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CHAPTER 1

SUMMARY AND LITERATURE REVIEW

1.1 Outline and Summary

This study consists of eight chapters. Testing for a unit root in a process reveals whether a series
needs to differenced before analysis. In Chapter 2, the concept of non-stationary and non-
invertibility in univariate time series will be defined. The Dickey-Fuller tests for unit roots in a

process will be thoroughly discussed.

Chapter 3 reviews the Phillips-Perron and some other tests for unit roots. In Chapter 4, the issue
of obtaining the degree of differencing d, in a non-stationary time series will be discussed. Fourier
transforms is a pre-requisite for spectral analysis. Chapter 5 deals with spectral analysis of time-
dependent non-stationary time series with the Fourier analysis forming the basis of the discussion.
Results will then be extended to the bivariate case. Thorough discussion will be done on the
estimations of evolutionary co-spectrum, evolutionary quadrature spectrum, among others. In
order to learn more about our unit root test statistics with regards to their long-run performance,
we have cconsidered Monte Carlo studies on three commonly used unit root test procedures,
namely, the Augmented Dickey-Fuller (ADF), the Phillips-Perron (PP), and the Reversed Dickey-
Fuller Unit Root (RDFUR) test statistics in Chapter 6. Chapters 7 and 8 present practical
illustrations of all the methodologies. A summary of results and notes on further research are
given in Chapter 9. All analyses would be carried out using one of four statistical software

packages namely SAS, Minitab, Matlab, and EViews.

1.2 Survey of the Literature

Considerable progress has been made in the analysis of time series under the assumption the series
involved is stationary. Broadly speaking, a time series is considered to be stationary if its mean
and variance are constant over time and the value of covariance between two time points depends
only on the distance or lag between the two time points and not on the actual time at which the
covariance is estimated. Stationarity has always been the bedrock in practical analysis of time

series. It suffices to say that abandoning the assumption of stationarity may lead to misleading



postulation of models. However, in practice, most time series show non-stationary behaviour, i.e.

in vague terms they do not oscillate or fluctuate about a constant mean.

An informal way of handling non-stationarity is by taking an appropriate number of differences
and fitting a model to the differenced series. The degree of differencing required can be
determined by visual inspection of the sample autocorrelation function. A formal statistical test
for the need to difference further if one assumes that at most one more differencing is needed for

stationarity have been proposed by Dickey and Fuller (1979), among others.

More intuitively, a series is stationary if all the roots of the autoregressive polynomial equation
lie outside the unit circle. A root that is equal to one in absolute value is referred to as a unit root.
A time series having a unit root is said to be integrated of order one. In this case, the series must
be differenced once to induce stationarity. Testing for the presence of a unit root is quite
problematic in the analysis of time series. In this test it is assumed that the series are serially
correlated and for that matter tests for the presence of a unit root takes into consideration serial

dependence.

Several tests have been proposed by many authors to handle the issue of testing for the presence
of unit roots in time series. Notable among these authors are Dickey and Fuller (1979) and Phillips
and Perron (1988) who, respectively, proposed the Dickey-Fuller and the Phillips-Perron unit root

tests.

The testing of a unit root in a time series has strong implications with the economic theory and
its interpretations. Research conducted by Nelson and Plosser (1982) and Perron (1990) revealed
that most macroeconomic time series exhibit some kind of stochastic non-stationarity and thus
concluded that the total variability of a time series is explained in greater part by permanent
shocks. Such shocks (sudden changes) are noticed from a quick glance at the graph of the series.
They may appear so big and sudden compared to the variability exhibited over the rest of the

periods.

For stationary time series, the spectrum is a popular concept that has long since proved its worth.
Spectral analysis is a highly developed procedure for the analysis of a time series. It is widely

adapted to the interpretation of economic and biomedical time series, among others. Time series



modelled in these fields are studied with the help of periodograms, i.e. studying the spectral
features of the stationary series. Spectral analysis, as the name goes, is the fundamental tool used

to study the cyclical behaviour of time series.

For stationary time series, on the other hand, it is right to comment that although quite an amount
of work has been reported, the bulk of it has not been conclusive. It seems reasonable to conclude
that there is no definition that is entirely satisfactory for processes that are neither asymptotically
stationary nor almost periodic in their features (Lyones, 1968). In fact, Lyones (1968) has listed
all the requirements for a spectral function of a process and concluded that when a process is not-

stationary, there does not seem to exist a spectral function satisfying all the requirements.

The Fourier transform is a substantial tool in most fields of science. In statistics it has proved to
be a special tool when it comes to the analysis of time-invariant systems. It is an approach used
to model the fluctuation of time series in terms of sinusoidal behaviour at various frequencies. In

fact, Brillinger (1981) even described spectral analysis as an extension of Fourier transform.

The basic tool for spectral analysis is the periodogram. It is the task of the periodogram to create
the basis for the estimation of the spectrum. With the spectrum any periodicities that may be
hidden in the series are unveiled. The spectral analysis of non-stationary processes has, however,
attracted the attention of few authors. Notable among them are Priestley (1965), Abdrabbo and
Priestley (1967), and Adak (1998). In this study, we shall pay attention to the work of Priestley
(1965, 1967, 1968) and Granger and Hatanaka (1964) regarding the spectral analysis of time-
dependent time series, particularly processes with slowly varying spectra. Priestley’s spectrum has

been shown to be useful for linear prediction, filtering and a test for stationarity.

The concept of repeated sampling forms the basis of most statistical inference, for instance,
parameter estimators and test statistics. One way to driving home this concept is through a Monte
Carlo study - a study that involves hundreds, thousands, or even millions of times more calculation
than usually done. The Monte Carlo study gives us a deeper insight about the long-run
performance of these statistical inference. Simply put, investigating the finite-sample properties
of estimators and test statistics using Monte Carlo simulations allows us to interpret our statistical

results with confidence.



1.3 Methodology

1.3.1 Time Series

Methodologies will be illustrated using monthly data on nominal exchange rate of the South
African rand to the U.S. dollar indexed at 1990=100, percentage Eskom yields on loan stock,
consumer price index (CPI) for South Africa at 1995 prices, and number of Gold shares - all
traded on the Johannesburg Stock Exchange (JSE). Eskom yields comprise observations from
January 1990 to June 1999; Gold shares, from January 1990 to April 1999; and consumer price
index, from January 1994 to October 1999.

1.3.2 Data Source
Both data sets used to illustrate the methodologies are from the official bulletin published
quarterly by the South African Reserve Bank (SARB) and Statistics South Africa. They are used

in this dissertation with kind permission.

1.4 Importance of the Study

The primary objective of this study is to compare the size and power of three commonly used unit
root test statistics using Monte Carlo simulations. The test statistics include the Augmented
Dickey-Fuller (ADF), the Phillips-Perron (PP), and the Reversed Dickey-Fuller Unit Root
(RDFUR). We also consider linking the theory and the applications of some aspects of non-
stationary univariate time series and to show how valuable they are when it comes to postulating
an appropriate model for a given time series. For instance, a unit root test in a given non-
stationary time series may reveal that non-stationarity is driven either by a linear trend or random
walk with drift. In this case, stationarity may be induced by detrending, and differencing if the

series 1s driven by random walk with trend.



CHAPTER 2

UNIT ROOT TESTS FOR NON-STATIONARITY

2.1  Introduction
A univariate time series {X,} is covariance stationary if neither the meany, nor the

autocovariances 7, depend ontime ¢ = 1,2,3,...,7 . In this case

E(X)=u , (2.12)
var(X,)= E(X,-u)* = o’ (2.1b)
7= B[(X, - )X - )] 2.1

If the series fails to satisfy one or more of the conditions for stationarity given in (2.1a) and

(2.1b), {X,} is described as a non-stationary series. In the analysis of time series, the most

common requirement is the assumption of stationarity. However, in practice most series data are
non-stationary. When a time series is found to be non-stationary, an appropriate number of

differencing operations are usually required to transform the series to a stationary series.

For the non-stationary series { X,:7=123,...,7 } the general autoregressive-integrated-

moving average, ARIMA (p, d, q) process is given by
®(B)(1- B X, = C+ 6(B)s,, (2.2)

or ®(B)VIX, =C+0(B),, (2.3)

where C is a constant, V X, is the dth difference of X, and {¢,} ~ WN(0,0 %) represents a

t

white noise process with mean 0 and variance o> . A sequence, {,}, ofuncorrelated random

variables from a fixed distribution is said to be a white noise process if it satisfies the following
conditions

E(¢)=0,
var(e,) = 07,

and cov(¢,,&, ,)=0 forall k # 0.



The operators @ (B) and #(B) are respectively defined as

»

®(B)=1-¢,B-¢,B*~..~¢ B’

6(B)=1-6,B-6,B*-.

~6,B% .

If d=0, (2.2) or (2.3) is referred to as an ARMA (p, g) process. Setting (1- B)? X, = ¥,

(2.3) becomes

®(B)Y, = C+8(B)e,

2.4

Using the backshift operator B* X, = X,_ , andthefactthat £ (X,) = u, taking expectations

on both sides of (2.4) shows that

C=p-gpu-pi—....=p,u

Substituting (2.5) into (2.4) simplifies to give

Y, —p= ¢1(Yz-1 - /‘)+ ¢2(Yz-2 - /u)+‘“'+¢p()/t—p - /‘)+ & -0 ..

P q
= ),t_/u:Z¢i(),t—i_lu)+€t_210j€t—j'
i=1 =

or

P g
Y =C+ Z ¢in—1‘ té - Z ngt—j7
i=1 j=1

If X, follows a deterministic time-trend ¢, 4 is given by

d
U, = Z s, (a polynomial function of time)
m=0
we have
d p d q
Xt - Z ﬂmtm = Z ¢i[Xr~i - Z /Bm(t_ i)m) té - Z 06,
m=0 i=1 =0 =1

2.5)

6 ¢

Yg%t-q>

(2.6)

@.7)

(2.8)

(2.9a)



N Y = Zp:¢iY;_i t& - quajg,_j , (2.9.b)

where Y, = X, - 4, .Equation (2.2)isstationaryiftheroots z,(i = 1,2,....., p) of the equation

t

1-¢z- ¢222—...—¢pz” =0, (2.10)

all lie outside the unit circle. If one or more of the roots are unity, the assumption of stationarity
is inappropriate. The stationarity assumption does not apply when it comes to testing the random
walk hypothesis and testing the first difference hypotheses. This is our subject of discussion in this

chapter - unit root tests for stationarity.

The organization of this chapter is as follows. Since estimations of parameters of time series are
usually obtained by the method of maximum likelihood, we briefly touch this topic in Section 2.2.
Section 2.3 discusses some unit root tests due to Dickey and Fuller (1979) when the process is
AR(p). In Section 2.4, we briefly discuss the root test in an MA(1). Section 2.5 discusses one
approach due to Phillips and Perron (1988). In Section 2.6, a numerical example is used to

illustrate the methods.

2.2 Maximum Likelihood Estimations
Maximum likelihood and other estimators possess properties that can pose problems for

estimation when a root of the process is close to unity.

2.2.1 Maximum Likelihood Estimation for the AR(1) Process
From (2.7), the AR(p) process is given by

Y= 4Y +e, @11)
i=1
where ¥, = X, ~ y. Setting p=1and ¢ = p, thenforr=1,2, ... , T, (2.11) becomes
Y =pY_  +¢, with ¥ =0. (2.12)



If we assume that ¢, is independdently distributed as N(0,c %), then the conditional likelihood

function Z given ¥, = 0 is

(v, - px_l)z} 2.13)

Taking the logarithm of (2.13) we obtain

T T 5 1
InlL=-—In27r-—lno" -

2 2 252 (v, - pr_,)? (2.14)

M~

1

Maximizing (2.14) with respect to p and 0'2, the results are exactly the same as the OLS

estimates:
J 1 &
L= L= pY )Y ]=0, 2.152)
t=1
T
LYY,
= p =5 (2.15b)
LY
=1
which is asymptotically distributed as N ( p,%) . Similarly,
T 1 & ’
P VARt o ) Zl (v,-pr.,) =0, (2.162)
or
1 T
N ol = ?Z (Y, - pY_)% (2.16b)
=1



2.3  Unit Roots in Autoregressive Processes

A unit root in the polynomial ® (2) = 1- ¢,z - ¢,2°-.. - ¢,2° suggests that a series should be

differenced before fitting the ARMA model.

2.3.1 Testing for a Unit Root in an AR(1) Process with Mean Zero
This section derives the asymptotic distribution for the test statistic for the AR(1) process

Y, = pY_ +e¢, {e,} ~WN(0,0%).

We have shown in (2.15b) that

p =" (2.15b)
2
r=1
The likelihood ratio test of the hypothesis
Ho:p = (2 17)
N -1
N r=f (2.18)
Se(p)
where
T 6'2 T
A 2
) > Y - pr)
Se(p)= |[‘H——= | = . (2.19)

T T T

2 PY o+ el pyYE+Y >
=1 t=1 =1 =1
T
>

p= = =p+

T T
> A

=1 =1 =1



and hence p-p="5—. (2.20)

T
Z Y_e,
p-1=5——. (2.21)
2
2 Y
t=1
and Y=Y _ +¢6=¢+¢6_+& ,+..+&, with ¥ =0. (2.22)

The mean £(Y,) of (2.22) is thus
E(Y)=E(e,+¢&_,+&_,+..48)
= E(e)+ E(e,_))+ E(e,)+..+E(g)

= E(Y)=0. (2.23)

t

The variance var(Y,) of (2.23) is

var(Y)) = var(e,) + var(e,_,) + var(e,_,)+...+ var(¢))
=g’ + g2 + 0%+ ..+ 0% (1 times)
and hence
var(Y)) = 12 (224)

Thus, if writing &, ~ N(0,0%) , we can also write

/

Y ~ N(0,0%) and ()~ NOD), (2.25)

and hence

Y_, ~ N[0, 1)]. (2.26)

10



Furthermore,

Y= (Y +e) =Y +2Y e 48’ =Yg =3{rF-v2 -2}

t=

= ZTX—lgz=%ZT(K2‘Y;EI—€,2)=%ZT(Y2—Y2 )—% £?

—

(2.27)

since it is assumed that ¥, = 0 Multiplying both sides of equation (2.27) by ( %,2T) yields

R R M

SN
T =1 -2

) e ‘1 @29

From (2.25), we can write

2
(ﬁf) ~ N(0,1), and so its square (gi/TT) ~ 7*(D). (2.29)

T .
Also, since Z & isthesumof 7 identically and independently distributed random variables

. 2
each with mean ¢ ~, we have

T
Y &2 H(ToY) =0 (2.30)
=1

=

Employing the expressions in (2.29) and (2.30), equation (2.28) becomes

(LY ve - 2 m-1).

(2.31)

11



Finally, from equation (2.26),

X r2)= X E@t)= Y. o)

=0(0+1+2+3+..+7)

2

= E(Z;le) =0*x S, = %—T(T— D, (2.32)

where S, = %[a +(T-1)d ] = 200 s the arithmetic series with first term a = 0 and

common difference d = 1. From (2.49) we have

-’fl"’—E( :—1Yt%1) = XM -T)=51-7)
= EY . F—o5(1-4) (2.33)

Using (2.31) and (2.33) implies

NN AT . Hr2m-1] _ [72m-1]
)BT (EE O I A (RO

T(p-1)= (2.34)

Equation (2.34) shows that the asymptotic distribution of (p - 1) isneither normally distributed

nor has the standard #-distribution. We therefore conclude that even if the model is in fact true,
the test statistic in testing for significance does not have even asymptotically the z-distribution or
normal distribution on which we shall base our conclusions. By contrast, in the standard case the
t-ratio behaves asymptotically like a unit normal. The difference between the asymptotic behaviour
of the two cases makes it evidently clear that it will be unsatisfactory to rely for our inference on

the tabulations given for the standard case. This calls for special #-ratio based on the asymptotic

behaviour given in (2.34). Based on the asymptotic behaviour of (p - 1) given in (2.34), Dickey

and Fuller (1979) employed the Monte Carlo method to simulate values for some finite-sample

tests. Tests based on these tabulations are referred to as Dickey-Fuller tests.

12



2.3.2 Testing for a Unit Root in the AR(1) Process with a Constant Term
The AR(1) process is given by

X, =C+gX,_ +¢, {¢} ~WN(0,07%). (2.35)
Subtracting X,_, from both sides of (2.35) and setting ¢, = p , we obtain

L+e = Z=C+(p-1)X_+s, (236

t

X -X_=C+(p-1)x,
where Z, = X, - X,_;,and C = ,u(l— p) If p =1, (2.36) describes a random walk, which
implies non-stationarity. Thus, testing the hypothesis that p = 1 is of great importance because

it corresponds to the hypothesis that it is appropriate to transform the original series X, by

differencing. Additionally, (2.36) suggests the OLS regression of Z, on (1) and X,_,. The OLS

model has 2 parameters, namely C and ( p- l) , and hence, the estimated standard error of

( p- 1) in the OLS estimation is

2

> Ury  [B[a-C-(-0x]

Se(p-1)= |+ - , 2.37)
2 2
3 (ca-a) | -2l 3 (x0- )
t= t=2
The likelihood ratio test of the hypothesis
H:p=1, (2.38)

with a set of tables of the percentiles [see Appendix F(a)] for the limiting distribution as

T'—> o« derived by Dickey and Fuller (1979) is given by

—_*17. (2.39)

13



2.3.3 Testing for a Unit Root in the AR(p) Process
Extending the results for the AR(1) process with p = 1to the general AR(p) process given by

p
X, =C+D 40X _ +e¢

i=1

P
or X, = /1(1— > ¢,) £ 4X.+e, (2.40)
i=1 i=1
p P
Let p= Z¢l and , @ = - Z g, j=12,..... ,p- 1 Then (2.40) becomes
i=1 i=j+1

p-1
X, = /[(1— p)+ pX, |+ aj(X - X,_j_1)+ &, with X, = 0. (2.41)**

Employing the notation Z,_, = X, - X (2.41) becomes

t—j t—j-1°

p-1
Xt - X, = [1(1“,0)"' (/0_ I)X"l * Z aj(X’_j B Xt—j_l)-'- &

J=1

-1
Z,=6+(p-1)X_+Y az  +e, (2.42)
j=1

)4
where 0 = u(1- p) = ,u(l— Z ¢,j . By a similar argument as in the case of AR(1), (2.42)
i=1

suggests the OLS regressionof Z,on(1), X,_,,Z,_;.Z, ,,....Z, The Augmented Dickey-

t—1>%1-1> s &t pil

Fuller (1981) 7 statistic for testing the hypothesis that p = 1applies the same way as in the case
of an AR(1) process.

Example 2.1: Consider the AR(2) process given by

X, =X, _  +6,X,,+¢, {& }~WN(0,6%). (2.43)

( 22 See Chapter Appendix 2.1 for full derivation)

14



If X, is stationary, the roots, z = {z,, z, }, of the characteristic equation

1- z-$2° =0, (2.44)

must all lie outside the unit circle. This means that the parameters ¢, and ¢, must lie in the

triangular region

b,+¢, <1, g,-p <1l,and -1< ¢, <1. (2.45)

2 2 2
In this case p = Z¢, =¢+¢,,and g = - Z g, = —Z ¢, = — ¢, - Equation (2.45) thus
i=1 i=2

i=1+1
becomes
ZI =0d+ [(¢1 + ¢2)_ 1])(1—1 + al(Xt—l - X1~2)+ &
= Z, =6+ [0+ 0)-1)X - h(X - X )+ e (2.46)

From the fact that p = ¢, + @, < 1implies testing the hypothesis that p = 1 is equivalent to

testing for the presence of a unit root in the AR(2) process. Equation (2.46) suggests regressing
of Z, = X, - X,_, onaconstant, X, , and Z,_, . The augmented Dickey-Fuller 7 statistic for

testing the hypothesis that p = 1 applies the same way as in the case of an AR(1) process.

2.3.4 Testing for a Unit Root in the AR(1) Process With a Linear Trend

If X, is an AR(1) process with a linear trend, then by (2.9a) the process becomes

X, - (8, + Bit)= 4| X, - (B,+ A~ D)]+ &,
= X, = (B, - 48, + 68D+ (B - 4B+ X, + &, (2.47)
where X, = 0. Subtracting X,_, from both sides of (2.47) yields
Z,=v+ot+(p-DX_ +¢, (2.48)

where

15



Zo= X~ X, p=t, v=(8,- B, +#B),ande = (1- )8 = (1- p).

The expression in (2.41) suggests the OLS regression of Z, on (1), ¢, and X,_,. Here again, the

Dickey-Fuller 7 statistic applies the same way as in the AR(1) process when testing the null

hypothesis that
H,:p=1

The only difference is that the percentiles for the limiting distribution takes into account the
presence of time trend. The percentile values are given in Appendix F(b). Practical illustrations of

these test procedures are given in Section 6.2 of Chapter 6.

2.4 Unit Root in the ARIMA (p, 1, q) Process

Let Y, = (1- B X . » then an extension of the unit root approach to the ARIMA (p, 1,g) process

due to Said (1982) employs the following relations

X, =pX,_t7Y (2.49a)
P q

with Y,=) ¢Y_ te - 0¢ ,, {&}-iidN(0,0%) (2.49b)
i=1 Jj=1

where X = 0. A test for a unit root in the ARIMA(1, 1, 1) is discussed in sub-section 2.4.1

below.

24.1  Testing for a Unit Root in the ARIMA(1, 1, 1) Process
The ARIMA (1, 1, 1) process is defined as

X, =pX,_ +7 (2.50a)

Y, =¢Y +¢-0¢_,. (2.50b)
Writing ¢, as £ = Z g’ (Y;_}. - ¢Y:_,_1),
=0
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= (96‘,_1 = Z ¢9j+l(Yz—j—1 - ¢Yr-j—2)

j=0
or e, = ‘9(Yz-1_¢Yz-2)+‘92(Yz-2_¢Yr—3)+‘93(Yr-3"¢Yr-4)+--- (2.51)
Substituting (2.51) into (2.50b) yields

Vo= g+ 6,-0(Y - ¢Y, )= 07 (Y, - 9Y, )= O’ (Y s - ¢Y ).
or
Y, =(p-0)Y_ +0Y_,+ 0% ;+. )+¢,. (2.52)
Again, substituting (2.52) into (2.50a) gives

X, = pXt—1+(¢"‘9)(Yx—1+0Yt~2+‘92Yx—3+ ----- )+ &

or X, =pX,_,+ Z oY_ +¢&, (2.53)

J=1

where @ , 1s a function of ¢ and @.Subtracting X,_; from both sides of (2.53), we obtain

X,- X, =(p-DX_ +2 oY +s. (2.54)
J=1

Testing the hypothesis that p = 1, we see from (2.50a) that
Y=X-X_=12,. (2.55)

Hence, (2.54) can be re-expressed as

Z=(p-DX,_,+) 0,Z_ +é, (2.56)
J=1

suggesting the regression of Z on X

(15 L g3 Ly gyeeennn ,Z,_,, where b is an integer chosen

t—1>“1-2>
as a function of 7 with the assumption that &/ T - 0 and that there exists ¢ > 0, » > O such

thatbe > VT Including a constant in the model, (2.56) becomes
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b
Z,=C+(p-DX_+) 0,Z_  +¢,. (2.57)

J=1

In the case of (2.57) the motivationis toregress Z, on(1), X, |, Z,_1,Z, 5,...--... ,Z,_,,wWhere

b is an integer chosen the same way as described above. In each case, the usual Dickey-Fuller r

statistic applies the same way as in the AR(1) process when testing the null hypothesis that

H:p=1.

2.5 Summary

At the informal level, stationarity of a time series is tested by its correlogram, which is a graph of
autocorrelation at various lags. For stationary time series, the correlogram tapers off quickly,
whereas for non-stationary time series it dies off gradually. Non-stationarity established this way
may be misleading in that it might not be able to establish whether it is due to some deterministic
trend or a unit root. In this chapter, we have considered a formal check for stationarity using the
unit root tests which is basically a concept of regression. This concept is found to be an important

theoretical underpinning of stationarity or otherwise of a time series.

CHAPTER APPENDIX 2.1

For the AR(p)
D (B)X,=C+e¢,, {&}~WN@©,0%) A21

T
where ®(B) = 1- §,B- §,B*~..~§ B” C= u(l-§,- fp-..~4,), and 4 = + 2 X,

t=1

P P
let o= Z¢, and @, =- Z¢l , j=12.p-1
=1

i=j+1

Then

(- pB)- (@,B+a,B*+.+a, B"")(1- B)= 1- pB- (a,B+ a,B’+ +a, \B"' - a,B" - a,B’~. -2, B")
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p-1

(I- pB)- Zaij(l" B)= 1-(p+a)B-(a,- a])Bz - (a3~ aZ)BJ_"_(ap—l - ap—z)Bp-l - (_ap-l)Bp .

Using the following expressions

pﬂ%=;¢-;¢=¢+;¢—§¢=%

a,-aq,

H
|
i
.

+
o
RSN
1

—§¢+%+§m=m

uQ
|
NQ
1l
|
LM
SN
+
M
.
1}

—;¢+@+§¢=@

P P P P
ap-—l - ap—2 = _z¢i + z¢1 = _z¢i + ¢p—l + z¢p = _¢p + ¢p—l + ¢p = ¢p—l'
i=p i=p-1 i=p P
the last equation becomes
r-1 _
(1- pB) - Zl @,B’(1- B)=1- $,B- $,B*~...~¢, B""' - § B” A22
j:

where we have used the fact that — @ o1 = ¢p . Equation A2.2 thus becomes

p-1
(1- pB)- D.a ,B’(1- B)= 0 (B). . A23
J=1
Substituting A2.3 into A2.1 yields

p-1
(1- pB)- D a,B'(1- B)|X,=C+e¢,

J=1
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= X,—pBX,—Zpaj(Bj—Bj“)Xt=C+€,
j=1

p-1
= X,-pBX,-Y.a,(B'X,-B"X,)=Cte
j=1
p-1
= Xz - pXt—l =C+ . laj(Xf—j X"j‘1)+ é
=
p-1
or X,=C+,0Xt-1+zaj(Xz-j_Xt—j—1)+€t'
j=1

Subtracting X,_, from both sides of A2.4 simplifies to give

-1

Xt - Xr—l =C+ (:0 - l)Xt—l + Z aj(Xt—j - Xt-j—l)+ &
Jj=1
p-1
or Z,=C+(p-DX_+) a,Z +e ,
J=1

where Zt_j =X

1=

- X, s §=0,1,2, ., p-1.

20



CHAPTER 3

REVIEW OF SOME OTHER UNIT ROOT TEST PROCEDURES

3.1 Introduction

In Chapter 2, our discussions were basically testing for non-stationarity in a given non-seasonal
time series by testing for the presence of unit roots using the Dickey-Fuller and the Augmented
Dickey-Fuller test procedure. In this chapter, we present a review of other unit root test

procedures given a non-seasonal time series.

The layout of this chapter is as follows. The Phillips-Perron unit root test is discussed in Section
3.2. In Section 3.3, we discuss the frequency-domain test for stationarity, a test procedure based
on periodogram ordinates. Section 3.4 considers the Reverse Dickey-Fuller Unit Root (RDFUR)
test due to Leybourne (1995) while in Section 3.5, we consider the Lagrange Multiplier (LM) test
for stationarity due to Schmidt and Phillips (1992). Section 3.6 presents a summary of results.

3.2 The Phillips-Perron Unit Root Test
In this section we shall give a summary of an alternative unit root test due to Phillips and Perron
(1988). The test procedure takes into account the possibility of autocorrelation that might be

present in the data when the series does not satisfy the AR(1) process given by

X, =C+pX,_ +¢. (3.1)

The strategy is basically the same as that of the Dickey-Fuller test except that the t-statistic is
amended to incorporate any bias due to the autocorrelation in the error term of the Dickey-Fuller

regression model
Z,=C+(p-DX,_, +¢, (3.2)

where Z, = X, - X,_, . The bias results when the variance of the true population, ol differs

from the variance of the residuals, ¢ > , in the regression model given in (3.2).
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Consistent estimators of ¢ andg ? are respectively given by

T
Fl=LtY &2 (3.3a)

T l T T
R DS DIDINTNEL RS DD (3.30)

where k£ = 1,2,.., N , and [ is the lag truncation parameter that ensures that the autocorrelation
of the residuals are completely captured using the first N autocovariances that are deemed

relevant. The Newey-West estimators of ¢ 2 and g} are respectively given by

~ A2

Yo=0

~p—

N
Z 6',2 and }’Ao(.) = f,, + 22 [1_ (Nk+1)]};k ) (3.4)
k=1

t=1

A

1
where y, = 7
t

M~

&£,€,_, - Under the null hypothesis

+1

]
=~

H:p=1,

where { X, } is not necessarily an AR(1) process, the Phillip-Perron test statistic 7 ,, is given by

~2 ~2 ~2
_ O« T (0-*—0' ) 35
z.pp_ 0’_‘2 T -7 s ()

T
0’:*22 (Xt—l - X—l)2
=2

T
where X 4= %Z X,, and T is the Dickey-Fuller test statistic under the null hypothesis.
=2

Critical values for the test statistic are the same as those used in the Dickey-Fuller test, (see

Appendix F(b)).
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When there is no autocorrelation,
cl=07, (3.6)
and hence the Phillips-Perron test statistic given in (3.5) reduces to the Dickey-Fuller test since

Tpp =T 3.7)

Practical illustrations using Phillips-Perron test procedures are found in Chapter 6, Section 6.3.

3.3 The Periodogram
In this section, we quickly give a background to the term periodogram which is regarded as a

foundation for the frequency-domain test to be discussed in Section 3.3.1. Given the univariate

time series { X,:7 = 1,2,...,7} satisfying the AR(1) process
(X,-p)=p(X,_ - u)+e, (e} ~WN@©,G?). (3.8)

The periodogram ordinates of X, is defined as

I(w,)= —g—(a,f+bk2), (3.9
where
T
a, = £ X,.cos(w,1) (3.10a)
t=1
T
b, = 2> X, sin(w,1), (3.10b)
=1
27k
and we= S k=012, ] (3100
For k> 0,
T T
Zcos(wkt) = Zsin(wkt) =0, (3.11)
=1 =1
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and so @, and b, have mean 0 once X, has a constant expected value. Furthermore, @, and

b, are normally distributed if X, is normally distributed. Normalizing a, and b, yield

A = \/2[1_ cof(w")](—z—) D X,.cos(w,1) (3.12a)
o T/ S
B, = \/2[1— ?f(wk)](%) z X,.sin(w,1). (3.12b)

respectively.

3.3.1 Frequency-Domain Test for Stationarity in Series with No Trend

If p = 1, the AR(1) process with no trend given in (3.8) reduces to a random walk process
X, =X_+¢,. (3.13)

The random walk process given in (3.13) has no autocovariance function and hence the spectrum
of the series does not exist. Estimation of the spectrum of a series is the usual purpose of
computing the periodogram for any sequence of numbers. A unit root process may have certain

features in its periodogram making it a useful diagnostic tool.

In order to obtain estimates of the spectrum f(w, ) of a time series at the frequencies w, , the
periodogram ordinates (3.9) is usually divided by 4xn. If p <1, (3.8) is stationary and its
spectrum is given by

0_2

27[1+ p* - 2pcos(w,)] ’

f(wk) =
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2

or 2zf (w,) = 17 77~ 2p cos(w,) (3.14)

If p=1, (3.14) becomes
~ o’ 2[1-cos(w,)] 1 s
2 0% = o cost] R N

Akdi and Dickey (1998) showed that when p = 1, the application of Slutsky’s theorem (Akdi and
Dickey, 1998) to the normalised periodogram yields

2[1- T
Al + B! = [ ?f(w")](z) (a’+b})—- z' + 32, (3.16)

where z; and z, areindependent standard normal random variables. Substituting (3.9) and 3.15)

in (3.16) yields the distributional result

I(w,)

—r 522+ 3Z2. (3.17)
27f (w,.) b

For the AR(1) process (3.8), we state the proposed test statistic (from (3.17)) as

. I, (W)

T, = 22 (w,) (3.18)

For desirable power results, Akdi and Dickey (1998) set & = 1. Hence, we can rewrite the test

statistic (3.18) as

o Lxm)

U o (wy) G.19)
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where I , (W,) refers to the first periodogram ordinate of the undifferenced series. Thus, 7, is

distributed as 212 + 3222 under the null hypothesis
Hyp=1. (3.20)

The percentiles of le + 322 calculated by the mixture of chi-squares result from an approach due

to Johnson, Kotz, and Balakrishnan (1994) are reported in Appendix F(c).

For higher order models, we define quantities in (3.19) based on the following representation
Xy=p=p(X,_ - )+ W, (3.21)

where W is an ARMA(p,q) process given by

1

Wo=aW_ +a,W_,+. . +a W,_,+¢&-0¢_,-.-0,6_,, (3.22)

and { ¢, }~WN(0, 0 2). To test the null hypothesis H,:p = 1, Akdi and Dickey (1998) proposed

the test statistic

. LW
NS D w)g G.23)

where

1-6-6,-..-6
4= —2 d (3.24)

l-a,-a,-..~a,

The test statistic in (3.23) has the same distributional result reported in (3.17) and hence the same
percentile values in Appendix F(c) apply in testing for a unit root. Evans and Dickey (1998)

showed that
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2af o= (22 (3.25)

and hence (3.23) becomes

- 4r?

7, =—O”_W]X(wl), (3.26)

For p = 1, Evans and Dickey (1998) defined an estimate of & 2¢* as

A (V7]
0%¢* = g L 3 LW, (3.27)
k=1
where _(w, ) isthe k-th periodogram ordinate of the differenced series Z, = X, - X, , ,and

w, = % Applications of this approach are presented in Section 6.4 of Chapter 6 using real

data sets.

3.3.2 Frequency-Domain Test for Stationarity in Series with A Trend

For models with time trends, the underlying model is an adjustment to the model given in (3.21):

X~ Bot )= pAX - [f+ A= DI} + W, (3.28)

where W, is as defined in (3.22). Since a time trend is neutralized in the first differenced series

so that only a non-zero mean remains and periodogram ordinates are invariant to non-zero means,

the addition of a time trend does not affect the estimation method based on the periodogram of

the differenced series. Thus, an estimate of the quantity o 2¢ 2 is obtained in the same manner

as described in Section 3.3.1. Consequently, the critical values reported in Appendix F(c) also

apply.
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3.4 The RDFUR Test for Non-Stationarity

The Reverse Dickey-Fuller Unit Root (RDFUR) test, as the name goes is a unit root test
procedure similar to the usual Dickey-Fuller (also termed the Forward Dickey-Fuller Unit Root -
FDFUR) test. In this section, we review this test procedure. Qur motivation for this method is that
it can serve as a test for confirming a conclusion drawn as to whether a series is stationary or not.
As it often the case, the autoregressive order p may not be the same when applying these the
usual ADF test and the RDFUR test, but we become confidently sure when both approaches give
the same conclusion.

For the AR(1) process

Z=C+(p-DX,_, +¢, {e.}~WN(0,0%), (3.29)

where Z, = X, - X,_,. The Dickey-Fuller unit root test statistic is given by

(3.30)

where /5 is the OLS regression estimate of p obtained by regressing Z, on a constant and

X, ;. In the case of the RDFUR test, the same Dickey-Fuller test is applied to the reverse of

t

Z, . Thatis, if we let
Xo=Xpio X1 =X, Xy = Xo | X3 = Xy gy X=X\, Xp = X, (331)

then the Dickey-Fuller test for the reverse series, 7., can be viewed as a #-test of the null
hypothesis
Hip =1, (3.32)
in the model
Z, =C"+(p"-DX  +¢ {e} ~WN(0,62), (3.33)

where Z, = X, - X, |.
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The corresponding test statistic for the reverse series is

A p’““_l
= P, (3.34)
"T85 - 1)

where o~ is the OLS estimate of p" in (3.33). Equation (3.33) suggests the regression of Z ,*
on X :_1 . Under the null hypothesis H: p =1 , Leybourne (1995) showed that the reverse test

statistic 7, has the same limiting distribution as the Dickey-Fuller test statistic, 7 (see Appendix

F(a)). If a time trend is included in the model, (3.33) becomes
Z/ =(a,+a;H+p X, +¢ {e} ~WN(0,62). (3.35)
Again, (3.35) has the same structure as in the case of the usual process
Z =(a,+al)+pX,_ +¢,. (3.36)

Under the stationary alterative hypothesis, the limiting distributions of the test statistics for (3.35)
and (3.36) are the same and hence critical values reported in Appendix F(b) apply. For the AR(p)

process, the RDFUR test is based on the regression model

p-1
Z =6+ (p - DX+ aZ v &, (3.37)
j=1
where Z:_ ;=X ,*_ =X :_ ;o for j=0,1,2,3,..., p.Equation (3.36) suggests regressing Z:
on X, ,Z, 7 s 2o +1- Testing the null hypothesis of a unit root is done in a manner

similar to the case of the AR(1) process. Within the limitation of this dissertation, we show that
the application of the RDFUR test although employs an order p* that may or may not be the

same as the order p used in the usual Dickey-Fuller case, the same conclusion could be drawn
regarding the presence of unit root when the RDFUR test is used. Practical illustrations of this

methodology are reported in Chapter 6, Section 6.5.
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3.5 Lagrange Multiplier (LM) Principle Test for Stationarity

This section considers testing for stationarity given the time series {X,:7 = 1,2,3,..., 7} based

on the LM (score) statistic suggested by Schmidt and Phillips (1992). The test is used to test the

difference stationary model

Z,=C+ (p-DX,_ +¢ , with|pl=1, (3.38)

against the trend stationary model

Z, =B+ )+ (p-1DX_ +¢, with|pl<l, (3.39)

In (3.38) and (3.39), we assume again that {,} ~WN(0,5%) . As shown by Schmidt and

Phillips (1992), the score (or Lagrange Multiplier) principle gives rise to the following score test

statistic
T

PR
T, = = — (3.40)

Y 82

=2
= I XT X,
where Z=X-X_,, ,5 mean of Z, =Z:T_Z 7-1 °
t=2

Y(z-Z)=X-x-G-DF,

2

S,

i
i=2 i

NCOZ
1]

1

t

X, -X-@t-DZ

Equation (3.39) is a regression of Z, on intercept, time trend #, and X,_,, or equivalently a

regression of Z, = X, — X,_, on the same variables. Schmidt and Phillips (1992) showed that

the term Z V.S,_, in (3.39) is the estimated regression coefficient of SN',_I in the regression
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Z, = intercept + (0 - 1)3_1 + error, fort=12,...,7, (3.41)

where §,_1 is the residual from an OLS regression of Z, onintercept and time trend ¢ Under
the null hypothesis

Ho;pz 1, (3.42)

the score test statistic (3.40) have non-standard distributions. The finite sample distributions of
the score statistic is complicated. Under the null hypothesis H:p = 1, Schmidt and Phillips

(1992) obtained the following asymptotic result:

7, —- —[ZTJ U(r)zdr] , (3.43)

0

where U (r) is the standard Brownian motion. A table of critical values for the score statistic

using a Monte Carlo simulation are reported in Appendix F(d), (Schmidt and Phillips, 1992).

3.6 Summary
In this chapter, we have reviewed some other tests for stationarity. With the advent of personal

computers, we see that little effort is indeed required to write programs to handle them.

Applications of these methodologies are given in Chapter 7.
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CHAPTER 4
ESTIMATING THE DEGREE OF DIFFERENCING

4.1 Introduction

Differencing plays a major role in modelling and forecasting time series as proposed by Box and
Jenkins (1970). The strategy is based on the mathematical application of the back-shift operator

Bdefinedby B* X . = X,_;,where { X} is the series to be modelled. The series is differenced

d times until it is found to be stationary. The differenced series is then modelled as

an ARIMA(p,d,q) process. For non-seasonal series, the ARIMA(p,d,q) process is

represented as

® (B)(1- B)* X, = 4(B)¢,, {e,}~WN(©O,0?), 4.1)
where
®(B)=1-¢B- ¢,B>-....~¢,B”,
and 6(B)=1-6,B-6,B*-....-4,B".

However, a major problem may arise regarding the estimation of the degree of differencing, d, in

the estimation of the ARIMA( p,d,q) process. In Chapter 2, it was emphasized that a series

with a unit root in the AR operator with d = 1 is non-stationary. The Dickey-Fuller test and other
tests were named as applicable tools for deciding, on the basis of the series, whether to use d =

Oord=1.

Nevertheless, some time series models may be very difficult to build. The difficulty may be due
to the existence of slowly diminishing correlations in the series, in which case restricting d to non-
negative integers may prove futile. To tackle this issue, Granger and Joyeux (1980) and Hosking
(1981), among others, independently proposed fractional values of d.

The rest of the chapter are organised as follows. In Section 4.2, we discuss three used lag and

spectral windows commonly employed in spectral analysis of time series. Section4.3 presents two
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important methods for estimating the degree of differencing a given time assuming the series is
non-stationary. A summary of this chapter is then given in Section 4.4. Chapter Appendix 4

contains some computer programs used to obtain the graphs in the chapter.

4.2  Smoothing the Spectrum - The Lag Window

Spectral analysis of a series gives quite substantial information about the nature of series. A high
variance in the course of estimating the spectrum of the series may lead to invalid results. One way
to reduce the variance of the sample spectrum of the series is by smoothing which involves
choosing a suitable lag or spectral window. Here, one applies weights to the autocovariance

function and then transform the smoothed autocovariance function.

For W(x) satisfying

w(x)< 1
W(x)=1
(4.2)
W(x)=W(-x)
Wx=0  fop 1 ,

the weighted estimator of the spectral density function or the smoothed spectrum of a series of

size T is given by

(kY.
£ (w)=— W(;)ne"“”‘, (4.3)

2” k=-r

where p < T, and
1< — —
=/, = ;Z (X,- X)(X,,,-X), k20 (4.4)

Next, define the Fourier transform

T-

(1)— — Z e, (4.5)

-(T-
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then, the inverse transform of /(1) is

= | F()e*aa, k=0£1£2, .. +(T-1). (4.6)
Thus (4.3) becomes

f*(w)-zi Z W(r)j F)e™ e

> W( ) e f(2)d

277 k=—(T-1)

= fw‘(w - D f(A)dA

or @)= jW(z)f(w 1)dA, 47)
where
W‘(/i)=§L Z W(E)-e"“”‘, (4.8)

k=—(T-1) r

is the spectral window. The Fourier transform of W' (1) is W(x) , the weight function. The

weight is referred to as lag window. In the next section, we present the three lag and spectral

windows commonly used in spectral analysis.

4.2.1 Rectangular Window

With a rectangular window, the lag window based on the lag £, W(k), is given by

1,  |<(T-1)

W(k) = {0, > (7= 1) (4.9)
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The spectral window, thus becomes

1 Tz"l | Q=
Wiw)==— ) Wkh)e™ =— D le™
@) 2r k=—(T—l)( 27 574
1 T-1
= W (k)= —[1+ 22 coswk}. (4.11)
2r k=1

Employing the relations

4 o(T+ 1)} sin[wT /2]

k= _ . 4.12
kz=l cose cos[ 2 | sin[o /2] (122
g o (T+ 1)} sin[wT /2]
inwk = si . 4.12b

2, sina Sm[ 2 | sinfw /2]’ (4.12b)

the spectral window (4.11) becomes
. 1 2cos[wT/2].sin[o(T-1)/2]
w = 1
@) 27r{ ' sin[w /2]
which simplifies to yield
. 1 si 2
w (w) = _.Slll[—wT/—l (4.13)

27 sinf[w /2]

For time series of size 7= 10, the rectangular spectral and lag windows are shown in Fig. 4.1a
and Fig. 4.1b using the following Matlab and SAS programs in the Chapter Appendix (Program
4.1a and Program 4.1b).
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Rectengular Lag Window with T=10

. The Rectanguia Spectral Window - T=10 lm
i oal :;
:!: 06
gﬂ‘ [ X!
M a2
“‘ 2 2 o T -3 » J 0
Fig. 4.1a: Rectangular Spectral Window (7=10) Fig. 4.1b: Rectangular Lag Window (7=10)

4.2.2 Bartlett Window
The lag window W (k) formulated by Bartlett (1950) is as follows:

1-|kl/T, |k T,
W(k)= (4.14)
0, k|> T.
By definition, the spectral window is
W*(a))= _l_ Z (I_Mj e-uuk — - l ZT (T_lkDe—uuk (4.15)
27 1 T 22T =+
1 -1 zj
W*(a) ) - e—i(uk
27T 520 i,

1
" 27T sinfw /2]

{sin[a) /2]+ Z;:l sin[@) + %)]
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Wi (w)= ! sin(w /2) + cos(w /2)2 sin(wj)

27T sin(w /2) T
T-1
+ cos(w /2)), sin(w/) . (4.16)
J=1

Employing once again the relations in (4.12), equation (4.16) becomes

1

o Tisin@ 127 {[sin(w /2)F + sin[@ (T - 1)/2]sin[o (T + 1)/21},

W (w)=

which simplifies to give

W B 1 /sin(wT/2) : A l7
(w)_27rT sin(w /2) | (“-17)

Using the Matlab statements in Program 4.2 (in Chapter Appendix 4), the Bartlett spectral

windows is shown in Fig. 4.2a. Fig. 4.2b is the corresponding lag window.

" Bartion Spectrad Wingow(T=10) Bameu Lag wmw (T= n)
58: o
E [ 1
é o b
Fig. 4.2a: Bartlett Spectral Window (7=10) Fig. 4.2b: Bartlett Lag Window (7=10)
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4.2.3 The Parzen Window
The Parzen window proposed by Parzen (1961a) is given by

1- 6(k/T)*+ 6(|k|T), k|< T/2,
W(k) = 2(1- |k|/ T, (T/2)< k|<T (4.18)
0o \k|> T.

Thus, the corresponding spectral window W (w)is

. 1 <
W)= Y. W(w)cos(wk)
k=-T
T7/2 T
W(w) = = Y [1-6(k / T)* + 6(kl/ T) ]cos(wk) +2 Y. (1-k|/ T)’ cos(wk)
27[ k=-T/2 kl=T/2
(4.19)

which simplifies to give

7 (0)= 3 < sin(wT / 4)

ST\ () 2 smto /2)> (1- 2/3)[sin(w /2)F).  (4.20)

Program 4.3 in Chapter Appendix 4 produces the Parzen spectral window shown in Fig. 4.3a.

Fig. 4.3b is the corresponding Parzen lag windw.

Parzen Lag Window (T= 10}

w
1.0
09
19 0.8
or
0.6
= (X
!‘ 0.4
0.3
0.2
ot
0.0

Fig. 4.3a: Parzen Spectral Window (7=10) Fig. 4.3b: Parzen Lag Window (7=10)
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4.3 Estimation of d

Several techniques have been proposed by different authors regarding the estimation of the degree
of differencing, d. Notable among these are those due to Granger and Joyeux (1980) and Janecek
(1982). In this section we focus on the estimation of d by three different methods, viz, the lag-

window method, the periodogram method, and the smoothed-periodogram method.

4.3.1 The Lag-Window Method

If ¥, = (1- B)? X,, the ARIMA(p,d,q) process @ (B)(1- B)? X, = §(B)¢, becomes
O (B)Y, = 0(B)e,

_4(B)

= 421
t (-D (B) gt : ( )

or

Then for some scalar z, the polynomial §(B) converges for all z whilst %;( ) converges for [z|]<1.

Hence, Y, is a stationary series with a spectrum

o2 o™
- . 4.22
fy(a)) 2” |(D (e_iw)‘z ( )
Now, Y, = (1- B)? X, implies
X, =(1-B),. (4.23)
Let
f(2)=1-27, (4.24)
then
ﬁkf -d-k
P d+k-D)d+k-2)..(d+1)d(1-z) . (4.25)

Furthermore, the Taylor expansion for f{z) about z = 0 is given by
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o 20f 3ﬁf

f(@)=f(0)+ F_+ 5 P T PE (4.26)
Employing (4.24) and (4.25) in (4.26) yields
(1-2) % =1+ zd+ Sd(d+ 1)+ Sd(d+ 1)(d + 2)+.... . (4.27)

Equation (4.27) converges for all |z|<1. The spectrum of (1-2) is
(1- e )1- €™ ) =[1- " . Therefore, X, = (1- B) Y, in(4.23) converges for all| z|< 1

and so {.X,} stationary with spectrum

f.(w)= (ll— e ™ 2)_d x f,(@)
N f@)=[1-e" (). (4.28)
Multiplying both sides of (4.28) by fx(a)) yields
/,(0)
70 et (429
. 1 ,-iw-2d ]}x(a))](fy(w)]
or f(@)=1-e" .fy(O).(fx(w) 7)) (4.30)

Taking the logarithm of (4.30) gives

o B o2 f.(@) (@)
lnfx(a))—lnfy(O)—dln(‘l—e )+ 1n {f(“’)} In {f(o)} @31)
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Now

‘s (1— ei“’)(l— e*i“’) =2-(e”+e™)=2(1-cosw), (4.32)

‘1 _ e—ia)

where we have employed the relation (e'” + e7'”) = 2cosw . Using the trigonometric relation

cos2A = 1- 2sin* A implies cosw = 1- 25sin*(%4), and hence (4.32) becomes

‘1 _ e—ia)

- 21-1+ 2sin(%4)] = 4sin*(%). (4.33)

Substituting (4.33) into (4.31) and introducing the subscript j = 1,2,3,...,7 yields

: e fo)| [ 1,@)
Inf.(,)= Inf,(0)- dIn(4sin A)+m{fx(w1)}+m{ fy(o)}, (434)

27j
where o, = —-TJ— . Employing a result due to Geweke and Porter-Hudak (1983) that for

£,
1“[ £, j >0

frequencies near zero,

equation (4.34) reduces to the simple linear regression

M,=p,+BN;+e;, (4.35)

fu@))
f.(a))

and ff, = —d. For good results, Brockwell and Davis (1987) recommended using the first

where Mj=ln_fx(a)j), N,=m[4sin“%], ej=ln{ } f,=1nf(0)

A=T% periodogram ordinates. Then, by a simple linear regression approach involving, the
degree of differencing d is given by

(4.36)
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where

— & M, — &SN,
M=), A and N=Z % (4.37)

J=1 =1

The estimator of /.. (@), f _(w), is obtained by using the lag window method (4.3), where

" 1 T-1 k . -
f(o)=—— Z W(:)yk.e"“’.

P Py N

The window parameter » = #(T’) is chosen such that » € (0,7") . W(') represents any of the lag

windows discussed in Section 4.2, or any other known lag window.

4.3.2 The Peridogram Method
For a stochastic process {.X,} with absolute summable autocovariances 7, , the spectrum is

expressed as

f. (@)= —2—17;{;/0 + 22‘0‘, Vi cos(a)k)} . (4.38)

k=1

Given a sample of size 7, an obvious estimator becomes

R 1 . T-1 R

f. (@)= —{70 +2). 7, cos(a)k)}, (4.39)
27 k=1

where
1 Lk _ _

e ?Z (X,- X)X, - X), k=041£2, . £(T-1)

t=1
and

T
2
f: =1
T

The periodogram ordinates /(@ ,) for the jth frequency in complex terms is defined as



2

Jj=12,...(T-1. (4.40)

b

T

—iw &k
Z X,e
=1

2
1x (a) J ) = —7:
Replacing X, by (X, - X), (4.40) becomes

2

(X, = X)X, - X)e ™ (@441

1

2T

t=1

2 l N o
(o)== DX, - X)e
t=1

T DM~

where j=12,...,(T - 1). Setting (¢-7) = k and using the definition of 7, in (4.39), equation
(4.41) becomes

(r-1) _ T-1
I(0,)=2 Z ;/ke‘””fk = [(0,)=2y,+ 22 7 cos(w k) |. (4.42)
k=1

k=—(T-1)

Hassler (1993) showed that the periodogram, / (@), of the ARIMA( p,d,q) process given
by

®(BX1- B)' X, = §(B)e,, {e.} ~WN(0,0,)

with d <0 and E(¢) < o , is asymptotically given by

2
L)z 5 @)1, (443

where /() is the periodogram of {¢,:7=12,....,T}.

- -2 . @ :
Taking the logarithm of (4.29) and using the fact that ln(‘l -e l ) = 1n[4 51n2(7)] , equation

(4.28) becomes

Inf.(@,)=Inf,(@,)- dIn(4sin>("4)), j=012,..[n/2]. (4.44)
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Adding In/ (@) to both sides of (4.44) and applying the conditions in (4.33) and (4.34) we

obtain
@; Ix(a) )
In/ (0,)=Inf,(0,)- dln(4 sin’( %))+ ln(——j—] (4.45)
f(@))
which has the form of a simple regression equation
M,=p+BN, +e, j=12,..,T% (4.46)
where M, =1nl (0;), N,= 1n(4sin2(m%)), B =-d, e, = n[———i—] +a
fi(o))
df =Inf (o)) ith a E[ InIX(wj)]
and g, = )—-a,wr = - In——.
g ! .fx(a)j)

The ordinary least square regression of {A/ : j = 1,2,...,T*°y on {N = 1,2,...,T%°} leads

to the estimator

A
Z (Nh - N_)Mh
fi="% —, (4.47)
Z (N, - N)?

where A = 7°°. The estimator of d, d is then given by d=- B

4.3.3 The Smooth-Periodogram Method

In this section, we consider the estimation of d by smoothed periodogram using the Parzen lag

window. An estimator of the smoothed periodogram ];: (@) is the real part in (4.3) given by

. K .
Se(@)= 7= Z 7)}’k.cos(a)jk). (4.48)
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Let W(l% ) assume the Parzen lag window based on the following weighting function:

1- 6v2 + 6y, < %
W)= W(-=v)=3 201-p)’, W<l (4.49)
0, > 1

We employ the following two lemmas, lemma 4.2.1 and lemma 4.2.2, due to Priestley (1981) and
Anderson (1971), respectively, to formulate a regression model using the smoothed periodogram

and the Parzen lag window:

Lemma 4.2.1

f (@ ;) is asymptotically unbiased with variance given by

.. 0539285(77). f*(0,), % 0,7
Varif. (@)} = 107856(%). f*(0,), @, =0,z (4.50)

and im(%).cov[ 7, (@), 7. (#,)] = O. 4.51)

Lemma 4.2.2

If de(-050) and W(%) assumes the Parzen lag window then

@) )
14L@J N©a,
where
- flw))| [0539285(%), 0 #0,7
or = Var ln( fx(a))j] - { 107856(7%), 0 =01 (4.52)

K (a) )
Adding In{f, (@,)} to both sides of (4.44) and using the fact that ln{J;y[ (Oj) =0, we
¥y

obtain
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i (@),)

Jo(o,)

ln{f;(a)j.)} = In{f,(0)} - dln{4 sin’ (m%)} + ln{ } . (4.53)

Equation (4.53) is seen to be a simple regression of the form

M, =f,+ BN, +e,, j=12,..,A (4.54)

*

where §, = In{f,(0)}, f,=-d, M, = ln{f;(wj.)}, and e, = ln{?((aa))j))} The value

of A is chosen as before. The estimator of d is given by

A
Y (N, - MM,
d=-p =% — (4.55)
hZ: (Nh - N)2
=1

From (4.48) it is seen that the periodogram is just a weighted average of the Fourier transform

of the sample autocovariance. To reduce the computational cost of computing autocovariances

for series with large observations, Fuller (1979) proposed the an alternative method of obtaining £, (@ )

The procedure involves the application of weights to the estimated autocovariance function

7  and transforming the smoothed autocovariance function. The smoothing process adopts the

following lag window:

1, v=0

doh {O, > 1 with W) <1 forall v. (4.56)

4.4 Summary

In this chapter, we have discussed some three methods, basically regression methods, for
computing the degree of differencing, d. We have shown that the regression of the sample
spectrum can be used to determine the differencing degree. We have also shown how practicable
the regression of the periodogram and the smoothed periodogram could be used to estimate this

degree.
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CHAPTER APPENDIX 4

Program 4.1a:
EDU» f=linspace(-pi,pi,60);
EDU» W=sin(5*f)./((2*pi)*sin(f/2));
EDU» plot(f,W);
EDU» xlabel('Frequency')
EDU» ylabel('Spectral Window')
EDU» box off
EDU»

Program 4.1b: title 'Rectangular Lag Window with T=5';
data rectwin;
input w k;
cards;
0 -13
-12
-1
-10
-9
-9
-7
-6
-5
-4
-4
-2
-1

©~NOoOWNMbsE BN —=O

©

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0 10
0 11
0 12
0 13
H
symbol1 i=join v=none;
proc gplot data=rectwin;
plot w*k;
run;
quit;

Program 4.2: EDU» f=linspace(-pi,pi,60);
EDU» W=sin(5*f).*2./((2*pi)*(sin(T/2)."2));
EDU» plot(f,W);
EDU» box off
EDU» xlabel('Frequency')
EDU» ylabel('Spectral Window')
EDU»
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Program 4.3: EDU» f=linspace(-pi,pi,60);
EDU» A=sin(2.5*f);B=sin(f/2);C=A/B;D=C."4;E=1-((2/3)*(B."2));F=0.006"pi;
EDU» W=F*D*E;
EDU» plot(f,W)
EDU» xlabel('Frequency')
EDU» ylabel('Spectral Window')
EDU» title('Parzen Spectral Window')
EDU» title('Parzen Spectral Window T=10')
EDU» box off
EDU»
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CHAPTER 5

TIME-DEPENDENT SPECTRAL ANALYSIS OF NON-STATIONARY
TIME SERIES

5.1 Introduction

Spectral analysis is a fundamental tool used to study the cyclical behaviour of a series. In spectral
analysis of time series, the primary objective is to obtain the spectrum of the series by
decomposing the series into sums or integrals of sine and cosine functions. In the classical

approach to defining spectrum, the time series is assumed to be stationary. With this assumption

all stationary processes { X, } can be represented in the form

14

X, = jei’wdz(w), .1

-

where z(w) is a complex, random function with

o 0, W, E W,
cov[dz(wl),dz(wz)]= E[dZ(Wl)dZ(Wz)]= {dw w. = W

Equation (5.1) is usually referred to as the Cramer representation of { X, }. The spectrum,

S (w), of { X,} isgivenby
f(w)= Jyx.e’iw'dw (5.2)

where y _ is the autocovariance function of { X, }

However, in practice, most series are non-stationary. This means that the two statements in(5.1)
and (5.2) do not hold in the case of non-stationary series and this calls for real modifications. One
of such ways of modifying them is through evolutionary spectral analysis, where it is assumed that
the process changes slowly in its spectral characteristics, ie, at each time point, a stationary
interval can be defined within which the process becomes approximately stationary. Analysing

such time-dependent time series spectrally is referred to as evolutionary spectral analysis.

49



An example of a non-stationary process { X, } is

X =

{

(5.3)

X t>c’

21>

{XU, t<c

where both { X|,} and { X,,} are stationary processes but with different autocovariance

functions.

Inthis chapter, our discussions will be based on time-dependent spectral analysis of non-stationary
time series - the concept of evolutionary spectral analysis. Evolutionary spectra have essentially
the same type of physical interpretations as the stationary case, the difference being the fact that
whereas the spectrum of a stationary process describes the frequencies over all time, the
evolutionary spectrum describes the spectrum at each instant time ¢, and hence the word
evolution. It should, however, be emphasized that the decomposition into sine and cosine
functions of a time-varying quantity is based on the theory of Fourier transforms, a transformation
that employs the complex form of the Fourier integral. In Section 5.2, we shall review the theory

of the Complex Fourier Integral. Section 5.3 presents an overview of the Fourier transforms.

5.2 Complex Fourier Integral

Let X, be defined for all ¢ and assume that

o0

J1xldi <o (5.4)

Then

t

X, = {f {M(w) cos(wr) + N(w)sin(wr) }dw , (5.5)

where - 7 < w < 7, is the Fourier integral representation of X,. M(w) and N(w) are the

Fourier integral coefficients and are defined by
Mw)=+[" X,cos(wi)di and  N(w)=+]  X,sin(wnydr.  (5.6)

50



Employing (5.6) and the relations
cosf = 5(e? + ™) and sinf = L(e® - e )= -5’ - "),
where i = +/-1, equation (5.5) becomes

ijf {M(w) cos(wt) + N(w) sin(wt)}dw

= %T {M(w).%(eiw’ e ™) N(w).5(e™ - e‘iw’)}dw

{f {M(w) cos(wr)+ N(w)sin(wt)}aw
= L[ M W) - L N(w)le™ + HIM(w) + i N(w)le™ Jabw .7)

Setting

R(w)= S[M(w)-i. N(W)], then  R(w)=3[M(w)+i. N(w)]. (5.8)

equation (5.7) becomes

o0 o0

;ZI—T {M(w) cos(wt)+ N(w) sin(wt)}dw = iJ‘ R(w).e™dw+ %J‘ ﬁ(?)_("‘"dw . (5.9

Inserting integral formulae for the Fourier integral coefficients (5.6), we have

R(w)=z[M(w)-i.N(w)] = %{ T X, .cos(wt)dt - i. ]0 X,.sin(wt)dt}

-0 —0

= R(w) =7 j X, {cos(wt) - isin(wt)}dt = %j X,.e™dt, (5.10)

—0 -
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Similarly,
R(w)= % j X,.e™dt = R(-w) . (5.11)

~00

Substituting (5.10) into (5.9) yields

1 T i r —iwt
~ [ {M(w)cos(wr)+ N(w)sin(w)}aw = [ R(w).c™dw+ L] R(-w).e™dw  (512)
a 0 0

o t—8

Setting v = -w implies &v = —dw and hence the Complex Fourier integral (5.12) becomes

% {M(W) cos(wt) + N(w) sin(wt)}dw = L[ R(w).e™dw- %] R(v).e™dv

o =— 8

0
0
= R(w).e™'dw + %j R(w).e™'dw

Sty § =y §

IR(W).eiw’dw o (513)

—0o0

—,1; {M(w)cos(wr) + N(w) sin(wt)}dw = +

o t—3

is the Complex Fourier integral representation of X, . In(5.13), R(w)= > j X,.e™dt

5.3  Fourier Transforms (FT) and Inverse Fourier Transform

The Fourier transform Q (w) of the function X, for which J | X,|dt < 0 is defined as

—0

Q(w)= j X,.e™dt (5.14)

where -7 < w< 1.
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Retrieving X, given its Fourier transform Q (w) assumes the equality between the Complex

Fourier Integral and X, that is

X, =~ j R(w).e™dw . (5.15)

Substituting the formula for R(w) in (5.15), we obtain

X =+ T[% T Xé.e'iwfdfl.eiw'dw = & [ [TXé.e‘iwfdg}.e’w’dw

—o0 —o0

= & [Q(w).e™aw , (5.16)

—00

= X

1

as the inverse Fourier transform of Q(w).

5.3.1 Fast Fourier Transforms (FFT)

FFT is an algorithm for efficiently computing the values for a discrete Fourier transform. More

often than not, analysts are interested in such properties of X, as the amplitude and the periods,

knowing only measured values at equally spaced time intervals. Obtaining such information

employs the Fourier integral coefficients M(w) and N(w) to obtain approximate values for the

discrete Fourier transform. From (5.6a) and (5.6b), we have

M) =+[" X cos(wiydi,  and  N(w)= [ X, sin(wnydr,

o«

S R(w)= M(w)-i.N(w) = + [ X,[cos(w) - i sin(we) it

=0

or R(w) =+ J' X,.e™dt (5.17)

—c0
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Given the univariate time series {X,:7 = 1,2,3,..., T}, the discrete form of (5.17) which s
T

Hw)=+) X, e™, (5.18)

1=1

serves as an approximation to the discrete Fourier transform. To illustrate the algorithm, let w
be defined in terms of the variable f as

w=2Z  _—z<w<r. (5.19)

Next, suppose T is even and that we are required to find the discrete Fourier transform of X,.

One approach is to partition X, as follows

X=X (5.20a)
Xy =Xy, t=12,..%. (5.20b)

0< f<(z-1)

T/2 T/2
Hf - _}_ Xl’,.e“'z”f(z')/T n Z Xz,t.e—tZd(ﬂ—l)/T

t=1 t=1

T/2 T/2
_ 1 —i2xft/(T12) , 1 i2ﬂf/Tz —i27f11(T/2)
=72, X,,.€ +7.e X,,.e

t=1 t=1

T/2 T/2
_1J2 —i2aft/(T12) |, 2 i27rf/TZ —i2aft /(T/2)
=3\ 7 2 X,.€ + 7.e X,,.e

t=1 =1

2,f}, 0< F<(3-1) (5.21)

where
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H,

T/2 T/2
2 —i2nft/(T/2 2 —i2aft/(T/2)
L= TZ Xl,,.e i27(T/2) and Hz,f = —T-Z Xz,t.e ! , (5.22)
t=1 t=1

are respectively the (%) -point discrete Fourier transforms of X, , and X, ,.

Now, since
o2 IT12) _ pmi2af (112 gi2n e—i27r[f—(T/2)]/(T/2)’ (5.23)

we have

2

T/2 T/2
- 1)2 -i2aft/(T/2) | 2 _iQRa/T)f+(T/2)] -i2nft/(T/2)
Hf+T_ 2{]‘2 Xl,t.e ! + T.el ZXz,t.e }
t=1

2 =1

or

H, = %{Hl’f + " +§1.H2,f} 0< f<(z-1) (5.24)

2

where H LS and H, , are as defined in (5.22). Here, we have shown that the Fourier transform

of X, can be obtained from the Fourier series of the half series X,,and X 2. - In a similar

*

- - - *
sense, when (%) is even, X, and X ,; may be partitioned into two series, X oo X,, and

X

1,1

*k

X ;: respectively and used to construct the transforms H, . and H, , from the

transforms of the series of length (%4) . The procedure is followed for a series of length 2!

(/is a prime number) until partitions of only one term has been achieved, for which the Fourier

transform is equal to the term itself.

5.4  Evolutionary Spectra: The Univariate Case

In Section 5.1, we established the notion that if a process is non-stationary it cannot be
represented in form of (5.1) and (5.2), and hence cannot talk about the spectrum of the series.

Instead, Priestly (1965), considered the evolutionary spectrum for the non-stationary series X,

by generalizing the spectral decomposition of a stationary time series to

X, = [Q,(we™dz(w) (5.25)

55



with E(dzw)*) = £ (wyaw, (5.26)

T . )
where f(w) represents the spectrum of the stationary series j_” e™dz(w) and Q,(w), the

Fourier transform of X, . The evolutionary spectrum at time ¢ will is defined as

aF;(w) = E(@,wdzw)’) = |, E(dz)f)
= dF,(w) = |[Q,(w)| £ (w)aw. (5.27)

The evolutionary spectral density AD _attime 7 is obtained by differentiating through (5.27)

with respect to w . That is,

dE,(w) _|Q, (W) f(w)dw
dw dw

= S, (w)=|Q, (W f(w) . (5.28)

5.  The Uniformly Modulated Process

In this section, we discuss an interesting example of a non-stationary series that satisfies (5.25),

that is

X, = [Q (w)e™dz(w).

Let { X, } be a continuous process defined by

Lo
X, =k
D

t L

Y (5.29)

where Yt is a stationary process with spectral density function f,(w) and E,, some function

of time f. Since Y: is stationary, it can be represented as
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Y, = _[e‘”’dz(w), (5.30)

-
where z(w) is as defined in (5.1). Substituting (5.30) into (5.29) gives

X, = IE,.eiw’dz(w) (5.31)

t
-

Then by (5.27)

dF, ,(w)=|E [ dF,(w) , (532)

where dF, (W) and dF,(w) arerespectively the evolutionary spectraof X, and Y, . Thus,

p—

if an estimate of the spectrum is formed by using X, as though X were stationary, then by

(5.32) the function that we should be actually estimating is

fo W) =IE,P £, (W) (5.33)

where fx,,(w) and fy(w) are the evolutionary spectrum of X, and the spectrum of ¥,

respectively. In this case we expect that for each value of ¢, the shape of the evolutionary spectra

shouldn’t differ from that of the spectrum of the stationary series.

Example 5.1 - Evolutionary Spectra with Artificial Data
In this example, we illustrate the validity of the evolutionary spectra with realizations of artificial

time-dependent non-stationary process generated from the stationary AR(2) process

Y, = 08Y,_,-04Y, ,+ ¢, {e,} ~WN(0,100%). (5.34)
Assuming the modulated process X, is representable by

2
= e 2a2.Yt,

where a = 200, (5.35)

]
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then the evolutionary spectrum of X, is given by

JeW) = [6_} S, w) (5.36)

2

where f,(w) is the spectrumof ¥, and =, = e ** Then by the concept of evolutionary

spectra, we will expect the estimated evolutionary spectrum of the modulated process X,

to have the same shape as that of the spectrum of Y, at each time point r=1,2,3,., 100.

Using the SAS program in Chapter Appendix 5.1 produces the estimated spectrum of 7,

in Fig. 5.1, the estimated evolutionary for ¢ = 20, 40, 60, and 80 in Fig 5.2a, Fig. 5.2b,

Fig. 5.2¢, and Fig. 5.2d, just to use a few time points to illustrate the concept.

Spectrum of the Stationary Series Y

»
-
»
a
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Fig. 5.1: Spectrum of ¥,
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Evolutionary Spectrum of X when t=40
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Fig. 5.2b: Evolutionary Spectrum of X, for £ = 40.
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Fig. 5.2c: Evolutionary Spectrum of X, for = 60.
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Comparing Fig. 5.1 and Fig. 5.2a - Fig. 5.2d, it is seen that the shapes of the evolutionary spectra
of the time-dependent non-stationary series _X, (¢ =20, 40, 60, and 80) are exactly the same as

the spectrum for the stationary series Y, .

5.6  Evolutionary Cross-Spectra: The Bivariate Case
An extension of the concepts outlined above can easily be made to handle the bivariate case. Let X1,

and X, be two non-stationary processes with different stationary spectral functions S (w)

and f,,(w). Then we have

T

X, = [Q,00).e™ £, (w)dw

-

(5.37)
X,, = [Q,(w)e™ £, (wydw

with E(dz(W))= fi,(W)dw and  E(dz,(W)[*) = f,,(W)dw .

Let
X, =X, ,+X,,. (5.38)

For all #and 7, denote the autocovariance functions of {X,}, {X,,} and {X, .} by 715>

Y1ty and Y 20y then

Ve = ien T 7200 : (5.39)
Now,
Fooeny = EQCGX) = [Q(w).e™dz(w) [ Q, (w).e™ de(w)
= [Q,(w).e"Q (w).e™dz(w)= [Q (W, (w).e™ e dz(w)
S Fien = | QWA (). dz(w). (5.40)

-7
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Similarly, we have

z n

Trem = | Q. (WQ, (W).e"Ddz (W) and 7,0 = | Q,(WQ, (W)."Vdz,(w).
(5.41)
Substituting (5.39) and (5.40) in (5.38) yields
[0, ). dz(w) = [Q, (W), (). {dz,(w) + dzy (W)}
= dz(w) = dz,(w) + dzy(w)
and hence Si(wyaw = f, (w)dw+ f, (w)dw (5.42)
Thus,
S W)= fi,w)+ f,(w). (5.43)

It follows from (5.43) that the evolutionary cross-spectrum of the bivariate non-stationary

process {X,}=[{X,,} U {X,,}] has a physical interpretation similar to the cross-spectrum

of a bivariate stationary process. From (5.39), the variance of the series is obtained by setting

t = 7, and hence

z /4 T

Vi = j IQ r(w)'zdz(w) or var(X,) = jdE(W) = jﬁ(w)dw . (5.44)

-7 - hat/4

If the functions Q ,(w) are standardized so that forall @, Q,(w)=1, then f,(w)d(w) is

2
the spectrum of X, at =0 and |Q ,(w)‘ is the change in the spectrum with respect to

t

t=0.
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5.6.1 Evolutionary Co-Spectrum and Evolutionary Quadrature Spectrum
Our discussions on the evolutionary cross-spectral analysis of the class of non-stationary bivariate
processes cannot be concluded without talking about some other important functions as the

evolutionary co-spectrum and the evolutionary quadrature spectrum.

Setting 7 = ¢ — k , where the two series are separated by lag &, (5.39) becomes

T

Fiany = | QW (W)™ dw . (5.40)

-

Then, by Fourier transform we can define from (5.42), the evolutionary cross-spectrum ft (w)

as

n

fw)= 37 J‘hz(,,,_k).e""”‘dw : (5.46)

-
where 15,4y is as defined in (5.45). In terms of sine and cosine, (5.46) becomes

4

£,w) = 2 [ 713010y [cOS(w) - i sin(wk)]dw

-

o Fi )= 2 [ Fiaiy COSWR)AW = i35 [ 71300 msy - SIN(WE )W (5.47)

Hence, we can write (5.46) as

Jfi(w)= C12,t(w) - 1. QlZ,t(w) , (5.48)

where
Cias (W) = 3= | Fageaory-COS(WRYAW (5.49)
and Opae W)= 2= | 71200001y -SIN(WR YW (5.50)

-
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are respectively the evolutionary co-spectrum and evolutionary quadrature spectrum of X, and

X,,_, - Thus the evolutionary cross-spectrum f,(w) may be defined as the Fourier transform of

the evolutionary cross-covariance function. The evolutionary co-spectrum between X, , and X,,

is the evolutionary cross-covariance between in-phase components for a particular frequency, w.

Similarly, the evolutionary quadrature spectrum is the evolutionary cross-covariance between out

of phase components for a particular frequency, w.

5.6.2 Evolutionary Cross-Amplitude and Evolutionary Phase Spectrum
The evolutionary cross-spectrum now has imaginary and real components. The sum of the squares

of these components
12 2
At(w) = C’lz,t(w) + Ql2,t(w) ) (5.51)

becomes the evolutionary cross-amplitude. The evolutionary phase-spectrum is defined as

p, (W)= tan“[:%l] : (5.52)

The evolutionary cross-amplitude represents measures the evolutionary cross-covariance between
the components of the two series at a particular frequency, w, whilst the evolutionary phase

spectrum gives lead-lag relationships for a particular frequency component.

5.6.3 Evolutionary Gain-Spectrum and Coherence

The evolutionary gain-spectrum Gt (W) and the coherence Kf (w) are respectively defined by

L)
fuw)

A
fl,t(w)'f2,t(w) .

G,(w) and K} (w) (5.53)
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From (5.53), we have

1A _ |covidz, (W), dz,(W)]]

GON="r T valdam)

(5.54)

which implies that the evolutionary gain function G, (W) is simply the absolute OLS regression

coefficient of X, at a particular frequency, w.

Similarly, we can write (5.54) as

oE {eovidz(w),dz 01}
fl,t(w)-fz,z(w) B Var[dzl(w)]-var[dzz(w)] .

K} (w)= (5.55)

From (5.55), we can describe K?(w) is simply the square of the evolutionary cross-covariance

coefficient between the two series at a particular frequency, w. Thus, a value of K ,2 (w) close to

1 implies that the w-frequency components of the two series are highly linearly related, whereas
a value near zero implies they are slightly linearly related.

5.7 Summary
In this chapter, we were able to estimate the evolutionary spectrum or non-stationary time series
with time changing-spectra, and also find relationships between pairs of such series, highly

satisfactorily, employing the methods devised for stationary time series.
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CHAPTER APPENDIX 5.1

data simdat;

phit = 0.8;
phi2 =-0.4;

e2 = sqrt(10000)*rannor(0);

el = phii*e2 + sqrt(10000)*rannor(0);
do t=1 to 120;

y = phit*e1 + phi2*e2 + sqrt(10000)*rannor(0);
c1 = exp(-0.5*%((20/200)**2));
c2 = exp(-0.5%((40/200)**2));
c3 = exp(-0.5*%((60/200)**2));
c4 = exp(-0.5%((80/200)**2));

X1 = cl1*y;

X2 = c2*y;

X3 = c3*y;

X4 = c4*y,
if t>20 then output;
e2 = el;

el = y;

end;

title'Spectrum of the Stationary Series Y';
proc spectra data=simdat out=b p s adjmean whitetest;
var y;
weights 1 2 3 4 3 2 1;
run;
proc print data=b;
run;
symbol1 i=splines v=none;
proc gplot data=b;
plot p_01 * freq;
plot s_01 * freq;
run;

title'Evolutionary Spectrum X when t=20';
proc spectra data=simdat out=b1 p s adjmean whitetest;

var x1i;

weights 1 2 3 4 3 2 1;
run;
proc print data=b1;
run;

symbol1 i=splines v=none;
proc gplot data=b1;

plot p_01 * freq;

plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when t=40';
proc spectra data=simdat out=b2 p s adjmean whitetest;

var Xx2;

weights 1 2 3 4 3 2 1;
run;
proc print data=b2;
run;

symbol1 i=splines v=none;
proc gplot data=b2;

plot p_01 * freq;

plot s_01 * freq;
run;
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title'Evolutionary Spectrum of X when t=60';
proc spectra data=simdat out=b3 p s adjmean whitetest;

var x3;

weights 1 2 3 4 3 2 1;
run;
proc print data=b3;
run;

symbol1 i=splines v=none;
proc gplot data=b3;

plot p_01 * freq;

plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when t=80"';
proc spectra data=simdat out=b4 p s adjmean whitetest;

var x4;

weights 1 2 3 4 3 2 1;
run;
proc print data=b4;
run;

symbol1 i=splines v=none;
proc gplot data=b4;
plot p_01 * freq;
plot s_01 * freq;
run;
quit;
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CHAPTER 6

MONTE CARLO STUDY OF THREE COMMONLY USED UNIT ROOT TESTS

6.1 Introduction

Statistical properties of many estimation and hypothesis test procedures considered are known
only asymptotically. This holds true in all types of models. The accuracy of asymptotic theory
plays a vital role when it comes to interpreting such results. Basically, the accuracy of asymptotic
theory is determined by the sample size - the larger the sample, the more the accuracy to allow
us to interpret results with confidence. Due to the accuracy of asymptotic theory, interpretations
of such estimates as parameter and test statistics based on exact finite-sample are rarely used. One
way to deal with the accuracy of the asymptotic theory is to investigate the finite sample
properties of estimators and test statistics by using Monte Carlo simulations. In this approach,
quantities of interest are approximated by generating many random realizations of some statistical

process and averaging them in some way.

In this chapter, we apply Monte Carlo simulations to study the performance of three unit root
tests procedures that are frequently used in practice. This include the Augmented Dickey-Fuller
(ADF), the Phillips-Perron (PP), and the Reverse Dickey-Fuller Unit Root (RDFUR) unit root

test procedures.

6.2 Designing Monte Carlo Simulations

The number of replications performed in Monte Carlo studies differ in different situations. If the
researcher is interested in calculating the size of a test statistic (that is the probability p of
rejecting the null hypothesis when it is true) at some nominal level, the situation can be viewed

as independent Bernoulli trials. Let this nominal level be 0.05. In this case if for R replications 7

rejections are obtained, then the estimate of p is p= /& . Let’s allow the 95% confidence

interval on p to have a length of 0.015. Then using the normal approximation to the binomial, the

confidence interval covers2 x 1.96 = 3.92 standard errors. We therefore seek the relation

[p(l-p)r
R

392 = 0.015,
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392\
or R= p(1- p) 0.02 replications. 6.1)

Throughout our Monte Carlo study, we shall use a nominal level of 0.05. This means that the 95%
confidence interval on p requires roughly 2000 replications. If, however, the aim of the
researcher is to compare two or more test statistics or estimators, a smaller number of replications
gives the same level of accuracy as a larger one. All simulations will be carried out in SAS using
the macro processor %macro with the PROC ARIMA statement to obtain pseudo-random

variates.

6.3 Test Criteria
Given the series {X,:7 = 12,..., T} the standard univariate AR(1) process is given by

X, -p=p(X - p)+e {e,} ~WN(0,0%), (6.2)
where 4 is the mean of the series. If 4 = 0, we obtain the AR(1) process
X, =pX,_ +¢,. (6.3a)
Subtracting X,_, from both sides of (6.3a) equation yields
Z=(p-DX,_ +¢, (6.3b)

where Z, = X, - X,_,. If y # 0, we have an AR(1) process with drift

X, =C+pX_ +¢, (6.4a)

where C = (1~ p)u . Again, subtracting X,_; from both sides of (6.4a) yields

Zt =C+(p- 1)Xt-l t &, (6.4b)
where Z, = X, - X,_,. Lastly, if we replace 4 by a linear trend, we have

X,~[6+ 1= p{X, -8 +7 (- Dlf+ 4,

= X, = B+ B+ pX,  +¢, (6.53)
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where fi, =0 - 0p + py and f, = y - yp . Subtracting X,_; fromboth sides of (6.5a) gives

Zt = ﬂo + ﬂlt + (,0 - l)Xt—l + &, (6~5b)

where Z, = X, - X,_, . Inour Monte Carlo study, we simulate the finite sample null distribution

of the three test statistics using the data generating process (DGP)

X, =pX,_+¢€, X3=0 {¢,} ~WN(O,1) , (6.6)

for t = 1,2,3...,7. The AR parameter p assumes the values 1, 0.9, 0.8, 0.7, and 0.6. The null
hypothesis that H_:p =1 is of utmost importance in applications in that it tells whether it is

appropriate to transform the series by differencing or not. The test statistics will be calculated
from fitted regressions which includes a constant to ensure invariance to their respective starting

values X, (Leybourne, 1995). We also obtain test statistics based on fitted regressions that

include a trend. In a same manner, the inclusion of a trend makes the test statistics invariant to a
non-zero drift in the simulated DGP, (6.6). We study the sampling distribution based on 2000
replications of each AR process. Each simulation is performed for 7 = 100 observations. Our
Monte Carlo simulations will be used to study the sampling distributions, the size, and the powers

of three unit root test statistics.

Although we consider studying all three processes, we shall pay particular attention to only two
models, (6.4a) and (6.5a), because in practice they are regarded as realistic data descriptions
rather than a zero-drift random walk process. All SAS programs used to obtain these simulation

results are found in Chapter Appendices 6.1-6.4.

6.3.1 Augmented Dickey-Fuller (ADF) Unit Root Test Criterion
For the processes (6.3b), (6.4b), and (6.5b), the Augmented Dickey-Fuller (ADF) unit root test

statistic is given by

R p-1

Ty = mSe(ﬁ— 0’ ©.7)

where Se(p - 1) is the standard error of the coefficient of X, .
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For p =1, the percentiles of the asymptotic distribution of (6.7) based on each process have

been reported by Fuller (1976).

6.3.2 Phillips-Perron (PP) Unit Root Test Criterion
The test regressions for the Phillips-Perron (PP) test are the same as those for the ADF test listed
in(6.2). Correcting for higher order serial correlation, the PP test adjusts the #-statisticofthe (o - 1)

coefficient from the AR(1) regression to account for the serial correlation that may be in the error

term, e. The test procedure employs the Newey - West heteroskedasticity autocorrelation

2

consistent estimates of the variances of the residuals in a regression model, ¢° , and in the true

population, ¢}

~2 _ 1\N7 2
Gr=%), &, (6.8)
N
and 62 =%+ 22 [1- @5l (6.9)
k=1

where N is the relevant number of autocovariances, and y, = Z £&_, fort= k+1,..,T.

The PP test statistic is computed as

(6.10)

3

. gf\. T (ci-0?%)
Top = | 22 )%~ T
¢ 2 JO.*Z Z,=2(Xr-1 - #)2

where g is the meanof X,, X,,.., X, ,and7, 4 1s the ADF test statistic given in (6.7). The

asymptotic distribution of the PP test statistic is the same as the ADF test statistic. Based on

number of observations used in the test regression, the Newey-West automatic truncation lag

T %
N= {4(@) ] (6.11)

where [ ] refers to the largest integer not exceeding the argument.

selection N is given by
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6.3.3 The RDFUR Unit Root Test Criterion
The Reverse Dickey-Fuller Unit Root (RDFUR) test criterion is performed the same way as the

ADF test criterion. The only exception here is that the series is reversed before it is analysed.

6.4  Sampling Distributions
In this sub-section, we compare the sampling distributions for the test statistics. We simulated

samples of size T = 100 using the data generating process (DGP), the random walk with no drift

X, =pX,_ +6. X,=0 {e,} ~WN(O])).

We then include a constant term and a linear time trend to obtain the processes (6.3a), (6.4a), and
(6.5a). For convenience, we shall refer to these processes as Case I, Case II, and Case III,
respectively. The sampling distributions are summarized in Table 6.1. The table was generated
with 2000 replications. Figures 6.1, 6.2, and 6.3 display the histogram-normal distributions of the
three test statistics based on the three cases are reported. A visual examination of the plots in

figures 6.1 - 6.3 seem to be approximately normally.

Table 6.1: Sampling Distributions for ADF, PP, and RDFUR Test Statistics, with p = 1

Test Standard Jarque- Jarque- Fraction
Case Statistic Mean Median Deviation Skewness Kurtosis Bera Bera of False
Statistic p Value Rejection
ADF -0.4572 -0.5434 0.9980 0.2922 3.2340 33.0320 0.0000 0.0540
1 PP -0.4303 -0.5374 1.0140 0.3504 3.242 45.8236 0.0000 0.0475
RDFUR -0.4240 -0.4822 0.965 0.2212 3.1482 18.1331 0.0001 0.0515
ADF -1.5574 -1.5994 0.8577 0.1864 3.4401 27.7157 0.0000 0.0570
)i PP -1.5665 -1.5828 0.8804 0.1746 3.3980 23.3604 0.0000 0.0530
RDFUR -1.5529 -1.5508 0.8641 0.0810 3.3504 12.4193 0.0020 0.0545
ADF -2.1980 -2.1673 0.7835 -0.0434 3.3960 13.6957 0.0011 0.0530
I PP -2.2706 -2.2586 0.7992 0.0920 3.6026 33..0888 0.0000 0.0730
RDFUR -2.2201 -2.1944 0.7981 0.0380 3.3002 4.1547 0.1253 0.0640
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Fig. 6.1: Histogram-Normal Distributions of test statistics ADF-(6.1a), PP-(6.1b), and RDFUR~(6.1¢c) Based on Case
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Fig. 6.2: Histogram-Normal Distributions of test statistics ADF-(6.2a), PP-(6.2b), and RDFUR-(6.2¢) Based on Case II
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Fig. 6.3: Histogram-Normal Distributions of test statistics ADF-(6.3a), PP-(6.3b), and RDFUR-(6.3¢) Based on Case III
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However, since for a normal distribution the value of skewness is 0, and the value of kurtosis is
3, we conclude that none of the test statistics is normally distributed. This is confirmed by the fact
that p- values of the Jarque-Bera are smaller than the nominal level of 0.05. The results from
Table 6.1 indicate that with the exception of the ADF test statistic which is slightly negatively

skewed in Case III, the rest are right-skewed based on the three cases.

6.5  Empirical Size Comparisons

In this section, we investigate the sizes of our test statistics at the nominal 0.05 level - that is the
probability of rejecting the null hypothesis of a unit root when it is in fact true. Using R = 2000
replications, the proportions of wrongful rejections (the probability of committing a Type I €error)
are reported in the last column of Table 6.1. Table values supplied by Fuller (1976) were used for
the tests. The estimated sizes are all close to 0.05. The largest deviations were obtained in Case
111 for PP and RDFUR. The observed sizes tend to be slightly larger than the target size for the
test. In Case I and Case II, we find that the probability of our committing a Type I error is least
in Phillip-Perron (PP) unit root test procedure (ie 4.75%) compared with the other two test
procedures. Even here, the RDFUR test procedure performs better than the celebrated ADF test
procedure. However, the PP test has its worst performance in Case III, with the ADF test

procedure performing best in this case.

The last column of Table 6.1 shows in all the three case, Case I, Case I, and Case III, that the
probability of committing a Type I error (fraction of false rejection) was greater than our nominal
level of 0.05 for all the three test statistics, except in one case. Using this conventionally
acceptable nominal level of 0.05, we conclude that the null hypothesis of a unit root will be rightly

accepted using these three test statistics.

6.6  Empirical Power Comparisons

Our study of empirical power comparisons will be based entirely on the probability of committing
a Type 11 error - that is the probability of accepting the null hypothesis of a unit root while it is
in fact false.In other words, our power comparisons will be based on the ability of a test statistic
to correctly reject a false null hypothesis. Here, we simulate 7= 50, 100, 250 observations Case

I, Case I1, and Case II1, but p < 1. Specifically, we consider the cases where p =0.9, 0.8, 0.7, and
0.6. The null hypothesis we consider is H,:p = 1, the false hypothesis.
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Since comparing two or more test statistics does not necessarily require larger replications,
simulation results will be generated using 1000 replications. Table 6.2 reports the proportion of
accepting the false null hypothesis of a unit root for the three test statistics. There are several
conclusions to be drawn from the results presented in Table 6.2. First, we recognise that for each
case and each sample size T, power decreases as p increases monotonically. This is not surprising
because we know from theory that the closer the true value of p is to the hypothesized value, the
greater the probability of a Type II error, and hence the lesser the power (power is 1 minus the

probability of committing a Type II error).

Table 6.2: Empirical Power of ADF, PP, and RDFUR Tests

p
Sample Size T Case Test 0.9 0.8 0.7 0.6
ADF 0.306 0.707 0.920 0.985
PP 0.360 0.801 0.967 0.998
50 I RDFUR 0.334 0.686 0.920 0.973
ADF 0.106 0.270 0.505 0.717
50 I PP 0.129 0.361 0.678 0.907
RDFUR 0.113 0.257 0.490 0.701
ADF 0.089 0.154 0316 0.467
50 11 PP 0.097 0.205 0.434 0.715
RDFUR 0.086 0.171 0311 0.473
ADF 0.714 0.993 1.000 1.000
100 I PP 0.766 0.998 1.000 1.000
RDFUR 0.732 0.993 1.000 1.000
ADF 0.293 0.818 0.979 0.997
100 I PP 0.351 0.879 0.996 1.000
RDFUR 0.278 0.787 0.971 0.999
ADF 0.100 0.416 0.756 0.930
100 II1 PP 0.125 0.573 0.946 1.000
RDFUR 0.167 0.556 0.879 0.984
ADF 1.000 1.000 1.000 1.000
250 I PP 0.999 1.000 1.000 0.999
RDFUR 1.000 1.000 1.000 1.000
ADF 0.935 1.000 1.000 1.000
250 I PP 0.957 1.000 1.000 0.999
RDFUR 0.950 1.000 1.000 1.000
ADF 0.775 1.000 1.000 1.000
250 I1I PP 0.856 1.000 1.000 0.999
RDFUR 0.796 0.999 1.000 1.000

Second, the PP test statistics appear to be more powerful compared with the ADF and RDFUR
test statistics. Third, for 7 = 50, the performance of ADF and RDFUR were similar, no matter
the case. Detailed graphical representations of the empirical powers for the three cases are given
for figures 6.4a, 6.4b, and 6.4c. (see Chapter Appendix 6.5A for the programs used to obtain
these graphs).
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Power of ADF PP and RDFUR Tests: T= 100, Case |
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Fig. 6.5a: Empirical Power of ADF, PP, and RDFUR Tests - 7= 100, Case 1
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Fig. 6.5b: Empirical Power of ADF, PP, and RDFUR Tests - 7= 100, Case 11
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Fig. 6.5¢: Empirical Power of ADF, PP, and RDFUR Tests - 7= 100, Case III
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Similar conclusions can be drawn from the case where 7= 100. A look at Fig. 6.5a and Fig. 6.5b
(Case 1 and Case IT) suggest that the performances of the three test statistics are virtually similar,
even though PP appears to be more powerful amongst the three. For 7= 100, ADF has its worst

performance whilst PP continues to prove its dominance.

Lastly, it is evident from Fig. 6.6 (T'=250) that while all the threes tests seem to perform equally
powerful for p < 0.8 inall three cases, PP continues to be more powerful for 0.8 < p < lin Case

11 and Case I11. Furthermore, we find that in Case II and Case III, RDFUR performs better than
the celebrated ADF for 0.8 < p < 1, on the average.

Power of ADF PR and RDFUR Tests: T= 250, Case |
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Fig. 6.6a: Empirical Power of ADF, PP, and RDFUR Tests - 7= 250, Case 1
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Table 6.3a: Empirical Power of ADF, PP, and RDFUR Tests Based on Case I

power for ADF

.70

T
0.75

PHI

®®-® power for PP

4+ -+—t power for RDFUR

p
Test Sample Size T 0.9 0.8 0.7 0.6
50 0.306 0.707 0.920 0.985
ADF 100 0.714 0.993 1.000 1.000
250 1.000 1.000 1.000 1.000
50 0.360 0.801 0.967 0.998
PP 100 0.766 0.998 1.000 1.000
250 0.999 1.000 1.000 0.999
50 0.334 0.686 0.920 0.973
RDFUR 100 0.732 0.993 1.000 1.000
250 1.000 1.000 1.000 1.000
Table 6.3b: Empirical Power of ADF, PP, and RDFUR Tests Based on Case 11
p
Test Sample Size T 0.9 0.8 0.7 0.6
50 0.106 0270 0.505 0717
ADF 100 0293 0.818 0.979 0.997
250 0.935 1.000 1.000 1.000
50 0.129 0.361 0.678 0.907
PP 100 0.351 0.879 0.996 1.000
250 0.957 1.000 1.000 0.999
50 0.113 0257 0.490 0.701
RDFUR 100 0.278 0.787 0.971 0.999
250 0.950 1.000 1.000 1.000
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Table 6.3c: Empirical Power of ADF, PP, and RDFUR Tests Based on Case III

p

Test Sample Size T 0.9 0.8 0.7 0.6
50 0.089 0.154 0.316 0.467
ADF 100 0.100 0.416 0.756 0.930
250 0.775 1.000 1.000 1.000
50 0.097 0.205 0.311 0.715
PP 100 0.125 0.573 0.946 1.000
250 ’ 0.856 1.000 1.000 0.999
50 0.086 0.171 0.311 0.473
RDFUR 100 0.167 0.556 0.879 0.984
250 0.796 0.999 1.000 1.000

In Table 6.3, we summarize the empirical powers for the three test for easy assimilation. We also
include plots of these powers in Fig. 6.7, Fig. 6.8, and Fig. 6.9. We conclude from Fig. 6.7-Fig.6.9
that based on sample size, the powers increase with sample size 7 (see Chapter Appendix 6.5B

for the programs used to obtain the graphs).
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Fig. 6.7a: Size-Power Study of ADF Test - Case [
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Fig. 6.7b: Size-Power Study of PP Test - Case I
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6.7 Conclusion

In this chapter, we considered Monte Carlo studies of three most commonly used unit root tests,
namely the Augmented Dickey-Fuller (ADF), the Phillips-Perron (PP), and the Reversed Dickey-
Fuller Unit Root (RDFUR) tests. The study revealed that among these three test procedures, the
most powerful test is the PP test. We also established that these three test statistics are powertul
enough to accept(reject) the true(false) null hypothesis of a unit root in most time series.

Furthermore, our simulation evidence suggests that the power increases with sample size T.
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CHAPTER APPENDIX 6.1

Program 6.1A: Simulating Pseudo-Random Variables for ADF Test

%smacro sim(num);

%sdo i=1 %to 2000; /*2000 simulations for =1 and 1000 simulations for 0=0.9,0.8,0.7,0.6*/
data sim&num;
phi = 1.0; /*phi=1.0 for 2000 simulations and phi=0.9,0.8,0.7,0.6 for 1000 simulations*/
a = sqrt(1)*rannor(0);
do t = 1 to 100; /*100 observations. Also used 50 and 250 observations where appropriate*/
x = phi*a + sqrt(1)*rannor(0);
a = x;
if t>0 then output;
end;

proc arima data=sim&num;
identify var=x stationarity=(ADF=1); /*Computes test statistics by adding no constant to the AR(1) process,
run; by adding a constant to the AR(1), and by adding a linear trend to
the AR(1) process */

proc transpose out=a&num ;
run;

data b&num;
set a&num;
proc append base=combo data=b&num;
ssend;
run;
%mend ;
%sim;
run;

Program 6.1B: Simulating Pseudo-Random Variables for PP Test

%macro sim(num);
%sdo i=1 Sto 2000; /*2000 simulations for p=1 and 1000 simulations for »=0.9,0.8,0.7,0.6*/

data sim&num;

phi = 1.0; /*phi=1.0 for 2000 simulations and phi=0.9,0.8,0.7,0.6 for 1000 simulations*/
a = sqrt(1)*rannor(0);
do t =1 to 100; /*100 observations. Also used 50 and 250 observations where appropriate*/
X = phi*a + sqrt(1)*rannor(0);
a = x;
if t>0 then output;
end;

proc arima data=sim&num;
identify var=x stationarity=(PP=4); /*Computes test statistics by adding no constant to the AR(1) process,
run; by adding a constant to the AR(1) process, and by adding a linear trend
to the AR(1) process. Newey-West suggests PP=3 for 50 observations and
PP=4 for 100 and 250 observations */
proc transpose out=a&num ;
run;

data b&num;
set a&num;
proc append base=combo data=b&num;
ssend ;
run;
Ssmend ;
%sim;
run;
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Program 6.1C: Simulating Pseudo-Random Variables for RDFUR Test

Ssmacro sim(num);

%do i=1 %to 2000; /*2000 simulations for o=1 and 1000 simulations for 0=0.9,0.8,0.7,0.6*/
data sim&num;
phi = 1.0; /*phi=1.0 for 2000 simulations and phi=0.9,0.8,0.7,0.6 for 1000 simulations*/
a = sqrt(1)*rannor(0);
do t =1 to 100; /*100 observations. Also used 50 and 250 observations where appropriate*/
x = phi*a + sqrt(1)*rannor(0);
a = x;
if t>0 then output;
end;

proc sort data=sim&num out=rev&num; /*Reverses the Simulated Series, ie it turns the series upside-down*/
by descending t;

proc arima data=sim&num;
identify var=x stationarity=(ADF=1); /*Computes test statistics by adding no constant to the AR(1) process,
run; by adding a constant to the AR(1) process, and by adding a linear
trend to the AR(1) process */
proc transpose out=a&num ;
run;

data b&num;
set a&num;
proc append base=combo data=b&num;
send;
run;
smend ;
%sim;
run;

CHAPTER APPENDIX 6.2

Programs for Selecting Only the Test Statistics from the SAS Output
(ADF)

Program 6.2A: Based on T = 50 Observations

data a;
infile 'c:\mcadf50\0.9.dat'; /* 0.9 means when »=0.9. It's replaced by 1.0,0.8,0.7,0.6 where appropriate*/
input #79 @48 tadf1 / @48 tadf2 / / / / @48 tadf3 #88;

ADFI=tadf1; /* With No Constant */
ADFII=tadf2; /* With Constant */
ADFIII=tadf3; /* With Linear Trend */
keep ADFI ADFII ADFIII;
proc print;
run;

Program 6.2B: Based on T = 100 Observations

data b;
infile 'c:\mcadf100\0.9.dat"';
input #121 @48 tadf1 / / / / @48 tadf2 / / / @48 tadf3 #130;

ADFI=tadf1; /* With No Constant */
ADFII=tadf2; /* With Constant */
ADFIII=tadf3; /* With Linear Trend */
keep ADFI ADFII ADFIII;
proc print;
run;
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Program 6.2C: Based on T = 250 Observations

data c;
infile 'c:\mcadf250\0.9.dat'; /* 0.9 means when p=0.9. It’'s replaced by 1.0,0.8,0.7,0.6 where appropriate*/
input #121 @48 tadf1 / / / / @48 tadf2 / / / @48 tadf3 #130;

ADFI=tadf1; /* With No Constant */
ADFII=tadf2; /* With Constant */
ADFIII=tadf3; /* With Linear Trend */
keep ADFI ADFII ADFIII;
proc print;
run;
CHAPTER APPENDIX 6.3

Programs for Selecting Only the Test Statistics from the S4S5 Output
(PP)

Program 6.3A: Based on T = 50 Observations

data a; /* 0.9 means when p=0.9. It’s replaced by 1.0,0.8,0.7,0.6 where appropriate*/
infile 'c:\mcpp50\0.9.dat’;
input #82 @59 tppl / / / / / / @59 tpp2 / / / [/ / @59 tpp3 #94;

PPI=tpp1; /* With No Constant */
PPII=tpp2; /* With Constant */
PPIII=tpp3; /* With Linear Trend */

keep PPI PPII PPIII;
proc print;
run;

Program 6.3B: Based on T = 100 Observations

data b; /* 0.9 means when =0.9. It’s replaced by 1.0,0.8,0.7,0.6 where appropriate*/
infile 'c:\mcpp100\0.9.dat"';
input #125 @59 tppt / / / / / /1 /1 /] 1 /] @9 tpp2 / / / / | / @59 tpp3 #144;

PPI=tpp1; /* With No Constant */
PPII=tpp2; /* With Constant */
PPIII=tpp3; /* With Linear Trend */

keep PPI PPII PPIII;
proc print;
run;

Program 6.3C: Based on T = 250 Observations

data c;
infile 'c:\mcpp250\0.9.dat’';
input #125 @59 tppt / / / / / / /1 /] [ / @59 tpp2 / / / | / / @59 tpp3 #144;

PPI=tppi; /* With No Constant */
PPII=tpp2; /* With Constant */
PPIII=tpp3; /* With Linear Trend */

keep PPI PPII PPIII;
proc print;
run;
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CHAPTER APPENDIX 6.4

Programs for Selecting Only the Test Statistics from the SAS Output
(RDFUR)

Same programs as those used for the ADF case in Chapter Appendix 6.2. The only difference is
that the series is reversed

by the statements

proc sort data=sim&num out=rev&num;
by descending t;

in Program 6.1C before analysis.

CHAPTER APPENDIX 6.5
Program for Plotting the Power Graphs

Program 6.5A: Power Graphs Based on Various Test Statistics

data rino;
input phi pwi pw2 pw3 @ee;
keep phi pw1-pw3;

label pw = 'power'

pwi = 'power for ADF'
pw2 = 'power for PP'
pw3 = ‘power for RDFUR';
cards;
0.9 - - -
0.8 - - - /* The dashes are the appropriate powers at various p */
0.7 - - -
0.6 - - -
¥
proc gplot;
plot (pwl-pw3)*phi / overlay vaxis=r to 1 by s legend haxis=0.6 to 0.9 by 0.05;
symbol1 1=1 i=join v=none;
symbol2 1=2 i=join v=dot; /* r and s are respectively the minimum and maximum powers
symbol3 1=3 i=join v=plus; appropriately chosen in a given case */
symbol1l 1=1 i=join c=none;
symbol2 1=2 i=join c=dot;
symbol3 1=3 i=join c=plus;
run;
quit;
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Program 6.5B: Power Graphs Based on the Sample Size T

data rino;
input phi p50 p100 p250 ea@;
keep phi p50 p100 p250;
label p50 = 'power of sample size 50'

p100 = ‘'power of sample size 100’
p250 = 'power of sample size 250';
cards;
0.9 - - -
0.8 - - - /* The dashes are the appropriate powers at various sample sizes */
0.7 - - -
0.6 - - -
)
proc gplot;
plot (p50 p100 p250)*phi / overlay vaxis=r to 1 by s legend haxis=0.6 to 0.9 by 0.05;
symbol1 1=1 i=join v=none;
symbol2 1=2 i=join v=dot; /* r and s are respectively the minimum and maximum powers
symbol3 1=3 i=join v=plus; appropriately chosen in a given case */
symbol1 1=1 i=join c=none;
symbol2 1=2 i=join c=dot;
symbol3 1=3 i=join c=plus;
run;
quit;
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CHAPTER 7

PRACTICAL ILLUSTRATIONS - 1

7.1  Introduction
In this chapter, we shall illustrate the methodologies discussed in Chapter 2 and Chapter 3 with

three non-seasonal time series. The series to be used in the illustrations are data on:

Series 2: Eskom stock yields traded on the Johannesburg Stock Exchange
Series 3: Gold shares traded on the Johannesburg Stock Exchange
Series 4. Consumer Price Index (CPI) for South Africa at 1995 prices.

Series 2, Series 3, and Series 4 are monthly observations. Series 2 covers the period January 1990
- June 1999. Series 3 covers the period January 1990 to April 1999 whilst Series 4 are
observations from January 1994 to October 1999.

Section 7.2 and Section 7.3 illustrate the Dickey-Fuller and Phillips-Perron unit root tests. In
Section 7.4, we shall test for unit roots in all the three data sets using the frequency domain
approach. In Section 7.5, we illustrate testing for unit roots using the RDFUR test for stationary.
Section 7.6 gives a summary of results. All computer programs are contained in Appendix G.

Statistical softwares used in the analysis are SAS/ETS software, Minitab, Matlab, and E-Views.

7.2 The Dickey-Fuller Unit Root Tests for Stationarity
In this section, we consider testing for unit roots in Series 2, Series 3, and Series 4. Each series

is discussed separately and comprehensively.

7.2.1 Testing for a Unit Root in Series 2
Fig. 7.1 is a plot of Series 2. Accompanying this plot in Fig. 7.2 and Fig. 7.3 are the plots of the

autocorrelation functions and partial autocorrelation functions using Program 7.1 (Appendix G).
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Partial Autocorrelations

Lag Correlation -1 9876 54321012345678891

1 0.91334 | [HrrxrxrREERIAANIRE |
2 -0.38990 | ARAXERHR | |
3 -0.09298 | .o |
4 -0.10692 | LR |
5 -0.01817 | | |
6 -0.02523 | *| |
7 -0.00961 | [ |
8 -0.02953 | *| |
9 -0.05299 | *| |
10 0.02765 | | * |
11 -0.17991 | *rax | |
12 0.07661 | [** |
13 0.01813 | | |
14 -0.02472 | I |
15 0.06540 | [* |
16 -0.10958 | x| |
17 0.07776 | [** |
18 0.00267 | | I
19 -0.08600 | | |
20 0.03209 | | * |
21 -0.19685 | *rax | |
22 -0.01428 | | |
23 -0.01280 | [ |
24 0.05415 | |* |

Fig. 7.3: Sample pacf’s for Series 2

The sample acf’s pacf’s in Fig. 7.2 and Fig. 7.3 suggest an AR(2) process to Series 2. Then
testing for a unit root in the AR(2) process, with p = 2, the regression model in equation (2.35)

assumes the following representation

1
Z,=0+(p-DX,_ + Z a,Z,_;+ &,

J=1
Z,=0+(p-DX,_+a,Z_ +¢ (7.1)

Jj=01.

—j —j-1>

where (5':/1(1—2¢ij, and Z, = X,_,- X

Equation (7.1) suggests regressing Z on (1), X, ,,and Z, , for t=3,45,..,115, atotal of

113 observations. Summary of the OLS results given in Table 7.1 were obtained using the

following SAS statements in Program 7.2 (Appendix G).
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Table 7.1 Regression Results - Series 2

Dependent Variable: Z Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 5.63102 2.81551 12.802 0.0001
Error 110 24.19120 0.21992
C Total 112 29.82223
Root MSE = 0.46896 R-square = 0.1888 C.V. = -58880.07256
Dep Mean =-0.00080 Adj R-sq = 0.1741

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 1.839327 0.56000055 3.285 0.0014
X1 1 -0.120445 0.03654191 -3.296 0.0013
Z1 1 0.389872 0.08778325 4.441 0.0001

The fitted regression model is

A

Z, =18393-01204X%,_,+ 038997, _, , (7.2)
(0.5600) (0.0365) (0.0878)
Figures in parentheses below the coefficients are standard errors. The estimate of (p - 1), which

is the coefficient of X, ; is -0.1204 with standard error 0.0365. The test statistic for testing

the presence of a unit root in Series 2 is

p-1  -01204
Se(p-1) 00365

7= = -3.2986. (7.3)

At the 0.05 level of significance the critical value is -2.8891 [see Appendix F(a)]. Since
-3.2986 < ~2.8891, the unit root hypothesis that Series 1 contains a unit root is rejected. We
therefore conclude that Eskom stock yields (Series 2) traded on the JSE from January 1990 to

July 1999 is stationary, and hence the series does not require any differencing.

7.2.2 Testing for a Unit Root in Series 3
Series 3 is presented pictorially in Fig. 7.4. Fig. 7.5 and Fig. 7.6 are respectively the plots of the

autocorrelation functions and partial autocorrelation functions using Program 7.3 (Appendix G).
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16 -3.550109 -0.00544 | | | 0.284236
17 -19.702077 -0.03018 | * | | 0.284237
18 -45.044096 -0.06900 | *| | 0.284266
19 -71.082544 -0.10888 | *x | | 0.284415
20 -91.655430 -0.14040 | *E | | 0.284787
21 -108.566 -0.16630 | bl | 0.285405
22 -120.792 -0.18503 | *ERE | | 0.286269
23 -123.292 -0.18886 | A | 0.287334
24 -127.347 -0.19507 | . *rxx | | 0.288440

v " marks two standard errors

Fig. 7.5: Sample acf’s for Series 3
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Fig. 7.6: Sample pacf’s for Series 3

Fig. 7.2 and Fig. 7.3 suggest an AR(1) process to Series 3. Testing for a unit root in Series 3 is

based on the following regression model
Z,=0+(p-DX,_ +¢, (7.4)

where J = ,u(l— ¢1) and Z, = X, - X,_,. The process in (7.4) suggests regressing Z, on

(D and X . for t=23.4, ....,112, atotal of 111 observations. The regression results in Table

7.2 were obtained using Program 7.4 (Appendix G). The fitted model is

Z = 48516~ 0.0613X,_|, (1.5)

{2.7968) (0.0304)

Figures in parentheses are standard errors of the coefficients.
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Table 7.2: Regression Results - Series 3

Dependent Variable: Z Analysis of Variance
Sum of Mean

Source DF squares Square F value Prob>F
Model 1 273.49217 273.49217 4.069 0.0461
Error 109 7325.75108 67.20873
C Total 110  7599.24324

Root MSE 8.19809 R-square 0.0360

Dep Mean -0.56757 Adj R-sq 0.0271

c.V. -1444 .42587

Parameter Estimates

Parameter Standard T for HO:
variable OF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 4.851561 2.79681976 1.735 0.0856
X1 1 -0.061349 0.03041202 -2.017 0.0461

The estimate of (p - 1) of X, is -0.0613 with standard error 0.0304. The test statistic for

testing the presence of a unit root in Series 3 is

p-1  -00613
Se(p-1) 00304

7= =-2.0164. (7.6)

At the 0.05 level of significance the critical value is -2.8893. Since - 20164 > -2.8893, the unit
root hypothesis that Series 3 contains a unit root 1s accepted. We conclude that Gold Shares
(Series 3) traded on the JSE from January 1990 to April 1999 is non-stationary, and hence

differencing is required to induce stationarity.

7.2.3 Testing for a Unit Root in Series 4

A plot of Series 4 is shown in Fig. 7.7. Plots of the autocorrelation functions and partial
autocorrelation functions of the series using Program 7.5 (Appendix G) are given in Fig. 7.7 and
Fig. 7.8.The sample acf’s pacf’s in Fig. 7.2 and Fig. 7.3 suggest an AR(1) process to Series 4.
The Box-Jenkins approach suggests that d could be equal to 2. However, the persistent upward
trend in Fig. 7.7 also tells us that a deterministic time trend should be added to the AR(1)

process. The AR(1) process with a deterministic time trend is

Xt = (ﬂo + ﬁlt)'*' pXt—l t gt ’ {gt} =~ W]V(O’GZ)- (7-7)
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Fig. 7.7: Series 4
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Fig. 7.8: Sample acf’s for Series 4
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Fig. 7.9: Sample pacf’s for Series 4

Subtracting X,_; from both sides of (7.8) yields
Xt - Xt—l = /Bo t ﬂ1t+ (p - 1)Xz-1 T &,
or Z=p+/t+(p-DX,+¢, where Z, = X, - X,_,. (7.8)

Here, equation (7.8) suggests regressing Z, on (1), ¢, and X, , for r=23,4,...,70,a total of

69 observations. The regression results in Table 7.3 were obtained using Program 7.6.

Table 7.3: Regression Results - Series 4

Dependent Variable: Z Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 0.32189 0.16095 2.311 0.1071
Error 66 4.59579 0.06963
C Total 68 4.91768
Root MSE = 0.26388 R-square = 0.0655 C.V.= 36.27050
Dep Mean = 0.72754 Adj R-sq = 0.0371

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 1.924610 3.18763085 0.604 0.5481
T 1 0.014346 0.02652752 0.541 0.5905
X1 1 -0.015482 0.03733525 -0.415 0.6797
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The fitted regression model is

7 =19246+ 00143t - 00155X,, , (7.9)

(3.2141) (0.0265) (0.0373)

Standard errors of the coefficients are in parentheses. The estimate of (p - 1) is-0.0155 with

standard error 0.0373. The Dickey-Fuller test statistic

p-1__ -00155
Se(f-1) 00373

7= = -04155. (7.10)
exceeds the 5% critical value of -2.9148. The null hypothesis of a unit root in Series 4 is thus
accepted. We conclude that the Consumer Price Index (Series 4) from January 1994 to October

1999 is non-stationary and that it requires detrending and differencing to attain stationarity.

7.3  Phillips-Perron Unit Root Test for Stationarity

In the section, we illustrate the Phillip-Perron unit roots test procedure using the three series,
namely Series 2, Series 3, and Series 4. We will then compare the results with the results in
Section 7.2 using the Dickey-Fuller test. Results that will be reported here are all obtained using
EViews.

7.3.1 Phillips-Perron Unit Root Test on Series 2
Results from the Phillip-Perron unit root test on Series 2 are given in Table 4.4. From the results

in Table 7.4, the estimated Phillips-Perron test equation is given by

A

Z = 13238- 00866X,_,. (7.11)

(0.5897)  (0.03848)

The Newey-West estimator suggests using the first N = 4 autocovariances. The Phillips-Perrron

test statistic TApp is given by

~

- ~2.940378. (7.12)

Top
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Table 7.4: Phillips-Perron Unit Root Test on Series 2

PP Test Statistic -2.940378 1% Critical Value* -3.4885
5% Critical Value -2.8868
10% Critical Value -2.5801

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 4 ( Newey-West suggests: 4)

Residual variance with no correction 0.250351

Residual variance with correction 0.439887

Phillips-Perron Test Equation

Dependent Variable: D(ESKOM)

Method: Least Squares

Sample(adjusted): 1990:02 1999:07

Included observations: 114 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

ESKOM(-1) -0.086641 0.038473 -2.251985 0.0263

C 1.323751 0.589675 2.244884 0.0267
R-squared 0.043319 Mean dependent var 8.77E-05
Adjusted R-squared 0.034777 S.D. dependent var 0.513812
S.E. of regression 0.504798 Akaike info criterion 1.488072
Sum squared resid 28.53999 Schwarz criterion 1.536076
Log likelihood -82.82013 F-statistic 5.071439
Durbin-Watson stat 1.287472 Prob(F-statistic) 0.026273

Comparing the Phillips-Perron statistic with the 5% critical value of —2.8868, we see that
—2.940378 < -2.8868. We again conclude that Eskom stock yields (Series 2) traded on the JSE
from January 1990 to July 1999 is stationary, and hence the series does not require any

differencing.

7.3.2 Phillips-Perron Unit Root Test on Series 3
Table 7.5 contains results from the Phillip-Perron unit root test on Series 3. The estimated

Phillips-Perron test equation is

Z = 48516- 00613X,_,. (7.13)

(2.7968) (0.0304)

The Phillips-Perron test statistic is 7, = -2.254683. The 5% critical value is -2.8874. Since -

2.254683 > -2.8874, we accept the unit root null hypothesis and conclude that Gold Shares
(Series 3) traded on the JSE from January 1990 to April 1999 is non-stationary, and hence

differencing is required to induce stationarity.
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Table 7.5: Phillips-Perron Unit Root Test on Series 3

PP Test Statistic -2.254683 1% Critical Value* -3.49
5% Critical Value -2.8874
10% Critical Value -2.5804

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 4 ( Newey-West suggests: 4 )

Residual variance with no correction 65.99776

Residual variance with correction 90.68927

Phillips-Perron Test Equation

Dependent Variable: D(GOLDSHARE)

Method: Least Squares

Sample(adjusted): 1990:02 1999:04

Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

GOLDSHAREC(-1) -0.061349 0.030412 -2.017249 0.0461

C 4.851561 2.79682 1.734671 0.0856

R-squared 0.035989 Mean dependent var -0.567568
Adjusted R-squared 0.027145 S.D. dependent var 8.31168
S.E. of regression 8.198093 Akaike info criterion 7.063534
Sum squared resid 7325.751 Schwarz criterion 7.112354
Log likelihood -390.0261 F-Statistic 4.069296
Durbin-Watson stat 1.52251 Prob(F-statistic) 0.046127

7.3.3 Phillips-Perron Unit Root Test on Series 4
The Phillips-Perron unit root test results on Series 2 are found in Table 7.6. The estimated

Phillips-Perron test equation is

Z, = -00155+ 195331+ 0.0143X,_, . (7.14)

(0.0373) (3.2405) (0.0265)

The Phillips-Perron test statistic is 7,, = -1.0269 and the 5% critical value is -3.4749. Since -

1.0269 > -3.4749, we accept the null hypothesis that data on Consumer Price Index (Series 4)
from January 1994 to October 1999 is non-stationary and that it requires detrending and

differencing to attain stationarity.
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Table 7.6: Phillips-Perron Unit Root Test on Series 4

PP Test Statistic -1.026887 1% Critical Value*  -4.0948
5% Critical Value -3.4749
10% Critical Value -3.1645
*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel: 3 ( Newey-West suggests: 3 )
Residual variance with no correction 0.066606
Residual variance with correction 0.116479

Phillips-Perron Test Equation

Dependent Variable: D(CPI)

Method: Least Squares

Sample(adjusted): 1994:02 1999:10

Included observations: 69 after adjusting endpoints

Variable Coefficient Std. Error  t-Statistic Prob.
CPI(-1) -0.015482 0.037335 -0.414688 0.6797
C 1.953302 3.240522 0.602774 0.5487
t 0.014346 0.026528 0.540787 0.5905
R-squared 0.065456 Mean dependent var 0.727536
Adjusted R-squared 0.037136 S.D. dependent var 0.268922
S.E. of regression 0.263881 Akaike info criterion 0.215868
Sum squared resid 4. 595790 Schwarz criterion 0.313003
Log likelihood -4 447437 F-statistic 2.311332
Durbin-Watson stat 1.235898 Prob(F-statistic) 0.107101

7.4 Frequency Domain Test for Stationarity
In this section, we shall illustrate the methodology using Series 2, Series 3, and Series 4. Series

2 is made up of 115 observations and hence the number of periodogram ordinates required

is [\/7 ] = [\/1 15] =10 . Similarly, Series 3 and Series 4 require 10 and 8 periodogram ordinates

respectively.

7.4.1 Frequency Domain Test for Stationarity on Series 2
Using the SAS program in Program 7.7, the periodogram ordinates of Series 2 are given in

Appendix B. The first perodogram ordinate of the undifferenced series is 7, (w,) = 11.1613.

Next, we estimate the quantity0'2¢2 using the periodogram of the differenced series

Z=X-X_,.
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Table 7.7: Periodogram Analysis Results - Series 2

0BS FREQ PERIOD P_01 S_01
2 0.05512 114.000 0.03430 0.01957
3 0.11023 57.000 0.49236 0.03788
4 0.16535 38.000 0.56144 0.05876
5 0.22046 28.500 0.53428 0.08494
6 0.27558 22.800 2.68777 0.10770
7 0.33069 19.000 1.01021 0.11350
8 0.38581 16.286 2.15378 0.11244
9 0.44093 14.250 0.34640 0.09584

10 0.49604 12.667 1.93284 0.09240
11 0.55116 11.400 0,14653 0.08474

Table 7.7 contains the first 10 periodogram ordinates of the differenced series. The estimate of & 2¢ 2

is

~

17.(w,) = 5(2)(0.03430+ 0.49236+...4+0.14653) = 0.4950.

JT
22 1
g ¢ -t

k

—

The test statistic

2

. ( i j]( ail 111613 = 00673  (7.15
A = x 11. = 0. .
v =g ) 04950(115%) (7.15)

is less than the 5% critical value of 0.1780 (see Appendix G(c)). Hence, we reject the null
hypothesis that

H:p=1,

and conclude that the series does not contain a unit root. We conclude that Eskom stock yields

(Series 2) traded on the JSE from January 1990 to July 1999 is stationary.

7.4.2 Frequency Domain Test for Stationarity on Seriés 3

Here, we use the SAS program in Program 7.7 with the observations replaced by those of Series

3. The first periodogram ordinates of undifferenced Series 3 is [, (w,) = 24124.25. Using the

first differenced Series 3, the first 10 periodogram ordinates are reported in Table 7.8.
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Table 7.8: Periodogram Analysis Results - Series 3

0oBS FREQG PERIOD P_O1 S_01
2 0.05661 111.000 229.652 17.0044
3 0.11321 55.500 130.383 17.1609
4 0.16982 37.000 112.259 17.3828
5 0.22642 27.750 606.027 18.5998
6 0.28303 22,200 2.127 15.4000
7 0.33963 18.500 143.548 13.5832
8 0.39624 15.857 194 .938 11.7487
9 0.45284 13.875 94.352 9.3962

10 0.50945 12.333 52.652 10.3472
11 0.56605 11.100 153.189 12.4967

Our estimate of o >¢? is given by

JT
o9 = LY L1(w;) = 5(3)229.625+ 130383+...+153189) = 83.3238.

k=1

Thus, the test statistic is given by

- ( 477 jl an” 2412435= 09112 7.16
- —— = X . = V. .
SR P x (W) 833238(112%) - 09

The 5% critical value is 0.1780. Since 0.9112 > 0.1780, we cannot reject the null hypothesis that

H_:p =1, and conclude that Gold Shares (Series 3) traded on the JSE from January 1990 to

April 1999 is non-stationary.

7.4.3 Frequency Domain Test for Stationarity on Series 4
Using the undifferenced Series 4 and Program 7.7 with the observations replaced by those of

Series 4, we obtain 7, (w,) = 8728.44 as the first periodogram ordinate. The first 8 periodogram

ordinates of first-differenced Series 4 are contained in Table 7.9. The estimate of & 2¢ 2 is given

I,w)) = 5(£)(029484 + 040007+...+0.61998) = 2.65265.

Q
N
.
N

I
S
N[
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Table 7.9: Periodogram Analysis Results - Series 4

0BS FREQ PERIOD P_01 s_o1
2 0.09106  69.0000  0.29484  0.025593
3 0.18212  34.5000  0.40007  0.024655
4 0.27318 23.0000 0.38613 0.021838
5  0.36424  17.2500  0.11975  0.019728
6  0.45530  13.8000  0.19005  0.020977
7 0.54636 11.5000 0.02224 0.023285
8 0.63742 9.8571 0.61959 0.028236
9 0.72849 8.6250 0.61998 0.029081
For the test statistic, we have
2
- ( 4 )1 (w,) 47 872844 = 265106 7.17)
o= = w = X = 26.
1 2292 2 : : ~
o 9T XA 2.65265(707)

Since the test statistic of 26.5106 is greater than the 5% critical value of 0.178, we reject the
null hypothesis that H :p = 1, and conclude that the Series 4 contains a unit root. This means

that data on Consumer Price Index (Series 4) from January 1994 to October 1999 is non-

stationary.

7.5 The RDFUR Stationarity Test
In this section, we apply the Reverse Dickey-Fuller Unit Root (RDFUR) test to Series 2, Series

3, and Series 4. The reverse data sets are found in Appendix E.

7.5.1 RDFUR Stationary Test on Reversed Series 2
Appendix E-1 contains reverse Series 2. Fig. 7.10 and Fig. 7.11 are the sample acf’s and pacf’s
of reversed Series 2. The sample acf’s and pacf’s suggest fitting an AR(1) process to reversed

Series 2. The output from E-Views is given in Table 7.10. The fitted AR(1) process is

7" =221597- 014480, , (7.18)

(0.75186) (0.04898)
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1.0
8 08 -
= 06
© 04 - - -
© 0z l+ r_| 1
§ 02 4~
8 04 A
06 -
3 o -
1.0
I
5
Lag Corr T LBQ Lag
1 086 917 8632 10
2 072 493 148.40 11
3 056 3.20 185.86 12
4 040 213 205.60 13
5 027 1.37 21446 14
6 0.14 071 21696 15
7 003 017 217.11 16
8 004 -022 21735 17
9 010 -050 218.65 18

Corr

-0.14
-0.18
-0.21
-0.22
-0.22
-0.20
-0.18
-0.16
-0.13

T

-0.69
0.89
-1.02
-1.07
-1.07
0.94
0.86
0.76
063

LBQ

221.10
225.33
230.95
237.37
24395
249.12
263.56
25713
259.65

Fig. 7.10: Sample acf’s of Reversed Series 2
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Table 7.10: Dickey-Fuller Test on Reversed Series 2

ADF Test Statistic -2.956684 1% Critical Value* -3.4885
5% Critical Value -2.8868
10% Critical Value -2.5801
*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fulier Test Equation

Dependent Variable: D(RESKOM)

Method: Least Squares

Sample(adjusted): 1990:02 1999:07

included observations: 114 after adjusting endpoints

Variable Coefficient Std. Error  t-Statistic Prob.

RESKOM(-1) -0.144803 0.048975 -2.956684 0.0038
C 2.21597 0.751857 2.947328 0.0039
R-squared 0.072402 Mean dependent var  -8.77E-05
Adjusted R-squared 0.06412 S.D. dependent var  0.655489
S.E. of regression 0.634126 Akaike info criterion  1.944251
Sum squared resid 45.03701 Schwarz criterion  1.992254
Log likelihood -108.8223 F-statistic 8.741978
Durbin-Watson stat 1.940602 Prob(F-statistic)  0.003793

The Dickey-Fuller test statistic for reversed Series 2 is 7. = =2.9567 . The 5% critical value is

-2.8868. Since -2.9567 < -2.8868, we reject the null hypothesis that p =1 and conclude that
Series 2 (Eskom stock yields traded on the JSE from January 1990 to July 1999) is stationary.

7.5.2 RDFUR Stationary Test on Reversed Series 3

Reversed Series 3 is found in Appendix E-2. The sample acf’s and pacf’s of reversed Series 3 are
shown in Fig. 7.12 and Fig. 7.13 Here again, the sample acf’s and pacf’s clearly suggest fitting
an AR(1) process to reversed Series 3. From the regression results in Table 6.11, the fitted AR(1)

process is

2" = 45006- 00448X, | (7.19)

(2.8500) (0.0312)
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Fig. 7.13: Sample pacf’s of Reversed Series 3
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Table 7.11: Dickey-Fuller Unit Root Test on Reversed Series 3
ADF Test Statistic -1.43652 1% Critical Value* -3.49
5% Critical Value  -2.8874
10% Critical Value  -2.5804
*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RGSHARE)

Method: Least Squares

Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
RGSHARE(-1) -0.044827 0.031205 -1.43652 0.1537
C 4.500625 2.849962 1.579188 0.1172

Since the Dickey-Fuller test statistic for reversed Series 3, 7, = —143652 is greater than the

5% critical value -2.8874, we cannot reject the null hypothesis that p" = 1. We conclude that
Series 3 (gold shares traded on the JSE from January 1990 to April 1999) is non-stationary.

7.5.3 RDFUR Stationary Test on Reversed Series 4
The sample acf’s and pacf’s of reversed Series 4 in Appendix E-3 are as shown in Fig. 7.14 and

Fig. 7.15.
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6 0.73 2.10 324.24 13 045 101 516.83
7 0.69 1.86 362.26 14 0.41 0.91 53206

Fig. 7.14: Sample acf’s of Reversed Series 4
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Partial Autocorrelation Function for RCPI
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Fig. 7.15: Sample pacf’s of Reversed Series 4

In addition to the AR(1) process being suggested by the sample acf’s and pacf’s, the downward
trend of the reversed Series 4 (not shown here) suggests that we include a time trend in the
model. Here again, the Box-Jenkins approach suggests d to be 2. Regression results for the time-

trend AR(1) reversed Series 4 are given in Table 7.12.

Table 7.12: Dickey-Fuller Unit Root Test on Reversed Series 4

ADF Test Statistic -2.055859 1% Critical Value* -4.0948
5% Critical Value -3.4749
10% Critical Value -3.1645

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(RCPI)

Method: Least Squares

Included observations: 69 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

RCPI(-1) -0.072324 0.03518 -2.055859 0.0438
C 9.082669 4.829517 1.880658 0.0644
t -0.048174 0.025117 -1.917976 0.0594
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From the reults in Table 7.12, the fitted AR(1) process is

2" =9.0827- 00482 - 0.0723X, (7.20)

(4.8295) (0.0251) (0.0352)

The Dickey-Fuller test statistic for reversed Series 4 is 7. = —2.055859 . The 5% critical value

is -3.4749. We reject the null hypothesis that p" =1 since -2.055859 > -3.4749 and conclude
that Series 4 is non-stationary.

7.6 Summary

In this chapter, we have used real data sets to illustrate the methodologies in Chapter 2 and
Chapter 3. Results from using both the Dickey-Fuller, and Phillips-Perron, and the Frequency-
Domain tests for stationarity gave the same conclusions. These test procedures established that
Series 2 is stationary whilst Series 3 and Series 4 are non-stationary. These conclusions apply

solely on data used and not in general.
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CHAPTER 8
PRACTICAL ILLUSTRATIONS -2

8.1 Introduction

This chapter illustrates the methodologies discussed in the chapters 4 and 5 with 6 data sets -
Series 1, Series 2, Series 3, Series 4, and two simulated series. In Section 8.2 and Section 8.3,
we determine the differencing degree in all the series using the periodogram method, and the lag-
window method. In Section 8.4, we illustrate the Evolutionary Spectral Analysis using data on
the effective nominal exchange rate of the South African rand indexed 1990=100. The effective
nominal exchange rate is the weighted average exchange rate of the rand against six most
important currencies. We also illustrate the Bivariate Evolutionary Cross-Spectral Analysis using

the two simulated time series data. Section 8.5 summarizes the results.

8.2  Degree of Differencing, d - The Periodogram Method
In this section, we employ the periodogram method to obtain the degree of differencing d

needed to transform Series 2, Series 3, and Series 4, assuming they are non-stationary series.

8.2.1 Degree of Differencing in Series 2
In this sub-section we illustrate the periodogram method of estimating the differencing degree in
Series 2. Series 2 contains 115 observations and hence the regression analysis will involve

approximately the first

A = 115°° = 11 periodogram ordinates.

The SAS statements in Program 8.7 generate the sample smoothed periodogram of Series 2,
using the triangular weighting in (4.57). The corresponding SAS output is given Appendix B.

Spectral densities for the first 11 frequencies are reproduced in Table 8.1 below. Program 8.11s

a SAS program for regressing M =1In/ () on N = ln[4 sinz(%)] with its corresponding

SAS output given in Appendix C. The regression results are given in Table 8.2.
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Table 8.1: Periodogram Analysis Results - Series 2

OBS FREQ PERIOD P_01 S_01
2 0.05464 115.000 11.1613 1.54352
3 0.10927 57.500 38.9346 1.71100
4 0.16391 38.333 22.2028 1.74219
5 0.21855 28.750 9.7468 1.67976
6 0.27318 23.000 35.2096 1.58162
7 0.32782 19.167 11.5292 1.22804
8 0.38245 16.429 14.4221 0.95710
9 0.43709 14.375 1.1525 0.66136

10 0.49173 12.778 7.8980 0.43508
11 0.54636 11.500 0.7407 0.31059

Table 8.2: Regression Results for the Estimation of d in Series 2 - Periodogram Method

Dependent Variable: M Analysis of Variance
sum of Mean

Source DF Squares sSquare F Value Prob>F
Model 1 4.,59922 4.59922 3.334 0.1053
Error 8 11.03634 1.37954
C Total 9 15.63555

Root MSE 1.17454 R-square 0.2942

Dep Mean 2.20348 Adj R-sq 0.2059

C.vV. 53.30373

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T]|
INTERCEP 1 0.829891 0.83898143 0.989 0.3516
N 1 -0.490077 0.26840441 -1.826 0.1053

From the results in Table 8.2,

Z(Nh_]v)Mh

= - - -0490077 = d=-$=049. (81
(]V; - 57)2

A
h=1
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Thus, the smoothed periodogram method suggests that the degree of differencing d to transform

Series 2 to a stationary series is 0.49. Since 0.49 €[-05,0.5], we conclude that Series 2 is

stationary, confirming the conclusion drawn in sub-section 8.2.1 that Series 2 is stationary.

8.2.2 Differencing Degree for Series 3
As a second example, we consider determining the of differencing degree for Series 3. Series 3

comprises 112 observations and hence the regression analysis will involve approximately the first

V112 =10 periodogram ordinates. Using Program 7.7 with the data replaced by Series 3

yields the results in Table 8.3. Program 8.2 was used to obtain the regression results in Table 8.4.

From the results in Table 8.4,

A
> (N, - N)M, .
h=1
By= -k =-09392 = d=-p=094. (8.2)
AT\2
Y (N,- W)
h=1
Table 8.3: Periodogram Analysis Results - Series 3
08s FREQ PERIOD P_01 S_0f
2 0.05610  112.000  24124.35  1516.67
3 0.11220 56.000  13816.62  1260.37
4 0.16830 37.333  12641.32 953.67
5  0.22440 28.000 7275.42 644.25
6  0.28050 22.400 925.15 390.36
7 0.33660 18.667 3682.00 250.51
8  0.39270 16.000 611.09 144.32
9  0.44880 14.000 1591.32 95.00
10 0.50490 12.444 656.40 72.98
11 0.56100 11.200 314.36 49.70

The differencing degree of 0.94 ¢ [-0.5,0.5] suggeststhat Series 3 is non-stationary, confirming

the conclusion drawn in sub-section 7.2.2 that Series 3 is non-stationary.
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Table 8.4: Regression Results for the Estimation of d in Series 3 - Periodogram Method

Dependent Variable: M Analysis of variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 16.88228 16.88228 31.415 0.0005
Error 8 4,29922 0.53740
C Total 9 21.18150
Root MSE = 0.73308 R-square = 0.7970
Dep Mean = 7.90277 Adj R-sq = 0.7717
c.V. = 9.27621

Parameter Estimates

Parameter Standard T for HO:
variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 5.319584 0.51589960 10.311 0.0001
N 1 -0.939179 0.16756473 -5.605 0.0005

8.2.3 Differencing Degree for Series 4

Series 4 contains 70 observations and hence requires the firstv 70 = 8 periodogram ordinates.
Again, using Program 7.7 with the data replaced with that of Series 4, the first 8 periodogram

ordinates are reported in Table 8.5. Results from the regression of M = In/ (w)=InP_Olon

N = ln[4 sin’ (%)] = ln[4 sin’ (FRE%)] are given in Table 8.6.

Table 8.5: Periodogram Analysis Results - Series 4

0BS FREQ PERIOD P_01 S_01
2  0.08976  70.0000  8728.44  444.955
3  0.17952  35.0000  2005.68  325.286
4 0.26928  23.3333  1141.79  196.983
5  0.35904  17.5000 601.18  101.862
6  0.44880  14.0000 381.50 44.986
7 0.53856  11.6667 269.67 28.278
8 0.62832  10.0000 226.77 19.300
9  0.71808 8.7500 163.66 14.143
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Table 8.6: Regression Results for the Estimation of d in Series 4 - Periodogram Method

Dependent Variable: M Analysis of Variance
sum of Mean
Source DF Squares Square F value Prob>F
Model 1 12.36059 12.36059 2377.841 0.0001
Error 6 0.03119 0.00520
C Total 7 12.39178
Root MSE 0.07210 R-square 0.9975
Dep Mean 6.52255 Adj R-sq 0.9971
c.V. 1.10538

Parameter Estimates

Parameter Standard T for HO:
vVariable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 4.436722 0.04979405 89.101 0.0001
N 1 -0.953628 0.01955633 -48.763 0.0001

From the results in Table 8.6,

ZA: (Nh_N)Mh

Bi=- =-09536 = d=-f =095 (8.3)

h=
:E: (]V; - jif)z

A
h=1

Since the differencing degree of 0.95 ¢ [-0.5,0.5] suggests that Series 4 is non-stationary,
confirming the conclusion drawn in sub-section 7.2.3 that Series 4 is non-stationary.

8.3 The Lag-Window Method of Estimating d
This section illustrates the lag-window method of estimating the degree of differencing d using

Series 2, Series 3, and Series 4.

8.3.1 Differencing Degree for Series 2
Series 3 contains 112 observations and hence requires its first V112 = 10.583=10 spectral
densities. The estimated spectral densities S_01 =_fo (w) for Series 2 in Table 8.1. Using

Program 8.3 whichregresses M = In fx(a;) on N = 1n[4 sinz(%)] , the regression results are
given in Table 8.7.
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Table 8.7: Regression Results for the Estimation of d in Series 2 - Lag-Window Method

Dependent Variable: M Analysis of Variance
Sum of Mean
Source DF Squares Square F value Prob>F
Model 1 3.18762 3.18762 12.479 0.0064
Error 9 2.29891 0.25543
C Total 10 5.48653
Root MSE 0.50541 R-square 0.5810
Dep Mean -0.10827 Adj R-sq 0.5344
C.V. -466.80226

Parameter Estimates

Parameter Standard T for HO:
variable OF Estimate Error  Parameter=0 Prob > |T|
INTERCEP 1 -1.115654 0.32333016 -3.451 0.0073
N 1 -0.381104 0.10788230 -3.533 0.0064

From the results in Table 8.7, we have

A

Z (N, - N)M, R

pi=-" = -03811 = d=038 (8.4)
(Nh_ ]V)z

—

M-

Bl

=1

Since 0.38 € [-0.5,0.5], we conclude that Series 2 stationary. This supports our conclusion that

Series 2 does not contain a unit root.

8.3.2 Differencing Degree for Series 3

In the case of Series 3, estimating d involves the first 10 spectral densities S_01 in Table 8.3.
Using Program 8.4, the regression of M = ln_]?x (w) on N-= ln[4 sin’ (%)] yields the

following results in Table 8.8.
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Table 8.8: Regression Results for the Estimation of din Series 2 - Lag-Window Method

Dependent Variable: M Analysis of Variance
Sum of Mean
Source DF Squares square F value Prob>F
Model 1 11.86742 11.86742 49.183 0.0001
Error 8 1.93033 0.24129
C Total 9 13.79774
Root MSE = 0.49121 R-square = 0.8601 C.V.= 8.61710
Dep Mean = 5.70045 Adj R-sqg = 0.8426

Parameter Estimates

Parameter Standard T for HO:
variable ©DF Estimate Error  Parameter=0 Prob > |T]|
INTERCEP 1 3.534652 0.34568938 10.225 0.0001
N 1 -0.787428 0.11228027 -7.013 0.0001

From the results in Table 8.8, we have

A

Y (N,- N)M, )
B, = -2 =-07874 = d=079, (8.5)
(JVZ - jif)2

A
h=1
Since 0.79 ¢ [-0.5,0.5] implies Series 3 is non-stationary. This also confirms the conclusion

drawn in sub-section 7.2.2 that Series 3 is non-stationary.

8.3.3 Differencing Degree for Series 4

Using the first 8 spectral densities fx (w)= S_01 in Table 8.5 and performing the regression
of M=1n fx (w) on N= ].n[4 sin’ (%)] yields the following results in Table 8.9. The

differencing degree d is

A

§: (]V2 - ﬁf)]b[h "
p=- =-0900637 = d=090 (8.6)
(N, - jif)z

A
h=1
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Table 8.9: Regression Results for the Estimation of d in Series 4 - Lag-Window Method

Dependent Variable: M Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob>F
Model 1 11.02506 11.02506 56.917 0.0003
Error 6 1.16223 0.19370
C Total 7 12.18728

Root MSE 0.44012 R-square 0.9046

Dep Mean 4.31840 Adj R-sq 0.8887

C.V. 10.19171

Parameter Estimates

Parameter Standard T for HO:
vVariable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2.348478 0.30396171 7.726 0.0002
N 1 -0.900637 0.11937923 -7.544 0.0003

The fact that d =0.90 ¢ [-0.5,0.5] implies Series 4 is non-stationary. This conclusion also

confirms the conclusion drawn in sub-section 7.2.3 that Series 4 is non-stationary.

8.4 Evolutionary Spectral Analysis

In Section 8.4, we apply the evolutionary spectral analysis to the effective nominal rate of the
South African Rand indexed 1990=100. In Section 8.5, we illustrate the evolutionary cross-
spectral analysis using two simulated time series, and Section 8.6 summarizes the results. We shall
refer to this series as Series 1. Accompanying the plot of Series 1 in Fig. 8.1 is the sample
autocorrelation functions (acf’s) in Fig. 8.2. The sample acf’s and pacf’s indicate that Series 1 is
non-stationary. However, Fig. 8.1 clearly shows that Series 1 could contain a linear trend and

therefore suggest decomposing the series as

* ARk

X, =X X"

t

(8.7)

where X,= Series 1, X ,* = trend, and X : * = detrended series. A unit root test on the

detrended series (not shown here) reveals that it is indeed stationary.
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Fig. 8.1: Series 1 (Effective Nominal Rate of the South African Rand = 1993:3 - 1999:5)
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Fig. 8.2: Sample acf’s for Series 1
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Using the Minitab program in Chapter Appendix 8.1, the decomposed series X : and X ,* " are

given in Table 8.11. We have included the product of the two series in the table to confirm that

the product of the two series yields the original series X, . Table 8.10 reports the fitted line using

the same program.

Table 8.10: Fitted Trend Line, X

!

The regression equation: )(,= 96.9 - 0.547*t

Predictor Coef StDev T P
Constant 96.8916 0.4871 198.92 0.000
t -0.547169 0.008458 -64 .69 0.000
S = 2.405 R-Sq = 97.7% R-Sg(adj) = 97.7%
Analysis of Variance
Source DF SS MS F P
Regression 1 24206 24206 4185.20 0.000
Error g7 561 6
Total 98 24767
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Fig. 8.3: Trend Line (A Decomposition of Series 1), X, :
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Table 8.11: Series 1, Trend and De-Trended Components

YEAR MON NOMRATE  TREN DETR TR'DET | YEAR MONTH NOM RATE TREND DETREND

1991 Mar 96.33 96.3444 099985 96.33 |1995  May 67.15 68.9860 0.97339
1991 Apr 95.15 957972 0.99324 95.15 |1995  Jun 68.20 68.4388 0.99651
1991 May 9351 952501 098173 9351 |1995  Jul 68.67 67.8916 1.01146
1991 Jun 9334 947029 098561 93.34 1995  Aug 69.92 67.3445 1.03824
1991 Jul 92.83 941557 0.98592 92.83 |1995  Sep 69.41 66.7973 1.03911
1991 Aug 92.49 936086 0.98805 92.49 1995  Oct 69.67 66.2501 1.05162
1991 Sep 9267 93.0614 0.99579 9267 |1995  Nov 69.89  65.7029 1.06373
1991 Oct 91.88 925142 099314 91.88 }1995  Dec 70.12  65.1558 1.07619
1991 Nov 92.01 91.9671 1.00047 92.01 1996  Jan 7111 64.6086 1.10063
1991 Dec 91.00 914199 0.99541 91.00 11996  Feb 66.95 64.0614 1.04509
1992  Jan 91.02 90.8727 1.00162 91.02 }1996  Mar 6450 63.5143 1.01552
1992 Feb 90.47 903255 1.00160 90.47 |1996  Apr 59.21  62.9671 0.94033
1992 Mar 90.35 89.7784 1.00637 90.35 |1996  May 59.55  62.4199 0.95402
1992  Apr 90.26 89.2312 1.01153 90.26 |1996  Jun 59.88 61.8728 0.96779
1992 May 90.00 88.6840 1.01484 90.00 }1996  Jul 57.41 61.3256 0.93615
1992 Jun 89.99 88.1369 1.02103 89.99 |1996  Aug 57.16  60.7784 0.94047
1992 Jul 89.54 875897 1.02227 89.54 |1996  Sep 57.32 60.2313 0.95167
1992 Aug 88.56 87.0425 1.01743 8856 |1996  Oct 5419  59.6841 0.90795
1892 Sep 88.00 86.4954 1.01740 88.00 {1996  Nov 5566 59.1369 0.94121
1992  Oct 87.95 859482 1.02329 87.95 1996  Dec 54,74 585898 0.93429
1992 Nov 87.49 854010 1.02446 87.49 |1997  Jan 57.64 58.0426 0.99306
1992 Dec 87.04 84.8539 1.02576 87.04 |1997  Feb 58.91 57.4954 1.02460
1993 Jan 86.28 84.3067 1.02341 86.28 |1997  Mar 50.60 56.9482 1.04656
1993 Feb 8552 837595 1.02102 8552 |1997  Apr 59.62  56.4011 1.05707
1993 Mar 8359 832124 1.00454 8359 |1997  May 58.56  55.8539 1.04845
1993  Apr 8239 826652 0.99667 82.39 {1997  Jun 57.74 553067 1.04400
1993 May 81.86 821180 0.99686 81.86 |1997  Jul 57.74 547596 1.05443
1993  Jun 7958 815708 0.97559 79.58 11997  Aug 56.56 54.2124 1.04330
1993  Jul 79.05 81.0237 0.97564 79.05 |1997  Sep 56.79 53.6652 1.05823
1993  Aug 78.38 80.4765 0.97395 78.38 |1997  Oct 5433 53.1181 1.02282
1993 Sep 76.47  79.9293 0.95672 76.47 |1997  Nov 5439 525709 1.03460
1993  Oct 7917  79.3822 0.99733 79.17 |1997  Dec 5460 52.0237 1.04952
1993 Nov 79.69 78.8350 1.01085 79.69 {1998  Jan 5404 51.4766 1.04980
1993 Dec 79.46  78.2878 1.01497 79.46 }1998  Feb 53.70 50.9294 1.05440
1994  Jan 7857  77.7407 1.01067 7857 ]1998  Mar 53.05 50.3822 1.05295
1994 Feb 76.91 771935 099633 76.91 |1998  Apr 52.54 49.8351 1.05428
1994  Mar 76.19  76.6463 0.99405 76.19 |1998  May 5199 49.2879 1.05482
1994  Apr 7452 76.0992 097925 7452 [1998  Jun 4535 48.7407 0.93043
1994 May 72.80 755520 0.96357 72.80 |1998  Jul 4398 48.1935 0.91257
1994  Jun 7096  75.0048 0.94607 70.96 {1998  Aug 4119  47.6464 0.86449
1994  Jul 70.75 744577 0.95020 70.75 |1998  Sep 44,42 47.0992 094312
1994  Aug 7223 739105 0.97726 7223 |1998  Oct 4510  46.5520 0.96881
1994  Sep 7166 733633 097678 71.66 [1998  Nov 4568  46.0049 0.99294
1994  Oct 7224 728161 0.99209 7224 |1998  Dec 4394 454577 0.96661
1994 Nov 7259 722690 1.00444 7259 }j1999  Jan 4320 449105 0.96191
1994  Dec 7270 71.7218 1.01364 7270 |1999  Feb 4300 443634 0.96927
18995  Jan 7217 711746 1.01398 72.17 |1999  Mar 4312 43.8162 0.98411
1995 Feb 7031 70.6275 0.99551 70.31 |1999  Apr 4418 432690 1.02105
1995 Mar 68.98 70.0803 0.98430 68.98 |1999  May 4337 427219 1.01517
1995  Apr 67.84 69.5331 0.97565 67.84

TR*DET

67.15
68.20
68.67
69.92
69.41
69.67
69.89
70.12
71.11
66.95
64.50
59.21
59.55
59.88
57.41
57.16
57.32
54.19
55.66
54.74
57.64
58.91
59.60
59.62
58.56
57.74
57.74
56.56
56.79
5433
54.39
54.60
54.04
5370
53.05
52.54
51.99
4535
43.98
41.19
44.42
4510
45.68
43.94
4320
43.00
43.12
4418
43.37

TR*DET = TREND*DE-TRENDED SERIES
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From the results in Table 8.10, we obtain the trend, X,* = 96.8916- 05472t is shown

pictorially in Fig. 8.3. Next, we look at the nature of the de-trended series, whether stationary or
non-stationary. A plot of the de-trended series is shown in Fig. 8.4. F ig. 8.5 and Fig. 8.6 are the

corresponding sample acf’s and pacf’s of the de-trended series.
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.90 A
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.87 4
86 A

L A T )

CC T O b e e
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Fig. 8.4: De-trended Series (A Decomposition of Series 1), X,"

ACF of ca
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
P e e e e il kg St
1 0.815 XXXXXXXXXXXXXXXXXKXXX
2 0.600 XXXXXXXXXXKXXXKX
3 0.322 XXXXXXXXX
4 0.139 XXXX
5  0.020 XX
6 -0.099 XXX
7 -0.211 XXXXXX
8 -0.292 XXXXXXXX
9 -0.366 XXXXXXXXXX
10 -0.353 XXXXXXXXXX
11  -0.353 XXXXXXXXXX
12 -0.301 XXXXXXXXX
13 -0.295 XXXXXXXX
14 -0.301 XXXXXXXXX
15 -0.312 XXXXXXXXX
16 -0.320 XXXXXXXXX
17 -0.272 XXXXXXXX
18 -0.159 XXXXX
19 -0.048 XX
20 0.085 XXX
21 0.135 XXXX
22 0.200 XXXXXX

Fig. 8.5: Sample acf’s for the De-trended Series, X : )
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PACF of C4

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

P i bt el S

1 0.815 XXXXXXXXXXXXXXXXXXXXX
2 -0.192 XXXXXX

3 -0.323 XXXXXXXXX

4 0.127 XXXX
s 0.045 XX

6 -0.284 XXXXXXXX

7 -0.133 XXXX

8 0.082 XXX
g -0.191 XXXXXX
10 0.040 XX
11 -0.103 XXXX
12 -0.019 X
13 -0.177 XXXXX
14 -0.166 XXXXX
15 -0.076 XXX
16 ~-0.139 XXXX
17 -0.017 X
18 0.1l16 XXXX
19 =-0.080 XXX
20 -0.015 X
21 -0.085 XXX
22 0.036 XX
23 -0.054 XX
24 -0.002 X
25 0.093 XXX

Fig. 8.6: Sample pacf’s for the De-trended Series, X, : )

The sample acf’s and pacfs show that the de-trended series is stationary and that an AR(1)

process or an AR(3) process could be appropriate for the de-trended series.

Table 8.12a: Unit Root Tests and Model Selection

ADF Test Statistic -4.002409 1% Critical Value* -3.5226
5% Critical Value -2.9017
10% Critical Value -2.5879
*MacKinnon critical values for rejection of hypothesis of a unit root.
Method: Least Squares Augmented Dickey-F uller Test Equation
Dependent Variable: D(NOMRATE)
Variable Coefficient Std. Error t-Statistic Prob.
NOMRATE(-1) -0.272037 0.067968 -4.002409 0.0002
D(NOMRATE(-1)) 0.236946 0.111594 2.123281 0.0374
D(NOMRATE(-2)) 0.370612 0.114913 3.225145 0.0019
o 0.271915 0.067795 4.010842 0.0002
Akaike info criterion = -5.180084 Schwarz criterion = -5.053603
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Table 8.12b: Unit Root Tests and Model Selection

ADF Test Statistic -2.270053 1% Critical Value* -3.5200
5% Critical Value -2.9006
10% Critical Value -2.5874
*MacKinnon critical values for rejection of hypothesis of a unit root.
Method: Least Squares Augmented Dickey-Fuller Test Equation
Dependent Variable: D(NOMRATE)
Variable Coefficient Std. Error t-Statistic Prob.
NOMRATE(-1) -0.146828 0.064680 -2.270053 0.0262
c 0.147157 0.064574 2.278885 0.0256
Akaike info criterion = -5.054236 Schwarz criterion = -4.991964

Using EViews, we simultaneously check whether the de-trended series is stationary or non-
stationary, and also find out which of the two series best describes the de-trended series. Results

from the two fitted processes for X ,* " are given in Table 8.12. Both the AIC and the Schwartz

SBC criteria select the AR(3) process for X I" :

Furthermore, since the ADF test statistic, - 4.0024009, is less than all the critical values, we reject

the null hypothesis that

H: X" contains a unit root, (8.7)

t

and conclude that the de-trended series is stationary. Using the SAS program in Chapter Appendix

8.2, the spectrum for X," is shown in Fig. 8.7.

Spectrum of Y
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Fig. 8.7: Spectrum for the De-trended Series, X ,“
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From the concept of evolutionary spectral analysis described above, setting

X' =%,=968916-05472t and X, =7V,

and hence

X, = (968916 - 0.54721)Y,. (8.8)

We shall expect that for each ¢=1,2,...,99, the evolutionary spectrum should take the same shape
as the spectrum for the stationary series, X : = Z, . Evolutionary spectra for 1 = 20, 40, 60, and

80 using the SAS program in Chapter Appendix 8.2 are shown in Fig. 8.8.

Evolutionary Spectrum of X when t=20

(SR

R AT G
© = B v B M IF I T o0 = W
FYOUITVUUIR UL VOUUR TUUUR TUDI VUUOR DUTIR TOUDE TUDIC TUUUT SN Y

=% ™m0 < T7-E3A0

T T T

o «f
u
z

Frequency from 0 ta P1

Fig. 8.8a: Evolutionary Spectrum for Series 1 when =20

Evoutionary Spectrum of X when t= 40

KX MmO NANEDINY ~RNAIITO

! ¥ T T T
e i 2 3 a

Frequency Erom 0 to PI

Fig. 8.8b: Evolutionary Spectrum for Series 1 when =40
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Evolutionary Spectrum of X when t=8&0

wX MO0 XMeQaDAD ~BNMO0dTO

.

o
.

frequency from 0 to FPI

Fig. 8 8c: Evolutionary Spectrum for Series 1 when =60

Evolutionary Spectrum of X when t=280

N 8TO

B ™MD NAOFGEDAIO

T T ¥ T
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Frequency from 0 to PI

Fig. 8.8d: Evolutionary Spectrum for Series 1 when 7= 80

We have shown that with an artificial time series and a real time series that for a series that
changes slowly with time, the shapes of the evolutionary spectra at each time pointz=1,2, ., T
are exactly the same as the spectrum of the stationary series. We therefore conclude that for non-
stationary time series with time-changing spectra, the evolutionary spectral analysis of the series

can be done exactly the same way as though the series were stationary.
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8.5 Evolutionary Cross-Spectral Analysis
In Chapter 5, we considered an example on evolutionary spectral analysis using a simulated time

dependent non-stationary. Here, we illustrate the concept of bivariate evolutionary spectral

analysis using two simulated time dependent non-stationary series X Lr and X 2. - Let

Xy,
(W, )= X, (8.9)

Consider the stationary time series {Y,} satisfying the AR(2) process

Y, = 08Y_ - 04Y,_, + ¢, {¢,} ~ WN(0,100%) (8.10)

We examine the validity of the estimation procedure by constructing two artificial non-stationary

processees { X, . j = 1,2;1 = 2122,...,120} from the model

X.,=E, 7 (8.11)

where we define =,, and Z,, as

[1)

1l

S
=]

I
N|n—i
TN
N
O™~
o
N

¥}
\ﬂ__/

(8.12)

[1]
1

1{ 2)°
T exp{— 5(@) } . (8.13)

Using Program 8.5, results from the evolutionary spectral analysis of { X, } and { X,,} are

given in Appendix D. Plots of the evolutionary co-spectrum, the evolutionary quadrature
spectrum, the evolutionary coherency, and the evolutionary phase spectrum of { X, byt X,

are respectively given in Fig. 8.12, Fig. 8.13, Fig. 8.14, and Fig. 8.15.
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Fig. 8.12: Evolutionary Co-spectrum of X, by X5,
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Fig. 8.13: Evolutionary Quadrature Spectrum of X,, by X,
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Fig. 8.14: Evolutionary Coherency of X, by X,
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Fig. 8.15: Evolutionary Phase Spectrum of X, by X,

From Fig. 8.15 (and the results in Appendix D), it is seen that the evolutionary coherence values
K_01_02 areextremely high (almost 1) for the frequencies, 0 < w < 27 . The lowest coherency
of 0.83370 at frequency of 2.19911 is even high enough. The nearness of these coherences to |

is an indication that the two series are highly related between these frequencies. The phase of X,

by X, over the frequency range [2.07345, 2.13628] is a straight line with slope

003612 - [-0.10361]
=-22. (8.14)
2.07345-2.13628

slope =

Assuming the data were monthly data, the direction of the slope (the negative sign) is an indication

that X, leads X, and by a time lag of approximately 2.2 months.

8.6 Summary
In this chapter, an estimate of the degree of differencing were able confirms the conclusion drawn

in Chapter 6 that Series 2 is stationary. The approach also confirms that Series 3 and Series 4 are
non-stationary. We are also able to estimate the average spectrum and also find relationships
between pairs of such series satisfactorily for non-stationary series with time-changing spectra.

- This is always possible using the methods devised for stationary time series.
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CHAPTER APPENDIX 8.1

MTB > READ C1 — (CREATES COLUMN C1 FOR NOMRATE DATA)
DATA> 96.33

DATA> 95.15

DATA> 93.51

DATA> 93.34

DATA> 92.83

DATA> 43.20
DATA> 43.00
DATA> 43.12
DATA> 44.18
DATA> 43.37

DATA> ENDOFDATA — (END OF DATA)
99 rows read.
MTB > TSPLOT Cl1 — (PLOTS NOMRATE)
MTB > ACF Cl1 — {(COMPUTES THE ACF’S FOR NOMRATE)

Autocorrelation Function

ACF of C1

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

et bttt el deh it At

1 0.967 XXXXXXXXXXXXXXXXXXXXXXXXX
2 0.935 XXXXXXXXXXXXXXXXXXXXXXXX
3 0.900 XXXXXXXXXXXXXXXXKXKXXXXXX
4 0.866 XXXXXXXXXXXXXXXXXXXXXXX
5 0.833 XXXXXXXXXXXXXXXXXXXXXX
6 0.800 XXXXXXXXXXXXXXXXXXXXX
7 0,769 XXXXXXXXXXXXXXKXXXXXX
8 0.737 XXXXXXXXXXXXXXXXXXX
9 0.704 XXXXXXXXXXXXXXXXXXX

10 0.669 XXXXXXXXXXXXXXXXXX

11 0.635 XXXXXXXXXXXXXXXXX

12 0.603 XXXXXXXXXXXXXXXX

13 0.576 XXXXXXXXXXXXXXX

14 0.549 XXXXXXXXXXXXXXX

15 0.521 XXXXXXXXXXXXXX

16 0.493 XXXXXXXXXXXXX

17 0.467 XXXXXXXXXXXXX

18 0.442 XXXXXXXXXXXX

19 0.417 XXXXXXXXXXX

20 0.392 XXXXXXXXXXX

21 0.367 XXXXXXXXXX

22 0.342 XXXXXXXXXX

23 0.317 XXXXXXXXX

24 0.292 XXXXXXXX

25 0.270 XXXXXXXX

MTB > SET C2 — (CREATES A NEW COLUMN FOR TIME t)
DATA> 1:99 — (CREATES TIME t FOR 99 OBSERVATIONS)
DATA> REGR C1 1 C2 — (REGRESSES TREND DATA ON TIME)
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Regression Analysis

The regression equation is

Cc1l 96.9 - 0.547 C2

Predictor Coef StDev T P

Constant 96 .8916 0.4871 198.92 0.000

c2 -0.547169 0.008458 -64.69 0.000

S = 2.405 R-Sq = 97.7% R-Sq(adj) = 97.7%

Analysis of Variance

Source DF SS MS F P

Regression 1 24206 24206 4185.20 0.000

Error 97 561 6

Total 98 24767

Unusual Observations

Obs c2 C1 Fit StDev Fit Residual St Reeid
58 58.0 70.120 65.156 0.251 4.964 2.08R
59 59.0 71.110 64.609 0.253 6.501 2.72R
68 68.0 54.190 59.684 0.286 -5.494 -2.30R
90 90.0 41.190 47 .646 0.416 -6.456 -2.73R

R denotes an observation with a large standardized residual

LET C3 = 96.8916 - 0.5472*C2 — (PRODUCES THE TREND DATA & STORES THEM ON A WORKSHEET)
LET C4 = C1/C3 — (PRODUCES THE DE-TRENDED DATA & STORES THEM ON A WORKSHEET)

TSPLOT C3 — (PLOTS THE TREND DATA)

TSPLOT C4 — (PLOTS THE DE-TRENDED DATA)

ACF C4 — (COMPUTES THE ACF’S FOR DE-TRENDED DATA)

MTB
MTB
MTB
MTB
MTB

vV V. V. V V

Autocorrelation Function

ACF of C4
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
. et ST L E bt it Al e
1 0.815 XXXXXXXXXXXXXXXXXXXXX
2 0.600 XXXXXXXXXXXXXXXX
3 0.322 XXXXXXXXX
4 0.139 XXXX
5 0.020 XX
€ -0.099 XXX
7 -0.211 XXXXXX
8 -0.292 XXXXXXXX
9 -0.366 XXXXXXXXXX
10 -0.353 XXXXXXXXXX
11 -0.353 XXXXXXXXXX
12 -0.301 XXXXXXXXX
13 -0.295 XXXXXXXX
14 -0.301 XXXXXXXXX
15 -0.312 XXXXXXXXX
16 -0.320 XXXXXXXXX
17 -0.272 XXXXXXXX
18 =-0.159 XXXXX
19 -0.048 XX
20 0.085 XXX
21 0.135 XXXX
22 0.200 XXXXXX
23 0.229 XXXXXXX
24 0.271 XXXXXXXX
25 0.314 XXXXXXXXX

MTB > PACF C4 — (COMPUTES THE PACF’S FOR DE-TRENDED DATA)
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Partial Autocorrelation Function

PACF of

o o0k W=

BB RBRP PP
Joane W HOow

-0
0

[ SR ST S ST S o
Nk W H+HOw®

0.
-0
-0.

0.

0.
-0.
-0.

0.
-0.

0.
-0.
-0.
-0.
-0.
-0.
-0

-0.
-0.
-0.

0.
-0.
-0.

0.

C4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

815

.192

323
127
045
284
133
082
191
040
103
019
177
166
076

.139
.017
.116

080
015
085
036
054
002
093

MTB > STOP

data detnom;

input y @e;
x1 = (96.8916 -
x2 = (96.8916 -
x3 = (96.8916 -
x4 = (96.8916 -
label y =
cards;
0.99985 0.99324
1.00637 1.01153
1.00454 0.99667
0.99405 0.97925
0.98430 0.97565
1.01552 0.94033
1.04656 1.05707
1.05295 1.05428 1.
0.98411 1.02105 1.

0.
1.
0.
0.
0.
0.
1.

0.5472* (20))*y;
0.5472* (40) ) *y;
0.5472* (60))*y;
0.5472*(80))*y;
‘detrended nomrate'’;

98173
01484
99686
96357
97339
95402
04845
05482
01517

title'Spectrum of Y';
proc spectra data=detnom out=b p s adjmean whitetest;
var y;

weights 1 2 3 4 3 2 13

run;

proc print data=b;

run;

symbol1l i=splines v=none;

XXXXXXXXXXXXXXXXXKXXX

XXXXXX

XXXXXXXXX

XXXX
XX

XXXXXXXX

98561

02103
97559
94607
99651

96779
04400
93043

XXXX

XXX
XXXXXX
XX

XXXX
X
XXXXX
XXXXX
XXX
XXXX
X

XXXX

XXX
X
XXX

XX

XX
X

XXX

CHAPTER APPENDIX 8.2

.98592

.02227

.97564

.95020

.01146

.93615

.05443

.91257

.98805
.01743
.97395
97726
.03824
.94047
.04330
.86449
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.99579 0.99314
.01740 1.02329
.95672 0.99733
.97678 0.99209
.03911 1.05162
.95167 0.90795
.05823 1.02282
.94312 0.96881

O - O = = = oa =

.00047
.02446
.01085
.00444
.06373
.94121
.03460
.99294

.99541
.02576
.01497
.01364
.07619
.93429
.04952
. 96661

O = O =+ = = o

.00162
.02341
.01067
.01398
.10063
.99306
.04980
.96191

1.00160
.02102
.99633
.99551
.04509
.02460
.05440
.96927



proc gplot data=b;
plot p_01 * freq;
plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when t=20';
proc spectra data=detnom out=b1 p s adjmean whitetest;

var x1;

weights 1 2 3 4 3 2 1;
run;
proc print data=b1;
run;

symbol1 i=splines v=none;
proc gplot data=b1;

plot p_01 * freq;

plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when t=40';
proc spectra data=detnom out=b2 p s adjmean whitetest;

var x2;

weights 1 2 3 4 3 2 13
run;
proc print data=b2;
run;

symbol{ i=splines v=none;
proc gplot data=b2;

plot p_01 * freq;

plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when t=60';
proc spectra data=detnom out=b3 p s adjmean whitetest;

var x3;

weights 1 2 3 4 3 2 1;
run;
proc print data=b3;
run;

symboli i=splines v=none;
proc gplot data=b3;
plot p_01 * freq;
plot s_01 * freq;
run;

title'Evolutionary Spectrum of X when 1t=80';
proc spectra data=detnom out=b4 p s adjmean whitetest;

var x4;

weights 1 2 3 4 3 2 1;
run;
proc print data=b4;
run;

symbol1 i=splines v=none;
proc gplot data=b4;
plot p_01 * freq;
plot s_01 * freq;
run;
quit;

132



CHAPTER 9

SUMMARY, CONCLUSIONS AND RECOMMENDED RESEARCH

9.1 Summary and Conclusions

In this study, we have considered some aspects of non-stationary time series usually encountered
in practice. We have seen that the usual asymptotic results do not apply if any of the variables in
a test regression model is generated by a non-stationary process. When an underlying assumption
in a regression model is violated, some strange things happen, for instance, totally unrelated
variables may lead to spurious regression. This problem may be explained by the fact that a great
many economic time series trend upward over time. Two obvious ways to avoid violating the
standard assumptions of regression when using such series are to difference or de-trend the series
prior to its use. But differencing and de-trending are two different operations. When differencing

is deemed appropriate, de-trending becomes inappropriate, and vice versa.

The choice between differencing and de-trending boils down to a choice between the models

X, =C+pX,  +¢ ©.1)
and

X, = (fo+ B)+ pXio + &0 (92)

where {¢,} ~WN (0,0 ?) . Techniques usually used for choosing between (9.1)and (9.2) are the

unit root tests. For an AR(p) process,
P
X,=Ct L pX v, (e,} ~WN(0,0%), ©3)
i=1
the stationarity of the process depends on the roots of the polynomial equation

®(B)=0, (9.4)

where ®(B)=1-¢,B-¢,B*-..-¢,B7 with B*X, = X, , .Ifallroots are outside the unit

circle, the process is stationary. If a root is equal to or less than 1 in absolute value, the process
is non-stationary. When a root is equal to 1 in absolute value, it is referred to as a unit root. When

a process has a unit root it must be differenced to induce stationarity.
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Next, if X,_; is subtracted from both sides of (9.1) and (9.2), the reformulated versions are
respectively given by

Z=C+(p-DX,_ +¢, (9.5a)

Z, = (Bt B+ (p- DX 6, (9.5b)

where Z, = X, - X,_, and {¢,} ~WN(0,0 2). A test of the null hypotheses

Hyp=1
(9.6)
H:p<1

is commonly referred to as a unit root test. A glance at (9.5) might appear that a unit root test

could be done simply by using the usual #-statistic
p-1=0 (9.7)

in (9.5), but this is not so. Fact is, when p =1, the process generating X, is integrated of order

1, and hence the X, , will not satisfy the standard assumptions needed for asymptotic analysis.

Consequently, the z-statistic does not have the N(0,1) distribution asymptotically. From our
discussions, we have seen that the simplest tests for unit roots are the Dickey-Fuller (DF) and
Phillips-Perron (PP) test procedures due to Dickey and Fuller (1979) and Phillips and Perron
(1988), respectively. The DF test assumes that the error terms in the test regressions, (9.5a) and
(9.5b), are serially uncorrelated. More often than not, this assumption becomes untenable because
the regression functions for the test regressions do not depend on any economic/econometric

variables. In such a case, the error terms will display serial correlation.

The simplest and a modified test for a unit root in the presence of serial correlation of unknown
form is the Augmented Dickey-Fuller (ADF) test also due to Dickey and Fuller (1979). The ADF
test procedure assumes that the error terms follow an AR process of known order. Empirical
work by Said and Dickey (1984) and Phillips and Perron (1988) reveal that the ADF tests are

asymptotically valid under much less restrictive assumptions.
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Another way to obtain unit root test statistics that are valid despite the presence of serial
correlation of unknown form is the use of the non-parametric unit root test due to Phillips and
Perron (1988). This test procedure is non-parametric in that no parametric specification of the
error process is required. The test statistic is based on the usual test regressions (9.5a) and (9.5b),
but is modified so that serial correlation does not affect the asymptotic distribution. To confirm
the nature of a given time series, whether stationary or non-stationary, we established that even
though the order specified in the Reversed Dickey-Fuller unit root test may differ from the order

in the Dickey-Fuller test, both test procedures give the same conclusion.

Also in our study, we explored a unit root test based on periodogram ordinates. The proposed test
is distributed as a linear combination of two independent standard normal variables. One appealing

property of this approach is its invariance to deterministic seasonal components and time trends.

A spectral estimator of the differencing degree parameter d is of paramount importance in the
analysis of economic/financial time series, more especially inmodel specification/misspecification.
Persistent fractional models have characteristics similar to those of non-stationary models. First,
the autocorrelation of persistent fractional models decay very slowly, a characteristic found in
non-stationary time series. Second, realizations of these two models have periodograms diverging
at zero frequency. Using the power transfer function, we established that the spectral density of

the ARIMA(p,d,q) process

fuw)=N-e™* f,(w), (9.9)

where f,(w) and f (w) are respectively the spectra of the undifferenced series

{X,:t=12,...,T} and the stationary series ¥, = (1- B)? X, . The estimator of d is based on

the fact that for non-zero frequencies w,(j = 12,..., T%%), the spectrum and the periodogram
of an ARIMA process

®(B)(1- B)? X, = 6(B)s,, {e,} ~WN(0,06%) (9.10)

is dominated by |1- ¢ ™|* asin (9.9). If we take logarithms of both sides of (9.9), include f (W),
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an estimate of /,(w) with w=w (j=12,..., 7%, and introduce the disturbance term €,

equation (9.9) becomes

Inf,(w,)= f + B, In[4 sin? (")) + e, (9.11)
. Fi(w,
where f, = In f,(0), f,=-d, and ¢, = In —E;% Jfor j= 12,...,7°%.
Jx j

In a similar manner, if we take logarithms on both sides of (9.9), replace f.(w) with the

periodogram I (w), equation (9.9) becomes

In,(w,)= B, + Aln[4sin® ()] + e, (9.12)
where f, and f, = - d are some constants. The regression models (9.10) and (9.11) provide

an estimator for the differencing degree to stationarize the ARIMA process. A series is regarded

as stationary d € (-0.5,0.5), and non-stationary if otherwise.

Thus, while traditional autocorrelation methods have difficulty distinguishing between stationary
and non-stationary processes, we have shown that a spectral regression on the low-order
frequencies is able to estimate the order required to stationarize a non-stationary time series.
Additionally, we have shown that this order reveals the stationarity or the non-stationarity of the
process, a further step to confirm the stationarity or otherwise of a time series. Inall our practical
illustrations, we were able to confirm the unit root test conclusions by determining the

differencing degree.

In Chapter 5, we concentrated our discussions on developing and examining the concept of
evolutionary spectral analysis. The concept of evolutionary spectrum analysis provides a great
deal of insight when it comes to speech processing and seismology. The existence of evolutionary

spectrum was established by assuming the following representation for the non-stationary series

X}
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X, = [0, (0).e"de(w). (9.13)
A

where z(® ) is an orthogonal process with E |dz(a) )|2 = f(w)d(w) . We were able to establish

that for the non-stationary process the (evolutionary ) spectrum at time t, dF (), 1s

dF(0) =1, ()| f(@)do (9.14)

A time-dependent univariate non-stationary series was simulated from a stationary series (data on
the effective nominal exchange rate of the South African Rand, indexed 1990=100) and
evolutionary spectrum was obtained. The existence of evolutionary spectrum for the simulated
non-stationary data gives us the clue that all other elements of interest in spectral analysis of
stationary series are possible to estimate in the case of time-dependent non-stationary series. We
were also able to apply the concept of evolutionary cross-spectral analysis of time-dependent
non-stationary bivariate processes, using two simulated time-dependent series. Plots of
evolutionary co-spectrum, evolutionary quadrature spectrum, evolutionary coherency and

evolutionary gain spectrum were obtained.

We have also performed Monte Carlo study on the size and the power of three most commonly
used unit root test statistics viz, ADF, PP, and RDFUR tests. Our Monte Carlo indicates that the

PP test criterion is generally most powerful compared to the two other test criteria.

8.2 Recommended Research

The following recommended research appears to be equally important as a result of this study.

i A Monte Carlo study of the ADF, the PP, and the RDFUR test statistics based on
tiny interval values for p, say p = 1.000, 0.995, 0.990, 0.985, 0.980,...,0.600.

. Applying bootstrap methods to these three test statistics to find out whether we
will arrive at the same conclusions drawn using Monte Carlo simulation methods.

iii. A Monte Carlo study of less familiar unit root tests.
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APPENDIX A

SERIES 1

EFFECTIVE NOMINAL EXCHANGE RATE OF THE SOUTH AFRICAN RAND
(1990=100)

Month 1991 1992 1993 1994 1995 1996 1997 1998 1999

Jan * 91.02 86.28 78.57 72.17 71.11 57.64 54.04 43.20
Feb * 90.47 85.52 76.91 70.31 66.95 58.91 53.70 43.00
Mar 96.33 90.35 83.59 76.19 68.98 64.50 59.60 53.05 43.12
Apr 95.15 90.26 82.39 74.52 67.84 59.21 59.62 52.54 44.18
May 93.51 90.00 81.86 72.80 67.15 59.55 58.56 51.99 43.37
Jun 93.34 89.99 79.58 70.96 68.20 59.88 57.74 45.35
Jul 92.83 89.54 79.05 70.75 68.67 57.41 57.74 43.98
Aug 92.49 88.56 78.38 72.23 69.92 57.16 56.56 41.19
Sep 92.67 88.00 76.47 71.66 69.41 57.32 56.79 44.42
Oct 91.88 87.95 79.17 72.24 69.67 54.19 54.33 45.10
Nov 92.01 87.49 79.69 72.59 69.89 55.66 54.39 45.68
Dec 91.00 87.04 79.46 72.70 70.12 54.74 54.60 43.94
SERIES 2

YIELDS ON ESKOM LOAN STOCK TRADED ON THE JSE (%)

MON 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Jan 15.32 16.25 16.23 14.70 12.04 16.86 13.68 15.83 13.72 16.39
Feb 15.42 15.46 16.37 14.43 12.60 16.72 14.00 15.04 13.59 15.34
Mar 15.43 15.46 16.20 14.59 12.80 16.64 14.94 15.26 13.42 15.00
Apr 15.81 15.62 16.06 15.08 13.04 16.75 15.69 15.35 13.00 15.02
May 15.69 15.77 15.82 15.01 13.16 16.92 16.42 15.16 13.57 15.60
Jun 16.19 16.02 15.79 14.71 14.17 16.77 15.56 14.87 14.84 15.30
Jul 16.03 16.09 15.14 14.23 14.87 16.58 15.16 14.43 16.22 15.33
Aug 15.83 16.45 14.28 13.84 15.65 15.91 15.63 14.45 17.37
Sep 15.96 16.53 14.11 13.31 16.72 1543 15.29 14.38 18.97
Oct 16.18 16.77 14.03 13.07 16.75 15.07 15.71 14.24 17.19
Nov 1583 16.44 14.55 12.50 16.71 14.38 16.12 14.70 16.64
Dec 15.83 16.25 14.88 12.20 16.62 14.50 16.16 14.19 16.78
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SERIES 3

GOLD SHARES TRADED ON THE JOHANNESBURG STOCK EXCHANGE

MON 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Jan 130 74 73 45 128 112 102 096 61 66
Feb 124 60 73 54 115 102 115 106 62 63
Mar 120 61 67 61 122 94 113 103 56 65
Apr 109 61 59 77 117 97 119 93 74 67
May 101 66 61 96 116 88 129 90 77
Jun 86 79 63 99 128 91 119 80 64
Jul 92 81 62 116 130 94 117 71 66
Aug 107 70 55 105 137 99 115 75 58
Sep 96 66 50 91 152 98 113 70 66
Oct 86 68 47 100 148 89 111 72 78
Nov 79 68 44 113 137 85 107 60 67
Dec 70 71 47 124 123 85 96 54 62

SERIES 4

CONSUMER PRICE INDEX FOR SOUTH AFRICA AT 1995 PRICES

MON 1994 1995 1996 1997 1998 1999
Jan 88.2 096.8 103.5 112.7 120.8 130.2
Feb 88.7 97.7 104.0 113.6 121.5 130.9
Mar 89.3 098.5 104.6 114.2 122.1 132.0
Apr 89.7 99.5 105.1 115.1 123.2 132.7
May 90.4 100.1 105.9 115.7 124.1 133.8
Jun 91.3 100.4 107.0 116.2 124.8 134.7
Jul 92.4 100.5 107.5 117.1 125.5 135.8
Aug 93.6 100.5 108.1 117.7 126.6 136.6
Sep 94.6 100.6 109.3 118.4 127.5 137.6
Oct 95.0 101.1 110.3 119.0 128.2 138.4
Nov 95.4 101.7 111.2 119.7 129.0

Dec 96.0 102.7 112 .4 120.3 129.6
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APPENDIX B

0BS FREQ PERIOD P_01 s_01
1 0.00000 . 0.0000  1.55055
2 0.05464  115.000  11.1613  1.54352
3 0.10927 57.500  38.9346  1.71100
4  0.16391 38.333  22.2028  1.74219
5  0.21855 28.750 9.7468  1.67976
6  0.27318 23.000  35.2096  1.58162
7 0.32782 19.167  11.5292  1.22804
8  0.38245 16.429  14.4221  0.95710
9  0.43709 14.375 1.1525  0.66136

10 0.49173 12.778 7.8980  0.43508
11 0.54636 11.500 0.7407  0.31059
12 0.60100 10.455 1.6550  0.23670
13 0.65564 9.583 6.5224  0.22575
14 0.71027 8.846 1.0545  0.15772
15  0.76491 8.214 0.1251  0.12522
16  0.81955 7.667 1.5425  0.09677
17 0.87418 7.188 0.4151  0.06222
18 0.92882 6.765 1.3567  0.05758
19 0.98346 6.389 0.3217  0.04589
20  1.03809 6.053 0.2044  0.03635
21 1.09273 5.750 0.3205  0.03282
22 1.14736 5.476 0.2424  0.03056
23 1.20200 5.227 0.9501  0.03464
24 1.25664 5.000 0.0758  0.03090
25  1.31127 4.792 0.4812  0.02780
26 1.36591 4.600 0.4025  0.02322
27 1.42055 4.423 0.0061  0.01722
28 1.47518 4.259 0.0755  0.01591
29  1.52982 4.107 0.3447  0.01555
30  1.58446 3.966 0.2766  0.01522
31 1.63909 3.833 0.0044  0.01434
32  1.69373 3.710 0.2678  0.01481
33  1.74836 3.594 0.2132  0.01383
34  1.80300 3.485 0.0415  0.01356
35  1.85764 3.382 0.2725  0.01456
36  1.91227 3.286 0.1684  0.01294
37  1.96691 3.194 0.2270  0.01185
38  2.02155 3.108 0.0604  0.00979
39  2.07618 3.026 0.0129  0.00796
40  2.13082 2.949 0.1754  0.00759
41 2.18546 2.875 0.0468  0.00633
42 2.24009 2.805 0.1253  0.00614
43 2.29473 2.738 0.0476  0.00649
44 2.34936 2.674 0.0013  0.00750
45  2.40400 2.614 0.0837  0.00946
46  2.45864 2.556 0.2988  0.01083
47  2.51327 2.500 0.2129  0.00993
48  2.56791 2.447 0.0204  0.00750
49 2.62255 2.396 0.0014  0.00495
50  2.67718 2.347 0.0152  0.00305
51 2.73182 2.300 0.0727  0.00287
52  2.78646 2.255 0.0136  0.00308
53  2.84109 2.212 0.0490  0.00358
54  2.89573 2.170 0.0796  0.00392
55  2.95037  2.12963  0.00911 .0042245
56  3.00500  2.09091  0.06596  .0051176
57  3.05964  2.05357  0.06471 .0057502
58  3.11427  2.01754  0.13541 .0060279
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APPENDIX C

Dependent Variable: M

Source

Model
Error
C Total

Root MSE
Dep Mean
C.V.

Variable DF

INTERCEP 1
N 1

Sum of Residuals
Sum of Squared Residuals
Predicted Resid $S (Press)

Analysis of Variance

sSum of Mean
DF Squares Square F
1 4.,59922 4.59922
8 11.03634 1.37954
9 15.63555
1.17454 R-square 0.2942
2.20348 Adj R-sq 0.2059
53.30373
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter=0
0.829891 0.83898143 0.989
-0.490077 0.26840441 -1.826
Dep var Predict
Obs M Value Residual
1 2.4125 3.6793 -1.2669
2 3.6619 3.0004 0.6615
3 3.1002 2.6035 0.4967
4 2.2769 2.3224 -0.0455
5 3.5613 2.1048 1.4565
6 2.4449 1.9274 0.5174
7 2.6688 1.7780 0.8908
8 0.1419 1.6489 -1.5070
9 2.0666 1.5355 0.5311
10 -0.3002 1.4346 -1.7348
0
11.0363
22.7234

Value Prob>F

3.334 0.1053

Prob > |T|

0.3516
0.1053
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APPENDIX D

OBS FREQ  PERIOD  S_01 S 02 ©5_01_02 QS_01_02 K_01_02 A_01_02 PH 0102
1 0.00000 . 4078.26 1873.41  2542.27 0.000 0.84593 2542.27  0.00000
o 0.06283 100.000 4028.57 1863.25 2522.82 -12.623 0.84793 2522.85 -0.00500
3 0.12566 50.000 4962.13 2437.19 3295.08 -158.012 0.89985 3208.87 -0.04792
4 0.18850 33.333 5607.18 2957.27 3926.38 -11.120 0.92972 3926.40 -0.00283
5 0.25133 25.000 5921.84 3312.18 4308.18 12.770 0.94628 4308.20 0.00296
6 0.31416 20.000 6414.29 3698.71 4777.49 0.409 0.96206 4777.49  0.00009
7 0.37699 16.667 6026.43 3513.83 4516.10  49.075 0.96325 4516.36 0.01087
8 0.43082 14.286 6119.81 3473.00 4532.47 -25.249 0.96659 4532.54 -0.00557
o 0.50265 12.500 5848.01 3383.80 4375.15 -31.793 0.96738 4375.27 -0.00727

10 0.56549 11.111 5324.19 3292.16 4116.19 -30.183 0.96667 4116.30 -0.00733
11 0.62832 10.000 5547.82 3729.56  4487.71 59.834 0.97353 4488.11 0.01333
12 0.69115  9.091 5386.88 3960.86 4557.30  33.215 0.97345 4557.42  0.00729
13 0.75398  8.333 6054.36 4319.25 5028.15  38.219 0.96686 5028.30 0.00760
14 0.81681 7.692 7139.17 4723.38 5687.42 34.119 0.95928 5687.52  0.00600
15 0.87965  7.143 7417.04 4522.42 5647.92 -105.826 0.95132 5648.91 -0.01873
16 0.94248  6.667 8184.24 4588.06 6004.43  -45.904 0.96020 6004.60 -0.00764
17 1.00531 6.250 7150.10 3904.62 5180.13 -60.238 0.96128 5180.49 -0.01163
18 1.06814  5.882 5547.90 3046.04 4025.80 -45.092 0.95917 4026.05 -0.01120
19 1.13097  5.556 4518.82 2526.38 3315.94 .0.191 0.96314 3315.94 -0.00006
20 1.19381 5.263 2924,99 1705.26 2170.22 5.687 0.94426 2170.22  0.00262
21 1.25664  5.000 2762.17 1670.08 2090.79 3.159 0.94762 2080.79  0.00151
22 1.31947  4.762 2867.90 1780.32 2208.06 7.444 0.95492 2208.07  0.00337
23 1.38230  4.545 2821.25 1892.03 2260.89  39.127 0.95790 2261.23 0.01730
04 1.44513  4.348 2882.89 2057.74 2398.03 -21.817 0.96946 2398.13 -0.00910
o5 1.50796  4.167 2436.10 1837.34 2088.41 -13.781 0.97446 2088.45 -0.00660
26 1.57080  4.000 1988.82 1554.02 1739.49  -39.745 0.97953 1739.95 -0.02284
27 1.63363  3.846 1493.29 1154.20 1300.44 -64.878 0.98364 1302.06 -0.04985
28 1.69646  3.704 1111.23 809.86  937.27 -20.212 0.97660 937.49 -0.02156
29 1.75929  3.571 960.79 629.66  766.77 -15.411 0.97223 766.93 -0.02010
30 1.82212  3.448 783.85 462.04  591.57 7.746 0.96643 591.62 0.01309
31 1.88496  3.333 660.73 372.35  484.33  29.389 0.95699 485.23  0.06061
32 1.94779  3.226 520.69 286.46  373.31 15.755 0.93597 373.64 0.04218
33 2.01062 3.125 384.61 209.38  270.52 13.710 0.91110 270.87  0.05064
34 2.07345  3.030 280.34 149.55 190.98 6.901 0.87110 191.10 0.03612
35 2.13628  2.941 189.69  102.47 126.62 -13.166 0.83370 127.30 -0.10361
36 2.19911 2.857 208.59 113.31 143.43 -12.831 0.87745 144.01 -0.08922
37 2.26195  2.778 280.32 127.95  163.31 -14.143 0.91183 163.92 -0.08639
38 2.32478  2.703 253.03 136.59 179.70 -15.009 0.94078 180.32 -0.08333
39 2.38761 2.632 286.45 145.79  200.28 -6.439 0.96153 200.39 -0.03214
40 2.45044  2.564 222.05 110.98 153.70 -4.300 0.95938 153.76 -0.02797
41 2.51327  2.500 170.96  80.88 115.28 -2.216 0.96151 115.31 -0.01922
42 2.57611 2.439 119.85  55.51 79.92 -0.413 0.96009  79.92 -0.00516
43 2.63894  2.381 73.14  33.58 48.07 -0.602 0.94121 48.08 -0.01253
44 2.70177  2.326 80.13  35.25 51.60 0.283 0.94261 51.60 0.00549
45 2.76460  2.273  77.96  32.04 47.89 -2.267 0.92031 47.95 -0.04730
46 2.82743  2.222 73.86  27.32 42.41 .3.081 0.89899  42.59 -0.09360
47 2.89027  2.174 128.21 51.56 78.08 -3.440 0.92395  78.15 -0.04404
48 2.95310 2.128 185.07  76.64  115.13 .2.700 0.93507 115.16 -0.02344
49 3.01593  2.083 295.39 132.04  193.08 -1.822 0.95592 193.09 -0.00944
50 3.07876  2.041 407.97 188.26  272.51 1.236 0.96697 272.52  0.00453
51 3.14159  2.000 413.46  189.11 274.69 0.000 0.96498 274.69  0.00000
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REVERSED SERIES 2: E-1

APPENDIX E

MON 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990
Dec * 16.78 14.19 16.16 1450 16.62 1220 14.88 16.25 15.83
Nov * 1664 1470 16.12 1438 16.71 1250 14.55 16.44 15.83
Oct * 1719 14.24 1571 15.07 16.75 13.07 14.03 16.77 16.18
Sep * 1897 14.38 1529 1543 16.72 1331 1411 1653 1596
Aug * 1737 1445 15.63 1591 1565 13.84 14.28 1645 15.83
Jul 1533 1622 1443 1516 1658 14.87 14.23 1514 16.09 16.03
Jun 1530 14.84 14.87 1556 16.77 1417 14.71 15.79 16.02 16.19
May 15.60 13.57 15.16 1642 1692 1316 15.01 15.82 15.77 15.69
Apr 15.02 13.00 1535 15.69 16.75 16.04 15.08 16.06 15.62 15.81
Mar 15.00 1342 1526 1494 16.64 12.80 14.59 1620 1546 1543
Feb 1534 1359 15.04 14.00 1672 12.60 14.43 1637 1546 1542
Jan 1639 13.72 15.83 13.68 16.86 12.04 14.70 1623 16.25 15.32
REVERSED SERIES 3: E -2
MON 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990
Dec * 62 54 96 82 123 124 47 71 70
Nov * 67 60 107 85 137 113 44 68 79
Oct * 78 72 111 89 148 100 47 68 86
Sep * 66 70 113 98 152 91 50 66 96
Aug * 58 75 115 99 137 105 55 70 107
Jul * 66 71 117 94 130 116 62 81 92
Jun * 64 80 119 91 128 99 63 79 86
May * 77 90 129 88 116 9 61 66 101
Apr 67 74 93 119 97 117 77 59 61 109
Mar 65 56 103 113 94 122 61 67 61 120
Feb 63 62 106 115 102 115 54 73 60 124
Jan 66 61 9% 102 112 128 45 73 74 130
REVERSED SERIES 4: E - 3

MON 1999 1998 1997 1996 1995 1994

Dec * 129.6 1203 1124 102.7 96.0

Nov * 129.0 119.7 1112 101.7 94

Oct 1384 128.2 1190 1103 1011 95.0

Sep 137.6 1275 1184 1093 1006 94.6

Aug 136.6 126.6 117.7 1081 1005 93.6

Jul 135.8 1255 117.1 1075 1005 924

Jun 1347 1248 1162 107.0 1004 913

May 1338 1241 115.7 1059 1001 904

Apr 132.7 123.2 1151 1051 995 89.7

Mar 1320 1221 1142 1046 985 §9.3

Feb 1309 1215 1136 104.0 977 88.7

Jan 1302 1208 1127 1035 96.8 88.2
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APPENDIX F

Sample Probability that (5 - 1)/Se(6 - 1) is less than entry
size T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 -3.75 333 -3.00 -2.63 -037 0.00 0.34 0.72
50 -3.58 -3.22 -2.93 -2.60 -0.40 -0.03 0.29 0.66
100 -3.51 -3.17 -289 -258 -042 -0.05 0.26 0.63
250 -3.46 -3.14 288 257 -042 -0.06 0.24 0.62
500 -3.44 -3.13 287 -257 -043 -0.07 0.24 0.61
oo \ -3.44 312 -28 257 -044 -0.07 0.23 0.60

F(a): Percentile Values for the Dickey-Fuller Test and Phillips-Perron Test Based on Estimated OLS with a constant, C.
Source: Hamilton (1994)

Sample Probability that (5 - 1)/Se(4 - 1) is less than entry
size T 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 -4.38 395 360 -324 -1.14 -0.80 -0.50 -0.15
50 -4.15 380 -350 -3.18 -1.19 -0.87 -0.58 -0.24
100 -4.04 373 -345  -3.15  -1.22 -0.90 -0.62 028
250 -3.99 369 343 313 -1.23 -0.92 -0.64 -031
500 -3.98 -3.68 -342 313 -1.24 -0.93 -0.65 -0.32
o -3.96 366 -334 312 -1.25 -0.94 -0.66 -0.33

F(b): Percentile Values for the Dickey-Fuller Test and Phillips-Perron Test Based on Estimated OLS with a time trend
(B, + pit) . Source: Hamilton (1994)

a 0.001 0.01 0.025 0.05 0.10 0.20 0.50 0.90 0.95 0.975 0.99
T* 0.0035 0.0348 0.0880 0.1780 0.3680 0.7900 2.5400 9.4800 12.8500 16.3700 21.1700

F(c): Percentile Values for le + 3Z§ .
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Sample Critical Values for 7,

size T 0.01  0.025 0.05 0.10 0.90 0.95 0.975 0.99
25 -3.90 350 -3.18 -285 -1.28 -1.17 -1.08 -1.00

50 -3.73 339  -3.11 -280 -129 -1.16 -1.08 -0.99
100 -3.63 332 306 -277 -1.29 -1.17 -1.07 -0.97
250 -3.61 330 -3.04 -276 -1.29 -1.16 -1.07 -0.97
500 -3.59 329  -3.04 -275 -1.29 -1.16 -1.07 -0.98
1000 -3.58 328 -3.02 -275 -1.29 -1.16 -1.07 -0.98
2000 -3.56 327 302 -275 -129 -1.16 -1.07 -0.97

F(d): Critical Values for the Score Test Based on Estimated OLS with a time trend (a + ﬂ t) . Source: Schmidt and
Phillips (1992)
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APPENDIX G

Program 7.1

data eskom;
input

cards;
.32

15

16.
16.
14.
.04
16.
.68
.83
13.
16.

12

13
15

25
23
70

86

72
39

15.

15

16.

14
12

16.
14.

15
13
15

X @@;

42
.46
37
.43
.60
72
00
.04
.59
.34

15
15
16

12
16

15

15

?
symbol1 i=join

.43
.46
.20
14.
.80
.64
14.
.26
13.
.00

59

94

42

15
15
16
15

13.
16.
.69

15

15.
.00
.02

13
15

.81
.62
.06
.08

04
75

35

v=none;

proc gplot data=eskom;
plot x*t;
run;

proc arima data=eskom;

identify var=x;

run;

15
15
15
15

13.
.92
16.
15.
.57
.60

16

13
15

.69
A7
.82
.01

16

42
16

16.
16.
.79
14.
14,
77
.56
14.
.84
.30

15

16

15

14
15

19
02

71
17

87

16

16.
15.
14.
14.
16.
15.
14.
.22

16

15.

.03

09
14
23
87
58
16
43

33

15
16
14
13
15
15
15
14
17

.83
.45
.28
.84
.65
.91
.63
.45
.37

15
16

14.
13.
.72
.43
.29

16
15
15

14.
.97

18

.96
.53

11
31

38

Program 7.2

16.
16.
14.
13.
16.
.07

15

15.
.24
17.

14

18
77
03
07
75

71

19

15

12

.83
16.
14.
.50
16.
14.
16.
14.
16.

44
55

71
38
12
70
64

15

12

16.
14,
16.
14.
16.

.83
16.
14.
.20

25
88

62
50
16
19
78

data eskom;
input x @e;

cards;
15.
16.
16.
14.
.04
16.
13.
.83
13.
16.

12

15

x1
X2

Z
z1

32
25
23
70

86
68

72
39

15
15
16
14
12

16.
14.

15

13.

15

proc reg
model
run;

lag(x);

lag(x1};
X - X1;
- X2;

x1

.42
.46
.37
.43
.60
72
00
.04
59
.34

15
15

12

15

15

.43
.46
16.
14,

20
59

.80
16.
14.
.26
13.

64
94

42

.00

15
15
16
15

15

15.
.00
.02

13
15

data=eskom;

z

x1 z1;

.81
.62
.06
.08
13.
16.
.69

04
75

35

15
15
15
15
13

15

.69
T7
.82
.01
.16
16.
16.
15.
13.

92
42
16
57

.60

16.
16.
.79
14.
14.
77
.56
14.
.84
.30

15

16

15

14
15

19
02

17

87

16.
16.
15.
14.
14.
16.
15.
14.
16.
15.

03
09
14
23
87
58
16
43
22
33

15

15

15

17

.83
16.
14.
13.
.65
15.
.63
14.
.37

45
28
84
91

45

147

15
16

16
15
15
14
18

.96
.53
14.
13.
72
.43
.29
.38
.97

11
31

16.
16.
.03
.07
.75
.07
.71

14
13
16
15
15

14.
17.

18
77

24
19

15

12
16

.83
16.
14.
.50
.71
14.
16.
14.
16.

44
55

38
12
70
64

15

16.
14.
.20

12

16.
14.
16.
14.
16.

.83

25
88

62
50
16
19
78



Program 7.3

data gold;

input x ee;
t = _n_;

cards;

130 124 120 109 101 86 92 107 96 86 79 70
74 60 61 61 66 79 81 70 66 68 68 71
73 73 67 59 61 63 62 55 50 47 44 47
45 54 61 77 96 99 116 105 91 100 113 124

128 115 122 117 116 128 130 137 152 148 137 123

112 102 94 97 88 91 94 99 98 89 85 85

102 115 113 119 129 119 117 115 113 111 107 96
96 106 103 93 90 80 71 75 70 72 60 54
61 62 56 74 77 64 66 58 66 78 67 62
66 63 65 67

3
symbol1 i=join v=none;
proc gplot data=gold;

plot x*t;
run;

proc arima data=gold;

identify var=x;
run;

Program 7.4

data gold;
input x e@;
x1 = lag(Xx);
z = X - X1

cards;

130 124 120 109 101 86 92 107 96 86 79 70
74 60 61 61 66 79 81 70 66 68 68 71
73 73 67 59 61 63 62 55 50 47 44 47
45 54 61 77 96 99 116 105 91 100 113 124

128 115 122 117 116 128 130 137 152 148 137 123

112 102 94 97 88 91 94 99 98 89 85 85

102 115 113 119 129 119 117 115 113 111 107 96
96 106 103 93 90 80 71 75 70 72 60 54
61 62 56 74 77 64 66 58 66 78 67 62
66 63 65 67

5
proc reg data=gold;

model z = X1;
run;
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Program 7.5

data cpi;
input x ea@;
t=_n_;
cards;
88.2 88.7 89.3 89.7 90.4 91.3
92.4 93.6 94.6 95.0 95.4 96.0
96.8 97.7 98.5 99.5 100.1 100.4
100.5 100.5 100.6 101.1 101.7 102.7
103.5 104.0 104.6 105.1 105.9 107.0
107.5 108.1 109.3 110.3 111.,2 112.4
112.7 113.6 114.2 115.1 115.7 116.2
117.1 117.7 118.4 119.0 119.7 120.3
120.8 121.5 122.1 123.2 124.1 124.8
125.5 126.6 127.5 128.2 129.0 129.6
130.2 130.9 132.0 132.7 133.8 134.7
135.8 136.6 137.6 138.4
E)
symbol1 i=join v=none;
proc gplot data=cpi;
plot x*t;
run;
proc arima data=cpi;
identify var=x;
run;
Program 7.6
data cpi;
input x eae;
t = _n_+1;
X1 = lag(x);
z = X - X1;
cards;
88.2 88.7 89.3 89.7 90.4 91.3
92.4 93.6 94.6 95.0 95.4 96.0
96.8 97.7 98.5 99.5 100.1 100.4
100.5 100.5 100.6 101.1 101.7 102.7
103.5 104.0 104.6 105.1 105.9 107.0
107.5 108.1 109.3 110.3 111.2 112.4
112.7 113.6 114.2 115.1 115.7 116.2
117.1 117.7 118.4 119.0 119.7 120.3
120.8 121.5 122.1 123.2 124.1 124.8
125.5 126.6 127.5 128.2 129.0 129.6
130.2 130.9 132.0 132.7 133.8 134.7
8 136.6 137.6 138.4

135.

proc reg data=cpi;
model z

run;

t x1;
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Program 7.7

data eskom;
input x @e;

cards;
.32
.25
.23
14.

15
16
16

12

70

.04
16.
13.
15.
13.
16.

86
68
83
72
39

15.
15.
16.
.43
.60
16.
14.
.04
.58
15.

14
12

15
13

42
46
37

72
00

34

15

16

12

15

15

.43
15.
.20
14.

46

59

.80
16.
14.
.26
13.
.00

64
94

42

15
15

15
13
16

15
13

.81
.62
16.
.08
.04
.75
15.
.35
.00
15.

06

69

02

15

15.
.82
.01
13.
16.

15
15

16

.69

77

16
92

.42
15.
13.
15.

16
57
60

proc spectra data=eskom out=b

proc print data=b;

var X;

weights 1 2 3 4 3 2 1;
run;

symbol1 i=splines v=none;

proc gplot data=b;

plot p_01 * freq;
plot s_01 * freq;
run;

16.
16.
.79
.71
14.
16.
15.
14.
14.
15.

15
14

19
02

17
77
56
87
84
30

16

16.
15.
.23
.87
16.
15.
.43
.22
.33

14
14

14
16
15

.03

09
14

58
16

p s adjmean

15.
16.
14.
13.
15.
15.
15.
14.
.37

17

83
45
28
84
65
91
63
45

15
16

13
16
15
15
14

18.

.96
.53
14.
.31
.72
.43
.29
.38

11

97

whitetest;

Program

16.
16.
14.
.07
16.
.07
.71

13

15
15

14.
17.

18
77
03

75

24
19

15.
.44
14,
12.
16.
14,
16.
14.
16.

16

83

55
50
71
38
12
70
64

15.
.25
14.
.20
.62
.50

16

12
16
14

16.
14.
.78

16

83

88

16
19

data eskom;
input P_01 freq @e;

cards;

11.
38.
22
9.
35
11
14.
1
7
0.

M=1log(P_01);

A=2*sin(freq/2);
N=1log(A*A};

1613
9346

.2028

7468

.2096
. 5292

4221

.15625
.8980

7407

el =Nl oloNeoleiNo el

.05464
.10927
.16391
.21855
.27318
.32782
.38245
.43709
.49173
.54636

proc reg data=eskom;

model M = N;

run;
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Program 8.2

data gold;

input P_01 freq ee;

M=log(P_01);

A=2*sin(freq/2),;
N=log(A*A);
cards;
24124.3 0.0561
13816.6 0.1122
12641.3 0.1683
7275.4 0.2244
925.1 0.2805
3682.0 0.3366
611.1 0.3927
1591.3 0.4488
656.4 0.5049
314.4 0.5610

proc reg data=g
model M = N;
run;

old;

Program 8.3

data eskom;

input S_01 freq ee;

M=log(S_01) ;
A=2*sin(freq
N=log(A*A);

cards;

.54352

.71100

. 74219

.67976

.58162

.22804

.95710

.66136

.43508

.31059

OO0 0000000

P O 000 - = = oA

proc reg data=e
model M = N;
run;

12}

.05464
.10927
.16391
.21855
.27318
.32782
.38245
.43709
.49173
.54636

skom;
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Program 8.4

data gold;
input S_01 freq ee;

M=log(S_01);

A=2*sin(freq/2);

N=

log(A*A);

cards;

1516

1260.
953.
644.
390.
250.
144.

95.

.98

.70

72
49

.67

37
67
25
36
51
32
00

OO 000000 O0OOo

. 0561
.1122
.1683
.2244
.2805
.3366
.3927
.4488
.5049
.5610

proc reg data=gold;

model M = Nj

run;

Program 8.5

data change;
input x €e;

t

= _n

cards;

1.23
1.32
0.98
0.35
0.25

0.85 0.48
1.31 0.32
0.19 0.10
0.00 0.18
0.08 0.08

symboll i=join
proc gplot data=price;
plot x*t;

run;

0.24 0.48 0.72 0.47 0.00 0.12 0.47 0.47 1.05 1.04 0.57 0.68 1.13 0.89
0.11 0.43 0.96 1.69 0.94 0.82 1.02 0.61 0.40 0.00 0.10 0.50 0.90 0.49
0.48 0.38 1.06 0.66 0.57 0.94 0.74 1.38 0.73 0.99 0.63 0.27 0.62 0.09
0.09 0.70 0.17 0.17 0.26 0.09 0.17 0.17 0.52 0.00 0.43 1.02 0.68 0.59
0.16 0.50 0.91 0.16 0.90 0.89 0.80 0.40 0.24

v=none;

proc arima data=price;
identify var=x;

run;

estimate p=1 noconstant method=ml;

run;
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Program 8.6

data change;
input price @@;

t=_n_;

x1 = (0.005*t)*price;

y1 = lag(x1);

y2 = lag(y1);

y3 = lag(y2);

y4 = lag(y3);

y5 = lag(y4);

X2 = (1/12)* (x142%y143*y2+3*y3+2*y4+y5);
cards;
1.23 0.85 0.48 0.24 0.48 0.72 0.47 0.00 0.12 0.47 0.47 1,05 1.04 0.57 0.68 1.13 0.89
1.32 1.31 0.32 0.11 0.43 0.96 1.69 0.94 0.82 1.02 0.61 0.40 0.00 0.10 0.50 0.90 0.49
0.98 0.19 0.10 0.48 0.38 1.06 0.66 0.57 0.94 0.74 1.38 0.73 0.99 0.63 0.27 0.62 0.09
0.35 0.00 0.18 0.09 0.70 0.17 0.17 0.26 0.09 0.17 0.17 0.52 0.00 0.43 1.02 0.68 0.59
0.25 0.08 0.08 0.16 0.50 0.91 0.16 0.90 0.89 0.80 0.40 0.24

proc spectra data=change out=b cross s k phj
var x1 x2;
weights 1 2 3 4 3 2 1;

proc print data=b;

symbol1

i=splines v=plus;

proc gplot data=b;

plot
plot
plot
plot
plot
plot
run;
quit;

s_01*freq;
s_02*freq;
cs_01_02*freq,
qs_01_02*freq;
k_01_02*freq;
ph_01_02*freq;
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