
i 
 

Permutation procedures for ANOVA, Regression 
and PCA 

by 

Christine Storm 

 

Submitted in partial fulfilment of the requirements for the degree 

 

Master of Science (Mathematical Statistics) 
 

In the Faculty of Natural & Agricultural Sciences  

University of Pretoria 

Pretoria 

 

2012 

 

  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



ii 
 

Declaration 
I, the undersigned, hereby declare that this dissertation, which I hereby submit for the degree 

Master of Science at the University of Pretoria, is my own work and has not previously been 

submitted by me for a degree at this or any other tertiary institution. 

 

 

 

Signature ______________________                          Date ______________________ 

 

  

 
 
 



iii 
 

Acknowledgements 
I would like to sincerely thank my supervisor Dr. L Fletcher for her extraordinary efforts to 

my benefit throughout my tenure as a MSc student in the Department of statistics at the 

University of Pretoria. Her knowledge and guidance during my research was indispensible. 

  

 
 
 



iv 
 

Summary 
Parametric methods are effective and appropriate when data sets are obtained by well-defined 

random sampling procedures, the population distribution for responses is well-defined, the 

null sampling distributions of suitable test statistics do not depend on any unknown entity and 

well-defined likelihood models are provided for by nuisance parameters. 

Permutation testing methods, on the other hand, are appropriate and unavoidable when 

distribution models for responses are not well specified, nonparametric or depend on too 

many nuisance parameters; when ancillary statistics in well-specified distributional models 

have a strong influence on inferential results or are confounded with other nuisance entities; 

when the sample sizes are less than the number of parameters and when data sets are obtained 

by ill-specified selection-bias procedures. In addition, permutation tests are useful not only 

when parametric tests are not possible, but also when more importance needs to be given to 

the observed data set, than to the population model, as is typical for example in biostatistics. 

The different types of permutation methods for analysis of variance, multiple linear 

regression and principal component analysis are explored. More specifically, one-way, two-

way and three-way ANOVA permutation strategies will be discussed. Approximate and exact 

permutation tests for the significance of one or more regression coefficients in a multiple 

linear regression model will be explained next, and lastly, the use of permutation tests used as 

a means to validate and confirm the results obtained from the exploratory PCA will be 

described. 
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1. Introduction 

Permutation tests are currently the gold standard against which conventional parametric tests 

are tested and evaluated. In this document, permutation statistical methods are introduced, a 

historical chronology of the development of permutation methods is provided and the 

advantages of permutation methods are detailed. The different types of permutation methods 

are also described for analysis of variance, multiple linear regression and principal 

component analysis. These permutation methods are then compared to the traditional 

parametric tests using examples and simulations.  

The population model assumes random sampling from one or more specified population. 

Under the population model, the level of statistical significance that results from applying a 

statistical test to the results of an experiment or a survey corresponds to the frequency with 

which the null hypothesis would be rejected in repeated random samplings from the same 

specified population. Because repeated sampling of the true population is usually impractical, 

it is assumed that the sampling distribution of the test statistics under repeated random 

sampling conforms to an assumed theoretical distribution, such as the normal distribution. 

The size of the test, for example 0.05, is the probability under a specified null hypothesis that 

repeated outcomes based on random samples of the same size are equal to or more extreme 

than the observed outcome. In the population model, assignment of treatment to subjects is 

viewed as fixed with a stochastic element taking the form of the error that would vary if the 

experiment was repeated. Probabilities are then calculated based on the potential outcomes of 

conceptual repeated draws of these errors. 

With the permutation approach, a test statistic is computed for the observed data, then the 

data are permuted over all possible arrangements of the observed data and the test statistic is 

computed for each likely arrangement. An ordered sequence of n exchangeable objects yields 

n! equally likely arrangements of the n objects. The proportion of arrangements with test 

statistic values equal to or more extreme than the observed case yields the probability of the 

observed test statistic. Probabilities are then calculated according to all outcomes associated 

with assignments of treatments to subjects for each case.  
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Permutation tests differ from traditional parametric tests in several ways. Permutation tests 

are data dependent, in that all the information required for analysis is contained within the 

observed data set. Permutation tests do not assume any underlying theoretical distribution. 

Permutation tests do not depend on the assumptions associated with traditional parametric 

tests, such as normality and homogeneity. Permutation tests provide probability values based 

on the discrete permutation distribution of equally likely test statistic values, rather than an 

approximate probability value based on a theoretical distribution, such as a normal.   
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2. Notation and Abbreviations 

ANOVA: Analysis of variance 

PCA : Principal Component Analysis 

i.i.d : independent and identically distributed 

2( , )N µ σ : Gaussian or normal variable with mean µ and variance 2σ  

OLS : ordinary least squares 

~ : distributed as 

n : the (finite) sample size 

tr( )   : the trace of a matrix 

X : a univariate random variable 

X : a multivariate variable or a sample of n units, { , 1, ........., }iX X i n= =  

*X  : a permutation of  X 

*MF  : permutation statistic for Manly (1991, 1997, 2007) 

*EF  : permutation statistic for Edgington (2007) 

*SWF  : permutation statistic for Still and White (1981) 

*JF  : permutation statistic for Jung et al. (2006) 

*FLF  : permutation statistic for Freedman and Lane (1983) 

*KF  : permutation statistic for Kennedy (1995) 

*TBF  : permutation statistic for Ter Braak (1992) 

*TF  : permutation statistic for Tantawanich (2006) 

*KRF  : permutation statistic for Kherad-Pajouh and Renaud (2010) 
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3. Conditionality and Exchangeability 

For most problems of hypothesis testing, the observed data set P∈ 1{ ,........, }ny y=y  is 

usually obtained by an experiment performed n times on a population variable X. For the 

purposes of analysis, the data set x is generally partitioned into groups or samples, according 

to the treatment levels of the experiment. For any general testing problem, under the null 

hypothesis, which assumes that data comes from only one (with respect to groups) unknown 

population distribution P , the whole set of observed data x is considered to be a random 

sample. 

Pesarin (2001) defines nonparametric distributions as follows: A family of distributions P  is 

said to behave non-parametrically when we are not able to find a parameterθ , belonging to a 

known finite-dimensional parameter space Θ and P , in a sense that each member ofP cannot 

be identified by only one member of Θ  and vice versa. 

This definition by Pesarin (2001) includes families of distributions which are either 

unspecified or specified, except for an infinite number of unknown parameters. All 

nonparametric families P which are of interest in permutation analysis are assumed to be 

sufficient in such a way that if x and x’ are any two points, then 'x x≠ implies ( ) ( ')P Pf x f x≠

for at least one P∈P , except for points with null density. The characterisation of a family P
as being nonparametric essentially depends on the knowledge we assume about it. When we 

assume that the underlying familyP contains all continuous distributions, then the data set x 

is sufficient. By sufficiency, it means that x and Pf are said to contain essentially the same 

amount of information with respect to P. They are equivalent for inferential purposes.  

The same conclusion is obtained if the sample distribution is assumed to be invariant with 

respect to permutations of the arguments of x. This happens when the assumption of 

independence for observable data is replaced by that of exchangeability:

* *
11( ,......... ) ( ,......... )

nn u u
f x x f x x= , where * *

1( ,......., )nu u  is any permutation of (1,......., )n . The 

data sets under the mull hypothesis is always contain a finite number of points, as n is finite 

(Good; 2005). 
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Permutation tests are conditional statistical procedures. Under the null hypothesis and 

assuming exchangeability, the conditional probability distribution for whatever underlying 

population distribution P∈P , is  

* No. of  the same or more extreme outcomes as that observed( ')
Total no.of  possible outcomes

P = =x x
. 

which is P - independent. If there are no ties in the data set then the conditional probability 

becomes1 / !n . Thus *( ')P x x= is uniform on the permutation sample space for all P ∈ P . In 

the case of the classical t − , F −  and 2χ − tests, it is not a point probability but consists of 

the probability contained in the tails of the frequency distribution. How the null hypothesis is 

formulated depends on the outcome defined by the investigator, the design of the experiment 

and the scale of measurement used to obtain the experimental values. For instance, in the case 

of two sets of observations measured on an interval scale, the outcome could be a difference 

between arithmetic means, geometric means, medians, mid-ranges, mean-ranks, proportions 

or even variances. If there are more than two sets of observations, a conventional test would 

be classical ANOVA. Thus the equivalent of the F-statistic can be permuted. When 

measurements have been made on a nominal scale, test statistics such as Pearson’s 2χ , the 

likelihood- ratio or the odds-ratio can be permuted (Good; 1994). 

The conditioning of permutation procedures allows permutation inferences to be invariant 

with respect to P in the null hypothesis. Some authors prefer to give them the name of 

invariant tests. However, according to Ludbrook (1994), because of this invariance property, 

permutation tests are distribution-free and nonparametric. 

The condition of exchangeability on sufficient statistics provides permutation tests with good 

general properties. One of these is that, when exchangeability is satisfied in the null 

hypothesis, permutation tests are always exact procedures (Berry and Mielke; 1985). If data 

come from continuous distributions, so that the probability of finding ties in the data set is 

zero, the rejection probability under the null hypothesis is invariant with respect to the 

observed data set x Thus rejection regions are similar to the conventional parametric region. 
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When data come from non-continuous distributions, Berry and Mielke (1985) show that the 

similarity property is only asymptotically valid.  

Permutation inferences are proper with observational data, which sometimes are called non-

experimental, and with well-designed sampling procedures. However, well-designed 

sampling procedures are quite rare even in most experimental problems (Anderson; 2003). 

For instance, if we want to investigate the effects of a drug on rats, the units to be treated are 

usually not randomly chosen from the population of all rats, but are selected in some way 

among those available in a laboratory and are randomly assigned to the established treatment 

levels. The same occurs in most clinical trials, in which some of the patients present in a 

hospital are randomly assigned to one of the pre-established treatment levels. In one sense, 

the concept of random sampling is rarely achieved in real applications because, for various 

reasons, real samples are commonly obtained by selection-bias procedures (Good; 2005). 

This implies that parametric tests, being based on the concept of random sampling, are rarely 

applicable in real situations. Additionally, because of the similarity and unbiasedness 

properties, permutation solutions allow for relaxation of most of the common assumptions 

needed by parametric counterpoints, such as the existence of mean values and variances, and 

the homoscedasticity of responses in the alternative hypothesis. This is why permutation 

inferences are important for both theoretical and the application aspects (Gonzales and 

Manly; 1998). 

Within the assumption of exchangeability in the null hypothesis, permutation conditional 

inferences always have a clear interpretation, whereas extensions to the underlying parent 

population should be carried out and interpreted carefully. These extensions and associated 

interpretations are generally easy and correct when data are designed from random sampling 

techniques from a given population. Of course, if they are collected by selection-bias 

procedures, these extensions may sometimes be ambiguous and misleading. Many authors 

such as Good (2005) and Edgington (1995) have emphasized these aspects. One of these 

relates to the fact that reference null distributions of ordinary parametric tests are explicitly 

based on the concept of infinitely repeated and well-designed random sampling from a given 

well-specified population. This existence of this random sampling is often merely virtual. As 

it occurs in many experimental problems, it is often to unrealistic to assume that treatment 
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does not influence scale coefficients or other aspects of interest, so that standard parametric 

solutions may become improper. 

Conversely, when exchangeability may be assumed under the null hypothesis the reference 

null distributions of permutation tests always exist, because at least in principle, they are 

obtained by considering all permutations of available data. In addition, permutation 

comparisons of means do not require homoscedasticity. For these reasons, permutation 

inferences generally have a natural interpretation and ordinary parametric tests are considered 

to be rarely applicable to real problems (Anderson; 2003). 

 

3 Randomization and Permutation 

The rationale behind randomization tests is to consider a problem in which a test statistic T is 

being used to test a null hypothesis. Suppose that a suitable shuffling of the data produces a 

new configuration of the data. From the new configuration the statistic *T  can be calculated. 

Under the null hypothesis, this configuration can be viewed as equally likely. By repeating 

this for all possible shuffles one can assess the extent to which *T is unusual and thereby 

accept or reject the null hypothesis. 

Those occupied in nonparametric statistics, such as Dallal (1988), recognise that this 

principle lies behind rank tests, sometimes referred to as rank permutation tests. There are a 

finite number of possible outcomes in a rank-test statistic, calculated by permuting the ranks 

of relevant variables’ observations. If the value actually obtained is unusual relative to these 

possible values, the null hypothesis is cast in doubt.  

In 1935 Fisher described a way of comparing the means of randomized pairs of observations 

by permutation and was able to perform it exactly on a set of Charles Darwin’s data on plant 

growth, even though 32,768 permutations were involved. However, it is extremely laborious 

to do these tests by hand, so in the pre-computer era only a few statisticians took them 

seriously (Kempthorne; 1955). Now that permutation tests are easily achievable with the 
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advancement in computer speeds, there has been renewed interest in them and in the 

randomization model of inference (Manly; 1991). Statisticians such as Fisher and 

Kempthorne knew, from first-hand experience, that in agricultural research random samples 

are not drawn from populations. In their experiments, plant varieties or different fertilizers 

were assigned to blocks of land within a particular field by a process of randomization. This 

field was not a random sample of the global population of fields, or even of fields of any 

definable category.  

In most experimental cases units are randomly assigned to symbolic treatment levels (groups 

or samples) so that, under the null hypothesis, observed data appear to have been randomly 

assigned to these levels. Based on this notion of randomization, authors such as Pitman 

(1937), Kempthorne (1955) and Kennedy (1995) prefer to use the term randomization tests. 

The term permutation test is thus preferable to authors such as Pesarin (2001); Good (2005) 

and Mielke et al. (2001) because it is closer to the true state of things. A sufficient condition 

for properly applying permutation tests is that the null hypothesis implies that observed data 

are exchangeable with respect to groups. For instance, in a symbolic experiment where a 

variable is observed in male and female groups of a given kind of animal, the notion of 

randomization is difficult to apply exactly. This is because there is no way that gender can be 

randomly assigned to units. Instead, the permutation idea is much more natural because, 

under the null hypothesis of no distributional difference due to gender, we are led to assume 

that observed data may be indifferently assigned to either males or females. The greater 

emphasis on the notion of randomization tests is because, under the null hypothesis, it is 

generally easier and more natural to justify the assumption of exchangeability for 

experimental data than for observed data. 

When the exchangeability property is not satisfied or cannot be assumed under the null 

hypothesis, then both parametric and permutation inferences are generally not exact. In these 

cases, especially when even approximate solutions are difficult to obtain, it may be useful to 

employ bootstrap techniques, which are less demanding in terms of assumptions and may be 

effective at least for exploratory purposes. 
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The nonparametric bootstrap and permutation tests are two different approaches to the same 

type of problem. Whereas permutation tests are used to establish the distribution of a 

particular statistic under a specific null hypothesis, the bootstrap establishes the sampling 

distribution of a statistic based on an observed data set (Good; 2000). The bootstrap simulates 

resampling from the population by randomly drawing, with replacement, new samples from 

the observed sample. The values of the statistic of interest in the bootstrap samples form the 

sampling distribution from which confidence intervals can be computed. If a bootstrap 

confidence interval does not contain the value assumed under the null hypothesis, the 

observed statistic is concluded to be statistically significant. Both permutation and bootstrap 

methods require that the observations be independent. Both methods also require that the 

observations be drawn from populations in which, under the null hypothesis, a specific 

parameter is the same across all the populations. However, an additional assumption for 

permutation procedures is that observations are exchangeable, or their joint distribution be 

the same. The advantage of permutation tests over bootstrap is that they render exact p-

values. Bootstrap procedures only provide exact p-values for very large samples. Another 

advantage is that the simulation of a null distribution is more closely related to traditional 

hypothesis testing (Edgington; 2007). 

 

4 When Permutation is Appropriate 

Parametric methods are effective and appropriate when data sets are obtained by well-defined 

random sampling procedures, the population distribution for responses is well-defined, the 

null sampling distributions of suitable test statistics do not depend on any unknown entity and 

well-defined likelihood models are provided for the nuisance parameters. (Gozalez and 

Manly; 1998). 

Conversely, according to Pesarin (2001), permutation testing methods are appropriate and 

unavoidable when: 

• Distribution models for responses are nonparametric. 

• Distribution models are not well specified. 

 
 
 



12 
 

• Distribution models depend on too many nuisance parameters. 

• Ancillary statistics in well-specified distributional models have a strong influence 

on inferential results. 

• Ancillary statistics in well-specified models are confounded with other nuisance 

entities. 

• Asymptotic null sampling distributions depend on unknown entities. 

• Sample sizes are less than the number of response variables. 

• Sample data comes from finite populations or sample sizes are smaller than the 

number of parameters. 

• In multivariate problems, some variables are categorical and others quantitative. 

• Multivariate alternatives are subject to order restrictions. 

• In multivariate problems, component variables have different degrees of 

importance. 

• Data sets are obtained by ill-specified selection-bias procedures. 

In addition, permutation tests are useful not only when parametric tests are not possible, but 

also when more importance needs to be given to the observed data set, than to the population 

model. For example, when assessing the reliability of cars, the owner may be mostly 

interested in his own car or fleet of cars if he has more than one, as he is responsible for all 

reliability maintenance costs related to his car(s), thus giving rise to a permutation 

assessment. From another view point, the car manufacturer, whose reputation and warranty 

costs are related to the whole set of similar cars already produced, may be mostly centred on 

a sort of average behaviour, giving rise to a parametric assessment related to the whole car 

population. 

Thus, both permutation and parametric points of view are important and useful in real 

problems, because there are situations, such as that of the car owner, in which we may be 

interested in permutation tests, whereas there are others, such as the car manufacturer, in 

which we may be interested in parametric inferences.  

However, Gozalez and Manly (1998) have shown that permutation methods play a central 

role as they allow for extensions of parametric testing. For example, when the car 

manufacturer wants to compare the means of two of more populations from various car 
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brands, an analysis of variance can be performed. If the data does not satisfy the assumptions 

of parametric tests, then the analysis of variance is not valid. Thus a permutation test can be 

used to confirm these results. 

 

5 The Beginnings of Permutations 

5.1.1 1920–1939 

The earliest indications of permutations tests appeared in a 1923 article by Neyman. In this 

article, Neyman introduced a model for the analysis of field experiments for the purpose of 

comparing a number of crop varieties. This Polish article was unknown by people working on 

permutation tests until 1990, when it was translated. In 1927, Geary first used an exact 

analysis to demonstrate the utility of asymptotic approaches for data analysis in an 

investigation of the properties of correlation and regression in finite populations.  

Like Geary (1927), Eden and Yates (1933) used permutation methods to compare a 

theoretical distribution to an empirical distribution. Eden and Yates (1933) examined height 

measurements of wheat grown in eight blocks, each consisting of four sub-blocks of eight 

plots. The observations were collapsed into four treatments randomly applied to four sub-

blocks in each block. The experimental data consisted of four treatment groups and four 

treatment blocks for a total of 7(4!) =4.59E+09 possible arrangements. Eden and Yates 

(1933) chose a sample of 1,000 of these arrangements at random and generated a table 

showing the simulated probabilities generated by the random sample and the theoretical 

equivalent to the probability values based on the normality assumption. The simulated and 

theoretical probabilities were compared by a 2χ − goodness-of-fit test and were found to be 

in close agreement, supporting the assumption of normality. 

In 1934, Fisher presented a paper describing the logic of a permutation test to the Royal 

Statistical Society. Fisher did not expressly discuss permutation tests, but instead used the 

binomial distribution to arrive at an exact probability for a 2 2×  contingency table. The 
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purpose of this example was to illustrate that for small samples, exact tests are possible; 

thereby eliminating the need for estimation. This is indicative of an early understanding of 

the superiority of exact probability values computed on known discrete distributions over 

approximations based on theoretical distributions. 

In Fisher’s 1935 paper, The Design of Experiments, Fisher expressed the usefulness of the 

permutation approach to obtain exact probabilities. This famous text set the concept of 

permutation tests into motion. In what Fisher termed a hypothetical experiment in The Design 

of Experiments, Fisher described a woman who claimed to be able to tell the difference 

between tea with milk added first and tea with milk added afterwards. He concocted an 

experiment whereby the woman sampled eight cups of tea, four of each type, and identified 

the point at which the milk had been added – before the tea or after. Fisher then outlined the 

chances of the woman being correct merely by guessing, based on the number of trials; in this 

case eight cups of tea.  

Fisher provided a second hypothetical discussion of permutation tests in the 1935 Design of 

Experiments, describing a way to compare the means of randomized pairs of observations by 

permutation. In this case Fisher carried the example through, calculating test statistics for all 

possible pairs of the data. For this example, Fisher considered data from Charles Darwin on 

fifteen pairs of planters containing Zea Mays seeds in similar soils and location. The heights 

were to be measured when the plants reached a given age. Fisher calculated the exact 

probability values for the 152 =3.28E+04 possible arrangements of the data, based on the null 

hypothesis of no difference between self-fertilized and cross-fertilized plants. The exact 

probability value was calculated as the proportion of values whose differences were as 

extreme, or more extreme than, the observed value. 

Fisher’s 1936 article The coefficient of racial likeness provided an alternative explanation of 

how permutation tests work. Without calling the technique a permutation test, Fisher 

described a shuffling procedure for analysing data. His description began with two groups of 

100n = members each and a measurement of interest on each member of the two groups. The 

measurements were recorded on 200 cards, shuffled, and then divided at random into two 

groups of 100 each, a division that could be repeated in an enormous, but finite and 

conceptually calculable number of ways. A consideration of all possible arrangements of the 
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pairs of cards would provide a solution for determining if the random samples could have 

been drawn from the same population. 

In 1936, Hotelling and Pabst calculated exact probabilities for small samples of ranked data 

using permutation methods. The article utilized the calculation of a probability that 

incorporated all permutations of the data. The assumptions were that under the null 

hypothesis, all permutations were equally likely. The probability for any particular value was 

calculated as a proportion of the number of permutations equal to, or more extreme than, the 

value obtained from the observed data. While earlier works demonstrated permutations tests, 

the article of Hotelling and Pabst introduced more extensive work on small data sets as well 

as the introduction of the notation !n . Thus, this 1936 article may be the first example that 

specifically detailed the method of calculating a permutation test using all possible 

arrangements of the data (Berry et al.; 2011). 

Fisher, however, continued to be influential in the discussion of permutation methods. Welch 

described Fisher’s inference to an exact probability and noted that although the calculations 

would be lengthy, the result would be a hypothesis test that was free of assumptions about the 

data. Pearson also referenced the Fisher text in his consideration of randomizations with the 

lady tasting tea, but as with Fisher, neither Welch nor Pearson fully explained the technique. 

It was not until 1937 that a series of articles by Pitman explicitly discussed the permutation 

approach for statistical analysis. These articles extended permutation methods to include data 

that were not amenable to ranking.  

In his 1937 paper, Pitman stated that the objective of the paper was ‘to devise valid tests of 

significance which involves no assumptions about the forms of the population sampled’, and 

second noted that the idea underlying permutation tests ‘seem to be explicit in all of Fisher’s 

writings’. Pitman further developed the permutation approach for the correlation coefficient 

‘which makes no assumptions about the population sampled’ and then proposed a 

permutation test for the analysis of variance ‘which involves no assumptions of normality’. 

In a 1938 article, on ‘Tests for homogeneity’, Welch advocated calculating exact values on a 

limited population before moving into an examination of the moments of an infinite 

population. Welch continued with an example of an exact calculation and further concluded 
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that if the variances of different samples are markedly different, normal theory could badly 

underestimate significant differences that might exist. However, an exact test being free from 

the assumptions usually associated with asymptotic statistical tests, had no such limitation. 

McCarthy also argued for the use of a permutation test as a first approximation, before 

considering the data via an asymptotic distribution in 1939. Kendall incorporated exact 

probabilities utilizing the ‘entire universe’ of permutations in the construction ofτ , a new 

measure of rank correlation. In 1939, Kendall et al. utilized permutations in their discussion 

of Spearman’s rank order correlation coefficient and exact probabilities up to 10n = for 

Spearman’s rank order correlation coefficient. The probabilities were based on their relative 

frequencies in the !n  permutations of one ranking against another. This brought about the 

publication of tables in the 1940s for statistics with small sample sizes. These tables that 

employed permutations for the calculations of exact probabilities were primarily for rank 

tests. 

5.1.2 1940–1959 

The period between 1940 and 1950 brought about a rise in the work of nonparametric rank 

tests, publications include the Kendall rank order correlation, the Friedman two-way analysis 

of variance by ranks, the Wilcoxon rank sum test developed simultaneously by Wilcoxon,  

Mann and Whitney and the Kruskal-Wallis one-way analysis of variance by ranks. 

Permutation methods were employed to generate tables of exact probabilities for small 

samples. Theoretical work on permutation tests did continue in the 1940s and 1950s, but a 

theme that was commonly repeated was the conversion of data into ranks to simplify tedious 

computations. In 1952, Hoeffding investigated the power of a family of nonparametric tests 

based on permutations of observations, finding the permutation tests to be asymptotically as 

powerful as the related parametric tests. In 1955 Kempthorne described the use of 

randomization in experimental designs and how randomization permits evaluation of the 

experimental. Included were the completely randomized design, randomized blocks, and 

Latin squares. Two years later, in 1957, Dwass continued the general theme of computational 

difficulties for permutation tests, even with small samples. Dwass further recommended 

taking a random sample of all possible permutations for a two-sample test and making the 
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decision to accept or reject the null hypothesis on the basis of these random permutations 

only. 

 

6 Computational Aspects 

6.1.1 1960–1979 

One reason why permutation tests are not better known is that as the size and number of 

randomized groups increase, there is a steep increase in the number of possible permutations 

of the data. For instance, when there are two independent groups, the number of possible 

permutations is given by the expression 1 2 1 2( )! ! !n n n n+ . When two groups of measurements 

are made on the same group, the number of possible permutations is 2n . Thus, even when the 

small groups are analysed, the number of possible permutations can run to many millions. For 

example, two independent groups each of size 10 has (10+10)!/10!10! = 1.85E+05 possible 

permutations. When these two measurements are made on 20 experimental units one has 

1.05E+06 possible permutations. 

If investigators are to perform permutation tests, they must have access to computers that 

have the capacity to perform them within a reasonable space of time.  It thus has taken the 

development of high-speed computers for permutation tests to achieve their potential. (Berry 

et al.; 2011). The parallel development of permutation tests and computers is an essential part 

of the chronology of permutation methods.  

In the period prior to 1960, computers were large, slow, and expensive, and in large part their 

use was limited to military and industrial applications. Computers of this era could fill up an 

entire warehouse. In the 1960s, mainframe computers became widely available to researchers 

at major research universities. By the end of the 1970s, personal computers, although not 

common, were available to many researchers. The speed of computers increased greatly in 

the 1960s and 1970s and this paved the way for the development of permutation tests (Good; 

2005). 
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Permutation tests depend on efficient generation of permutation sequences. In the 1960s and 

1970s, many algorithms were presented for the generation of permutation sequences, each 

aiming at increased speed and efficiency. In 1979, Mielke et al. introduced multi-response 

permutation procedures (MRPP), the first statistics designed especially for permutation 

methods, in contrast to permutation alternatives to conventional tests. The use of Euclidean 

distances, rather than squared Euclidean distances provided exceedingly robust, distribution-

free, Euclidean-based permutation alternatives to experimental designs that normally 

employed conventional ANOVA or MANOVA analysis. 

Researchers were focused on defining efficient methods for computing probability values in 

the 1960s and 1970s.  Existing inefficiencies were largely due to inadequate numerical 

algorithms, low computer clock speeds, small core memories and inefficient data transfer. 

Mielke et al. (1979) introduced moment approximation permutation procedures whereby 

implementation of symmetric functions based on finite populations, provided the exact first 

three moments of a continuous distribution that approximated the discrete permutation 

distribution. The moment approximation permutation procedure immediately eliminated 

many of the computing difficulties that had inundated the computation of permutation values, 

provided an approximation to the underlying permutation distribution and avoided the 

extensive calculations of an exact permutation approach.  

6.1.2 1980–1999 

The advancement of permutation tests in the 1980s and 1990s was as a result of greatly 

improved computer clock speeds and widely available desktop computers (Good; 2005). At 

the same time, there was a shift in the sources of permutation publications. In the 1960s and 

1970s, the majority of the all the published papers on permutation methods appeared in 

computer journals such as The Computer Journal. In the 1980s and 1990s, there was a shift 

away from computer journals to statistical journals - such as The Journal of the American 

Statistical Association and Applied Statistics (Berry et al.; 2011). An increasing number of 

published papers on permutation procedures began appearing in Educational and 

Psychological Measurement, Econometrica, Ecology and Behaviour Research Methods.  

Permutation tests branched out from their home in statistics to include a variety of other 

disciplines, most notably in psychology with articles by Berry and Mielke (1983), 
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pharmacology and physiology with an important article by Ludbrook (1994); ecology with 

articles by Anderson (1999); and econometrics with a significant article by Kennedy (1995).   

In addition, many books on permutation methods, randomization tests and exact statistical 

methods appeared during this period. Edgington brought out the first edition of 

Randomization Tests in 1980, a second edition in 1987 and a third edition in 1995. 

Edgington’s book was soon followed by Hubert’s 1987 book on Assignment Methods in 

Combinatorial Data Analysis. Goods’s two books in 1994 Permutation Tests: A practical 

Guide to Resampling Methods for Testing Hypotheses and Permutation, Parametric and 

Bootstrap Tests of Hypotheses, Manly’s first edition of Randomization and Monte Carlo 

Methods in Biology in 1991 followed by a second edition in 1997, and Good’s third book  

Resampling Methods: A Practical Guide to Data Analysis in 1999. 

Work also continued on improving the computational efficiency of permutation tests, inspired 

by the ease of calculations because of increases in computer speed and storage. Between 

1980 and 1999 a number of algorithms were developed that substantially reduced 

computation time. Berry and Mielke (1985, 1987, 1995) enhanced the procedure by coupling 

recursive routines with the use of an arbitrary origin. A second algorithmic innovation was to 

recognise that only the variable part of a statistical formula needed to be computed for each 

permutation. 

In 1980, Mehta and Patel introduced a network algorithm that effectively calculated 

permutation tests. Originally designed for exact tests on 2 k×  contingency tables, the 

algorithm was extended to the r c×  contingency table. Extensions to multidimensional tables 

were provided by Mielke and Berry (1998). 

Much of the contributions to the permutation literature during this period focussed on 

efficient means to calculate permutation versions of existing statistics. However, the 

advancements in computational efficiency allowed for the development of a wider variety of 

statistical tests, tailored to the problem under consideration. Permutation versions of existing 

statistics include the Wilcoxon signed ranks test by Dallal (1988) and a one-way analysis of 

variance test by Berry and Mielke (1983).  At the same time, Mielke and his collaborators 

focussed their work on designing permutation tests that were not permutation versions of 
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existing statistics. Conventional statistical tests and measures, both parametric and 

nonparametric are based on squared Euclidean distances between data points, for example the 

two-sample t-tests, various F-tests, ordinary least-squares regression, and nonparametric tests 

such as the Wilcoxon rank sum test, the Kruskal-Wallis one-way analysis of variance by 

ranks.  

6.1.3 2000–2012 

Clock speeds on personal computers have increased significantly between 2000 and 2012. In 

2000, the Intel Pentium processor contained 42 million transistors and ran at 1.5 GHz. In 

2010, Intel released the Itanium processor, containing 4.8 GHz. To stress the progress of 

computing, in 1951 the Remington Rand Corporation introduced the Univac computer 

running at 1905 calculations per second with the storage space of 20,000 bytes of 

information. In 2008 the IBM Corporation supercomputer reached a sustained performance of 

1 quadrillion calculations per second. In 2010 the Cray Jaguar was named the world’s fastest 

computer performing at a speed of 1.75 quadrillion calculations per second with 360 

terabytes of memory. In November 2010 China exceeded the computing speed of the Cray 

Jaguar by 57% with the introduction of the Tianhe-A1 super computer performing at 2.67 

quadrillion calculations per second. The number one ranking for 2012 is the Sequoia 

supercomputer in California. The Sequoia’s ability is to crunch 16.32 quadrillion calculations 

per second.  

For a more general perspective, the personal computers available in 2012 contain processors 

of 3GHz with one terabyte of storage space. With the high demand for more powerful cell 

phones and ipads, there have been huge advancements in processing power. In August 2012 

the new compact 8mm thin iphone 5 was released and its processing speed is more powerful 

than the average personal computer.  

Increased computational efficiency has allowed for the establishment of a number of software 

packages for permutation tests, now widely available to computational statisticians. The most 

popular software packages available are SAS, SPSS, Statistica, S-plus and R. The R software 

package is the only free software that is available and thus it is very popular among 
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researchers. The University of Cambridge provides a permutation course for its first year 

students and the R software package is used in this course. 

In addition to permutation software, the computer age of 2000-2012 had a number of books 

on permutation methods published. Examples include a second edition of Permutation Tests: 

A Practical Guide to Resampling Methods for Testing Hypothesis by Good in 2000; a second 

edition of Permutation, Parametric and Bootstrap Tests of Hypotheses by Good in 2000; 

Permutation Methods: A Distance Function Approach by Mielke and Berry in 2001; 

Multivariate Permutation tests: With Applications in Biostatistics by Pesarin in 2001; a third 

edition of Permutation, Parametric and Bootstrap Tests of Hypotheses by Good in 2005; a 

fourth edition of Randomization Tests by Edgington and a third edition of Randomization, 

Bootstrap and Monte Carlo Methods in Biology by Manly in 2007.  

There have been many publications on permutation methods between 2000 and 2012, with 

steady increases each year. For example, in the search of ‘Permutation’ on Wiley Online 

Library in 2000 there were 13,153 journals and 836 books available, in 2005 there were 

19,709 journals and 2,155 books. In 2010 there were 30,510 journals and 4,315 books and in 

2012 there are now 35,899 journals and 5,047 books. An examination of the fields of research 

in which articles using permutation methods were published includes computer science, 

biology, genetics, statistics, geology, conservation, epidemiology, ecology, public health, 

environmental research, geology, medicine, history, atmospheric science and public health. 

 

7 Optimal Procedures 

It is easy to justify an experiment when going from cause to effect. If a computer is available, 

various techniques can be used to generate an outcome. The difficulty comes into play when 

going in the opposite direction, from effect to cause, because more than one set of causes can 

be responsible for the effect (Manly; 2007). In real life and in real populations there are vast 

differences from subject to subject. To illustrate this variation, consider an example from 

Steyn et al. (2000). A firm interested in purchasing a new tyre brand. A firm with a fleet of 

vehicles of the same make has been using ‘Light Tread’ tyres for their cars for some time. 
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The firm is satisfied with this type of tyre, but receives an offer from the manufacturers of 

‘Hold & Cling’ for tyres at a higher discount. The firm now has to choose between these two 

types of tyres. Figure 5.1 depicts the results of an experiment in which the first group of 

customers had ‘Light Tread’ tyres fitted onto their car, while the second group of cars were 

fitted with ‘Hold & Cling’. Each of the customers then provided a subjective rating of the 

satisfaction of the tyres. The ratings ranged from ‘worsened tread’ to ‘improved tread’ on a 

scale from 0 to 4. 

Figure 5.1. Customer satisfaction ratings for Light Tread and Hold & Cling tyres 

 

 

The customers that used ‘Hold & Cling’ seem to be more satisfied than those using ‘Light 

Tread’. Or perhaps the observed results may just due to chance. If it is a chance effect, rather 

than one caused by the type of tyre, then an error has been made. An error will also be made 

if it is decided that there is no difference, when, in fact, ‘Hold & Cling’ tyres are better. It is 

important to distinguish between these two types of errors since they have different 

implications. The type I error, a false positive, consists of labelling the new tyre as better. 

Such an action means economic loss for the firm and denial of the new tyres benefit to the 

public. But a false negative, a Type II error would mean exposing many people to a 

potentially dangerous tyre, which could lead to fatal car accidents. 

0

1

2

3

4

5

0 1 2 3 4

0

1

2

3

4

5

0 1 2 3 4

Number of Customers 

Number of Customers 

Customer Rating 

Light Tread 

Customer Rating 

Hold & Cling 

 
 
 



23 
 

Table 5.1 Decision making under uncertainty 

The Facts The Final Decision 

 

No difference 

No difference New tyre is better 

Type I error: 

firm misses opportunity 

for profit; public denied access 

totyre improvements  

New tyre is better Type II error:  

Customers injured; 

families suffer; 

firm sued. 

 

Since variation is inherent in nature, there is bound to be occasional error when inferences are 

drawn from experiments and surveys, especially if chance supplies an unrepresentative 

sample. When a coin is tossed ten times, it is possible to get five heads and five tails. Even 

though the chance of getting ten tails is very low, it is possible. As the popular saying goes, 

the latter is less probable but not impossible. 

The risk of making statistical decisions cannot be eliminated but can be contained by using 

the correct statistical procedures. If, for example, the probability of making a type I error does 

not exceed 1%, 5% or 10%, and the choice of statistical procedures is correct, a method will 

be provided to keep the type II error as small as possible. 

The losses illustrated above will not only depend on whether the guess was right or wrong, 

but on how far off the mark the guesstimate is. Suppose a new type of pesticide has been 

produced for fruit pests and an investigation into the side effects on people eating this fruit 

has been done. Suppose a conclusion has been drawn and the pesticide does not cause any 

harm to people. But the truth is that the pesticide raises blood toxicity by a mere fraction of 

the normal day-to-day toxicity levels.  Now, suppose that a slightly higher concentration in 

pesticide chemicals raises toxicity levels to potentially cause cancer. What will be the cost to 

the patients as well as to the company regarding law suits? The cost of the type II error will 

depend on the severity of the error and the nature of the losses associated with it.  
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Most of the work in hypothesis testing has been focussed on zero or one loss function, while 

estimation has focussed on losses proportional to the error squared. When making an 

assessment, it is important to consider whether the concern lies more with a specific decision 

or those that need to be sustained over time as a result of keeping to a specific decision 

(Good; 2005). What is most important, reducing average losses over time or avoiding one 

catastrophic loss? 

In order to come to the best conclusion, the significance level (α ) and the power ( β ) should 

to be looked at closely. α represents the probability of making a type I error and β  

represents the probability of a type II error. To test a hypothesis the set of possible outcomes 

is divided into two or more regions. The primary hypothesis is accepted when a type I error is 

risked when the test statistic lies in the rejection region. The primary hypothesis is rejected 

when a risk of a type II error occurs when the test statistic lies in the acceptance region. 

Additional observations may be taken if the test statistic lies in the region of indifference 

(Pesarin; 2001).  

The ideal statistical test would have a significance level α of zero and a power β  of 1. Since 

the real world is not idealistic, this ideal cannot be realised. In practise the significance level 

is fixed at the largest desirable level and a test statistic is chosen to maximize the power for a 

set of important alternatives. 

For a fixed significance level, the power is an increasing function of the size of the effect. For 

a fixed effect, increasing the significance level also increases the power of the test. As 

previously discussed, the greater the difference between the true alternative and the decided 

hypothesis, the greater the loss associated with a type II error.  

Fortunately, tests can be devised where the larger the discrepancy, the greater the power, and 

the less likely there is to be a type II error. The power can also be increased by increasing the 

sample sizes as they are directly related. A more powerful test reduces the cost of 

experimentation and minimizes the risk. 
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Figure 5.2 Power as a function of the alternative. Tests have the same sample size 

 
Figure 5.3 Power as a function of the alternative. Tests have different sample sizes 

 
Figure 5.4 Comparing power curves. For near alternatives, with θ  close to zero, test 2 is the more 

powerful test; for far alternatives, with θ  large, test 1is more powerful. Thus, neither test is most 

powerful. 

 
 

 

Source: Good PI. Permutation, Parametric and Bootstrap Tests of Hypotheses. 3rd ed. New York: 
Springer-Verlag;2005. 
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The power of tests can only be compared if they have the same significance level. If the test 

1 1( )ω α  is less powerful than 2 2( )ω α , where the significance level 1 2α α< , then the power of 

1 2( )ω α  is greater than the power of 2 2( )ω α .  The significance level and power may also 

depend upon how the variables are distributed. Thus the type I error may need to be less than 

or equal to some predetermined value for all possible distributions. When applied correctly, 

permutation tests always have this property (Good; 2005). The significance levels of 

parametric tests and the tests based on the bootstrap technique depend on the underlying 

distribution. Thus permutation tests are a more powerful alternative when the underlying 

distribution is unknown. 

 

8 Analysis of Variance 

8.1 Introduction 

Analysis of variance (ANOVA) is used to test whether various populations differ from one 

another in respect of a particular characteristic. In analysis of variance, the different 

populations are usually described as treatments. The observations on which the analysis is 

based are then the results that are obtained by applying these treatments to the experimental 

units. As with other parametric tests, the assumption of normality, independence within and 

between groups and homogeneity among the populations should be satisfied. If these 

assumptions are violated then permutation tests are a viable option.  

The ANOVA method using permutation tests have been extensively studied, especially when 

faced with interaction terms. Several permutation strategies have been proposed to obtain a 

distribution-free test in ANOVA with a single error term. This chapter describes the one-way, 

two-way and three-way ANOVA permutation strategies that have been proposed. For the 

one-way ANOVA there is a general consensus regarding the permutation procedure. 

However, for two-way and three-way ANOVA, no universal permutation test (can be applied 

to an arbitrary design to test a desired factor) exists. One method is proposed by Manly 

(1997), which uses the permutation of the raw data. Edgington (2007) follows the methods 
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used by Manly (1997). Another method is that of Still and White (1981) which removes the 

main effects when testing for interaction. The Ter Braak (1992) method uses the full model 

(no effects are removed) when testing for interaction. These permutation tests are not exact 

procedures as there is correlation in the residuals present. An exact test is proposed by Jung et 

al. (2006) which removes the correlation by means of a transformation. A simulation 

experiment is done to compare performance of the normal F-test and the various permutation 

tests under conditions of normality and non-normality. 

 

8.2 One-Way Analysis of Variance 

8.2.1 The Parametric Approach 

ANOVA and t-tests are used for detecting differences between experimental treatments 

where it is expected that some treatments will be more effective than others. The independent 

t-test can be regarded as a special case for where there are only two treatments. The 

simultaneous comparison of more than two treatment groups using the F-test can also be 

advantageous to a researcher. However, a significant F for a comparison of several treatments 

does not permit one to conclude which particular treatment differs from each other in their 

effects. The only justifiable statistical inference from a significant overall F is that the 

treatments do not have identical effects.  

One-way ANOVA is not sensitive to treatment differences when many of the treatments have 

almost identical effects and only one or two are quite different in their effects. Whether four 

out of five treatments have the same effect and the fifth has a different effect cannot be 

determined without more specific comparisons. Follow-up tests comparing individual 

treatments in pairs by use of t-tests are sometimes conducted and, either one-tailed or two-

tailed tests can be used for this purpose (Edgington; 2007). 
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For the one-way ANOVA, assume that 1,........., ii iny y  is a random sample from a 2( , )iN µ σ

population, homogeneity between the populations is present and that the samples are 

independent. Although the null hypothesis of equality means should be formulated as 

1 , .......... aµ µ= = , it is customary to regard iµ  as the sum of an overall mean component such 

as µ and a component due to the specific population. For instance, write 

( )i i iµ µ µ µ µ α= + − = +  where i iα µ µ= − . The reparametererization leads to the 

hypothesis of means  

0 1 2: ......... aH α α α= = =     versus    1 0:H H  not true 

The response iky , distributed as 2( , )iN µ α σ+ , can be expressed in the form  

ik i iky µ α ε= + + ,                 1,.........,i a=  and 1,........,k n=  

where the ikε  are independent 2(0, )N σ  random variables. To define uniquely the model 

parameters and their least squares estimates, is customary to impose the constraint 

1
0a

i ii
nα

=
=∑  

The usual F-test rejects 0H  at a α  significance level if  

2
. ..1

1,2
.1 1 1

( ) ( 1)
( )

( ) ( )i i

a
i ii

a n a a n a
ik i ii k i

n y y a
F F

y y n k
α=

− −

= = =

− −
= > ∑− −

∑
∑ ∑ ∑

 

Where 
1,

( )
ia n aF α

− −∑  is the upper (100α )th percentile of the F-distribution with 1a −  and 

in a−∑  degrees of freedom respectively (Johnson and Wichern; 2002). 

 

 

 
 
 



29 
 

8.2.2 The Permutation Approach 

A systematic way of listing data permutations is necessary for the systematic permutation 

method; this ensures that all data permutations are considered. Permutations for one-way 

ANOVA can be listed by making use of a numerical example: 

Suppose there are two measurements for treatment A, two for treatment B, and three for 

treatment C, as follows: 

A B C 

17,  8 19,  25 24,  17,  15 

To systematically list the 7! / 2!2!3! = 210 permutations, index numbers one to seven are 

assigned to the seven measurements: 

A B C 

17,  8 

1,  2 

19,  25 

3,    4 

24,  17,  15 

5,    6,    7 

The permutation of index numbers can be represented as a seven digit number: 1234567. The 

permutations of the index numbers are listed in order of magnitude from the smallest seven 

digit number, keeping the index values in ascending order within a treatment. This ensures no 

redundancy results from the same combination. The following listing shows the first two and 

last two permutations of index numbers, when listed by the described procedure: 

Permutation 

Number 

A B C 

1 

2 

... 

209 

210 

1  2 

1  2 

 

6  7 

6  7 

3  4 

3  5 

 

3  5 

4  5 

5  6  7 

4  6  7 

 

1  2  4 

1  2  3 
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Suppose the null hypothesis 0 : A B CH α α α= =    is true and the groups are not really different 

(in terms of measured variable). If this is the case, then the observations are exchangeable 

between the different groups. That is, the labels that identify them as belonging to a particular 

group can be randomly permuted to obtain a new value of F, denoted *F . If all possible 

values for *F are calculated for all the different allocations of the labels to the observed 

values, this would give the entire distribution of the F statistic under a true null hypothesis, 

given the particular data set. 

To calculate the p-value for the test, compare the value of F calculated on the original data 

with the distribution of values *F obtained for a true null by permuting the labels. The 

empirical frequency distribution of *F can be articulated entirely; that is, the number of 

possible ways that the data can be re-ordered is finite. The probability associated with the null 

hypothesis is calculated as the proportion of the *F  greater or equal to F.  

*
*

*

number of  p value  = (  )
total number of 

F F P F F
F

≥
− = ≥  

In this calculation, the observed value is included as a member of the distribution. This is 

because one of the possible random orderings of the treatment labels is the ordering that was 

actually obtained. This p-value gives an exact test of the null hypothesis of no differences 

among groups (Hoeffding; 1952). 

An equivalent test statistic described by Pesarin (2001) for the one-way ANOVA is  

2
.1

a
i ii

T n y
=

= ∑  where . /n
i ik ik

y y n= ∑ . 

This statistic is equivalent to 2
. ..( )a

i ii
n y y−∑ ,  where .. /an

ikik
y y n= ∑ . Since ( 1) ia n a− −∑  

is a constant multiplier over all permutations, its elimination has no effect on the ordering of 

the permutations with respect to the test statistic value. A requirement is that the errors ikε
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should be exchangeable with respect to groups only in 0H . To show that T is an exact 

permutation test, consider its permutation structure and assume that *
hiν  data are randomly 

moved from the thh  to the thi  group, where *
hi ih

nν =∑  for 1,........,i a= , and where *
hhν  

represents the number of observations which remain in the thh  group. The permutation 

structure of the statistic  

( )2
* *

*
( )a n

i iki k

i

T
n

α ε+
=

∑ ∑
 

shows that, if and only if 0H  is true, *T  depends only on a permutation of exchangeable 

errors, whereas 1H   depends on treatment effects as well. Hence, as the permutation null 

distribution of T depends only on exchangeable errors, T is an exact permutation test. The 

computation of T as a test statistic will give the same p-value as the computation of F and is 

thus easier than the F-statistic to calculate. 

8.3 Two-Way Analysis of Variance 

8.3.1 The Parametric Approach 

Taking an example from Manly (2007), the concept of interactions can be illustrated. 

Suppose we are concerned with the number of ants consumed by two sizes of lizards over 

each of the four months given below. 

Table 8.3.1 The number of ants eaten from June to September by small and large .lizards. 

The Facts            Small             Large 

June    13     242     105  182         21          7 

July      8       59       20    24       312        68 

August  515     488       88  460     1223      990 

September    18       44       21  140         40        27 
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It appears as if there is the possibility of an interaction since in June the small lizards ate 

more ants than the large lizards, but the reverse happened in the other months. There might 

also be an effect for size, with large lizards eating more ants than small lizards. Looking at an 

analysis of variance summary table the assumptions can be confirmed. The interaction is 

border line, as is the size effect, yet the months effect is significant. 

Table 8.3.2 Output from a standard ANOVA for size and months on the number of ants consumed 

The ANOVA Procedure  

Dependent Variable: Ants_Consumed  

Source DF Anova SS Mean Square F Value Pr > F 

size 1 146172.042 146172.042 4.47 0.0505 

months 3 1379495.125 459831.708 14.06 <.0001 

size*months 3 294009.458 98003.153 3.00 0.0617 

In general, suppose we want to assess the simultaneous effects on number of ants eaten, given 

the month and size of the lizard. Let the number of ants eaten be represented by ijky  for a 

different month and b different sizes of lizards, where 1,.........,i a=  ; 1,.........,j b= , and n 

represents observations at each factor combination i j, 1,.........,k n= . A model relating the 

dependent variable, ants eaten (the effect) to the independent variables of months and size 

(the causes) is given by  

( )ijk i j ij ijky µ α β αβ ε= + + + +     or 

Size Month Interactionijk i j ij ijky µ ε= + + + +  
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Under the normality assumption of error terms, the traditional F-test statistic is 

2
. .. . . ...1 1 1

2
.1 1 1

( ) ( 1)( 1)

( ) ( 1)

a b n
ij i ji j k

a b n
ijk iji j k

y y y y a b
F

y y ab n
= = =

= = =

− − + − −
=

− −

∑ ∑ ∑
∑ ∑ ∑

 

where . 1
( )n

ij ijkk
y y n

=
= ∑ ,  .. 1 1

( )b n
i ijkj k

y y bn
= =

= ∑ ∑ ,   . . 1 1
( )a n

j ijki k
y y an

= =
= ∑ ∑  and 

... 1 1 1
( )a b n

ijki j k
y y abn

= = =
= ∑ ∑ ∑ .  

The null and alternative hypothesis for the interactions of the model are 

0 11: ( ) .......... ( ) 0abH αβ αβ= = =     versus   1 0: not   H H . 

Under the null hypothesis of no interaction, F  is distributed as (( 1)( 1), ( 1))F a b ab n− − −

(Johnson and Wichern; 2002). 

8.3.2 Permutation of Raw Data 

8.3.2.1 The Manly Method 

Manly (2007) suggests that one way to permute the data is to randomize the samples over all 

the cells in the experiment. For example, take the values, shake them up in a bowl, and write 

them down in whatever order they come out of the bowl next to the columns that contain 

information on the variables. Considering the previous example on lizards, these variables 

would be size and months. The F-values for the effects is calculated, these values are then 

stored away, and then this procedure is repeated another 4,999 times(1). At the end there 

would be 5,000 values of MF  that would reasonably occur under the null hypothesis. The 

original F-statistic obtained can then be compared against the empirical under the null 

hypothesis, that is, 0 1 2: ......... aH α α α= = = .The p-value is then calculated as the number of 

resampled *MF values that exceed the original F, that is,  

(1) Manly (2007) recommends a sample of 5,000 is accurate for a significance level of 0.05 
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p-value =
*

* number of   ( )   
!

M
M F FP F F

n
≥

≥ =  

Let this test is denoted by PT1. The same procedure is followed for the two main effects. This 

procedure by Manly (1997) is perhaps the easiest to carry out. 

8.3.2.2 The Edgington Method 

Edgington (2007) goes at the problem from a different direction. He maintains that there is no 

exact test for interactions, but suggests that one can get an indication of the presence of 

interactions by testing the interaction in the same way that Manly (1997) does. However, only 

the interaction is tested in this way. Edgington (2007) permutes all observations 5,000 times 

across cells, computes the F-values for the interaction for each one, and then calculates
*(  )EP F F≥ . 

According to Edgington (2007), there are two ways to deal with the main effects. If the 

interaction is significant, one probably doesn’t care about the main effects. It is alright to look 

at the main effects if one has good reason, but one seldom has a good reason to want to deal 

with the main effects when faced with an interaction. 

If the interaction effect is not significant, one would probably want to go ahead and deal with 

main effects. One way to do this is the same way Manly (1997) does. Edgington(2007) would 

argue that if there is no interaction, the best model is ijk i j ijky µ α β ε= + + +  or 

ijk i j ijky Size Monthµ ε= + + + which is an additive model – it does not have an interaction. 

Edgington (2007) reasons that if this is now the model, one does not have to adjust for an 

interaction. Therefore one can test the size by shuffling the data for each month separately 

between size categories, and then test months by shuffling the data for each size among the 

month categories. In each of these steps the distribution of the randomised F-values are 

formed. The original F-value is then compared against the permuted F-values. 
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8.3.3 Permutation under the Reduced Model 

8.3.3.1 The Still and White Method 

Still and White (1981) follow Edgington (2007) in using restricted randomization for main 

effects, but they control for main effects by using residuals. In this method, the residuals are 

computed from a model that includes all parameters except the parameters of interest. This 

means that only the effect of the parameters that are of interest are possibly present in these 

residuals. In this case, the residuals are what are left over after the row and column effects are 

removed. If one is looking at all the data combined, there are potential main effects of size 

and months included in them. But if these effects are subtracted and the residuals are used, a 

test for interaction can be performed, without worrying about the main effects. Since any 

possible row and column effects have been removed, the residuals are exchangeable under 

0 1 2: ......... aH α α α= = = . One simple way to do this is to compute  

.. . . ...
SW
ijk ijk i jy y y y y= − − + . 

However, under the null hypothesis, there should be no systematic effect in these residuals 

and therefore an unrestricted permutation of these residuals is used to test the parameters of 

interest. If a complete analysis of variance is run on the residuals, the sums of squares for the 

effects are zero, and the F for the interaction is a fair test of that interaction uncontaminated 

by the main effects. Anderson and Ter Braak (1992) show that this method has relatively 

more power in comparison with the other analysis of variance methods. 

Using the Still and White (1981) approach on randomization, an F-statistic can be obtained 

by the following:  

2
. .. . . ...1 1 1

2
.1 1 1

( ) ( 1)( 1)

( ) ( 1)

a b n SW SW SW SW
ij i ji j kSW

a b n SW SW
ijk iji j k

y y y y a b
F

y y ab n
= = =

= = =

− − + − −
=

− −

∑ ∑ ∑
∑ ∑ ∑
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SW
AB ABF F=  since it is obtained directly from the raw data. Hence the statistical significance of 

0H  can be evaluated from the Monte Carlo distribution of  

* * * * 2
. .. . . ...1 1 1*

* * 2
.1 1 1

( ) ( 1)( 1)

( ) ( 1)

a b n SW SW SW SW
ij i ji j kSW

AB a b n SW SW
ijk iji j k

y y y y a b
F

y y ab n
= = =

= = =

− − + − −
=

− −

∑ ∑ ∑
∑ ∑ ∑

 

Where *SW
ijky  is an thijk  element of *SWy  which is an 1abn ×  randomly permuted vector of 

111 11( ,........., ,........., )SW SW SW SW
n abny y y y= .  Thus the significance of 0H  can be assessed by  

p-value =
*

* number of   ( )  
!

SW
SW F FP F F

n
≥

≥ =  

Let this test be denoted by PT2. This test however is based on the correlated residuals and it 

will not be exact for finite samples. For example, with the residuals .. . . ...
SW
ijk ijk i jy y y y y= − − + , 

two residuals in the same row, such as 11
SW
iy  and 23

SW
iy will be correlated, while two 

observations from different rows and columns will not. The residuals are not exchangeable, 

thus the distribution with respect to all possible permutations will not be exact. However, 

following Good (2002), the studentized correlations between the residuals converge to a 

common value as the sample size increases; thus the residuals are asymptotically 

exchangeable, and this test is asymptotically exact. 

8.3.4 Permutation of the Full Model 

8.3.4.1 The Ter Braak Method 

Ter Braak (1992) has done a great deal of work with randomization procedures and he 

advocates an approach similar to the Still and White (1981) approach, except that in 

calculating the interaction, the residuals are taken over the whole design rather than just the 

additive model. The cell mean is subtracted so that the effects of all factors are removed from 

the original observations. A new sample is then constructed by adding the fitted value to an 

unrestricted permuted version of the residuals. This approach is very much like the Still and 
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White (1981) approach, but only row and column means are subtracted, not individual cell 

means. Again this amounts to fitting a complete model (including the interaction) and 

computing the residuals. Ter Braak (1992) uses the usual residuals .
TB
ijk ijk ijy y y= − instead of 

.. . . ...
SW
ijk ijk i jy y y y y= − − + . By using the freely randomized residuals TB

ijky , TB
ABF  can be 

calculated from the normal F-statistic. Then the significance of 0 1 2: ......... aH α α α= = =  can 

be assessed by  

p-value =
*

* number of   ( )  
!

TB
TB F FP F F

n
≥

≥ =  

Let this test be denoted by PT3.  It will however not be exact for a finite sample since this test 

is based on the correlated residuals .
TB
ijk ijk ijy y y= − . 

8.3.5 Permutation for an Exact Test 

8.3.5.1 The Jung Method 

The permutation tests described by Manly (1997), Edgington (2007) and Still and White 

(1981) are not exact tests, since the probability distribution of the permuted observations is 

different from that of the original observations, even when no interaction effect exists. An 

exact random permutation test is proposed by Jung et al. (2006), which is an improvement to 

the Still and White (1981) approach. This is based on the uncorrelated residuals obtained 

from a transformation of the correlated residuals .. . . ...
SW
ijk ijk i jy y y y y= − − + . To obtain a new 

random permutation test, the model  

( )ijk i j ij ijky µ α β αβ ε= + + + + , 

can be written in matrix form as  

0 a b abµ= + + + +y X X X Xα β αβ ε , 
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where 111 11( ,........., ,........., ) 'n abny y y=y  is a 1abn ×  response vector, and 

111 11( ,........., ,........., ) 'n abnε ε ε ε=  is a 1abn ×  error vector, = ⊗ ⊗0 a b KX i i i , = ⊗ ⊗a a b KX I i i

, = ⊗ ⊗b a b KX i I i , where ,a bi i  and ni  are vectors of ones of dimension a, b and n, 

respectively and aI  and bI  are identity matrices of dimension a and b respectively; ⊗  

denotes the kronecker product, and 1( , ........., ) 'aα α α= , 1( ,........., ) 'bβ β β= , and 

11 1(( ) ,........., ( ) , ........, ( ) ) 'b abαβ αβ αβ αβ= . 

Define ( )= Mab a bX X X  and 1( )−= ' '
ab ab ab ab abH X X X X , then it can be shown that 

= ⊗ ⊗ + ⊗ ⊗ − ⊗ ⊗ab a b n a b n a b nH I J J J I J J J J  using the generalized inverse of the 

partitioned matrix, where ' / a=a a aJ i i , ' / b=b b bJ i i ,and ' / n=n n nJ i i  are the matrix of 

dimension a, b and n whose elements are all 1/ a , 1 / b , and 1/ n , respectively. Then, 

multiplying −abn abI H  to both sides of equation 0 a b abµ= + + + +y X X X Xα β αβ ε  one gets  

1 1 1J J J= aby X αβ + ε  , 

with 

1 ( )J = −abn aby I H y , 1 ( )J −ab abn ab abX = I H X ,            1 ( )J −abn ab= I Hε ε . 

where the thijk  element of 1Jy  is 1
.. . . ...

J
ijk ijk i jy y y y y= − − + . The idea is to remove part of the 

design matrix corresponding to the parameters not of interest, that is, the main effects. The 

traditional F-test statistic for the interaction is derived for the transformed model as 

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1

'( ( ' ) ') ( 1)( 1)
'( ( ' ) ' ( 1)

J J J J J J
J

J J J J J J

a bF
ab n

−

−

− −
=

−
ab ab ab ab

abn ab ab ab ab

y X X X X y
y I - X X X X y  

Thus the permutation method using 1J *y a randomly permuted vector of 1Jy is the same 

method as that of Still and White (1981). For the permutation method of Still and White 

(1981), it can be noted that  
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1 2( , ( ))J
abn abσ −0∼ I Hε  

Consequently, 1Jε * , a randomly permuted vector of 1Jε   is distributed differently from 1Jε . 

Hence, even though under 0 1 2: ......... aH α α α= = = , the distribution of 1J *y is not equal to 

that of 1Jy . This fact may damage the rationale behind the random permutation test. To 

resolve this problem Jung et al. (2006) proposes a transformation using the decomposition of 

the idempotent matrix abn ab−I H . Since abn ab−I H is a symmetric and idempotent matrix, it 

possesses two distinct eigenvalues, zero and one. Let '
abn ab− =I H UDU   be the eigen-

decomposition of abn ab−I H , where D is a diagonal matrix containing the eigenvalues of 

abn ab−I H , and U is a unitary matrix, whose columns are the eigenvectors of  abn ab−I H .  

Since abn ab−I H is a symmetric and idempotent matrix of rank 1abn a b− − + , there exists a 

matrix V of dimension ( 1)abn abn a b× − − + . Orthonormality of the columns of V implies 

that 1abn a b− − +=V'V I  where 

1,1 1, 1 1,1 1,

,1 , 1

     . . .           . . .      
  .                   .   .                  
  .                   . 
  .                   . 
     . .     

abn a b abn

abn abn abn a b

v v v v

v v

− − +

− − +

 
 
 
 
 
 
 
  1,1 1,

 1        . . .     0 
 .  .   1              . 

  .                   .  .                   . 
  .                   .  .               1  . 
  ..   0      . .abn a b abn a b abnv v− − + − − +

 
 
 
  =
 
 
 
   .       1 

 
 
 
 
 
 
 
 

 

since 
1 for =  
0 for i ik

k i
v

k


=  ≠
,thus the sum of the corresponding projections are equal to the 

identity matrix. Since 

1 1( ' ) ' ( ' ) 'abn ab ab ab ab
− −= +I X X X X V V V V , 

one gets, 
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1 1
1

1

( ' ) ' ( ) '

( ' ) ' '

'

'

abn ab ab ab ab abn a b

abn ab ab ab ab

abn ab

abn ab

− −
− − +

−

= +

= +

= +

= −

I X X X X V I V

I X X X X VV

I H VV

VV I H

 

Thus the matrix V satisfies the following equations: 

' abn ab= −VV I H 1abn a b− − +=V'V I  

Multiplying 'V  to both sides of 1 1 1J J J= aby X αβ + ε , one gets 

2 2 2J J J= +aby X αβ ε                                                        (8.3.1) 

where  

2 1'J J=y V y , 2 1'J J=ab abX V X , 2 1'J J=Vε ε  

Since 2 2
1~ (0, )J

abn a bσ − − +Iε  and 2J ∗ε  a randomly permuted vector of 2Jε , one gets 

2* 2
1~ (0, )J

abn a bσ − − +Iε  

and 

2 1 1 2 2 2
1 1var( ) var( ) var( ) ( ( ))J J J

abn a bσ σ σ − − += = −V' V' V =V' I H V = V'VV'V = Iε ε ε  

Therefore the F-statistic, 2JF can be obtained for testing the hypothesis of interaction, where 

( )
( )

2 2 2 2 1 2 2
2

2 2 2 2 1 2 2
1

' ( ' ) ' / ( 1)( 1)

' ( ' ) ' / ( ( 1))

J J J J J J
ab ab ab abJ

J J J J J J
abn a b ab ab ab ab

a b
F

ab n

−

−
− − +

− −
=

− −

y X X X X y

y I X X X X y
                   (8.3.2) 
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Since                                                   

2 2 1 1

1 1

1 1

' ' '

             '( )

             '

J J J J
ab B

J J
abn ab ab

J J
B

=

= −

=

y X y VV X

y I H X

y X

 

and                                                      

2 2 1 1

1 1

1 1

' ' '

               '( )

               '

J J J J
ab ab ab ab

J J
ab abn ab ab
J J
ab ab

=

= −

=

X X X VV X
X I H X
X X

 

and                                                         

2 2 1 1

1 1

1 1

' ' '
            '( )

            '

J J J J

J J
abn ab

J J

= −

=

y y = y VV y
y I H y
y y

 

The equality 2 1J J
AB AB ABF F F= =  is obtained. 

Under 0 1 2: ......... aH α α α= = = , 2Jy  is not related to 2J
ABX  in (8.3.2), thus the significance of 

the null hypothesis can be evaluated from the Monte Carlo distribution of  

( )
( )

2 2 2 2 1 2 2
2*

2 2 2 2 1 2 2
1

' ( ' ) ' / ( 1)( 1)

' ( ' ) ' / ( ( 1))

J J J J J J
ab ab ab abJ

J J J J J J
abn a b ab ab ab ab

a b
F

ab n

∗ −

−
− − +

− −
=

− −

*

* *

y X X X X y

y I X X X X y
 

where 2J *y  is an ( 1) 1abn a b− − + ×  randomly permuted vector of 2Jy . Thus the 

significance level of 0H  can be assessed by  

p-value =
2*

2* number of   ( )     
!

J
J F FP F F

n
α≥

≥ = ≤  
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The PT4 test can be explained as follows. From model 1 1 1J J J= aby X αβ + ε ,since the residuals 

are correlated with each other, uncorrelated residuals are obtained using the transformation of 

the uncorrelated residuals. A transformation matrix using the decomposition of the 

idempotent matrix is used. The proposed randomization is based on these uncorrelated 

residuals. Since the probability distribution of the permuted observations 2J *y  is the same as 
2Jy , PT4 satisfies the exchangeability property and is an exact permutation test. 

8.4 Three-Way Analysis of Variance 

Based on invariance and sufficiency, Welch (1990) considered testing for interaction effects 

in the three-way ANOVA model 

( ) ( )ijk i j k ij jk ijky µ α β γ αγ βγ ε= + + + + + +                                (8.4.1) 

for 1,.........,i a= ,  1,.........,j b= ,    1,.........,k c=  

with proper constraints for the parameters. In equation (8.4.1) the hypotheses for testing the 

interactions between factors B and C are the following: 

0 11: ( ) ............. ( ) 0bcH βγ βγ= = =      versus    1 :H not 0H .                       (8.4.2) 

Under the normality assumption of error terms, the traditional F-test is  

2
. . . . . ...1 1 1

2
.. . . .. . . .1 1 1

( )

( 1)( 1)
( ...)

( 1)( 1)( 1)

a b c
jk j ki j k

a b c
ijk i j k ij i k jki j k

y y y y
b cF

y y y y y y y y

a b c

= = =

= = =

− − +

− −=
− − − + + + −

− − −

∑ ∑ ∑

∑ ∑ ∑
. 

Under the null hypothesis of (8.4.2), F  is distributed as (( 1)( 1), ( 1)( 1)( 1))F b c a b c− − − − − . 
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The permutation methods described in the two-way analysis of variance can be extended to 

this problem. In this model the adjusted values used in permutations are M
ijky for the Manly 

(2007) method, . . ..
SW
ijk ijk ij i k iy y y y y= − − + for the Still and White (1981) method and 

.. . . .. . . . ...
TB
ijk ijk i j k ij i k jky y y y y y y y y= − − − + + + −  for the Ter Braak (1992) method. The Jung et 

al. (2006) method is similar for this model is similar to that of the two-way ANOVA model. 

Since 1
. . ..

J
ijk ijk ij i k iε ε ε ε ε= − − +  are correlated, the uncorrelated error term 2J

ijkε  can be obtained 

using the singular transformation used in (8.3.1). Thus the distribution of 2*JF  can be 

obtained using the random permutation of uncorrelated observations 2*J
ijky . The p-value of 

PT4 can be calculated by comparing the original F-value to the distribution of 2*JF . 

8.5 Simulation Study 

To explore the performance of the procedures previously discussed for testing the hypothesis 

0 1 2: ......... aH α α α= = = in the two-way ANOVA model, a simulation study similar to that of 

Jung et al. (2006) is performed. The main effects , 1, ..........,i i aα =  and , 1,..........,j j bβ = are 

generated from uniform (-50, 50) and uniform (-20, 20) distributions respectively with 

constraints 
1

0a
ii

α
=

=∑  and 
1

0b
jj

β
=

=∑ . To obtain estimates for the significance level, 

( )ijαβ  equals zero for all. 1,.........,i a= and 1,.........,j b= .For these generated values, the error 

term ijkε  is generated from four different distributions, the (0,1)N ,  exp(1) 1− ,  (4)t  and 

( 4,4)U − . The permutation tests are based on 1,000 replications and the above procedure is 

repeated 10,000 times independently in order to estimate the significance level. The normal 

F-test and the four permutation tests: the Manly (1997), Still and White (1981), Ter Braak 

(1992) and Jung et al. (2006) methods are applied at a significance level of 0.05α = .  

For (a,b,n) = (2, 2, 2), when the error term is normal, the traditional F-test performs well as 

expected. However, when the error term follows a non-normal distribution such as the 

exp(1) 1−  , (4)t  and ( 3, 3)U − distribution, the significance level of the F-test is 

underestimated. The Still and White (1981) method underestimates the nominal significance 

level, while the Ter Braak (1992) and Manly (1997) methods overestimate it for all 
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considered distributions of the error terms. The reason for these discrepancies is probably due 

to the fact that the Still and White (1981), Ter Braak (1992) and Manly (1997) methods are 

approximate tests as the randomly permuted observations are correlated. For normal and non-

normal errors, the estimated significance level not significantly different from 0.05. 

As a, b and n increases, the Manly (1997), Still and White (1981) and Ter Braak (1992) 

methods improve. This is because the correlations between the randomly permuted 

observations get weaker. These results are coincide to those obtained by Jung et al. (2006) 

where simulations show that the difference between the procedures gets smaller as a, b and n 

increases. 

Table 8.5.1 Average significance level for various (a,b,n) combinations at nominal size  α = 0.05 

with normal, exponential,  t and uniform distributions of errors based on 10,000 Monte Carlo 

simulations. 

(a,b,n) Tests (0,1)N  exp(1) 1−  (4)t  ( 3, 3)U −  

(2,2,2) F-Test 
 0.0491 0.0472 0.0404 0.0431 

PT1 
(Manly Test) 0.0523 0.0535 0.0522 0.0513 

PT2 
(Still and White) 0.0394 0.0357 0.0402 0.0409 

PT3 
(Ter Braak) 0.0535 0.0519 0.0528 0.0605 

PT4 
(Jung et al.) 0.0504 0.0488 0.0569 0.0531 

(2,2,3) F-Test 
 0.0509 0.0435 0.0398 0.0528 

PT1 
(Manly Test) 0.0439 0.0473 0.0438 0.0447 

RT2 
(Still and White) 0.0486 0.0432 0.0456 0.0502 

RT3 
(Ter Braak) 0.0511 0.0486 0.0469 0.0508 

PT4 
(Jung et al.) 0.0516 0.0457 0.0466 0.0531 

(2,3,2) F-Test 
 0.0482 0.0437 0.0412 0.0547 

PT1 
(Manly Test) 0.0464 0.0474 0.0486 0.0490 

RT2 
(Still and White) 0.0462 0.0497 0.0436 0.0513 

RT3 0.0510 0.0533 0.0458 0.0514 
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(Ter Braak) 
PT4 

(Jung et al.) 0.0504 0.0508 0.0484 0.0532 

(2,3,3) F-Test 
 0.0491 0.0423 0.0421 0.0482 

PT1 
(Manly Test) 0.0468 0.0452 0.0442 0.0471 

RT2 
(Still and White) 0.0489 00483 0.0491 0.0511 

RT3 
(Ter Braak) 0.0514 0.0476 0.0487 0.0515 

PT4 
(Jung et al.) 0.0504 0.0522 0.0459 0.0521 

 

8.6 Numerical Example 

Referring back to the example from Manly (1997) which displays the number of ants 

consumed by two sizes of lizards over each of the four months, the various permutation 

procedures are performed to test for interaction. 

Table 8.6.1 The number of ants eaten from June to September by small and large..lizards 

The Facts            Small             Large 

June    13     242     105  182         21          7 

July      8       59       20    24       312        68 

August  515     488       88  460     1223      990 

September    18       44       21  140         40        27 

From table 8.6.1 it can be seen that under the normality assumption of errors, the traditional 

F-test for interaction effects proves to be significant at the 10 percent level. Thus, it is 

concluded that a mild degree of interaction exists between size and months. However the 

normality assumption is not satisfied and therefore the traditional F-test cannot be satisfied. 

The permutation tests of Manly (1997), Still and White (1981), Ter Braak (1992) and Jung et 

al. (2006) are applied. These permutation tests are based on 10,000 Monte Carlo replications. 

From the permutation p-values, all the permutation tests in this experiment are still significant 
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at a 10 percent level. Thus we conclude without a doubt that interaction exists between size 

and months. 

Table 8.6.2. The results from a number of testing procedures for the interaction effects of size and 

months for small and large lizards. 

 p-value 
Interaction (Size*Months) 

F-Test 
 0.0617 

PT1 
(Manly Test) 0.0575 

PT2 
(Still and White) 0.0602 

PT3 
(Ter Braak) 0.0578 

PT4 
(Jung et al.) 0.0593 
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9 Multiple Linear Regression 

9.1 Introduction 

Several different methods of permutation have been proposed to test the significance of one 

or more regression coefficients in a multiple linear regression model. These tests consist of 

approximate and exact permutation tests. Exact permutation methods have only recently been 

introduced with the advancement in processing speed of computers. There are essentially 

three different approaches for an approximate test: Unrestricted permutation of raw data, and 

permutation of residuals under the reduced model and permutation under the full model. 

Unrestricted permutation of raw data defined by Manly (2007) involves unrestricted 

permutation of the dependent vector y. In this method it is assumed that under the null 

hypothesis, the vector y is i.i.d and thus exchangeable.  

Permutation of residuals under the reduced model is described by Freedman and Lane (1983) 

and Kennedy (1995). In this method, the residuals are computed from a model that includes 

all parameters except the parameters of interest. The parameters of interest in this context are 

the independent parameters being tested for significance. This implies that only the effects of 

the parameters that are of interest are present in these residuals. Under the null hypothesis 

that the reduced model is valid, there should be no systematic effect in these residuals, and 

therefore an unrestricted permutation of these residuals is used to test the parameters of 

interest.  

Permutation under the full model, that is, includes all independent variables, is described by 

Ter Braak (1992) and Tantawanich (2006). As the name suggests, one should first compute 

the residuals based on the full model, which removes the effects of all factors from the 

original observations. Then one constructs new samples by adding the fitted values to 

unrestricted permuted versions of the residuals. Based on these new samples, one uses the 

statisticF − whose null hypothesis is that the true parameters are equal to their empirical 

values in the original sample.  
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There is general agreement concerning an appropriate method of permutation for exact tests 

of hypotheses in simple linear regression, for example, methods proposed by Edgington 

(1995) and Manly (2007). However, this is not the case for exact partial tests in multiple 

linear regression. Since multiple linear regression is more complex, only recently have 

advancements in this area been made. An exact technique for the permutation of residuals 

under the reduced model has been proposed by Huh and Jung (2001) and Kherad-Pajouh and 

Renaud (2010). This exact method is based on the permutation of residuals under the reduced 

form. In this method, the residuals are computed from a model that includes all parameters, 

except the parameters of interest. It is based on the ideas provided by Kennedy (1995). Using 

a transformation on the parameters of interest, an exact test can be done using exchangeable 

errors. 

The different permutation strategies are compared in section 9.7 to determine how well these 

methods perform with normal and non-normal errors. Simulations are constructed with errors 

that have a (0,1)N , ( 3, 3)U − , exp(1) 1−  and (4)t  distribution. By comparing the partial 

F-test to permutation approach of Manly (2007), Freedman and Lane (1983), Kennedy 

(1995), Ter Braak (1992), Tantawanich (2006) and Kherad-Pajouh and Renaud (2010), 

simulations show that the partial F-test outperforms the permutation tests when errors are 

normal. The Kherad-Pajouh and Renaud (2010) test outperforms all the other tests when 

errors are non-normal because this test is an exact test and not an approximate test. 

 

9.2 The Parametric Approach 

Consider a multiple linear regression model: 

= +y X β ε 1 1 2 2= + +X Xβ β ε  
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y is an 1n ×  vector of responses, ε  is an 1n ×  vector of i.i.d errors, X is an ( )n p q× +  matrix 

of full rank and β  is the vector of parameters. 1X and 2X  are matrices of dimension 

( )n p q× + and ( )n p q× + respectively and 1β   and 2β  are vectors of dimension 1p×  and  

1q ×  respectively. For any test of interest, the design matrix X and the vector of parameters 

β  can be divided into the component of interest, that is 2β  and the component not of 

interest, that is 1β , where,

 

1 2[ ]=X X     X ,         1

2

 
=  

 

β
β

β
. 

The corresponding hypotheses are 

0 2:H = 0β ,         versus 1 2:H ≠ 0β , 

where 0 is a 1q ×  vector of zeros. If the null hypothesis is not rejected, then the explanatory 

variables(s) in 2X  may not be necessary and the reduced model in this case would be  

1 1= +y X β ε . 
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The parametric partial F-statistic for testing 0 2:H = 0β is of the form 

1 1
1 1 1 1

1

' ( ' ) ' ( ' ) ' ( )

' ( ' ) ' ( )n

q
F

n p q

− −

−

 − =
  − − 

y X X X X X X X X y

y I - X X X X y
                             

(9.2.1) 

Under the normality assumption, the partial F-statistic in (9.2.1) is distributed as ,( , )q n p qFα − −  

when 0 2:H = 0β is true, and the null hypothesis is rejected if ,( , )q n p qF Fα − −≥ .  

 

9.3 Permutation of Raw Data 

9.3.1 The Manly Method 

Looking at the permutation equivalent to the normal partial F-test, Manly (2007) proposes a 

procedure that involves the permutation of raw data. This procedure is as follows: The 

variable y is regressed on 1X  and 2X  together (using least squares) to obtain an estimate 2β̂

of 2β  and a value of the usual F-statistic given by equation 9.2.1 The y values are then 

randomly permuted to obtain the permuted values *y . These *y  values are then regressed on 

1X  and 2X  (unpermuted) together to obtain an estimate *
2β̂ of 2β and a value *F for the 

permuted data. Under the null hypothesis 0 2:H = 0β , the random vector y is exchangeable 

and thus all possible permutations of y have the same distribution. The permutation statistic 

for Manly (2007) denoted *MF  is 

* 1 1 *
1 1 1 1*

* 1 *

' ( ' ) ' ( ' ) ' ( )

' ( ' ) ' ( )

M M
M

M M
n

q
F

n p q

− −

−

 − =
  − − 

y X X X X X X X X y

y I - X X X X y
.
 

This procedure is repeated a large number of times so that the empirical distribution of 

0 2:H = 0β can be assessed by  
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p-value =
*

* number of   ( )  
!

M
M F FP F F

n
≥

≥ =  

Let this test be denoted by RT1. Kennedy and Cade (1996) suggest that the permutation of 

raw data, as described by Manly (2007), should be controlled. The reason for this control is 

because tests done by Kennedy and Cade (1996) show significantly different results between 

permutation tests and model-based methods. This discrepancy appears when 1X  is not zero 

and 1X  contains an outlier. This method cannot handle these particular situations because the 

relationship between 1X  and Y is held constant throughout the permutations. When there are 

such extreme outliers in the predictor variables, these should be identifiable as high leverage 

points in diagnostic analyses prior to the regression analysis.  

Anderson and Legendre (1999) expand on the results by Kennedy and Cades (1996) and 

show that the permutation of raw data results in inflated p-values when there is an extreme 

outlier. This is regardless of whether or not there is collinearity between predictor variables, 

nor if the data is normal or non-normal.  This problem of inflated p-values cannot be 

amended by increasing the sample size as these results remain unchanged. 

Outliers should therefore be removed from the data set, so that the potential problem may be 

eliminated beforehand. However, the presence of outliers in a multiple regression may not 

always be readily apparent or easy to define. Permutation methods are appreciated for their 

lack of assumptions concerning distributions of variables, thus diagnostic checking of 

distributions of variables should be unnecessary.  

The method proposed by Manly (2007) is not an exact test for a partial regression coefficient 

in a linear model, unless all other parameters in the model are truly equal to zero. This 

method only provides an approximate test. Manly (2007) suggests that a test of 5000 

simulations is sufficient, yet the results of Anderson and Legendre (1999) differ significantly 

from those of Manly (2007). There are several reasons for this discrepancy but one reason 

may be because Manly (2007) uses 5000 simulations, whereas Anderson and Legendre 

(1999) use 10,000.  
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9.4 Permutation under the Reduced Model 

9.4.1 The Freedman and Lane Method 

In contrast to the method of permuting raw data, there are those techniques which use the 

residuals of a linear model as the permutable units for a test. The error ε  is dissociated from 

each value of Y by the application of a model to produce residuals, as opposed to the original 

Y values. The rationale for the permutation of residuals for the hypothesis 0 2:H = 0β , is the 

following: Given some estimate of the relationship between Y  and 1X  (even if it is zero) 

there is no further variation in Y which can be explained by 2X . Looking at the approach 

proposed by Freedman and Lane (1983), the vector y is regressed on 1X  and 2X together to 

obtain an estimate 2β̂  of 2β  and a reference value F for the real data. To obtain the empirical 

distribution, the vector y is regressed on 1X  alone according to the model 1 1= + +y Xµ β ε

providing estimates µ̂  of µ , 1̂β  of 1β  and residuals 

1 1̂ˆ( )FL = − +y Xε µ β  

The residuals from the regression are then permuted randomly, producing *FLε . New values 

for  *FLy  are calculated by adding the permuted residuals to the fitted values as follows:  

* *
1 1̂ˆFL FL= + +y Xµ β ε . 

*FLy  is then regressed on 1X  and 2X  together, according to the model

* * * *
1 1 2 2( )FLE = + +y X Xµ β β  to obtain an estimate *

2β̂  of *
2β ,and a value *FLF . Thus the 

permutation statistic for Freedman and Lane (1983) is given by 

* 1 1 *
1 1 1 1*

* 1 *

' ( ' ) ' ( ' ) ' ( )

' ( ' ) ' ( )

FL FL
FL

FL FL
n

q
F

n p q

− −

−

 − =
  − − 

y X X X X X X X X y

y I - X X X X y
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This procedure is repeated a large number of times so that the empirical distribution of  

0 2:H = 0β can be assessed by  

 p-value =
*

* number of   ( )  
!

FL
FL F FP F F

n
≥

≥ =  

Let this test be denoted by RT2. Permutation of the residuals under the model preserves the 

covariances between y and 1X , 2X and 1X ,and among the 1X variables, but not between y 

and 2X , across all permutations. 

Freedman and Lane (1983) claim their method is a “non-stochastic” approach, referring to the 

proportion of the values *  FLF F≥ as a “descriptive statistic” instead of a probability. 

However, according to Kennedy (1995) their rationale for the test is effectively that of a 

model-based approach. The goal is to isolate the test of Y on 2X  alone, while taking 1X into 

account through the use of the linear regression equation and permutation of residuals.  

Freedman and Lane (1983) emphasize three conditions for the use of their method. The one 

condition is that the data should not contain extreme outliers and the second is that 1X and

2X should not be highly collinear. The third is that the sample size n should be relatively 

large. Since the permutation is on the residuals, the test is not an exact test in a randomization 

sense, but has asymptotically exact significance levels.  

 

9.4.2 The Kennedy Method 

Kennedy (1995) presented a method of permutation which he states is identical to the 

Freedman and Lane (1983) procedure. The rationalization for the method of Kennedy (1995) 

is the same as that of Freedman and Lane (1983) approach, but differs computationally. The 

method is described as follows: The variable y is regressed on 1X  and 2X together to obtain 

an estimate 2β̂  of 2β  and a reference value F  for the real data. To obtain the empirical 

distribution, the variable y is regressed on 1X  and 2X  according to the model 
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1 1 2 2= + + +y X Xµ β β ε . Let 1
1 1 1 1 1( ' ) '−=H X X X X and multiplying 1n −I H to both sides of 

this model, one gets 

2 2
K K K= + +y Xµ β ε  

where  

1( )K
n= −y I H y ,                2 1 2( )K

n= −X I H X ,               1( )K
n= −I Hε ε . 

These residuals Kε are then permuted randomly, producing *Kε . New values for *Ky are 

calculated by adding the permuted residuals to the fitted values as follows: 

* *
2 2

ˆˆK K K= + +y Xµ β ε  

*Ky  is then regressed on 2X , according to the model * *
2 2

ˆ( )K KE = +y Xµ β  to obtain a value 

*KF . Thus the permutation statistic for Kennedy (1995) is given by 

* 1 1 *
1 1 1 1*

* 1 *

' ( ' ) ' ( ' ) ' ( )

' ( ' ) ' ( )

K K
K

K K
n

q
F

n p q

− −

−

 − =
  − − 

y X X X X X X X X y

y I - X X X X y
 

This procedure is repeated a large number of times so that the empirical distribution of 

0 2:H = 0β can be assessed by  

 p-value =
*

* number of   ( )  
!

K
K F FP F F

n
≥

≥ =  

Let this test be denoted by RT3. According to simulations done by Anderson and Legendre 

(1999), the Kennedy (1995) method will not give the same results as those by Freedman and 

Lane (1983). The estimate of the slope coefficient vector 2β̂  is the same, but the value of the 

F-statistic under permutation is different for the two methods. The reason for this 

dissimilarity between the two methods is subtle but has important consequences. The 
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Kennedy (1995) method removes the effect of the variable which is not of interest. Thus the 

parameters associated with 1X  remain fixed throughout the permutation procedure.  In the 

Freedman and Lane (1983) method, this parameter does not stay fixed. The permuted 

residuals *FLε are added back onto the fitted values to obtain *Y . These are then regressed on 

1X and 2X  together, so the parameter estimates for 1X in the multiple regression model 

changes with each permutation. If the true values for 1β were known, there would be no 

difference between the two methods. Although there is no relationship between FLε and 1X , 

some small relationship is reintroduced between FLε and 1X , by the permutation of these 

residuals. The method of Freedman and Lane (1983) takes this into account by maintaining 

the conditioning on 1X  throughout the permutation procedure, whereas that of Kennedy 

(1995) does not.  

Kennedy (1995) states that the method of Manly (2007), that is, permuting y, is only justified 

when the covariable’s parameter 1β  is zero. The argument is essentially that the permutation 

of raw data ignores the covariable parameters, which often may not be justified. Kennedy 

(1995) suggests that the method of permuting raw data for the test of the hypothesis 

0 2:H = 0β  will give biased results if the errors ε  and the y values have radically different 

distributions in the presence of a non-zero 1β . In limited simulations, Kennedy (1995) found 

that the permutation of the raw data y in multiple regression resulted in an inflated p-value 

when outliers were included in 1X  and 1 ≠ 0β . The results of Kennedy (1995) is not 

supported by further simulations published by Manly (2007), although Manly (2007) suggests 

that a more extensive simulations are needed on this topic, his results seems to show that the 

method of permuting y for tests of partial regression coefficients is not necessarily flawed in 

the way that Kennedy (1995) claims.  

Simulations done by Anderson and Legendre (1999) show that the Kennedy (1995) procedure 

has inflated p-values, especially with small sample sizes. Permutation under the reduced 

model should therefore be done using the Freedman and Lane (1983) method when n is 

small. 
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9.5 Permutation under the Full Model 

9.5.1 The Ter Braak Method 

The two methods that have been proposed by Freedman and Lane (1983) and Kennedy 

(1995) have been called permutation under the “null model” by Ter Braak (1992) or “under 

the reduced model” by Cade and Richards (1996). Permutation of residuals under the full 

model, that is, all independent variables, was developed by Ter Braak (1992). It was 

introduced as the permutational analog (resampling without replacement) to the bootstrapping 

method (resampling with replacement). Ter Braak (1992) refers to his method as permutation 

“under the full model” and this method uses the residuals from the full regression model as 

the permutable units for the test. The estimate *F  as well as the original estimate of 2β̂ are 

used as part of the permutation procedure. Ter Braak (1992) claims that this procedure should 

have the effect of reducing the variance of the parameter of interest under permutation, thus 

increasing the power of the test. This procedure is described as follows: The vector y is 

regressed on 1X  and 2X together to obtain estimates µ̂  of µ , 1̂β  of 1β  , 2β̂  of 2β  and 

residuals ε , as well as the reference value F for the original data. The residuals TBε are 

calculated from the equation 

1 1 2 2
ˆ ˆˆ( )TB = − + +y X Xε µ β β , 

which are permuted randomly, producing *TBε  . The new *TBy values are calculated from the 

permuted residuals as follows: 

* *
1 1 2 2

ˆ ˆˆTB TB= + + +y X Xµ β β ε  

The new values *TBy are regressed on 1X and 2X to obtain an estimate 2β̂ and a value *TBF

under permutation. The permutation statistic for Ter Braak (1992) denoted TBF  is given by 

* 1 1 *
1 1 1 1*

* 1 *

' ( ' ) ' ( ' ) ' ( )

' ( ' ) ' ( )

TB TB
TB

TB TB
n

q
F

n p q

− −

−

 − =
  − − 

y X X X X X X X X y

y I - X X X X y
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This procedure is repeated a large number of times so that the empirical distribution of 

0 2:H = 0β can be assessed by  

p-value =
*

* number of   ( )   
!

TB
TB F FP F F

n
≥

≥ =  

Let this test is denoted by RT4. Permutation of the residuals under the null model preserves 

all covariances across the permutations, that is, among y, 1X and 2X , as well as the 1X  

variables. According to Ter Braak (1992), this permutation test under the full model has 

asymptotically exact significance levels. A point to note about this approach is that the 

statisticF −  is calculated under permutation according to the hypothesis that *
2 2

ˆ ˆ=β β , that is, 

that the values of *
2β̂ obtained under permutation are close to the original estimated values of

2β̂ . For this reason, this approach has also been called permutation “under the alternative 

hypothesis” by Ter Braak (1992).  

According to Anderson and Legendre (1999), permutation under the reduced model of 

Freedman and Lane (1983) and the full model of Ter Braak (1992) generally give similar 

results and are equally appropriate for most situations, with specific reference to univariate 

models. In the extreme situation of a remote outlier in the variable 1X  with extremely non-

normal errors and small sample sizes, the Ter Braak (1992) method may be destabilized. But 

this instability disappears when n is large, (n=100) or more reasonable error structures are 

used, such as the normal or exponential.  The introduction of an outlier in 1X  has no effect 

on the level accuracy of the Freedman and Lane (1983) method of permutation, in any 

situation. 

Although the Freedman and Lane (1983) method might be preferable to use with smaller 

sample sizes, there is a computational advantage in using the Ter Braak (1992) method. One 

can use the permutation of a single set of residuals from the full model to test a number of 

different hypotheses concerning individual partial regression coefficients in a multiple 

regression model. The Freedman and Lane (1983) method is computationally more intensive. 

When testing several different hypotheses about different coefficients in multiple regression, 
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the Freedman and Lane (1983) method requires different sets of residuals from several  

reduced models. 

 

9.5.2 The Tantawanich Method 

Tantawanich (2006) proposes an alternative permutation procedure which is also “under the 

full model”. This procedure is similar to the Ter Braak (1992) method, but instead of 

calculating new y values from the permuted residuals, new 2β values are calculated. The 

estimate *F  as well as the original estimate of 2β̂  are used as part of the permutation 

procedure. Tantawanich (2006) claims that this method provides a higher power than the 

methods proposed by Ter Braak (1992) and Manly (2007). The procedure is described as 

follows: Let ' 1 '( )−=H X X X X  where H is a n n× matrix and let ' 1 '
1 1 1 1 1( )−=H X X X X ,where 

1H  is a n n× matrix. For the OLS estimator of 2β ,  

                                              
1

2 1 1 1 1 1
ˆ [ ( ' ) ']n

−= −I X X X X Xβ  
1

1 1 1 1 1 1

1
1 1 1 1 1 1

1 1

1 1

( ' ) '

( ' ) ( ' )

n

p

−

−

= −

= −

= −

= −

= 0

I X X X X X X

X X X X X X

X X I

X X
 

 

One can write 

 

 
1

2 2 2 2 2 2 2
ˆ ( ' ) '−− = −X X X Xβ β β  
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−
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β

β

β

β

1 1 2 2

1
2 1 2 2 1

( )]

[ '( ) ] '( )n n
−

− +

= − −

y X X

X I H X X I H

β β

ε

 

The residuals Tε are calculated from 

1 1 2 2
ˆ ˆ( )T = − +y X Xε β β , 

and used as the estimator of the vector of errors and randomly permuted, producing *Tε . A 

new permuted estimator for  2β  is calculated from the permuted residuals and equation 

(9.5.1), thus 

* 1 *
2 2 2 1 2 2 1

ˆ ˆ [ ( ) ] '( )T T
n n

−= + − −X I H X X I Hβ β ε  

Multiplying the partial F-statistic by q n p q− − yields the same result as omitting the 

degrees of freedom and is easier to calculate. Re-writing the F-statistic in terms of 2β̂ , 

1( )n −I H and H , 

2 2 1 2 2
ˆ ˆ'[ '( ) ]

'
T nF −

=
X I H X

y Hy
β β

                                               (9.5.2)
 

Substituting 2β̂  in equation 9.5.2 by * 1 *
2 2 1 1 1 1 1

ˆ ˆ [ ( ) ] '( )n n
−= + − −I H I Hβ β β β β ε  , the statistic 

TF  becomes a permuted statistic *TF , which is defined as 

* *
* 2 2 1 2 2

1

ˆ ˆ'[ '( ) ]
'( )

T T
T n

n

F −
=

−
X I H X

y I H y
β β  

(9.5.1) 
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Thus the proposed sampling permutation test of 0 2:H = 0β , an (estimated) empirical 

distribution of  TF  is obtained from n! permutation statistics. Thus the empirical distribution 

of  0 2:H = 0β can be assessed by  

p-value =
*

* number of   ( )     
!

T
T F FP F F

n
α≥

≥ = ≤
 

Let this test is denoted by RT5.As with Ter Braak (1992), the F-statistic is also calculated 

under permutation according to the hypothesis that *
2 2

ˆ ˆ=β β , Simulations done by 

Tantawanich (2006) show that the proposed method performs as well as the partial F-test for 

the normal error case when the sample size is large. It outperforms the methods proposed by 

Manly (2007) and Ter Braak (1992) when the sample size is small. For the non-normal error 

case, the proposed test has the highest power for small sample sizes. However, as the sample 

size increases, there is little difference between the Tantawanich (2006), Manly (2007) and 

Ter Braak (1992) methods.  

9.6 Permutation for an Exact Test 

9.6.1 The Kherad-Pajouh and Renaud Method 

All the methods described in sections 9.3, 9.4 and 9.5 are approximate permutation tests 

because there is some correlation between the residuals. To achieve an exact permutation test, 

this correlation should be removed to ensure that the errors are exchangeable. Kherad-Pajouh 

and Renaud (2010) provide a procedure that is an exact permutation test. Using the residuals 

under the reduced model, the idea is to remove that part of the design matrix that is not tested. 

The method is based on the article written by Jung et al. (2001). In the article, Jung et al 

(2001) proposes an exact permutation procedure for only the highest-order factor. The 

hypothesis 0 : 0pH β =  for 1 2 1, ,.........., ,p pβ β β β− is tested. Kherad-Pajouh and Renaud (2010) 

extend the Jung et al. (2001) method to a more general approach for partial multivariate 

regression. 

An advantage of this exact method compared to methods using restriction of raw data is that 

this method is also applicable to designs with small sample sizes. This is because the 
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proposed method relies on a large number of permutations. Kherad-Pajouh and Renaud 

(2010) use the residuals under the modified model approach and show that they satisfy the 

exchangeability condition, implying that they lead to an exact permutation test. 

Exchangeability under the null hypothesis is the only requirement for having an exact 

permutation test. Thus Kherad-Pajouh and Renaud (2010) provide an exact permutation 

strategy by modifying the approximate test proposed by Kennedy (1995). The main idea is to 

remove the correlation between residuals, using the decomposition of an idempotent matrix, 

thus obtaining i.i.d or exchangeable errors. Kherad-Pajouh and Renaud (2010) show that, if 

the error terms are i.i.d or exchangeable, the modified residuals are exchangeable up to the 

second moment. 

The condition to obtain a permutation test is to handle exchangeable objects. The elements in 

y for 1 1 1 1= + +y X Xβ β ε are not exchangeable. Since under the null hypothesis of 

0 2:H = 0β ,  1 1( )E =y X β differs for each y. Using the residuals under the reduced model 

solves this problem. Part of the design matrix which is not of interest is removed for the test. 

Let 1
1 1 1 1 1( ' ) '−=H X X X X where 1H  is an n n×  matrix. Multiplying 1H  to both sides of the 

equation 1 1 2 2= + +y X Xβ β ε , one gets  

1 1 1 1 2 2
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1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1

1 1 1 1 1 1 2 2

1 1 2 2

[ ] [ ]( )

[ ] [ ( ' ) ']( ) [ ]

[ ] ( ' ) ' [ ( ' ) '] [ ]

[ ] [ ]

[ ] [ ] [

n n

n n n

n n n n

n q n

n n n

−

− −

− = − + +

− = − + + −

− = − + − + −

− = − + −

− = − +

I H y I H X X

I H y I X X X X X X I H

I H y I X X X X X X I X X X X X I H

I H y X X I I H X

I H y I H X I

β β ε

β β ε

β β β ε

β β β

β 1

1 1 1
2 2

]
KR KR KR

−

= +

H

y X

ε

β ε

 

where 

1
1[ ]KR

n= −y I H y ,            1
2 1 2[ ]KR

n= −X I H X ,           1
1[ ]KR

n= −I Hε ε ,  
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In a balanced case, since '
1 2 = 0X X , it can be seen that 1

2
KRX = X .Then the least squares 

estimate is given by 

1 1 1 1 1 1
2 2 2 2( ' ) 'KR KR KR KR KR−= X X X yβ  

It can be seen that 1
2
KRβ  is equal to the least squares estimate 2β̂ . As in the Kennedy (1995) 

method, these residuals 1KRε are permuted randomly, producing 1*KRε . New values for 1*KRy

are calculated by adding the permuted residuals to the fitted values as follows: 

1* 1 1*
2 2

ˆˆKR KR KR= + +y Xµ β ε  

1*KRy is then regressed on 2X  to obtain the permutation statistic 1*KRF expressed as 

1* 1 1 1 1 1 1*
1*

1* 1 1*

' ( ' ) ( )

' ( ' ) ' ( )

KR KR KR KR KR KR
KR

KR KR
n

q
F

n p q

−

−

  =
 − − − 

y X X X X y

y I X X X X y
                                 

(9.6.1) 

The proof is given in the appendix. This procedure is not an exact permutation approach 

because 1 2
1~ ( , ( ))KR

nσ −0 I Hε  . For an exact method, these errors should be exchangeable. 

Exchangeability concerns the empirical distribution that is obtained from the permutations, as 

well as the variances, covariances and higher order moments. Since 1 2
1~ ( , ( ))KR

nσ −0 I Hε , 

under the null hypothesis, 0 2:H = 0β , the distribution of the randomly permuted vector 1*KRy

is distributed differently from 1KRy .  

Since the matrix 1X has full rank, there exists a matrix V of dimension n q× whose columns 

form an orthonormal basis for the subspace orthogonal to span ( 1X ). Orthonormality of the 

columns of V implies that ' q=V V I  where 
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1,1 1,1,1 1,

,1 ,

     . . .           . . .      
  .                   .   .                   . 
  .                   .   .              
  .                   . 
     . .       

qn

q q n

v vv v

v v

 
 
 
 
 
 
 
  ,1 ,

 1        . . .     0 
 .   1              . 

     .  .                   . 
  .                   .  .               1  . 
     . .        0      . . .       1 n n qv v

   
   
   
   =
   
   
   

  

 

since 
1 for =  
0 for i ik

k i
v

k


=  ≠
The subspaces spanned by 1X  and V are complementary by 

construction, thus the sum of the corresponding projections are equal to the identity matrix. 

Since 

1 1
1 1 1 1( ' ) ' ( ' ) 'n

− −= +I X X X X V V V V , 

one gets, 

1 1
1 1 1 1

1
1 1 1 1

1

1

( ' ) ' ( ) '

( ' ) ' '

'

'

n q

n

n

n

− −

−

= +

= +

= +

= −

I X X X X V I V

I X X X X VV

I H VV

VV I H

 

Thus the matrix V satisfies the following equations: 

1' n= −VV I H and ' p=V V I                                                        (9.6.2)
 

The construction of the matrix V depends on the decomposition of 1( )n −I H  into eigenvalues 

and eigenvectors. Since 1( )n −I H  is a symmetric and idempotent matrix, it possesses only 

two distinct eigenvalues, zero and one. Let 1( )n − =I H UDU  be the eigenvalue and 

eigenvector decomposition of 1( )n −I H , where D is the diagonal matrix containing the 

eigenvalues of  1( )n −I H  and U the unitary matrix, whose columns are the eigenvectors of 

1( )n −I H  . Since 1( )n −I H has rank n-p, there are n-p ones and p zeroes in the diagonal of D.  
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Both conditions of (9.6.2) are satisfied by choosing V as the columns of U corresponding to 

the non-zero diagonal elements of D. The eigenvectors corresponding to the zero eigenvalue 

do not contribute in the product, and therefore 1' ' n= = −VV UDU I H . Since U is unitary, it 

implies ' n=VV I . 

There is an n-p dimensional subspace which is mapped to itself under the projection induced 

by 1( )n −I H . Any orthonormal basis of such subspace can be chosen as the eigenvectors of 

1( )n −I H corresponding to the non-zero eigenvalues. However according to Jung et al. 

(2006), different choices of such basis vectors result in different performance of the test in 

terms of level and power. Therefore, it is worth considering some specifications for choices 

which give better performance. 

By multiplying 'V  to both sides of the equation  1 1 1
2 2

KR KR KR= +y X β ε , one gets  

1 1 1
2 2

1 1 1
2 2

1 1
2 2

2 2 2
2 2

' '( )

' ' '

' ' '

KR KR KR

KR KR KR

KR KR

KR KR KR

= +

= +

= +

= +

V y V X

V y V X V

V y V X V

y X

β ε

β ε

β ε

β ε

 

where 

2 1,KR KR'=y V y 2 1
2 2
KR KR'=X V X ,           2 1KR KR'=Vε ε . 

Since 

2 1 1 2 2 2
1var( ) var( ) var( ) ( ( ))KR KR KR

n pσ σ σ −= = −V' V' V =V' I H V = V'VV'V = Iε ε ε
, 

exchangeability of the errors are thus satisfied since 2* 2~ ( , )KR
nσ0 Iε . Under the null 

hypothesis, 0 2:H = 0β , the distribution of the randomly permuted vector 2*KRy is the same as
2KRy . Since 

2 2 1 1 1 1
2 2 2 1' ' '( )KR KR KR KR KR KR

n= = −X y X V Vy X I H y  
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and 

2 2 1 ' 1 1 1
2 2 2 1 1 2 2 1 2( )KR KR KR KR KR KR

n= = −X X X V V X X I H X  

one gets 

1 2 2 2 2 2
2 2 2 2 2 2

ˆ ( )KR KR KR KR KR KR'= = = X X X yβ β β . 

It can be seen that 2
2
KRβ  is equal to the least squares estimate 2β̂ . The residuals 2KRε are 

permuted randomly, producing 2*KRε and new values for 2*KRy are calculated by adding the 

permuted residuals to the fitted values as follows: 

2* 2 2*
2 2ˆKR KR KR= + +y Xµ β ε .                                   (9.6.3) 

2*KRy is then regressed on 2X  to obtain the permutation statistic 2*KRF expressed as 

2 2 2 1 2
2

1

' ( ' ) ( )

' ( ' ) ' ( )

KR KR KR KR
KR

n

q
F

n p q

−

−

  =
 − − − 

y X X X X y

y I X X X X y
 

For the observed data, the three F statistics are equivalent:  

1 2KR KRF F F= =                                                          (9.6.4) 

The proof is given in the appendix. Since the equalities 1 2
2 2 2

ˆ KR KR= =β β β are true and

1 2KR KRF F F= = have been determined, the empirical distribution of 0 2:H = 0β can be 

assessed by 

p-value=
2* 2

2* 2 number of   ( )     
!

KR KR
KR KR F FP F F

n
α≥

≥ = ≤  
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Let this test is denoted by RT6. By using the decomposition of an idempotent matrix, the data 

is transformed to make the residuals exchangeable up to the second moment. This exact 

permutation procedure can be used for balanced and unbalanced designs, for single error 

terms. Simulation studies done by Kherad-Pajouh and Renaud (2010) show that that this 

method is competitive in terms of power and thus shows good efficiency. This proposed 

method is compared to the approximate methods of Manly (2007) and Freedman and Lane 

(1986) and results show that this proposed method performs better when dealing with small 

sample sizes. 

 

9.7 Simulations 

Consider a model 

1 1 2 2 3 3 4 4i i i i i iy x x x xβ β β β ε= + + + +  

where 1,2,.........,i n= . For each i, 1ix , 2ix , 3ix and 4ix are generated from a uniform distribution 

with mean 1 and variances 2, 3, 5 and 6 respectively. iε is generated from either a (0,1)N , 

( 3, 3)U − , exp(1) 1− or (4)t .  Hence iy  can be calculated for each combination of

1 2 3 4( , , , )β β β β . In this study, 1 2( , ) (1,1)β β = , (2,2) ;  3 4( , ) (0, 0)β β = , (0.1,0.1) , (0.1,0.3) , 

(0.1,0.12) ; and n = 8, 12 and 24 are given. This simulation is the same as that simulation 

performed by Tantawanich (2006) for comparing his own approach to the Manly (2007) and 

Ter Braak (1992) methods. The simulation being done here expands the Tantanawich (2006) 

approach by comparing the permutation of the raw data, permutation under the reduced 

model, permutation under the full model, and the recent approach, an exact permutation 

method. As done by Anderson and Legendre (1999), the permuted sampling number is 

chosen to be 999 and the number of simulation runs for each combination is 10,000 runs for 

each of the six different permutation methods: Manly (2007), Freedman and Lane (1983), 

Kennedy (1995), Ter Braak (1992), Tantanawich (2006) and Kherad-Pajouh and Renaud 

(2010). The probability associated with the normal-theory partial F-test is also calculated for 

each data set.  
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The empirical type I error is estimated from the rejection rates out of 10,000 when the null 

hypothesis is true, that is, 3 4( , ) (0, 0)β β = .Tables 9.7.1 and 9.7.2 exhibit type I errors of the 

several permutation methods as well as the partial F-test. Furthermore, the values are used for 

testing whether the type I error is statistically different from 0.05α = . The Kennedy (1995) 

method results in an inflated type I error for errors from the normal, uniform, exponential and 

t distribution. This is especially apparent with small sample sizes, with the problem 

decreasing as the sample size increases. The results from the Kennedy (1995) method are 

similar to the simulation results obtained by Anderson and Legendre (1999). According to the 

results of Anderson and Legendre (1999) the presence of non-zero parameters for 2β , or the 

presence of collinearity between the independent variables has little influence on the inflated 

type I error at small sample sizes. The results from the Manly (2007) method show that for 

normal and non-normal errors, error rates of 0.05 are maintained when sample sizes are 

small.  With non-normal errors for the Freedman and Lane (1986), Ter Braak (1992) and 

Tantanawich (2006), results are conservative at small sample sizes. It is only as the sample 

size increases that these methods converge to produce similar results. This convergence 

validates those simulations performed by Anderson and Legendre (1999). Their simulations 

comparing the Freedman and Lane (1986) and Ter Braak (1992) methods show that these 

methods converge asymptotically to an appropriate type I error much more quickly than the 

normal partial F-test.  

For the normal and exponential errors, there are no significant differences among all the 

methods, except for the Kennedy (1995) method. They match the normal theory partial F-test 

and have a type I error which does not differ significantly from 0.05 in all sets of simulations. 

In contrast, with increases in the covariable’s parameter, permutation with the Freedman and 

Lane (1983) method has the best level accuracy for smaller sample sizes. The Kherad-Pajouh 

and Renaud (2010) method has the best level of accuracy for small, medium and large sample 

sizes. The accuracy of the Kherad-Pajouh and Renaud (2010) is expected since it is an exact 

permutation method rather than an approximate approach. Comparing the permutation results 

to the partial F-test, one can see that the permutation results outperform the All permutation 

methods converge to an appropriate type I error much more quickly than the normal-theory 

partial F-test in situations of extremely non-normal error distributions.  
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Table 9.7.1 Rejection rates (out of 10,000 simulations) of the six tests when 1 2( , )β β  = (0,0) at α = 

0.05 with normal and uniform distributions of errors and difference values of 1 2( , )β β for sample sizes 

n= 8, 12 and 24. 

 

Tests n 

(0,1)i Nε ∼  

1 2( , )β β = (1,1) 
 

(0,1)i Nε ∼  

1 2( , )β β = 
(2.4,2.4) 

 

( 3, 3)i Uε −∼  

1 2( , )β β =(1,1) 
( 3, 3)i Uε −∼  

1 2( , )β β = 
(2.4,2.4) 

Partial F-test 
8 
12 
24 

0.0497 
0.0497 
0.0501 

0.0497 
0.0495 
0.0502 

0.0343 
0.0437 
0.0483 

0.0291 
0.0378 
0.0478 

RT1 
(Manly Test) 

 8 
12 
24 

0.0470 
0.0489 
0.0503 

0.0451 
0.0478 
0.0494 

0.0471 
0.0484 
0.0492 

0.0468 
0.0469 
0.0491 

RT2 
(Freedman and 

Lane) 

 8 
12 
20 

0.0481 
0.0489 
0.0496 

0.0475 
0.0479 
0.0491 

0.0469 
0.0472 
0.0487 

0.0466 
0.0474 
0.0488 

RT3 
(Kennedy) 

 8 
12 
24 

0.0742 
0.0621 
0.0539 

0.0772 
0.0597 
0.0552 

0.0635 
0.0611 
0.0514 

0.0625 
0.0631 
0.0519 

RT4 
(TerBraak) 

 8 
12 
24 

0.0463 
0.0489 
0.0503 

0.0451 
0.0479 
0.0492 

0.0462 
0.0473 
0.0491 

0.0460 
0.0478 
0.0493 

RT5 
(Tantawanich) 

 8 
12 
24 

0.0474 
0.0482 
0.0496 

0.0448 
0.0473 
0.0489 

0.0432 
0.0445 
0.0469 

0.0421 
0.0430 
0.0442 

RT6 
(Kherad-Pajouh 

and Renaud) 

 8 
12 
24 

0.0510 
0.0506 
0.0495 

0.0513 
0.0510 
0.0488 

0.0485 
0.0491 
0.0502 

0.0473 
0.0483 
0.0491 

 
 
 
 
Table 9.7.2 Rejection rates (out of 10,000 simulations) of the six tests when 1 2( , )β β  = (0,0) at α = 

0.05 with exponential and t  distributions of errors and difference values of 1 2( , )β β for sample sizes 

n= 8, 12 and 24. 

 
 

Tests n 

exp(1) 1iε −∼  

1 2( , )β β = (1,1) 
 

exp(1) 1iε −∼  

1 2( , )β β = 
(2.4,2.4) 

 

(4)t  

1 2( , )β β =(1,1) 
(4)t  

1 2( , )β β = 
(2.4,2.4) 

Partial F-test 
8 
12 
24 

0.0139 
0.0138 
0.0327 

0.0135 
0.0139 
0.0227 

0.0218 
0.0316 
0.0417 

0.0211 
0.0275 
0.0429 

RT1 
(Manly Test) 

 8 
12 
24 

0.0589 
0.0497 
0.0593 

0.0318 
0.0344 
0.0369 

0.0373 
0.0399 
0.0467 

0.0370 
0.0401 
0.0463 
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RT2 
(Freedman and 

Lane) 

 8 
12 
24 

0.0203 
0.0274 
0.0337 

0.0202 
0.0258 
0.0309 

0.0326 
0.0369 
0.0465 

0.0323 
0.0372 
0.0460 

RT3 
(Kennedy) 

 8 
12 
20 

0.0503 
0.0478 
0.0472 

0.0502 
0.0483 
0.0479 

0.0526 
0.0479 
0.0477 

0.0531 
0.0473 
0.0569 

RT4 
(TerBraak) 

 8 
12 
20 

0.0257 
0.0392 
0.0419 

0.0256 
0.0288 
0.0379 

0.0283 
0.0364 
0.0473 

0.0282 
0.0387 
0.0465 

RT5 
(Tantawanich) 

 8 
12 
20 

0.0386 
0.0379 
0.0435 

0.0231 
0.0266 
0.0417 

0.0341 
0.0349 
0.0436 

0.0339 
0.0352 
0.0426 

RT6 
(Kherad-Pajouh 

and Renaud) 

8 
12 
24 

0.0509 
0.0482 
0.0490 

0.0512 
0.0509 
0.0489 

0.0481 
0.0484 
0.0501 

0.0472 
0.0480 
0.0486 

 
 

Table 9.7.3 and 9.7.4 show the empirical power of the permutation tests and the partial F-test 

when 0.05α = . Table 9.7.3 shows the power comparison when errors are i.i.d normally 

distributed, while table 9.7.4 shows the power comparison when the errors have a t(4) 

distribution. The Kennedy (1995) method is not included in tests of power since this method 

generally has inflated type I error rates. With all methods, there are increases in power with 

an increase in sample size. On the other hand, for data generated with radically non-normal 

errors, the normal-theory F-test is significantly less powerful than the permutation methods. 

None of the permutation methods differ significantly in terms of power for any of the 

simulations. Differences between the reduced and full-model methods are detectable when 

sample sizes are small, but disappear as sample sizes are increased. At low values of 3β  and 

4β , the Freedman and Lane (1983) method has slightly greater power. As  3β  and 4β  

increases, the Ter Braak (1992) method becomes more powerful than the Freedman and Lane 

(1983) method. As power approaches 100%, the two methods converge. The size of the 

difference also decreases as the sample size increases. Comparing the Tantawanich (2006) 

method to the Kherad-Pajouh and Renaud (2010) method, the Kherad-Pajouh and Renaud 

(2010) method is more powerful, however as power approaches 100%, the two methods 

converge. 
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Table 9.7.3 Power comparison of the six tests at α = 0.05 for sample sizes n= 8, 12 and 24 and 

parameter values 1 2( , )β β = (1,1) when errors are i.i.d normal. 

 

…..……….  

…..……….  

…..……….  

 

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

3 4( , )β β  

(0,1)i Nε ∼ ; 1 2( , ) (1,1)β β = ;  n = 8 (0,1)i Nε ∼ ; 1 2( , ) (1,1)β β = ;  n=8 

(0,1)i Nε ∼ ; 1 2( , ) (1,1)β β = ;  n= 12 (0,1)i Nε ∼ ; 1 2( , ) (1,1)β β = ;  n= 12 

(0,1)i Nε ∼ , 1 2( , ) (1,1)β β = ;  n= 24 (0,1)i Nε ∼ , 1 2( , ) (1,1)β β = ;  n= 24 

Partial F-test                         Ter Braak test 

Manly test                            Freedman & Lane test 

3 4( , )β β  

3 4( , )β β  3 4( , )β β  

3 4( , )β β  3 4( , )β β  

Partial F-test                        Tantawanich test 

Kherad-Pajouh& Renaud test                 
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Table 9.7.4 Power comparison of the six tests at α = 0.05 for sample sizes n= 8, 12 and 24 and 

parameter values 1 2( , )β β = (1,1) when errors are exponential. 

 

…..……….  

…..……….  

…..……….  

 

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

0

0.2

0.4

0.6

0.8

1

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.1,1.2)

3 4( , )β β  

exp(1) 1iε −∼ ; 1 2( , ) (1,1)β β = ;  n=8 

exp(1) 1iε −∼ ; 1 2( , ) (1,1)β β = ;  n= 12 exp(1) 1iε −∼ ; 1 2( , ) (1,1)β β = ;  n= 12 

exp(1) 1iε −∼ , 1 2( , ) (1,1)β β = ;  n= 24 exp(1) 1iε −∼ , 1 2( , ) (1,1)β β = ;  n= 24 

Partial F-test                     Ter Braak test 

Manly test                        Freedman & Lane test 

3 4( , )β β  

3 4( , )β β  3 4( , )β β  

3 4( , )β β  3 4( , )β β  

Partial F-test                      Tantawanich test 

Kherad-Pajouh& Renaud test                 

exp(1) 1iε −∼ ; 1 2( , ) (1,1)β β = ;  n=8 
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10 Principal Component Analysis 

10.1 Introduction 

Principal component analysis (PCA) is an analysis method frequently used in the social 

sciences to reduce a large number of possibly correlated variables to a smaller number of 

uncorrelated underlying variables, called principal components. These orthogonal principal 

components contain as much information from the observed variables as possible. If the goal 

of the analysis is to optimally reduce a large number of variables to a smaller number, instead 

of deriving a model of the correlation structure, then PCA is the more appropriate procedure 

than compared to factor analysis. PCA can be seen as a type of exploratory analysis and its 

general objectives are data reduction and interpretation.  

Permutation tests can be used as a means to validate and confirm the results obtained from 

the exploratory PCA. In PCA, the eigenvalues may be obtained using the correlation matrix. 

The correlation matrix requires the assumption of normality. If the data does not come from a 

normal distribution, the results from the PCA analysis are not valid. In PCA it is also 

assumed that there is a linear relationship between the variables. If this is not the case then 

the PCA results are also not valid. Permutation tests can thus be used to either confirm or 

reject the PCA results. The general rule for PCA is that most of the variation can be explained 

by the principal components that have eigenvalues greater than 1, otherwise known as the 

Kaiser Criterion. However, in real life situations, this rule is not always easy to apply because 

if an eigenvalue is close to 1, such as 0.988, it is debatable whether or not this eigenvalue 

should be dropped. Permutation tests will thus provide a definite answer for this eigenvalue.   

Two permutation methods are discussed. The first method involves randomly permuting the 

elements in the data matrix. The second involves permuting one variable at a time, while 

keeping the other variables fixed. It is shown that permutation tests can always almost be 

performed for determining significant deviations from an alternative random explanation for 

the effects in the data. 
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10.2 The Principal Component Procedure 

Algebraically principal components are particular linear combinations of the p random 

variables 1 2, ,........., pX X X . Geometrically, these linear combinations represent the selection 

of a new coordinate system obtained by rotating the original system with  as 

the coordinate axes. The new axes represent the directions with maximum variability and 

provide a simpler and more parsimonious description of the covariance structure. Principal 

components depend solely on the covariance matrix ∑  or the correlation matrix ρ  of 

.  

Let the random vector 1 2' [ , ,........., ]pX X X=X  have the covariance matrix  with 
eigenvalues 1 2 ......... 0pλ λ λ≥ ≥ ≥ ≥ . Consider the linear combinations 

1 1 11 1 12 2 1

2 2 21 1 22 2 2

1 1 2 2

' .........

' .........

.

.

.
' .........

p p

p p

p p p p pp p

Y a X a X a X
Y a X a X a X

Y a X a X a X

= = + + +

= = + + +

= = + + +

a X
a X

a X

 

The principal components are the uncorrelated linear combinations 1 2, ,........., pY Y Y  whose 

variances are as large as possible. The first principal component is the linear combination 

1 'a X  that maximizes 1var( ' )a X  subject to 1 1' 1=a a . The second principal component is the 

linear combination 2 'a X  that maximizes 2var( ' )a X  subject to 2 2' 1=a a  and 

1 2cov( ' , ' ) 0=a X a X . At the ith step, the ith principal component is the linear combination 

'ia X  that maximizes var( ' )ia X  subject to ' 1i i =a a  and 1cov( ' , ' ) 0k =a X a X  for k<i. 

Let have the eigenvalue-eigenvector pairs  1 1 2 2( , ),( , ),.........,λ λe e
( , )p pλ e with . Let 1 1 'Y = e X , 2 2 ' ,........., 'p pY Y= =e eX X  be the 
principal components. Then  

11 22 1 2
1 1

......... var( ) ......... var( )
p p

pp i p i
i i

X Yσ σ σ λ λ λ
= =

+ + + = = + + + =∑ ∑ .               (10.2.1) 

The proof is given in the appendix. Thus 

1 2, ,........., pX X X

1 2, ,........., pX X X

∑

1 2' [ , ,........., ]pX X X=X

1 2 ......... 0pλ λ λ≥ ≥ ≥ ≥
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1 1

var( ) ( ) var( )
p p

i i
i i

X tr Y
= =

= Σ =∑ ∑ . 

Result (10.2.1) says that  

11 22 1 2Total population variance ......... .........pp pσ σ σ λ λ λ= + + + = + +  

and consequently, the proportion of total variance explained by the kth principal component 

is given by 

1 2 .........
k

p

λ
λ λ λ+ +

,           for 1,2,.........,k p=  

If most (for instance, 80% to 90%) of the total variance, for large p, can be attributed to the 

first one, two, or three components, then these components can “replace” the original p 

variables without much loss of information (Linting et al; 2007).   

 

10.3 The Permutation Approach 

The permutation approach involves randomly and independently permuting the elements 

within the columns of the data matrix. If the variables are assumed to be interchangeable on 

the assumption of shared marginal distributions between variables, the data may be fully 

permuted between rows as well as columns. However, this assumption is unrealistic in 

practise because variables mostly differ in content and scaling. Therefore, usually the data are 

only permuted within the columns of the data set X, on the assumption of shared marginal 

distributions between the objects (Good; 2000). Thus the total number of possible permuted 

data sets is 1!mn − , where n represents the total number of observations and m is the number of 

permuted variables. Since this number increases rapidly with the number of objects and 

variables, usually a random sample of the total set of permutations is used. Linting et al. 

(2011) suggest using 999 permutations because if too few permutations are used, the p-value 

will be relatively large. 

Suppose ν  different permuted data matrices *X  are constructed and analysed. This results in 

 sets of eigenvalues *{ }, 1,.........,p p Pλ = , with P the dimensionality of the PCA solution. ν

 
 
 



75 
 

These eigenvalues are compared with the set of eigenvalues, { }, 1,.........,p p Pλ = , from the 

analysis of the original, unpermuted data matrix X. To test the significance of the pth 

eigenvalue of X, the exceedance probability (p-value) is computed. This is done by 

calculating the proportion of the values in the permutation distribution that is equal to or 

exceeds the observed statistic is computed. The p-value is computed as  

*
* number( )

value ( )
1
p p

p pp P
P

λ λ
λ λ

≥
− = ≥ =

+
,                                   (10.3.1) 

where the numerator represents the number of times a statistic from the permutation 

distribution is greater than or equal to the observed statistic and P is the number of 

permutations. (Buja and Eyuboglu; 1992). Under the null hypothesis, the observed data are 

assumed to be just another permutation of a random data set, thus the denominator in (10.3.1) 

is P+1 rather than P. 

 

10.4 Two Permutation Strategies 

Two different permutation strategies are considered. The first involves permuting the 

variables independently and concurrently and was proposed by Buja and Eyuboglu (1992) to 

establish the significance of the eigenvalues. The second method was proposed by Linting et 

al. (2011) and it involves permuting the variables independently and sequentially, that is, 

permuting one variable at a time, while keeping the others fixed.  

The first form relates to the variance accounted for in the entire data set by the first c 

principal components, with c the number of components selected to represent the data set 

sufficiently. The total variance accounted for is equal to the sum of the eigenvalues of the 

first c components.  Permuting all the variables in a data set concurrently enables the fit of a 

variable in an observed data set to be compared to the fit of variables with the same 

univariate distributions (its permutations) in a dataset with a completely random structure. 

Studies done by Buja and Eyuboglu (1992) show that this method is not appropriate to 

establish the significance of the contribution of a single variable to the principal component 

structure. Thus a more appropriate procedure is the use of the second method which assesses 

the significance of the variance accounted for of a variance, given the structure among the 

other variables. 
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The second permutation method relates to the contribution of each separate variable to the 

total variance accounted for. For this procedure, the elements ijx  of the columns jX  of the 

matrix are permuted independently. The philosophy of this permutation test is to destroy the 

pairing of observations, that is, to disconnect the link between the value of  and ikx  that 

exists because they share the first index. To attain this, only the elements of one variable at a 

time should be permuted, while keeping the other variables fixed. This correspondence 

between the elements in the row of X is lost when the row elements of the columns are 

permuted. Permuting whole rows or columns has no effect (Buja and Eyuboglu; 1992).In the 

context of PCA the high dimensional hyper-ellipse that contains the row points in X is 

transformed into approximately a hypersphere by repeated pair wise switches of the row 

point positions along the coordinate axes. The hyper-ellipse’s longest axes will most likely be 

shortened by the permutation of the data matrix. This corresponds to the idea that all 

eigenvalues are equal. Another way of interpreting the permutation of X is that the correlation 

structure of X’X is destroyed. The restriction to standardised PCAs is not a necessary one as 

the variance/covariance structure (for centered data) or the sum of squares and cross product 

structure (for raw data) in X’X will be destroyed too. A consequence of this approach is that 

more permutations are needed: If the first strategy is performed with 999 permutations, the 

alternative strategy involves 999 m×  permutations (with m the number of variables in the 

data set).  

 

10.5 Numerical Example 

Consider table 12.1 which represents the IAAF national track results for the 1984 Los 

Angeles Olympics. Table 12.1 shows the results of the 100m per second, 200m per second, 

400m per second, 800m per minute, 1,500m per minute, 5,000m per minute, 10,000m per 

minute and the marathon per minute. 

Table 10.1 The IAAF National Track Records for Men 

Country 100 m (s) 200 m (s) 400 m (s) 
800 m 
(min) 

1,500 m 
(min) 

5,000 m 
(min) 

10,000 m 
(min) 

Marathon 
(min) 

Argentina 10.39 20.81 46.84 1.81 3.70 14.40 26.36 137.72 

Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30 

Austria 10.44 20.81 46.82 1.79 3.60 13.26 27.72 135.90 

Belgium 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95 

ijx
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. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.20 

Taipei 10.59 21.29 46.80 1.79 3.77 14.07 30.07 139.27 

Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.65 159.90 

Turkey 10.71 21.43 47.60 1.79 3.67 13.56 28.58 131.50 

USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 

USSR 10.07 20.00 44.60 1.75 3.59 13.2 27.53 130.55 

Western Samoa 10.82 21.86 49.00 2.02 4.29 16.28 34.71 161.83 

 
Source: Johnson, R.A. and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. 5th 
edition. Prentice Hall 
 

Table 10.2 and 10.3 show the results from the PCA on the IAAF National track records for 

men. Looking at the eigenvalues, the first two principal components explain 86,88% of the 

sample variation. Thus the first two principal components may summarize the total sample 

variance.  

Table 10.2 Eigenvalues of the Correlation Matrix for the Track Results 

Eigenvalues of the Correlation Matrix 
  

pλ  Difference Proportion Cumulative 

1 6.01395 5.07753 0.7517 0.7517 
2 0.93642 0.35575 0.1171 0.8688 
3 0.58067 0.43238 0.0726 0.9414 
4 0.14829 0.00996 0.0185 0.9599 
5 0.13833 0.06213 0.0173 0.9772 
6 0.07620 0.01252 0.0095 0.9867 
7 0.06369 0.02125 0.008 0.9947 
8 0.04244  0.0053 1 

 

Table 10.3 Eigenvectors of the Correlation Matrix for the Track Results 

Eigenvectors 

 Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 Prin7 Prin8 

m100 0.13679 0.94704 0.28507 -0.04810 -0.01842 0.00673 0.02103 -0.00073 

m200 0.33992 0.15902 -0.60353 0.62279 -0.27093 0.15267 -0.04952 0.08883 

m400 0.36596 0.07613 -0.40926 -0.22659 0.75472 -0.26576 -0.03270 0.01176 

m800 0.38495 -0.04350 -0.18548 -0.57211 -0.24104 0.56527 0.26181 -0.20504 

m1500 0.39072 -0.08484 0.03679 -0.30718 -0.44918 -0.51795 -0.13202 0.50691 
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m5000 0.38755 -0.11651 0.26169 0.06503 -0.03006 0.02389 -0.72350 -0.48845 

m10000 0.38394 -0.13625 0.27351 0.27101 -0.03633 -0.36027 0.61954 -0.41332 

marathon 0.36519 -0.17552 0.45601 0.24318 0.30753 0.43342 0.05271 0.53249 

 

To validate the PCA results, a permutation principal component analysis is performed. 

500 8×  different permuted data matrices are constructed and analysed using the second 

method described in section 10.4, that is, permuting only one column at a time, while keeping 

the other variables fixed. 

A useful aid for determining an appropriate number of principal components is a scree plot. 

With the eigenvalues ordered from largest to smallest, a scree plot graphically illustrates the 

variance accounted for by each eigenvalue on the vertical axis versus the dimension on the 

horizontal axis. Figure 10.1 illustrates the variance accounted for, for a random sample of 30 

permuted data matrices. Looking at the elbow bend in the scree plot, it can be seen that most 

of the variation can be explained by the first two principal components. The remaining 

eigenvalues are relatively small and all about the same size, so the first two sample principal 

components may effectively summarize the total sample variance. 

 

Figure 10.1 The Proportion of the Variance Accounted For per Dimension of the Principal 
Components of the Track Results. 
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Table 10.4 presents the eight eigenvalues and the probabilities *( )p pP λ λ≥  for the 

eigenvalues , 1,.........,8p pλ = . Table 10.4 gives clear evidence of the significant two-

dimensional nature of the track results. The first principal component explains 60.14% of the 

total sample variance. The first two principal components, collectively, explain 86.88% of the 

total sample variance. Consequently, sample variation is summarised very well by two 

principal components. The p-values from the permuted eigenvalues clearly support the PCA 

results obtained, that is, the reduction of the 55 observations from eight variables to two 

variables as 0pλ =  for p = 1, 2 and pλ  for p = 3, 4, 5, 6, 7, 8 are close to one.  

Table 10.4 Empirical Eigenvalues pλ  and Permutation Test Results *( )p pP λ λ≥  for the Track 
Results. 

Dimension 
Track Results 

pλ  *( )p pP λ λ≥  

1 6.01395 0.00000 
2 0.93642 0.00000 
3 0.58067 0.88745 
4 0.14829 0.98317 
5 0.13833 1.00000 
6 0.07620 1.00000 
7 0.06369 1.00000 
8 0.04244 1.00000 
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11 Appendix 

 

Proof of (9.6.1): 

Consider 

1ˆˆ ( ' ) ' ( )n
−= − − − −y y = y X y X X X X y = I Hε β =

 

where ' 1 '( )−=H X X X X .Since H is the projection matrix to the subspace spanned by the 

columns of X, H is an idempotent matrix for any design matrix X, that is 2 =H H . Similarly, 

-I H is also idempotent. Using the idempotent property of H, the residual sum of squares 

under the full model can be written as 

2' '( ) '( ) '( ( ' ) ')= − = − = −y I H y y I H y y I X X X X yε ε  

 

Similarly it can be shown that 

1 1 2
1 1 1 1 1 1' '( ) '( ) '( ( ' ) ')KR KR = − = − = −y I H y y I H y y I X X X X yε ε        (11.8.1) 

Thus 

2
1 1 1 1 1'( ) '( ) '( ( ' ) ( ' ) ')− − − = −y I H y y I H y y X X X X X X X X y           (11.8.2) 

Thus equations (11.8.1) and (11.8.2) are similar.  

 

Proof of (9.6.4): 

Consider 

1 1 1 1 1 1
3

1

' ( ' ) ' '
'[ ]' ( ' ) '

KR KR KR KR KR
KRF

−

−

  = =
− − 

y X X X X y y H y
y I H yy I X X X X y

, 
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1 1 1 1 1 1 1 1 1 1
4

1 1 11 1 1 1 1 1 1

' ( ' ) ' '
'[ ]' ( ' ) '

KR KR KR KR KR KR KR KR KR
KR

KR KR KRKR KR KR KR KR KR
F

−

−

  = =
− − 

y X X X X y y H y
y I H yy I X X X X y

, 

 
1 1 1 1 1 1 1 1 1 1

1
1 11 1 1

' ( ' ) '
'[ ]' ( ' ) '

KR KR KR KR KR KR KR KR KR
KR

KR KRKR KR
F

−

−

  = =
−  

y X X X X y y H y
y I H yy I - X X X X y

,
 

and 
2 2 2 2 1 2 2 2 2 2

2
2 2 22 2 2 2 1 2 2

' ( ' ) ' '
'[ ]' ( ' ) '

KR KR KR KR KR KR KR KR KR
KR

KR KR KRKR KR KR KR KR KR
F

−

−

  = =
−  

y X X X X y y H y
y I H yy I - X X X X y

 

where
 

1( ' ) '−=H X X X X , 1
1 1 1 1 1( ' ) '−=H X X X X and 1 1 1 1 1 1( ' ) 'KR KR KR KR KR−=H X X X X

 

Since 1 2
2 2 2

ˆ KR KR= =β β β , the only ingredient left to make an exact permutation test is to show 

that 1 3KR KRF F=  , 4 1KR KRF F=  and 2 4KR KRF F= . In order to show that 1 3KR KRF F= , note that 

1 1 1 1 1 1 1
1 1 1 1 1( ( ' ) ')( ( ' ) ')KR KR KR KR KR− −=H H X X X X X X X X  

                

1 1 1 1 1 1
1 1 1 1( ' ) ( ' )( ' ) 'KR KR KR KR− −=

= 0
X X X X X X X X

 

Using the equality above, it can be shown that the two numerators in 1KRF  and 3KRF are equal: 

1 1 1 1 1
1 1' '( ) ( ) 'KR KR KR KR KR= − − =y H y y I H H I H y y H y  

Similarly, by using the fact that 1
1

KR= +H H H , it can be shown that the denominators in 

1KRF and 3KRF are equal: 

                
1 1 1 1 1

1'( ) '( )KR KR KR KR KR− = − −y I H y y I H H y  

                                            

1 1
1 1 1

1
1 1 1

1

'( )(( ) )(

'( ( ) ( ))

'( )

'( )

KR KR

KR

⊥

= − − − −

− − − −

= − −

= −

y I H I H H I H )y

= y I H I H H I H y

y I H H y

y I H y
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Therefore  

ˆ' '
'( ) '( )

F F
⊥ ⊥ ⊥ ⊥

′⊥ ⊥
⊥ ⊥= = =

− −
y H y y H y

y I H y y I H y
. 

In order to show that 4 1KR KRF F= , it can be seen that the numerators of 4KRF  and 1KRF are 

equal. It thus remains to show that their denominators are equal: 

1 1 1
1 1 1'( ) '( )( )( )KR KR KR− = − − −y I H y y I H I H I H y  

                                        

1
1 1 1

1
1

1 1

(( ) ( ) ( ))

( )

( )

( )

KR

KR

KR KR

'

'

'

'

= − − − −

− −

= −

−

y I H I H H I H y

= y I H H y

y I H y

= y I H y

 

Therefore  

1 1 1 1 1 1
4 1

1 1 1 1 1

' '
'( ) '( )

KR KR KR KR KR KR
KR KR

KR KR KR KR KRF F= = =
− −

y H y y H y
y I H y y I H y

. 

In order to show that 2 1KR KRF F= , one can use the fact that 1' = −VV I H to show that 

2 2 1 1 1 1 1 1 1' ' ' '( ) ' ,KR KR KR KR KR KR KR KR KR= = − =y X y VV X y I H X y X  

2 2 1 1 1 1 1 1 1' ' ' '( ) 'KR KR KR KR KR KR KR KR KR= = − =X X X VV X X I H X X X  

and 

2 2 1 1 1 1 1 1 1' ' ' '( ) 'KR KR KR KR KR KR KR KR KR= = − =y y y VV y y I H y y y  

Therefore 

2 2 2 1 1 1
2 1

2 2 2 1 1 1

' '
'( ) '( )

KR KR KR KR KR KR
KR KR

KR KR KR KR KR KR
n p

F F
−

= = =
− −

y H y y H y
y I H y y I H y

. 
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Proof of 10.2.1 
 
Since 11 22 ......... ( )pp trσ σ σ+ + + = Σ  one can write = E EΣ Λ  where Σ  is the covariance 

matrix, Λ  is the diagonal matrix of eigenvalues and 1 2[ , ,........., ]p= e e eE  so that 

p' 'EE = E E = I . Thus 

1 2( ) ( ') ( ' ) ( ) ........ ptr tr tr tr λ λ λ= = = = + + +E E E EΣ Λ Λ Λ  

Thus 

1 1
var( ) ( ) ( ) var( )p p

i ii i
X tr tr Y

= =
= = =∑ ∑Σ Λ  
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13 Appendix 
 

13.1 Code for Section 8.3 

 
title'Number of ants eaten from june to september by small and large 
lizards'; 
data lizard; 
input  size $ months $ ants; 
datalines; 
sjun 13 
sjul 8 
saug 515 
ssep 18 
sjun 242 
sjul 59 
saug 488 
ssep 44 
sjun 105 
sjul 20 
saug 88 
ssep 21 
ljun 182 
ljul 24 
laug 460 
lsep 140 
ljun 21 
ljul 312 
laug 1223 
lsep 40 
ljun 7 
ljul 68 
laug 990 
lsep 27 
; 
 
/*Perform analysis of variance for balanced data*/ 
 
procanovadata = lizard; 
class size months; 
model ants = size months size*months; 
run; 
quit; 
 
 
 
prociml; 
resetnolog; 
 
a = 4; 
b = 2; 
n = 24; 
m = 10; 
simul = 10000; 
reject = J(1,1,0); 
 
y_sw = J(n,1,0); 
y_1_1 = J(6,1,0); 
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y_1_2 = J(6,1,0); 
y_1_3 = J(6,1,0); 
y_1_4 = J(6,1,0); 
y_2_1 = J(12,1,0); 
y_2_2 = J(12,1,0); 
 
y_1_1_sw = J(6,1,0); 
y_1_2_sw = J(6,1,0); 
y_1_3_sw = J(6,1,0); 
y_1_4_sw = J(6,1,0); 
y_2_1_sw = J(12,1,0); 
y_2_2_sw = J(12,1,0); 
 
y_1_1_b = J(6,1,0); 
y_1_2_b = J(6,1,0); 
y_1_3_b = J(6,1,0); 
y_1_4_b = J(6,1,0); 
y_2_1_b = J(12,1,0); 
y_2_2_b = J(12,1,0); 
 
 
y_perm = J(24,1,0); 
y_perm_sw = J(24,1,0); 
y_perm_b = J(24,1,0); 
ybar_Si = J(2,1,0); 
ybar_M = J(5,1,0); 
ybar_Si_sw = J(2,1,0); 
ybar_Si_b = J(2,1,0); 
ybar_M_sw = J(5,1,0); 
y_ijo = J(24,1,0); 
y_ijo_M = J(24,1,0); 
fa = J(1,1,0); 
fb = J(1,1,0); 
F_Manly = J(simul,1,0); 
F_sw = J(simul,1,0); 
F_b=  J(simul,1,0); 
p_value_m = J(simul,1,0); 
p_value_sw = J(simul,1,0); 
p_value_b = J(simul,1,0); 
p_value_j = J(simul,1,0); 
count = 0; 
 
 
/* The Permutation Approach */ 
 
y = { 13, 8, 515, 18, 242, 59, 488, 44, 105, 20, 88, 21, 182, 24, 460, 140, 
21, 312, 1223, 40, 7, 68, 990, 27}; 
do j = 1tosimul; 
seed = 1234567; 
 do i = 1to24; 
 callranperm(seed,m,y); 
  y_perm = y; 
 end; 
 
 
 y_1_1[1] = y_perm[1]; 
 y_1_1[2] = y_perm[1+4]; 
 y_1_1[3] = y_perm[5+4]; 
 y_1_1[4] = y_perm[9+4]; 
 y_1_1[5] = y_perm[13+4]; 
 y_1_1[6] = y_perm[17+4]; 
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 y_1_2[1] = y_perm[2]; 
 y_1_2[2] = y_perm[2+4]; 
 y_1_2[3] = y_perm[6+4]; 
 y_1_2[4] = y_perm[10+4]; 
 y_1_2[5] = y_perm[14+4]; 
 y_1_2[6] = y_perm[18+4]; 
 
 y_1_3[1] = y_perm[3]; 
 y_1_3[2] = y_perm[3+4]; 
 y_1_3[3] = y_perm[7+4]; 
 y_1_3[4] = y_perm[11+4]; 
 y_1_3[5] = y_perm[15+4]; 
 y_1_3[6] = y_perm[19+4]; 
 
 y_1_4[1] = y_perm[4]; 
 y_1_4[2] = y_perm[4+4]; 
 y_1_4[3] = y_perm[8+4]; 
 y_1_4[4] = y_perm[12+4]; 
 y_1_4[5] = y_perm[16+4]; 
 y_1_4[6] = y_perm[20+4]; 
 
 y_2_1[1:12] = y_perm[1:12]; 
 y_2_2[1:12] = y_perm[13:24]; 
 
 
 ybar_ju  =  y_1_2[+]/(6*24); 
 ybar_jul=  y_1_2[+]/(6*24); 
 ybar_au  =  y_1_3[+]/(6*24); 
 ybar_se  =  y_1_4[+]/(6*24); 
 ybar_s=  y_2_1[+]/(2*24); 
 ybar_l=  y_2_2[+]/(2*24); 
 
 ybar_M[1] =  ybar_ju[1]; 
 ybar_M[2] =  ybar_jul[1]; 
 ybar_M[3] =  ybar_au[1]; 
 ybar_M[4] =  ybar_se[1]; 
 
 ybar_Si[1] =  ybar_s[1]; 
 ybar_Si[2] =  ybar_l[1]; 
 y_ijo=  y/24; 
 y_ooo = y[+]/n; 
 
/* The Manly Method */ 
 
/* Calculate the  permuted F Manly values */ 
 do s = 1to a; 
  do t = 1to b; 
   do u = 1to n;  
    fa = (y_ijo[u] - ybar_Si[t] - ybar_M[s] + y_ooo)**2 
/((2-1)*(5-1));  
    fb = (y[u] - y_ijo[u])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_Manly[j] = fa/fb; 
 ifF_Manly>=  3then count = count +1; 
 printfafb ; 
 
/*Calculate the permuted p value*/ 
p_value_m[j] = count / simul; 
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ifp_value_m[j] <0.05then reject = reject + 1; 
 printp_value_m; 
/* The Still and White Method */ 
 
/* Calculate the  new y Still snd White values */ 
doss = 1to a; 
  dott = 1to b; 
   douu = 1to n;  
    y_sw[uu] = y[uu] - ybar_Si[tt] - ybar_M[ss] + 
y_ooo;  
   end; 
  end; 
 end; 
printy_sw; 
seed = 1234567; 
 do i = 1to24; 
 callranperm(seed,m,y_sw); 
  y_perm_sw = y_sw; 
 end; 
 
 
 y_1_1_sw[1] = y_perm_sw[1]; 
 y_1_1_sw[2] = y_perm_sw[1+4]; 
 y_1_1_sw[3] = y_perm_sw[5+4]; 
 y_1_1_sw[4] = y_perm_sw[9+4]; 
 y_1_1_sw[5] = y_perm_sw[13+4]; 
 y_1_1_sw[6] = y_perm_sw[17+4]; 
 
 y_1_2_sw[1] = y_perm_sw[2]; 
 y_1_2_sw[2] = y_perm_sw[2+4]; 
 y_1_2_sw[3] = y_perm_sw[6+4]; 
 y_1_2_sw[4] = y_perm_sw[10+4]; 
 y_1_2_sw[5] = y_perm_sw[14+4]; 
 y_1_2_sw[6] = y_perm_sw[18+4]; 
 
 y_1_3_sw[1] = y_perm_sw[3]; 
 y_1_3_sw[2] = y_perm_sw[3+4]; 
 y_1_3_sw[3] = y_perm_sw[7+4]; 
 y_1_3_sw[4] = y_perm_sw[11+4]; 
 y_1_3_sw[5] = y_perm_sw[15+4]; 
 y_1_3_sw[6] = y_perm_sw[19+4]; 
 
 y_1_4_sw[1] = y_perm_sw[4]; 
 y_1_4_sw[2] = y_perm_sw[4+4]; 
 y_1_4_sw[3] = y_perm_sw[8+4]; 
 y_1_4_sw[4] = y_perm_sw[12+4]; 
 y_1_4_sw[5] = y_perm_sw[16+4]; 
 y_1_4_sw[6] = y_perm_sw[20+4]; 
 
 y_2_1_sw[1:12] = y_perm_sw[1:12]; 
 y_2_2_sw[1:12] = y_perm_sw[13:24]; 
 
 
 ybar_ju_sw  =  y_1_2_sw[+]/(6*24); 
 ybar_jul_sw=  y_1_2_sw[+]/(6*24); 
 ybar_au_sw  =  y_1_3_sw[+]/(6*24); 
 ybar_se_sw  =  y_1_4_sw[+]/(6*24); 
 ybar_s_sw=  y_2_1_sw[+]/(2*24); 
 ybar_l_sw=  y_2_2_sw[+]/(2*24); 
 
 ybar_M_sw[1] =  ybar_ju_sw[1]; 
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 ybar_M_sw[2] =  ybar_jul_sw[1]; 
 ybar_M_sw[3] =  ybar_au_sw[1]; 
 ybar_M_sw[4] =  ybar_se_sw[1]; 
 
 ybar_Si_sw[1] =  ybar_s_sw[1]; 
 ybar_Si_sw[2] =  ybar_l_sw[1]; 
 y_ijo=  y/24; 
 y_ooo = y_sw[+]/n; 
 
/* Calculate the  permuted F Still and White values */ 
dost = 1to a; 
  dott = 1to b; 
   dout = 1to n;  
    fa = (y_ijo[ut] - ybar_Si[tt] - ybar_M[st] + 
y_ooo)**2 /((2-1)*(5-1));  
    fb = (y[ut] - y_ijo[ut])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_sw[j] = fa/fb; 
 ifF_sw>=  3then count = count +1; 
 printfafb ; 
 
/*Calculate the permuted p value*/ 
p_value_sw[j] = count / simul; 
ifp_value_sw[j] <0.05then reject = reject + 1; 
 
printp_value_sw; 
 
 
 
/* The TerBraak Method */ 
 
y_b = J(n,1,0); 
y_ijo_M = y/n; 
 
/* Calculate the  new y Ter Braak values */ 
y_b = y - y_ijo_M;  
   
seed = 1234567; 
 do i = 1to24; 
 callranperm(seed,m,y_b); 
  y_perm_sw = y_sw; 
 end; 
 
 y_ijo_M=  y_b/24; 
 y_1_1_b[1] = y_perm_b[1]; 
 y_1_1_b[2] = y_perm_b[1+4]; 
 y_1_1_b[3] = y_perm_b[5+4]; 
 y_1_1_b[4] = y_perm_b[9+4]; 
 y_1_1_b[5] = y_perm_b[13+4]; 
 y_1_1_b[6] = y_perm_b[17+4]; 
 
 y_1_2_b[1] = y_perm_b[2]; 
 y_1_2_b[2] = y_perm_b[2+4]; 
 y_1_2_b[3] = y_perm_b[6+4]; 
 y_1_2_b[4] = y_perm_b[10+4]; 
 y_1_2_b[5] = y_perm_b[14+4]; 
 y_1_2_b[6] = y_perm_b[18+4]; 
 
 y_1_3_b[1] = y_perm_b[3]; 
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 y_1_3_b[2] = y_perm_b[3+4]; 
 y_1_3_b[3] = y_perm_b[7+4]; 
 y_1_3_b[4] = y_perm_b[11+4]; 
 y_1_3_b[5] = y_perm_b[15+4]; 
 y_1_3_b[6] = y_perm_b[19+4]; 
 
 y_1_4_b[1] = y_perm_b[4]; 
 y_1_4_b[2] = y_perm_b[4+4]; 
 y_1_4_b[3] = y_perm_b[8+4]; 
 y_1_4_b[4] = y_perm_b[12+4]; 
 y_1_4_b[5] = y_perm_b[16+4]; 
 y_1_4_b[6] = y_perm_b[20+4]; 
 
 y_2_1_b[1:12] = y_perm_b[1:12]; 
 y_2_2_b[1:12] = y_perm_b[13:24]; 
 
 
 ybar_ju_b  =  y_1_2_b[+]/(6*24); 
 ybar_jul_b=  y_1_2_b[+]/(6*24); 
 ybar_au_b  =  y_1_3_b[+]/(6*24); 
 ybar_se_b  =  y_1_4_b[+]/(6*24); 
 ybar_s_b=  y_2_1_b[+]/(2*24); 
 ybar_l_b=  y_2_2_b[+]/(2*24); 
 
 ybar_M_sw[1] =  ybar_ju_b[1]; 
 ybar_M_sw[2] =  ybar_jul_b[1]; 
 ybar_M_sw[3] =  ybar_au_b[1]; 
 ybar_M_sw[4] =  ybar_se_b[1]; 
 
 ybar_Si_b[1] =  ybar_s_b[1]; 
 ybar_Si_b[2] =  ybar_l_b[1]; 
 y_ijo=  y/24; 
 y_ooo = y_b[+]/n; 
 
/* Calculate the  permuted F Ter Braak values */ 
dosp = 1to a; 
  dotp = 1to b; 
   do up = 1to n;  
    fa = (y_ijo[up] - ybar_Si[tp] - ybar_M[sp] + 
y_ooo)**2 /((2-1)*(5-1));  
    fb = (y[up] - y_ijo[up])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_b[j] = fa/fb; 
 ifF_b>=  3then count = count +1; 
 printfafb ; 
 
p_value_b[j] = count / simul; 
ifp_value_b[j] <0.05then reject = reject + 1; 
printp_value_b; 
 
 
/* The Jung et al. Method */ 
/* set up design matrix */ 
X = {0 -1 -1, 0 -11, 01 -1 ,0 11, 1 -1 -1, 1 -11, 
11 -1, 111, 2 -1 -1, 2 -11, 21 -1, 
211, 3 -1 -1, 3 -11, 31 -1, 311, 
4 -1 -1, 4 -11, 41 -1, 411, 5 -1 -1, 
5 -11, 51 -1, 511} ; 
 nfact = 999; 
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 H = J(n,n,0); 
 VV = J(n,n,0); 
 XH = X[,2:2]; 
 X0 = X[,3:3]; 
 H = XH*inv(XH`*XH)*XH`; 
 VV = I(n) - H; 
 calleigen (eval,evec,VV); 
 V = J(n,n,1); 
 V = evec*(diag(eval)**0.5)*evec`; 
 y_v = V`*y; 
 X0_v = V*X0; 
 u = J(n,1,0); 
 y_v_perm = J(n,nfact,0); 
 F_perm_a = J(nfact,1,0); 
 F_perm_b = J(nfact,1,0); 
 F_perm = J(nfact,1,0); 
 
 
 /*Generate the permuted F values*/; 
 do h = 1tonfact; 
   fa[h] = 
(Y_v_perm[,h]`*(X0_v*inv(X0_v`*X0_v)*X0_v`)*Y_v_perm[,h])/2; 
   fa[h] = (Y_v_perm[,h]`*(I(n)- 
X*inv(X`*X)*X`)*Y_v_perm[,h])/(n-2-2); 
   F_perm[h] = fa[h]/fa[h]; 
 end; 
 
/*Calculate the permuted p value*/ 
p_value_j[j] = count / simul; 
ifp_value_j[j] <0.05then reject = reject + 1; 
end; 
 
 
run; 
quit; 
 

13.2 Code for Section 8.5 

title"Simulation of ANOVA procedures"; 
prociml; 
resetnolog; 
 
n=12; 
nfact = 1000; 
simul = 10000; 
 
p_value = J(simul,1,0); 
reject = 0; 
a = 4; 
b = 2; 
n = 24; 
m = 10; 
simul = 10000; 
reject = J(1,1,0); 
y_perm = J(24,1,0); 
y_perm_sw = J(24,1,0); 
y_perm_b = J(24,1,0); 
ybar_Si = J(2,1,0); 
ybar_M = J(5,1,0); 
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ybar_Si_sw = J(2,1,0); 
ybar_Si_b = J(2,1,0); 
ybar_M_sw = J(5,1,0); 
y_ijo = J(24,1,0); 
y_ijo_M = J(24,1,0); 
fa = J(1,1,0); 
fb = J(1,1,0); 
F_Manly = J(simul,1,0); 
F_sw = J(simul,1,0); 
F_b=  J(simul,1,0); 
p_value_m = J(simul,1,0); 
p_value_sw = J(simul,1,0); 
p_value_b = J(simul,1,0); 
p_value_j = J(simul,1,0); 
count = 0; 
 
/*For each i, xs are generated from a uniform distribution  
Generate the reference sample*/; 
 
 X = { 0.43910171.92319383.98945840.6767025, 
1.03150021.1409022.98764164.7927917, 
0.48146352.41864482.42143153.3979654, 
....    , 
....    , 
....    , 
0.88368211.18391314.49023045.1701252, 
0.5371720.36115121.36273923.3279271, 
0.72649341.66435261.19636460.6123876  } ; 
 
/*Generate the errors from a normal, exponential, t and uniform 
distribution*/ 
 e = {  -1.613007, 
     -0.137757, 
     -0.29423, 
  .  , 
  .  , 
  .  , 
     -0.711689, 
     -1.00243, 
     -1.242766 }; 
 
b1 = {1}; 
b2 = {1}; 
b3 = {0}; 
b4 = {0}; 
b = b1//b2//b3//b4; 
b0 = b3//b4; 
 
/*Generate the reference sample Y*/; 
y = X*b + e; 
 
 
/*Generate V and multiply to the reduced model*/ 
H = J(n,n,0); 
VV = J(n,n,0); 
XH = X[,1:2]; 
X0 = X[,3:4]; 
H = XH*inv(XH`*XH)*XH`; 
VV = I(n) - H; 
calleigen (eval,evec,VV); 
V = J(n,n,1); 
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V = evec*(diag(eval)**0.5)*evec`; 
y_v = V`*y; 
X0_v = V*X0; 
e_v = V`*e; 
u = J(n,1,0); 
e_perm = J(n,nfact,0); 
y_v_perm = J(n,nfact,0); 
F_perm_a = J(nfact,1,0); 
F_perm_b = J(nfact,1,0); 
F_perm = J(nfact,1,0); 
Fa = J(1,1,0); 
Fb = J(1,1,0); 
F_ref = J(1,1,0); 
 
 
do s = 1tosimul; 
 /*Generate the e permutations*/ 
 do j = 1tonfact; 
  do l = 1to n; 
   u[l] = rannor(0); 
  end; 
 
  call SORTNDX( ndx, u, {1}, {1} ); 
  u = u[ndx,]; 
 
  do i = 1to n; 
   e_perm[i,j] = e[ndx[i]];  
  end; 
 end; 
 
 
/*Generate the reference sample F;*/ 
Fa = (y_v`*(X0_v*inv(X0_v`*X0_v)*X0_v`)*y_v)/2; 
Fb = (y_v`*(I(n)- X0_v*inv(X0_v`*X0_v)*X0_v`)*y_v)/(n-2-2); 
F_ref = Fa/Fb; 
 
 
/*Generate the permuted y values*/; 
do g = 1tonfact; 
 y_v_perm[,g] = X0_v*b0 + e_perm[,g]; 
end; 
 
/*Generate the permuted F values for Manly Test*/ 
do s = 1to a; 
  do t = 1to b; 
   do u = 1to n;  
    fa = (y_ijo[u] - ybar_Si[t] - ybar_M[s] + y_ooo)**2 
/((2-1)*(5-1));  
    fb = (y[u] - y_ijo[u])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_Manly[j] = fa/fb; 
 ifF_Manly>=  17.4then count = count +1; 
 
/*Calculate the permuted p value*/ 
p_value_m[j] = count / simul; 
ifp_value_m[j] <0.05then reject = reject + 1; 
 
/* Calculate the  new y Still snd White values */ 
doss = 1to a; 
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  dott = 1to b; 
   douu = 1to n;  
    y_sw[uu] = y[uu] - ybar_Si[tt] - ybar_M[ss] + 
y_ooo;  
   end; 
  end; 
 end; 
printy_sw; 
seed = 1234567; 
 do i = 1to24; 
 callranperm(seed,m,y_sw); 
  y_perm_sw = y_sw; 
 end; 
 
/* Calculate the  permuted F Still and White values */ 
 dost = 1to a; 
  dott = 1to b; 
   dout = 1to n;  
    fa = (y_ijo[ut] - ybar_Si[tt] - ybar_M[st] + 
y_ooo)**2 /((2-1)*(5-1));  
    fb = (y[ut] - y_ijo[ut])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_sw[j] = fa/fb; 
 ifF_sw>=  3then count = count +1; 
 
/*Calculate the permuted p value for Still and White*/ 
p_value_sw[j] = count / simul; 
ifp_value_sw[j] <0.05then reject = reject + 1; 
 
/* Calculate the  new y TerBraak values */ 
 y_b = y - y_ijo_M;  
 
/* Calculate the  permuted F TerBraak values */ 
 dosp = 1to a; 
  dotp = 1to b; 
   do up = 1to n;  
    fa = (y_ijo[up] - ybar_Si[tp] - ybar_M[sp] + 
y_ooo)**2 /((2-1)*(5-1));  
    fb = (y[up] - y_ijo[up])**2/(2*5*23);  
   end; 
  end; 
 end; 
 F_b[j] = fa/fb; 
 ifF_b>=  3then count = count +1; 
 
 p_value_b[j] = count / simul; 
ifp_value_b[j] <0.05then reject = reject + 1; 
 
/*Generate the permuted F Jung et al. values*/; 
 do h = 1tonfact; 
   fa[h] = 
(Y_v_perm[,h]`*(X0_v*inv(X0_v`*X0_v)*X0_v`)*Y_v_perm[,h])/2; 
   fa[h] = (Y_v_perm[,h]`*(I(n)- 
X*inv(X`*X)*X`)*Y_v_perm[,h])/(n-2-2); 
   F_perm[h] = fa[h]/fa[h]; 
 end; 
 
/*Calculate the permuted p value*/ 
p_value_j[j] = count / simul; 
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ifp_value_j[j] <0.05then reject = reject + 1; 
end; 
end; 
quit; 
 

13.3 Code for Section 9.7 

title'Simulation of Multiple Linear Regression Procedures'; 
 
prociml; 
resetnolog; 
 
n=8;  /*{9,18,36,54,72,90}*/ 
nfact = 999; 
simul = 5000; 
 
p_value = J(simul,1,0); 
reject = 0; 
 
 /*For each i, xs are generated from a uniform distribution with mean 
1 and variance 2,3,5,6 
 Generate the reference sample*/; 
 x1=J(n,1,0); 
 x2=J(n,1,0); 
 x3=J(n,1,0); 
 x4=J(n,1,0); 
 one = J(n,1,1); 
 e=J(n,1,0); 
 y=J(n,1,0); 
 X = {2.5997294 1.5212853 1.3151689 3.4309603, 
2.5858015 3.2893621 1.7899367 5.2750796, 
2.7751864 1.075762 3.779272 4.9380381, 
2.1413 1.6342128 2.6435113 1.4149492, 
2.244165 2.0337241 1.2331845 2.1343334, 
2.1431852 3.8966126 1.7310676 2.3856989, 
1.1584636 2.3290912 1.8921711 6.1513217, 
1.1803719 3.7072361 4.1454367 2.6039629 
} ; 
/*Generate the errors from a normal, exponential, t and uniform 
distribution*/ 
 
 e = {2.6876018, 
  1.0303678, 
  1.9167301, 
  2.3493892, 
  1.0816412, 
  1.0312045, 
  1.6106843, 
  1.6316914 
}; 
/* X = x1||x2||x3||x4;*/ 
 XH = X[,1:2]; 
 b1 = {1}; 
 b2 = {1}; 
 b3 = {0}; 
 b4 = {0}; 
 b = b1//b2//b3//b4; 
 y = X*b + e; 
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 y_perm = J(n,nfact,0); 
 u = J(n,1,0); 
 F_perm_a = J(nfact,1,0); 
 F_perm_b = J(nfact,1,0); 
 F_perm = J(nfact,1,0); 
 Fa = J(1,1,0); 
 Fb = J(1,1,0); 
 F_ref = J(1,1,0); 
 M=J(n,n,0); 
    b0_perm = J(2,nfact,0); 
 XH = X[,1:2]; 
 X0 = X[,3:4]; 
 
 
do s = 1tosimul; 
 /*Generate the y permutations*/ 
 do j = 1tonfact; 
  do l = 1to n; 
   u[l] = rannor(0); 
  end; 
 
  call SORTNDX( ndx, u, {1}, {1} ); 
  u = u[ndx,]; 
 
  do i = 1to n; 
   y_perm[i,j] = y[ndx[i]];  
  end; 
 end; 
/* print y_perm;*/ 
 
 /*Generate the reference sample F*/ 
 Fa = (y`*(X*inv(X`*X)*X`- XH*inv(XH`*XH)*XH`)*y)/2; 
 Fb = (y`*(I(n)- X*inv(X`*X)*X`)*y)/(n-2-2); 
 F_ref = Fa/Fb; 
 ; 
 
 
/* Manly Method */ 
 
 /*Calculate the permuted F values*/ 
 do k = 1tonfact; 
   F_perm_a[k] = (y_perm[,k]`*(X*inv(X`*X)*X`- 
XH*inv(XH`*XH)*XH`)*y_perm[,k])/2; 
   F_perm_b[k] = (y_perm[,k]`*(I(n)- 
X*inv(X`*X)*X`)*y_perm[,k])/(n-2-2); 
   F_perm[k] = F_perm_a[k]/F_perm_b[k]; 
 end; 
 
 
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= 3.6then count = count + 1; 
 end; 
 
  
 title'Manly n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <0.05then reject = reject + 1; 
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/* Freedman and Lane Method */ 
 
 /*Calculate the permuted y values from the reduced model*/ 
 do i = 1tonfact; 
  y_perm[,i] = b1*x1 + b2*x2 + e_perm[,i]; 
 end; 
 
 /*Calculate the permuted b values*/ 
 do h = 1tonfact; 
  b_perm[,h] = inv(X`*X)*X`*y_perm[,h]; 
 end; 
 
 /*Calculate the permuted y values from the full model*/ 
 do k=1tonfact; 
  y_perm_2[,k] = X*b_perm[,k] + e_perm[,k]; 
 end; 
 
 /*Calculate the permuted F values*/ 
 do g = 1tonfact; 
   F_perm_a[g] = (Y_perm_2[,g]`*(X*inv(X`*X)*X`- 
XH*inv(XH`*XH)*XH`)*Y_perm_2[,g])/2; 
   F_perm_b[g] = (Y_perm_2[,g]`*(I(n)- 
X*inv(X`*X)*X`)*Y_perm_2[,g])/(n-2-2); 
   F_perm[g] = F_perm_a[g]/F_perm_b[g]; 
 end; 
 
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= F_refthen count = count + 1; 
 end; 
  
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= 3.6then count = count + 1; 
 end; 
 
 title'Freedman & Lane n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <0.05then reject = reject + 1; 
 
 
/* Kennedy Method */ 
 
H = XH*inv(XH`*XH)*XH`; 
VV = J(n,n,1); 
VV = I(n) - H; 
y_v = VV`*y; 
X0_v = VV`*X0*b0; 
e_v = VV`*e; 
e_v_perm = J(n,nfact,0); 
y_v_perm = J(n,nfact,0); 
F_perm_a = J(nfact,1,0); 
F_perm_b = J(nfact,1,0); 
F_perm = J(nfact,1,0); 
Fa = J(1,1,0); 
Fb = J(1,1,0); 
F_ref = J(1,1,0); 

 
 
 



102 
 

print X0_v; 
 
/*Generate the permuted y values*/; 
 do i = 1tonfact; 
  y_v_perm[,i] = X0_v + e_perm[,i]; 
 end; 
X*inv(X`*X)*X`- XH*inv(XH`*XH)*XH` 
 
 /*Generate the permuted F values*/; 
 do g = 1tonfact; 
   F_perm_a[g] = 
(Y_v_perm[,g]`*(XX0_v*inv(X0_v`*X0_v)*X0_v`)*Y_v_perm[,g])/2; 
   F_perm_b[g] = (Y_v_perm[,g]`*(I(n)- 
X*inv(X`*X)*X`)*Y_v_perm[,g])/(n-2-2); 
   F_perm[g] = F_perm_a[g]/F_perm_b[g]; 
 end; 
 
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= 6.944272then count = count + 1; 
 end; 
 
 title'Kennedy n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <3.6then reject = reject + 1; 
 
 
/* Ter Braak */ 
 
 /*Calculate the permuted F values*/ 
 do j = 1tonfact; 
   F_perm_a[j] = (Y_perm[,j]`*(X*inv(X`*X)*X`- 
XH*inv(XH`*XH)*XH`)*Y_perm[,j])/2; 
   F_perm_b[j] = (Y_perm[,j]`*(I(n)- 
X*inv(X`*X)*X`)*Y_perm[,j])/(n-2-2); 
   F_perm[j] = F_perm_a[j]/F_perm_b[j]; 
 end; 
 
 
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= 3.6then count = count + 1; 
 end; 
 
 
 title'TerBraak n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <0.05then reject = reject + 1; 
 
 
/* Tantanawich Method */ 
 
 /*Calculate the matrix M and H*/ 
 M = I(n) - XH*inv(XH`*XH)*XH`; 
 H = I(n) - X*inv(X`*X)*X`; 
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/*Calculate the B2 permutations*/ 
do l = 1tonfact; 
 b0_perm[,l] = b0 + inv(X0`*M*X0)*X0`*M*e_perm[,l]; 
end; 
 
/*Calculate to F reference statistic*/ 
Fa = b0`*(X0`*M*X0)*b0; 
Fb = y`*H*y; 
F_ref = Fa/Fb; 
 
/*Calculate the permuted F statistic*/ 
do j = 1tonfact; 
 F_perm_a[j] = b0_perm[,j]`*(X0`*M*X0)*b0_perm[,j]; 
 F_perm_b[j] = y`*H*y; 
 F_perm[j] = F_perm_a[j]/F_perm_b[j]; 
end; 
 
 /*Calculate the permuted p value*/ 
 count = 0; 
 do d = 1tonfact; 
  IfF_perm[d] >= 3.6 
then count = count + 1; 
 end; 
 
 title'Tantanawich n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <0.05then reject = reject + 1; 
 
 
/* Kherad-Pajouh and Renaud */ 
 
H = J(n,n,0); 
VV = J(n,n,0); 
XH = X[,1:2]; 
X0 = X[,3:4]; 
H = XH*inv(XH`*XH)*XH`; 
VV = I(n) - H; 
calleigen (eval,evec,VV); 
V = J(n,n,1); 
V = evec*(diag(eval)**0.5)*evec`; 
y_v = V`*y; 
X0_v = V*X0; 
e_v = V`*e; 
 
/*Generate the permuted y values*/; 
do g = 1tonfact; 
 y_v_perm[,g] = X0_v*b0 + e_perm[,g]; 
end; 
 
/*Generate the permuted F values*/; 
do h = 1tonfact; 
  F_perm_a[h] = 
(Y_v_perm[,h]`*(X0_v*inv(X0_v`*X0_v)*X0_v`)*Y_v_perm[,h])/2; 
  F_perm_b[h] = (Y_v_perm[,h]`*(I(n)- 
X*inv(X`*X)*X`)*Y_v_perm[,h])/(n-2-2); 
  F_perm[h] = F_perm_a[h]/F_perm_b[h]; 
end; 
 
/*Calculate the permuted p value*/ 
 count = 0; 
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 do d = 1tonfact; 
  IfF_perm[d] >= 3.6 
then count = count + 1; 
 end; 
 
 title'Kherad-Pajouh and Renaud n=8'; 
/* print count nfact y;*/ 
 p_value[s] = count/nfact; 
 ifp_value[s] <0.05then reject = reject + 1; 
end; /*simulations*/ 
printp_value reject; 
quit 
 

13.4 Code for Section 10.5 

 
title'IAAF national track results for the 1984 Los Angeles Olympics'; 
 
optionsvalidvarname=any; 
odsgraphicson; 
 
data track; 
input  country $ 1-17 m100 18-24  m200 25-32   m400 33-40  m800 41-48 m1500 
49-56  m5000 57-64   m10000 65-73 marathon 74-80; 
/*   Country 100 m (s) 200 m (s) 400 m (s) 800 m (min) 1,500 m 
(min) 5,000 m (min) 10,000 m (min) Marathon (min)*/ 
 
datalines; 
Argentina0000000010.390020.8100046.84000108.6000222.0000864.00001581.600082
63.20 
Australia      10.31 20.06 44.84 104.40 214.20 796.80
 1659.60  7698.00 
Austria          10.44 20.81 46.82 107.40 216.00 795.60
 1663.20  8154.00 
Belguim          10.34 20.68 45.04 103.80 216.00 793.20
 1647.00  7797.00 
Bermuda          10.28 20.58 45.91 108.00 225.00 880.80
 1833.00  8797.20 
.                  .      .       .        .       .       .        .        
.   
.                  .      .       .        .       .       .        .        
.   
.                  .      .       .        .       .       .        .        
.   
Taipei           10.59 21.29 46.80 107.40 226.20 844.20
 1804.20  8356.20 
Thailand      10.39 21.09 47.91 109.80 230.40 913.80
 1959.00  9594.00 
Turkey          10.71 21.43 47.60 107.40 220.20 813.60
 1714.80  7890.00 
USA               9.93 19.75 43.86 103.80 211.80 792.00
 1645.80  7693.20 
USSR          10.07 20.00 44.60 105.00 215.40 792.00
 1651.80  7833.00 
Western Samoa    10.82 21.86 49.00 121.20 257.40 976.80
 2082.60  9709.80 
 ; 
/* Principal Component Analysis of the Original Data*/ 
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procprincompdata=Track; 
odsselectEigenvaluePlot; 
var m100 m200 m400 m800 m1500 m5000 m10000 marathon; 
run; 
/* Permutation Approach*/ 
 
prociml; 
resetnolog; 
use track; 
read all var{m100, m200, m400, m800, m1500, m5000, m10000, marathon} into 
principal; 
nfact = 1; 
n = 55; 
u = J(55,1,0); 
p_perm = J(55,nfact,0); 
principal_2 = J(55,8*8+8*8+8*8,0); 
/*print principal;*/ 
t=0; 
do q = 2to3; 
do k = 1to8; 
col = J(55,1,0); 
col = principal[,k]; 
 /*Generate the y permutations*/ 
 do j = 1tonfact; 
  do l = 1to n; 
   u[l] = rannor(0); 
  end; 
  
 
  call SORTNDX( ndx, u, {1}, {1} ); 
  u = u[ndx,]; 
 
  do i = 1to n; 
   p_perm[i,j] = col[ndx[i]];  
  end; 
 end; 
printp_perm; 
 
principal_2[,1:8]         = p_perm||principal[,2:8]; 
principal_2[,8+1:8*2]   = principal[,1]||p_perm||principal[,3:8]; 
principal_2[,8*2+1:8*3] = principal[,1:2]||p_perm||principal[,4:8]; 
principal_2[,8*3+1:8*4] = principal[,1:3]||p_perm||principal[,5:8]; 
principal_2[,8*4+1:8*5] = principal[,1:4]||p_perm||principal[,6:8]; 
principal_2[,8*5+1:8*6] = principal[,1:5]||p_perm||principal[,7:8]; 
principal_2[,8*6+1:8*7] = principal[,1:6]||p_perm||principal[,8:8]; 
principal_2[,8*7+1:8*8] = principal[,1:7]||p_perm; 
t=q; 
/*Q=2*/; 
If k = 1& t = q then principal_2[,(q-1)*8**2+1    :(q-1)*8**2+8*1]  = 
p_perm||principal[,2:8]; 
If k = 2& t = q then principal_2[,(q-1)*8**2+8*1+1:(q-1)*8**2+8*2]  = 
principal[,1]||p_perm||principal[,3:8]; 
If k = 3& t = q then principal_2[,(q-1)*8**2+8*2+1:(q-1)*8**2+8*3]  = 
principal[,1:2]||p_perm||principal[,4:8]; 
If k = 4& t = q then principal_2[,(q-1)*8**2+8*3+1:(q-1)*8**2+8*4]  = 
principal[,1:3]||p_perm||principal[,5:8]; 
If k = 5& t = q then principal_2[,(q-1)*8**2+8*4+1:(q-1)*8**2+8*5]  = 
principal[,1:4]||p_perm||principal[,6:8]; 
If k = 6& t = q then principal_2[,(q-1)*8**2+8*5+1:(q-1)*8**2+8*6]  = 
principal[,1:5]||p_perm||principal[,7:8]; 
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If k = 7& t = q then principal_2[,(q-1)*8**2+8*6+1:(q-1)*8**2+8*7]  = 
principal[,1:6]||p_perm||principal[,8:8]; 
If k = 8& t = q then principal_2[,(q-1)*8**2+8*7+1:(q-1)*8**2+8**2] = 
principal[,1:7]||p_perm; 
end; 
print principal_2; 
 
create par from principal_2; 
appendfrom principal_2; 
end; 
quit; 

 
 

 
 
 




