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Chapter 3

The Development of a Dynamic
Receptor-Based Pharmacophore Model of

Plasmodium falciparum Spermidine Synthase

3.1. Introduction to Pharmacophores

The concept of a pharmacophore was first coined by Paul Ehrlich in 1909 as “a
molecular framework that carries (phoros) the essential features responsible for a drug’s
(pharmacon) biological activity” (Guner, 1999). The most widely accepted definition
of a pharmacophore model was formulated by Peter Gund in 1977, which states that a
pharmacophore model is "a set of structural features in a molecule that is recognized at
a receptor site and is responsible for that molecule’s biological activity" (Gund, 1977).
Pharmacophore models constitute pharmacophore features (PhF) which are moieties with
specific chemical properties and a characteristic 3D geometry giving its biological activity
(Milne et al., 1998). The geometric arrangement of the PhFs complement the region of
binding of the target and exerts the ligand’s biological activity by interacting strongly
with it. Pharmacophore models can be derived via analogue-based (ligand, indirect)
or receptor-based (protein, direct) approaches (Guner, 1999; Dror et al., 2004). The
analogue-based approach uses ligands that have been experimentally shown to have ac-
tivity against a target of unknown structure. In this approach the ligands are used to
derive PhFs and construct pharmacophore models. The receptor-based approach uses

a resolved ligand-target complex to derive PhFs and construct pharmacophore models.
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These methods can be better understood by considering Figure 3.1.

Figure 3.1: An illustration to highlight the analogue-based and the receptor-based approaches
from which a pharmacophore model can be derived. (A) Four ligands with biological activity
against a target of interest which can be used in the analogue-based approach. (B) A resolved
ligand-target complex illustrating the complementarity of the receptor to the ligand using PhFs.
(C) Ilustration of a pharmacophore model which could be derived from either the analogue-based
or the receptor-based approach. (Adapted from the Gray Laboratories http://research.dfci.
harvard.edu/gray_lab/research.htm)

Figure 3.1A describes an analogue-based approach represented by four ligands show-
ing biological activity against a particular receptor. Common PhFs are highlighted (red
and blue spheres) and constitute a pharmacophore model describing the most important
interactions thought to be responsible for the ligand’s biological activity. When deriving

pharmacophore models from the structure-based approach a negative image of the active



e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 3. The Development of a Dynamic Receptor-Based Pharmacophore Model 93

site is constructed complementing the interactions between the receptor and ligand. This
is illustrated in Figure 3.1B where the complementarity of the ligand and PhFs of the ac-
tive site is shown. Figure 3.1C show the PhFs constituting a pharmacophore model, which
could either have been derived from the known ligands (analogue-based approach) or from
the ligand-target complex (receptor-based approach). Pharmacophore models therefore
attempt to capture and describe both the chemical and geometric characteristics of a
ligand that are the most important for binding to a target receptor. The receptor-based
approach has the advantage that the correct geometry of the PhFs is known and can be
used in more accurate screening of databases for new compounds. It is also possible to
derive new PhFs from the target structure which is not possible using the analogue-based
approach where only known inhibitors are used. The constructed pharmacophore models
can then be screened against chemical databases to identify novel binders to a target of
interest. The strength of the pharmacophore model approach therefore lies in its ability
to predict/identify structurally diverse compounds representing a set of known chemi-
cal features (PhF) with a particular 3D geometry responsible for the biological activity
against a target (Dror et al., 2004; Khedkar et al., 2007; Sun, 2008).

Pharmacophore models can additionally be used to perform scaffold-hopping and iden-
tify new ligands with different chemotypes but which still have a similar biological activity
(Sun, 2008). Such a study was performed by Parkes et al. (2003) where they identified
a novel structural class of inhibitors acting on influenza endonucleases. Palomer et al.
(2002) used pharmacophore models to identify novel cyclooxygenase-2 selective inhibitors
which differ with regards to their scaffold structures from the known inhibitors. Pharma-
cophore models have also been used in predictive strategies of ADMET properties and
the de novo design of novel compounds (Ekins et al., 2000; Dror et al., 2004; Swaan and
Ekins, 2005). The pharmacophore methodology also includes the use of pharmacophore
finger printing and pharmacophore docking (Guner, 2002). Pharmacophore models are
not only used in the drug discovery industry but also play an increasingly important
role in the fragrance industry and are referred to as olfactophores (Guner, 2002). Having

highlighted some of the most important uses of pharmacophore models it is not surprising
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that the pharmacophore methodology has attracted much attention over the last few of
years (Carlson et al., 2000a; Dror et al., 2004; Khedkar et al., 2007; Guner, 2002; Sun,
2008). The importance of pharmacophore models in the current drug industry was fur-
ther emphasized in a recent review by Khedkar et al. (2007) where it was reported that

pharmacophore models are now being protected under intellectual property rights.

Comprehensive reviews have recently been published assessing the different pharma-
cophore approaches available (Dror et al., 2004; Guner, 2002; Khedkar et al., 2007; Sun,
2008). A general work flow diagram describing the steps involved in the development of a
pharmacophore model using either the analogue or receptor-based approach is shown in
Figure 3.2. The following section will detail the methodology and challenges associated
with both the analogue and the receptor-based approaches used to derive pharmacophore

models. These approaches will be discussed by referring to the steps listed in Figure 3.2.
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Figure 3.2: A diagram showing the general work flow procedure followed during the develop-
ment of a pharmacophore model for both the analogue and receptor-based approaches. The
receptor-based approach is described explaining the work flow for the development of a dynamic
receptor-based pharmacophore model.

3.1.1. Analogue-based pharmacophore model

A six step frame work proposed by Dror et al. (2004) is shown Figure 3.2. As with
most computational approaches the quality of the input data determines the quality of

the output data. During the selection of the input data set, the type of ligands available,
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the size of the data set and the chemical diversity of the compounds to be used need to be
considered. The specificity and selectivity of the ligands for a specific target should also be
considered to prevent the construction of inaccurate pharmacophore models. Therefore,
when deriving analogue-based pharmacophore models, ligands with biological activity
due to off-target effects should be avoided. The size and the chemical diversity of the
ligands determine the software solutions which should be used and specify the confidence
in the final derived pharmacophore models (Khedkar et al., 2007). To generate a good
pharmacophore model, the input data should have sufficient chemical diversity and consist
of between 18-30 compounds (Kurogi and Guner, 2001). Larger sets of input data can
also be used (1000-2000 compounds), but it is questionable how specific these compounds

are since low quality pharmacophore models are obtained (Dror et al., 2004).

The incorporation of conformational flexibility of ligands into pharmacophore models
is crucial to and complicates the analogue-based pharmacophore model approach (Guner,
2002). The use of conformational searching (Figure 3.2) is essential to cover the confor-
mational space of the ligands adequately, however this remains a major challenge (Dror
et al., 2004). Many good algorithms exist and include the polling function used in the
Catalyst software suite (http://www.accelrys.com). During the conformational sam-
pling the polling function penalize a newly generated conformation when it is too close
to any other in the set, thereby ensuring the sampling of representative conformations

(Smellie et al., 1995).

Feature extraction (Figure 3.2) can be performed on three structural similarity levels
and includes atom-based, topological-based and functional-based features (Dror et al.,
2004). The atom-based method defines a feature as a 3D position of an atom of a ligand
while the topological-based approach groups atoms together and represents the feature
as such i.e. a carbonyl group. The functional-based features represent the interactions
thought to be important within the ligand-target complex and are usually represented
by six functional groups including hydrogen bond donors (HBD), hydrogen bond accep-

tors (HBA), positive ionizable features (PI), negative ionizable features (NI), aromatic
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features and hydrophobic (HYD) features (Clement and Mehl, 2000). In the structure
representation stage the pharmacophore features extracted are mapped together to form

a representation of the ligand. The most commonly used method for mapping is graph

theory (Dror et al., 2004).

In the pattern identification stage (Figure 3.2), the features extracted from the differ-
ent input ligand molecules are matched and pharmacophore candidates proposed (Khed-
kar et al., 2007). A pattern can be described as a set of features having locations relative
to each other in 3D space and is also frequently referred to as a configuration (Khedkar
et al., 2007). These patterns are used to search for ligands and it is thought that a ligand
fits a pattern if it presents a set of features in a specific conformation and maps the
ligand features to corresponding pharmacophore features. There are various algorithms
to detect the embedded patterns in the 3D space represented by the ligand conformations
generated for the input ligands. These algorithms include clique-detection, pairwise case,
multiple case, exhaustive search and genetic algorithms (Dror et al., 2004). However, the
most popular means of identifying patterns given a set of ligands is the maximal common
substructure (MCS) approach (Khedkar et al., 2007). The MCS approach aims to identify
the largest set of pharmacophore features embedded within the 3D space represented by
the ligand conformations generated for the input ligands (Dror et al., 2004). The main
limitation of this approach is that it is based on the assumption that there is a single
common pharmacophore model responsible for the observed activity (Dror et al., 2004;
Khedkar et al., 2007). Barnum et al. (1996) proposed the use of a relaxed-MCS which
allows for the generation of pharmacophore models where pharmacophore features need
not be present in all the ligands but still need to meet a specific threshold. This therefore,
allows the pharmacophore to miss a feature as long as it complies to a set threshold. The
relaxed-MCS method has been shown to generate better models than the normal MCS
method (Dror et al., 2004).

The last stage of the analogue-based approach is the scoring system which is used to

assess the quality of the pharmacophore model by using a scoring function that determines
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the chance correlation that a ligand has given a certain pharmacophore model (Sutter
et al., 2000). To make the scoring of pharmacophore models more reliable, the scoring
functions consider the number of PhF as well as their frequency of occurrence i.e. two
negative ionizable features (features occurring less frequently) will be given a higher
score than four hydrophobic features (occurring more frequently; Barnum et al. 1996).

The newly generated pharmacophore models can then be used in screening.

3.1.2. Receptor-based pharmacophore model

The receptor-based pharmacophore approach (direct approach) should be followed if
a 3D target structure is present. The receptor-based approach will be discussed using a
dynamic receptor-based pharmacophore model (DPM) highlighting the differences with
the normal receptor-based approach. The concept of a receptor-based dynamic pharma-
cophore model was first proposed by Carlson et al. (2000a). A dynamic pharmacophore
model is in essence a pharmacophore model that attempts to account for the inherent
flexibility of an active site and aims to reduce the entropic penalties associated with
binding a ligand (Carlson et al., 2000a). The biggest difference between the conventional
approach and the DPM approach is the use of multiple protein conformations to incorpo-
rate receptor flexibility. The development of a DPM can be divided into four stages and
will be discussed accordingly: 1) Protein structure quality assessment, 2) Phase space

sampling, 3) Negative image construction and 4) Hit analysis (Figure 3.2).

3.1.2.1. Protein Structure Quality Assessment and pKa Predictions

The protein structure quality assessment stage can be subdivided into quality assess-
ment of the target structure, active site identification and determining protonation states
of the relevant ionizable groups. The integrity of the target structure is extremely impor-
tant and therefore a thorough assessment of the structure is essential since it determines
the conclusions that can be drawn from this approach and the confidence therein. A
Protein 3D structure, may be described as a model of a protein structure that is derived
and fitted to best represent experimental data (Laskowski, 2003). This implies that
3D structures will have errors associated with them, which can either be systematic or

random (Laskowski, 2003). It is therefore of utmost importance that a thorough quality
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assessment of the target structures be performed before embarking on the design of a
DPM that is dependent on the quality of the input structure. The quality of a 3D struc-
ture can be assessed through analysis of various parameters including resolution, R-factor,
Ry, e-factor, atomic B-factors and stereo-chemical parameters such as the Ramachandran
plot (Brunger, 1992; Laskowski, 2003). The resolution of a 3D structure is the clearest
measure of the apparent quality of a structure and serves as an indicator of the amount
of detail that can be discerned from the computed electron density map and therefore
the protein structure (Laskowski, 2003). It is generally known that a structure at 3A
resolution allows the tracing of a protein’s backbone through the density map and that a
structure with a 2A resolution will allow accurate fitting of the side chains. Therefore, a
crystal structure with a resolution of < 2A may be used with a fair amount of confidence.
The R-factor and Ry,..-factor are both measures that assess the fitting of atomic models

to the observed diffraction data (Brunger, 1992).

The R{yc.-factor is deemed to be more reliable and less susceptible to manipulation
during refinement (Brunger, 1992). Generally, structure models with R-factors < 0.2 and
Ryree -factors < 0.4 are considered to have good agreement with the experimental data
and to be reliable. Atomic B-factors can be used as a measure of the precision of the
coordinates of given atoms in a 3D structure. Generally, B-factors with values in excess

of 40 indicate imprecise coordinates (Laskowski, 2003).

Protein 3D structures can additionally be assessed based on their stereo-chemical
properties. The most common method used is the Ramachandran plot, which checks the
stereo chemical integrity of the protein. The Ramachandran plot is essentially a scatter
plot of the v (psi) versus the ¢ (phi) main-chain torsion angles of every amino acid of a
protein which generally fall into favoured and unfavoured regions (Ramachandran, 1963;
Laskowski, 2003). It is, however important to note that due to the nature of the data
(statistical) from which the Ramachandran plot parameters have been derived, residues

which fall outside the favoured areas are not necessarily wrong but may have crucial roles
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in the function and structure of the protein.

The proper understanding of the physical properties of a protein are of importance in
every aspect of modern biology. Although considerable biological data can be gathered
and interpreted from the X-ray structure of a protein, little information regarding its
physical characteristics is available (Nielsen and McCammon, 2003). Extensive calcula-
tions are thus needed to calculate these physical characteristics which may include ligand
specificity, protein stability and the electrostatics of a protein (Nielsen and McCammon,
2003). The physical property of interest in this section is the protonation equilibrium
of ionizable groups in proteins, which is described by a pKa value. Therefore detailed
simulations of proteins, such as MD simulations, customarily require that the charge state
of every ionizable group be specified a priori (Antosiewicz et al., 1996). Knowing the
ionization states of the active sites are helpful in the prediction of affinities of proteins

for ligands (Antosiewicz et al., 1996).

Protonation equilibria can be predicted by using the University of Houston Brow-
nian Dynamics (UHBD; http://adrik.bchs.uh.edu/uhbd/) and YASARA (Krieger
et al., 2006) packages. The UHBD program uses the classical way of predicting the
protonation equilibria by solving the Poisson-Boltzmann equation and by so doing, ac-
counting for the dielectric constant of solute and solvent, as well as the ionic strength
(http://adrik.bchs.uh.edu/uhbd/). YASARA uses an empirical equation to expresses
the pKa calculations as a function of electrostatic potential, hydrogen bonds and accessi-
ble surface area by applying the particle mesh Ewald (PME) summation to simplify the
interaction between ionizable groups and its environment (Krieger et al., 2006). UHDB
has two advantages over YASARA, being the treatment of implicit counter ions and

applying different dielectric constants to the solvent and solute (Krieger et al., 2006).

3.1.2.2. Phase Space Sampling

Phase space can be defined as all the possible states that a system can have in space.
The aim of the phase space is to capture the dynamic behavior of a receptor and in-

corporate it at a later stage in the receptor-based pharmacophore model. Within the
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structure-based drug design process the need to account for the dynamic behavior of a
receptor has long been recognized as a complicating factor (Carlson and McCammon,
2000a). Historically, single high quality rigid protein structures (i.e. X-ray structures)
have predominantly been used in the discovery process, the main reason being that the
use of single rigid protein structures is a much faster process. However, the exponen-
tial increase of available computing power now provides the opportunity to incorporate
protein flexibility into drug design. There are four major ways of incorporating protein
flexibility into drug design; soft-docking, conformational sampling of the side chain in
the receptor, generating a subensemble of structures and predicting loop flexibility and
domain motions (Carlson and McCammon, 2000a). From the "lock-and-key" theory of
ligand binding to a protein it is suggested that a protein exists in a single well-defined
state with only one optimal complimentary state, however for this to be true the system
would have to be very rigid. The energy landscapes of most proteins on the other hand
have frequently been described by means of a folding funnel (conformational well) in
which there are many highly unfavourable states that collapse via multiple routes into
several possible favourable folded states (Ma et al., 1999; Freire, 1999). The folded state
of a protein is made up of a collection of structurally similar and nearly energetically
equivalent conformations (Carlson and McCammon 2000a; Figure 3.3). This implies that
a single structure might not be enough to describe the substates adequately, even when
the weighted average of a crystal structure is used (Carlson and McCammon, 2000a). It
is thus clear that protein flexibility has major implications for structure-base drug design
and for the discovery of new lead compounds multiple protein conformations need to be

considered.

A subensemble of protein structures can be either experimentally determined or com-
putationally derived. Experimentally determined sources include X-ray crystallography
and NMR structures. Computationally derived subensembles of structures can be ob-
tained using Monte Carlo (MC) sampling (Verkhivker et al., 2001) but have mainly been
derived from MD simulations (Carlson et al., 2000a; Deng et al., 2005, 2006; Damm and

Carlson, 2007; Damm et al., 2008; Bowman et al., 2007a). Considering experimentally
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Figure 3.3: A conformational funnel demonstrating multiple states for a protein. The flexibility
inherent in a folded state ( 0 OA) is described by an ensemble of conformations (shown here as
a collection of colored triangles (A)). A collection of structures from a MD simulation of HIV-1
integrase showing a sub-ensemble of states with a modest sampling of the backbone and a wide
sampling of a small flexible loop on the right (Carlson and McCammon, 2000a). Expanding the
minimum of a single state in the sub-ensemble (any of the colored triangles (A)) would reveal an
additional series of sub-minima that arise from a variation in the orientation of the side chains.
Adapted from (Carlson and McCammon, 2000a)

derived data, NMR structures, if available, are the preferred source of protein structures
to represent the phase space, since it has been shown to sample a large portion of the
conformational well. This technique, however is limited to proteins consisting of less
than 7100 residues and is seldom applicable (Carlson and McCammon, 2000a). Multiple
X-ray structures are another source of experimentally determined data and have been
shown to better represent the phase space of a protein than MD simulation, but are

system-dependent and is also not always available (Clarage et al., 1995).

Considering computational approaches, Lamb and Jorgensen (1997) showed that free
energy calculations such as MC sampling and MD simulations are the most rigorous
computational methods for generating a subensemble of states and the calculation of
their thermodynamic properties. These methods are reliable and are comparable with
experimental data to within 1 kcal/mol (Lamb and Jorgensen, 1997; Carlson and Mc-

Cammon, 2000a). Work done by Verkhivker et al. (2001) showed that when the MC
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method is used for simulated annealing at temperatures ranging between 300K to 5000K,
the system could still get trapped in local minima. This may be due to the difficulty of
performing successful MC sampling on large flexible systems. The problem may, however,
be overcome if some of the degrees of freedom are frozen or special methods are applied,
but the drawback of these methods is a low phase space coverage (Leach, 2001). A
comparison was drawn between the phase space sampled by 15 NMR structures of E. coli
ribonuclease HI and the phase space sampled by a 1.7ns MD simulation, starting from a
high resolution structure (PDBid 2RN2; 1.48A; Philippopoulos and Lim (1999)). It was
found that the MD simulation sampled similar structures to that of the NMR structures,
however the sampling of the conformational well was not as wide. The NMR structures

also showed more flexibility in the side chains and backbone.

It is therefore clear that MD simulations are the preferred computational method to
sample the conformational well of the phase space for the target structure of interest
and this approach was selected accordingly for this study. Molecular dynamics can be
defined as the integration of Newton’s equations of motion on a set of atoms allowing
for the generation of a successive series of configurations resulting in a trajectory that
specifies how the positions and velocities vary over time (Leach, 2001). The numerical
integration of Newton’s laws of motion reveals the intrinsic motions of the system under
the influence of an associated force field (Schlick, 2002). This force field is representative
of a functional form, which is used to describe the energy of a system as a function
of the nuclear position of the atoms and is governed by a set of predefined parameters
(Leach, 2001). MD simulations thus combine both the spatial and temporal aspects of
conformational sampling (Schlick, 2002).

The sampling of the phase space of a protein results in a large number of similar
structures, which are captured during a MD simulation. These data needs to be processed
and analyzed to obtain a subensemble of structures representative of the covered phase
space. This can be done by using an unsupervised method known as clustering. Clustering

deals with the intrinsic grouping of unlabeled data sets. In other words clustering deals



e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo YUNIBESITHI YA PRETORIA

Chapter 3. The Development of a Dynamic Receptor-Based Pharmacophore Model 63

with large amounts of data, which are grouped or clustered together based on similar
properties from which a smaller representative data set can be selected (Leach, 2001;
Causton et al., 2003). Clustering is therefore a good method for finding a smaller set of

representative structures of the phase space sampled during the MD simulation.

3.1.2.3. Negative Image Construction

The negative image construction stage involves the identification of chemical features
within the active site and the derivation of the relationship of their spatial geometry
through the construction of DPMs. The identified chemical features are represented by
PhFs. The PhFs identified from the negative image of the active site are thought to
provide complementary PhFs which can be used in the identification of strong binding

ligands.

This stage can be broken down into molecular interaction field (MIF) analysis and
the identification of exclusion volumes (EV; Figure 3.4). From MIF analysis PhFs can be
identified which in turn can be combined with the identified EVs and used to construct

DPMs (Figure 3.4). This section will be discussed using the flow diagram in Figure 3.4.

The conventional way of constructing a negative image is by generating an interaction
map of the active site by identifying chemical features such as HBDs, HBAs and HYD
features followed by the placement of complementary features within reasonable chemi-
cal space (Dror et al., 2004; Bohm, 1992, 1994). Negative image analysis has also been
performed by flooding the active site with chemical probes followed by their optimization
and feature extraction, these features are often described as binding hotspots (Carlson
et al., 2000a; Damm and Carlson, 2006). The latter method can also be applied in the
construction of DPMs by flooding the subensemble of structures identified during phase
space sampling (Carlson et al., 2000a; Damm and Carlson, 2006). The binding hotspots
identified using these methods can be described as binding areas with specific chemical

features (i.e. HBA, HBD and HYD), which are present in all subensemble structures.

A third method, MIF analysis, is the preferred method for this study and is used to
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Figure 3.4: A work flow of the negative image construction stage of the development of a DPM.
This stage can be broken down into MIF analysis and EV identification which are combined after
completion to construct DPMs. MIF analysis can further be broken down into PhF identification,
which involves grid-point selection and subsequently their clustering to obtain the representative
positions of the PhFs. The EV identification involves the identification of active site atoms to be
used as EVs and subsequently their clustering to get the representative positions. The identified
PhFs and EVs can then be combined to generate DPMs.

obtain the coordinates in Cartesian space of energetically favourable binding sites within
the active site of the target protein and are represented by PhFs. This is done using a
program called GRID (www.moldiscovery.com). The grid-based method uses specific
non-covalent interactions between a molecule of known three dimensional structure (the
"Target"), and a small chemical group (the "Probe") to predict interactions. The ap-
proach can be used to study a variety of targets and includes enzymes, nucleic acids,
poly-saccharides, glycoproteins, peptides, membranes, crystals, drug molecules, photo-

graphic materials, dyes and many other organic chemicals (www.moldiscovery.com).

The basic principle of grid-based methods entails that an electrostatic potential is
calculated around the protein or target. This electrostatic potential is calculated based
on the x, y and z coordinates of the atoms of the target after which the model is sur-
rounded by an imaginary orthogonal grid (Figure 3.5). Subsequently, starting at the

first grid point the electrical potential is calculated at that particular point for a unit
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electrostatic charge (which is brought from infinity; for more information see Cruciani
(2006)). This is done for all the grid points and is tabulated giving their coordinates
and electrical potential. Electrostatic potentials do not normally allow the differentiation
between favourable binding sites for a primary, a secondary, a tertiary amine cation, a
tetramethyl ammonium, a peridium or a sodium cation. However, the grid-based method
is an attempt to compute analogue potentials which have chemical specificity within the
active site (Cruciani, 2006). This accumulation of chemical specific information con-

tributes to the understanding of interaction between the target and its molecules.

i W
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Figure 3.5: The setup of MIF analysis using a grid-based method. An imaginary orthogonal grid
constructed around the target is shown. The electrical potential for the probe is then calculated
starting at the first grid point as can be seen in this figure. Adapted from Goodford (2005).

The grid-based method has three features that distinguishes it from normal programs
calculating the electrostatic potentials (Goodford, 2005): 1) GRID probes are often ani-
sometric, 2) the target responds when the probe is moved around it from place to place
and 3) it is assumed that both the target and the probe are immersed in water. Most of
the GRID probes are anisometric since probes can represent either an atom or a small

group of atoms (Goodford, 2005), for example a carbonyl oxygen probe, which consists of
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an oxygen atom with two lone pairs (sp?) represents a probe that has size, a polarizability
and an electrostatic charge with both the lone pairs being able to form hydrogen bonds.
During calculations this oxygen atom is placed at the center of a grid-point, bad contacts
are identified and nearby HBDs are searched for. The probe is then rotated around the
grid-point to find the best possible interactions at that specific grid-point. The procedure
is performed for all the grid-points of the grid. The use of anisometricity provides the
user with chemical specific information of the target, which is more informative than just
an electrostatic potential map (Cruciani, 2006). When a probe (e.g. hydroxy probe sp?)
is positioned at a specific grid-point the orientations of the hydrogen will be in a random
position. GRID allows the target to be responsive which would mean that residues within
the vicinity of the probe can be adjusted to form the most favoured interactions (Figure
3.6). Another advantage of the grid-based method is that it is able to treat the target as
if it is present within a biological system, submerged in a water solution containing differ-
ent chemical entities influencing the dielectric constant. Most methods uses a dielectric
constant of a vacuum (considered to be one), however GRID deals with this problem by
treating the outside of proteins with a dielectric constant of 80 and the inside with a

dielectric constant of 4.

MIF analysis using the grid-based method is performed with various different probes
to explore the active site and its affinity for binding different chemical groups. Depending
on the active site three different classes of probes are usually used to identify the PhFs.
These include HBA, HBD and hydrophobic (includes aromatic groups) probes. Depend-
ing on the system and the user there are various different probes which can be used to
identify these PhFs. MIF analysis results in grid-points having grid values (energy values)

which are extracted, clustered together and used to produce the PhFs.

The construction of a negative image for the active site of an receptor results in
a large number of PhFs. A single query or DPM containing all PhFs would be too
complicated to retrieve hits from a database search (Dror et al., 2004; Venkatachalan

et al., 2000). Therefore it is important to construct multiple DPMs which can be used
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Figure 3.6: An illustration of the ability of target to respond to the introduction of a chemical
probe in its active site. Here a hydroxy probe (sp?) is introduced at a grid point having a
random orientation to the target, it forms a hydrogen bond with a hydroxyl group of a Ser
residue labeled B. The hydroxyl probe can be adjusted to make a hydrogen bond between its
hydrogen atom and the the sp?carbonyl group (labeled A). The hydroxyl group of Ser (labeled
as B) can then respond to this change and be oriented in such a way that it forms a hydrogen
bond with the probe. This then results in a more favourable interaction. The grey shaded area
is representative of the target. Adapted from Cruciani (2006).

to search the chemical databases and retrieve compounds fitting these DPMs. A set
of guidelines for the selection of PhF to construct pharmacophore models have been
proposed by Venkatachalan et al. (2000). They proposed that a query or pharmacophore
model should consist of between three and seven PhFs. It is also suggested that if there
are N HBA identified, assuming one constructs queries (DPM) with n acceptors (n<N),
then there are N!/[n!(N-n)!] combinations to consider. This needs to be done for each
feature type (Venkatachalan et al., 2000). This however, might be too large a number
of DPM to be searched and it is suggested that knowledge from known inhibitors and
mutation studies be considered when selecting PhFs for the construction of DPMs. The
inter-feature distance should be considered in the selection of PhF to construct DPMs
since large inter-feature distances result in the retrieval of large molecules which is not
always desirable. Venkatachalan et al. (2000) suggested a minimum inter-feature distance

of 1.5A to avoid overlap between the features.
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Even when following these guidelines a large number of hits can be returned from
database screening, therefore exclusion volumes are used to make the searches more spe-
cific for the target molecule. The use of a receptor-based pharmacophore model has
the advantage of exploiting structural information such as shape and volume which can
be derived directly from the active site (Dror et al., 2004). The shape and volume are
represented by exclusion volumes and should be added to the pharmacophore models.
These exclusion volumes serve as a barrier preventing the overlap of ligands with the
receptor atoms making the database screens more specific (Venkatachalan et al., 2000).
Exclusion volumes are usually derived by selecting atoms within a certain distance of
the active site. The exclusion volumes delimit the space accessible to the ligands within
the active sites since the exclusion spheres act as hard spheres which do not allow for

mapping during database searches (Hoffman et al., 2000).

3.1.2.4. Hit Analysis and In Vitro Testing

This stage involves the screening of DPMs generated in the previous stage against
a chemical database of choice. The hits identified are filtered, evaluated and the best
scoring compounds selected for in vitro testing. A detailed breakdown of this stage is

provided in Figure 3.7.

The hit analysis stage starts by the selection of either a commercially or publicly avail-
able chemical databases to be screened (Oprea and Tropsha, 2006). One of the biggest
challenges of virtual screening today is the cost and ready availability of databases for
the use in screening, since they are usually difficult to prepare and not curated (Irwin
and Shoichet, 2005). Large efforts have been made over the last few of years to gener-
ate chemical databases meeting these challenges. These efforts include the Zinc - is not
commercial (ZINC) database (Irwin and Shoichet, 2005), National Cancer Institute (NCI)
(http://cactus.nci.nih.gov/), PubChem (http://pubchem.ncbi.nlm.nih.gov), the
Super Drug DataBase (Goede et al., 2005), the Drug Bank (Wishart et al., 2008) and
the SuperNatural database (Dunkel et al., 2006).

These databases are not all freely available for download and screening but are avail-
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\ Hit Analysis and /n Vitro Testing \

[ Database Screening JJ

| Database Selection ——
| Database construction f——
| Database Searching ——
| HitFiteing ~ p——I

M Docking

Figure 3.7: A work flow of the hit analysis and in vitro testing stage of the development of
a DPM. This stage starts with database screening which involves database selection, database
construction, database searching and hit filtering. The filtered compounds are subsequently
docked and selected for in vitro testing.

[ In Vitro Testing }

able on-line for similarity searches. Irwin and Shoichet (2005) suggested that the “gold
standard” for docking databases in academia are the commercially available, Available
Chemical Database (ACD; http://www.mdli.com) having 250 000 purchasable com-
pounds and over 2.3 million compounds in the ACD-SC (screening compound set).
The Cambridge Structural Database (CSD, http://www.ccdc.cam.ac.uk, 430 000 com-
pounds) and the ChemNavigator database (http://www.chemnavigator.com/ over 10
million compounds) are some other commercially available databases often used in virtual
screening. These databases have the drawback that they leave the user with the chal-
lenges of deciding on the protonation states, charges, tautomeric forms, and removal of
salts (Irwin and Shoichet, 2005). These challenges are not unique to commercial products
but are also found in most publicly available databases such as the Ligand-Info database
(http://ligand.info/). The ZINC database containing over 8 million purchasable com-
pounds is the first database where all the above-mentioned aspects have been addressed
by the curators. The ZINC database has numerous sub-sets available to be downloaded.
These include subsets such as lead-like, drug-like, fragment-like, Verneralis-filtered, all

purchasable compounds, etc. (http://zinc.docking.org/). In the present study the
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drug-like subset of the ZINC database, which was pre-filtered by applying Lipinski’s rule
of five (Lipinski, 2000). Lipinski’s rule of five can be defined as follow: a compound
should not have more than five hydrogen bond donors, no more than ten hydrogen bond
acceptors, have a molecular weight less than 500 dalton and have a partition coefficient

(log P) less than five.

The selection of the database is followed by its construction and subsequently the
searching of the DPMs. These searches return compounds with a fit value which can be
described as a measure of how well a compound fits a pharmacophore model. These fit
values are used to rank and filter compounds. The best-fitting compounds are considered
to have the most potential of showing biological activity. Docking is then used as a
complementary tool and aims to prioritize compounds identified during pharmacophore

screens for biological assays.

Molecular docking can be defined as a computational tool, which aims to identify the
correct binding poses of ligands to the binding pocket of a specific target and to pre-
dict its affinity (Krovat et al., 2005). Many docking programs are available and include
software such as DOCK (Kuntz et al., 1982), GOLD (Jones et al., 1997), AutoDock
(Goodsell et al., 1996), FlexX (Rarey et al., 1996), LigandFit (Bissantz et al., 2000),
Glide (www.schrodinger.com), CDocker (http://www.accelrys.com) and ICM (http:
//www.deltahpc.com). Many comparisons between the different docking packages have
been made with the most popular docking programs being used including AutoDock,
GOLD, FlexX DOCK and ICM (Sousa et al., 2006). It is difficult to compare docking
programs with each other since it is widely known that accuracy of docking programs
varies significantly from target to target (Sousa et al., 2006; Schulz-Gasch and Stahl,
2003; Bissantz et al., 2000). Molecular docking is at a mature stage of development, but
still has many challenges to overcome. The accuracy of most docking programs to dock
ligands to targets varies between 1.5 to 2 A with reported success rates in the range
of 70-80% (Halperin et al., 2002; Sousa et al., 2006; Bursulaya et al., 2003). Gohlke

and Klebe (2002) commented that significant improvement on this range is unlikely at
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present even with the inclusion of receptor flexibility. The major drawback of docking
methods at present is the lack of reliable scoring functions. The aim of a scoring function
is the identification of the correct binding poses of a ligand through its lowest energy,
and the ranking of protein ligand-complexes according to their binding affinities (Krovat
et al., 2005). The scoring functions can be divided into three groups: 1) empirical scoring
functions, 2) force field-based scoring functions and 3) knowledge-based scoring functions
(Krovat et al., 2005). Consensus scoring is generally used in docking to account for the

differences between the scoring functions.

Docking results can be evaluated based on the docked poses and their corresponding
docking energies. It has long been known that docking to ensembles of protein structures
results in significant improvements over single structure docking (Knegtel et al., 1997).
As was discussed earlier, proteins do not exist in single rigid conformations and the
binding of ligands often induce significant changes to the active site. Therefore docking
to multiple target structures improves the selection of compounds which shows the best

potential to have biological activity (Knegtel et al., 1997).

This concludes the explanation regarding the development of a receptor-based DPM.
This process is an iterative one and information gained from any of the four stages can

be incorporated to optimize the DPM model (Figure 3.2).

Reference should be made to substructure searches to identify similar compounds,
which can be used as a complementary tool to the development of a DPM. Known lig-
ands can be screened against various on-line databases in particular the SDD, DrugBank
and PubChem. Similarity searches of compounds identified during the pharmacophore
screens can be used to search other databases, since no database contains all compounds
available. SciFinder can also be used to perform similarity searches of commercially avail-
able compounds (Wagner, 2006). The similarity searches can be used to identify scaffold

structures of the compounds identified during the pharmacophore screening. These scaf-
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folds may show more desirable characteristics giving the modeler the ability to select

compounds to evaluate specific characteristics on a substructure of an identified scaffold.

3.1.3. Knowledge of known inhibitors

Prior to the discussion of MIF analysis, pharmacophore models, database screening
and docking, a summary is given providing information of known inhibitors and their
interactions with PfSpdSyn. Table 3.1 provides the names, structures, enzyme ICs
and growth ICsy values available in the literature. These inhibitors include 4MCHA,
5-amino-1-pentene (APE), cyclohexylamine (CHA), APA, dicyclohexylamine, 2-mercapto-
ethylamine, MTA and AdoDATO. The inhibitors tested for their effect on spermidine

metabolism have been discussed in section 1.2.3.

It is important to note that cyclohexylamine identified by Hibasami et al. (1980) as
a spermidine synthase inhibitor was incorrectly referred to as dicyclohexylamine but was
corrected in a letter to Journal of Biochemistry by Batchelor et al. (1986). Inhibitors
binding to the putrescine binding cavity include 4AMCHA, APE, cyclohexylamine and
APA (Table 3.1). The most potent inhibitor of PfSpdSyn is trans-4MCHA (Table 3.1).
AMCHA binds within the putrescine binding cavity and has been co-crystallized with
PfSpdSyn (PDBid 2PT9; Dufe et al., 2007). It is noteworthy to mention that the crystal-
lization of AMCHA within PfSpdSyn could only be achieved in the presence of dcAdoMet
(Dufe et al., 2007). This is suggestive of two things, first that AMCHA competes for
binding with putrescine and second, that cooperative binding exists between 4MCHA and
dcAdoMet. Superimposing of the crystal structure from PfSpdSyn co-crystallized with
AMCHA and dcAdoMet (PDBid 2PT9) and that of the HsSpdSyn co-crystallized with
putrescine and MTA (PDBid 2006) revealed that the 4AMCHA and putrescine binding
modes are very similar (Figure 3.8). 4AMCHA and putrescine lies in the same plane with
the butyl moiety of putrescine aligned with the hexyl ring of AMCHA. This is in agreement
with results published by Dufe et al. (2007). The amine group of AMCHA aligns with the
non-attacking nitrogen of putrescine whereas the methyl group of 4AMCHA aligns with the
attacking nitrogen of putrescine (Figure 3.8). 4AMCHA forms a hydrogen bond between its
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Table 3.1: Inhibitors tested in vitro on PfSpdSyn. It should be noted that this table includes
only inhibitors for which PfSpdSyn 1Cso values tested in vitro were available. When available
the growth ICs5¢ values of the selected inhibitors are included. The discussion of inhibitors
represented in this table is broken down to inhibitors binding in the putrescine binding cavity
(PBC), the dcAdoMet binding cavity (DBC), the whole of the active site (WAS) and inhibitors
without known binding cavities (UBC).

Inhibitor Structure Enzyme inhibition Growth inhibition Binding
IC50 /LM IC50 ,uM Cavity
— )—NH, . .
AMCHA 1.4+ 0.1 34.2 + 4.0 PBC
APE A 6.5+ 2.1 83.3 + 3.3" PBC
C )—NH, . .
Cyclohexylamine 19.7 £ 3.1 198 + 47 PBC
e NH; . .

APA HN © 84 + 21 1.0 £0.3 PBC

¢ >~
Dicyclohexylamine . >10OO*(47.44)jj 342 + 577 UBC
9 Mercaptoethylamine S 76+ 10° 954 + 42 * UBC

NH,
N7 N\
S
)
HO/%/\/H
HO L i
MTA A 159+ 27 N.D. DBC
NH,
N7 N
Sy
@% NH;
HO

HO 4

AdoDATO K, 8.5+ 03" N.D. WAS

“Haider et al., 2005
“Dufe et al., 2007
“Moritz et al., 2004

amine group and Asp 199 (Figure 3.9), which corresponds to the hydrogen bond formed
between Asp 176 and the non-attacking nitrogen of putrescine in the HsSpdSyn (PDBid
2006).

A comparison of the negatively charged cavity where the attacking nitrogen of pu-

trescine binds (catalytic center) was made between the HsSpdSyn (PDBid 2006) and
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Figure 3.8: Superimposed structures of 4AMCHA (grey colored carbons) and putrescine (cyan
colored carbons) from PfSpdSyn (PDBid 2PT9) and HsSpdSyn (PDBid 2006) . The structures
of dcAdoMet (grey coloured carbons) from the PfSpdSyn and MTA (cyan colored carbons) from
the HsSpdSyn structures are also displayed. The image on the left includes the protein backbone
as ribbons whereas the picture on the right only displays the ligands.

PfSpdSyn (PDBid 2PT9) crystal structures to assess the changes, which occur upon
binding of putrescine and 4AMCHA. An overlay of the crystal structures from HsSpdSyn
and PfSpdSyn containing their respective ligands was performed and it was found that
most residues are remarkably similar in orientation (Figure 3.10). Dufe et al. (2007)
reported that the methyl group of 4AMCHA does not occupy the same 3D space as the
attacking nitrogen of putrescine, however it can be seen in Figure 3.10 that it does.
The methyl group of 4AMCHA was within 0.1A of the attacking nitrogen of putrescine.
The most significant conformational change which exists between the HsSpdSyn and the

PfSpdSyn was found to be Ser 198 and is illustrated in Figure 3.10.

Cyclohexylamine, one of the first inhibitors of PfSpdSyn has an enzyme 1C5y value
of 19.7uM and a growth ICs5q of 198 uM. Cyclohexylamine differs from 4MCHA only by
a methyl group at the para position. The inclusion of the methyl group (in the trans

conformation) reduces the enzyme ICs value to almost a 20*® of that of cyclohexylamine.

APE is very similar in structure to 4AMCHA and a molecular overlay is shown in Figure
3.11. APE has an enzyme IC5 value of 6.5u4M and a growth 1Csq of 83uM (Haider et al.,
2005) making it the second best known inhibitor of PfSpdSyn at present. No additional

information on its mode of inhibition is available and it is assumed to interact in a similar
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Figure 3.9: A diagram showing hydrogen bond formation between PfSpdSyn and the ligands
dcAdoMet and 4AMCHA co-crystallized (PDBid 2I7C). Generated using Ligplot (Wallace et al.,
1995).

manner to 4AMCHA.

A molecular overlay of APA with AMHCA can be seen in Figure 3.11, without implying
that APA binds in this conformation or pose. APA, originally tested and designed for
the inhibition of ODC, has an enzyme ICsy value of 84 uM for PfSpdSyn and an ICs
of between 3 and 8 nM for PfODC (Gupta et al., 2005). APA has a growth ICs; of
1.0 uM when tested against P. falciparum cultures (Gupta et al., 2005; Haider et al.,
2005), the effect of APA on P. falciparum cultures can thus not be explained as a result
of inhibition of a single protein but probably the inhibition of multiple proteins. No
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N\
Ser 198

Figure 3.10: A comparison between the catalytic center of PfSpdSyn and HsSpdSyn after an
overlay of the respective crystal structures. In the center of the illustrations are AMCHA in green
and putrescine in CK colors. (Left) An illustration of the similarity between the binding cavity of
the attacking nitrogen of putrescine of the HsSpdSyn and PfSpdSyn crystal structures. (Right)
An illustration of the biggest conformational change between the HsSpdSyn and PfSpdSyn
crystal structures, Ser 198, encircled in yellow.

Figure 3.11: A molecular overlay of similar inhibitors of PfSpdSyn. (Left) A molecular overlay
of APE and 4MCHA. (Right) A molecular overlay of APA and 4AMCHA.

additional information during the current study was available on the mode of inhibition

of APA in PfSpdSyn.

As discussed earlier dicyclohexylamine is not an inhibitor of PfSpdSyn. However,
Moritz et al. (2004) reported an enzyme ICs, of 47 M in contrast with results from
Haider et al. (2005) which showed an ICs, value of > 1000 pM. It might be that Moritz
et al. (2004) used the same product as Hibasami et al. (1980), however this could not be

concluded from their article.
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In a study by Shirahata et al. (1991) they explored both the putrescine and spermidine

binding cavities of the respective aminopropyltransferases in the mammalian SpdSyn for

possible inhibitors. A set of 25 cyclohexylamine-related compounds (Table 3.2) and a set

of 13 alkylamines (Table 3.3) were tested and their respective ICjy values determined. In

Table 3.2: Inhibition of spermidine synthase activity by cyclohexylamine-related compounds of

the mammalian SpdSyn (Adapted from Shirahata et al. 1991).

No Structure  ICs¢g % Inhibition No Structure  ICsg % Inhibition
(M) at 1mM (uM) at 1mM
1 (O 8.1 14 8 w68
2 (Orwen 103 15 - N -1000 33.2
<37NCH3 < > \
3 e 1000 40.4 16 W -1000 8.2
Qe AN
4 ~1000 37.0 17 1000 1.0
5 @””’ 300 18 8 —w, g
NH,
6 (cis) o 430 19 ; 15
NH2
7 (trans) : R ¢ 20 O 30
NH,
8 e 330 21 @ ~1000 18.5
9 W ~1000 29.1 29 g N ~1000 1.0
NH,
10 ™ 108 23 @ ~1000 1.0
11 ™ 1000 1.0 24 Ao 5.5
12 )™ ~1000 1.0 25 AP 107
13 Wt ~1000 1.0

addition 17 diamine compounds (Table 3.4) were tested for potential substrate activity

(putrescine-like).
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Table 3.3: Inhibition of mammalian SpdSyn activity by alkylamines

No Structure IC5p No Structure ICs0
uM uM
26 AT 35 33 “z“Jw 450
27 RN 38 34 HZNJ\/V 150
Jo
98 N 36 35 N ~1000

29 HZN/\/\/\

N/W/
30 MW 000 37 WY 20
A ~
HN

31 2 1000 38 "N 7.8

104 36 45

32 2 250

Table 3.4: Screening of potential diamine substrates of the mammalian SpdSyn.

No Structure %MTA No Structure %MTA
production production
HN_ NH,
HN NH,
39 G <1.0 48 \/:>7 <1.0

Orm O
40 <1.0 49 N, 2.7
/ N\
H,N— )—NH, H,N—N N—NH,
41 (cis) 3.0 50 —/ <1.0
H2N4< )—NH, HNC>—<:/\NH
42 (trans) 11.6 51 <1.0

43 2 <1.0 52 2 2 <1.0
HZN
C AN,
44 NH, <1.0 53 HN 100
H
N—NH, N
15 C 1.0 54 HNTTTS 18
& HzN\/\/\N
: B
46 <1.0 55 <1.0
H
N
NH2
A7 Q 1.0
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The data collected from the mammalian SpdSyn, being very similar to PfSpdSyn, was

considered in further studies of the putrescine binding cavity.

2-Mercaptoethylamine has an IC5y against recombinant PfSpdSyn of 76 M and a in
vitro growth of specific cells of 254 yM. The binding mode of this inhibitor is not known
and no additional data was available. MTA binds in the dcAdoMet cavity and is one of
the products which forms during catalysis. MTA has an ICsy of 159 uM and was not
tested for a in wvitro growth of specific cells. AdoDATO, a transition-state analogue of the
reacting substrates in SpdSyn is an inhibitor, which when bound to SpdSyn occupies the
whole active site cavity and has been co-crystallized in SpdSyn of T. maritima (PDBid
1JQ3) and P. falciparum (PDBid 217C Korolev et al. (2002); Dufe et al. (2007)). Figure
3.12 illustrates the hydrogen bond network formation between PfSpdSyn (PDBid 2I7C)
and AdoDATO. The hydrogen bond network of the adenosyl moiety of AdoDATO, MTA
and dcAdoMet are very similar. The most important interactions involving hydrogen
bonds can be observed between the adenosine ring and Asp 179, Pro 203 and Ala 179
(Figure 3.12). A hydrogen bond is also found with Ile 148 but is not always present in
the PfSpdSyn crystal structures (Figure 3.12). The sugar ring of the adenosine moiety
forms hydrogen bonds with Glu 147. The hydrogen bond formed between adenosine ring
and Pro 203 is the only hydrogen bond formed between the moiety of interest and the
gate-keeping loop and thus is thought to play a stabilizing role (Figure 3.12).

Knowledge obtained from a structure-based virtual screening study performed by Ja-
cobsson et al. (2008) on PfSpdSyn was also included after its release in the second quarter
of 2008. Interactions hypothesized to be important between AdoDATO and PfSpdSyn
from the crystal structure, PDBid 2I7C were converted to PhFs (Jacobsson et al., 2008).
These PhFs were used to construct two pharmacophore models, one representing the
dcAdoMet cavity and the second the putrescine binding cavity (Figure 3.13). The first
consisted of six PhFs and can be broken down to the following: one hydrogen bond accep-
tor and one hydrogen bond donor corresponding to the backbone hydrogen bonds with

Pro 203 and Ala 179, one aromatic ring corresponding to the adenine ring as well as two



e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qau# YUNIBESITHI YA PRETORIA

Chapter 3. The Development of a Dynamic Receptor-Based Pharmacophore Model 80
Asp 196
|
I
2.‘80
1
a
\\‘(\
27 His 103
Asp 199 _
o
KJ\\zgg o _.309° ¢
o :
el
@
273
| lle 92/~
\
312
\
\\
AdoDATO T258. %
Glu 147
S3.14
">~ lle 148
2 \
_3.03 3.35
Asp 178-~ ,' B
\
a2 Ala 179
]
]
Pro 203

Figure 3.12: A 2D representation of the hydrogen bond network, which forms between PfSpdSyn
(PDBId 2I7C) and AdoDATO. Interacting water molecules are represented by cyan spheres.

hydrogen bond donors and an acceptor from the sugar moiety of AdoDATO interacting
with Glu 147 and Gln 72 (Figure 3.13). The pharmacophore model representing the
putrescine binding cavity contained two PhFs, the first representative of a hydrophobic
feature corresponding to the butyl moiety of putrescine and the other a positive ionizable
group representing the non-attacking nitrogen of putrescine (Figure 3.13). These phar-
macophore models were used in a six-step process to identify twenty eight compounds
from a 2.6 million compound in-house chemical library and were subjected to saturation
transfer difference (STD)-NMR and relaxation filtering experiments. From the 28 com-
pounds seven were found to be reversible binders of PfSpdSyn and included compounds

4,26, 1,25, 17, 14 and 10 (Figure 3.14).

The six-step process used by Jacobsson et al. (2008) consisted of; 1) Phase flexible
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a) > b) ?

Figure 3.13: Phase pharmacophore models used in the virtual screen, representing interactions
with the adenosine moiety of AdoDATO (a) and amine substrate moiety (putrescine binding
cavity) of AdoDATO (b). AdoDATO is shown in ball and stick representation with carbons
in magenta, selected residues from SpdSyn are shown in tube representation. Hydrogen bond
donor features are shown in light red, acceptor features are shown in cyan, aromatic ring features
are shown in orange, hydrophobic features are shown in green, and positive ionizable features
are shown in blue (Adapted from Jacobsson et al. (2008)).

pharmacophore filtering, 2) Glide SP docking pose generation, 3) Phase rigid pharma-
cophore filtering, 4) Glide XP docking and scoring, 5) Visual inspection and 6) Experi-
mental testing using STD-NMR and relaxation filtering experiments. The phase flexible
pharmacophore filtering used means that the pharmacophore models were derived from
the inhibitor AdoDATO and built from multi-conformers as to incorporate the flexibility
of the ligand (Patel et al., 2002). The compounds identified by the phase flexible phar-
macophore filtering stage were docked using Glide SP with no constraints (Jacobsson
et al., 2008). The best nine docking poses of each compound were retained and fitted to
the two pharmacophore models used. This allows the scientist to filter the compounds
based on docking scores and fit values. This is known as the phase rigid pharmacophore
filtering step and refers to the pharmacophore perception using only the X-ray ligand
structures (Patel et al., 2002). The best ranked compounds were then docked using the
computationally more expensive docking program Glide XP (Jacobsson et al., 2008; Patel

et al., 2002). From the latter docking study 193 compounds were selected as potential
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Figure 3.14: The 28 compounds identified by Jacobsson et al., (2008) as potential PfSpdSyn
active-site binders during their virtual screen (Adapted from Jacobsson et al. 2008).
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inhibitors and then re-docked keeping the nine best docking poses. These poses were
visually inspected and twenty eight compounds were selected to be tested using the

STD-NMR method (Figure 3.14).

The study of Jacobsson et al. (2008) differs from the current study in that it used
AdoDATO co-crystallized with PfSpdSyn to derive the pharmacophore models. The
most important interactions between AdoDATO and PfSpdSyn were identified and used
to describe its chemical properties using PhFs. These PhFs were then used to derive the
pharmacophore models in a way similar to the analogue-based approach. In the current
study the pharmacophore models used were derived from a negative image construction
of the active site using various chemical entities to explore it. The current approach has
the advantage that it is possible to identify novel PhFs, whereas the approach followed
by Jacobsson et al. (2008) only allows for the use of PhFs, which can be derived from the
interactions of AdoDATO. In the study of Jacobsson et al. (2008) only the flexibility of
the ligands were incorporated during pharmacophore screening. The current study has
the second advantage that it incorporates both the receptor’s flexibility as well as the
flexibility of the database ligands when screening the DPMs. This is possible since the
flexibility of the receptor is captured within the DPMs. The flexibility of the database
ligands are accounted for when screening a multi-conformer database with the BEST
search algorithm of Catalyst which allows for the full optimization of the ligands during
a database screen. The study of Jacobsson et al. (2008) relied heavily on docking of
compounds to PfSpdSyn and in our experience docking to PfSpdSyn is not a trivial task.
Also the approach followed in the current study is less automated and requires more

decision making from the user giving more control over the development process.
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3.2. Methods and Methodology

3.2.1. Protein Structure Quality Assessment and pKa Predictions

3.2.1.1. Protein Structure Quality Assessment

The PfSpdSyn structures, PDBid 2I7C and 2PT9, were prepared for further analysis
by checking their structure integrity, using WHATIF (Vriend, 1990) and PROCHECK
(Laskowski et al., 1993). The structures were visually inspected and residues with alter-
native conformations were evaluated to find the conformations making the most chemical
sense. The preferred residue conformation was selected based on the following criteria: 1)
the residue conformation making the highest number of hydrogen bonds was selected and
2) hydrophobic residues conformations thought to be present in the most hydrophobic
chemical space were selected. Surface residues were also evaluated using this criteria,
however if no preference for the selection of either conformation could be justified, the

conformation to be used was selected randomly.

3.2.1.2. pKa Prediction

The pKa predictions were performed using UHBD (http://adrik.bchs.uh.edu/
uhbd) and YASARA (Krieger et al., 2006). The calculations were performed for the
PfSpdSyn crystal structures, PDBid 2HTE and 2I7C, and included crystal waters. pKa
calculations were also performed for the PfSpdSyn structure (PDBid 2I7C) co-crystallized
with AdoDATO using YASARA (Table 3.9). The pKa predictions performed using UHBD
were done by adjusting the default scripts distributed with the package. The pKa values
were predicted at pH 7. The temperature was set to 293K and the dielectric constant
of the solvent and protein was kept at 80 and 20, respectively. The pKa values for
both nitrogen atoms of histidine were predicted with UHBD. pKa predictions were not
performed using UHBD in the presence of AdoDATO since no suitable parameters for
AdoDATO could be implemented.

There are three protonation states that can be assigned to histidines: HSD, HSE
and HSP. HSD is the protonation state where a neutral hydrogen is found on the ND1
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atom, HSE where the neutral hydrogen is found on the NE2 atom and HSP where both
ND1 and NE2 are protonated. UHBD can predict pKa values for both of the nitrogen
atoms of histidine, however the nitrogen of interest needs to be assigned before either
HISA or HISB. To predict the pKa of the ND1 atom one needs to select HISB, which
consequently treats the NE2 atom in the neutral form. HISA in turn treats the ND1
atom in the neutral form and predicts the pKa of the NE2 atom. The pKa values of both

the nitrogen atoms of histidine were predicted.

3.2.2. Phase Space Sampling

3.2.2.1. Molecular Dynamics

The MD simulations were performed in the absence of AdoDATO. All the energy
minimizations and MD simulations were performed with NAMD (Phillips et al., 2005)
using the CHARMM force field (Brooks et al., 1983). The solvation and neutralization
of the system was performed using VMD (Humphrey et al., 1996). The cell dimension
of the water box was 79x100x81A with the water boundary set 10 A from the protein.
In preparation for the PfSpdSyn equilibration run the protein was protonated according
to the pKa studies discussed above. 100 steps of steepest descent (SD) minimization
were performed on the added hydrogens followed by the solvation and neutralization of
the protein. The water and ions in the water box were then minimized and equilibrated
around the protein. This was done for 2 000 steps of SD minimization followed by 20ps
equilibration of the water and ions with a reassignment of velocities every 1ps. The protein
was then minimized for 200 steps using SD while keeping the solvent fixed. The protein
and solvent were then heated to 310K. A heating gradient of 10K every 500 steps (1ps) was
followed and the protein was kept at 310K for 34ps giving the process of heating a total
duration time of 50ps. The protein was then equilibrated for 500ps and the temperature
reassigned every 500 steps to 310K. Periodic boundary conditions (PBC) were applied
and all the electrostatic interactions were included using the PME summation method.
Constant pressure and temperature control were applied using the Berendsen method.

The production run was performed for 5ns applying PBC. All the electrostatic interactions
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were included using the PME summation. As with the equilibration run Berendsen

dynamics were used to perform constant pressure and temperature control.

3.2.2.2. Clustering of Molecular Dynamics

The gromos algorithm (Xavier et al., 1999) of the g cluster module from GROMACS
(Spoel et al., 2005) was used to cluster the MD simulations and to obtain the central
structure for the representative clusters. The clustering was done separately for each
monomer of the simulated dimer. The MD trajectory was aligned and clustered, based
on the active site of each of the monomers. The cutoff values used for the clustering were

1.15A and 1.14A for chain B and C, respectively.

3.2.3. Negative Image Construction

3.2.3.1. MIF Analysis

The program GRID (http://www.moldiscovery.com) was used for MIF analysis.
A water probe was used to identify water binding hotspots within the active site of
PfSpdSyn. The subensemble of structures selected in the previous section were prepared
for MIF analysis. A grid box was generated to cover the active site with dimensions
denoted in Table 3.5. Two water binding hotspots were identified and subsequently
added to the subensemble of structures. MIF analysis was performed to explore the
chemical nature of the active site by using probes representing HBDs, HBAs and HYD
characteristics (PhFs). Three different HBD probes were used and included the N2 (the
N2 probe represents a neutral flat nitrogen with two hydrogens (NHy)), N1+ (the N1+
probe represents a sp® amine (NH) cation) and N3+ (the N3+ probe represents a sp?
amine (NHj cation)) probes. For the identification of HBA binding hotspots three probes
were used and included the O (the O probe represents a sp? carbonyl oxygen), O1 (the O1
probe represents an alkyl hydroxy (OH) group) and N:= (the N:= probe a sp2 nitrogen
with lone pair) probes. The hydrophobic features were identified using both the DRY
(the DRY probe is a general hydrophobic probe) and Me (the C3 probe represents a
methyl CHj chemical moiety) probes. The default GRID parameters were used except
for that of the NPLA (changed to 4) and ALMD (changed to 1) parameters.
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Table 3.5: The 3D box dimensions used to cover the active site of the subensemble of PfSpdSyn
structures. BOTX represents the X coordinate at the bottom of the grid box and the TOPX
the top X coordinate.

BOTX | -19.82 | TOPX | 16.73
BOTY | -16.64 | TOPY | 20.85
BOTZ | -19.28 | TOPZ | 14.02

3.2.3.2. Pharmacophore Feature Identification

The binding energy value and coordinates of the grid points with the most favourable
energies in the Z-plane were parsed from the GRID output file (*.lont) into a PDB
file with the energy values represented in the Beta column using an in-house python
script. This was done for all the protein structures of the subensemble. The newly
generated PDB files were overlaid within the active site of PfSpdSyn. Clusters of grid
points were identified and selected by visualizing the grid points within the active site.
The pharmacophore features (PhF) were generated by extracting the attributes for the
grid points from the identified clusters (grid point clusters) and calculating their center
of mass (energy weighted) as well as their radius of gyration. This was performed on all
the probes used in MIF analysis, using an in-house python script. This script generates
a PDB file containing the center of mass (representing the PhF coordinates; energy
weighted), the radius of gyration and the mean energy of the PhF. The PhFs identified
for the subensemble of PfSpdSyn and those from the static PfSpdSyn crystal structure
(PDBid 2PT9) were stored separately.

3.2.3.3. Exclusion volumes

Atoms to represent the EVs for the DPMs were selected after a visual inspection of
residues surrounding the active site. The coordinates for these atoms were extracted
from all the structures in the subensemble of PfSpdSyn. The center of mass (mean of
the coordinates) for these atoms was calculated to include the dynamic behavior of the
active site and thus represent “dynamic” EVs. This was also performed using an in-house

python script.
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3.2.3.4. Pharmacophore Model Selection

For the selection of DPMs the active site was subdivided into four regions, DPM1
through to DPM4. For each of these regions various DPMs represented by different
combinations of PhFs were constructed. The DPMs were built in Catalyst v4.10. The
EVs were added using Discovery Studio 2.0 before screening subsets of the ZINC database

(http://www.accelrys.com).

3.2.4. Hit Analysis and In Vitro Testing

3.2.4.1. Database Construction and Searching

The drug-like subset of the ZINC database was used to construct a multiconformer
composite database. These subsets were first screened for duplicates, which were removed
using an in-house python script. The drug-like subset contained 2 011 000 unique en-
tries. The multiconformer composite database was generated using catDB from Accelrys
(http://www.accelrys.com). During database construction the maximum conformers

were limited to 250.

Catalyst v4.10 was used to search both the constructed databases selecting the BEST
flexible search parameter. The DPMs used during searching included the EVs generated
from the subensemble of PfSpdSyn. Compounds identified during these searches were
fitted to their respective DPMs to get the best fitting compounds and were ranked ac-
cordingly. The EVs were present during the fitting of the compounds to the DPMs. Visual
inspection of the best fitting compounds was performed to select the top compounds based

on their fit values and orientation within the active site.

3.2.4.2. Docking and Compound Selection

Compounds identified during the database searches were docked using AutoDock
4 (Morris et al., 1998). Two monomers of different PfSpdSyn crystal structures were
prepared for docking and included chain C of PfSpdSyn, PDBid 2I7C and chain A of
PfSpdSyn, PDBid 2PT9. Both these structures were prepared for docking by subjecting
them to 400 steps of steepest descent energy minimization. The AutoDockTools (ADT)
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kit was used in further preparation of both the target structures and the compounds
identified during database searching. The parameters changed for docking were as fol-
lows, the Genetic Search Algorithm was used and the number of genetic algorithm (GA)
runs were changed from 10 to 50, the Translation parameter was changed from 2.0 to
0.2 (Angstrom/step) whereas both the Quaternion and Torsion parameters were changed
from 50 to 5 (Degree/step). The RMS Cluster tolerance (Angstrom) was changed from
2.0 to 1.5. The docked compounds were evaluated based on their energy scores and poses

within the active site of both the PfSpdSyn target structures used during docking.

3.3. Results and Discussion

3.3.1. Protein Structure Quality Assessment and pKa Predictions

3.3.1.1. Protein Selection and Structure Quality Assessment

Seven crystal structures are currently available for PfSpdSyn in the PDB of which
six were crystallized in complex with ligands (Table 3.6). PfSpdSyn (PDBid 217C) was
crystallized in complex with AdoDATO and was the first PfSpdSyn structure to be re-
leased with both its monomer’s gate-keeping loops resolved. The structure was shown to
have a resolution of 1.7A and can therefore be considered as a high resolution structure.
The R-factor and Rjye-factor values were shown to be 0.176 and 0.194 respectively,
emphasizing the quality of the crystal structure. It was subsequently selected to be used

in the development of a DPM for PfSpdSyn (Table 3.6).

Table 3.6: Available crystal structures of PfSpdSyn (Oct 2008)

PDBid | Release date | Resolution (A) R-factor | Ry,c.-factor Ligand
2HTE 08-Aug-2006 2.00 0.188 0.231 MTA
217C 12-Sep-2006 1.71 0.176 0.194 AdoDATO
2PWP 22-May-2007 2.10 0.195 0.232 spermidine
3B7P 20-Nov-2007 2.00 0.216 0.250 spermine
2PT9 01-Apr-2008 2.20 0.198 0.239 dcAdoMet and 4MCHA
2PT6 01-Apr-2008 2.00 0.182 0.214 dcAdoMet
2PSS 01-Apr-2008 2.20 0.207 0.247 apo-form
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The PfSpdSyn dimer (chains B and C) was subjected to stereo-chemical analysis us-
ing PROCHECK and WHATIF and a Ramachandran plot was generated (Figure 3.15).
Chain B has 89.3% of its residues in the most favoured region and the other 10.7% in the
additional allowed region. Chain C has 88.1% in the most favoured region, 11.5% in the
additional allowed region and 0.4% in the generously allowed region. The stereochem-
ical checks performed using both WHATIF and PROCHECK were found to be in the
generally acceptable ranges and included the Chil-Chi2 plots, main-chain and side-chain
parameters, main-chain bond lengths and angles, RMS distances for planarity and dis-
torted geometry. Visual inspection was used to choose the most relevant conformations
of amino acid with double entries and denoted in Table 3.7. The selection criteria was

described in the methods section 3.2.
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Figure 3.15: Ramachandran plots for the PfSpdSyn crystal structure dimer, PDBid 217C. The
Ramachandran plot on the left constitutes chain B and the plot on the right chain C. Regions
in red correspond to conformations where there are no steric clashes whereas yellow regions
represent regions where slightly shorter van der Waals radi were used in calculation.

The crystal structure of PfSpdSyn resolved in complex with dcAdoMet and 4MCHA
(PDBid 2PT9) was released to us earlier and used in this study. The coordinates were
provided by Salam Al-Karadaghi, affiliated with the Department of Molecular Biophysics,

Center for Molecular Protein Science, Lund University, Sweden. The same approach of
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Table 3.7: The side chain conformations selected for residues of PfSpdSyn crystal structure
(PDBid 217C) having more than one conformation.

PfSpdSyn PDBid 2I7C
Residue | Conformer Chosen
chain B | chain C
Met 50 B A
Ser 156 B A
Asn 185 A N/A
Ser 197 B N/A
Ile 216 A N/A
Asn 218 A N/A
Ser 305 B B
PfSpdSyn PDBid 2PT9
Glu 154 N/A A
Val 156 N/A A

N/A Not Applicable

assessing the quality of the PfSpdSyn structure of PDBid 217C was followed. The crystal
structure (PDBid 2PT9) has a resolution of 2.20A, which is within the acceptable range of
a high quality structure. The R-factor and R f,..-factor were found to be 0.198 and 0.239
also supporting the good quality of the crystal structure. The stereochemical analysis
on the dimer showed that chain B has 90.1% of its residues in the most favoured region,
9.5% of the residues in the additional allowed region and 0.4% in the disallowed region,
which were relieved after energy minimization (Figure 3.16). Chain C showed that 88.1%
of its residues are in the most favourable region, 11.5% in the additional allowed region
and 0.4% in the generously allowed region (Figure 3.16). The stereochemical checks
performed using both WHATIF and PROCHECK were found to be in the generally
acceptable ranges as with PfSpdSyn (PDBid 217C). From the stereo-chemical analysis it
can be concluded that the structure is of high quality. Visual inspection was performed
on the structure and only two residues with alternative conformations were found and

selected as descibed in section 3.2 (Table 3.7).

3.3.1.2. pKa Prediction

A protein consists of various titratable groups which can assume various protonation
states and these need to be assigned correctly a priori for molecular dynamics. Prior

to pKa predictions a visual inspection of the PfSpdSyn crystal structures (PDBid 2I17C
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Figure 3.16: Ramachandran plot for the dimer of the PfSpdSyn crystal structure, PDBid 2PT9.
The Ramachandran plot on the left represents chain B and the one on the right chain C.

and 2HTE) was performed to guide the assignment of protonation states, especially with
regards to the histidine residues. The nitrogen atoms of the respective histidines were
evaluated and HBDs and HBAs within hydrogen bond formation distances were identified
and denoted (Table 3.8). The information was used to guide pKa predictions and the
assignment of the protonation states of the respective histidine atoms. Four histidines
occur in each monomer of PfSpdSyn, His 103, His 108, His 236 and His 304. The predicted
pKa values of the histidines for both the monomers of interest are tabulated in Table 3.9.
Histidine 103 was the only His to be predicted in the HSD state and the rest were predicted
to be in the HSE state.

Visual inspection of PfSpdSyn revealed that the ND1 nitrogen atom of His 103, can
potentially make a hydrogen bond with the carboxylic group of Glu 99 in both chains B
and C (Figure 3.17(a)). It is also possible for the NE2 nitrogen atom to make a hydrogen
bond with the aminopropyl group of AdoDATO (Figure 3.17(a)). A pKa prediction of
both the nitrogens was made (Table 3.9). Predictions with only the crystal waters of
the PfSpdSyn crystal structure (PDBid 2I7C) present using UHBD, revealed pKa values
of 8.15 (HISA; NE2), 7.98 (HISB; ND1) and 8.96 (HISA; NE2), 9.12 (HISB; ND1) for
chain B and C, respectively (Table 3.9). The YASARA program was also used to predict
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Table 3.8: Histidine residues of PfSpdSyn (PDBid 2I7C) and the proposed interaction with the
ND1 and NE2 atoms obtained from visual inspection.

Atom Num | HIS assigned | HIS atom ‘ Interacting atom ‘ Interacting residue ‘ Distance
Chain B
103 HSD> ND1 OE2 ‘ GLU 99 ‘ 2.79
NE2 Binds aminopropyl moiety of AdoDATO
108 HSE< ND1 OH TYR 137 2.77
NE2 OE1 GLU 133 2.81
236 HSE< ND1 N SER232 2.90
NE2 O MET 50 3.13
304 HSEC ND1 OH TYR 299 2.90
NE2 (0] ILE 281 2.81
Chain C
103 HSD> ND1 OE1 GLU 99 2.76
NE2 Binds aminopropyl moiety of AdoDATO
108 HSE< ND1 OH TYR 137 2.76
NE2 OE1 GLU 133 2.81
236 HSE“ ND1 N SER232 3.04
NE2 O MET 50 2.87
304 HSE? ND1 OH TYR 299 2.71
NE2 (@] ILE 281 2.77

>
HSD means that His is in a neutral state and that the ND atom is protonated.

HSE means that His is in the neutral state and that the NE atom is protonated.

the pKa values of the crystal structure (PDBid 2I7C) containing only crystal waters
and found to be 8.04 and 8.92 for chains B and C, respectively. Both these programs
predicted His 103 to be protonated. However, when considering the PfSpdSyn crystal
structure, PDBid 2HTE (chain C) containing MTA, it is noted that a water molecule was
crystallized within 2.73A from the NE2 atom of His 103 (Figure 3.18). This implies that
it is possible for the NE2 nitrogen of His 103 to make a hydrogen bond with this water.
pKa predictions performed on PfSpdSyn (PDBid 2HTE (chain C)) containing the crystal
waters and MTA with YASARA revealed a value of 8.12. It is however believed that His
103 is in the HSD state and not protonated (HSP), since His 103 plays an important role
in the binding of the aminopropyl moiety of dcAdoMet, which is protonated and hence,
it therefore does not make chemical sense that His 103 would be in the protonated form.
Therefore, the His103 was assigned as HSD. His 108, 236 and 304 were assigned to be

in the HSE state, based on the chemical knowledge gained from visual inspection and
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Figure 3.17: A visual representation of the immediate environment of histidines present in both
the monomers of the PfSpdSyn crystal structure, PDBid 2I7C (chain B (left) and chain C
(right)). The histidine’s are represented as follows: His 103 ( a) (chain B) - b) (chain C) ), His
108 ( ¢) (chain B) - d) (chain C) ), His 236 ( ) (chain B) - ) (chain C) ) and His 304 ( g)

(chain B) - h) (chain C) ).
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Table 3.9: pKa predictions for the His residues of PfSpdSyn (PDBid 2I7C) calculated using
UHBD and YASARA packages.

Program UHBD YASARA HIS type
Chain B C 2HTEC B C B* | C* | 2HTEC | assigned
Residue | HISA* | HISB! | HISAT | HISBY | HISAY | HISBY | HIS | HIS | HIS | HIS HIS
103 8.15 7.98 8.96 9.12 8.51 9.29 | 8.04 | 8.92 | 6.25 | 6.34 8.19 HSDP
108 7.13 6.24 7.53 6.74 7.27 6.33 | 7.51 | 7.63 | 7.20 | 6.62 7.65 HSES
236 6.62 5.99 7.68 7.05 6.60 5.85 | 821 | 8.25 | 7.33 | 7.24 8.28 HSES
304 5.85 5.65 6.47 6.38 6.03 5.84 | 6.81 | 7.00 | 6.55 | 6.70 8.28 HSE<

*
pKa prediction for the PfSpdSyn crystal structure (2I7C) containing AdoDATO.
i

HISA means that during pKa calculations the ND atom of HIS is treated as being in the neutral form, whereas HISB means that during the
NE atom of HIS is treated in the neutral form.

>
HSD means that His is in a neutral state and that the ND atom is protonated.

<
HSE means that His is in the neutral state and that the NE atom is protonated.

the results obtained from the predictive programs (Figure 3.17(b), (c¢) and (d) and Table
3.9).

His 103

Figure 3.18: A visual representation of His103 from the PfSpdSyn crystal structure, PDBid
2HTE (Chain C).
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3.3.2. Phase Space Sampling

3.3.2.1. Molecular Dynamics

The development of a dynamic receptor-based pharmacophore is based on using a
subensemble of protein structures representing the dynamic behavior of the protein.
Molecular dynamics simulations are used to estimate the equilibrium and dynamic prop-
erties of a complex. In the current study it was used to sample conformational space and
to find the most represented structures within the sampled space. All the MD simulations
were performed in the absence of AdoDATO, in order to obtain the representative state

of the PfSpdSyn active site without biasing from interactions with ligands.

From the RMS coordinate deviation of the equilibration run it could be seen that
the protein was converging, meaning the fluctuations occur around the mean for both
chains B and C (Figure 3.19). The total energy of the equilibration run was also shown
to be stable (Figure 3.20). These results gave confidence that the system was stable and

subsequently a production run was performed.

RMSD of the PfSpdSyn equilibration run RMSD of the PfSpdSyn equilibration run
Chain B Chain C

021 ‘ ‘ I ‘ ‘ ‘ 2 T T \

RMSD (nm)
RMSD (nm)

0.0 . I . \ s \ s \

I
20 30 40 5

. . . .
10 20 30 40 S 10 20
Time steps (500ps)

4Time steps (500ps)

Figure 3.19: The RMS coordinate deviation for both chain B (left) and chain C (right) of the
PfSpdSyn equilibration run.

The production run was performed for 5ns using PBC with all electrostatic interac-
tions included by applying the PME summation method. The RMS coordinate deviation

of the production run showed that the first 2.5ns were similar for both chains B and
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Figure 3.20: The total energy of P{SpdSyn during both the equilibration (left) and production
(right) runs.

C (Figure 3.21). The RMS coordinate deviation of chain C was shown to increase after
about 2.5ns and can be explained by the increase of loop movement from the gate-keeping
loop. However, this was not found to be the case with chain B which indicated that the
RMSD converges throughout the entire simulation. The total energy for the production
run was plotted over time and found to be decreasing marginally (Figure 3.20). The
results from the molecular dynamics were in accordance to what was expected of a stable

system and were therefore used in further analysis.

RMSD of the PESpdSyn production run RMSD of the PfSpdSyn production run (5ns)
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Figure 3.21: The RMS coordinate deviation for both chain B (left) and chain C (right) of the
PfSpdSyn production run.
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3.3.2.2. Clustering of Molecular Dynamics Trajectory

The clustering of the MD production run for PfSpdSyn is a means to find the most
representative structures of the sampled phase space. A selection of residues within 7A
of AdoDATO in the PfSpdSyn crystal structure (PDBid 2I7C, chain C) was made to get
a representative group of residues for the active site. These selected residues were used
in the clustering of the trajectory rather than the backbone atoms of PfSpdSyn. This
ensured a better sampling of the conformational changes which occur within the active
site during the MD simulation. Fifty two residues were selected to be part of this subset

of atoms and are listed in Table 3.10.

Table 3.10: The active site residues selected and used for the determination of RMS coordinate
deviation during the MD simulation.

Active site Residues
Glu 46 | Tyr 102 | Val 152 | Ala 204
Ser 48 | His 103 | Glu 177 | Glu 205
Tle 49 | Val 122 | Asp 178 | Thr 206
Met 50 | Val 123 | Ala 179 | Lue 207
Trp 51 | Gly 124 | Ser 180 | Phe 208
Tyr 71 | Gly 125 | Asp 196 | Gln 229
Gln 72 | Gly 126 | Ser 197 | Glu 231
Leu 88 | Asp 127 | Ser 198 | Ile 235
Asp 89 | Ile 130 | Asp 199 | His 236
Val 91 | Cys 146 | Pro 200 | Thr 263
Ile 92 | Glu 147 | Ile 201 | Tyr 264
GIn 93 | Tle 148 | Gly 202 | Pro 265
Leu 94 | Asp 149 | Pro 203 | Tle 269

The hierarchical gromos (Xavier et al., 1999) algorithm of GROMACS was used to
cluster the MD trajectory. This algorithm takes as input parameter a cutoff value, which
can be varied to obtain the desired representative clusters. This means that various
cutoff values need to be used to identify five clusters representing ~90% of the structures
captured during the MD simulation. The different monomers were treated separately,
which in theory doubles the sampled space, since it is now possible to compare PfSpdSyn

from two different starting structures (chains B and C), each simulated for 5ns.
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Figure 3.22: Clustering results of the PfSpdSyn production run for both the monomers. A cutoff
value of 1.15A was used for chain B (left) and a cutoff value of 1.40A for chain C (right). The
bar graphs represent the number of structures in each cluster.

Chain B was clustered with a cutoff value of 0.115 (1.15A) resulting in eight clusters
having most of the structures in the five largest clusters (99.1%; Figure 3.22). Chain C
was clustered with a cutoff value of 0.140 (1.40A). Fifteen clusters were generated with
94.3% of the structures represented in the five largest clusters (Figure 3.22). The cutoff
value for chain C was expected to be larger since some loop movement was observed in
the last part of the MD simulation. For both chains the representative structures of the
five largest clusters were overlaid with the active site residues displayed to illustrate the

phase space sampled (Figure 3.23).

Table 3.11 denotes the RMSD values for the representative structures of the top five
clusters obtained after clustering with GROMACS. The structures were aligned based
on their backbone atoms before calculating the RMSD of the active site to determine
the most divergent conformations (this was done within the VMD package). GROMACS
does not allow one to first align the trajectory structures and then cluster based on the
RMSD values of the active site, this being the reason for not clustering the MD trajectory
using such a strategy. The RMSD analysis of the top ten clusters showed a RMSD
range from 0.000 to 2.235 when aligned to the structure of cluster 1, chain B (CluslB;
Table 3.11). From the ten cluster structures, six were selected covering the whole RMSD

range, equally distributed. The percentile of structures represented by each cluster were
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Figure 3.23: The representative PfSpdSyn structures of the five largest clusters overlaid (cartoon)
for both monomers, chain B (left) and chain C (right). Cluster 1 is represented in blue, cluster
2 in red, cluster 3 in gray, cluster 4 in orange and cluster 5 in yellow. The active site residues of
the representative clusters are represented as lines.

considered when selecting the six most representative structures. For example Cluster 1
from chain C (Clus1C) was selected over Cluster 2 (chain C; Clus2C), Cluster 3 (chain C;
Clus3C) and Cluster 4 (chain B; Clus4B) falling within the same RMSD range (RMSD
range between 1.968 and 2.005; Table 3.11), the reason being that Cluster 1 (chain C)
represent the highest percentage of structure (34.24%) from the MD trajectory and is
thought to be the most representative. The six selected structures were (Table 3.11): 1)
Clus1B, 2) Clus5B, 3) Clus3B, 4) Clus2B, 5) Clus1C and 6) Clus5C. These six selected
structures thus constitute the subensemble of structures having captured within them
the flexibility of PfSpdSyn and were subsequently used in further analysis to develop a
DPM.

A comparison between the starting structure used for the MD simulations and the six
structures identified to represent the subensemble of structures was made. The subensem-
ble of structures was also compared to the three monomers resolved in complex with
dcAdoMet and 4MCHA (PDBid 2PT9). The comparison with PfSpdSyn (PDBid 2PT9)
was made to identifiy changes the active site undergoes upon binding of 4AMCHA as
to incorporate this knowledge at later stages of this study. It was found that Gln 229

undergoes large conformational changes compared to the starting structure. During the
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Table 3.11: The RMS coordinate deviation values of the representative structures of the five
biggest clusters of both the PfSpdSyn monomers, which were used to select the best repre-
sentative structures for further analysis. The selected structures are indicated in the Selected
Structures column labeled from one to six.

Protein | Ca Backbone RMSD | Active Site RMSD | % Representation | Selected Structures
Chain B
Clus1B 0.000 0.000 67.64 1
Clus2B 1.397 1.693 19.20 4
Clus3B 1.128 1.170 6.62 3
Clus4B 1.448 1.968 0.24 —
Clus5B 0.679 0.664 0.22 2
Chain C
Clus1C 1.591 1.976 34.24 5
Clus2C 1.556 1.990 26.32 —
Clus3C 1.590 2.005 19.32 —
Clus4C 1.381 1.737 6.96 —
Clus5C 1.747 2.235 6.74 6

MD simulation Gln 229 adopts a conformation which is similar to its conformation found
in the apo (without ligand) structure of PfSpdSyn (PDBid 2PSS). This conformational
change of Gln 229 alters the binding characteristics of the active site quite drastically.
The conformational change Gln 229 undergoes upon binding of AMCHA can be seen in
Figure 3.24 (Left) and will be described using the bond between its CD and CG carbons
(Figure 3.24). The CD-CG bond is perpendicular to the binding plane of 4AMCHA in
the subensemble of structures, however upon binding of 4AMCHA it assumes a position
which is parallel to the binding plane (Figure 3.24(Left)). It can be seen from Figure
3.24(Left) that the conformation Gln 229 adopts during the MD simulation will not allow
for the binding of 4MCHA, since the CD-CG bond is perpendicular to the binding plane
of AMCHA. This conformation presents the amide group of Gln 229 to the binding cavity
resulting in both steric and electrostatic clashes with AMCHA.

Upon binding of AMCHA the amide group of Gln 229 forms hydrogen bonds with Ser
198 and Glu 231 (with both the carboxylic group and backbone nitrogen), stabilizing this
conformation (interactions not shown). It should also be noted that the CD carbon of
Gln 229 is presented to the active site as to form hydrophobic interactions with 4AMCHA
(Figure 3.24 (Left)). For PfSpdSyn this conformational change was also observed in the
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Figure 3.24: The conformational change Gln 229 undergoes upon binding of the ligands 4AMCHA
and AdoDATO as well as the naturally occurring substrate putrescine. For reasons of simplicity
not all the residues from the clustered structures nor all the structures themselves are displayed.
A schematic representation of the conformational change that occurs between the apo and
bound-state for Gln 229 is displayed in white. It is explained using the orientation of the CD-CG
bond of Gln 229 with reference to an assigned binding plane for AMCHA and putrescine (white).
Left: AMCHA and Gln 229 of the crystal structure (PDBid 2PT9, chain A and B) are shown in
a cyan color scheme. The blue, red and orange residues represents Clus1B, Clus2B and Clus5B,
respectively and illustrates the different conformations Gln 229 adopts during the MD simulation
(apo-state). Right: Putrescine co-crystallized with the human SpdSyn (PDBid 2006) and the
conformational change of Gln 206 which corresponds to Gln 229 of PfSpdSyn, represented in the
cyan color scheme. The Gln 229 residues of PfSpdSyn from Clus1B and Clus2B are represented
in yellow and green respectively and are shown to highlight the differences in orientation of Gln
206 within the active site of both the apo and bound states of SpdSyn.

structures resolved in complex with AdoDATO, spermidine and spermine. This confor-

mational change was also found upon binding of putrescine to the HsSpdSyn (Figure 3.24
(Right)).

It is clear from Figure 3.24 that the CD carbon of Gln 229 presents HYD charac-
teristics to the active site which interacts with ligands and substrates upon binding.
Within the same chemical space the subsensemble of stuctures presents the amide group
of Gln 229 having both HBDs and HBAs characteristics. These chemical differences
will significantly change PhF identification during the negative image construction stage.
Therefore, althought the conformation Gln 229 adopted during the MD simulation was
confirmed by the apo-PfSpdSyn (PDBid 2PSS) structure, it is thought that using only the

subsensemble of stuctures for the development of a DPM would not adequatly represent
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Table 3.12: The RMS coordinate deviation values of the six structures selected from clustering
of the MD simulation of PfSpdSyn, PDBid 2I7C and the three monomers of PfSpdSyn, PDBid
2PT9, are presented below. The table contains the RMSD values for both the backbone and
active site residues for the respective structures.

Protein | RMSD (backbone) | Active Site RMSD
CluslB 0.000 0.000
Clus2B 1.459 1.857
Clus3B 1.191 1.317
ClusbB 0.717 0.686
Clus1C 1.667 2.240
Clus5C 1.803 2.396
2PT9A 1.555 1.985
2PT9B 1.647 2.167
2PT9C 3.771 3.681

the binding characteristics of the active site and in particular the putrescine binding
cavity. Subsequently, it was decided to include the three monomers of PfSpdSyn (PDBid
2PT9) in the negative image construction of the active site of PfSpdSyn.

The six structures from the subensemble of structures were aligned with the three
monomers of the PfSpdSyn (PDBid 2PT9) and their RMSD values calculated for both
the backbone and active site residues (Table 3.12). It was concluded that these nine
structures of PfSpdSyn provide adequate phase space sampling and were used in the

negative image construction stage.

3.3.3. Negative Image Construction, Hit Analysis and In Vitro Testing

3.3.3.1. MIF Analysis and Pharmacophore Feature Identification

The development of a DPM requires that the chemical space within the active site
of the protein is explored to find energetically favourable binding hotspots representing
HBA, HBD and HYD characteristics. This is done by performing MIF analysis using

various chemical probes featuring such characteristics.

Initially a pilot study was launched to compare PhFs derived from MIF analysis to

known binding areas from PfSpdSyn structures co-crystallized with inhibitors. This pilot
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Figure 3.25: An illustration of the geometric shift of two PhFs from two known inhibitors
representing the nitrogen of the aminopropyl group of dcAdoMet and the nitrogen of 4AMCHA in
the absence of water molecules within the active site. In the absence of the two water molecule
(shown in sticks) these PhFs (green spheres) shift deeper into their respective binding cavities
with their new positions represented by the blue spheres. The direction of the shifts are indicated
by white arrows.

study indicated a shift of two known PhFs (binding areas). It showed that the PhFs
representing the nitrogen of the aminopropyl group of dcAdoMet and the nitrogen of
4AMCHA (non-attacking nitrogen of putrescine), were both shifted more or less 2A deeper
into their respective binding cavities (Figure 3.25). To investigate this a visual inspection
of the active site of the PfSpdSyn crystal structures (PDBid 217C and 2PT9) revealed that
water molecules were co-crystallized within the areas to where the PhFs had shifted. The

interactions which these water molecules make with the inhibitors (substrates), explain

the shift of both the PhFs.

To correct for this shift MIF analysis using a water probe was performed on the
subensemble of protein structures to determine the binding hotspots for these waters.
Extra caution was taken during the inclusion of water molecules within the active site,
since it is known that the inclusion of water molecules is not straightforward (Garcia-Sosa
et al., 2005). Water binding hotspots identified from MIF analysis were used instead of

water molecules from the MD simulation, since the MD simulation was performed void of
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Table 3.13: The coordinates and energies of the water molecules added to the subensemble of
PfSpdSyn structures, which were used during GRID analysis.

Cluster Coordinates Additional Information

X v z rgyr | ave beta Comments

Clus1B | 2.430 | 0.709 | -10.530 | 0.43 | -12.50 Aminopropyl Nitrogen
CluslB | 1.272 | 7.823 | 6.610 | 1.01 | -11.71 | Non-attacking Nitrogen
Clus2B | 1.534 | 1.406 | -8.436 | 1.01 | -12.36 Aminopropyl Nitrogen

Clus2B Not Identified Non-attacking Nitrogen
Clus3B | 2.125 | 0.642 [ -10.071 [ 0.78 [ -12.10 | Aminopropyl Nitrogen
Clus3B Not Identified Non-attacking Nitrogen

ClusbB | 1.843 ‘ 0.734 | -10.400 ‘ 0.91 | -12.10 Aminopropyl Nitrogen
ClusbB Not Identified Non-attacking Nitrogen
Clus1C | 1.716 | 0.889 | -10.555 | 1.34 | -11.95 Aminopropyl Nitrogen
Clus1C | 3.233 | 6.696 | 7.116 | 0.55 | -13.17 | Non-attacking Nitrogen
Clus5C | 1.023 | 2.021 | -8.902 | 0.90 | -11.34 | Aminopropyl Nitrogen
ClusbC Not Identified Non-attacking Nitrogen

inhibitors and it is thought that MIF analysis would give a better representation of the
water molecules and their respective binding hotspots. Binding hotspots for the water
molecules of interest were identified for all the structures in the subensemble of PfSpdSyn
and added to the respective structures. The 3D coordinates and interaction energies of

the respective water molecules added are shown in Table 3.13.

The representative structures of clus2B, Clus3B, ClusbB and Clus5C were shown
not to have binding hotspots for water molecules within the non-attacking nitrogen of
putrescine binding area and were thus not included. Both CluslB and Clus1C structures
showed water binding hotspots within the non-attacking nitrogen binding area and had
strong binding energies ranging between -11.7 and -13.1 kcal/mol and were therefore
included. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>