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Summary

Parametric methods are effective and appropriate when data sets are obtained by well-defined
random sampling procedures, the population distribution for responses is well-defined, the
null sampling distributions of suitable test statistics do not depend on any unknown entity and

well-defined likelihood models are provided for by nuisance parameters.

Permutation testing methods, on the other hand, are appropriate and unavoidable when
distribution models for responses are not well specified, nonparametric or depend on too
many nuisance parameters; when ancillary statistics in well-specified distributional models
have a strong influence on inferential results or are confounded with other nuisance entities;
when the sample sizes are less than the number of parameters and when data sets are obtained
by ill-specified selection-bias procedures. In addition, permutation tests are useful not only
when parametric tests are not possible, but also when more importance needs to be given to

the observed data set, than to the population model, as is typical for example in biostatistics.

The different types of permutation methods for analysis of variance, multiple linear
regression and principal component analysis are explored. More specifically, one-way, two-
way and three-way ANOVA permutation strategies will be discussed. Approximate and exact
permutation tests for the significance of one or more regression coefficients in a multiple
linear regression model will be explained next, and lastly, the use of permutation tests used as
a means to validate and confirm the results obtained from the exploratory PCA will be

described.
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1. Introduction

Permutation tests are currently the gold standard against which conventional parametric tests
are tested and evaluated. In this document, permutation statistical methods are introduced, a
historical chronology of the development of permutation methods is provided and the
advantages of permutation methods are detailed. The different types of permutation methods
are also described for analysis of variance, multiple linear regression and principal
component analysis. These permutation methods are then compared to the traditional

parametric tests using examples and simulations.

The population model assumes random sampling from one or more specified population.
Under the population model, the level of statistical significance that results from applying a
statistical test to the results of an experiment or a survey corresponds to the frequency with
which the null hypothesis would be rejected in repeated random samplings from the same
specified population. Because repeated sampling of the true population is usually impractical,
it is assumed that the sampling distribution of the test statistics under repeated random
sampling conforms to an assumed theoretical distribution, such as the normal distribution.
The size of the test, for example 0.05, is the probability under a specified null hypothesis that
repeated outcomes based on random samples of the same size are equal to or more extreme
than the observed outcome. In the population model, assignment of treatment to subjects is
viewed as fixed with a stochastic element taking the form of the error that would vary if the
experiment was repeated. Probabilities are then calculated based on the potential outcomes of

conceptual repeated draws of these errors.

With the permutation approach, a test statistic is computed for the observed data, then the
data are permuted over all possible arrangements of the observed data and the test statistic is
computed for each likely arrangement. An ordered sequence of n exchangeable objects yields
n! equally likely arrangements of the » objects. The proportion of arrangements with test
statistic values equal to or more extreme than the observed case yields the probability of the
observed test statistic. Probabilities are then calculated according to all outcomes associated

with assignments of treatments to subjects for each case.
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Permutation tests differ from traditional parametric tests in several ways. Permutation tests
are data dependent, in that all the information required for analysis is contained within the
observed data set. Permutation tests do not assume any underlying theoretical distribution.
Permutation tests do not depend on the assumptions associated with traditional parametric
tests, such as normality and homogeneity. Permutation tests provide probability values based
on the discrete permutation distribution of equally likely test statistic values, rather than an

approximate probability value based on a theoretical distribution, such as a normal.
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2. Notation and Abbreviations

ANOVA: Analysis of variance
PCA : Principal Component Analysis
i.i.d  :independent and identically distributed

N(u, o) : Gaussian or normal variable with mean 4 and variance ¢

OLS :ordinary least squares
~ - distributed as
n : the (finite) sample size

tr()  :the trace of a matrix

X > a univariate random variable
X - a multivariate variable or a sample of nunits, x ={Xx,,i=1,.....
X" :apermutation of X

FM" : permutation statistic for Manly (1991, 1997, 2007)
F*"  :permutation statistic for Edgington (2007)

F"" : permutation statistic for Still and White (1981)

F”" :permutation statistic for Jung et al. (2006)

F™ : permutation statistic for Freedman and Lane (1983)
: permutation statistic for Kennedy (1995)

F™ : permutation statistic for Ter Braak (1992)

F™  :permutation statistic for Tantawanich (2006)

F* . permutation statistic for Kherad-Pajouh and Renaud (2010)

5
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3. Conditionality and Exchangeability

For most problems of hypothesis testing, the observed data setPe y={),........ Y.} is

usually obtained by an experiment performed » times on a population variable X. For the
purposes of analysis, the data set x is generally partitioned into groups or samples, according
to the treatment levels of the experiment. For any general testing problem, under the null
hypothesis, which assumes that data comes from only one (with respect to groups) unknown
population distribution 7, the whole set of observed data x is considered to be a random

sample.

Pesarin (2001) defines nonparametric distributions as follows: A family of distributions 2 is
said to behave non-parametrically when we are not able to find a parameter ¢, belonging to a
known finite-dimensional parameter space ® and /2, in a sense that each member of 2 cannot

be identified by only one member of ® and vice versa.

This definition by Pesarin (2001) includes families of distributions which are either
unspecified or specified, except for an infinite number of unknown parameters. All
nonparametric families 7Zwhich are of interest in permutation analysis are assumed to be

sufficient in such a way that if x and x” are any two points, then x = x'implies f, (x) = f,(x")
for at least one P e /7, except for points with null density. The characterisation of a family /72

as being nonparametric essentially depends on the knowledge we assume about it. When we
assume that the underlying family /2 contains all continuous distributions, then the data set x

is sufficient. By sufficiency, it means that x and f, are said to contain essentially the same

amount of information with respect to P. They are equivalent for inferential purposes.

The same conclusion is obtained if the sample distribution is assumed to be invariant with
respect to permutations of the arguments of x. This happens when the assumption of

independence for observable data is replaced by that of exchangeability:

N CT—. %)= (X x.), where (uy,......,u,) is any permutation of (L,.....,n). The

data sets under the mull hypothesis is always contain a finite number of points, as # is finite
(Good; 2005).
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Permutation tests are conditional statistical procedures. Under the null hypothesis and
assuming exchangeability, the conditional probability distribution for whatever underlying

population distribution Pe 2, is

_No.of the same or more extreme outcomes as that observed

P(x" =x'
( ) Total no.of possible outcomes

which is P - independent. If there are no ties in the data set then the conditional probability
becomesl/n!. Thus P(x" = x")is uniform on the permutation sample space for all P 2. In
the case of the classical 1—, F— and »? - tests, it is not a point probability but consists of

the probability contained in the tails of the frequency distribution. How the null hypothesis is
formulated depends on the outcome defined by the investigator, the design of the experiment
and the scale of measurement used to obtain the experimental values. For instance, in the case
of two sets of observations measured on an interval scale, the outcome could be a difference
between arithmetic means, geometric means, medians, mid-ranges, mean-ranks, proportions
or even variances. If there are more than two sets of observations, a conventional test would
be classical ANOVA. Thus the equivalent of the F-statistic can be permuted. When

measurements have been made on a nominal scale, test statistics such as Pearson’s y?, the

likelihood- ratio or the odds-ratio can be permuted (Good; 1994).

The conditioning of permutation procedures allows permutation inferences to be invariant
with respect to P in the null hypothesis. Some authors prefer to give them the name of
invariant tests. However, according to Ludbrook (1994), because of this invariance property,

permutation tests are distribution-free and nonparametric.

The condition of exchangeability on sufficient statistics provides permutation tests with good
general properties. One of these is that, when exchangeability is satisfied in the null
hypothesis, permutation tests are always exact procedures (Berry and Mielke; 1985). If data
come from continuous distributions, so that the probability of finding ties in the data set is
zero, the rejection probability under the null hypothesis is invariant with respect to the

observed data set x Thus rejection regions are similar to the conventional parametric region.
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When data come from non-continuous distributions, Berry and Mielke (1985) show that the

similarity property is only asymptotically valid.

Permutation inferences are proper with observational data, which sometimes are called non-
experimental, and with well-designed sampling procedures. However, well-designed
sampling procedures are quite rare even in most experimental problems (Anderson; 2003).
For instance, if we want to investigate the effects of a drug on rats, the units to be treated are
usually not randomly chosen from the population of all rats, but are selected in some way
among those available in a laboratory and are randomly assigned to the established treatment
levels. The same occurs in most clinical trials, in which some of the patients present in a
hospital are randomly assigned to one of the pre-established treatment levels. In one sense,
the concept of random sampling is rarely achieved in real applications because, for various
reasons, real samples are commonly obtained by selection-bias procedures (Good; 2005).
This implies that parametric tests, being based on the concept of random sampling, are rarely
applicable in real situations. Additionally, because of the similarity and unbiasedness
properties, permutation solutions allow for relaxation of most of the common assumptions
needed by parametric counterpoints, such as the existence of mean values and variances, and
the homoscedasticity of responses in the alternative hypothesis. This is why permutation
inferences are important for both theoretical and the application aspects (Gonzales and
Manly; 1998).

Within the assumption of exchangeability in the null hypothesis, permutation conditional
inferences always have a clear interpretation, whereas extensions to the underlying parent
population should be carried out and interpreted carefully. These extensions and associated
interpretations are generally easy and correct when data are designed from random sampling
techniques from a given population. Of course, if they are collected by selection-bias
procedures, these extensions may sometimes be ambiguous and misleading. Many authors
such as Good (2005) and Edgington (1995) have emphasized these aspects. One of these
relates to the fact that reference null distributions of ordinary parametric tests are explicitly
based on the concept of infinitely repeated and well-designed random sampling from a given
well-specified population. This existence of this random sampling is often merely virtual. As

it occurs in many experimental problems, it is often to unrealistic to assume that treatment
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does not influence scale coefficients or other aspects of interest, so that standard parametric

solutions may become improper.

Conversely, when exchangeability may be assumed under the null hypothesis the reference
null distributions of permutation tests always exist, because at least in principle, they are
obtained by considering all permutations of available data. In addition, permutation
comparisons of means do not require homoscedasticity. For these reasons, permutation
inferences generally have a natural interpretation and ordinary parametric tests are considered

to be rarely applicable to real problems (Anderson; 2003).

3 Randomization and Permutation

The rationale behind randomization tests is to consider a problem in which a test statistic 7' is
being used to test a null hypothesis. Suppose that a suitable shuffling of the data produces a
new configuration of the data. From the new configuration the statistic 7" can be calculated.
Under the null hypothesis, this configuration can be viewed as equally likely. By repeating
this for all possible shuffles one can assess the extent to which 7”is unusual and thereby

accept or reject the null hypothesis.

Those occupied in nonparametric statistics, such as Dallal (1988), recognise that this
principle lies behind rank tests, sometimes referred to as rank permutation tests. There are a
finite number of possible outcomes in a rank-test statistic, calculated by permuting the ranks
of relevant variables’ observations. If the value actually obtained is unusual relative to these

possible values, the null hypothesis is cast in doubt.

In 1935 Fisher described a way of comparing the means of randomized pairs of observations
by permutation and was able to perform it exactly on a set of Charles Darwin’s data on plant
growth, even though 32,768 permutations were involved. However, it is extremely laborious
to do these tests by hand, so in the pre-computer era only a few statisticians took them

seriously (Kempthorne; 1955). Now that permutation tests are easily achievable with the
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advancement in computer speeds, there has been renewed interest in them and in the
randomization model of inference (Manly; 1991). Statisticians such as Fisher and
Kempthorne knew, from first-hand experience, that in agricultural research random samples
are not drawn from populations. In their experiments, plant varieties or different fertilizers
were assigned to blocks of land within a particular field by a process of randomization. This
field was not a random sample of the global population of fields, or even of fields of any

definable category.

In most experimental cases units are randomly assigned to symbolic treatment levels (groups
or samples) so that, under the null hypothesis, observed data appear to have been randomly
assigned to these levels. Based on this notion of randomization, authors such as Pitman
(1937), Kempthorne (1955) and Kennedy (1995) prefer to use the term randomization tests.

The term permutation test is thus preferable to authors such as Pesarin (2001); Good (2005)
and Mielke et al. (2001) because it is closer to the true state of things. A sufficient condition
for properly applying permutation tests is that the null hypothesis implies that observed data
are exchangeable with respect to groups. For instance, in a symbolic experiment where a
variable is observed in male and female groups of a given kind of animal, the notion of
randomization is difficult to apply exactly. This is because there is no way that gender can be
randomly assigned to units. Instead, the permutation idea is much more natural because,
under the null hypothesis of no distributional difference due to gender, we are led to assume
that observed data may be indifferently assigned to either males or females. The greater
emphasis on the notion of randomization tests is because, under the null hypothesis, it is
generally easier and more natural to justify the assumption of exchangeability for
experimental data than for observed data.

When the exchangeability property is not satisfied or cannot be assumed under the null
hypothesis, then both parametric and permutation inferences are generally not exact. In these
cases, especially when even approximate solutions are difficult to obtain, it may be useful to
employ bootstrap techniques, which are less demanding in terms of assumptions and may be

effective at least for exploratory purposes.

10



The nonparametric bootstrap and permutation tests are two different approaches to the same
type of problem. Whereas permutation tests are used to establish the distribution of a
particular statistic under a specific null hypothesis, the bootstrap establishes the sampling
distribution of a statistic based on an observed data set (Good; 2000). The bootstrap simulates
resampling from the population by randomly drawing, with replacement, new samples from
the observed sample. The values of the statistic of interest in the bootstrap samples form the
sampling distribution from which confidence intervals can be computed. If a bootstrap
confidence interval does not contain the value assumed under the null hypothesis, the
observed statistic is concluded to be statistically significant. Both permutation and bootstrap
methods require that the observations be independent. Both methods also require that the
observations be drawn from populations in which, under the null hypothesis, a specific
parameter is the same across all the populations. However, an additional assumption for
permutation procedures is that observations are exchangeable, or their joint distribution be
the same. The advantage of permutation tests over bootstrap is that they render exact p-
values. Bootstrap procedures only provide exact p-values for very large samples. Another
advantage is that the simulation of a null distribution is more closely related to traditional

hypothesis testing (Edgington; 2007).

4 When Permutation is Appropriate

Parametric methods are effective and appropriate when data sets are obtained by well-defined
random sampling procedures, the population distribution for responses is well-defined, the
null sampling distributions of suitable test statistics do not depend on any unknown entity and
well-defined likelihood models are provided for the nuisance parameters. (Gozalez and
Manly; 1998).

Conversely, according to Pesarin (2001), permutation testing methods are appropriate and

unavoidable when:

o Distribution models for responses are nonparametric.

o Distribution models are not well specified.

11
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o Distribution models depend on too many nuisance parameters.
o Ancillary statistics in well-specified distributional models have a strong influence

on inferential results.

o Ancillary statistics in well-specified models are confounded with other nuisance
entities.

o Asymptotic null sampling distributions depend on unknown entities.

o Sample sizes are less than the number of response variables.

o Sample data comes from finite populations or sample sizes are smaller than the

number of parameters.

o In multivariate problems, some variables are categorical and others quantitative.

o Multivariate alternatives are subject to order restrictions.

o In multivariate problems, component variables have different degrees of
importance.

o Data sets are obtained by ill-specified selection-bias procedures.

In addition, permutation tests are useful not only when parametric tests are not possible, but
also when more importance needs to be given to the observed data set, than to the population
model. For example, when assessing the reliability of cars, the owner may be mostly
interested in his own car or fleet of cars if he has more than one, as he is responsible for all
reliability maintenance costs related to his car(s), thus giving rise to a permutation
assessment. From another view point, the car manufacturer, whose reputation and warranty
costs are related to the whole set of similar cars already produced, may be mostly centred on
a sort of average behaviour, giving rise to a parametric assessment related to the whole car

population.

Thus, both permutation and parametric points of view are important and useful in real
problems, because there are situations, such as that of the car owner, in which we may be
interested in permutation tests, whereas there are others, such as the car manufacturer, in

which we may be interested in parametric inferences.

However, Gozalez and Manly (1998) have shown that permutation methods play a central
role as they allow for extensions of parametric testing. For example, when the car

manufacturer wants to compare the means of two of more populations from various car

12
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brands, an analysis of variance can be performed. If the data does not satisfy the assumptions
of parametric tests, then the analysis of variance is not valid. Thus a permutation test can be

used to confirm these results.

5 The Beginnings of Permutations

5.1.1 1920-1939

The earliest indications of permutations tests appeared in a 1923 article by Neyman. In this
article, Neyman introduced a model for the analysis of field experiments for the purpose of
comparing a number of crop varieties. This Polish article was unknown by people working on
permutation tests until 1990, when it was translated. In 1927, Geary first used an exact
analysis to demonstrate the utility of asymptotic approaches for data analysis in an

investigation of the properties of correlation and regression in finite populations.

Like Geary (1927), Eden and Yates (1933) used permutation methods to compare a
theoretical distribution to an empirical distribution. Eden and Yates (1933) examined height
measurements of wheat grown in eight blocks, each consisting of four sub-blocks of eight
plots. The observations were collapsed into four treatments randomly applied to four sub-

blocks in each block. The experimental data consisted of four treatment groups and four

treatment blocks for a total of (4!)7:4.59E+O9 possible arrangements. Eden and Yates

(1933) chose a sample of 1,000 of these arrangements at random and generated a table
showing the simulated probabilities generated by the random sample and the theoretical
equivalent to the probability values based on the normality assumption. The simulated and

theoretical probabilities were compared by a 4? — goodness-of-fit test and were found to be

in close agreement, supporting the assumption of normality.

In 1934, Fisher presented a paper describing the logic of a permutation test to the Royal
Statistical Society. Fisher did not expressly discuss permutation tests, but instead used the

binomial distribution to arrive at an exact probability for a 2x2 contingency table. The

13
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purpose of this example was to illustrate that for small samples, exact tests are possible;
thereby eliminating the need for estimation. This is indicative of an early understanding of
the superiority of exact probability values computed on known discrete distributions over

approximations based on theoretical distributions.

In Fisher’s 1935 paper, The Design of Experiments, Fisher expressed the usefulness of the
permutation approach to obtain exact probabilities. This famous text set the concept of
permutation tests into motion. In what Fisher termed a hypothetical experiment in The Design
of Experiments, Fisher described a woman who claimed to be able to tell the difference
between tea with milk added first and tea with milk added afterwards. He concocted an
experiment whereby the woman sampled eight cups of tea, four of each type, and identified
the point at which the milk had been added — before the tea or after. Fisher then outlined the
chances of the woman being correct merely by guessing, based on the number of trials; in this

case eight cups of tea.

Fisher provided a second hypothetical discussion of permutation tests in the 1935 Design of
Experiments, describing a way to compare the means of randomized pairs of observations by
permutation. In this case Fisher carried the example through, calculating test statistics for all
possible pairs of the data. For this example, Fisher considered data from Charles Darwin on
fifteen pairs of planters containing Zea Mays seeds in similar soils and location. The heights
were to be measured when the plants reached a given age. Fisher calculated the exact
probability values for the 2'°=3.28E+04 possible arrangements of the data, based on the null
hypothesis of no difference between self-fertilized and cross-fertilized plants. The exact
probability value was calculated as the proportion of values whose differences were as

extreme, or more extreme than, the observed value.

Fisher’s 1936 article The coefficient of racial likeness provided an alternative explanation of
how permutation tests work. Without calling the technique a permutation test, Fisher
described a shuffling procedure for analysing data. His description began with two groups of
n =100 members each and a measurement of interest on each member of the two groups. The
measurements were recorded on 200 cards, shuffled, and then divided at random into two
groups of 100 each, a division that could be repeated in an enormous, but finite and

conceptually calculable number of ways. A consideration of all possible arrangements of the

14
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pairs of cards would provide a solution for determining if the random samples could have

been drawn from the same population.

In 1936, Hotelling and Pabst calculated exact probabilities for small samples of ranked data
using permutation methods. The article utilized the calculation of a probability that
incorporated all permutations of the data. The assumptions were that under the null
hypothesis, all permutations were equally likely. The probability for any particular value was
calculated as a proportion of the number of permutations equal to, or more extreme than, the
value obtained from the observed data. While earlier works demonstrated permutations tests,
the article of Hotelling and Pabst introduced more extensive work on small data sets as well
as the introduction of the notationn!. Thus, this 1936 article may be the first example that
specifically detailed the method of calculating a permutation test using all possible

arrangements of the data (Berry et al.; 2011).

Fisher, however, continued to be influential in the discussion of permutation methods. Welch
described Fisher’s inference to an exact probability and noted that although the calculations
would be lengthy, the result would be a hypothesis test that was free of assumptions about the
data. Pearson also referenced the Fisher text in his consideration of randomizations with the
lady tasting tea, but as with Fisher, neither Welch nor Pearson fully explained the technique.
It was not until 1937 that a series of articles by Pitman explicitly discussed the permutation
approach for statistical analysis. These articles extended permutation methods to include data

that were not amenable to ranking.

In his 1937 paper, Pitman stated that the objective of the paper was ‘to devise valid tests of
significance which involves no assumptions about the forms of the population sampled’, and
second noted that the idea underlying permutation tests ‘seem to be explicit in all of Fisher’s
writings’. Pitman further developed the permutation approach for the correlation coefficient
‘which makes no assumptions about the population sampled’ and then proposed a

permutation test for the analysis of variance ‘which involves no assumptions of normality’.

In a 1938 article, on *Tests for homogeneity’, Welch advocated calculating exact values on a
limited population before moving into an examination of the moments of an infinite

population. Welch continued with an example of an exact calculation and further concluded
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that if the variances of different samples are markedly different, normal theory could badly
underestimate significant differences that might exist. However, an exact test being free from

the assumptions usually associated with asymptotic statistical tests, had no such limitation.

McCarthy also argued for the use of a permutation test as a first approximation, before
considering the data via an asymptotic distribution in 1939. Kendall incorporated exact
probabilities utilizing the ‘entire universe’ of permutations in the construction of 7, a new
measure of rank correlation. In 1939, Kendall et al. utilized permutations in their discussion
of Spearman’s rank order correlation coefficient and exact probabilities up to »=10for
Spearman’s rank order correlation coefficient. The probabilities were based on their relative
frequencies in the n! permutations of one ranking against another. This brought about the
publication of tables in the 1940s for statistics with small sample sizes. These tables that
employed permutations for the calculations of exact probabilities were primarily for rank

tests.

5.1.2 1940-1959

The period between 1940 and 1950 brought about a rise in the work of nonparametric rank
tests, publications include the Kendall rank order correlation, the Friedman two-way analysis
of variance by ranks, the Wilcoxon rank sum test developed simultaneously by Wilcoxon,
Mann and Whitney and the Kruskal-Wallis one-way analysis of variance by ranks.
Permutation methods were employed to generate tables of exact probabilities for small
samples. Theoretical work on permutation tests did continue in the 1940s and 1950s, but a
theme that was commonly repeated was the conversion of data into ranks to simplify tedious
computations. In 1952, Hoeffding investigated the power of a family of nonparametric tests
based on permutations of observations, finding the permutation tests to be asymptotically as
powerful as the related parametric tests. In 1955 Kempthorne described the use of
randomization in experimental designs and how randomization permits evaluation of the
experimental. Included were the completely randomized design, randomized blocks, and
Latin squares. Two years later, in 1957, Dwass continued the general theme of computational
difficulties for permutation tests, even with small samples. Dwass further recommended

taking a random sample of all possible permutations for a two-sample test and making the
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decision to accept or reject the null hypothesis on the basis of these random permutations

only.

6 Computational Aspects

6.1.1 1960-1979

One reason why permutation tests are not better known is that as the size and number of
randomized groups increase, there is a steep increase in the number of possible permutations
of the data. For instance, when there are two independent groups, the number of possible

permutations is given by the expression (7 +n2)!/n1!n2!. When two groups of measurements

are made on the same group, the number of possible permutations is 2". Thus, even when the
small groups are analysed, the number of possible permutations can run to many millions. For
example, two independent groups each of size 10 has (10+10)!/10!10! = 1.85E+05 possible
permutations. When these two measurements are made on 20 experimental units one has

1.05E+06 possible permutations.

If investigators are to perform permutation tests, they must have access to computers that
have the capacity to perform them within a reasonable space of time. It thus has taken the
development of high-speed computers for permutation tests to achieve their potential. (Berry
et al.; 2011). The parallel development of permutation tests and computers is an essential part

of the chronology of permutation methods.

In the period prior to 1960, computers were large, slow, and expensive, and in large part their
use was limited to military and industrial applications. Computers of this era could fill up an
entire warehouse. In the 1960s, mainframe computers became widely available to researchers
at major research universities. By the end of the 1970s, personal computers, although not
common, were available to many researchers. The speed of computers increased greatly in
the 1960s and 1970s and this paved the way for the development of permutation tests (Good,;
2005).
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Permutation tests depend on efficient generation of permutation sequences. In the 1960s and
1970s, many algorithms were presented for the generation of permutation sequences, each
aiming at increased speed and efficiency. In 1979, Mielke et al. introduced multi-response
permutation procedures (MRPP), the first statistics designed especially for permutation
methods, in contrast to permutation alternatives to conventional tests. The use of Euclidean
distances, rather than squared Euclidean distances provided exceedingly robust, distribution-
free, Euclidean-based permutation alternatives to experimental designs that normally
employed conventional ANOVA or MANOVA analysis.

Researchers were focused on defining efficient methods for computing probability values in
the 1960s and 1970s. Existing inefficiencies were largely due to inadequate numerical
algorithms, low computer clock speeds, small core memories and inefficient data transfer.
Mielke et al. (1979) introduced moment approximation permutation procedures whereby
implementation of symmetric functions based on finite populations, provided the exact first
three moments of a continuous distribution that approximated the discrete permutation
distribution. The moment approximation permutation procedure immediately eliminated
many of the computing difficulties that had inundated the computation of permutation values,
provided an approximation to the underlying permutation distribution and avoided the

extensive calculations of an exact permutation approach.

6.1.2 1980-1999

The advancement of permutation tests in the 1980s and 1990s was as a result of greatly
improved computer clock speeds and widely available desktop computers (Good; 2005). At
the same time, there was a shift in the sources of permutation publications. In the 1960s and
1970s, the majority of the all the published papers on permutation methods appeared in
computer journals such as The Computer Journal. In the 1980s and 1990s, there was a shift
away from computer journals to statistical journals - such as The Journal of the American
Statistical Association and Applied Statistics (Berry et al.; 2011). An increasing number of
published papers on permutation procedures began appearing in Educational and
Psychological Measurement, Econometrica, Ecology and Behaviour Research Methods.
Permutation tests branched out from their home in statistics to include a variety of other
disciplines, most notably in psychology with articles by Berry and Mielke (1983),
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pharmacology and physiology with an important article by Ludbrook (1994); ecology with
articles by Anderson (1999); and econometrics with a significant article by Kennedy (1995).

In addition, many books on permutation methods, randomization tests and exact statistical
methods appeared during this period. Edgington brought out the first edition of
Randomization Tests in 1980, a second edition in 1987 and a third edition in 1995.
Edgington’s book was soon followed by Hubert’s 1987 book on Assignment Methods in
Combinatorial Data Analysis. Goods’s two books in 1994 Permutation Tests: A practical
Guide to Resampling Methods for Testing Hypotheses and Permutation, Parametric and
Bootstrap Tests of Hypotheses, Manly’s first edition of Randomization and Monte Carlo
Methods in Biology in 1991 followed by a second edition in 1997, and Good’s third book
Resampling Methods: A Practical Guide to Data Analysis in 1999.

Work also continued on improving the computational efficiency of permutation tests, inspired
by the ease of calculations because of increases in computer speed and storage. Between
1980 and 1999 a number of algorithms were developed that substantially reduced
computation time. Berry and Mielke (1985, 1987, 1995) enhanced the procedure by coupling
recursive routines with the use of an arbitrary origin. A second algorithmic innovation was to
recognise that only the variable part of a statistical formula needed to be computed for each

permutation.

In 1980, Mehta and Patel introduced a network algorithm that effectively calculated
permutation tests. Originally designed for exact tests on 2xk contingency tables, the
algorithm was extended to the #Xc contingency table. Extensions to multidimensional tables

were provided by Mielke and Berry (1998).

Much of the contributions to the permutation literature during this period focussed on
efficient means to calculate permutation versions of existing statistics. However, the
advancements in computational efficiency allowed for the development of a wider variety of
statistical tests, tailored to the problem under consideration. Permutation versions of existing
statistics include the Wilcoxon signed ranks test by Dallal (1988) and a one-way analysis of
variance test by Berry and Mielke (1983). At the same time, Mielke and his collaborators

focussed their work on designing permutation tests that were not permutation versions of
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existing statistics. Conventional statistical tests and measures, both parametric and
nonparametric are based on squared Euclidean distances between data points, for example the
two-sample #-tests, various F-tests, ordinary least-squares regression, and nonparametric tests
such as the Wilcoxon rank sum test, the Kruskal-Wallis one-way analysis of variance by

ranks.

6.1.3 2000-2012

Clock speeds on personal computers have increased significantly between 2000 and 2012. In
2000, the Intel Pentium processor contained 42 million transistors and ran at 1.5 GHz. In
2010, Intel released the Itanium processor, containing 4.8 GHz. To stress the progress of
computing, in 1951 the Remington Rand Corporation introduced the Univac computer
running at 1905 calculations per second with the storage space of 20,000 bytes of
information. In 2008 the IBM Corporation supercomputer reached a sustained performance of
1 quadrillion calculations per second. In 2010 the Cray Jaguar was named the world’s fastest
computer performing at a speed of 1.75 quadrillion calculations per second with 360
terabytes of memory. In November 2010 China exceeded the computing speed of the Cray
Jaguar by 57% with the introduction of the Tianhe-Al super computer performing at 2.67
quadrillion calculations per second. The number one ranking for 2012 is the Sequoia
supercomputer in California. The Sequoia’s ability is to crunch 16.32 quadrillion calculations

per second.

For a more general perspective, the personal computers available in 2012 contain processors
of 3GHz with one terabyte of storage space. With the high demand for more powerful cell
phones and ipads, there have been huge advancements in processing power. In August 2012
the new compact 8mm thin iphone 5 was released and its processing speed is more powerful
than the average personal computer.

Increased computational efficiency has allowed for the establishment of a number of software
packages for permutation tests, now widely available to computational statisticians. The most
popular software packages available are SAS, SPSS, Statistica, S-plus and R. The R software

package is the only free software that is available and thus it is very popular among
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researchers. The University of Cambridge provides a permutation course for its first year

students and the R software package is used in this course.

In addition to permutation software, the computer age of 2000-2012 had a number of books
on permutation methods published. Examples include a second edition of Permutation Tests:
A Practical Guide to Resampling Methods for Testing Hypothesis by Good in 2000; a second
edition of Permutation, Parametric and Bootstrap Tests of Hypotheses by Good in 2000;
Permutation Methods: A Distance Function Approach by Mielke and Berry in 2001,
Multivariate Permutation tests: With Applications in Biostatistics by Pesarin in 2001; a third
edition of Permutation, Parametric and Bootstrap Tests of Hypotheses by Good in 2005; a
fourth edition of Randomization Tests by Edgington and a third edition of Randomization,

Bootstrap and Monte Carlo Methods in Biology by Manly in 2007.

There have been many publications on permutation methods between 2000 and 2012, with
steady increases each year. For example, in the search of ‘Permutation’ on Wiley Online
Library in 2000 there were 13,153 journals and 836 books available, in 2005 there were
19,709 journals and 2,155 books. In 2010 there were 30,510 journals and 4,315 books and in
2012 there are now 35,899 journals and 5,047 books. An examination of the fields of research
in which articles using permutation methods were published includes computer science,
biology, genetics, statistics, geology, conservation, epidemiology, ecology, public health,

environmental research, geology, medicine, history, atmospheric science and public health.

7 Optimal Procedures

It is easy to justify an experiment when going from cause to effect. If a computer is available,
various techniques can be used to generate an outcome. The difficulty comes into play when
going in the opposite direction, from effect to cause, because more than one set of causes can
be responsible for the effect (Manly; 2007). In real life and in real populations there are vast
differences from subject to subject. To illustrate this variation, consider an example from
Steyn et al. (2000). A firm interested in purchasing a new tyre brand. A firm with a fleet of

vehicles of the same make has been using ‘Light Tread’ tyres for their cars for some time.
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The firm is satisfied with this type of tyre, but receives an offer from the manufacturers of
‘Hold & Cling’ for tyres at a higher discount. The firm now has to choose between these two
types of tyres. Figure 5.1 depicts the results of an experiment in which the first group of
customers had ‘Light Tread’ tyres fitted onto their car, while the second group of cars were
fitted with ‘Hold & Cling’. Each of the customers then provided a subjective rating of the
satisfaction of the tyres. The ratings ranged from ‘worsened tread’ to ‘improved tread’ on a

scale from O to 4.

Figure 5.1. Customer satisfaction ratings for Light Tread and Hold & Cling tyres

Number of Customers Light Tread

o B, N W e g

0 1 2 3 4
Customer Rating

Number of Customers Hold & Cling

o BN W s~ O,

0 1 2 3 4
Customer Rating

The customers that used ‘Hold & Cling’” seem to be more satisfied than those using ‘Light
Tread’. Or perhaps the observed results may just due to chance. If it is a chance effect, rather
than one caused by the type of tyre, then an error has been made. An error will also be made
if it is decided that there is no difference, when, in fact, ‘Hold & Cling’ tyres are better. It is
important to distinguish between these two types of errors since they have different
implications. The type | error, a false positive, consists of labelling the new tyre as better.
Such an action means economic loss for the firm and denial of the new tyres benefit to the
public. But a false negative, a Type Il error would mean exposing many people to a

potentially dangerous tyre, which could lead to fatal car accidents.
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Table 5.1 Decision making under uncertainty

The Facts The Final Decision
No difference New tyre is better
No difference Type | error:

firm misses opportunity
for profit; public denied access
totyre improvements
New tyre is better Type Il error:
Customers injured;
families suffer;

firm sued.

Since variation is inherent in nature, there is bound to be occasional error when inferences are
drawn from experiments and surveys, especially if chance supplies an unrepresentative
sample. When a coin is tossed ten times, it is possible to get five heads and five tails. Even
though the chance of getting ten tails is very low, it is possible. As the popular saying goes,

the latter is less probable but not impossible.

The risk of making statistical decisions cannot be eliminated but can be contained by using
the correct statistical procedures. If, for example, the probability of making a type | error does
not exceed 1%, 5% or 10%, and the choice of statistical procedures is correct, a method will

be provided to keep the type Il error as small as possible.

The losses illustrated above will not only depend on whether the guess was right or wrong,
but on how far off the mark the guesstimate is. Suppose a new type of pesticide has been
produced for fruit pests and an investigation into the side effects on people eating this fruit
has been done. Suppose a conclusion has been drawn and the pesticide does not cause any
harm to people. But the truth is that the pesticide raises blood toxicity by a mere fraction of
the normal day-to-day toxicity levels. Now, suppose that a slightly higher concentration in
pesticide chemicals raises toxicity levels to potentially cause cancer. What will be the cost to
the patients as well as to the company regarding law suits? The cost of the type Il error will

depend on the severity of the error and the nature of the losses associated with it.
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Most of the work in hypothesis testing has been focussed on zero or one loss function, while
estimation has focussed on losses proportional to the error squared. When making an
assessment, it is important to consider whether the concern lies more with a specific decision
or those that need to be sustained over time as a result of keeping to a specific decision
(Good; 2005). What is most important, reducing average losses over time or avoiding one

catastrophic loss?

In order to come to the best conclusion, the significance level (&) and the power ( £) should
to be looked at closely. & represents the probability of making a type | error and S
represents the probability of a type Il error. To test a hypothesis the set of possible outcomes
is divided into two or more regions. The primary hypothesis is accepted when a type | error is
risked when the test statistic lies in the rejection region. The primary hypothesis is rejected
when a risk of a type Il error occurs when the test statistic lies in the acceptance region.
Additional observations may be taken if the test statistic lies in the region of indifference
(Pesarin; 2001).

The ideal statistical test would have a significance level ¢ of zero and a power £ of 1. Since

the real world is not idealistic, this ideal cannot be realised. In practise the significance level
is fixed at the largest desirable level and a test statistic is chosen to maximize the power for a

set of important alternatives.

For a fixed significance level, the power is an increasing function of the size of the effect. For
a fixed effect, increasing the significance level also increases the power of the test. As
previously discussed, the greater the difference between the true alternative and the decided

hypothesis, the greater the loss associated with a type Il error.

Fortunately, tests can be devised where the larger the discrepancy, the greater the power, and
the less likely there is to be a type Il error. The power can also be increased by increasing the
sample sizes as they are directly related. A more powerful test reduces the cost of

experimentation and minimizes the risk.
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Figure 5.2 Power as a function of the alternative. Tests have the same sample size
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Figure 5.3 Power as a function of the alternative. Tests have different sample sizes
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Figure 5.4 Comparing power curves. For near alternatives, with @ close to zero, test 2 is the more

powerful test; for far alternatives, with @ large, test lis more powerful. Thus, neither test is most

powerful.
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Source: Good Pl. Permutation, Parametric and Bootstrap Tests of Hypotheses. 3rd ed. New York:

Springer-Verlag;2005.
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The power of tests can only be compared if they have the same significance level. If the test

o,(a,) is less powerful than e, (a,) , where the significance level «, < «,, then the power of
o,(a,) is greater than the power of @,(a,). The significance level and power may also

depend upon how the variables are distributed. Thus the type I error may need to be less than
or equal to some predetermined value for all possible distributions. When applied correctly,
permutation tests always have this property (Good; 2005). The significance levels of
parametric tests and the tests based on the bootstrap technique depend on the underlying
distribution. Thus permutation tests are a more powerful alternative when the underlying

distribution is unknown.

8 Analysis of Variance

8.1 Introduction

Analysis of variance (ANOVA) is used to test whether various populations differ from one
another in respect of a particular characteristic. In analysis of variance, the different
populations are usually described as treatments. The observations on which the analysis is
based are then the results that are obtained by applying these treatments to the experimental
units. As with other parametric tests, the assumption of normality, independence within and
between groups and homogeneity among the populations should be satisfied. If these

assumptions are violated then permutation tests are a viable option.

The ANOVA method using permutation tests have been extensively studied, especially when
faced with interaction terms. Several permutation strategies have been proposed to obtain a
distribution-free test in ANOVA with a single error term. This chapter describes the one-way,
two-way and three-way ANOVA permutation strategies that have been proposed. For the
one-way ANOVA there is a general consensus regarding the permutation procedure.
However, for two-way and three-way ANOVA, no universal permutation test (can be applied
to an arbitrary design to test a desired factor) exists. One method is proposed by Manly

(1997), which uses the permutation of the raw data. Edgington (2007) follows the methods
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used by Manly (1997). Another method is that of Still and White (1981) which removes the
main effects when testing for interaction. The Ter Braak (1992) method uses the full model
(no effects are removed) when testing for interaction. These permutation tests are not exact
procedures as there is correlation in the residuals present. An exact test is proposed by Jung et
al. (2006) which removes the correlation by means of a transformation. A simulation
experiment is done to compare performance of the normal F-test and the various permutation

tests under conditions of normality and non-normality.

8.2  One-Way Analysis of Variance

8.2.1 The Parametric Approach

ANOVA and r-tests are used for detecting differences between experimental treatments
where it is expected that some treatments will be more effective than others. The independent
t-test can be regarded as a special case for where there are only two treatments. The
simultaneous comparison of more than two treatment groups using the F-test can also be
advantageous to a researcher. However, a significant / for a comparison of several treatments
does not permit one to conclude which particular treatment differs from each other in their
effects. The only justifiable statistical inference from a significant overall F is that the

treatments do not have identical effects.

One-way ANOVA is not sensitive to treatment differences when many of the treatments have
almost identical effects and only one or two are quite different in their effects. Whether four
out of five treatments have the same effect and the fifth has a different effect cannot be
determined without more specific comparisons. Follow-up tests comparing individual
treatments in pairs by use of ¢-tests are sometimes conducted and, either one-tailed or two-

tailed tests can be used for this purpose (Edgington; 2007).
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For the one-way ANOVA, assume that y,,......... ¥, is a random sample from a N(x, o)

population, homogeneity between the populations is present and that the samples are
independent. Although the null hypothesis of equality means should be formulated as

My =y = u,, itis customary to regard 4, as the sum of an overall mean component such
as wand a component due to the specific population. For instance, write
o= p+(p,—p)=pu+a Where o =pu —u. The reparametererization leads to the

hypothesis of means

01 =0y = e, =q, \Versus H,:H, nottrue

yik:lu—i-ai—i-gik, i=1, ......... ,a and kzl ........ W

where the ¢, are independent N(0,o%) random variables. To define uniquely the model
parameters and their least squares estimates, is customary to impose the constraint
‘ na, =0

=1t

The usual F-test rejects H, ata « significance level if

D Y AR A o)
DI CIES D LG I

> Fa—l,z n—a (a)

Where FHZH («) is the upper (100 & )th percentile of the F-distribution with «-1 and

an. —a degrees of freedom respectively (Johnson and Wichern; 2002).
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8.2.2 The Permutation Approach

A systematic way of listing data permutations is necessary for the systematic permutation
method; this ensures that all data permutations are considered. Permutations for one-way

ANOVA can be listed by making use of a numerical example:

Suppose there are two measurements for treatment A, two for treatment B, and three for

treatment C, as follows:

A B C
17, 8 19, 25 24, 17, 15

To systematically list the 7! / 212131 = 210 permutations, index numbers one to seven are

assigned to the seven measurements:

A B C
17, 8 19, 25 24, 17, 15
1, 2 3, 4 5, 6, 7

The permutation of index numbers can be represented as a seven digit number: 1234567. The
permutations of the index numbers are listed in order of magnitude from the smallest seven
digit number, keeping the index values in ascending order within a treatment. This ensures no
redundancy results from the same combination. The following listing shows the first two and

last two permutations of index numbers, when listed by the described procedure:

Permutation A B C
Number
1 12 34 567
2 12 35 467
209 6 7 35 124
210 6 7 45 123
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Suppose the null hypothesis H :a, =, =, istrue and the groups are not really different
(in terms of measured variable). If this is the case, then the observations are exchangeable
between the different groups. That is, the labels that identify them as belonging to a particular
group can be randomly permuted to obtain a new value of F, denoted F~. If all possible

values for Fare calculated for all the different allocations of the labels to the observed
values, this would give the entire distribution of the F statistic under a true null hypothesis,

given the particular data set.

To calculate the p-value for the test, compare the value of F calculated on the original data
with the distribution of values Fobtained for a true null by permuting the labels. The
empirical frequency distribution of F"can be articulated entirely; that is, the number of
possible ways that the data can be re-ordered is finite. The probability associated with the null

hypothesis is calculated as the proportion of the F~ greater or equal to F.

. )
number of F~ > F - P(F' > F)
total number of F

p —value =

In this calculation, the observed value is included as a member of the distribution. This is
because one of the possible random orderings of the treatment labels is the ordering that was
actually obtained. This p-value gives an exact test of the null hypothesis of no differences

among groups (Hoeffding; 1952).

An equivalent test statistic described by Pesarin (2001) for the one-way ANOVA is

T=3" ny where 3, =>"y, In,.

This statistic is equivalent to Y n,(y, -7 )*, wherey ="y, /n. Since (a=1)/D n,—a

is a constant multiplier over all permutations, its elimination has no effect on the ordering of

the permutations with respect to the test statistic value. A requirement is that the errors ¢,
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should be exchangeable with respect to groups only in H,. To show that 7 is an exact

permutation test, consider its permutation structure and assume that v, data are randomly

1

moved from the 4" to the i group, where Y v, =n, for i=1.....,a, and where v;,

represents the number of observations which remain in the A" group. The permutation

structure of the statistic

Y(Zie +a)

n.

1

T =

shows that, if and only if H, is true, 7~ depends only on a permutation of exchangeable
errors, whereas H, depends on treatment effects as well. Hence, as the permutation null

distribution of T depends only on exchangeable errors, 7' is an exact permutation test. The
computation of 7 as a test statistic will give the same p-value as the computation of £ and is

thus easier than the F-statistic to calculate.

8.3  Two-Way Analysis of Variance

8.3.1 The Parametric Approach

Taking an example from Manly (2007), the concept of interactions can be illustrated.
Suppose we are concerned with the number of ants consumed by two sizes of lizards over

each of the four months given below.

Table 8.3.1 The number of ants eaten from June to September by small and large lizards.

The Facts Small Large
June 13 242 105 182 21 7
July 8 59 20 24 312 68
August 515 488 88 460 1223 990
September 18 44 21 140 40 27
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It appears as if there is the possibility of an interaction since in June the small lizards ate
more ants than the large lizards, but the reverse happened in the other months. There might
also be an effect for size, with large lizards eating more ants than small lizards. Looking at an
analysis of variance summary table the assumptions can be confirmed. The interaction is

border line, as is the size effect, yet the months effect is significant.

Table 8.3.2 Output from a standard ANOVA for size and months on the number of ants consumed

The ANOVA Procedure

Dependent Variable: Ants_Consumed

Source DF AnovaSS Mean Square F Value Pr>F
size 1 146172.042 146172.042 4.47 0.0505
months 3 1379495.125  459831.708 14.06 <.0001

size*months 3 294009.458 98003.153 3.00 0.0617

In general, suppose we want to assess the simultaneous effects on number of ants eaten, given
the month and size of the lizard. Let the number of ants eaten be represented by y,;, for a

different month and & different sizes of lizards, where i=1,......... a oy j=l... b, and n
represents observations at each factor combination i j, k=1,......... ,n. A model relating the

dependent variable, ants eaten (the effect) to the independent variables of months and size

(the causes) is given by

Vip =+ 0+ + () +& o

Vi = u+Size; + Month , + Interaction,, + &,
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Under the normality assumption of error terms, the traditional F-test statistic is

D 20 290 DG e T e G
Z;Z};ﬂz::l(ym _yij-)z/ab(n _1)

where )_}ij.:(zzzlyijk)/n’ ;V,-..=(Zizlzz:1ya-k)/b”’ )_}'j':(z;zz:lyyk)/an e
7. = (LX) fabn.

The null and alternative hypothesis for the interactions of the model are

Hy: (aff)y = =(ap), =0 versus H :notH, .

Under the null hypothesis of no interaction, F is distributed as F((a—1)(b—1),ab(n-1))
(Johnson and Wichern; 2002).

8.3.2 Permutation of Raw Data
8.3.2.1 The Manly Method

Manly (2007) suggests that one way to permute the data is to randomize the samples over all
the cells in the experiment. For example, take the values, shake them up in a bowl, and write
them down in whatever order they come out of the bowl next to the columns that contain
information on the variables. Considering the previous example on lizards, these variables
would be size and months. The F-values for the effects is calculated, these values are then
stored away, and then this procedure is repeated another 4,999 times(1). At the end there
would be 5,000 values of F* that would reasonably occur under the null hypothesis. The
original F-statistic obtained can then be compared against the empirical under the null

hypothesis, that is, H,:a, =a, =......... = «,.The p-value is then calculated as the number of

resampled F*values that exceed the original F, that is,
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p-value = P(F¥" > F) = number of F

n!

Let this test is denoted by PT1. The same procedure is followed for the two main effects. This

procedure by Manly (1997) is perhaps the easiest to carry out.

8.3.2.2 The Edgington Method

Edgington (2007) goes at the problem from a different direction. He maintains that there is no
exact test for interactions, but suggests that one can get an indication of the presence of
interactions by testing the interaction in the same way that Manly (1997) does. However, only
the interaction is tested in this way. Edgington (2007) permutes all observations 5,000 times

across cells, computes the F-values for the interaction for each one, and then calculates

P(F* > F).

According to Edgington (2007), there are two ways to deal with the main effects. If the
interaction is significant, one probably doesn’t care about the main effects. It is alright to look
at the main effects if one has good reason, but one seldom has a good reason to want to deal

with the main effects when faced with an interaction.

If the interaction effect is not significant, one would probably want to go ahead and deal with

main effects. One way to do this is the same way Manly (1997) does. Edgington(2007) would

argue that if there is no interaction, the best model is Y, =u+o+p+¢&,; or

Y = M+ Size, + Month; + £, which is an additive model — it does not have an interaction.

Edgington (2007) reasons that if this is now the model, one does not have to adjust for an
interaction. Therefore one can test the size by shuffling the data for each month separately
between size categories, and then test months by shuffling the data for each size among the
month categories. In each of these steps the distribution of the randomised F-values are

formed. The original F-value is then compared against the permuted F-values.
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8.3.3 Permutation under the Reduced Model
8.3.3.1 The Still and White Method

Still and White (1981) follow Edgington (2007) in using restricted randomization for main
effects, but they control for main effects by using residuals. In this method, the residuals are
computed from a model that includes all parameters except the parameters of interest. This
means that only the effect of the parameters that are of interest are possibly present in these
residuals. In this case, the residuals are what are left over after the row and column effects are
removed. If one is looking at all the data combined, there are potential main effects of size
and months included in them. But if these effects are subtracted and the residuals are used, a
test for interaction can be performed, without worrying about the main effects. Since any
possible row and column effects have been removed, the residuals are exchangeable under

Hyia=a,=..... = . One simple way to do this is to compute

y;/fy = Vi _)_)i.._)_).j.‘i')_)...'

However, under the null hypothesis, there should be no systematic effect in these residuals
and therefore an unrestricted permutation of these residuals is used to test the parameters of
interest. If a complete analysis of variance is run on the residuals, the sums of squares for the
effects are zero, and the F for the interaction is a fair test of that interaction uncontaminated
by the main effects. Anderson and Ter Braak (1992) show that this method has relatively

more power in comparison with the other analysis of variance methods.

Using the Still and White (1981) approach on randomization, an F-statistic can be obtained
by the following:

o e @ - -+ 5 =D -Y)
Y L O =) fab(n-1)

F
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F) =F,, since it is obtained directly from the raw data. Hence the statistical significance of

H , can be evaluated from the Monte Carlo distribution of

SW*_Z, D DD D A AR R T L (A ) (B )
AB Z, 12, 1Zk 1(J_}5kW*_J_’,-f_W*) /ab(n—l)

*

Where ylf,fy* is an ijk” element of y*"" which is an abnx1 randomly permuted vector of

Y = s R DR , Vo). Thus the significance of 7, can be assessed by

number of F5"" > F

p-value =P(F*"" > F) = |
ni

Let this test be denoted by PT2. This test however is based on the correlated residuals and it

will not be exact for finite samples. For example, with the residuals ylf,fV =Vu V.~V V.,

two residuals in the same row, such as y;; and Yo will be correlated, while two

observations from different rows and columns will not. The residuals are not exchangeable,
thus the distribution with respect to all possible permutations will not be exact. However,
following Good (2002), the studentized correlations between the residuals converge to a
common value as the sample size increases; thus the residuals are asymptotically

exchangeable, and this test is asymptotically exact.

8.3.4 Permutation of the Full Model
8.3.4.1 The Ter Braak Method

Ter Braak (1992) has done a great deal of work with randomization procedures and he
advocates an approach similar to the Still and White (1981) approach, except that in
calculating the interaction, the residuals are taken over the whole design rather than just the
additive model. The cell mean is subtracted so that the effects of all factors are removed from
the original observations. A new sample is then constructed by adding the fitted value to an

unrestricted permuted version of the residuals. This approach is very much like the Still and
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White (1981) approach, but only row and column means are subtracted, not individual cell

means. Again this amounts to fitting a complete model (including the interaction) and

computing the residuals. Ter Braak (1992) uses the usual residuals yﬁ? = Y — ¥, instead of

Vol =Yy —Y.-¥,+¥._. By using the freely randomized residuals y;’, F, can be

calculated from the normal F-statistic. Then the significance of #,:a, = «, = =a, Can

be assessed by

number of F™®* > F

p-value =P(F™ > F) = '
ni

Let this test be denoted by PT3. It will however not be exact for a finite sample since this test

is based on the correlated residuals y;; = v, =7 -

8.3.5 Permutation for an Exact Test
8.3.5.1 The Jung Method

The permutation tests described by Manly (1997), Edgington (2007) and Still and White
(1981) are not exact tests, since the probability distribution of the permuted observations is
different from that of the original observations, even when no interaction effect exists. An
exact random permutation test is proposed by Jung et al. (2006), which is an improvement to

the Still and White (1981) approach. This is based on the uncorrelated residuals obtained

from a transformation of the correlated residuals y;kW =Yy —Y.—Y,;+y_ . Toobtain a new

random permutation test, the model
ik =U+¢, +ﬂ_/ +(0{ﬂ)_i/ +g_i/‘k ,
can be written in matrix form as

y=Xu+Xa+X,p+X_,af+¢,
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where Y =(ypeeeerens s Vigyseeneeeees V) IS @ abnx1 response vector, and
E=(Eqpyeeren VEppyyeeneenens vEun) 1S abnx1 error vector, X, =i ®i, i, , X, =1, ®i, @i,
, X,=i,®I,®i,, where i and i are vectors of ones of dimension a, b and n,
respectively and 7, and 1, are identity matrices of dimension a and b respectively; ®

denotes the kronecker product, and a=(a,,........ a)  B=(f ,B,)', and

af =(af)y e N (2775 . S(af) )

Define x,=(Xx,'Xx,) ad H,=X,(X,X,) X, then it can be shown that
H,=1,0J0®J+J,0I1,8J -J,®J,®J, using the generalized inverse of the
partitioned matrix, where J,=ii /a, J, =i, /band J, =ii /n are the matrix of

dimension a, b and » whose elements are all 1/a, 1/b, and 1/n, respectively. Then,

multiplying 7,, - H,, to both sides of equationy = X u+ X o + X, + X ,aff + & One gets

yi=Xgap+e”,

with

le = (Iabn _Hab)y’ X:;- = (Iab _Hab)Xab ! gjl = (Iabn _Hab)g :
where the jjk” element of y’* is yyjk1 =Yu —Y. —¥,; +y_. Theidea is to remove part of the

design matrix corresponding to the parameters not of interest, that is, the main effects. The

traditional F-test statistic for the interaction is derived for the transformed model as

YUK XD Xy a6 -1)
Y - XX XD Xy Jab(n 1)

Thus the permutation method using y’* a randomly permuted vector of y’'is the same

method as that of Still and White (1981). For the permutation method of Still and White
(1981), it can be noted that
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gjl - (0’ 0-2 (Iahn - Hah ))

Consequently, ¢’ , a randomly permuted vector of & is distributed differently from &’*.

Hence, even though under H:a, =a, =......... = a,, the distribution of y’*"is not equal to
that of y’*. This fact may damage the rationale behind the random permutation test. To

resolve this problem Jung et al. (2006) proposes a transformation using the decomposition of

the idempotent matrix 1, - H . Since I, — H ,is a symmetric and idempotent matrix, it

ab

possesses two distinct eigenvalues, zero and one. Letl,, —H,=UDU be the eigen-
decomposition of 7, — H_,, where D is a diagonal matrix containing the eigenvalues of

1, —H,,and Uis a unitary matrix, whose columns are the eigenvectorsof 1, - H ,.

abn

Since 1, — H,is a synmetric and idempotent matrix of rank abn—a—b+1, there exists a

ab

matrix ¥ of dimension abnx(abn—a—b+1). Orthonormality of the columns of ¥ implies

" —
thaty'v =1, ., Where
Via£ o Vian-a-bn Via£ o Viam 1 ... 0
1
. 1.
vabn,l vabn,abn—a—b+l vabn—a—b+l,l b vabn—a—b+l,abn 0 1

) 1 for k=i . L
since v, = . ,thus the sum of the corresponding projections are equal to the
“olofork #i

identity matrix. Since
Iahn = Xah (Xah ‘Xab)_lXab ‘+ V(V‘V)_lV‘

one gets,
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Iabn = Xab (Xab ‘Xab)_lXab ‘+ I/(Iabn—a—b-#l)_1[/l
Iabn = Xab (Xab ‘Xab)_lXab ‘+ VV‘
1, =H_, +VV'
VV‘ zlabn _Hab
Thus the matrix V satisfies the following equations:
VV = Iabn - Hab V'V = Iabnfaberl

Multiplying ¥ ' to both sides of y™* = X 'af +&’*, one gets

yi=Xyafve” (83.)
where
sz /1 XJZ =y XJl V'é‘Jl

Since ¢’ ~(0,6°1,,, , ,.,) and &’* arandomly permuted vector of £’%, one gets

gJZ* - (0’ O-ZIabn—a—}H—l)
and

var(e’?) =var(’e’") =V'var(e™ W =V'(c* (I - H))V = V'VV'V =51, . ,.

Therefore the F-statistic, F”*can be obtained for testing the hypothesis of interaction, where

(XJZ(XJZ |XJ2)—1XJ2 u)yJZ /(a _1)(b_1)

FJZ —
v (1 =~ XX X)Xy (ab(n-D)

(8.3.2)
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Since
yJ2 IX;bZ — leIVV‘Xél
= le l(Iabn _Hab)Xc‘zli}
— le IX;].
and
XX =X VX,
= X;}j' ‘(Iabn _Hab )X{‘JJI;L
XX
and

yJ2|yJ2=le|VV|le

= le '(Iabn _Hab)yjl
— y./lly./l
- J2 _ Il _ - -
The equality F;, =F,; = F; is obtained.
Under H, o, =a, =......... =a,, y’? isnotrelated to X7} in (8.3.2), thus the significance of

the null hypothesis can be evaluated from the Monte Carlo distribution of

e _ V(XX XX )y a1 (0-1)
yjz* ‘(Iabn—a—b+l - X;bz (X;b2 ‘X;bz)_lX;bz |) yJZ* / (ab(n _1))

where yp7?* is an (abn—a-b+1)x1 randomly permuted vector of y’?. Thus the

significance level of A can be assessed by

J2*
* >
p-value = P(F’'* > F) = number Off? 2 F <«
ni
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The PT4 test can be explained as follows. From model y’* = X'af + &’ since the residuals

are correlated with each other, uncorrelated residuals are obtained using the transformation of
the uncorrelated residuals. A transformation matrix using the decomposition of the
idempotent matrix is used. The proposed randomization is based on these uncorrelated

residuals. Since the probability distribution of the permuted observations y’2* is the same as

y’?, PT4 satisfies the exchangeability property and is an exact permutation test.

8.4  Three-Way Analysis of Variance

Based on invariance and sufficiency, Welch (1990) considered testing for interaction effects
in the three-way ANOVA model

ik =/U+ai+ﬂj+7k+(a}/)g/‘+(ﬂ7)jk+gjjk (8.4.1)

with proper constraints for the parameters. In equation (8.4.1) the hypotheses for testing the

interactions between factors B and C are the following:

Hyi(By)y = e =(By),.=0 versus H :not H,. (8.4.2)

Under the normality assumption of error terms, the traditional F-test is

Z;Z;Z; (-)_}.jk _-)_}.j. _J_/.k. + 37)2

_ (b-1)(c-1) |
PO IS I G AR T IR e P S N b
(a-1)(b-1(c-1)

Under the null hypothesis of (8.4.2), F is distributed as F((b—21)(c-1),(a-1)(b-1(c-1)).
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The permutation methods described in the two-way analysis of variance can be extended to

this problem. In this model the adjusted values used in permutations are y§,ffor the Manly

(2007) method, y;kW =Yy —V; — YV Ty for the Still and White (1981) method and
Ve =V = V.=V, ~V+V; + ¥V, +¥, —y. for the Ter Braak (1992) method. The Jung et

al. (2006) method is similar for this model is similar to that of the two-way ANOVA model.

Since 51]],} =&, —&; —&, T¢&_ are correlated, the uncorrelated error term z:l.jj.kz can be obtained

using the singular transformation used in (8.3.1). Thus the distribution of F’* can be
obtained using the random permutation of uncorrelated observations yl.jj.kz*. The p-value of

PT4 can be calculated by comparing the original F-value to the distribution of F’%.

8.5  Simulation Study

To explore the performance of the procedures previously discussed for testing the hypothesis

Hy a,=a,=.... =« in the two-way ANOVA model, a simulation study similar to that of
Jung et al. (2006) is performed. The main effects o ,i=1,.......... a and B, j=1... ,bare
generated from uniform (-50, 50) and uniform (-20, 20) distributions respectively with

constraints Z;a,.:o and Z;ﬂjzo. To obtain estimates for the significance level,

(aﬂ)lj equals zero for all i=1,......... ,aand j=1......... ,b .For these generated values, the error
term ¢, is generated from four different distributions, the N(0,1), exp()-1, #(4) and

U(-4,4). The permutation tests are based on 1,000 replications and the above procedure is

repeated 10,000 times independently in order to estimate the significance level. The normal
F-test and the four permutation tests: the Manly (1997), Still and White (1981), Ter Braak
(1992) and Jung et al. (2006) methods are applied at a significance level of & = 0.05.

For (a,b,n) = (2, 2, 2), when the error term is normal, the traditional F-test performs well as

expected. However, when the error term follows a non-normal distribution such as the
exp@)-1 , #(4) and U(—\/g,\/g)distribution, the significance level of the F-test is
underestimated. The Still and White (1981) method underestimates the nominal significance

level, while the Ter Braak (1992) and Manly (1997) methods overestimate it for all
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considered distributions of the error terms. The reason for these discrepancies is probably due
to the fact that the Still and White (1981), Ter Braak (1992) and Manly (1997) methods are
approximate tests as the randomly permuted observations are correlated. For normal and non-

normal errors, the estimated significance level not significantly different from 0.05.

As a, b and n increases, the Manly (1997), Still and White (1981) and Ter Braak (1992)
methods improve. This is because the correlations between the randomly permuted
observations get weaker. These results are coincide to those obtained by Jung et al. (2006)
where simulations show that the difference between the procedures gets smaller as a, b and n

increases.

Table 8.5.1 Average significance level for various (a,b,n) combinations at nominal size & = 0.05

with normal, exponential, t and uniform distributions of errors based on 10,000 Monte Carlo

simulations.
(a,b,n) Tests N(0,1) exp(l) -1 t(4) U(—/3,/3)
(22.2) F-Test 0.0491 0.0472 0.0404 0.0431
PT1
(Manty Tost) 0.0523 0.0535 0.0522 0.0513
PT2
(Sill and White) 0.0394 0.0357 0.0402 0.0409
PT3 0.0535 0.0519 0.0528 0.0605
(Ter Braak) ' ' ' '
PT4
0.0504 0.0488 0.0569 0.0531
(Jung et al.)
(223 F-Test 0.0509 0.0435 0.0398 0.0528
PT1
(anty Tost) 0.0439 0.0473 0.0438 0.0447
RT2
(Sill and White) 0.0486 0.0432 0.0456 0.0502
RT3
0.0511 0.0486 0.0469 0.0508
(Ter Braak)
PT4
0.0516 0.0457 0.0466 0.0531
(Jung et al.)
(232 F-Test 0.0482 0.0437 0.0412 0.0547
PT1
ety Tost) 0.0464 0.0474 0.0486 0.0490
RT2
(Sill and White) 0.0462 0.0497 0.0436 0.0513
RT3 0.0510 0.0533 0.0458 0.0514
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(Ter Braak)
PT4 0.0504 0.0508 0.0484 0.0532
(Jung et al.) ' ' ' '
(2.3.3) F-Test 0.0491 0.0423 0.0421 0.0482
PT1
(Manty Tost) 0.0468 0.0452 0.0442 0.0471
RT2
(Sill and Whie) 0.0489 00483 0.0491 0.0511
RT3
0.0514 0.0476 0.0487 0.0515
(Ter Braak)
PT4 0.0504 0.0522 0.0459 0.0521
(Jung et al.) ' ' ' '

8.6  Numerical Example

Referring back to the example from Manly (1997) which displays the number of ants
consumed by two sizes of lizards over each of the four months, the various permutation

procedures are performed to test for interaction.

Table 8.6.1 The number of ants eaten from June to September by small and large lizards

The Facts Small Large
June 13 242 105 182 21 7
July 8 59 20 24 312 68
August 515 488 88 460 1223 990
September 18 4 21 140 40 27

From table 8.6.1 it can be seen that under the normality assumption of errors, the traditional
F-test for interaction effects proves to be significant at the 10 percent level. Thus, it is
concluded that a mild degree of interaction exists between size and months. However the
normality assumption is not satisfied and therefore the traditional F-test cannot be satisfied.
The permutation tests of Manly (1997), Still and White (1981), Ter Braak (1992) and Jung et
al. (2006) are applied. These permutation tests are based on 10,000 Monte Carlo replications.

From the permutation p-values, all the permutation tests in this experiment are still significant
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at a 10 percent level. Thus we conclude without a doubt that interaction exists between size

and months.

Table 8.6.2. The results from a number of testing procedures for the interaction effects of size and

months for small and large lizards.

p-value
Interaction (Size*Months)
Frest 0.0617
PT1
(Manly Test) 0.0575
PT2
(Still and White) 0.0602
PT3
0.0578
(Ter Braak)
PT4
(Jung et al.) 0.0593
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9 Multiple Linear Regression

9.1 Introduction

Several different methods of permutation have been proposed to test the significance of one
or more regression coefficients in a multiple linear regression model. These tests consist of
approximate and exact permutation tests. Exact permutation methods have only recently been
introduced with the advancement in processing speed of computers. There are essentially
three different approaches for an approximate test: Unrestricted permutation of raw data, and

permutation of residuals under the reduced model and permutation under the full model.

Unrestricted permutation of raw data defined by Manly (2007) involves unrestricted
permutation of the dependent vector y. In this method it is assumed that under the null

hypothesis, the vector y is i.i.d and thus exchangeable.

Permutation of residuals under the reduced model is described by Freedman and Lane (1983)
and Kennedy (1995). In this method, the residuals are computed from a model that includes
all parameters except the parameters of interest. The parameters of interest in this context are
the independent parameters being tested for significance. This implies that only the effects of
the parameters that are of interest are present in these residuals. Under the null hypothesis
that the reduced model is valid, there should be no systematic effect in these residuals, and
therefore an unrestricted permutation of these residuals is used to test the parameters of

interest.

Permutation under the full model, that is, includes all independent variables, is described by
Ter Braak (1992) and Tantawanich (2006). As the name suggests, one should first compute
the residuals based on the full model, which removes the effects of all factors from the
original observations. Then one constructs new samples by adding the fitted values to
unrestricted permuted versions of the residuals. Based on these new samples, one uses the
F —statistic whose null hypothesis is that the true parameters are equal to their empirical

values in the original sample.
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There is general agreement concerning an appropriate method of permutation for exact tests
of hypotheses in simple linear regression, for example, methods proposed by Edgington
(1995) and Manly (2007). However, this is not the case for exact partial tests in multiple
linear regression. Since multiple linear regression is more complex, only recently have
advancements in this area been made. An exact technique for the permutation of residuals
under the reduced model has been proposed by Huh and Jung (2001) and Kherad-Pajouh and
Renaud (2010). This exact method is based on the permutation of residuals under the reduced
form. In this method, the residuals are computed from a model that includes all parameters,
except the parameters of interest. It is based on the ideas provided by Kennedy (1995). Using
a transformation on the parameters of interest, an exact test can be done using exchangeable

errors.

The different permutation strategies are compared in section 9.7 to determine how well these

methods perform with normal and non-normal errors. Simulations are constructed with errors
that have a N(0,1), U(—«/é,\/g), exp(l) -1 and #(4) distribution. By comparing the partial

F-test to permutation approach of Manly (2007), Freedman and Lane (1983), Kennedy
(1995), Ter Braak (1992), Tantawanich (2006) and Kherad-Pajouh and Renaud (2010),
simulations show that the partial F-test outperforms the permutation tests when errors are
normal. The Kherad-Pajouh and Renaud (2010) test outperforms all the other tests when

errors are non-normal because this test is an exact test and not an approximate test.

9.2  The Parametric Approach

Consider a multiple linear regression model:

y=Xp+e=XpB+X,B,+¢
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y = 1 X = H ﬂl = H ﬂl =
yn xn,l e xn,p+q ﬂp ﬂq
X1 X p X4 X g &

Xl = , X2 = , E =
xn 1 xn P xn,l xn,q gn

yisan nx1 vector of responses, ¢ isan nx1 vector of i.i.d errors, X is an nx(p+¢g) matrix
of full rank and g is the vector of parameters. X, and X, are matrices of dimension
nx(p+q)andnx(p+q)respectively and g, and g, are vectors of dimension px1 and
g <1 respectively. For any test of interest, the design matrix X and the vector of parameters
£ can be divided into the component of interest, that is s, and the component not of

interest, that is g, , where,

X =[X, X.,] B

I

ﬂl}
B,
The corresponding hypotheses are

H,:fB,=0,  VersusH,:f,#0,

where 0 is a g x1 vector of zeros. If the null hypothesis is not rejected, then the explanatory

variables(s) in X, may not be necessary and the reduced model in this case would be
y=Xp+¢.
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The parametric partial F-statistic for testing #, : 8, = 0 is of the form

. y-[x(x'xwX'—Xi(Xl‘Xl)le Jr/@ (9.2.1)
y[L-X(X'X) X Ty/(n-p—q)

Under the normality assumption, the partial F-statistic in (9.2.1) is distributed as F, ,, , .,

when H,: B, = 0is true, and the null hypothesis is rejected if /"> F,

(q,n-p—q)

9.3  Permutation of Raw Data

9.3.1 The Manly Method

Looking at the permutation equivalent to the normal partial F-test, Manly (2007) proposes a

procedure that involves the permutation of raw data. This procedure is as follows: The
variable y is regressed on X, and X, together (using least squares) to obtain an estimate ,5’2
of g, and a value of the usual F-statistic given by equation 9.2.1 The y values are then

randomly permuted to obtain the permuted values y*. These y" values are then regressed on

X, and X, (unpermuted) together to obtain an estimate ﬁ;of B,and a value F~for the
permuted data. Under the null hypothesis H,: 8, =0, the random vector y is exchangeable

and thus all possible permutations of y have the same distribution. The permutation statistic

for Manly (2007) denoted F™" is

e P XX X)X - X, (X, X)X, [y (g)
YOI - XX X)X Y (- p-q)

This procedure is repeated a large number of times so that the empirical distribution of

H,: 3, =0can be assessed by
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p-value = P(F¥" > F) = number of F

n!

Let this test be denoted by RT1. Kennedy and Cade (1996) suggest that the permutation of
raw data, as described by Manly (2007), should be controlled. The reason for this control is
because tests done by Kennedy and Cade (1996) show significantly different results between

permutation tests and model-based methods. This discrepancy appears when X, is not zero
and X, contains an outlier. This method cannot handle these particular situations because the
relationship between X, and Y is held constant throughout the permutations. When there are

such extreme outliers in the predictor variables, these should be identifiable as high leverage

points in diagnostic analyses prior to the regression analysis.

Anderson and Legendre (1999) expand on the results by Kennedy and Cades (1996) and
show that the permutation of raw data results in inflated p-values when there is an extreme
outlier. This is regardless of whether or not there is collinearity between predictor variables,
nor if the data is normal or non-normal. This problem of inflated p-values cannot be

amended by increasing the sample size as these results remain unchanged.

Outliers should therefore be removed from the data set, so that the potential problem may be
eliminated beforehand. However, the presence of outliers in a multiple regression may not
always be readily apparent or easy to define. Permutation methods are appreciated for their
lack of assumptions concerning distributions of variables, thus diagnostic checking of

distributions of variables should be unnecessary.

The method proposed by Manly (2007) is not an exact test for a partial regression coefficient
in a linear model, unless all other parameters in the model are truly equal to zero. This
method only provides an approximate test. Manly (2007) suggests that a test of 5000
simulations is sufficient, yet the results of Anderson and Legendre (1999) differ significantly
from those of Manly (2007). There are several reasons for this discrepancy but one reason
may be because Manly (2007) uses 5000 simulations, whereas Anderson and Legendre
(1999) use 10,000.
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9.4  Permutation under the Reduced Model

9.4.1 The Freedman and Lane Method

In contrast to the method of permuting raw data, there are those techniques which use the
residuals of a linear model as the permutable units for a test. The error ¢ is dissociated from
each value of ¥ by the application of a model to produce residuals, as opposed to the original

Y values. The rationale for the permutation of residuals for the hypothesis #,: 5, =0, is the
following: Given some estimate of the relationship between ¥ and X, (even if it is zero)
there is no further variation in ¥ which can be explained by X,. Looking at the approach
proposed by Freedman and Lane (1983), the vector y is regressed on X, and X, together to
obtain an estimate ﬁ’z of p, and a reference value F for the real data. To obtain the empirical

distribution, the vector y is regressed on X, alone according to the model y =4+ X, 8, +¢

providing estimates z of u, ,5’1 of g, and residuals

et =y—(i1+X,5)

The residuals from the regression are then permuted randomly, producing £". New values

for y**" are calculated by adding the permuted residuals to the fitted values as follows:
YU =g X B ™

y™ is then regressed on X, and X, together, according to the model

E(y™) =4 + X6, + X, to obtain an estimate 3, of g;,and a value F™". Thus the

permutation statistic for Freedman and Lane (1983) is given by

YUIXXOX) XX (X X)X v ()

FFL* —
YL - XX X)Xy [(n-p-g)
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This procedure is repeated a large number of times so that the empirical distribution of

H,: B, =0can be assessed by

number of F™* > F

p-value =P(F™ > F) = '
n:

Let this test be denoted by RT2. Permutation of the residuals under the model preserves the

covariances between y and X, X,and X,,and among the X, variables, but not between y

and X, across all permutations.

Freedman and Lane (1983) claim their method is a “non-stochastic” approach, referring to the

proportion of the values F™ >F as a “descriptive statistic” instead of a probability.
However, according to Kennedy (1995) their rationale for the test is effectively that of a

model-based approach. The goal is to isolate the test of ¥ on X, alone, while taking X, into

account through the use of the linear regression equation and permutation of residuals.

Freedman and Lane (1983) emphasize three conditions for the use of their method. The one

condition is that the data should not contain extreme outliers and the second is that X, and
X, should not be highly collinear. The third is that the sample size » should be relatively

large. Since the permutation is on the residuals, the test is not an exact test in a randomization

sense, but has asymptotically exact significance levels.

9.4.2 The Kennedy Method

Kennedy (1995) presented a method of permutation which he states is identical to the
Freedman and Lane (1983) procedure. The rationalization for the method of Kennedy (1995)
is the same as that of Freedman and Lane (1983) approach, but differs computationally. The

method is described as follows: The variable y is regressed on X, and X, together to obtain

an estimate /}2 of B, and a reference value F for the real data. To obtain the empirical

distribution, the variable y is regressed on X, and X, according to the model
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y=pu+ X8 +X,5 +¢. Let H =X,(X,'X,)" X, and multiplying 1, — H, to both sides of
this model, one gets
Yo=u+ X5 p,+s"
where
K K K
y :(In_Hl)y' X, :(In_Hl)X' & :(In_Hl)g'

These residuals &*are then permuted randomly, producinge®”. New values for p**are

calculated by adding the permuted residuals to the fitted values as follows:
¥ =i XS e
y** is then regressed on X, according to the model £(y*") = 1+ X 3, to obtain a value

F*" . Thus the permutation statistic for Kennedy (1995) is given by

PUIXXOX) X - X,(X, X)Xy (@)
YOUL-X(X X)Xy Jn-p-q)

K*

This procedure is repeated a large number of times so that the empirical distribution of

H,: S, = 0can be assessed by

number of F¥* > F

p-value = P(F*" > F) = '
n:

Let this test be denoted by RT3. According to simulations done by Anderson and Legendre
(1999), the Kennedy (1995) method will not give the same results as those by Freedman and

Lane (1983). The estimate of the slope coefficient vector ﬁ’z is the same, but the value of the

F-statistic under permutation is different for the two methods. The reason for this

dissimilarity between the two methods is subtle but has important consequences. The
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Kennedy (1995) method removes the effect of the variable which is not of interest. Thus the
parameters associated with X, remain fixed throughout the permutation procedure. In the
Freedman and Lane (1983) method, this parameter does not stay fixed. The permuted
residuals & are added back onto the fitted values to obtain ¥". These are then regressed on

X,and X, together, so the parameter estimates for X, in the multiple regression model

changes with each permutation. If the true values for g were known, there would be no
difference between the two methods. Although there is no relationship between £™and X/,

some small relationship is reintroduced between ¢™and X, by the permutation of these

residuals. The method of Freedman and Lane (1983) takes this into account by maintaining

the conditioning on X, throughout the permutation procedure, whereas that of Kennedy

(1995) does not.

Kennedy (1995) states that the method of Manly (2007), that is, permuting y, is only justified

when the covariable’s parameter g, is zero. The argument is essentially that the permutation

of raw data ignores the covariable parameters, which often may not be justified. Kennedy
(1995) suggests that the method of permuting raw data for the test of the hypothesis

H,: 3, =0 will give biased results if the errors & and the y values have radically different
distributions in the presence of a non-zero g, . In limited simulations, Kennedy (1995) found

that the permutation of the raw data y in multiple regression resulted in an inflated p-value

when outliers were included in x, and g, #0. The results of Kennedy (1995) is not

supported by further simulations published by Manly (2007), although Manly (2007) suggests
that a more extensive simulations are needed on this topic, his results seems to show that the
method of permuting y for tests of partial regression coefficients is not necessarily flawed in

the way that Kennedy (1995) claims.

Simulations done by Anderson and Legendre (1999) show that the Kennedy (1995) procedure
has inflated p-values, especially with small sample sizes. Permutation under the reduced
model should therefore be done using the Freedman and Lane (1983) method when » is

small.

55



<
>
=
=
=

9.5  Permutation under the Full Model

9.5.1 The Ter Braak Method

The two methods that have been proposed by Freedman and Lane (1983) and Kennedy
(1995) have been called permutation under the “null model” by Ter Braak (1992) or “under
the reduced model” by Cade and Richards (1996). Permutation of residuals under the full
model, that is, all independent variables, was developed by Ter Braak (1992). It was
introduced as the permutational analog (resampling without replacement) to the bootstrapping
method (resampling with replacement). Ter Braak (1992) refers to his method as permutation

“under the full model” and this method uses the residuals from the full regression model as
the permutable units for the test. The estimate F~ as well as the original estimate of ,5’2 are

used as part of the permutation procedure. Ter Braak (1992) claims that this procedure should
have the effect of reducing the variance of the parameter of interest under permutation, thus

increasing the power of the test. This procedure is described as follows: The vector y is
regressed on X, and X,together to obtain estimates z of 4, ,5’1 of 8, ,5’2 of 4, and

residuals ¢, as well as the reference value F for the original data. The residuals & are

calculated from the equation
g’ = y=(+ X8 +X,p,),

which are permuted randomly, producing ™" . The new ™" values are calculated from the

permuted residuals as follows:
TB* _ ~ p p TB*
Vo =u+ X p+ X, +e

The new values ™ are regressed on X and X, to obtain an estimate 4, and a value F™

under permutation. The permutation statistic for Ter Braak (1992) denoted F'” is given by

YUUX(XX) XX, (X, X)X Y™ /()
YL -X(X X)X ]y (n-p—q)

TB*
F7 =
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This procedure is repeated a large number of times so that the empirical distribution of

H,: B, =0can be assessed by

number of F™®" > F

p-value =P(F™ > F) = '
n:

Let this test is denoted by RT4. Permutation of the residuals under the null model preserves

all covariances across the permutations, that is, among y, X,and X,, as well as the X,

variables. According to Ter Braak (1992), this permutation test under the full model has

asymptotically exact significance levels. A point to note about this approach is that the

F —statistic is calculated under permutation according to the hypothesis that ,5’2* =,5’2, that is,
that the values of,é’z* obtained under permutation are close to the original estimated values of

,5’2. For this reason, this approach has also been called permutation “under the alternative

hypothesis” by Ter Braak (1992).

According to Anderson and Legendre (1999), permutation under the reduced model of
Freedman and Lane (1983) and the full model of Ter Braak (1992) generally give similar
results and are equally appropriate for most situations, with specific reference to univariate

models. In the extreme situation of a remote outlier in the variable X, with extremely non-

normal errors and small sample sizes, the Ter Braak (1992) method may be destabilized. But
this instability disappears when » is large, (»=100) or more reasonable error structures are

used, such as the normal or exponential. The introduction of an outlier in X, has no effect

on the level accuracy of the Freedman and Lane (1983) method of permutation, in any

situation.

Although the Freedman and Lane (1983) method might be preferable to use with smaller
sample sizes, there is a computational advantage in using the Ter Braak (1992) method. One
can use the permutation of a single set of residuals from the full model to test a number of
different hypotheses concerning individual partial regression coefficients in a multiple
regression model. The Freedman and Lane (1983) method is computationally more intensive.

When testing several different hypotheses about different coefficients in multiple regression,
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the Freedman and Lane (1983) method requires different sets of residuals from several

reduced models.

9.5.2 The Tantawanich Method

Tantawanich (2006) proposes an alternative permutation procedure which is also “under the
full model”. This procedure is similar to the Ter Braak (1992) method, but instead of
calculating new y values from the permuted residuals, new g,values are calculated. The
estimate £~ as well as the original estimate of ,5’2 are used as part of the permutation

procedure. Tantawanich (2006) claims that this method provides a higher power than the
methods proposed by Ter Braak (1992) and Manly (2007). The procedure is described as
follows: Let H = X (X X )X where H is anxnmatrix and let H, = X, (X, X,) " X, ,where

H, isa nxnmatrix. For the OLS estimator of 3,,

A

By =, - X,(X," X)) " X, 1X,
=1X,-X (X,'X)"X,'X,
=X, - X, (X,'X,)(X,'X,)
=X,-X/1,
=X, - X,
=0

One can write

A

By =B, = X,(X, 'Xz)ile =5
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=[X,'(I,-H)X,]"'X,'(I, - H)y-f,
=[X,'(I,-H)X,]'X,'(I,-H,)y - 0 - Ip,
=[X,'(I,-H)X,I" X, (I, - H,)y-[X,'(I, - H)X,]" X,"(I, - H)) X, 5,
- [X,(I,-H)X,]' X, (I, - H) X, /5,
=[X,(I,-H)X,]"' X, (I, - H)[y— (X, + X, 5,)]
=[X,'(,-H)X," X, (I,-H,)s (9.5.1)

The residuals &” are calculated from
g = y_(Xlﬂl +Xzﬂz) ;

and used as the estimator of the vector of errors and randomly permuted, producing ¢” . A

new permuted estimator for g, is calculated from the permuted residuals and equation

(9.5.1), thus
/ézT* :/éz +[X2 (In _Hl)X2]71X2 '(In _Hl)gT*

Multiplying the partial F-statistic by ¢/n—p—qyields the same result as omitting the

degrees of freedom and is easier to calculate. Re-writing the F-statistic in terms of ,5’2,

(I,-H,)and H,

FT = ﬁz l[Xz I(In _Hl)XZ]ﬁZ
y'Hy (9.5.2)

Substituting /3, in equation 9.5.2 by 3 = 3, +[A(I, — H) AT A, '(I,—H,)&" , the statistic

FT becomes a permuted statistic F”, which is defined as

*_ zT*l[Xz l(In _Hl)XZ]ﬂZ*
y'I,-H)y

FT
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Thus the proposed sampling permutation test of H, :p,=0, an (estimated) empirical

distribution of F7 is obtained from »! permutation statistics. Thus the empirical distribution

of H,:p,=0can be assessed by

number of F’'* > F

p-value=P(F"" > F) = |
n:

IN
N

Let this test is denoted by RT5.As with Ter Braak (1992), the F-statistic is also calculated
under permutation according to the hypothesis that ,5’2* =,5’2, Simulations done by

Tantawanich (2006) show that the proposed method performs as well as the partial F-test for
the normal error case when the sample size is large. It outperforms the methods proposed by
Manly (2007) and Ter Braak (1992) when the sample size is small. For the non-normal error
case, the proposed test has the highest power for small sample sizes. However, as the sample
size increases, there is little difference between the Tantawanich (2006), Manly (2007) and
Ter Braak (1992) methods.

9.6  Permutation for an Exact Test

9.6.1 The Kherad-Pajouh and Renaud Method

All the methods described in sections 9.3, 9.4 and 9.5 are approximate permutation tests
because there is some correlation between the residuals. To achieve an exact permutation test,
this correlation should be removed to ensure that the errors are exchangeable. Kherad-Pajouh
and Renaud (2010) provide a procedure that is an exact permutation test. Using the residuals
under the reduced model, the idea is to remove that part of the design matrix that is not tested.
The method is based on the article written by Jung et al. (2001). In the article, Jung et al
(2001) proposes an exact permutation procedure for only the highest-order factor. The

hypothesis H,: 4, =0 for £, [, .......... ,B,1, B, 1s tested. Kherad-Pajouh and Renaud (2010)

extend the Jung et al. (2001) method to a more general approach for partial multivariate

regression.

An advantage of this exact method compared to methods using restriction of raw data is that

this method is also applicable to designs with small sample sizes. This is because the
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proposed method relies on a large number of permutations. Kherad-Pajouh and Renaud
(2010) use the residuals under the modified model approach and show that they satisfy the

exchangeability condition, implying that they lead to an exact permutation test.

Exchangeability under the null hypothesis is the only requirement for having an exact
permutation test. Thus Kherad-Pajouh and Renaud (2010) provide an exact permutation
strategy by modifying the approximate test proposed by Kennedy (1995). The main idea is to
remove the correlation between residuals, using the decomposition of an idempotent matrix,
thus obtaining i.i.d or exchangeable errors. Kherad-Pajouh and Renaud (2010) show that, if
the error terms are i.i.d or exchangeable, the modified residuals are exchangeable up to the

second moment.

The condition to obtain a permutation test is to handle exchangeable objects. The elements in

y for y=Xxp+X, +care not exchangeable. Since under the null hypothesis of
H,:B,=0, E(y)=X,p differs for each y. Using the residuals under the reduced model

solves this problem. Part of the design matrix which is not of interest is removed for the test.

Let H, = X,(X,' X,)" X, 'where H, isan nxn matrix. Multiplying H, to both sides of the

equation y = X, B, + X, 3, + ¢ , One gets

[, - H ]y =[1,- H](X,f, + X, [, +¢€)

[1,-H]y=[I,-X,(X,"X,))" X, (X, 5+ X,,)+[I, - H,]¢

(I, -H]ly=1X78-X,(X,"X)"' X, X8+, - X,(X,'X,)" X, 1X,8,+[1, - H,]¢
1, -Hly=X,p-X1p +[I,-H]X,p,

[1,-Hly=U,-H]X,p,+[1,-H]e

KR1 KR1 KR1
y o =X,""p,+¢
where

yKRlz[In—Hl]y, XéKR:L:[In_Hl]XZ’ gKRl:[In_Hl]g,
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In a balanced case, since X, X, =0, it can be seen that X** = X, .Then the least squares

estimate is given by
2KRl — (X§R1X2KR1)_1X2KR1:]/KR1

KR1

It can be seen that £, is equal to the least squares estimate ,5’2. As in the Kennedy (1995)

method, these residuals &*** are permuted randomly, producing £***". New values for <"

are calculated by adding the permuted residuals to the fitted values as follows:

yKRl* :,[l+X2KR1 A +€KR1*

y*®* is then regressed on X, to obtain the permutation statistic 7" expressed as

yKRl* -[XKRl (XKRl uXKRl)—1XKRl] yKRl*/(q)
YL - X (X X)Xy [(n-p-q)

F* = (9.6.1)

The proof is given in the appendix. This procedure is not an exact permutation approach

because £“** ~ (0,6° (1, — H,)) . For an exact method, these errors should be exchangeable.

Exchangeability concerns the empirical distribution that is obtained from the permutations, as

well as the variances, covariances and higher order moments. Since £“** ~ (0,6°(I, - H,)) ,
under the null hypothesis, H,: 8, =0, the distribution of the randomly permuted vector y**

is distributed differently from »***.

Since the matrix X, has full rank, there exists a matrix ¥ of dimensionn xq whose columns
form an orthonormal basis for the subspace orthogonal to span (X, ). Orthonormality of the

columns of Vimplies thatV'V = I, where
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q1 ' q.n n,q

) 1for k=i
since v, = 0 for k =i The subspaces spanned by X, and V are complementary by

construction, thus the sum of the corresponding projections are equal to the identity matrix.

Since
I=X,(X,"X)'X,+Vv(V'v)yv
one gets,

I=X,(X,"X,))"' X, +V( )"V
I=X,(X,"X)"' X, +VV'

1, =H +VV'

Vv'=I -H,

Thus the matrix V satisfies the following equations:
vv'=I1,-HandV'V=I, (9.6.2)

The construction of the matrix " depends on the decomposition of (7, — H,) into eigenvalues
and eigenvectors. Since (I, — H,) is a symmetric and idempotent matrix, it possesses only
two distinct eigenvalues, zero and one. Let (I, - H,)=UDU be the eigenvalue and
eigenvector decomposition of (1, - H,), where D is the diagonal matrix containing the
eigenvalues of (1 — H,) and U the unitary matrix, whose columns are the eigenvectors of

(I, - H,) .Since (I, — H,) has rank n-p, there are n-p ones and p zeroes in the diagonal of D.
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Both conditions of (9.6.2) are satisfied by choosing ¥ as the columns of U corresponding to
the non-zero diagonal elements of D. The eigenvectors corresponding to the zero eigenvalue

do not contribute in the product, and therefore Vv '=UDU'=1, - H,. Since U is unitary, it

implies vv'=1,.

There is an n-p dimensional subspace which is mapped to itself under the projection induced

by (1, - H,). Any orthonormal basis of such subspace can be chosen as the eigenvectors of
(I, - H,) corresponding to the non-zero eigenvalues. However according to Jung et al.

(2006), different choices of such basis vectors result in different performance of the test in
terms of level and power. Therefore, it is worth considering some specifications for choices

which give better performance.

By multiplying ¥ to both sides of the equation y** = X,**'2, + &, one gets

VlyKRl :Vl(XZKRlﬂZ +gKR1
VlyKRl ZV‘XZKRlﬂZ +V|¢9KR1
V‘y:V‘XZKRlﬂZ—‘I_VngRl

yKRZ :XZKRZﬂZ -|—gKR2
where
yKRZ — prykRL, XfRZ _ V'X'le, cKR2 _ g oKRL.
Since

var(e*?) = var(V'e) = v'var(s" W =V'(o* (I -H)V =cV'VW'V =o'l _,

’

exchangeability of the errors are thus satisfied since £**" ~(0,0%1,). Under the null
hypothesis, H,: s, =0, the distribution of the randomly permuted vector y***" is the same as

y**2 . Since

X2KR2 IyKRZ — Xé(RlVIVyKRl — X2KR1 I(In _Hl)yKRl
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and

XEEXE = XEW VX = X, - )X
one gets

By= B = B = (XX )KL

It can be seen that B,** is equal to the least squares estimate ,5’2. The residuals &**?are

permuted randomly, producing ¢***"and new values for **>are calculated by adding the

permuted residuals to the fitted values as follows:
V= p+ X B, 4+ &M (9.6.3)

y*%2"is then regressed on X, to obtain the permutation statistic F***" expressed as

. yu[XKRZ (XKRZ uXKRZ)—1XKR2:|y/(q)
FERZ _
y[1,-X(X'X)'X]y/(n-p-q)

For the observed data, the three F statistics are equivalent:

F=F" = p*® (9.6.4)
The proof is given in the appendix. Since the equalities 3, = A5 = 85 are true and
F = F* = F*?have been determined, the empirical distribution of 7, : g, = 0 can be

assessed by

number of F**% > p~r?

p_Value: P(FKRZ* 2 FKRZ) — : S a
n:
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Let this test is denoted by RT6. By using the decomposition of an idempotent matrix, the data
is transformed to make the residuals exchangeable up to the second moment. This exact
permutation procedure can be used for balanced and unbalanced designs, for single error
terms. Simulation studies done by Kherad-Pajouh and Renaud (2010) show that that this
method is competitive in terms of power and thus shows good efficiency. This proposed
method is compared to the approximate methods of Manly (2007) and Freedman and Lane
(1986) and results show that this proposed method performs better when dealing with small

sample sizes.

9.7  Simulations

Consider a model

Vi =Bixg+ BoXip + PaXis + Bix, + &,

where i=1,2,......... ,n.Foreachi,x, , x,, x,and x,, are generated from a uniform distribution

with mean 1 and variances 2, 3, 5 and 6 respectively. ¢, is generated from either a N(0,1),
U(—«/§,\/§), exp(l) —lor#(4). Hence y can be calculated for each combination of
(ﬂ1iﬂ2iﬂ3iﬂ4) . In this StUdy’ (ﬂuﬂz) = (1,1), (21 2)1 (ﬂaiﬂ4) = (0,0), (01101)1 (01103) )

(0.1,0.12); and » = 8, 12 and 24 are given. This simulation is the same as that simulation

performed by Tantawanich (2006) for comparing his own approach to the Manly (2007) and
Ter Braak (1992) methods. The simulation being done here expands the Tantanawich (2006)
approach by comparing the permutation of the raw data, permutation under the reduced
model, permutation under the full model, and the recent approach, an exact permutation
method. As done by Anderson and Legendre (1999), the permuted sampling number is
chosen to be 999 and the number of simulation runs for each combination is 10,000 runs for
each of the six different permutation methods: Manly (2007), Freedman and Lane (1983),
Kennedy (1995), Ter Braak (1992), Tantanawich (2006) and Kherad-Pajouh and Renaud
(2010). The probability associated with the normal-theory partial F-test is also calculated for

each data set.
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The empirical type | error is estimated from the rejection rates out of 10,000 when the null
hypothesis is true, that is, (4,,3,) = (0,0).Tables 9.7.1 and 9.7.2 exhibit type I errors of the

several permutation methods as well as the partial F-test. Furthermore, the values are used for
testing whether the type | error is statistically different from « = 0.05. The Kennedy (1995)
method results in an inflated type I error for errors from the normal, uniform, exponential and
¢ distribution. This is especially apparent with small sample sizes, with the problem
decreasing as the sample size increases. The results from the Kennedy (1995) method are
similar to the simulation results obtained by Anderson and Legendre (1999). According to the

results of Anderson and Legendre (1999) the presence of non-zero parameters for 4, , or the

presence of collinearity between the independent variables has little influence on the inflated
type | error at small sample sizes. The results from the Manly (2007) method show that for
normal and non-normal errors, error rates of 0.05 are maintained when sample sizes are
small. With non-normal errors for the Freedman and Lane (1986), Ter Braak (1992) and
Tantanawich (2006), results are conservative at small sample sizes. It is only as the sample
size increases that these methods converge to produce similar results. This convergence
validates those simulations performed by Anderson and Legendre (1999). Their simulations
comparing the Freedman and Lane (1986) and Ter Braak (1992) methods show that these
methods converge asymptotically to an appropriate type | error much more quickly than the

normal partial F-test.

For the normal and exponential errors, there are no significant differences among all the
methods, except for the Kennedy (1995) method. They match the normal theory partial F-test
and have a type | error which does not differ significantly from 0.05 in all sets of simulations.
In contrast, with increases in the covariable’s parameter, permutation with the Freedman and
Lane (1983) method has the best level accuracy for smaller sample sizes. The Kherad-Pajouh
and Renaud (2010) method has the best level of accuracy for small, medium and large sample
sizes. The accuracy of the Kherad-Pajouh and Renaud (2010) is expected since it is an exact
permutation method rather than an approximate approach. Comparing the permutation results
to the partial F-test, one can see that the permutation results outperform the All permutation
methods converge to an appropriate type | error much more quickly than the normal-theory

partial F-test in situations of extremely non-normal error distributions.
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Table 9.7.1 Rejection rates (out of 10,000 simulations) of the six tests when (f,/3,) = (0,0) at & =

0.05 with normal and uniform distributions of errors and difference values of (f,, 3,) for sample sizes

n=38, 12 and 24.
&~ N(0,1) &~N0OL) | g -UB,B) | & ~U(3,3)

Tests n (ﬂpﬂz): (1,1) (ﬂllﬂz): (ﬂl,ﬂz):(l,l) (ﬂllﬂz):
(2.4,2.4) (2.4,2.4)
8 0.0497 0.0497 0.0343 0.0291
Partial F-test | 12 0.0497 0.0495 0.0437 0.0378
24 0.0501 0.0502 0.0483 0.0478
RT1 8 0.0470 0.0451 0.0471 0.0468
(Manly Tess) 12 0.0489 0.0478 0.0484 0.0469
24 0.0503 0.0494 0.0492 0.0491
RT2 8 0.0481 0.0475 0.0469 0.0466
(Freedman and | 12 0.0489 0.0479 0.0472 0.0474
Lane) 20 0.0496 0.0491 0.0487 0.0488
RT3 8 0.0742 0.0772 0.0635 0.0625
12 0.0621 0.0597 0.0611 0.0631
(Kennedy) 24 0.0539 0.0552 0.0514 0.0519
RT4 8 0.0463 0.0451 0.0462 0.0460
12 0.0489 0.0479 0.0473 0.0478
(TerBraak) | 54 0.0503 0.0492 0.0491 0.0493
RTS 8 0.0474 0.0448 0.0432 0.0421
(Tantawanich) 12 0.0482 0.0473 0.0445 0.0430
24 0.0496 0.0489 0.0469 0.0442
RT6 8 0.0510 0.0513 0.0485 0.0473
(Kherad-Pajouh |12 0.0506 0.0510 0.0491 0.0483
and Renaud) | 24 0.0495 0.0488 0.0502 0.0491

Table 9.7.2 Rejection rates (out of 10,000 simulations) of the six tests when (f,/3,) = (0,0) at & =

0.05 with exponential and t distributions of errors and difference values of (f,, f,) for sample sizes

n=38, 12 and 24.
g ~exp)-1 | & ~exp@)-1 t(4) t(4)

Tests . (B B)=@LY) (B, By)= (8., p,)=(1,1) (B, )=
(2.4,2.4) (2.4,2.4)

8 0.0139 0.0135 0.0218 0.0211

Partial F-test 12 0.0138 0.0139 0.0316 0.0275

24 0.0327 0.0227 0.0417 0.0429

RT1L 8 0.0589 0.0318 0.0373 0.0370

(Manly Test) 12 0.0497 0.0344 0.0399 0.0401

anty 1es 24 0.0593 0.0369 0.0467 0.0463
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RT2 8 0.0203 0.0202 0.0326 0.0323
(Freedman and | 12 0.0274 0.0258 0.0369 0.0372
Lane) 24 0.0337 0.0309 0.0465 0.0460
T3 8 0.0503 0.0502 0.0526 0.0531

12 0.0478 0.0483 0.0479 0.0473

(Kennedy) | 5 0.0472 0.0479 0.0477 0.0569
Ta 8 0.0257 0.0256 0.0283 0.0282
Terraak)y | 2 0.0392 0.0288 0.0364 0.0387
(TerBraa 20 0.0419 0.0379 0.0473 0.0465
T 8 0.0386 0.0231 0.0341 0.0339

. 12 0.0379 0.0266 0.0349 0.0352
(Tantawanich) | 5, 0.0435 0.0417 0.0436 0.0426
RT6 8 0.0509 0.0512 0.0481 0.0472
(Kherad-Pajouh | 12 0.0482 0.0509 0.0484 0.0480
and Renaud) | 24 0.0490 0.0489 0.0501 0.0486

Table 9.7.3 and 9.7.4 show the empirical power of the permutation tests and the partial F-test
when « =0.05. Table 9.7.3 shows the power comparison when errors are i.i.d normally
distributed, while table 9.7.4 shows the power comparison when the errors have a t(4)
distribution. The Kennedy (1995) method is not included in tests of power since this method
generally has inflated type | error rates. With all methods, there are increases in power with
an increase in sample size. On the other hand, for data generated with radically non-normal
errors, the normal-theory F-test is significantly less powerful than the permutation methods.
None of the permutation methods differ significantly in terms of power for any of the
simulations. Differences between the reduced and full-model methods are detectable when
sample sizes are small, but disappear as sample sizes are increased. At low values of 4, and
B, the Freedman and Lane (1983) method has slightly greater power. As 4, and },
increases, the Ter Braak (1992) method becomes more powerful than the Freedman and Lane
(1983) method. As power approaches 100%, the two methods converge. The size of the
difference also decreases as the sample size increases. Comparing the Tantawanich (2006)
method to the Kherad-Pajouh and Renaud (2010) method, the Kherad-Pajouh and Renaud

(2010) method is more powerful, however as power approaches 100%, the two methods

converge.
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Table 9.7.3 Power comparison of the six tests at & = 0.05 for sample sizes n= 8, 12 and 24 and

parameter values (3, f,) = (1,1) when errors are i.i.d normal.

&~NOD; (8. £)=@L1); n=8

V2N

(0.101)  (0103) (0107 (0112

& ~N(01);(4.4)=@L1); n=12

V2N

(0.101)  (0103) (0107 (01,12

& ~N(01),(4.5)=L1); n=24

0.8 -

0.6 -

0.4 -

0.2 -

V2N

0

(0,0) (0.101)  (0103) (0107 (01,12

.................... Partial F-test Ter Braak test

—a—Manly test Freedman & Lane test
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£~N01);(4.4)=QL1Y; n=8

(Bs. )
0 . . . .
(0,0) (01,01  (0.103) (0107  (0.1,1.2)
&~NOY;(A.5)=0LD; n=12
1 -
08 -
06 -
04 -
02 -

0 ] . . . (IﬁyﬂA)
(0,0) (01,01  (0.103) (0107  (0.1,1.2)
& ~N(017),(8.4)=QLY); n=24

1 -
08 -
06 -
04 -
02 -
) — (85, )
0 . . . .
(0,0) (01,01)  (0.103) (0107  (0.1,1.2)

Partial F-test

Tantawanich test

——— Kherad-Pajouh& Renaud test



Table 9.7.4 Power comparison of the six tests at & = 0.05 for sample sizes n= 8, 12 and 24 and

parameter values ([, f,) = (1,1) when errors are exponential.

g ~exp()-1;(8.4,)=QA1); n=8

0.8 -

0.6 -

0.4 -

0.2 -
- V2N
0 T T T ]
(0,0) (0101 (0103 (0107 (01,12
g ~exp)-1;(4,4,)=011); n=12
1 -
0.8 -
0.6 -
0.4 -
0.2 -
. | | B
(0,0) (0101 (0103 (0107 (01,12
& ~expM)-1,(8.5,)=L1); n=24
1 -
0.8 -
0.6 -
0.4 -
0.2 -
o | . . . (B, /)
(0,0) (0101 (0103 (0107 (01,12
.................... Partial F-test Ter Braak test
—a— Manlytest  -------- Freedman & Lane test

g ~exp)-1; (6. 4)=@QA1); n=8

0.8 -
0.6 -
04 -

0.2 -

B, )

0

(0,0) (0.1,0.1) (0.1,0.3) (0.1,0.7) (0.11.2)
g ~exp(1)-1;(8,4)=011); n=12

0.8 -
0.6 -
04 -

0.2 - -
; - Y

0,0 (0.1,01) 0.1,0.3) 0.1,0.7) 0.11.2)

0

g ~exp()-1,(4.4)=QLY; n=24

14 JE——

08
06 - /
04 -

02 - a

(%5 5.)

0 T T T
0,0 0.1,01) 0.1,0.3) 0.1,0.7) 0.11.2)

,,,,,,,,,,,,,,,,,,,, Partial F-test — . —.— Tantawanich test

—x—— Kherad-Pajouh& Renaud test
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10 Principal Component Analysis
10.1 Introduction

Principal component analysis (PCA) is an analysis method frequently used in the social
sciences to reduce a large number of possibly correlated variables to a smaller number of
uncorrelated underlying variables, called principal components. These orthogonal principal
components contain as much information from the observed variables as possible. If the goal
of the analysis is to optimally reduce a large number of variables to a smaller number, instead
of deriving a model of the correlation structure, then PCA is the more appropriate procedure
than compared to factor analysis. PCA can be seen as a type of exploratory analysis and its

general objectives are data reduction and interpretation.

Permutation tests can be used as a means to validate and confirm the results obtained from
the exploratory PCA. In PCA, the eigenvalues may be obtained using the correlation matrix.
The correlation matrix requires the assumption of normality. If the data does not come from a
normal distribution, the results from the PCA analysis are not valid. In PCA it is also
assumed that there is a linear relationship between the variables. If this is not the case then
the PCA results are also not valid. Permutation tests can thus be used to either confirm or
reject the PCA results. The general rule for PCA is that most of the variation can be explained
by the principal components that have eigenvalues greater than 1, otherwise known as the
Kaiser Criterion. However, in real life situations, this rule is not always easy to apply because
if an eigenvalue is close to 1, such as 0.988, it is debatable whether or not this eigenvalue

should be dropped. Permutation tests will thus provide a definite answer for this eigenvalue.

Two permutation methods are discussed. The first method involves randomly permuting the
elements in the data matrix. The second involves permuting one variable at a time, while
keeping the other variables fixed. It is shown that permutation tests can always almost be
performed for determining significant deviations from an alternative random explanation for
the effects in the data.

72



TEIT VAN PRETO
Y OF PRETO
ITHI YA PRETO

mn
«Z

10.2  The Principal Component Procedure

Algebraically principal components are particular linear combinations of the p random

variables X, X,,........ X, Geometrically, these linear combinations represent the selection

of a new coordinate system obtained by rotating the original system with X, X,

the coordinate axes. The new axes represent the directions with maximum variability and
provide a simpler and more parsimonious description of the covariance structure. Principal

components depend solely on the covariance matrix 2. or the correlation matrix O of

D, CFD. TP X,

Let the random vector X'=[X,X,,........ ,Xp] have the covariance matrix >, with

eigenvalues 4, > 4, >......... > A, >0. Consider the linear combinations
Y=a,'X=a,X +a,X,+... +a1po
Y,=a,'X =a, X, +a,, X, +....... +a2po
Y=a,'X=0a,X,+a,X,+.... +ta,X,

The principal components are the uncorrelated linear combinations Y,Y,,......... Y, whose

variances are as large as possible. The first principal component is the linear combination

a,' X that maximizes var(a,'X) subject to @, 'a, =1. The second principal component is the
linear combination a,'X that maximizes var(a,'X) subject to a,'a,=1 and
cov(a, X,a,X)=0. At the ith step, the ith principal component is the linear combination

a,' X that maximizes var(a,'X) subjectto a,'a, =1 and cov(a,'X,a,'X) =0 for k<i.
Let X'=[X,, X, e , X, have the eigenvalue-eigenvector pairs (4,e),(4,,e,), ..
(4,.e,)with 4, >4, >......... >4,20. Let y=¢'X, V,=¢€,"X,....... ,Y,=e 'X bethe
principal components. Then
P P
Oy + Oy F v +0,, =D Var(X,) =4 +A, + . +4, =Y var(Y). (10.2.1)
i=1 i=1

The proof is given in the appendix. Thus
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P P
D var(X,) =tr(Z) = var(Y).
i=1 i=1
Result (10.2.1) says that
Total population variance = o, + 0,, +......... +o, =4+ A

and consequently, the proportion of total variance explained by the kth principal component

is given by

for k=12,......... 7

If most (for instance, 80% to 90%) of the total variance, for large p, can be attributed to the
first one, two, or three components, then these components can “replace” the original p

variables without much loss of information (Linting et al; 2007).

10.3 The Permutation Approach

The permutation approach involves randomly and independently permuting the elements
within the columns of the data matrix. If the variables are assumed to be interchangeable on
the assumption of shared marginal distributions between variables, the data may be fully
permuted between rows as well as columns. However, this assumption is unrealistic in
practise because variables mostly differ in content and scaling. Therefore, usually the data are
only permuted within the columns of the data set X, on the assumption of shared marginal
distributions between the objects (Good; 2000). Thus the total number of possible permuted
data sets is n!"™, where n represents the total number of observations and m is the number of
permuted variables. Since this number increases rapidly with the number of objects and
variables, usually a random sample of the total set of permutations is used. Linting et al.
(2011) suggest using 999 permutations because if too few permutations are used, the p-value

will be relatively large.

Suppose v different permuted data matrices X~ are constructed and analysed. This results in

v sets of eigenvalues{1 }, p=1,......... , P, with P the dimensionality of the PCA solution.
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These eigenvalues are compared with the set of eigenvalues, {4,}, p=1,........ , P, from the

analysis of the original, unpermuted data matrix X. To test the significance of the pth
eigenvalue of X, the exceedance probability (p-value) is computed. This is done by
calculating the proportion of the values in the permutation distribution that is equal to or

exceeds the observed statistic is computed. The p-value is computed as

number(4, > 1,)
P+1

p—value=P(1 21,)= (10.3.1)

where the numerator represents the number of times a statistic from the permutation
distribution is greater than or equal to the observed statistic and P is the number of
permutations. (Buja and Eyuboglu; 1992). Under the null hypothesis, the observed data are
assumed to be just another permutation of a random data set, thus the denominator in (10.3.1)
is P+1 rather than P.

10.4 Two Permutation Strategies

Two different permutation strategies are considered. The first involves permuting the
variables independently and concurrently and was proposed by Buja and Eyuboglu (1992) to
establish the significance of the eigenvalues. The second method was proposed by Linting et
al. (2011) and it involves permuting the variables independently and sequentially, that is,

permuting one variable at a time, while keeping the others fixed.

The first form relates to the variance accounted for in the entire data set by the first ¢
principal components, with ¢ the number of components selected to represent the data set
sufficiently. The total variance accounted for is equal to the sum of the eigenvalues of the
first ¢ components. Permuting all the variables in a data set concurrently enables the fit of a
variable in an observed data set to be compared to the fit of variables with the same
univariate distributions (its permutations) in a dataset with a completely random structure.
Studies done by Buja and Eyuboglu (1992) show that this method is not appropriate to
establish the significance of the contribution of a single variable to the principal component
structure. Thus a more appropriate procedure is the use of the second method which assesses
the significance of the variance accounted for of a variance, given the structure among the

other variables.
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The second permutation method relates to the contribution of each separate variable to the

total variance accounted for. For this procedure, the elements X; of the columns X, of the

matrix are permuted independently. The philosophy of this permutation test is to destroy the

pairing of observations, that is, to disconnect the link between the value of X; and x, that

exists because they share the first index. To attain this, only the elements of one variable at a
time should be permuted, while keeping the other variables fixed. This correspondence
between the elements in the row of X is lost when the row elements of the columns are
permuted. Permuting whole rows or columns has no effect (Buja and Eyuboglu; 1992).In the
context of PCA the high dimensional hyper-ellipse that contains the row points in X is
transformed into approximately a hypersphere by repeated pair wise switches of the row
point positions along the coordinate axes. The hyper-ellipse’s longest axes will most likely be
shortened by the permutation of the data matrix. This corresponds to the idea that all
eigenvalues are equal. Another way of interpreting the permutation of X is that the correlation
structure of X’X is destroyed. The restriction to standardised PCAs is not a necessary one as
the variance/covariance structure (for centered data) or the sum of squares and cross product
structure (for raw data) in XX will be destroyed too. A consequence of this approach is that
more permutations are needed: If the first strategy is performed with 999 permutations, the
alternative strategy involves 999xm permutations (with m the number of variables in the

data set).

10.5 Numerical Example

Consider table 12.1 which represents the IAAF national track results for the 1984 Los
Angeles Olympics. Table 12.1 shows the results of the 100m per second, 200m per second,
400m per second, 800m per minute, 1,500m per minute, 5,000m per minute, 10,000m per

minute and the marathon per minute.

Table 10.1 The IAAF National Track Records for Men

800 m 1,500 m 5,000 m 10,000 m Marathon
Country 100 m (s) 200 m (s) 400 m (s) (min) (min) (min) (min) (min)
Argentina 10.39 20.81 46.84 181 3.70 14.40 26.36 137.72
Awustralia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.30
Austria 10.44 20.81 46.82 1.79 3.60 13.26 271.72 135.90
Belgium 10.34 20.68 45.04 1.73 3.60 13.22 27.45 129.95
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Switzerland
Taipei
Thailand
Turkey
USA

USSR

Western Samoa

10.37
10.59
10.39
10.71
9.93

10.07
10.82

20.46
21.29
21.09
21.43
19.75
20.00
21.86

(o<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

45.78 1.78
46.80 1.79
47.91 1.83
47.60 1.79
43.86 1.73
44.60 1.75
49.00 2.02

3.77
3.84
3.67
3.53
3.59
4.29

13.22
14.07
15.23
13.56
13.2

13.2

16.28

27.91
30.07
32.65
28.58
27.43
27.53
34.71

131.20
139.27
159.90
131.50
128.22
130.55
161.83

Source: Johnson, R.A.
edition. Prentice Hall

and Wichern, D.W. (2002). Applied Multivariate Statistical Analysis. 5"

Table 10.2 and 10.3 show the results from the PCA on the IAAF National track records for

men. Looking at the eigenvalues, the first two principal components explain 86,88% of the

sample variation. Thus the first two principal components may summarize the total sample

variance.

Table 10.2 Eigenvalues of the Correlation Matrix for the Track Results

Eigenvalues of the Correlation Matrix

ﬂp Difference Proportion Cumulative

1 6.01395 5.07753 0.7517 0.7517
2 0.93642 0.35575 0.1171 0.8688
3 0.58067 0.43238 0.0726 0.9414
4 0.14829 0.00996 0.0185 0.9599
5 0.13833 0.06213 0.0173 0.9772
6 0.07620 0.01252 0.0095 0.9867
7 0.06369 0.02125 0.008 0.9947
8 0.04244 0.0053 1

Table 10.3 Eigenvectors of the Correlation Matrix for the Track Results

Eigenvectors

Prinl Prin2 Prin3 Prind Prin5 Prin6 Prin7 Prin8
m2100 0.13679 0.94704 0.28507 -0.04810 | -0.01842 0.00673 0.02103 -0.00073
m200 0.33992 0.15902 -0.60353 0.62279 -0.27093 0.15267 -0.04952 0.08883
m400 0.36596 0.07613 -0.40926 | -0.22659 0.75472 -0.26576 | -0.03270 0.01176
m800 0.38495 -0.04350 | -0.18548 | -0.57211 | -0.24104 0.56527 0.26181 -0.20504
m1500 0.39072 -0.08484 0.03679 -0.30718 | -0.44918 | -0.51795 | -0.13202 0.50691
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m5000 0.38755 -0.11651 0.26169 0.06503 -0.03006 0.02389 -0.72350 | -0.48845
m10000 0.38394 -0.13625 0.27351 0.27101 -0.03633 -0.36027 0.61954 -0.41332
marathon 0.36519 -0.17552 0.45601 0.24318 0.30753 0.43342 0.05271 0.53249

To validate the PCA results, a permutation principal component analysis is performed.
500x8 different permuted data matrices are constructed and analysed using the second
method described in section 10.4, that is, permuting only one column at a time, while keeping

the other variables fixed.

A useful aid for determining an appropriate number of principal components is a scree plot.
With the eigenvalues ordered from largest to smallest, a scree plot graphically illustrates the
variance accounted for by each eigenvalue on the vertical axis versus the dimension on the
horizontal axis. Figure 10.1 illustrates the variance accounted for, for a random sample of 30
permuted data matrices. Looking at the elbow bend in the scree plot, it can be seen that most
of the variation can be explained by the first two principal components. The remaining
eigenvalues are relatively small and all about the same size, so the first two sample principal

components may effectively summarize the total sample variance.

Figure 10.1 The Proportion of the Variance Accounted For per Dimension of the Principal
Components of the Track Results.
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0.4
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Table 10.4 presents the eight eigenvalues and the probabilities P(ﬂ;zﬂbp) for the
eigenvalues/ip,pzl, ......... ,8. Table 10.4 gives clear evidence of the significant two-

dimensional nature of the track results. The first principal component explains 60.14% of the
total sample variance. The first two principal components, collectively, explain 86.88% of the
total sample variance. Consequently, sample variation is summarised very well by two
principal components. The p-values from the permuted eigenvalues clearly support the PCA
results obtained, that is, the reduction of the 55 observations from eight variables to two

variables as 4, =0 forp=1,2and 4, forp=3,4,5,6,7, 8 are close to one.

Table 10.4 Empirical Eigenvalues A, and Permutation Test Results P(/i; > 4,) for the Track

Results.
) ) Track Results
Dimension -
4, P(A,24,)
1 6.01395 0.00000
2 0.93642 0.00000
3 0.58067 0.88745
4 0.14829 0.98317
5 0.13833 1.00000
6 0.07620 1.00000
7 0.06369 1.00000
8 0.04244 1.00000
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11 Appendix

Proof of (9.6.1):
Consider
c=y-y=y-Xp=y-X(X'X)"X'y=(I,-H)

where H = X (X X )X .Since H is the projection matrix to the subspace spanned by the

columns of X, H is an idempotent matrix for any design matrix X, that is H?> = H . Similarly,
I-His also idempotent. Using the idempotent property of H, the residual sum of squares

under the full model can be written as

ge=y(U-HYy=y'(I-H)y=y(I-X(X'X)X")y

Similarly it can be shown that

e e =y (I-H)y=y'I-H)y=y'(I-X,(X,'X))X,)y (11.8.1)
Thus

yI-H)y-y(I-H)y=y'(X(X'X)X-X,(X,"X)X,)y (11.8.2)

Thus equations (11.8.1) and (11.8.2) are similar.

Proof of (9.6.4):

Consider

i _ y||:XKR1(XKR1 |XKR1)—1XKR1 .]y B y'HKRly
y[I-x(x'x)"Xx']y  yU-Hly’
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i _ yKRl ||:XKR1 (XKRl |XKR1)—1 Y KR .} yKRl _ yKRl -HKRlyKRl
yKRl .[1 _ x ket (XKRl |XKR1)—1XKR1 .} yKRl yKRl '[I _ HKRl]yKRl !
- yKRl -[XKRl (XKRl uXKRl)—lXKRl]yKRl yKRl 'HKRlyKRl
o yKRll[I_X(XIX)—leijRl - yKRll[I_H]yKRl ’
and
. yKRZ u[XKRZ(XKRZ uXKRZ)—1XKR2 .] yKRZ _ yKRZ 'HKRZyKRz
yKRZ '[I _ XKRZ(XKRZ .XKRZ)-1XKR2 .] yKRZ yKRZ '[I _ HKRZ]yKRZ
where

H — X(X lx)—IX '1H1 — Xl(XIIX:L)lel land HKRI — XKRI(xKRlIxKRl)—lxKRlI

Since ,5’2 = B = BF* the only ingredient left to make an exact permutation test is to show

that F5* = pE8B AR — FRRL and FX*2 = FX® In order to show that F*** = F*®  note that

HH™ = (X,(X,' X,) X, )X (X X)L xRty
= l(Xl IXl)—l(Xl |XKR1)(XKR1 lxKRl)—]_XKRl '
=0

Using the equality above, it can be shown that the two numerators in £ and F***are equal:

v Hy =y (I -H)H™ (I -H,)y=y'H"y

Similarly, by using the fact that H = H, + H*™ it can be shown that the denominators in

F*and F*®are equal:

YO - H) " = yM (I - H, - H) ™
=y"(I-H)(I-H)-H"")(I-H,)y
=y -H,-(I-H)H"(I-H,))y
=y(I-H,-H")y

=y -H)y
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Therefore

v__YHYy _ y'Hy
y(I-H)y y '(I-H)y"

In order to show that F*** = F*® it can be seen that the numerators of F*** and F**are

equal. It thus remains to show that their denominators are equal:
y I - H)y"™ = y (I - H)(I - H")(I - H,)y

=y(I-H)-(I-H)H"(I-H,)y
=y'(I-H,-H"")y
=y'(I-H)y
- yKRl'(I—H)yKRl
Therefore

KR1 |HKR1 KR1 KR1 |HKR1 KR1

y y y y _ pKRL

FKR4 — —
yKRl I(I _ HKRl)yKRl yKRl I(I _ H)yKRl

In order to show that F*** = F** one can use the fact that V"= 1 — H,to show that
YHOXTE = Ry X = (I - H) X =yt X,
D GlD GED Gl 1 0. GED Gl | B/ o). GED. Gl G
and
YOy = Ry R = (A - H) p =

Therefore

KR2 v gy KR2 _ KR2 KR1v pyKR1 _ KRl
FRR2 _ Jy H™y y H _ fKRL

- yKRZ I(In—p _HKRZ)yKRZ - yKRl :(I_HKRl)yKRl
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Proofof 10.2.1

Since gy, + 0, + e +0,, =tr(X) one can write X = EAE where X is the covariance

matrix, A is the diagonal matrix of eigenvalues and E =[e,e,,......... ,e,] so that

EE'=E'E =Ip . Thus

rZ)=tr(EAE" ) =tr(AE'E)=tr(A) =4+ 4, +........ +4,
Thus

37 var(X,)=r(2)=tr(A) =Y " var(¥)
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13 Appendix

13.1 Code for Section 8.3

title'Number of ants eaten from june to september by small and
lizards"';
data lizard;
input size $ months $ ants;
datalines;
sjun 13

sjul 8

saug 515
ssep 18

sjun 242
sjul 59
saug 488
ssep 44

sjun 105
sjul 20

saug 88

ssep 21

l1jun 182
1jul 24

laug 460
lsep 140
1jun 21

1jul 312
laug 1223
lsep 40

1jun 7

1jul 68

laug 990
lsep 27

/*Perform analysis of variance for balanced data*/

procanovadata = lizard;

class size months;

model ants = size months size*months;
run;

quit;

prociml;
resetnolog;

= 4;
= 2;

= 24;

m = 10;

simul = 10000;
reject = J(1,1,0);

5 O W
|

y sw = J(n,1,0);
y11=2J(6,1,0);
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J(24,1,0);

y perm sw = J(24,1,0);

y perm b = J(24,1,0);

ybar Si = J(2,1,0);
51

y _perm =

ybar M = J( 0);
ybar Si sw J2,1,0);
ybar Si b = J(2,1,0);
ybar M sw = J(5,1,0)
y ijo = J(24,1,0)

y ijo M = J(24,1
fa = J(1,1,0);
fb J(1,1,0);

F Manly = J(simul,1,0);

F sw = J(simul,1,0);

F b= J(simul,1,0);

p value m = J(simul,1,0);
p_value sw = J(simul,1,0);
p_value b = J(simul,1,0);
p value j = J(simul,1,0);
count = 0;

,0);

/* The Permutation Approach */

y = { 13, 8, 515, 18, 242, 59, 488, 44, 105, 20,
21, 312, 1223, 40, 7, 68, 990, 27};
do j = ltosimul;
seed = 1234567;
do 1 = 1lto24;
callranperm(seed,m,vy) ;

y_perm = y;

end;

y 1 1[1] = y perm[1l];

y 1 1[2] = y perm[1+4];
y_1_1[3] = y_perm[5+4];
y 1 1[4] = y perm[9+4];
y 1 1[5] = y perm[13+4];
y 1 1[6] =y perm[17+4];

90

88, 21,

182, 24,

460,

140,



y 1 2[1] = y perm[2];
y 1 2[2] =y perm[2+4];
y 1 2[3] =y perm[6+4];
y 1 2[4] = y perm[10+4];
y 1 2[5] = y perm[14+4];
y 1 2[6] =y perm[18+4];
y 1 3[1] = y perm[3];
y 1 3[2] = y perm[3+4];
y 1 3[3] =y perm[7+4];
y 1 3[4] = y perm[11+4];
y 1 3[5] = y perm[15+4];
y 1 3[6] =y perm[19+4];
y 1 4[1] = y perm[4];
y 1 4[2] = y perm[4+4];
y 1 4[3] = y perm[8+4];
y 1 4[4] = y perm[12+4];
y 1 4[5] = y perm[1l6+4];
y 1 4[6] =y perm[20+4];
y 2 1[1:12] = y perm[1:12];
y 2 2[1:12] = y perm[13:24];
ybar ju = y 1 2[+]/(6*24);
ybar jul= y 1 2[+]/(6*24);
ybar au = y 1 3[+]/(6*24);
ybar se = y 1 4[+]/(6*24);
ybar s= y 2 1[+]/(2*24);
ybar 1= y 2 2[+]/(2*24);
ybar M[1] ybar jul[l];
ybar M[2] = ybar jul[l];
ybar M[3] = ybar aull];
ybar M[4] ybar se[l];
ybar Si[l] = ybar s[l];
ybar Si[2] = ybar 1[1];
y ijo= y/24
y 000 y[+]1/n;

/* The Manly Method */

/* Calculate the permuted F Manly values */

do s = 1lto a;
do t = 1to b;
do u = 1lto n;
fa = (y_ijo[u] - ybar Si[t] - ybar M[s] + y ooo)**2
/((2-1)*(5-1));
fb = (ylu] - y_ijolu])**2/(2*5*23);
end;
end;
end;
F Manly[j] = fa/fb;
ifF Manly>= 3then count = count +1;
printfafb ;

/*Calculate the permuted p value*/
p_value m[j] = count / simul;
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ifp va

lue m[]]

m;

<0.05then reject
printp value |

/* The Still and White Method */

/*

doss

y_000;

printy
seed

Calculate the
1to a;
dott = 1lto b;
douu = 1lto n;
y_swluu] = yluu]
end;
end;
end;
SW;
1234567;
do 1 = 1lto24;
callranperm(seed,m,y sw);
y_Perm sw = y SW;
end;
y 1 1 sw[l] =y perm sw[l];
y 1 1 sw[2] = y perm sw([l+4];
y 1 1 sw[3] =y perm sw[5+4];
y 1 1 sw[4] = y perm sw[9+4];
y 1 1 sw[5] = y perm sw[13+4];
y 1 1 sw[6] = y perm sw[l7+4];
y 1 2 sw[l] = y perm sw[2];
y 1 2 sw[2] = y perm sw([2+4];
y 1 2 sw[3] = y perm sw[6+4];
y 1 2 sw[4] = y perm sw[10+4];
y 1 2 sw[5] = y perm sw[l4+4];
y 1 2 sw[6] = y perm sw[18+4];
y 1 3 sw[l] = y perm sw[3];
y 1 3 sw[2] = y perm sw[3+4];
y 1 3 sw[3] = y perm sw[7+4];
y 1 3 sw[4] = y perm sw[ll+4];
y 1 3 sw[5] = y perm sw[l5+4];
y 1 3 sw[6] = y perm sw[19+4];
y 1 4 sw[l] = y perm sw[4];
y 1 4 sw[2] = y perm sw([4+4];
y 1 4 sw[3] = y perm sw[8+4];
y 1 4 sw[4] = y perm sw[l2+4];
y 1 4 sw[5] = y perm sw[l6+4];
y 1 4 sw[6] = y perm sw[20+4];
y 2 1 sw[l:12] = y perm sw[1l:12];
y 2 2 sw[l:12] = y perm sw([13:24];
ybar ju sw = y 1 2 sw[+]/(6*24
ybar jul sw= y7172isw[+]/(6*24)
ybar au sw y 1 3 sw[+]/(6*24
ybar se sw = y 1 4 sw[+]/(6*24
ybar s sw= y 2 1 sw[+]/(2*%24);
ybar 1 sw= y 2 2 sw[+]/(2*24);

ybar M sw([l]

ybar ju sw[l];

92

reject + 1;

new y Still snd White values */

- ybar Sif[tt]

- ybar M[ss]

+



ybar M sw([2] = vybar jul swl[l];
ybar M sw[3] = ybar au sw[l];
ybar M sw([4] = ybar se sw[l];
ybar Si sw[l] = vybar s sw[l];

ybar Si swl[2]
y_ijo= y/24;
y ooo =y sw[+]/n;

ybar 1 sw[l];

/* Calculate the permuted F Still and White values */
dost = 1lto a;
dott = 1lto Db;
dout = 1to n;

fa = (y_ijo[ut] - ybar Si[tt] - ybar M[st]
y_000)**2 /((2-1)*(5-1));
fb = (ylut] - y_ijo[ut])**2/(2*5*%23);
end;
end;
end;
F sw[j] = fa/fb;

ifF sw>= 3then count = count +1;
printfafb ;

/*Calculate the permuted p value*/
p value sw[j] = count / simul;
ifp value sw[j] <0.05then reject = reject + 1;

printp value sw;

/* The TerBraak Method */

y b=J(n,1,0);
y_ijo M = y/n;

/* Calculate the new y Ter Braak values */
y b=y -y ijo M;

seed = 1234567;
do 1 = 1lto24;
callranperm(seed,m,y b);

y_perm sw = y SW;
end;

y ijo M= y b/24;

y 1 1 b[l] =y perm b[1l];

y 1 1 b[2] =y perm b[1+4];
y 1 1 b[3] =y perm b[5+4];
y 1 1 b[4] = y perm b[9+4];
y 1 1 b[5] = y perm b[13+4];
y 1 1 b[6] =y perm b[17+4];
y 1 2 b[l] =y perm b[2];

y 1 2 b[2] = y perm b[2+4];
y 1 2 b[3] = y perm b[6+4];
y 1 2 b[4] = y perm b[10+4];
y 1 2 b[5] y _perm b[l4+4];
y 1 2 b[6] =y perm b[18+4];
y 1 3 b[l] = y perm b[3];
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y 1 3 b[2] = y perm b[3+4];

y 1 3 b[3] = y perm b[7+4];

y 1 3 b[4] = y perm b[11+4];

y 1 3 b[5] = y perm b[15+4];

y 1 3 b[6] =y perm b[19+4];

y 1 4 b[l] = y perm b[4];

y 1 4 b[2] = y perm b[4+4];

y 1 4 b[3] = y perm b[8+4];

y 1 4 b[4] = y perm b[12+4];

y 1 4 b[5] y perm b[l6+4];

y 1 4 b[6] = y perm b[20+4];

y 2 1 b[l:12] = y perm b[1:12];
y 2 2 b[l:12] = y perm b[13:24];
ybar jub = y 1 2 b[+]/(6*24);
ybar jul b= y 1 2 b[+]/(6*24);
ybar au b y 1 3 b[+]/(6*24);
ybar se b = y 1 4 b[+]/(6*24);
ybar s b= y 2 1 b[+]/(2*%24);
ybar 1 b= y 2 2 b[+]/(2*24);

= ybar ju bJ[l

ybar jul bl
ybar au b[1l
ybar se b[l

1;

/*
dosp =

y 000)

p valu
ifp va
printp

/* The
/* set
X = {0
11 -1,
211, 3
4 -1 -
5 -11,

ybar Si b[l] =
ybar Si b[2] =
y ijo= y/24;

y ooo =y b[+]/n;

Calculate the

ybar s b[1l];
ybar 1 b[l];

- ybar Si[tp]

permuted F Ter Braak values */

- ybar M[sp]

(ylupl - y ijo[up])**2/(2*5*23);

lto a;
dotp = 1to b;
do up = 1lto n;
fa = (y_ijolupl
**2 /((2-1)*(5-1));
fb =
end;
end;
end;
F b[j] = fa/fb;
ifF b>= 3then count = count +1;

printfafb ;

e b[]] =
lue b[j]
value b;

Jung et al. Method *
up design matrix */

-1 -1, 0 -11, 01 -1

111, 2 -1 -1, 2 -11,

-1 -1, 3 -11, 31 -1,
1, 4 -11, 41 -1, 411,

51 -1, 511} ;
nfact = 999;

/

4

count / simul;
<0.05then reject =

011, 1 -1
21 -1,
311,

5 -1 -1,
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H=J(n,n,0);

VvV = J(n,n,0);

XH = X[,2:2];

X0 = X[,3:3]1;

H = XH*inv (XH *XH)*XH";
VV = I(n) - H;

calleigen (eval,evec,VV);

vV =J(n,n,1);

V = evec* (diag(eval)**0.5) *evec";
y v =V *y;

X0 v = V*X0;

u=J(n,1,0);

y_v_perm = J(n,nfact,0);
F perm a = J(nfact,1,0);
F perm b = J(nfact,1,0);
F perm = J(nfact,1,0);

/*Generate the permuted F values*/;
do h = 1ltonfact;

falh] =

(Y v_perm[,h] "* (X0 _v*inv (X0 v *X0 v)*X0 v')*Y v perm[,h])/2;
falh] = (Y v _perm[,h] *(I(n)-

X*inv (X *X) *X") *Y v _perm[,h])/(n-2-2);
F perm[h] = fa[h]/fa[h];

end;

/*Calculate the permuted p value*/

p value j[j] = count / simul;

ifp value j[j] <0.05then reject = reject + 1;
end;

run;

quit;

13.2 Code for Section 8.5

title"Simulation of ANOVA procedures";
prociml;
resetnolog;

n=12;
nfact = 1000;
simul 10000;

p_value = J(simul,1,0);
reject = 0;

a = 4;
b = 2;
n = 24;
m = 10;

simul = 10000;

reject = J(1,1,0);

y perm = J(24,1,0);

y perm sw = J(24,1,0);
y perm b = J(24,1,0);
ybar Si = J(2,1,0);
ybar M = J(5,1,0);
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ybar Si sw = J(2,1,0);
ybar Si b = J(2,1,0);
ybar M sw = J(5,1,0);
y_ijo = J(24,1,0);

y ijo M = J(24,1,0);

fa = J(1,1,0);

fb = J(1,1,0);

F Manly = J(simul,1,0);
F sw = J(simul,1,0);

F b= J(simul,1,0);

p value m = J(simul,1,0);
p value sw = J(simul,1,0);
p_value b = J(simul,1,0);
p value j = J(simul,1,0)
count = 0;

’

/*For each i, xs are generated from a uniform distribution
Generate the reference sample*/;

X = { 0.43910171.92319383.98945840.6767025,
1.03150021.1409022.98764164.7927917,
0.48146352.41864482.42143153.3979654,

4

4

0.88368211.18391314.49023045.1701252,
0.5371720.36115121.36273923.3279271,
0.72649341.66435261.19636460.6123876 } ;

/*Generate the errors from a normal, exponential, t and uniform
distribution*/
e ={ -1.613007,

-0.137757,
-0.29423,
-0.711689,
-1.00243,
-1.242766 };

bl = {1};

b2 = {1};

b3 = {0};

b4 = {0};

b = bl//b2//b3//b4;
b0 = b3//b4;

/*Generate the reference sample Y*/;
y = X*b + e;

/*Generate V and multiply to the reduced model*/
H=J(n,n,0);

VV = J(n,n,0);

XH = X[,1:2];

X0 = X[,3:4];
H = XH*inv (XH *XH) *XH";
VvV = I(n) - H;

calleigen (eval,evec,VV);
V = J(nrnrl);
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V = evec* (diag(eval)**0.5) *evec";
y v =V *y;

X0 v = V*X0;

e v =Vi*e;

u=J(n,1,0);

e perm = J(n,nfact,0);

y_V_perm J(n,nfact,0);
F perm a = J(nfact,1,0);

F perm b = J(nfact,1,0);
F perm = J(nfact,1,0);
Fa = J(1,1,0);

Fb = J(1,1,0);

F ref = J(1,1,0);

do s = ltosimul;

/*Generate the e permutations*/
do j = ltonfact;
do 1 = 1lto n;
ul[l] = rannor(0);
end;

call SORTNDX( ndx, u, {1}, {1}
u = ulndx,];

do 1 = 1lto n;
e perm[i,J] = e[ndx[i]];
end;
end;

/*Generate the reference sample F;*/

Fa = (y v * (X0 _v*inv (X0 v *X0 v)*X0 v')*y v)/2;

)i

Fb = (y v *(I(n)- X0 v*inv(X0 v *X0 v)*X0 v )*y v)/(n-2-2);

F ref = Fa/Fb;

/*Generate the permuted y values*/;
do g = ltonfact;

y v _perm[,g] = X0 v*b0 + e perm[,g];
end;

/*Generate the permuted F values for Manly Test*/

do s = 1lto a;
do t = 1lto b;
do u = 1lto n;

fa = (y ijo[u] - ybar Si[t]

/((2-1)*(5-1));

- ybar M[s] + y 0o00)**2

fb = (ylu] - y_ijolu])**2/(2*5*23);

end;
end;
end;
F Manlyl[j] = fa/fb;
ifF Manly>= 17.4then count = count +1;

/*Calculate the permuted p value*/
p value m[j] = count / simul;

ifp value m[j] <0.05then reject = reject + 1;

/* Calculate the
doss = 1lto a;
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dott = 1lto b;

douu = 1lto n;
y_swluu] = yluu] - ybar Si[tt] - ybar M[ss]

y_000;
end;
end;
end;
printy sw;
seed = 1234567;
do 1 = 1lto24;

callranperm(seed,m,y sw);
y_Perm sw = y SW;

end;

/* Calculate the permuted F Still and White values */

dost = 1lto a;
dott = 1lto Db;

dout = 1to n;
fa = (y_ijo[ut] - ybar Si[tt] - ybar M[st]
y 000)**2 /((2-1)*(5-1));
fb = (ylut] - y _ijo[ut])**2/(2*5%23);
end;
end;
end;
F sw[j] = fa/fb;

ifF sw>= 3then count

count +1;

/*Calculate the permuted p value for Still and White*/
p value sw[j] = count / simul;
ifp value sw[j] <0.05then reject = reject + 1;

/* Calculate the new y TerBraak values */

y b=y -y ijo M;

/* Calculate the permuted F TerBraak values */

dosp = 1lto a;
dotp = 1to b;

do up = 1lto n;
fa = (y_ijolup] - ybar Si[tp] - ybar M[sp]
y_000)**2 /((2-1)*(5-1));
fb = (ylup]l - y_ijolupl)**2/(2*%5%23);
end;
end;
end;
F b[j] = fa/fb;
ifF b>= 3then count = count +1;
p_value b[j] = count / simul;

ifp value b[j] <0.05then reject = reject + 1;

/*Generate the permuted F Jung et al. values*/;

do h = ltonfact;

falh] =
(Y v_perm[,h]  * (X0 _v*inv(
falh] =
X*inv (X *X) *X ) *Y v _perm|
F perm|

end;

X0

(
,h
h]

v
Y
1)

"*X0 v)*X0 v )*Y v perm[,h])/2;
v perm[,h] "*(I(n)-

/(n-2-2);

falhl/falh];

/*Calculate the permuted p value*/
p_value j[j] = count / simul;
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ifp value j[j] <0.05then reject = reject + 1;
end;
end;
quit;

13.3 Code for Section 9.7

title'Simulation of Multiple Linear Regression Procedures';

prociml;
resetnolog;

n=8; /*{9,18,36,54,72,90}*/
nfact = 999;
simul = 5000;

p value = J(simul,1,0);
reject = 0;

/*For each 1, xs are generated from a uniform distribution with mean
1 and variance 2,3,5,6

Generate the reference sample*/;

x1=J(n,1,0);

x2=J(n,1,0);
x3=J(n,1,0);
x4=J(n,1,0);

one J(n,1,1);

e=J(n,1,0);

y=J(1’111r0);

X = {2.5997294 1.5212853 1.3151689 3.4309603,
2.5858015 3.2893621 1.7899367 5.2750796,
2.7751864 1.075762 3.779272 4.9380381,
2.1413 1.6342128 2.6435113 1.4149492,
2.244165 2.0337241 1.2331845 2.1343334,
2.1431852 3.8966126 1.7310676 2.3856989,
1.1584636 2.3290912 1.8921711 6.1513217,
1 3.7072361 4.1454367 2.6039629

.1803719
b
/*Generate the errors from a normal, exponential, t and uniform
distribution*/

e = {2.6876018,
.0303678,
.9167301,
.3493892,
.0816412,
.0312045,
.6106843,
.6316914

HHEHRRNRR

/* X = x1||x2]||x3]||x4;*/
XH = X[,1:2];
bl = {1};
b2 = {1};
b3 = {0};
b4 = {0};

b = bl//b2//b3//b4;
y = X*b + e;
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y perm = J(n,nfact,0);
u=4J(n,1,0);
F perm a = J(nfact,1,0);
F perm b = J(nfact,1,0);
F perm = J(nfact,1,0);
Fa = J(1,1,0);
Fb = J(1,1,0);
F ref = J(1,1,0);
M=J(n,n,0);
b0 perm = J(2,nfact,0);

XH = X[,1:2];
X0 = X[,3:4];

do s = ltosimul;

/*Generate the y permutations*/
do j = ltonfact;
do 1 = 1lto n;
ul[l] = rannor (0);
end;

call SORTNDX( ndx, u, {1}, {1} );
u = ulndx,];

do 1 = 1lto n;
y_perm[i,J] = yIndx[i]];
end;
end;
/* print y perm;*/

/*Generate the reference sample F*/

Fa = (y *(X*inv (X *X) *X = XH*inv (XH *XH)*XH") *y) /2;
Fb = (y *(I(n)- X*inv (X *X)*X")*y)/ (n-2-2);

F ref = Fa/Fb;

’

/* Manly Method */

/*Calculate the permuted F values*/
do k = ltonfact;

F perm alk] = (y perm[, k] " *(X*inv (X *X) *X -
XH*inv (XH *XH) *XH") *y perm[,k])/2;

F perm b[k] = (y perm[,k] *(I(n)-
X*inv (X" *X) *X") *y perm[,k])/(n-2-2);

F perm[k] = F perm alk]/F perm b[k];

end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= 3.6then count = count + 1;
end;

title'Manly n=8";
/* print count nfact y;*/
p value[s] = count/nfact;
ifp value[s] <0.05then reject = reject + 1;
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/* Freedman and Lane Method */

/*Calculate the permuted y values from the reduced model*/
do i = 1ltonfact;

y perm[,i] = bl*xl + b2*x2 + e perm[,i];
end;

/*Calculate the permuted b values*/
do h = 1ltonfact;

b perm[,h] = inv (X *X)*X *y perm[,h];
end;

/*Calculate the permuted y values from the full model*/
do k=ltonfact;

y perm 2[,k] = X*b perm[,k] + e perm[,k];
end;

/*Calculate the permuted F values*/
do g = ltonfact;

F perm al[g] = (Y perm 2[,g] * (X*inv (X *X) *X -
XH*inv (XH *XH) *XH') *Y perm 2[,gl)/2;

F perm b[g] = (Y perm 2[,g] *(I(n)-
X*inv (X *X) *X") *Y perm 2[,g])/(n-2-2); N

F perm[g] = F_perm a[g]/F perm blg];

end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= F refthen count = count + 1;
end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= 3.6then count = count + 1;
end;

title'Freedman & Lane n=8';
/* print count nfact y;*/
p value[s] = count/nfact;
ifp value[s] <0.05then reject = reject + 1;

/* Kennedy Method */

H = XH*inv (XH *XH) *XH";
VvV = J(n,n,1);

VvV = I(n) - H;

y v o= VV i *y;

X0 v = VV‘*XO*bO;

e v = VvV *

e v _perm = J(n nfact, 0) ;
y v _perm = J(n,nfact,0);
F perm a = J(nfact,1,0);
F perm b = J(nfact,1,0);
F perm = J(nfact,1,0);

Fa = J(1,1,0);

Fb = J(1,1,0);

F ref = J(1,1,0);
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print X0 v;

/*Generate the permuted y values*/;
do i = 1ltonfact;
y v _perm[,i] = X0 v + e perm[,i];
end;
X*inv (X *X) *X = XH*inv (XH *XH) *XH"

/*Generate the permuted F values*/;
do g = ltonfact;
F perm al[g] =
(Y v _perm[,g] "*(XX0_v*inv (X0 v *X0 v)*X0 v')*Y v perm[,qg])/2;

F perm . b[gT = (Y vﬁperm[ gl I(I(n)—
X*inv (X *X)*X ) *Y v perm[,g])/(n-2-2);
F perm[g] = F perm al ]/F_perm_b[g];

end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= 6.944272then count = count + 1;

end;

title'Kennedy n=8";
/* print count nfact y;*/
p value[s] = count/nfact;
ifp value[s] <3.6then reject = reject + 1;

/* Ter Braak */

/*Calculate the permuted F values*/

do j = ltonfact;
F perm a
XH*inv (XH *XH) *XH ) *Y perm

(3 Y perm[,J] *(X*inv (X *X) *X -
[
F perm blj
1)/«
]

I =

i1 /2;

1 = (Y perm[,J] " *(I(n)-
(n-2-2) ;

= F perm a[j]/F _perm b[]j];

X*inv (X" *X) *X") *Y perm[,]]
F perml[]
end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= 3.6then count = count + 1;
end;

title'TerBraak n=8";
/* print count nfact y;*/
p value[s] = count/nfact;
ifp value[s] <0.05then reject = reject + 1;

/* Tantanawich Method */
/*Calculate the matrix M and H*/

M = I(n) - XH*inv (XH *XH)*XH";
H = I(n) - X*inv (X *X)*X";
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/*Calculate the B2 permutations*/
do 1 = 1ltonfact;

b0 perm[,1] = b0 + inv (X0 *M*X0)*X0 *M*e perm[,1];
end;

/*Calculate to F reference statistic*/
Fa = b0 * (X0 *M*X0) *b0;

Fb = y *H*y;

F ref = Fa/Fb;

/*Calculate the permuted F statistic*/
do j = ltonfact;

F perm al[j] = b0 _perm[,j] * (X0 *M*X0) *b0 perm[,]];
F perm b[j] = y *H*y;
F perm[j] = F perm al[j]/F perm b[j];

end;

/*Calculate the permuted p value*/
count = 0;
do d = 1ltonfact;
IfF perm[d] >= 3.6
then count = count + 1;
end;

title'Tantanawich n=8";
/* print count nfact y;*/
p value[s] = count/nfact;
ifp value[s] <0.05then reject = reject + 1;

/* Kherad-Pajouh and Renaud */

H=J(n,n,0);

VvV = J(n,n,0);

XH X[,1:2];

X0 = X[,3:4];

H = XH*inv (XH *XH) *XH";

VvV = I(n) - H;

calleigen (eval,evec,VV);

= J(n,n,1);

= evec* (diag(eval)**0.5) *evec";

/*Generate the permuted y values*/;
do g = ltonfact;

y v _perm[,g] = X0 v*b0 + e perm[,g];
end;

/*Generate the permuted F values*/;

do h = 1ltonfact;
F perm a[h] =

(Y v_perm[,h] "* (X0 _v*inv (X0 v *X0 v)*X0 v')*Y v perm[,h])/2;
F perm b[h] = (Y v perm[,h] "* (I (n)-

X*inv (X *X) *X") *Y v _perm[,h])/(n-2-2);
F perm[h] = F_perm_a[h]/F_perm_b[h];

end;

/*Calculate the permuted p value*/
count = 0;
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do d ltonfact;
IfF perm[d]

count + 1;

>= 3.6

then count
end;

title'Kherad-Pajouh and Renaud n=8';

/* print count nfact y;*/

p value[s] = count/nfact;

ifp value[s] <0.05then reject = reject + 1;
end; /*simulations*/

printp value reject;
quit

13.4 Code for Section 10.5

title'IAAF national track results for the 1984 Los Angeles Olympics';

optionsvalidvarname=any;
odsgraphicson;

data track;

input country $ 1-17 ml100 18-24 m200 25-32 m400 33-40 m800 41-48 ml1500
49-56 m5000 57-64 ml10000 65-73 marathon 74-80;

/* Country 100 m (s) 200 m (s) 400 m (s) 800 m (min) 1,500 m
(min) 5,000 m (min) 10,000 m (min) Marathon (min)*/

datalines;
Argentina0000000010.390020.8100046.84000108.6000222.0000864.00001581.600082
63.20

Australia 10.31 20.06 44.84 104.40 214.20 796.80
1659.60 7698.00

Austria 10.44 20.81 46.82 107.40 216.00 795.60
1663.20 8154.00

Belguim 10.34 20.68 45.04 103.80 216.00 793.20
1647.00 7797.00

Bermuda 10.28 20.58 45.91 108.00 225.00 880.80
1833.00 8797.20

Taipei 10.59 21.29 46.80 107.40 226.20 844.20
1804.20 8356.20

Thailand 10.39 21.09 47.91 109.80 230.40 913.80
1959.00 9594.00

Turkey 10.71 21.43 47.60 107.40 220.20 813.60
1714.80 7890.00

USA 9.93 19.75 43.86 103.80 211.80 792.00
1645.80 7693.20

USSR 10.07 20.00 44.60 105.00 215.40 792.00
1651.80 7833.00

Western Samoa 10.82 21.86 49.00 121.20 257.40 976.80
2082.60 9709.80

’

/* Principal Component Analysis of the Original Data*/
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procprincompdata=Track;

odsselectEigenvaluePlot;

var ml100 m200 m400 m800 ml500 m5000 m10000 marathon;
run;

/* Permutation Approach*/

prociml;
resetnolog;

use track;

read all var{ml0O0,
principal;

m200, m400, m800, ml1500, m5000, ml10000, marathon}

nfact = 1;
n = 55;
u = J(55,1,0);

p_perm = J(55,nfact,0);
principal 2 = J(55,8*8+8*8+8*8,0);
/*print principal;*/

t=0;

do g = 2to3;

do k = 1to8;

col = J(55,1,0);

col = principall,k];
/*Generate the y permutations*/

do j = ltonfact;
do 1 = 1lto n;
ul[l] = rannor (0);

end;

call SORTNDX( ndx, u, {1}, {1} );

u = ulndx,];

do i = 1lto n;

p _perm[i,j] = col[ndx[i]];
end;
end;

printp perm;
principal 2[,1:8] = p_perm| |principal[,2:8];
principal 2], 8+1 8*2] = principal[,1l]||p perm||principall[,3:8];
principal 2[,8*2+1:8*3] = principall[,1:2]||p perm| |principall[,4:8];
principal 2[,8*3+1:8*4] = principall[,1:3]||p perm||principall[,5:8];
principal 2[,8*4+1:8*5] = principall[,1:4]||p_perm||principall[,6:8];
principal 2[,8*5+1:8*6] = principall,1:5]||p_perm||principall,7:8];
principal 2[,8*6+1:8*7] = principall[,1:6]||p_perm||principall[,8:8];
principal 2[,8*7+1:8*8] = principall[,1:7]||p_perm;
t=q;
/*Q=2%/;
If k = 1& t = g then principal 2[, (g-1) *8**2+1 t(g-1)*8**2+8%*1]

p_perm| |principal[,2:8];

If k = 2& t = g then principal 2[, (g-1) *8**2+8*1+1: (gq-1) *8**2+8*2]
principal[, 1] ||p perm||principall[,3:8];
If k = 3& t = g then principal 2[, (g-1) *8**2+8*2+1: (gq-1) *8**2+8*3]
principal[,1:2]||p perm| |principall[,4:8];
If k = 4& t = g then principal 2[, (g-1)*8**2+8*3+1: (g-1) *8**2+8%*4]
principal[,1:3]||p_perm||principall[,5:8];
If k = 5& t = g then principal 2[, (g-1) *8**2+8*4+1: (g-1) *8**2+8*5]
principal[,1:4]||p_perm||principall[,6:8];
If k = 6& t = g then principal 2[, (g-1)*8**2+8*5+1: (g-1) *8**2+8%*6]
principal[,1:5]||p_perm||principall[,7:8];
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If k = 7& t = g then principal 2[, (g-1) *8**2+8*6+1:

principal[,l:G]|Ip_perml|principal[,8:8];

If k = 8& t = g then principal 2[, (g-1)*8**2+8*7+1:

principall[,1:7]||p_perm;
end;
print principal 2;

create par from principal 2;
appendfrom principal 2;

end;

quit;
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