnore frequently than those that are far way, 

pheromone trials leading to the nearest sources grow faster. The final result of 

this process is that ants are able to optimize their work. 
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·n,c transposition of this food scarching the area into an algorithm framcwork for 

soh·ing combinatorial optimization problems is octane through an analogy 

between: 

• the search area of the real ants and thc set of feasible solutions to thc 

combinatorial problem; 

• the aiTIount of food associated with the source and the objective flUlccion; 

• the pheromone trial and an adaptivc memory. 

The lTIOst i.mportant component of an ant systenl is the 111anagcmcnt of the 

pheromone trials. In a standard ant system, phcrolnone trials arc used in 

conJuncoon with the objective function to guide the construction of new 

solutions. Once a solution has been produced, a standard ant system updates the 

pheromone trials as follows: first all trials are a weakened to simulate the 

evaporaoon of pheromone; then, phcroll1one tlials that correspond to 

components that were used to construct the resulting solurion arc reinforced, 

taking into consideration the quality of this solution. 

Based on the pre\~ous general scheme differcnt £\S implementations have been 

proposed where pheromone updating is perfonned in different wavs. Different 

ways of modifying pheromone values generate different types of search 

mechanisms. Recently it has been shown that j\S based algorithms are being 

powerful in cot11binarion with local search procedures. In these SlU1aOons 

pheromone infollnation is used to produce solutions (diversification phase) that 

are optimized by a local search (intensification phase). Optimize solutions are 

then used to update pher0l110ne infon11ation and new solutions are successively 

generated by the ants. 

36 

 
 
 



Like GA, early implementations of the ant system converged too slowly toward 

high-guality solutions. 11,erefore, intensification mechanisms were gradually 

introduced. The most recent implementations lncorporate local search 

mechanisms to improve the solutions produced by the ants. 

2.3. Existing Methods and Implementations 

The vehicle routing problem has many variants that have been attempted by 

many people with different criteria and different methods. 11,e guestion arises on 

how could another study on the problem be feasible. In the following section we 

will discuss some of the existing implementations of the VRP. 11lis section will 

discuss some inlplementations which will enable us to derive methods already 

tested, or show incOlllpleteness in there implenlcntarion for our usc. 1.t must be 

noted that certain methods were not considered as feasible because it was 

deemed too slow. We can reconsider these methods because of the improvement 

in computing power in recent years. 
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Table 1 is a present st:me of work done of the sUldy to denye a feasible solution 

fo r our problem. 'The model indicates the model implemented by the author that 

is of interest to us. 11,e following section will discuss the methods in detail. 

Present State 

/lulbor Year Problem Model 

Amberg, Domschke and Vo~ 2000 ~[-CARP Cluster First Route Second 

-hillard, Laporte and Gendreau 1995 VRPM 
Tabu Search, generating and 

c01nbining protnising solutions. 

Two-staged heulistic, 
Lau and Liang 2000 PDPT,\V ConstnlCtion and Tabu Search, 

working with job pairs 

SaHli et aI 1992 VFM 
Unw,,jrcd vehicles, best vehicle 

selection 

Taillard 1996 VRPHE ColwTIn generation method 

De Backer and Furnon 1997 VR PTW 
Constraint programming, 
routes top has next stop 

Xu and Kelly 1999 VRPT\,! 
T5 with independent tabu 

tenure per opera non 

Ombuki, Nakamura and Osamu 2002 VRPTW H ybrid GA and TS 

Van Schalkwyk 2002 VRPT\\! 
Time Window Compatibility, 

selective nc.igbour List 

Table 1: Present State 

2.3.1. iVlllllip!e depol 

Although we do not focus on a multiple depot implementation of the VRP, it is 

important to understand the methods available for solving this problem. In our 

problem we make use of the cluster first route second (CFRS) method. CFRS 

methods are more suitable for node routing problems. ] l,e clustering method is 
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left to the specific client, i.e. the nodes will be clustered with an algoritlun selected 

by the client before we receive the data. 

Tn the capacitated arc routing problem with multiple centres the objective is to 

find routes starting from the given depots or centres such that each required arc 

is selved, capacity and usually additional constraints are satisfied and total travel 

cost is minimised. The paper of Amberg et aI, 11) consider a heurisric 

rransfonnation of the multiple cenrre arc rouring problems into a ITIultiple centre 

capacitated minunum spanning [rec problcln with arc constraints. f\rc routing 

applications referred to problems where the distribution or collection of goods is 

bound up witll traversing a distance such as mail delivery, snow removal, garbage 

disposal, street sweeping and police patrols. Thus, the customers are modelled as 

arc or edges, whereas in node routing prob1ctns the CListOtners correspond with 

ti,e nodes as, e.g. in ti,e travelling salesman problem. The well-known Chinese 

postman problem (CPP) is the basic arc routing problem was named after the 

Chinese scientist Mei-Ko Kwan (1962) who was the first to publish on this 

problem. 

Introducing additional constraints even in undirected or (lirected graphs usually 

yields N P-hard problems such as the capacitated Chinese pOSU11an problem, 

where ti,e capacity of the posUllan is resuicted, or the rural posUllan problem 

(R.PP) where ti,e set of required arcs (i.e. those arcs which need serving) need not 

be connected and has to be linked using non-required arcs. \'(lith respect to 

developing solution methods, it is ilnponant to notc rl,at capacitated arc routing 

problems consist of two interdependent sub problems: The assignment problem 

which [omls subsets or clusters of tequired arcs served by the same vehicle and 

the sequencing or routing problem which detetlnines ti,e sequence of serving the 

arcs. 
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