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Chapter 6

Initial Uniform Convergence
Spaces

6.1 Initial Uniform Convergence Structures

As mentioned in Section 2.4, uniform spaces, and more generally uniform conver-
gence spaces, appear in many important applications of topology, and in particular
analysis. In this regard, the concepts of completeness and completion of a uniform
convergence space play a central role. Indeed, Baire’s celebrated Category Theorem
asserts that a complete metric space cannot be expressed as the union of a countable
family of closed nowhere dense sets. The importance of this result is demonstrated
by the fact that the Banach-Steinhauss Theorem, as well as the Closed Graph The-
orem in Banach spaces follow from it.

However, in many situations one deals with a space X which is incomplete, and
in these cases one may want to construct the completion of X. In this regard,
the main result, see for instance [63], [64] and [161] and Section 2.4, is that every
Hausdorff uniform convergence space X may be uniformly continuously embedded
into a complete, Hausdorff uniform convergence space X] in a unique way such
that the image of X in X] is dense. Moreover, the following universal property
is satisfied. For every complete, Hausdorff uniform convergence space Y , and any
uniformly continuous mapping

ϕ : X → Y
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the diagram

X - Y
ϕ
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X]

ιX ∃!ϕ] (6.1)

commutes, with ϕ] uniformly continuous, and ιX the canonical embedding of X into
its completion X].

It is often not only the completion X] of a uniform convergence space X that is
of interest, but also the extension ϕ] of uniformly continuous mappings from X to
X]. In this regard, we recall that one of the major applications of uniform spaces,
and recently also uniform convergence spaces, is to the solutions of PDEs. Indeed,
let us consider a PDE

Tu = f, (6.2)

with T a possibly nonlinear partial differential operator which acts on some rela-
tively small space X of classical functions, u the unknown function, while the right
hand term f belongs to some space Y . One usually considers some uniformities, or
more generally uniform convergence structures, on X and Y in such a way that the
mapping

T : X → Y (6.3)

is uniformly continuous. It is well known that the equation (6.2), or typically some
suitable extension of it, can have solutions of physical interest which, however, may
fail to be classical, in the sense that they do not belong to X. From here, therefore,
the particular interest in generalized solutions to (6.2). Such generalized solutions
to (6.2) may be obtained by constructing the completions X] and Y ] of X and Y ,
respectively. The mapping (6.3) extends uniquely to a mapping

T ] : X] → Y ] (6.4)
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so that the diagram

X - Y
T

?
-X] Y ]

ιX ιY

?T ]

commutes, with ιX and ιY the uniformly continuous embeddings associated with
the completions X] and Y ] of X and Y , respectively. One may now consider the
extended equation

T ]u] = f (6.5)

where the solutions of (6.5) are interpreted as generalized solutions of (6.2). Note
that the existence and uniqueness of generalized solutions depend on the properties
of the mapping T ] and the uniform convergence structure on X] and Y ], as opposed
to the regularity of the generalized solutions, which may be interpreted as the extent
to which a generalized solution exhibits characteristics of classical solutions, which
depends on the properties of the elements of the space X]. It is therefore clear that
not only the completion X] of a u.c.s. X, but also the the associated extensions of
uniformly continuous mappings, defined on X, are of interest.

The example given above indicates a particular point of interest. The uniform
convergence structure JX on the domain X of the PDE operator T is usually de-
fined as the initial uniform convergence structure [26] with respect to some uniform
convergence structure JY on Y , and a family of mappings

(ψi : X → Y )i∈I (6.6)

In the case of PDEs, the mappings ψi are typically usual partial differential opera-
tors, up to a given order m. A natural question arises as to the connection between
the completion of X, and the completion of Y . More generally, consider a set X, a
family of mappings

(ψi : X → Xi)i∈I

where each Xi is a uniform convergence space. If the family (ψi)i∈I separates the
points of X, then the initial uniform convergence structure on X with respect to
the family of mappings (6.6) is also Hausdorff, and we may consider its completion
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X]. It appears that the issue of the possible connections between the completion
of X and that of the spaces Xi, respectively, has not yet been fully explored. We
aim to clarify the possible connection between the completion X] of X, and the
completions X]

i of the Xi.

6.2 Subspaces of Uniform Convergence Spaces

It can easily be shown that the Bourbaki completion of a uniform space X preserves
subspaces. In particular, the completion Y ] of any subspace Y of X is isomorphic to
a subspace of the completion X] of X. For uniform convergence spaces in general,
and the associated Wyler completion, this is not the case. In this regard, consider
the following1.

Example 35 Consider the real line R equipped with the uniform convergence struc-
ture associated with the usual uniformity on R. Also consider the set Q of rational
numbers equiped with the subspace uniform convergence structure induced from R.
The Wyler completion Q] of Q is the set R equipped with a suitable uniform conver-
gence structure. As such, the inclusion mapping i : Q → R extends to a uniformly
continuous bijection

i] : Q] → R (6.7)

Furthermore, a filter F on Q] converges to x] if and only if

[V
(
x]
)
|Q] ∩ [x]] ⊆ F

where V
(
x]
)

is the neighborhood filter in R at x], and V
(
x]
)
|Q denotes its trace on

Q. As such, it is clear that the neighborhood filter at x] does not converge in Q].
Therefore the mapping (6.7) does not have a continuous inverse, so that it is not an
embedding.

In view of Example 35, it is clear that Wyler completion does not preserve
subspaces. The underlying reason for this phenomenon is is twofold. In the first
place, and as mentioned in Section 2.3, the adherence operator on a convergence
space is in general not idempotent. Furthermore, and perhaps more fundamentally,
for a subset Y of a set X, and a filter F on X, we have the inclusion

F ⊆ [F|Y ]X ,

with equality only holding in case Y ∈ F . In terms of the underlying set associated
with the uniform convergence space completion Y ] of a subspace Y of a uniform
convergence space X, we may still say something. In particular, we have the follow-
ing.

1This example was communicated to the author by Prof. H. P. Butzmann
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Proposition 36 Let Y be a subspace of the uniform convergence space X. Then
there is an injective, uniformly continuous mapping

i] : Y ] → X]

which extends the inclusion mapping i : Y → X. In particular,

i]
(
Y ]
)

= aX] (ιX (Y )) .

Proof. In view of the fact that the inclusion mapping i : Y → X is a uniformly
continuous embedding, we obtain a uniformly continuous mapping

i] : Y ] → X] (6.8)

so that the diagram

Y - X
i

?

-Y ] X]

ιY ιX

?
i]

(6.9)

commutes. To see that the mapping (6.8) is injective, consider any y]
0, y

]
1 ∈ Y ] and

suppose that

i]
(
y]

0

)
= i]

(
y]

1

)
= x] (6.10)

for some x] ∈ X]. Since ιY (Y ) is dense in Y ] there exists Cauchy filters F and G on
Y such that ιY (F) converges to y]

0 and ιY (G) converges to y]
1. From the diagram

above it follows that ιX (i (F)) and ιX (i (G)) converges to x]. Therefore the filter

H = ιX (i (F)) ∩ ιX (i (G))

converges to x] in X]. Note that the filter

i−1
(
ι−1
X (H)

)
is a Cauchy filter on Y so that ιY

(
i−1
(
ι−1
X (H)

))
must converge in Y ] to some y].

But ιY
(
i−1
(
ι−1
X (H)

))
⊆ ιY (F) and ιY

(
i−1
(
ι−1
X (H)

))
⊆ ιY (G) so that ιY (F) and

ιY (G) must converge to y] as well. Since Y ] is Hausdorff it follows by (6.10) that

 
 
 



CHAPTER 6. INITIAL UNIFORM CONVERGENCE SPACES 107

y]
0 = y]

1 = y]. Therefore i] is injective.
Clearly i]

(
Y ]
)
⊆ aX] (ιX (Y )). To verify the reverse inclusion, consider any x] ∈

aX] (ιX (Y )). Then

∃ F a filter on ιX (Y ) :
[F ]X] converges to x] in X] .

Then there is a Cauchy filter G on X so that

ιX (G) ∩ [x]] ⊆ [F ]X]

This implies that the Cauchy filter G has a trace H = G|Y on Y , which is a Cauchy
filter on Y . The result now follows by the commutative diagram (6.9).

The following is an immediate consequence of Proposition 36.

Corollary 37 Let X and Y be uniform convergence spaces, and ϕ : X → Y a
uniformly continuous embedding. Then there exists an injective uniformly contin-
uous mapping ϕ] : X] → Y ], where X] and Y ] are the completions of X and Y
respectively, which extends F .

It should be noted that Wyler completion is minimal, with respect to inclusion,
among complete, Hausdorff uniform convergence on the set X], as demonstrated
in the following proposition. We may obtain this as an easy conseqeunce of the
universal property (6.1) and Corollary 37.

Proposition 38 Consider a Hausdorff uniform convergence space X. For any com-
plete, Hausdorff uniform convergence space X]

0 that contains X as a dense subspace,
there is a bijective and uniformly continuous mapping

ι]X,0 : X] → X]
0.

Proof. Let X]
0 be a complete, Hausdorff uniform convergence space that contains

X as a dense subspace, so that the inclusion mapping

i : X 3 x 7→ x ∈ X]
0 (6.11)

is a uniformly continuous embedding. It follows from Corollary 37 that the mapping
(6.11) extends to an injective uniformly continuous mapping

i : X] 3 x] 7→ i]
(
x]
)
∈ X]

0. (6.12)

It remains to verify that the mapping (6.12) is surjective. In this regard, consider
any x]

0 ∈ X
]
0. Since X is dense in X]

0, there is a Cauchy filter F on X so that [F ]X]
0

converges to x]
0 in X]

0. As such, there exists x] ∈ X] so that [F ]X] converges to x].
Therefore i] ([F ]X]) converges to x]

0 in X]
0 so that i]

(
x]
)

= x]
0. This completes the

proof.

For a subspace Y of a Hausdorff uniform convergence space X, this leads to the
following.
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Corollary 39 Let Y be a subspace of the Hausdorff uniform convergence space X.
The uniform convergence structure on the Wyler completion Y ] of Y is the finest
complete, Hausdorff uniform convergence structure on aX] (Y ) so that Y is contained
in it as a dense subspace.

Remark 40 It should be noted, and as mentioned in Section 2.4, that the comple-
tion of a convergence vector space [65], the completion of a convergence group [61],
and the Wyler completion [161] of a uniform convergence space are in general all
different. Indeed, the Wyler completion is typically not compatible with the alge-
braic structure of a convergence group or convergence vector space [26], [65], while
the convergence group completion of a convergence vector space does in general not
induce a vector space convergence structure [21].

6.3 Products of Uniform Convergence Spaces

In this section we consider the completion of the product of a family of uniform
convergence spaces. In contradistinction with subspaces of a uniform convergence
space, products of uniform convergence spaces are well behaved with respect to the
Wyler completion. In particular, it is well known [161] that the product of complete,
Hausdorff uniform convergence structures are complete and Hausdorff. Furthermore,
we obtain the following result.

Theorem 41 Let (Xi)i∈I be a family of Hausdorff uniform convergence spaces, and
let X denote their Cartesian product equipped with the product uniform convergence
structure. Then the completion X] of X is the product of the completions X]

i of the
Xi.

Proof. First note that
∏

i∈I X
]
i is complete. For every i, let ιXi

: Xi → X]
i be the

uniformly continuous embedding associated with the completion X]
i of Xi. Define

the mapping ιX : X →
∏
X]

i through

ιX : x = (xi)i∈I 7→ (ιXi
(xi))i∈I

For each i, let πi : X → Xi be the projection. Since each ιXi
is injective, so is ιX .

Moreover, we have

U ∈ JX ⇒ (πi × πi) (U) ∈ JXi

⇒ (ιXi
× ιXi

) ((πi × πi) (U)) ∈ J ]
Xi

⇒
∏
i∈I

(ιXi
× ιXi

) ((πi × πi) (U)) ∈ J ]Q
⇒ (ιX × ιX) (U) ∈ J ]Q

where J ]Q denotes the product uniform convergence structure on
∏

i∈I X
]
i . Hence

ιX is uniformly continuous. Similarly, if the filter V on ιX (X)× ιX (X) belongs to
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the subspace uniform convergence structure, then

(πi × πi) (V) ∈ J ]
Xi

⇒
(
ι−1
Xi
× ι−1

Xi

)
((πi × πi) (V)) ∈ JXi

⇒
∏
i∈I

(
ι−1
Xi
× ι−1

Xi

)
((πi × πi) (V)) ∈ JX

⇒
(
ι−1
X × ι−1

X

)
(V) ∈ JX

so that ι−1
X is uniformly continuous. Hence ιX is a uniformly continuous embedding.

That ιX (X) is dense in
∏

i∈I X
]
i follows by the denseness of ιXi

(Xi) in X]
i , for each

i ∈ I. The extension property of uniformly continuous mappings into a complete
u.c.s. follows in the standard way.

6.4 Completion of Initial Uniform Convergence

Structures

In view of the fact that the Wyler completion of uniform convergence spaces do not,
in general, preserve subspace, initial structures are not invariant under the formation
of completions. That is, if X carries the initial uniform convergence structure with
respect to a family of mappings

(ψi : X → Xi)i∈I

into u.c.s.s Xi, then the completion X] of X does not necessarily carry the initial
uniform convergence structure with respect to(

ψ]
i : X] → X]

i

)
i∈I

where ψ]
i denotes the uniformly continuous extension of ψ]

i to X]. In this regard,
one can only obtain a generalization of Proposition 36. The first, and in fact straight
forward, result in this regard is the following.

Proposition 42 Suppose that X is equipped with the initial uniform convergence
structure with respect to a family of mappings

(ϕi : X → Xi)i∈I , (6.13)

where each uniform convergence space Xi is Hausdorff, and the family of mappings
(8.22) separates the points on X. Then each mapping ϕi extends uniquely to a
uniformly continuous mapping

ϕ]
i : X] → X]

i (6.14)

and the uniform convergence structure on X] is finer than the initial uniform con-
vergence structure with respect to the mappings (6.14).
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Proof. It follows by the universal property (6.1) that each of the mappings (8.22)
extend to a uniformly continuous mapping (6.14). From the continuity of the map-
pings (6.14) it follows that the uniform convergence structure on X] is finer than
the initial uniform convergence structure with respect to the mapping of mappings
(6.14).

In connection with the actual uniform convergence structure on the set X], we
cannot in general make a stronger claim. However, it is possible to describe the
structure of the set X] itself in terms of the completions of the Xi. In this regard,
we first note that the uniform convergence structure on X may be described in terms
of the product uniform convergence structure on

∏
i∈I Xi.

Proposition 43 For each i ∈ I, let Xi be a Hausdorff uniform convergence space,
with uniform convergence structure JXi

. Let the uniform convergence space X carry
the initial uniform convergence structure JX with respect to the family of mappings

(ψi : X → Xi)i∈I

Assume that (ψi)i∈I separates the points of X. Then there exists a unique uniformly
continuous embedding

Ψ : X →
∏
i∈I

Xi (6.15)

such that, for each i ∈ I, the diagram

X - Xi

ψi

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

∏
Xi

Ψ πi

commutes, with πi the projection.

Proof. Define the mapping Ψ as

Ψ : X 3 x 7→ (ψi (x))i∈I ∈
∏
i∈I

Xi (6.16)
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Since the family (ϕi)i∈I seperates the points of X, the mapping (6.16) is injective.
Furthermore, the diagram

X - Xi

ψi

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

∏
Xi

Ψ πi

(6.17)

commutes for every i ∈ I. Suppose that U ∈ JX . Then

∀ i ∈ I :
(ψi × ψi) (U) ∈ JXi

:

and hence

∀ i ∈ I :
(πi × πi) (Ψ×Ψ) (U) ∈ JXi

:
.

Therefore (Ψ×Ψ) (U) ∈ JQ, which is the product uniform convergence structure,
so that Ψ is uniformly continuous.
Let V ∈ JQ be a filter on

∏
i∈I Xi ×

∏
i∈I Xi with a trace on Ψ (X)×Ψ (X). Then

∀ i ∈ I :
a) (πi × πi) (V) ∈ JXi

b) W ∈ (πi × πi) (V) ⇒ W ∩ (ψi (X)× ψi (X)) 6= ∅

so that

∀ i ∈ I :
(ψi × ψi) ((Ψ−1 ×Ψ−1) (V)) ⊇ (πi × πi) (V)

Form the definition of an initial uniform convergence structure, and in particular
the product uniform convergence structure, it follows that (Ψ−1 ×Ψ−1) (V) ∈ JX .
Hence Ψ is a uniformly continuous embedding. The uniqueness of the mapping Ψ
is obvious from the construction of Ψ.

The following now follows as an immediate consequence of Proposition 43.

Theorem 44 For each i ∈ I, let Xi be a Hausdorff uniform convergence space, with
uniform convergence structure JXi

. Let the uniform convergence space X carry the
initial uniform convergence structure JX with respect to the family of mappings

(ψi : X → Xi)i∈I
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Assume that (ψi)i∈I separates the points of X. Then there exists a unique injective,
uniformly continuous mapping

Ψ] : X] →
∏
i∈I

X]
i (6.18)

such that, for each i ∈ I, the diagram

X] - X]
i

ψ]
i

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

∏
X]

i

Ψ] πi

commutes, with πi the projection, and ψ]
i the unique extension of ψi to X].

Proof. The result follows by Proposition 36, Theorem 41 and Proposition 43.

Within the context of nonlinear PDEs, as explained in Section 6.1, Theorem 44
may be interpreted as a regularity result. Indeed, consider some space X ⊆ C∞ (Ω)
of classical, smooth functions on an open, nonempty subset Ω of Rn. Equip X with
the initial uniform convergence structure JX with respect to the family of mappings

Dα : X → Y , α ∈ Nn (6.19)

where Y is some space of functions on Ω that contains Dα (X) for each α ∈ Nn. In
view of Theorem 44, the mapping

D : X 3 u→ (Dαu) ∈ Y N (6.20)

is a uniformly continuous embedding, and as such (6.20) extends to an injective
uniformly continuous mapping

D] : X] 3 u→ (Dαu) ∈ Y ]N (6.21)
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so that the diagram

X] - Y ]
Dα]

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

Y ]N

D] πi

(6.22)

commutes. Here

Dα] : X] → Y ], α ∈ Nn

are the uniformly continuous extension of the mappings (6.19). As such, each gen-
eralized function u] ∈ X] may be identified with D]u] ∈ Y ]N.

The above interpretation of the completion of a uniform convergence space which
is equipped with an initial structure is central to the theory of the solutions of
nonlinear PDEs presented in the chapters to follow. In particular, we employ exactly
the construction (6.22) to obtain our first and basic regularity properties for the
solutions of such systems of equations.

 
 
 



Chapter 7

Order Convergence on ML (X)

7.1 Order Convergence and the Order Comple-

tion Method

We may recall from Section 1.4 that our approach to the enrichment of the Order
Completion Method [119] is motivated by the fact that the process of taking the
supremum of a subset A of a partially ordered set X is essentially a process of
approximation. Such approximation-type statements, and in particular the process
of forming the Dedekind completion of a partially ordered set, may be reformulated
in terms of topological type structures, which may turn out to be more general than
the usual Hausdoff-Kuratowski-Bourkabi concept of topology.

In this regard, and as mentioned in Chapter 4, there are several useful modes
of convergence on a partially ordered set which are defined in terms of the partial
order, see for instance [29], [101] and [124]. A particularly relevant concept is that of
the order convergence of sequences defined on a partially ordered set through (4.6).
In general, and as mentioned in Section 4.2, there is no topology on a partially
ordered set X that induces the order convergence of sequences. That is, for a
partially ordered set X there is in general no topology τ on X such that the τ -
convergent sequences are exactly the order convergent sequences. However, the
more general context of convergence structures and convergence spaces provides
an adequate setting within which to describe the order convergence of sequences.
Namely, if X is a σ-distributive lattice, then the convergence structure (4.8) induces
the order convergence of sequences.

In particular, and as is discussed in Section 4.2, every Archimedean vector lattice
is fully distributive, and hence σ-distributive. In this case the convergence structure
(4.8) is a vector space convergence structure, and as such it is induced by a uniform
convergence structure [26]. In this case, the Cauchy filters may be defined through

F a Cauchy filter on X ⇔ F −F ∈ λo (0) .

Furthermore, the convergence vector space completion of an Archimedean vector
lattice X, equipped with the order convergence structure λo, may be constructed as

114
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the Dedekind σ-completion X] of X, equipped with the order convergence structure.
If X is order separable, the completion of X is in fact its Dedekind completion. In
the particular case when X = C (Y ), with Y a metric space, the convergence vector
space completion is the set Hft (X) of finite Hausdorff continuous functions on Y ,
which is the Dedekind completion of C (Y ).

Let us now consider the possibility of applying the above results to the problem
of solving nonlinear PDEs through the Order Completion Method. In this regard,
consider a nonlinear PDE of the form (1.100), and the associated mapping

T : Mm (Ω) →M0 (Ω)

The Order Completion Method is based on the abundance of approximate solutions
to (1.100), which are elements of Mm (Ω), and in general one cannot expect these
approximations to be continuous, let alone sufficiently smooth, on the whole of Ω.
Moreover, the space Hft (Ω) does not contain the space M0 (Ω).

On the other hand, the space M0 (Ω) is an order separable Archimedean vector
lattice [119], and therefore one may equip it with the order convergence structure.
The completion of this space will be its Dedekind completion M0 (Ω)], as desired.
However, there are several obstacles to applying the theory of the order convergence
structure to the Order Completion Method. If one equipsMm (Ω) with the subspace
convergence structure, then the nonlinear mapping T is not necessarily continuous.
Moreover, the quotient space Mm

T (Ω) is not a linear space, so that the completion
process for convergence vector spaces does not apply. It is therefore necessary to
develop a nonlinear convergence theoretic model for the Dedekind completion of
M (Ω).

7.2 Spaces of Lower Semi-Continuous Functions

We may recall from Section 3.1 that the notion of a normal lower semi-continuous
function, respectively normal upper semi-continuous function, was introduced by
Dilworth [47] in connection with the Dedekind completion of spaces of continuous
functions. Dilworth introduced the concept for bounded, real valued functions. Sub-
sequently the definition was extended to locally bounded functions [6]. The definition
extends in a straightforward way to extended real valued functions. In particular,
a function u : X → R, with X a topological space, is normal lower semi-continuous
at x ∈ X whenever

(I ◦ S) (u) (x) = u (x) (7.1)

It is called normal lower semi-continuous on X if it is normal lower semi-continuous
at every x ∈ X. Here I and S are the Lower- and Upper Baire Operators defined
through (3.9) and (3.10), respectively. Note that if a function u is real valued and
continuous at a point x ∈ X, then it is also normal lower semi-continuous at x.
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In analogy with H-continuous interval valued functions, we call a normal lower
semi-continuous function u nearly finite whenever the set

{x ∈ X : u (x) ∈ R}

is open and dense in X. We denote the space of all nearly finite normal lower semi-
continuous functions by NL (X). The space NL (X) is ordered in a pointwise way
through

∀ u, v ∈ NL (X) :

u ≤ v ⇔
(
∀ x ∈ X :

u (x) ≤ v (x)

)
(7.2)

The space NL (X) is the fundamental space upon which a convergence theoretic
approach to nonlinear PDEs will be constructed. In this regard, the following basic
order theoric properties of this space are fundamental.

Theorem 45 The space NL (X) is Dedekind complete. Moreover, if A ⊆ NL (X)
is bounded from above, and B ⊆ NL (X) is bounded from below, then

supA = (I ◦ S) (φ)

inf B = (I ◦ S ◦ I) (ϕ)

where

φ : X 3 x 7→ sup{u (x) : u ∈ A}

and

ϕ : X 3 x 7→ inf{u (x) : u ∈ B}

Proof. Consider a set A ⊂ NL (X) which is bounded from above. Then it follows
by (3.17) and (3.15) that the function u0 = (I ◦ S) (ϕ) is nearly finite and normal
lower semi-continuous. Furthermore, u0 is an upper bound for A, that is,

∀ u ∈ A :
u ≤ u0

.

Now suppose that u0 is not the least upper bound of A. That is, we assume

∃ w ∈ NL (X) :
∀ u ∈ A :

u ≤ w < u0

. (7.3)

Then it follows that

ϕ (x) ≤ w (x) , (7.4)
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so that (3.15) and (3.17) imply

u0 ≤ w

which contradicts (7.3).
The existence of a greatest lower bound follows in the same way.

We now proceed to establish further properties of the space NL (X) concerning
the pointwise order (7.2). In this regard, the following result generalizes the well
known property of continuous functions. If D is a dense subset of X, then

∀ u, v ∈ C (X) :(
∀ x ∈ D :

u (x) ≤ v (x)

)
⇒ u ≤ v

.

Proposition 46 Consider any u ∈ NL (X). Then there is a set R ⊆ X such that
X \R is of First Baire Category and u is continuous at every x ∈ R. If v ∈ NL (X)
and D ⊆ X is dense in X, then(

∀ x ∈ D :
u (x) ≤ v (x)

)
⇒ u ≤ v

Proof. Consider any u ∈ NL (X). Then u is lower semi-continuous on X, and
real valued on some open and dense subset D of X. Fix ε > 0. We claim

∃ Γε ⊂ D closed nowhere dense :
0 < S (u) (x)− u (x) < ε, x ∈ D \ Γε

. (7.5)

In this regard, suppose that there is a nonempty, open subset V of D such that

S (u) (x) ≥ u (x) + ε, x ∈ V.

Since u is lower semi-continuous, so is the function u + ε. As such, it follows by
(3.11) and (3.20) that

u (x) ≥ u (x) + ε, x ∈ V,

which is a contradiction. As such, the set of points

{x ∈ D : 0 < S (u) (x)− u (x) < ε}

is dense in D. That it is open follows by the semi-continuity of the functions u and
S (u). Then we have

u (x) = S (u) (x) , x ∈ R = D \

(⋃
n∈N

Γ 1
n

)
.

 
 
 



CHAPTER 7. ORDER CONVERGENCE ON ML (X) 118

As such, and in view of (3.12) and (3.14) it follows that u is upper semi-continuous at
every point of R. Since u is both lower semi-continuous and upper semi-continuous
on R, it is continuous on R.
Consider now any dense subset D of X, and any u, v ∈ NL (X) so that

u (x) ≤ v (x) , x ∈ D.

Take any x ∈ X arbitrary but fixed, and neighborhoods V1 and V2 of x. Since D is
dense in X there is some z0 ∈ V1 ∩ V2 ∩D so that

inf{u (y) : y ∈ V1} ≤ u (z0) ≤ v (z0) ≤ sup{v (y) : y ∈ V2}.

Since V1 and V2 are chosen independent of each other, and that x is arbitrary, we
have

I (u) (x) ≤ S (v) (x) , x ∈ X.

From (3.13), (3.15) and (3.17) it follows that

u = I (I (u)) ≤ I (S (v)) = v

which completes the proof.

Recall from Section 4.2 that the order convergence structure may be defined on
an arbitrary lattice. However, this convergence structure induces the order conver-
gence of sequences only on σ-distributive lattices. As such, the following property
is essential.

Proposition 47 The space NL (X) is a fully distributive lattice.

Proof. Consider any u, v ∈ NL (X), and the normal lower semi-continuous func-
tion

w = (I ◦ S) (ϕ)

where ϕ : X → R is the pointwise supremum of u and v, namely,

ϕ : X 3 x 7→ sup{u (x) , v (x)}.

Since both u and v are nearly finite, there is some open and dense subset D of X
such that ϕ is finite on D. Note that both u and v must be locally bounded on D.
As such, it follows that

∀ x ∈ D :
∃ V ∈ Vx :
∃ M > 0 :

−M < ϕ (y) < M , y ∈ V

.
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Therefore we must have

−M ≤ w (x) ≤M , x ∈ V

so that w is nearly finite. It now follows by Theorem 45 that w = sup{u, v}. The
existence of inf{u, v} follows in the same way.
Now let us show that NL (X) is distributive. Consider a set A ⊂ NL (X) such that

supA = u0

For v ∈ NL (X) we must show

u0 ∧ v = sup{u ∧ v : u ∈ A} (7.6)

Suppose that (7.6) fails for some A ⊂ NL (X) and some v ∈ NL (X). That is,

∃ w ∈ NL (X) :
u ∈ A⇒ u ∧ v ≤ w < u0 ∧ v

(7.7)

Clearly, u0, v > w so that there is some u ∈ A such that w is not larger than u. In
view of Proposition 46

∃ V ⊆ X nonempty, open :
x ∈ V ⇒ w (x) < u (x)

(7.8)

From (3.13), (3.14), (3.15) and Proposition 45 it follows that

(v ∧ u) (x) > w (x) , x ∈ V.

Hence (7.7) cannot hold. This completes the proof.

It is a well known fact that a pointwise bounded subset of C (X) may fail to
be uniformly bounded, even when X is compact. Furthermore, such a pointwise
bounded set may not even be bounded with respect to the pointwise order on C (X).
In this regard, consider the following.

Example 48 Consider the sequence (un) of continuous, real valued functions on R,
defined through

un (x) =


n− n2|x− 1

n
| if |x− 1

n
| < 1

n

0 if |x− 1
n
| ≥ 1

n

Clearly the sequence (un) is pointwise bounded on R. Indeed,

∀ x ∈ R :
∃ Nx ∈ N :

n ≥ Nx ⇒ un (x) = 0

 
 
 



CHAPTER 7. ORDER CONVERGENCE ON ML (X) 120

which validates our claim. However, in view of

un

(
1

n

)
= n, n ∈ N

it follows that there cannot be a continuous, real valued function u on R so that
un ≤ u for each n ∈ N.

Within the more general setting of spaces of normal lower semi-continuous func-
tions there is quite a strong relationship between pointwise bounded sets and order
bounded sets. In particular, we have the following.

Proposition 49 Consider a set A ⊂ NL (X) that satisfies

∃ R ⊆ X a residual set :
∀ x ∈ R :

sup{u (x) : u ∈ A} < +∞
. (7.9)

If X is a Baire space, then

∃ µ ∈ NL (Ω) :
u ∈ A ⇒ u (x) ≤ µ (x) , x ∈ X . (7.10)

If X is a metric space, then

∃ Γ ⊂ X closed nowhere dense :
∃ µ ∈ NL (X) :

1) µ ∈ C (X \ Γ)
2) u ∈ A ⇒ u ≤ µ

(7.11)

The corresponding result for sets bounded from below is also true.

Proof. Consider the function ϕ : X → R defined through

ϕ (x) = sup{u (x) : u ∈ A}, x ∈ X.

Since each u ∈ A is lower semi-continuous, it follows that ϕ is lower semi-continuous
on X. Moreover, ϕ is finite on the residual set R. Set

µ (x) = (I ◦ S) (ϕ) (x) .

In view of the fact that I ◦ S is idempotent it follows that µ is normal lower semi-
continuous and u ≤ µ for every u ∈ A. We claim that µ is nearly finite. Suppose
this were not the case, so that

∃ V ⊂ X nonempty, open :
x ∈ V ⇒ µ (x) = +∞ . (7.12)

Then it follows by the inequality

I (S (ϕ)) ≤ S (ϕ)
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that

∀ x ∈ V :
S (ϕ) (x) = +∞

Then, in view of (3.10), we have

∀ M > 0 :
∀ x0 ∈ V :
∀ W ∈ Vx0 :
∃ xM ∈ V ∩W :

ϕ (xM) > M

Since ϕ is lower semi-continuous, we must have

∃ DM ⊆ V open and dense in V :
x ∈ DM ⇒ ϕ (x) > M

Therefore

ϕ (x) = +∞, x ∈ R′ =
⋂

M∈N

DM

Since ϕ is finite on R, it follows that

R ∩ V ⊆ V \R′

Since X is a Baire space, V is a Baire space in the subspace topology, and R ∩ V
is residual in V . But R′ is clearly also residual in V so that R ∩ V is of first Baire
category, which is a contradiction. Therefore (7.12) cannot hold. Therefore µ is
nearly finite, and we have proven (7.10).
The validity of (7.11) follows by (3.42).

The following related result provides a useful connection between pointwise con-
vergence and order convergence in NL (X).

Proposition 50 Let X be a Baire space. Consider a decreasing sequence (un) in
NL (X) which is bounded from below. Let

u = inf{un : n ∈ N} ∈ NL (Ω) .

Then the following holds:

∀ ε > 0 :
∃ Γε ⊆ Ω closed nowhere dense :

x ∈ Ω \ Γε ⇒
(
∃ Nε ∈ N :

un (x)− u (x) < ε, n ≥ Nε

)
The corresponding statement for increasing sequences is also true.
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Proof. Take ε > 0 arbitrary but fixed. We start with the set

C =

{
x ∈ X ∀ n ∈ N :

un, u continuous at x

}
,

the complement of which is a set of first Baire category. Hence C is dense. In view
of Proposition 46, the set of points

Cε =

{
x ∈ C ∃ Nε ∈ N :

un (x)− u (x) < ε, n ≥ Nε

}
must be dense in C. From the continuity of u and the un on C it follows that

∀ x0 ∈ Cε :
∃ δx0 > 0 :

x ∈ C, ‖x− x0‖ < δx0 ⇒ x ∈ Cε

Since C is dense in X, the result follows.

The set Cnd (X) of all functions u : X → R that are continuous everywhere
except on some closed nowhere dense subset of X, that is,

u ∈ Cnd (X) ⇔
(
∃ Γu ⊂ X closed nowhere dense :

u ∈ C (X \ Γu)

)
(7.13)

plays a fundamental role in the theory of Order Completion [119], as discussed in
Section 1.4. In particular, one considers the quotient space M (X) = Cnd (X) / ∼,
where the equivalence relation ∼ on Cnd (X) is defined by

u ∼ v ⇔

 ∃ Γ ⊂ X closed nowhere dense :
1) x ∈ X \ Γ ⇒ u (x) = v (x)
2) u, v ∈ C (X \ Γ)

 (7.14)

The canonical partial order on M (X) is defined as

U ≤ V ⇔


∀ u ∈ U , v ∈ V :
∃ Γ ⊂ X closed nowhere dense :

1) u, v ∈ C (X \ Γ)
2) u (x) ≤ v (x) , x ∈ X \ Γ

 .

An order isomorphic representation of the space M (X), consisting of normal lower
semi-continuous functions, is obtained by considering the set

ML (X) =

{
u ∈ NL (X)

∃ Γ ⊂ X closed nowhere dense :
u ∈ C (X \ Γ)

}
The advantage of considering the space ML (X) rather than M (X) is that the
elements of ML (X) are actual point valued functions on X, in contradistinction
with the elements ofM (X) which are equivalence classes of functions. In particular,
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the singularity set Γ associated with a function u ∈ ML (X), as well as the values
of u on Γ are fully specified. Hence the value u (x) of u ∈ ML (X) are completely
determined. That is, for each x ∈ X, and every u ∈ ML (X), the value u (x) of u
at x is a well defined element of R, which is not the case for an equivalence class in
M (X). Indeed, for every U ∈ M (X), and each x ∈ X one may find u1, u2 ∈ U so
that

u1 (x) 6= u2 (x) .

Proposition 51 The mapping

IS : M (X) 3 U 7→ (I ◦ S) (u) ∈ML (X) , u ∈ U (7.15)

is a well defined order isomorphism.

Proof. First note that, in view of (3.17) and (7.13), the mapping IS does indeed
take values in ML (X). Now we show that the mapping IS is well defined. That is,
we show that IS (U) does not depend on the particular representation u ∈ U that
is used in (7.15). In this regard, consider some U ∈ M (X) and any u, v ∈ U . Let
Γ ⊂ X be the closed nowhere dense set associated with u and v through (7.14).
Since Γ is closed, it follows by (3.9), (3.10) and (7.13) that

(I ◦ S) (u) (x) = (I ◦ S) (v) (x) , x ∈ X \ Γ (7.16)

Since X \ Γ is dense in X, it follows by Proposition 46 that equality holds on the
whole of X.
It is obvious that the mapping IS is surjective. Indeed, each element u ∈ ML (X)
generates an equivalence class U in ML (X), so that (7.15) and (3.17) implies that
IS (U) = u. To see that it is injective, consider any U, V ∈ M (X). From (7.14) it
follows that

∀ u ∈ U , v ∈ V :
∃ A ⊆ X nonempty, open :
∃ ε > 0 :

1) x ∈ A⇒ u (x) < v (x)− ε
2) u, v ∈ C (A)

so that

IS (U) (x) < IS (V ) (x)− ε, x ∈ A

It remains to verify

∀ U, V ∈M (X) :
U ≤ V ⇔ IS (U) ≤ IS (V )

The implication

U ≤ V ⇒ IS (U) ≤ IS (V )
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follows by (3.20), Proposition 46 and (7.13). Conversely, suppose that IS (U) ≤
IS (V ) for some U, V ∈ M (X). The result now follows in the same way as the
injectivity of IS. This completes the proof.

The following is immediate.

Corollary 52 The space ML (X) is a fully distributive lattice.

7.3 The Uniform Order Convergence Structure

on ML (X)

As a consequence of Corollary 52 one may define the order convergence structure
λo on the space ML (X). The order convergence structure induces the order con-
vergence of sequences on ML (X) and is Hausdorff, regular and first countable. In
order to define a uniform convergence structure on ML (X) that induces the order
convergence structure, we introduce the following notation. For any open subset V
of X, and any subset F of ML (X), we denote by F|V the restriction of F to V .
That is,

F|V =

{
v ∈ML (V )

∃ w ∈ F :
x ∈ V ⇒ w (x) = v (x)

}
Definition 53 Let Σ consist of all nonempty order intervals in ML (X). Let Jo

denote the family of filters on ML (X)×ML (X) that satisfy the following: There
exists k ∈ N such that

∀ i = 1, ..., k :
∃ Σi = (I i

n) ⊆ Σ :
1) I i

n+1 ⊆ I i
n, n ∈ N

2) ([Σ1]× [Σ1]) ∩ ... ∩ ([Σk]× [Σk]) ⊆ U

(7.17)

where [Σi] = [{I : I ∈ Σi}]. Moreover, for every i = 1, ..., k and V ∈ τX one has

∃ ui ∈ML (X) :⋂
n∈N I

i
n|V = {ui}|V

or
⋂

n∈N I
i
n|V = ∅ (7.18)

Before we proceed to establish that the family Jo of filters on ML (X)×ML (X)
does indeed constitute a uniform convergence structure, let us recall the following
useful technical lemma.

Lemma 54 *[26] Let X be a set.

(i) Consider filters U1, ...Un and V1, ...,Vm on X ×X. Then the filter

(U1 ∩ ... ∩ Un) ◦ (V1 ∩ ... ∩ Vm)
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exists if and only if Ui ◦Vj exists for some i = 1, ..., n and j = 1, ...,m. In this
case, we have

(U1 ∩ ... ∩ Un) ◦ (V1 ∩ ... ∩ Vm) =
⋂
{Ui ◦ Vj : Ui ◦ Vj exists}.

(ii) Consider filters F1,F2,G1 and G2 on X. Then (F1 ×F2) ◦ (FG × G2) exists if
and only if F1 ∨ G2 exists. If this is true, then

(F1 ×F2) ◦ (FG × G2) = G1 ×F2.

Theorem 55 The family Jo of filters on ML (X)×ML (X) constitutes a uniform
convergence structure.

Proof. The first four axioms of Definition 21 are trivially fulfilled, so it remains
to verify

∀ U ,V ∈ Jo :
U ◦ V exists ⇒ U ◦ V ∈ Jo

(7.19)

In this regard, take any U ,V ∈ Jo such that U ◦ V exists, and let Σ1, ...,Σk and
Σ′

1, ...,Σ
′
l be the collections of order intervals associated with U and V , respectively,

through Definition 53. Set

Φ = {(i, j) : [Σi] ◦ [Σ′
j] exists}

Then, by Lemma 54 (i) it follows that

U ◦ V ⊇
⋂
{([Σi]× [Σi]) ◦ ([Σj]× [Σj]) : (i, j) ∈ Φ}. (7.20)

Now (i, j) ∈ Φ if and only if

∀ m,n ∈ N :
I i
m ∩ Ij

n 6= ∅

For any (i, j) ∈ Φ, set Σi,j = (I i,j
n ) where, for each n ∈ N

I i,j
n = [inf

(
I i
n

)
∧ inf

(
Ij
n

)
, sup

(
I i
n

)
∨ sup

(
Ij
n

)
]

Now, using (7.20), we find

U ◦ V ⊇
⋂
{[Σi]× [Σj] : (i, j) ∈ Φ} ⊇

⋂
{[Σi,j]× [Σi,j] : (i, j) ∈ Φ}

Clearly each Σi,j satisfies 1) of (7.17). Since NL (X) is fully distributive, see Propo-
sition 47, (7.18) also holds. This completes the proof.

An important fact to note is that the uniform order convergence structure Jo

is defined solely in terms of the order on ML (X) and the topology on X. This
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is unusual for a uniform convergence structure on a function space. Indeed, for
a space of functions F (X, Y ), defined on some set X, and taking values in Y , one
defines the uniform convergence structure either in terms of the uniform convergence
structure on Y , or in terms of a convergence structure on F (X, Y ) which is suitably
compatible with the algebraic structure of the space. Indeed, a convergence vector
space carries a natural uniform convergence structure, where the Cauchy filters are
determined by the linear structure. That is,

F a Cauchy filter ⇔ F −F → 0 (7.21)

The motivation for introducing a uniform convergence structure that does not de-
pend on the algebraic structure of the set ML (X) comes from nonlinear PDEs, and
in particular the Order Completion Method [119]. As mentioned in Chapter 1, as
well as in Section 7.1, such linear topological structures are inappropriate when it
comes to the highly nonlinear phenomena inherent in the study of nonlinear PDEs.

Recall from Section 2.4 that every uniform convergence structure induces a con-
vergence structure through (2.69). In the case of the uniform order convergence
structure, this induced convergence structure on ML (X) may be characterized as
follows.

Theorem 56 A filter F on ML (X) belongs to λJo (u), for some u ∈ ML (X), if
and only if there exists a family ΣF = (In) of nonempty order intervals on ML (X)
such that

1) In+1 ⊆ In, n ∈ N

2)
∀ V ∈ τ :⋂

n∈N In|V = {u}|V

and [ΣF ] ⊆ F .

Proof. Let the filter F converge to u ∈ML (X). Then, by (2.71), [u]×F ∈ Jo.
Hence by Definition 53 there exist k ∈ N and Σi ⊆ Σ for i = 1, ..., k such that (7.17)
through (7.18) are satisfied. Set Ψ = {i : [Σi] ⊂ [u]}. We claim

F ⊃
⋂
i∈Ψ

[Σi] (7.22)

Take a set A ∈ ∩i∈Ψ[Σi]. Then for each i ∈ Ψ there is a set Ai ∈ [Σi] such that
A ⊃ ∪i∈ΨAi. For each i ∈ {1, ..., k}\Ψ choose a set Ai ∈ [Σi] with u /∈ML (X)\Ai.
Then

(A1 × A1) ∪ ... ∪ (Ak × Ak) ∈ ([Σ1]× [Σ1]) ∩ ... ∩ ([Σk]× [Σk]) ⊂ F × [u]

and so there is a set B ∈ F such that

B × {u} ⊂ (A1 × A1) ∪ ... ∪ (Ak × Ak)
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If w ∈ B then (u,w) ∈ Ai × Ai for some i. Since u ∈ Ai, we get i ∈ Ψ and so
w ∈ ∪i∈ΨAi. This gives B ⊆ ∪i∈ΨAi ⊆ A and so A ∈ F so that (7.22) holds.
Clearly, for each i ∈ Ψ, we have

∀ V ∈ τ :
∩n∈NI

i
n|V = {u}|V

(7.23)

Writing each I i
n ∈ Σi in the form I i

n = [λi
n, µ

i
n], we claim

sup{λi
n : n ∈ N} = u = inf{µi

n : n ∈ N}

Suppose this were not the case. Then there exists v, w ∈ML (X) such that

λn ≤ v < w ≤ µn, n ∈ N

Then, in view of Proposition 46, there is some nonempty V ∈ τ such that

v (x) < w (x) , x ∈ V

which contradicts (7.18). Since ML (X) is fully distributive, the result follows upon
setting

ΣF =

{
[λn, µn]

1) λn = inf{λi
n : i ∈ Ψ}

2) µn = sup{µi
n : i ∈ Ψ}

}
The converse is trivial.

The following is now immediate

Corollary 57 Consider a filter F on ML (X). Then F ∈ λJo (u) if and only if
F ∈ λo (u). Therefore ML (X) is a uniformly Hausdorff uniform convergence space.
In particular, a sequence (un) on ML (X) converges to u if and only if (un) order
converges to u.

7.4 The Completion of ML (X)

This section is concerned with the construction of the completion of the uniform
convergence space ML (X). In this regard, recall that the completion of the con-
vergence vector space C (X), equipped with the order convergence structure, is the
set of finite Hausdorff continuous functions on X, see Section 4.3 and [10]. This
space is order isomorphic to the set of all finite normal lower semi-continuous func-
tions. Note, however, that functions u ∈ ML (X) need not be finite everywhere,
but may, in contradistinction with functions in C (X), assume the values ±∞ on any
closed nowhere dense subset of X. Hence we consider the space NL (X) of nearly
finite normal lower semi-continuous functions on X. Following the results in Section
7.3, we introduce the following uniform convergence structure on NL (X).
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Definition 58 A filter U on NL (Ω)×NL (Ω) belongs to the family J ]
o whenever,

for some positive integer k, we have the following:

∀ i = 1, ..., k :
∃ (λi

n) , (µi
n) ⊂ML0 (Ω) :

∃ ui ∈ NL (Ω) :
1) λi

n ≤ λi
n+1 ≤ µi

n+1 ≤ µi
n, n ∈ N

2) sup{λi
n : n ∈ N} = ui = inf{µi

n : n ∈ N}
3)

⋂k
i=1 (([Σi]× [Σi]) ∩ ([ui]× [ui])) ⊆ U

(7.24)

Here Σi = {I i
n : n ∈ N} with I i

n = {u ∈ML0 : λi
n ≤ u ≤ µi

n}.

The following now results by the same arguments and techniques used in Section
7.3, notably those employed in the proof of Theorems 55 and 56.

Theorem 59 The family J ]
o of filters on NL (X)×NL (X) is a Hausdorff uniform

convergence structure.

Theorem 60 A filter F on NL (X) belongs to λJ ]
o

if and only if

∃ (λn) , (µn) ⊂ML (X) :
1) λn ≤ λn+1 ≤ µn+1 ≤ µn, n ∈ N
2) sup{λn : n ∈ N} = u = inf{µn : n ∈ N}
3) [{In : n ∈ N}] ⊆ F

,

where In = {v ∈ML (X) : λn ≤ v ≤ µn}.

We now proceed to show that NL (X) is the completion of ML (X). That is,
we show that the following three conditions are satisfied:

• The uniform convergence space NL (X) is complete

• ML (X) is uniformly isomorphic to a dense subspace of NL (X)

• Any uniformly continuous mapping ϕ on ML (X) into a complete, Hausdorff
uniform convergence space Y extends uniquely to a uniformly continuous map-
ping ϕ] from NL (X) into Y .

Proposition 61 The uniform convergence space NL (X) is complete.

Proof. Clearly J ]
o is simply the uniform convergence structure associated with

the convergence structure described in Theorem 60. Therefore it is complete.

Theorem 62 Let X be a metric space. Then the space NL (X) is the uniform
convergence space completion of ML (X).
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Proof. First we show that ι (ML (X)) is dense in NL (X), where ι : ML (X) →
NL (X) is the inclusion mapping. To see this, consider any u ∈ NL (X), and set

Du = {x ∈ X : u (x) ∈ R}

Since Du is open, it follows that u restricted to Du is normal lower semi-continuous.
Since u is also finite on Du it follows by (3.42) that there exists a sequence (un) of
continuous functions on Du such that

u (x) = sup{un (x) : n ∈ N}, x ∈ Du (7.25)

Consider now the sequence (vn) = ((I ◦ S) (u0
n)) where

u0
n (x) =


un (x) if x ∈ Du

0 if x /∈ Du

Clearly vn (x) = un (x) for every x ∈ Du. We claim

u = sup{vn : n ∈ N} (7.26)

If (7.26) does not hold, then

∃ v ∈ NL (X) :
n ∈ N ⇒ vn ≤ v < u

But then, in view of Proposition 46, and the fact that Du is open and dense, there
exists an open and nonempty set W ⊆ Du such that

∀ x ∈ W :
n ∈ N ⇒ un (x) ≤ v (x) < u (x)

which contradicts (7.25). Therefore (7.26) must hold. The sequence (ι (vn)) is clearly
a convergent sequence in NL (X) so that ι (ML (X)) is dense in NL (X).
Now let us show that the inclusion mapping is a uniformly continuous embedding.
In this regard, it is sufficient to consider a filter [ΣF ] where

ΣF = {In = [λn, µn] : n ∈ N}

is a family of nonempty order intervals in ML (X) that satisfies 1) of (7.17) as well
as (7.18). We claim

∃ u ∈ NL (X) :
sup{λn : n ∈ N} = u = inf{µn : n ∈ N} . (7.27)

Since the sequence (λn) is bounded from above, and the sequence (µn) is bounded
from below, it follows from the Dedekind completeness of NL (X), Theorem 45,
that

∃ u, v ∈ NL (X) :
sup{λn : n ∈ N} = u ≤ v = inf{µn : n ∈ N} . (7.28)
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To see that (7.27) holds, we proceed by contradiction. Suppose that u 6= v. Then,
by Proposition 46, we have

∃ W ⊂ X nonempty and open :
x ∈ W ⇒ u (x) < v (x)

. (7.29)

We may assume that both u and v are finite on W . Since v is lower semi-continuous,

∀ x ∈ W :

v (x) = sup

{
ϕ (x)

1) ϕ ∈ C (W )
2) ϕ (x) ≤ v (x) , x ∈ W

}
Clearly, there is a function ϕ ∈ C (W ), and a nonempty open set A ⊆ W such that

u (x) < ϕ (x) < v (x) , x ∈ A

Applying the Katětov-Tong Theorem to the continuous function ϕ and the lower
semi-continuous function v, one finds a function ψ ∈ C (A) such that

u (x) < ϕ (x) < ψ (x) < v (x) , x ∈ A

which contradicts (7.17). Therefore ι is uniformly continuous.
That ι−1 is uniformly continuous follows immediately from (7.24).
The extension property for uniformly continuous mappings on ML (X) follows in
the standard way.

Note that in the above proof, we actually showed that NL (X) is the Dedekind
completion of ML (X). Hence the uniform order convergence structure provides a
nonlinear topological model for the process of taking the Dedekind completion of
ML (X). In view of Proposition 51, this extends a previous result of Anguelov and
Rosinger [9] on the Dedekind completion of M (X).

However, it should be noted that Theorem 62 is in fact more general than
the result in [9]. Indeed, along with the uniform convergence space completion
of ML (X) we obtain a class of mappings, namely, uniformly continuous mappings
into any Hausdorff uniform convergence space Y , that can be extended uniquely
to the completion of ML (X). In contradistinction with the uniform convergence
space completion constructed in Theorem 62, the Dedekind completion result in [9]
allows only for the extension of order isomorphic embeddings into partially ordered
sets, see Section 1.4 and [119, Appendix A].

 
 
 



Chapter 8

Spaces of Generalized Functions

8.1 The Spaces MLmT (Ω)

The aim of the current investigation is to enrich the basic theory of Order Comple-
tion for systems of nonlinear PDEs. In this regard we have two objectives, namely,
to obtain a better understanding of the possible structure of generalized solutions,
and to determine to what extent we may obtain stronger regularity properties of
such generalized solutions. A first step in this direction is to recast the basic ex-
istence, uniqueness and regularity results in the Order Completion Method within
the context of uniform convergence spaces.

Such a reformulation of the basic results of the Order Completion Method in
terms of uniform convergence spaces allows for the application of tools from the
theory of convergence spaces to questions related to the structure and regularity of
generalized solutions. Such convergence theoretic techniques may turn out to be
more suited to address these issues than the basic order theoretic techniques upon
which the Order Completion Method is based.

In particular, our first efforts go towards the construction of the spaces of gen-
eralized functions as the completion of suitable uniform convergence spaces, rather
than the Dedekind order completion of appropriate partially ordered sets as dis-
cussed in Section 1.4. Such a reformulation of the theory of Order Completion in
topological terms is motivated by the difficulties, such as those mentioned at the
end of Section 1.4, involved in going beyond the basic results presented in [119] in
purely order theoretic terms.

A key feature of the Order Completion Method is that, with the particular
nonlinear partial differential operator that defines the equation, one associates a
space of generalized functions. In particular, the partial order (1.123) on the space
Mm

T
(Ω) is defined in exactly such a way as to make the nonlinear partial differential

operator compatible with the given order structures on its domain and range. It is
exactly this idea of defining the structure on the domain of the operator, in this case
a uniform convergence structure, in such a way as to ensure a certain compatibility
with the particular nonlinear mapping involved which we exploit.
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Consider now a system of K possibly nonlinear PDEs, each of order at most m,
of the form

T (x,D)u (x) = f (x) , x ∈ Ω, (8.1)

where Ω ⊆ Rn is nonempty and open. The righthand term f is assumed to be a
continuous mapping f : Ω → RK , with components f1, ..., fK . The partial differential
operator T (x,D) is supposed to be defined by a jointly continuous mapping

F : Ω× RM → RK (8.2)

through

T (x,D)u (x) = F (x, ..., ui (x) , ..., D
αui (x) , ...) , |α| ≤ m; i = 1, ..., K (8.3)

where each component u1, ..., uK of the unknown u belongs to Cm (Ω). In view of
the continuity of the mapping (8.2), we may associate with the nonlinear operator
T (x,D) the mapping

T : Cm (Ω)K → C0 (Ω)K (8.4)

defined through

Tu : Ω 3 x 7→ T (x,D)u (x) ∈ RK

for each u ∈ Cm (Ω)K .

The mapping (8.4) associated with the system of equations (8.1) extends in a
canonical way to a mapping between suitable spaces of normal lower semi-continuous
functions. In this regard, we introduce, for an integer l ≥ 0, the following space of
nearly finite normal lower semi-continuous functions

MLl (Ω) =

{
u ∈ML (Ω)

∃ Γ ⊂ Ω closed nowhere dense :
u ∈ Cl (Ω \ Γ)

}
. (8.5)

Clearly, in case l = 0, we have recovered simply the space ML (Ω). We may also
note that, in contradistinction with the space Cl (Ω), for l ≥ 1, of smooth functions,
each of the spacesMLl (Ω) is a fully distributive lattice with respect to the pointwise
order (7.2).

Proposition 63 For each l ≥ 0, the space MLl (Ω) is a fully distributive lattice
with respect to the pointwise order (7.2).

Proof. Consider any u, v ∈ MLl (Ω). Then there is a closed and nowhere dense
subset Γ of Ω such that u, v ∈ Cl (Ω \ Γ). Define open subsets U , V and W of Ω \ Γ
through

U = {x ∈ Ω \ Γ : u (x) < v (x)},
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V = {x ∈ Ω \ Γ : v (x) < u (x)}

and

W = int{x ∈ Ω \ Γ : u (x) = v (x)},

respectively. It is clear that the function

ϕ : Ω 3 x 7→ sup{u (x) , v (x)} ∈ R

is Cl-smooth on U ∪ V ∪W . Clearly the set U ∪ V ∪W is dense in Ω \ Γ. As such,
it follows by Theorem 45 that sup{u, v} belongs to MLl (Ω).
The existence of the infimum of u, v ∈ MLl (Ω) in MLl (Ω) follows in the same
way. The distributivity of MLl (Ω) now follows by Proposition 47.

The usual partial differential operators

Dα : Cl (Ω) → C0 (Ω) , |α| ≤ l (8.6)

may be extended in a straightforward way to the larger space MLl (Ω). Indeed, in
view of (8.5), it is clear that, for each u ∈MLl (Ω), we have

∃ Γ ⊂ Ω closed nowhere dense :
∀ |α| ≤ l :

Dα
(
u|Ω\Γ

)
∈ C0 (Ω \ Γ)

(8.7)

which allows for an extension of the mapping (8.6) to a mapping

Dα : MLl (Ω) 7→ ML0 (Ω) (8.8)

through

Dα : u 7→ (I ◦ S) (Dαu) . (8.9)

Indeed, in view of (8.7) and (7.1), the function Dαu is nearly finite and normal
lower semi-continuous for every |α| ≤ l. Furthermore, each partial derivatives Dαu
belongs to MLl (Ω). In particular,

Dαu (x) = Dαu (x) , x ∈ Ω \ Γ,

where Γ is the closed nowhere dense subset of Ω associated with u through (8.5).

In order to now extend the mapping (8.4) to a mapping

T : MLm (Ω)K →ML0 (Ω)K , (8.10)

we express (8.4) componentwise as

Tj : Cm (Ω)K 3 u 7→ Fj (·, ..., ui, ..., D
αui, ...) ∈ C0 (Ω) (8.11)
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where F1, ..., FK : Ω × RM → R are the components of the mapping (8.2). The
components (8.11) extend in a straight forward way to mappings

Tj : MLm (Ω)K →ML0 (Ω)

which are defined as

Tj : MLm (Ω)K 3 u 7→ (I ◦ S) (Fj (·, ..., ui, ...,Dαui, ...)) ∈ML0 (Ω) . (8.12)

In view of (8.7), it follows by (7.1) and the continuity of each of the components
F1, ..., FK of the mapping (8.2) that the mapping (8.12) is well defined for each
j = 1, ..., K. As such, we may define the extension (8.10) of the mapping (8.4)
componentwise, with components defined in (8.12). That is,

T : MLm (Ω)K 3 u 7→ (Tju)j≤K ∈ML0 (Ω)K .

The mapping (8.10) extends the mapping (8.4) associated with the nonlinear par-
tial differential operator (8.3). Therefore we may formulate the system of nonlinear
PDEs (8.1) in the significantly more general framework of the spaces of normal lower
semi-continuous functions MLm (Ω)K and ML0 (Ω)K . In particular, we formulate
the generalized equation

Tu = f (8.13)

where the unknown u ranges over MLm (Ω)K . It should be noted that this extended
formulation of the problem allows for functions with singularities on arbitrary closed
nowhere dense subsets of the domain of definition Ω to act as global solutions of the
system of nonlinear PDEs (8.1). This should be compared with the global version
of the Cauchy-Kovalevskaia Theorem [141] which is also mentioned in Section 1.3.
Furthermore, such a solution will in general not belong to any of the customary
spaces of generalized functions, such as the Sobolev spaces H2,m (Ω), or the space
D′ (Ω) of distributions on Ω. Indeed, a function u ∈MLm (Ω) will in general fail to
be locally integrable on Ω, since it does not satisfy any growth conditions near the
closed nowhere dense singularity set Γ associated with u through (8.5).

Throughout this section, the space ML0 (Ω) is equipped with the uniform order
convergence structure Jo, while the product space ML0 (Ω)K will carry the product
uniform convergence structure J K

o with respect to Jo. That is,

U ∈ J K
o ⇔

(
∀ i = 1, ..., K :

(πi × πi) (U) ∈ Jo

)
(8.14)

where πi denotes the projection

πi : ML0 (Ω)K 3 u = (ui)i≤K 7→ ui ∈ML0 (Ω) .

The basic properties of the space ML0 (Ω)K that are relevant to this investigation
are summarized in the following proposition.
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Proposition 64 The uniform convergence space ML0 (Ω)K is first countable and
Hausdorff. Furthermore, its completion is the space NL (Ω)K equipped with the prod-
uct uniform convergence structure with respect to the uniform convergence structure
J ]

o .

Proof. The assertions of the proposition follow immediately from Proposition 41,
Corollary 57 and Theorem 62, respectively.

Within the context of the nonlinear mapping associated with a given system
of nonlinear PDEs introduced in this section, and in particular the extended map-
ping (8.10), the most simple way in which to define a suitable uniform convergence
structure on MLm (Ω)K is to introduce the initial uniform convergence structure
on MLm (Ω)K with respect to the mapping (8.10). However, the completion results
for uniform convergence spaces discussed in Sections 2.4 and 6.1 apply to Hausdorff
uniform convergence spaces only, while the initial uniform convergence structure
on MLm (Ω)K with respect to the mapping (8.10) is Hausdorff if and only if the
mapping (8.10) is injective, which is typically not the case.

This difficulty can be overcome if we associate with the mapping (8.10) an equiv-
alence relation on MLm (Ω)K through

u ∼T v ⇔ Tu = Tv. (8.15)

The mapping (8.10) induces an injective mapping

T̂ : MLm

T (Ω) →ML0 (Ω)K , (8.16)

where MLm

T (Ω) denotes the quotient space MLm (Ω)K / ∼T, such that the dia-
gram

MLm (Ω)K -ML0 (Ω)KT

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

MLm

T (Ω)

qT T̂ (8.17)

commutes, where qT is the canonical quotient mapping associated with the equiv-
alence relation (8.15). The diagram (8.17) amounts simply to a representation of
the mapping T. In particular, the equation (8.13) is, in a certain precise sense,
equivalent to the equation

T̂U = f, (8.18)
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with the unknown U ranging over MLm

T (Ω). Indeed, in view of the diagram (8.17)
and the surjectivity of qT, it follows that

∀ u ∈MLm (Ω)K :

Tu = f ⇔ T̂
(
qTu

)
= f

and

∀ U ∈MLm

T (Ω) :

T̂U = f ⇔ Tu = f, u ∈ q−1

T
(U)

Since the mapping (8.16) is injective it follows that the initial uniform conver-
gence structure JT on MLm

T (Ω) with respect to (8.16) is Hausdorff. In particular,

U ∈ JT ⇔
(
T̂× T̂

)
(U) ∈ J K

o (8.19)

so that T̂ is in fact a uniformly continuous embedding. As such, and in view of
Proposition 36, the uniform convergence space completion NLT (Ω) of MLm

T (Ω)

may be identified with a subspace of the completion NL0 (Ω)K of ML0 (Ω)K . In
particular, the mapping (8.16) extends to an injective uniformly continuous mapping

T̂
]
: NLT (Ω) → NL0 (Ω)K . (8.20)

Within the context of the construction (8.15) to (8.20), we may formulate the gen-
eralized equation

T̂
]
U] = f (8.21)

corresponding to the equation (8.18), where the unknown U] ranges overNLT (Ω)K .
In view of the equivalence of the equations (8.13) and (8.18), we will interpret any
solution to (8.21) as a generalized solution of the system of nonlinear PDEs (8.1).
The question of existence of solutions to (8.21) will be addressed in Section 9.2.

8.2 Sobolev Type Spaces of Generalized Functions

The Order Completion Method [119] involves a construction of spaces of generalized
functions which are associated with the particular nonlinear partial differential op-
erator which defines the equation. The spaces of generalized functions constructed
in Section 8.1 employ essentially the same technique, with the key difference that
the spaces of generalized functions are obtained not through the process of order
completion, but rather through the more general topological process of completion
of a uniform convergence space.

As mentioned, the spaces of generalized functions constructed in Section 8.1 are
constructed with a particular nonlinear partial differential operator in mind. As
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such, they may depend to a large extent on this operator. Furthermore, there is no
concept of derivative of generalized functions. In this section we construct, in the
original spirit of Sobolev [148] and [149], spaces of generalized functions which are
independent of any particular nonlinear partial differential operator. Moreover, these
spaces are equipped in a natural and canonical way with partial differential operators
that extend the classical operators on spaces of smooth functions. Furthermore, and
as we will show in Section 8.3, these spaces are, in a certain precise sense, compatible
with the spaces constructed in Section 8.2.

Recall that the Sobolev space H2,l (Ω) may be constructed as the completion
of Cl (Ω) equipped with the initial vector space topology induced by the family of
mappings (

Dα : Cl (Ω) → L2 (Ω)
)
|α|≤l

where L2 (Ω) is the Hilbert space of square integrable functions on Ω. We follow
a similar approach in constructing spaces of generalized functions. In this regard,
we equip the space MLl (Ω), where l ≥ 1, with the initial uniform convergence
structure JD with respect to the family of mappings(

Dα : MLl (Ω) →ML0 (Ω)
)
|α|≤l

(8.22)

That is, for any filter U on MLl (Ω)×MLl (Ω), we have

U ∈ JD ⇔
(
∀ |α| ≤ l

(Dα ×Dα) (U) ∈ Jo

)
(8.23)

Since the family of mappings (8.22) separates the elements of MLl (Ω), that is,

∀ u, v ∈MLl (Ω) , u 6= v :
∃ |α| ≤ l :

Dαu 6= Dαv
,

it follows that JD is uniformly Hausdorff. A filter F on MLl (Ω) is a Cauchy filter
if and only if

∀ |α| ≤ l :
Dα (F) is a Cauchy filter in ML0 (Ω)

(8.24)

In particular, a filter F on MLl (Ω) converges to u ∈MLl (Ω) if and only if

∀ |α| ≤ l :
Dα (F) ∈ λo (Dαu)

(8.25)

In view of the results in Chapter 6 on the completion of uniform convergence
spaces, the completion of MLl (Ω) is realized as a subspace of NL (Ω)M , for an
appropriate M ∈ N. In this regard, we note, see Proposition 43, that the mapping

D : MLl (Ω) 3 u 7→ (Dαu)|α|≤l ∈ML0 (Ω)M (8.26)
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is a uniformly continuous embedding. In particular, for each |α| ≤ l, the diagram

MLl (Ω) -ML0 (Ω)M

ML0 (Ω)

D

@
@

@
@

@
@

@
@

@
@R

Dα πα

�
�

�
�

�
�

�
�

�
�	

(8.27)

commutes, with πα the projection. This diagram amounts to a decomposition of
u ∈ MLl (Ω) into its partial derivatives. In view of the uniform continuity of the
mapping D and its inverse, it follows by Theorem 44 that D extends to an injective
uniformly continuous mapping

D] : NLl (Ω) → NL (Ω)M (8.28)

where NLl (Ω) denotes the uniform convergence space completion of MLl (Ω).
Moreover, since each mapping Dα is uniformly continuous, one obtains the com-
mutative diagram

NLl (Ω) -NL0 (Ω)M

NL0 (Ω)

D]

@
@

@
@

@
@

@
@

@
@R

Dα] π]
α

�
�

�
�

�
�

�
�

�
�	

(8.29)

where

Dα] : NLl (Ω) → NL0 (Ω) (8.30)

is the extension through uniform continuity of the partial differential operator Dα.
Since the mapping D] is injective and uniformly continuous, and in view of the
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commutative diagram (8.29) above, each generalized function u] ∈ NLl (Ω) may be
uniquely represented by its generalized partial derivatives

u] 7→ D]u] =
(
Dα]u]

)
|α|≤l

(8.31)

Each generalized partial derivative Dα]u] of u] is a nearly finite normal lower
semi-continuous function. We note, therefore, that the set of singular points of each
u] ∈ NLl (Ω), that is, the set{

x ∈ Ω
∃ |α| ≤ l :

Dα]u] not continuous at x

}
is at most a set of first Baire category, that is, it is a topologically small set. However,
this set may be dense in Ω. Furthermore, such a set may have arbitrarily large
positive Lebesgue measure [121]. Highly singular objects, such as the generalized
functions that are the elements of MLl (Ω) may turn out to model highly relevant
real world situations, like turbulence or other chaotic phenomena.

8.3 Nonlinear Partial Differential Operators

This section deals with the general class of nonlinear partial differential operators
associated with systems of nonlinear PDEs of the form (8.1) to (8.3). In this regard,
we investigate the properties of such operators in the context of the Sobolev type
spaces of generalized functions introduced in Section 8.2, and in particular the extent
to which such operators are compatible with the topological structures of these
spaces. Furthermore, the extent to which the Sobolev type spaces are compatible
with the ‘pull back’ spaces of generalized functions introduced in Section 8.1 are
demonstrated.

The first part of this section concerns the general class of nonlinear partial dif-
ferential operators introduced in Section 8.1. It is shown that the mapping (8.10)
induced by such an operator is uniformly continuous with respect to the Sobolev
type uniform convergence structure onMLm (Ω), and the uniform order convergence
structure on ML0 (Ω). It is also shown that the Sobolev type spaces of generalized
functions are compatible with the pull back spaces. In the second part of this section
we introduce additional smoothness properties on the nonlinear partial differential
operators, and some basic properties of these operators are discussed.

The approach to generalized solutions of nonlinear PDEs pursued in this work
is based on extending nonlinear partial differential operators to the completion of
a suitable uniform convergence space. As is mentioned in Section 1.2, some care
must be taken in constructing such extensions. In particular, it is essential that the
mapping associated with such a nonlinear operator is compatible with the relevant
uniform convergence structures, namely, it must be uniformly continuous.
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In this regard, consider a system of nonlinear PDEs of the form (8.1) through
(8.3), and the mapping (8.10) associated with the system of equations, that is, the
mapping

T : MLm (Ω)K →ML0 (Ω)K

The Cartesian product MLm (Ω)K will throughout be equipped with the product
uniform convergence structure J K

D with respect to the uniform convergence structure
JD on MLm (Ω), that is,

U ∈ J K
D ⇔

(
∀ i = 1, ..., K :

(πi × πi) (U) ∈ Jo

)
. (8.32)

Since MLm (Ω) is Hausdorff, so is the product. Furthermore, in view of Theorem
41, the completion of MLm (Ω)K is NLm (Ω)K . Within the context of the Sobolev
type uniform convergence structure (8.23) on MLm (Ω), and the uniform order
convergence structure on ML0 (Ω), the basic result concerning the mapping (8.10)
is the following.

Theorem 65 Consider a mapping

T : MLm (Ω)K →ML0 (Ω)K

defined through a jointly continuous mapping (8.2) as in (8.12). Then this mapping
is uniformly continuous.

Proof. The mapping T may be represented through the diagram

MLm (Ω)K -ML0 (Ω)K

ML0 (Ω)M×K

T

@
@

@
@

@
@

@
@

@
@R

D F

�
�

�
�

�
�

�
�

�
��

(8.33)

where F =
(
F i

)
i≤K

is defined componentwise through

F i : ML0 (Ω)M×K 3 u 7→ (I ◦ S) (Fi (·, u1, ..., uM)) ∈ML0 (Ω) (8.34)

and D is defined as

D : MLm (Ω)K 3 u 7→ (Dαui)
|α|≤m
i≤K ∈ML0 (Ω)M×K
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Clearly D is uniformly continuous, so in view of the diagram (8.33) it suffices to
show that F is uniformly continuous with respect to the product uniform convergence
structure on ML0 (Ω)M×K .
In this regard, we consider sequences of order intervals (I i

n) in ML0 (Ω), which, for
i = 1, ...,M ×K, satisfies condition 1) of (7.17) and (7.18). We claim

∀ n ∈ N :
∃ Order intervals J1

n, ..., J
K
n ⊆ML0 (Ω) :

Fj

(∏M×K
i=1 I i

n

)
⊆ J j

n, j = 1, ..., K
(8.35)

To verify (8.35), observe that there is a closed nowhere dense set Γn ⊆ Ω so that

∀ x ∈ Ω \ Γ :
∃ a (x) > 0 :
∀ i = 1, ...,M ×K :

u ∈ I i
n ⇒ |u (x) | ≤ a (x)

(8.36)

Since Fj : Ω× RM → R is continuous, it follows from (8.36) that

∀ x ∈ Ω \ Γ :
∃ b (x) > 0 :(

∀ i = 1, ...,M ×K :
ui ∈ I i

n

)
⇒ |Fj (x, u1 (x) , ..., uM (x)) | ≤ b (x)

(8.37)

Therefore, in view of Proposition 49, our claim (8.35) holds. In particular, since
NL (Ω) is Dedekind complete by Theorem 45 , we may set

J j
n = [λj

n, µ
j
n]

where, for each n ∈ N and each j = 1, ..., K

λj
n = inf{F ju : u ∈

M×K∏
i=1

I i
n}

and

µj
n = sup{F ju : u ∈

M×K∏
i=1

I i
n}

The sequence (λj
n) and (µj

n) are increasing and decreasing, respectively. For each
j = 1, ..., K we may consider

sup{λj
n : n ∈ N} = uj ≤ vj = inf{µj

n : n ∈ N}

We claim that uj = vj. To see this, we note that for each i = 1, ...,M ×K there is
some wi ∈ NL (Ω) so that

sup{lin : n ∈ N} = wi = inf{ui
n : n ∈ N}
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where I i
n = [lin, u

i
n]. Applying Proposition 50 and the continuity of Fj our claim

is verified. Applying the same technique as in the proof of Theorem 62, as well

as Proposition 34 we obtain a sequence
(
I

j

n

)
of order intervals in ML0 (Ω) that

satisfies 1) of (7.17), (7.18) and

F j

(
M∏
i=1

I i
n

)
⊆ I

j

n

This completes the proof.

Since the mapping (8.10) is uniformly continuous, it extends in a unique way to
a uniformly continuous mapping

T] : NLm (Ω)K → NL (Ω)K . (8.38)

Therefore, one may formulate a generalized equation corresponding to (8.13) as

T]u] = f (8.39)

where the unknown u] ranges over NLm (Ω). In view of the fact that the map-
ping (8.10) is the unique uniformly continuous extension of (8.4), we interpret any
solution to (8.39) as a generalized solution to the system of nonlinear PDEs (8.1).

Recall also that the mapping (8.16) is a uniformly continuous embedding. As
such, and in view of the commutative diagram (8.17), the canonical quotient map-
ping

qT : MLm (Ω)K →MLm

T (Ω)

associated with the equivalence relation (8.15) is uniformly continuous, and extends
in a unique way to a uniformly continuous mapping

q]

T
: NLm (Ω)K → NLT (Ω) (8.40)

In particular, the mapping (8.20) may be interpreted as a representation for the
mapping (8.38) through the commutative diagram

NLm (Ω)K -NL (Ω)KT]

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

NLT (Ω)

q]

T
T̂

] (8.41)
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which is nothing but an extension of the diagram (8.17). Indeed, since the mapping
(8.20) is an injective uniformly continuous mapping, it follows that

∀ u],v] ∈ NLm (Ω) :

T]u] = T]v] ⇔ q]

T
u] = q]

T
v] . (8.42)

In particular, q]

T
is nothing but the canonical quotient map associated with the

equivalence relation

∀ u],v] ∈ NLm (Ω) :
u] ∼T] v] ⇔ T]u] = T]v] . (8.43)

The meaning of (8.41) to (8.43) is clear. Indeed, any solution to the generalized
equation (8.39) corresponds to a solution to (8.21). In particular, any generalized
function

U] ∈ q]

T

(
NLm (Ω)K

)
⊆ NLT (Ω)

may be interpreted a ∼T]-equivalence class of generalized functions in NLm (Ω)K .
This may be interpreted as a regularity result for the generalized functions in
NLT (Ω). However, from the diagram (8.41) we only obtain the inclusion

q]

T

(
NLm (Ω)K

)
⊆ NLT (Ω) , (8.44)

and equality in (8.44) may not hold for all nonlinear partial differential operators
T. In this regard, we will present sufficient conditions for equality to hold in (8.44)
in Section 9.3.

We have so far considered nonlinear partial differential operators which satisfy
minimal assumptions on smoothness of the mapping (8.2). In particular, it is only
assumed that the mapping (8.2) is continuous. However, it most often happens in
practice that (8.2) satisfies additional smoothness conditions, namely, that it is con-
tinuously differentiable up to a given order. Such additional smoothness conditions
will be exploited in Chapter 10 to obtain dramatic regularity results for the solutions
of a large class of systems of nonlinear PDEs.

In this regard, we consider now the case of a system of nonlinear PDEs of the
form (8.1) to (8.3) where the mapping F : Ω×RM → RK which defines the nonlinear
operator through (8.3), is assumed to be not only continuous, but also Ck-smooth,
that is, F ∈ Ck

(
Ω× RM ,RK

)
for some k ∈ N ∪ {∞}. Since Cm+k (Ω) ⊂ Cm (Ω), we

may compute Tu for each u ∈ Cm+k (Ω)K . In this case, in view of the chain rule of
differentiation, it is clear that Tu ∈ Ck (Ω)K , that is,

T : Cm+k (Ω)K → Ck (Ω)K . (8.45)
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More generally, given any u ∈ MLm+k (Ω)K , applying the mapping (8.10) we
obtain Tu ∈ MLk (Ω)K . That is, restricting (8.10) to MLm+k (Ω)K yields a map-
ping

T : MLm+k (Ω)K → u ∈MLk (Ω)K . (8.46)

Indeed, in view of (8.5) we have, for each u ∈MLm+k (Ω)K ,

∃ Γ ⊂ Ω closed nowhere dense :
∀ i = 1, ..., K :
∀ |α| ≤ m :

Dαui ∈ Ck (Ω \ Γ)

From the smoothness of the mapping (8.2) and the chain rule, it follows that

Tu ∈ Ck (Ω \ Γ)K (8.47)

which verifies (8.46).

In case the nonlinear partial differential operator satisfies sufficient smoothness
conditions, such as those introduced in (8.45) to (8.47), we may introduce a suitable
notion of derivative of the partial differential operator T. Indeed, for each u ∈
MLm+k (Ω)K , we may calculate the partial derivatives

DβTju ∈ML0 (Ω) , |β| ≤ k, j = 1, ..., K

where the Tj, for j ≤ K, are the components (8.12) of the mapping (8.46). In this
regard, we may define a mapping

Tk : MLm+k (Ω)K →ML0 (Ω)N , (8.48)

for a suitable choice of N ∈ N ∪ {∞}, so that the diagram

MLm+k (Ω)K -ML0 (Ω)NTk

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

MLk (Ω)K

T D
(8.49)
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commutes, with the mapping D defined through

D : MLk (Ω)K 3 v 7→
(
Dβvi

)|β|≤k

i≤K
∈ML0 (Ω)N (8.50)

Applying the chain rule, we can obtain an explicit expression for the mapping (8.48)
in terms of the mapping (8.2), which defines the partial differential operator (8.46),
and its derivatives. Such a formula, however, is typically rather involved. As such,
we will rather express it in terms of a suitable jointly continuous mapping

Fk : Ω× RL → RN , (8.51)

for a suitable integer L. In particular, we may define the components T k
j,β of the

mapping (8.48) through

T k
j,βu = (I ◦ S)

(
F k

j,β (·, ..., ui, ..., D
αui, ...)

)
, |α| ≤ m+ k; i = 1, ..., K (8.52)

where the F k
j,β are components of the mapping (8.51). The main result concerning

the mapping (8.46) is the following.

Theorem 66 Let k be finite. Then the mapping (8.46) is uniformly continuous
with respect to the Sobolev uniform convergence structures on MLm+k (Ω)K and
MLk (Ω)K.

Proof. The uniform continuity of the mapping (8.48) defined through (8.52)
follows by the same arguments used in the proof of Theorem 65. Furthermore, the
mapping (8.50) is clearly a uniformly continuous embedding. The uniform continuity
of (8.46) now follows from the commutative diagram (8.49).

In view of Theorem 66, the mapping (8.46) extends uniquely to a uniformly
continuous mapping

T] : NLm+k (Ω)K → NLk (Ω)K (8.53)

Furthermore, both the mappings (8.48) and (8.50) are uniformly continuous, so that
these mappings may be uniquely extended to uniformly continuous mappings

Tk] : NLm+k (Ω)K → NL0 (Ω)N , (8.54)

and

D] : NLk (Ω)K 3 v 7→
(
Dβ]vi

)|β|≤k

i≤K
∈ NL0 (Ω)N . (8.55)
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As such, the diagram (8.49) extends to the commutative diagram

NLm+k (Ω)K -NL0 (Ω)NTk]

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

NLk (Ω)K

T] D]
(8.56)

Note that, in case both the nonlinear partial differential operator and the right-
hand term in the system of nonlinear PDEs (8.1) are Ck-smooth, the extended
equation (8.13) is equivalent to

Tku = Df. (8.57)

In view of the extensions (8.53) and (8.55) of the smooth nonlinear partial differential
operator, and the uniformly continuous embedding (8.50), respectively, we may
formulate the equation corresponding to (8.57) as

Tk]u] = D]f. (8.58)

It should be noted that the generalized equation (8.39) corresponding to (8.13) is
no longer equivalent to the equation (8.58). Indeed, a solution u] ∈ NLm (Ω)K may
not have generalized derivatives up to order m+k, which is required of any solution
to (8.58).

Such additional, and in fact rather minimal, smoothness conditions on the non-
linear partial differential operator turn out to be sufficient for particularly strong
regularity properties of generalized solutions to large classes of systems of nonlinear
PDEs. As will be shown in Section 10.2, only very basic assumptions of a simple
topological nature are involved in the relevant regularity properties of generalized
solutions of (8.1).

 
 
 



Chapter 9

Existence of Generalized Solutions

9.1 Approximation Results

In this section we obtain the basic approximation results used to prove the existence
of solutions to the generalized equations (8.20) and (8.39). We also show that func-
tions in MLm (Ω) may be suitably approximated by sequences of smooth functions.
In particular, we show that Cm (Ω) is dense in MLm (Ω).

The first and basic approximation results are essentially multi dimensional ver-
sions of the fundamental approximation results (1.108) and (1.110) underlying the
Order Completion Method. These results allow for the existence of generalized solu-
tions to (8.1) in the spaceMLm

T (Ω), that is, a solution to (8.21). Further specializa-
tions of these basic results will also be presented. In particular, under certain mild
assumptions on the nonlinear partial differential operator (8.3) we obtain bounds
for such approximate solutions. These bounds will be used to obtain generalized
solutions to (8.1) in NLm (Ω)K , that is, solutions to (8.39). Similar approximation
results are also proved for equations that satisfy additional smoothness assumptions,
namely, assumptions such as those introduced in Section 8.3. These approximation
results for such equations that satisfy additional smoothness conditions result in a
strong regularity property for solutions in the Sobolev type spaces of generalized
functions. Finally, we investigate the extent to which functions in MLm (Ω) may
be approximated by Cm-smooth functions.

We now again consider a system of K nonlinear PDEs of the form (8.1) through
(8.3). Recall that the Order Completion Method, as discussed in Section 1.4, for
single nonlinear PDEs of the form (1.100) through (1.102) is based on the simple
approximation result (1.110). In this section we extend this result to the general
K-dimensional case, for K ≥ 1 arbitrary but given, see [119] for a particular case of
such an extension.

A natural assumption on the function F : Ω× RM → RK , and hence the PDE-
operator T (x,D), and the righthand term f is that, for every x ∈ Ω

f (x) ∈ int{F (x, ξ1α, ..., ξiα, ...) : ξiα ∈ R, i = 1, ..., K, |α| ≤ m}, (9.1)

147
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which is a multidimensional version of (1.107). The condition (9.1) is noting but a
sufficient condition for the system of nonlinear PDEs (8.1) to have usual classical
solution on Ω. Note that (9.1) is of a technical nature, and hardly a restriction on
the class of PDEs considered. In fact, every linear PDE, and also most nonlinear
PDEs of applicable interest satisfy (9.1). It is in fact, as discussed in Section 1.4, a
necessary condition for the existence of a classical solution to (8.3) in a neighborhood
of x. Assuming that the condition (9.1) holds, we obtain the following basic result.

Theorem 67 Consider a system of PDEs of the form (8.1) through (8.3) that also
satisfies (9.1). For every ε > 0 there exists a closed nowhere dense set Γε ⊂ Ω
with zero Lebesgue measure, and a function Uε ∈ Cm (Ω \ Γε)

K with components
Uε,1, ..., Uε,K such that

fi (x)− ε ≤ Ti (x,D)Uε (x) ≤ fi (x) , x ∈ Ω \ Γε (9.2)

Proof. Let
Ω =

⋃
ν∈N

Cν (9.3)

where, for ν ∈ N, the compact sets Cν are n-dimensional intervals

Cν = [aν , bν ] (9.4)

with aν = (aν,1, ..., aν,n), bν = (bν,1, ..., bν,n) ∈ Rn and aν,i ≤ bν,i for every i = 1, ..., n.
We also assume that Cν , with ν ∈ N are locally finite, that is,

∀ x ∈ Ω :
∃ Vx ⊆ Ω a neighborhood of x :

{ν ∈ N : Cν ∩ Vx 6= ∅} is finite
(9.5)

We also assume that the interiors of Cν , with ν ∈ N, are pairwise disjoint. We note
that such Cν exist, see [58].
Let us now take ε > 0 given arbitrary but fixed. Let us take ν ∈ N and apply Propo-
sition 68 to each x0 ∈ Cν . Then we obtain δx0 > 0 and Px0,1, ..., Px0,K polynomial in
x ∈ Rn such that

fi (x)− ε ≤ Ti (x,D)Px0 (x) ≤ f (x) , x ∈ Ω ∩B (x0, δx0) and i = 1, ..., K (9.6)

where Px0 : Rn → RK is the K-dimensional vector valued function with components
Px0,1, ..., Px0,K . Since Cν is compact, it follows that

∃ δ > 0 :
∀ x0 ∈ Cν :
∃ Px0,1, ..., Px0,K polynomial in x ∈ Rn :

‖x− x0‖ ≤ δ ⇒ fi (x)− ε ≤ Ti (x,D)Px0 (x) ≤ f (x) , x ∈ B (x0, δ) ∩ Cν

(9.7)

where i = 1, ..., K. Subdivide Cν into n-dimensional intervals Iν,1, ..., Iν,µ with di-
ameter not exceeding δ such that their interiors are pairwise disjoint. If aj with
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j = 1, ..., µ is the center of the interval Iν,j then by (9.7) there exists Paj ,1, ..., Paj ,K

polynomial in x ∈ Rn such that

fi (x)− ε ≤ Ti (x,D)Paj
(x) ≤ fi (x) , x ∈ Iν,j (9.8)

where i = 1, ..., K. Now set

Γν,ε = Cν \

((
µ⋃

j=1

intIν,j

)
∪ intCν

)
(9.9)

that is, Γν,ε is a rectangular grid generated as a finite union of hyperplanes. Fur-
thermore, using (9.8), we find

Uν,ε ∈ Cm (Cν \ Γν,ε) (9.10)

such that
fi (x)− ε ≤ Ti (x,D)Uν,ε (x) ≤ fi (x) , x ∈ Cν \ Γν,ε (9.11)

In view of (9.5) it follows that

Γε =
⋃
ν∈N

Γν,ε is closed nowhere dense and mes (Γε) = 0 (9.12)

From (9.3), (9.10) and (9.11) we obtain (9.2).

The above proof relies on the following proposition which is in fact the basic ap-
proximation result.

Proposition 68 Consider a system of PDEs of the form (8.1) through (8.3) that
also satisfies (9.1). Then

∀ x0 ∈ Ω :
∀ ε > 0 :
∃ δ > 0, P1, ..., PK polynomial in x ∈ Rn :

x ∈ B (x0, δ) ∩ Ω, 1 ≤ i ≤ k ⇒ fi (x)− ε ≤ Ti (x,D)P (x) ≤ fi (x)

(9.13)

Here P is the K-dimensional vector valued function with components P1, ..., PK.

Proof. For any x0 ∈ Ω and ε > 0 small enough it follows by (9.1) that there exist

ξiα ∈ R with i = 1, ..., K and |α| ≤ m (9.14)

such that
Fi (x0, ..., ξiα, ...) = fi (x0)−

ε

2
(9.15)

Now take P1, ..., PK polynomials in x ∈ Rn that satisfy

DαPi (x0) = ξiα for i = 1, ..., K and |α| ≤ m (9.16)
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Then it is clear that
Ti (x,D)P (x0)− fi (x0) = − ε

2
(9.17)

where P is theK-dimensional vector valued function on Rn with components P1, ..., PK .
Hence (9.13) follows by the continuity of the fi and the Fi.

It should be observed that, in contradistinction with the usual functional analytic
methods, the local lower solution in Proposition 68 is constructed in a particularly
simple way. Indeed, it is obtained by nothing but a straightforward application of
the continuity of the mapping F. Using exactly these same techniques, one may
prove the existence of the corresponding approximate upper solutions.

Proposition 69 Consider a system of PDEs of the form (8.1) through (8.3) that
also satisfies (9.1). Then

∀ x0 ∈ Ω :
∀ ε > 0 :
∃ δ > 0, P1, ..., PK polynomial in x ∈ Rn :

x ∈ B (x0, δ) ∩ Ω, 1 ≤ i ≤ k ⇒ fi (x) < Ti (x,D)P (x) < fi (x) + ε

(9.18)

Here P is the K-dimensional vector valued function with components P1, ..., PK.

In connection with the global approximation result presented in Theorem 67,
and as was mentioned in connection with Proposition 68, the approximation result
above is based solely on the existence of a compact tiling of open subsets of Rn, the
properties of compact subsets of Rn and the continuity of usual real valued functions.
Hence it makes no use of so called advanced mathematics. In particular, techniques
from functional analysis are not used at all. Instead, the relevant techniques belong
rather to the classical theory of real functions.

Note that Theorem 67 makes no claim concerning the convergence, or otherwise,
of the sequence (un) in MLm (Ω)K . Indeed, assuming only that (9.1) is satisfied, it
is typically possible to construct a sequence (Un) that satisfies Theorem 67, and is
unbounded on every neighborhood of every point of Ω. This follows easily from the
fact that, in general, for a fixed x0 ∈ Ω, the sets

{ξ ∈ RM : F (x0, ξ) = f (x0)}

may be unbounded.

In view of the above remarks, it appears that a stronger assumption than (9.1)
may be required in order to construct generalized solutions to (8.1) in NLm (Ω)K .
When formulating such an appropriate condition on the system of PDEs (8.1), one
should keep in mind that the Order Completion Method [119], and in particular the
pseudo-topological version of the theory developed in this work, is based on some
basic topological processes, namely, the completion of uniform convergence spaces,
and the simple condition (9.1), which is formulated entirely in terms of the usual real
mappings F and f. In particular, (9.1) does not involve any topological structures
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on function spaces, or mappings on such spaces. Furthermore, other than the mere
continuity of the mapping F, (9.1) places no restriction on the type of equation
treated. As such, it is then clear that any further assumptions that we may wish to
impose on the system of equations (8.1) in order to obtain generalized solutions in
NLm (Ω)K should involve only basic topological properties of the mapping F, and
should not involve any restrictions on the type of equations.

In formulating such a condition on the system of PDEs (8.1) that will ensure the
existence of a generalized solution inNLm (Ω)K , it is helpful to first understand more
completely the role of the condition (9.1) in the proof of the local approximation
result Proposition 68. In particular, and as is clear from the proof of Proposition
68, the condition (9.1) relates to the continuity of the mapping F. Furthermore,
and as has already been mentioned, the approximations constructed in Theorem 67
and Proposition 68 concern only convergence in the range space of the operator T
associated with (8.1). Our interest here lies in constructing suitable approximations
in the domain of T, and as such, properties of the inverse of the mapping F may
prove to be particularly useful. In view of these remarks, we introduce the following
condition.

∀ x0 ∈ Ω :
∃ ξ (x0) ∈ RM , F (x0, ξ (x0)) = f (x0) :
∃ V ∈ Vx0 , W ∈ Vξ(x0) :

F : V ×W → RK open

(9.19)

Note that the condition (9.19) above, although more restrictive than (9.1), allows
for the treatment of a large class of equations. In particular, each equation of the
form

Dtu (x, t) + G (x, t,u (x, t) , ..., Dα
xu (x, t) , ...) = f (x, t)

with the mapping G merely continuous, satisfies (9.19). Indeed, in this case the map-
ping F : Ω×RM → RK that defines the equation through (8.3) is both open and sur-
jective. Indeed, each component Fj of F is linear in ξj, where ξ = (ξ1, ..., ξj, ..., ξM)
belongs to RM , from which our assertion follows immediately. Other classes of equa-
tions that satisfy (9.19) can be easily exhibited by using, for instance, various open
mapping theorems, see for instance [19, 41.7]. The following is a specialization of
the global approximation result Theorem 67.

Theorem 70 Consider a system of nonlinear PDEs of the form (8.1) through (8.3)
that also satisfies (9.19). Then there is a sequence (Γn) of closed nowhere dense set
Γn ⊂ Ω, which is increasing with respect to inclusion, and a sequence of function
(Vn) such that Vn ∈ Cm (Ω \ Γn) and

∀ j = 1, ..., K :
fj (x)− 1

n
≤ Tj (x,D)Vn (x) ≤ fj (x) , x ∈ Ω \ Γn

.
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Furthermore, for each |α| ≤ m and every i = 1, ..., K there are sequences
(
λα

n,i

)
and(

µα
n,i

)
such that λα

n,i, µ
α
n,i ∈ C0 (Ω \ Γn) which sequences satisfy

∀ n ∈ N :
∀ |α| ≤ m :
∀ i = 1, ..., K :

1) λα
n,i (x) < DαVn,i (x) < µα

n,i (x) , x ∈ Ω \ Γn

2) λα
n,i (x) < λα

n+1,i (x) < µα
n+1,i (x) < µα

n,i (x) , x ∈ Ω \ Γn+1

and

∀ x ∈ Ω \
(⋃

n∈N Γn

)
:

∀ |α| ≤ m :
∀ i = 1, ..., K :

sup{λα
n,i (x) : n ∈ N} = inf{µα

n,i (x) : n ∈ N}

Proof. Set
Ω =

⋃
ν∈N

Cν (9.20)

where, for ν ∈ N, the compact set Cν is an n-dimensional intervals

Cν = [aν , bν ] (9.21)

with aν = (aν,1, ..., aν,n), bν = (bν,1, ..., bν,n) ∈ Rn and aν,j ≤ bν,j for every j = 1, ..., n.
We also assume that the collection of sets {Cν : ν ∈ N} is locally finite, that is,

∀ x ∈ Ω :
∃ V ⊆ Ω a neighborhood of x :

{ν ∈ N : Cν ∩ V 6= ∅} is finite
(9.22)

Furthermore, let the interiors of the Cν , with ν ∈ N, be pairwise disjoint.
Let Cν be arbitrary but fixed. In view of (9.19) and the continuity of f, we have

∀ x0 ∈ Cν :
∃ ξ (x0) ∈ RM , F (x0, ξ (x0)) = f (x0) :
∃ δ, ε > 0 :

1) {(x, f (x)) : ‖x− x0‖ < δ} ⊂ int

{
(x,F (x, ξ))

‖x− x0‖ < δ
‖ξ − ξ (x0) ‖ < ε

}
2) F : Bδ (x0)×B2ε (ξ (x0)) → RK open

(9.23)

For each x0 ∈ Cν , fix ξ (x0) ∈ RM in (9.23). Since Cν is compact, it follows from
(9.23) that

∃ δ > 0 :
∀ x0 ∈ Cν :
∃ εx0 > 0 :

1) {(x, f (x)) : ‖x− x0‖ < δ} ⊂ int

{
(x,F (x, ξ))

‖x− x0‖ < δ
‖ξ − ξ (x0) ‖ < εx0

}
2) F : Bδ (x0)×B2εx0

(ξ (x0)) → RK open

(9.24)
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Subdivide Cν into n-dimensional intervals Iν,1, ..., Iν,µν with diameter not exceeding
δ such that their interiors are pairwise disjoint. If aν,j with j = 1, ..., µν is the center
of the interval Iν,j then by (9.24) we have

∀ j = 1, ..., µν :
∃ εν,j > 0 :

1) {(x, f (x)) : x ∈ Iν,j} ⊂ int

{
(x,F (x, ξ))

x ∈ Iν,j

‖ξ − ξ (aν,j) ‖ < εν,j

}
2) F : Iν,j ×B2εν,j

(ξ (aν,j)) → RK open

(9.25)

Take 0 < γ < 1 arbitrary but fixed. In view of Proposition 68 and (9.25), we have

∀ x0 ∈ Iν,j :

∃ Ux0 = U ∈ Cm (Rn)K :
∃ δ = δx0 > 0 :

x ∈ Bδ (x0) ∩ Iν,j ⇒
(

1) (DαUi (x))
|α|≤m
i≤K ∈ Bεν,j

(ξ (aν,j))
2) i ≤ K ⇒ fi (x)− γ < Ti (x,D)U (x) < fi (x)

)
As above, we may subdivide Iν,j into pairwise disjoint, n-dimensional intervals
Jν,j,1, ..., Jν,j,µν,j

so that for k = 1, ..., µν,j we have

∃ Uν,j,k = U ∈ Cm (Rn)K :
∀ x ∈ Jν,j,k :

1)
(
DαUi (x)

|α|≤m
i≤K

)
∈ Bεν,j

(ξ (aν,j)) , |α| ≤ m

2) i ≤ K ⇒ fi (x)− γ < Ti (x,D)U (x) < fi (x)

(9.26)

Set

Γ1 = Ω \

(⋃
ν∈N

(
µν⋃
j=1

(
µν,j⋃
k=1

intJν,j,k

)))
.

and

V1 =
∑
ν∈N

(
µν∑
j=1

(
µν,j∑
k=1

χJν,j,k
Uν,j,k

))

where χJν,j,k
is the characteristic function of Jν,j,k. Then Γ1 is closed nowhere dense,

and V1 ∈ Cm (Ω \ Γ1)
K . In view of (9.26) we have, for each i = 1, ..., K

fi (x)− γ < Ti (x,D)V1 (x) < fi (x) , x ∈ Ω \ Γ1

Furthermore, for each ν ∈ N, for each j = 1, ..., µν , each k = 1, ..., µν,j, each |α| ≤ m
and every i = 1, ..., K we have

x ∈ intJν,j,k ⇒ ξα
i (aν,j)− ε < DαV1,i (x) < ξα

i (aν,j) + ε
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Therefore the functions λα
1,i, µ

α
1,i ∈ C0 (Ω \ Γ1) defined as

λα
1,i (x) = ξα

i (aj)− 2εν,j if x ∈ intIν,j

and

µα
1,i (x) = ξα

i (aj) + 2εν,j if x ∈ intIν,j,

respectively, satisfy

λα
1,i (x) < DαV1,i (x) < µα

1,i (x) , x ∈ Ω \ Γ1

and

µα
1,i (x)− λα

1,i (x) < 4εν,j, x ∈ intIν,j

Applying (9.25) restricted to Ω\Γ1, and proceeding in a fashion similar as above, we
may construct, for each n ∈ N such that n > 1, a closed nowhere dense set Γn ⊂ Ω, so
that Γn ⊆ Γn+1, a function Vn ∈ Cm (Ω \ Γn)K and functions λα

n,i, µ
α
n,i ∈ C0 (Ω \ Γn)

so that, for each i = 1, ..., K

fi (x)−
γ

n
< Ti (x,D)Vn (x) < fi (x) , x ∈ Ω \ Γn. (9.27)

and for every |α| ≤ m

λα
n−1,i (x) < λα

n,i (x) < DαVn,i (x) < µα
n,i (x) < µα

n−1,i (x) , x ∈ Ω \ Γn (9.28)

and

µα
n,i (x)− λα

n,i (x) <
4εν,j

n
, x ∈ (intIν,j) ∩ (Ω \ Γn) . (9.29)

This completes the proof.

At this point we proceed to establish an approximation result for equations that
satisfy addition smoothness conditions such as those introduced in Section 8.3. In
particular, we will establish a version of Theorem 70 that incorporates also the
derivatives of Tu, for a sufficiently smooth function u. Owing to the representation
(8.49) of the operator (8.46), this result follows by the same elementary arguments
that lead to Theorem 70.

In this regard, we consider a system of nonlinear PDEs of the form (8.1) to
(8.3) so that the mapping (8.2) is Ck-smooth, for some k ∈ N. In view of the
representation (8.49), the condition (9.19) on the mapping (8.2) is replaced with a
suitable assumption on the mapping (8.51), namely, we assume

∀ x0 ∈ Ω :

∃ ξ (x0) ∈ RL, Fk (x0, ξ (x0)) = (Dαfi (x0))
|α|≤m
i≤K :

∃ V ∈ Vx0 , W ∈ Vξ(x0) :
Fk : V ×W → RN open

. (9.30)

The following now follows by the representation (8.49) and the same arguments used
in the proof of Theorem 70.
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Theorem 71 Consider a system of nonlinear PDEs of the form (8.1) through (8.3)
with both the righthand term and the mapping (8.2) Ck-smooth. Also assume that
(9.30) holds. Then there is an increasing sequence (Γn) of closed nowhere dense sets
Γn ⊂ Ω and a sequence of function (Vn) such that Vn ∈ Cm+k (Ω \ Γn) and

∀ i = 1, ..., K :
∀ |β| ≤ k :

Dβfi (x)− 1
n
≤ DβTi (x,D)Vn (x) ≤ Dβfi (x) , x ∈ Ω \ Γn

.

Furthermore, for each |α| ≤ m+ k and every i = 1, ..., K there are sequences
(
λα

n,i

)
and

(
µα

n,i

)
so that λα

n,i, µ
α
n,i ∈ C0 (Ω \ Γn) which satisfy

∀ n ∈ N :
∀ |α| ≤ m+ k :
∀ i = 1, ..., K :

1) λα
n,i (x) < DαVn,i (x) < µα

n,i (x) , x ∈ Ω \ Γn

2) λα
n,i (x) < λα

n+1,i (x) < µα
n+1,i (x) < µα

n,i (x) , x ∈ Ω \ Γn+1

and and

∀ x ∈ Ω \
(⋃

n∈N Γn

)
:

∀ |α| ≤ m+ k :
∀ i = 1, ..., K :

sup{λα
n,i (x) : n ∈ N} = inf{µα

n,i (x) : n ∈ N}

.

By employing the representation (8.49), we may verify Theorem 71 by using exactly
the same techniques and arguments as in the proof of Theorem 70. As such we omit
it.

Remark 72 It should be noted that Theorem 67 may be reproduced for nonlinear
partial differential operators that satisfy additional smoothness conditions. In par-
ticular, if we assume that the mapping (8.2) as well as the righthand term in (8.1)
are both Ck-smooth, for some k ∈ N, then we may obtain version of Theorem 67 that
also incorporates the derivatives of Tu up to order k. This is not a significant im-
provement, as it does not lead to a more general or powerful existence or regularity
result than are already possible using only Theorem 67.

We now turn to the final result of the section, namely, we show that each function
u ∈MLm (Ω) may be suitably approximated by functions in Cm (Ω). Together with
certain basic compactness results to be presented in Section 10.1, this results in a
significant improvements on the regularity of the generalized solutions to a large
class of equations.

The result we present now is based on the well known principle of Partition of
Unity. In this regard, we may recall the following version of this principle.
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Theorem 73 *[150] Let O be a locally finite open cover of a smooth manifold M .
Then there is a collection

{ϕU : M → [0, 1] : U ∈ O}

of C∞-smooth mappings ϕU such that the following hold:

i) For each U ∈ O, the support of ϕU is contained in U .

ii) For each x ∈M , we have
∑

U∈O ϕU (x) = 1.

A useful consequence of Theorem 73 concerns the separation of disjoint, closed sets
by C∞-smooth, real valued mappings. In this regard, consider a nonempty, open set
Ω ⊆ Rn. Let S and T be disjoint, nonempty, closed subsets of Ω. Then it follows
from Theorem 73 that

∃ ϕ ∈ C∞ (Ω, [0, 1]) :
1) x ∈ A⇒ ϕ (x) = 1
2) x ∈ B ⇒ ϕ (x) = 0

. (9.31)

This leads to the following simple approximation result.

Theorem 74 For any u ∈MLm (Ω), denote by Γu ⊂ Ω the smallest closed nowhere
dense set such that u ∈ Cm (Ω \ Γu). Then there exists a sequence (un) in Cm (Ω)
such that

∀ A ⊂ Ω \ Γu compact :
∀ |α| ≤ m :

(Dαun) converges uniformly to Dαu on A
.

Proof. For each n ∈ N, we consider the set B 1
n

(Γ), which is the closure of the set{
x ∈ Ω

∃ x0 ∈ Γ :
‖x− x0‖ ≤ 1

2n

}
and the set

C 1
n

(Γ) =

{
x ∈ Ω

∀ x0 ∈ Γ :
‖x− x0‖ ≥ 1

n

}
Clearly, each of the sets B 1

n
(Γ) and C 1

n
(Γ) is closed, and for each n ∈ N, B 1

n
(Γ) and

C 1
n

(Γ) are disjoint. As such, by (9.31), there exists a function ϕn ∈ C∞ (Ω, [0, 1]) so
that

ϕn (x) =


0 if x ∈ B 1

n
(Γ)

1 if x ∈ C 1
n

(Γ)
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Clearly, each of the functions un = ϕnu is Cm-smooth and satisfies

un (x) =


0 if x ∈ B 1

n
(Γ)

u (x) if x ∈ C 1
n

(Γ)

Furthermore, ⋂
n∈N

B 1
n

(Γ) = Γ

and ⋃
n∈N

C 1
n

(Γ) = Ω \ Γ

which completes the proof.

Remark 75 It should be noted that the approximations constructed in Theorems 67,
70 and 71 are in fact C∞-smooth everywhere except on a closed nowhere dense set.
Indeed, each approximating functions is obtained by arranging, in an appropriate
way, suitable functions obtained through Proposition 68, which are polynomials in
x ∈ Rn.

The approximation results presented in this section are fundamental to our ap-
proach to constructing generalized solutions to large classes of nonlinear PDEs. In
this regard, and as we have mentioned already, it should be noted that none of the
results are based on so called ‘advanced mathematics’. Indeed, functional analysis
and topology are not used at all. Rather, the techniques used belong to the classical
theory of real functions.

9.2 Solutions in Pullback Uniform Convergence

Spaces

In this section we present the first and basic existence result within the context of
the spaces of generalized functions introduced in Chapter 8. In particular, we prove
that every system of nonlinear PDEs of the form (8.1) to (8.3) that also satisfies
the natural and rather minimal condition (9.1) will have a solution in the pullback
type space of generalized functions associated with the particular nonlinear operator
(8.10). As a consequence of the way in which the space of generalized functions is
constructed, one also obtains immediately the uniqueness of a generalized solution to
(8.1). This result amounts to a reformulation of the main existence and uniqueness
result obtained through the Order Completion Method [119] in terms of uniform
convergence spaces and their completions. Furthermore, and as mentioned in Section
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8.1, such a recasting allows for the application of convergence theoretic techniques
to questions related to the structure and regularity of generalized solutions. Such
methods may prove to be more suitable to these problems than the order theoretic
tools involved in the Order Completion Method.

Recall that the space MLm

T (Ω) associated with the mapping (8.10) consists of

equivalence classes of functions in MLm (Ω)K under the equivalence relation (8.15).
With the mapping (8.10) we associate in a canonical way the injective mapping
(8.16). In view of the commutative diagram (8.17), the equations (8.13) and (8.18)
are equivalent. Since the mapping (8.16) is injective, the initial uniform convergence
structure (8.19) on MLm

T (Ω) with respect to (8.16) is Hausdorff. As such, we may
construct its completion NLT (Ω). In particular, we obtain a commutative diagram

MLm

T (Ω) -ML0 (Ω)K
T̂

?

-NLT (Ω) NL (Ω)K

φ ϕ

?
T̂

]

(9.32)

where φ and ϕ are the canonical uniformly continuous embeddings associated with

the completions of MLm

T (Ω) and ML0 (Ω)K , respectively, and T̂
]

is the unique

extension of the mapping T̂ through uniform continuity. Note that, in view of the
injectivity of the mapping (8.16), it is in fact a uniformly continuous embedding. As
such, and as an immediate consequence of Corollary 37, it follows that the mapping

T̂
]

is injective. The existence and uniqueness result we present now follows by the
basic approximation result Theorem 67, and the diagram (9.32).

Theorem 76 For every f ∈ C0 (Ω)K that satisfies (9.1), there exists a unique U] ∈
NLT (Ω) such that

T̂
]
U] = f (9.33)

Proof. First let us show existence. For every n ∈ N, Theorem 67 yields a closed
nowhere dense set Γn ⊂ Ω and a function un ∈ Cm (Ω \ Γn) that satisfies

x ∈ Ω \ Γn ⇒ fi (x)−
1

n
≤ Ti (x,D)un (x) ≤ fi (x) , i = 1, ..., K (9.34)

Since Γn is closed nowhere dense we associate un with a function vn ∈MLm (Ω) in
a unique way. Indeed, consider for instance the function

wn : x 7→
{

un (x) if x ∈ Ω \ Γ
0 if x ∈ Γ
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Now let vn be the K-dimensional vector valued function with components vi
n =

(I ◦ S) (wi
n).

Denote by Vn the equivalence class generated by vn under the equivalence relation
(8.15). In view of the the fact that each term in the sequence (un) satisfies

un ∈ Cm (Ω \ Γn)K ,

it follows by (3.17), (8.9), (8.11), Proposition 46 and the continuity of the mapping
(8.2) that

∀ i = 1, ..., K :
fi − 1

n
≤ Tivn ≤ fi

.

As such, and in view of the diagram (8.17), it is clear that for each i = 1, ..., K, the

sequence
(
T̂Vn,i

)
order converges to fi in ML0 (Ω). Hence the sequence

(
T̂ (Vn)

)
converges to f in ML0 (Ω)K . It now follows that (Vn) is a Cauchy sequence in
MLmfT (Ω) so that there exists U] ∈ NLT (Ω) that satisfies (9.33).

Since the mapping T̂ : MLm

T (Ω) → ML0 (Ω)K is a uniformly continuous embed-

ding, the uniqueness of the solution U] found above now follows by Corollary 37.

The relative simplicity, and lack of technical difficulty, of the proof of Theorem
76 should be compared to the highly involved techniques used to prove the existence
of generalized solutions of a single equation in the context of the usual functional
analytic approach, including those involving weak solutions or distributions. Indeed,
the existence result presented in Theorem 76 applies to what may be considered
as all nonlinear partial differential equations. Furthermore, in contradistinction
with the customary functional analytic methods, the nonlinearity of the partial
differential operator does not give rise to any additional difficulties. Indeed, the
Order Completion Method [119], as well as the theory presented here, do not make
any distinction between linear and nonlinear equations, this being one of the main
strengths of this approach.

Let us now consider the structure of the space NLT (Ω). In this regard, we
recall the construction of the completion of a Hausdorff uniform convergence space
X [161]. One considers the set XC of all Cauchy filters on X, and an equivalence
relation ∼C on XC , defined as

F ∼C G ⇔
(
∃ H ∈ XC :

H ⊆ F ∩ G

)
(9.35)

The space X is embedded in X] = XC/ ∼C through

X 3 x 7→ λ (x) ∈ X]
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where λ is the induced convergence structure on X. The uniform convergence struc-
ture J ] on X] is defined as

U ∈ J ]
X ⇔

(
∃ V ∈ JX :

[V ]X] ⊆ U

)

In view of the above construction, the space NLT (Ω) consists of all filters F
on MLm

T (Ω) such that the filter T̂ (F) is a Cauchy filter in ML0 (Ω)K , under the

equivalence relation (9.35). In particular, the unique generalized solution U] to (8.1)
may be represented as the set

U]{F a filter on MLm

T (Ω) : T̂ (F) converges to f in NL (Ω)K} (9.36)

Note that each classical solution u ∈ Cm (Ω)K to (8.1), and also each nonclassical
u ∈MLm (Ω)K , generates the Cauchy filter

[U] = {F ⊆MLm

T (Ω) : U = qTu ∈ F}

on NLfT (Ω), which belongs to the set (9.36). Hence our concept of generalized so-

lution is consistent with the usual classical and nonclassical solutions in MLm (Ω)K .
Moreover, the generalized solution to (8.3) may be assimilated with usual, nearly
finite normal lower semi-continuous functions on Ω, in the sense that there is an
injective uniformly continuous mapping

T̂
]
: NLT (Ω) → NL (Ω)K

In this regard, we have a blanket regularity for the solutions of a rather large class
of systems of nonlinear PDEs. It should be noted that this does not mean that the
solution obtained in Theorem 76 is in fact a normal lower semi-continuous function,
but rather that it may be constructed using such functions. In particular, since
the mapping (8.20) is injective, the space NLT (Ω) of generalized functions may be
considered as the subset

T̂
] (
NLT (Ω)

)
of the set NL (Ω)K of K-tuples of normal lower semi-continuous functions, equipped
with a suitable uniform convergence structure.

In view of the above remarks concerning the structure of the unique generalized
solution of (8.1), the uniqueness of the solution may be interpreted as follows. As
mentioned, each classical solution u ∈ Cm (Ω)K of (8.1), as well as each generalized
solution u ∈MLm (Ω)K to the extended equation (8.13), generates a Cauchy filter
inMLm

T (Ω). Such a Cauchy filter would then belong to the equivalence class (9.36),
which is the representation of the generalized solution to (8.1). This class of Cauchy
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filters will also include other, more general filters. In particular, and in view of the
commutative diagrams (8.17) and (9.49) we have

∀ F a Cauchy filter on MLm (Ω)K :

T (F) → f in ML0 (Ω)K ⇒ qT (F) ∈ U]

so that U] also contains every generalized solution of (8.1) in the Sobolev type
space of generalized functions NLm (Ω)K . Therefore, we may interpret the unique
generalized solution U] ∈ NLT (Ω) of (8.1) as the set of all solutions of (8.1) in the
context of the spaces of generalized solutions associated with the theory of PDEs
presented here.

9.3 How Far Can Pullback Go?

In Section 9.2 we presented the first and basic existence, uniqueness and regularity
result for the solutions of a large class of systems of nonlinear PDEs within the
setting of the so called pullback spaces of generalized functions. This result essen-
tially amounts to a reformulation of the fundamental results in the Order Comple-
tion Method [119] within the context of uniform convergence spaces. However, the
underlying approach to constructing generalized solutions to systems of nonlinear
PDEs presented in Sections 8.1 and 9.2 can result in significant improvements in the
regularity of generalized solutions of (8.1). In this section we address the issue of
improving upon the regularity of the generalized solutions obtained in Section 9.2
within that general and type independent setting. This is done by imposing rather
minimal conditions on the smoothness of the nonlinear operator (8.10).

In this regard, we consider a system of nonlinear PDEs of the form (8.1) to (8.3),
with both the right hand term f in (8.1) as well as the mapping (8.2) are Ck-smooth,
for some k ∈ N∪ {∞}. Recall that, in this case, we obtain the mapping (8.46) with
domain MLm+k (Ω)K and range contained in MLk (Ω)K , rather than the mapping
(8.4) with domain MLm (Ω)K and range contained in ML0 (Ω)K . In this case, we
may reproduce the construction (8.15) through (8.17) as follows. We introduce an
equivalence relation on MLm+k (Ω)K through

u ∼T,k
v ⇔ Tu = Tv. (9.37)

Exactly as in Section 8.1, we may associate with the mapping (8.46) an injective
mapping

T̂k : MLm+k

T,k
(Ω) →MLk (Ω)K (9.38)
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in a canonical way so as to produce the commutative diagram

MLm+k (Ω)K -MLk (Ω)KT

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

MLm+k

T,k
(Ω)

qT,k
T̂k

(9.39)

Here qT,k
is the canonical quotient mapping associated with the equivalence relation

(9.37), and MLm+k

T,k
(Ω) is the quotient space MLm+k (Ω)K / ∼T,k

.

In introducing a suitable uniform convergence structure on MLk (Ω), and by
implication also on MLm+k

T,k
(Ω), it should be noted that the Cauchy sequence (Vn)

constructed in Theorem 76 actually satisfies(
T̂kVn

)
converges to f in ML0 (Ω)K (9.40)

As such, there is in fact no need to go beyond the spaceML0 (Ω)K when constructing
the generalized solution of (8.1).

Furthermore, we may observe that, as shown in Proposition 63, the spaceMLk (Ω)
equipped with the usual pointwise order (7.2) is a sublattice of ML0 (Ω). As such,
the order convergence structure (4.8) is a well defined convergence structure which
induces the order convergence of sequences (2.35). Moreover, recall from Section
2.4 that every reciprocal convergence structure, and in particular every Hausdorff
convergence structure, is induced by the complete uniform convergence structure
(2.70) through (2.69).

In view of (9.40), we equip the space MLk (Ω)K with the uniform convergence
structure (2.70) associated with product convergence structure with respect to the
order convergence structure λo on each copy of MLk (Ω). That is,

U ∈ J K
λo
⇔


∃ u1, ...,uk ∈MLk (Ω)K :

∃ F1, ...,Fk filters on MLk (Ω)K :
1) Fi converges to ui, i = 1, ..., k
2) (F1 ×F1) ∩ ... ∩ (Fk ×Fk) ⊆ U

 . (9.41)
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The space MLm+k

T,k
(Ω) is equipped with the initial uniform convergence structure

JT,k
with respect to the mapping (9.38). That is,

U ∈ JT,k
⇔
(
T̂k × T̂k

)
(U) ∈ J K

λo
. (9.42)

Since the mapping (9.38) is injective, it is a uniformly continuous embedding, and the
uniform convergence structure (9.42) is Hausdorff. As such, we may construct the
completion of MLm+k

T,k
(Ω), which we denote by NLT,k

(Ω), and a unique uniformly

continuous mapping

T̂
]

k : NLT,k
(Ω) →MLk (Ω)K (9.43)

so that the diagram

MLm+k

T,k
(Ω) -MLk (Ω)KT̂k

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

NLT,k
(Ω)

φ T̂
]

k

(9.44)

commutes, with φ the canonical uniformly continuous embedding associated with
the completionNLT,k

(Ω) ofMLm+k

T,k
(Ω). In particular, in view of Corollary 37, the

mapping (9.43) is injective. As in Sections 8.2 and 9.1, and in view of the diagram
(9.39), we consider any solution U] ∈ NLT,k

(Ω) of the equation

T̂
]

kU
] = f (9.45)

as a generalized solution of (8.1). The main result of this section is now the following.

Theorem 77 Consider a system of nonlinear PDEs of the form (8.1) through (8.2)
that also satisfies (9.1). If both the righthand term f in (8.1) and the mapping (8.2)
are Ck-smooth, then there is a unique U] ∈ NLT,k

(Ω) so that

T̂
]

kU
] = f
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Proof. Let us first show existence. By Theorem 67, see also Remark 75, there
is exists a sequence (Γn) of closed nowhere dense subsets of Ω, and functions Un ∈
Cm+k (Ω \ Γn)K so that

∀ i = 1, ..., K :
∀ x ∈ Ω \ Γn :

fi (x)− 1
n
≤ Ti (x,D)Un (x) ≤ fi (x)

In view of (3.20), Proposition 46 and (8.12) it follows that

∀ i = 1, ..., K :
fi − 1

n
≤ Tivn ≤ fi

where vn ∈MLm+k (Ω)K is the function with components vn,i defined through

vn,i = (I ◦ S) (Un,i) .

Clearly each sequence (Tivn) converges to fi in MLk (Ω) so that the sequence (Tvn)
converges to f in MLk (Ω)K . As such, the sequence (Vn) associated with (vn)
through (9.44) is a Cauchy sequence in MLm+k

T,k
(Ω). The existence of a solution

now follows by the uniform continuity of the mapping (9.38).
Since the mapping (9.38) is a uniformly continuous embedding, the uniqueness of
the solution follows by Corollary 37.

The structure of the generalized solution obtained in Theorem 77 may be ex-
plained in terms of the structure of the completion of a uniform convergence space.
In particular, each element U] of the completion NLT,k

(Ω) of MLm+k

T,k
(Ω) may be

interpreted as consisting of the equivalence class of Cauchy filters{
F a Cauchy filter on MLm+k

T,k
(Ω) : T̂ (F) converges to f

}
(9.46)

under the equivalence relation (9.35). In view of (9.46), the unique generalized
solution U] ∈ NLT,k

(Ω) contains all possible sufficiently smooth solutions of (8.1)
within the context of the Order Completion Method. In particular, each solution
u ∈MLm+k (Ω)K of the equation (8.13) generates a Cauchy sequence inMLm+k

T,k
(Ω)

which belongs to the equivalence class (9.46). As such, this notion of solution is
consistent with solutions in u ∈ MLm+k (Ω)K , which includes also all classical
solutions of (8.1).

Furthermore, since the mapping (9.38) is a uniformly continuous embedding, it
follows by Corollary 37 that the extended mapping (9.43) associated with (9.38) is an
injection. This may be interpreted as a regularity result for the unique generalized
solution obtained in Theorem 77, in the sense that each generalized function in
NLT,k

(Ω) may be assimilated with usual functions in MLk (Ω)K .

It should be noted that the generalized solution of (8.1) constructed in Theorem
76 contains also the solution obtained in Theorem 77. Indeed, since the uniform con-
vergence structure (9.41) is finer than the subspace uniform convergence structure
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induced from ML0 (Ω)K , the inclusion mapping

i : MLk (Ω)K 3 u 7→ u ∈ML0 (Ω)K

is uniformly continuous. Combining the diagrams (8.17) and (9.44), we obtain an
injective uniformly continuous mapping

î : MLm+k

T,k
(Ω) →MLm

T (Ω) (9.47)

so that the diagram

MLm+k

T,k
(Ω) -MLk (Ω)K

T̂k

?

-MLm

T (Ω) ML0 (Ω)K

î i

?
T̂

(9.48)

commutes. Upon extension of the uniformly continuous mappings (8.20), (9.43) and
(9.47) to the completions of their respective domains, one obtains the commutative
diagram

NLT,k
(Ω) -MLk (Ω)K

T̂
]

k

?

-NLT (Ω) NL (Ω)K

î] i

?
T̂

]

(9.49)

corresponding to (9.48). Since the mappings T̂ ], T̂ ]
k and i are all injective by Corol-

lary 37, it follows by the diagram (9.49) that the mapping

î] : NLT,k
(Ω) → NLT (Ω) (9.50)
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must also be injective. In particular, if U] ∈ NLT,k
(Ω) is a solution of (9.45), then

î]U] ∈ NLT (Ω) is a solution of (8.21).

The results on existence, uniqueness and regularity of generalized solutions of
(8.1) obtained in this section are, to a certain extent, maximal with respect to
the regularity of solutions within the framework of the so called pullback spaces
of generalized functions. In this regard, let us now present the construction of
generalized solution in an abstract framework. Consider spacesX and Y of functions
g : Ω → RK such that f ∈ Y , and the nonlinear partial differential operator T
associated with (8.1) acts as

T : X → Y. (9.51)

Also suppose that Y is equipped with a complete and Hausdorff uniform convergence
structure JY which is first countable. Proceeding in the same way as is done in this
section, we introduce an equivalence relation on X through

u ∼T v ⇔ Tu = Tv,

and associate with the mapping (9.51) the injective mapping

T̂ : XT → Y, (9.52)

where XT is the quotient space X/ ∼T. In particular, the mapping (9.52) is
supposed to satisfy

∀ U ∈ XT :
∀ u ∈ U :

Tu = T̂U

.

If we equip XT with the initial uniform convergence structure JT with respect to
the mapping (9.52), then JT is Hausdorff and first countable. In particular, the
mapping (9.52) is a uniformly continuous embedding, and extends uniquely to a
injective uniformly continuous mapping

T̂
]
: X]

T
→ Y, (9.53)

where X]

T
is the completion of XT. A generalized solution of (8.1) in this context

is any solution U] ∈ X]

T
of the equation

T̂
]
U] = f. (9.54)

Note that, in view of the fact that the mapping (9.52) is a uniformly continuous
embedding, and (9.53) therefore an injection, the equation (9.54) can have at most
one solution.
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Now, in order to obtain the existence of a solution of (9.54), we must construct
a sequence (un) in X so that (Tun) converges to f in Y . In this regard, the most
general such result is given by Theorem 67. As such, within such a general context
as considered here, it follows that, if the mapping (8.2) is Ck-smooth, we should have

X ⊇MLm+k (Ω)K . (9.55)

It now follows by (9.51) and (9.55) that

Y ⊇MLk (Ω)K . (9.56)

This may be summarized in the following commutative diagram.

MLm+k (Ω)K -MLk (Ω)K
T

?

-X Y

⊂ ⊂

?
T

(9.57)

Combining the diagram (9.57) with (9.39) and

X - Y
T

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

XT

qT T̂
(9.58)

we obtain an injective mapping

ιT : MLm+k

T,k
(Ω) → XT (9.59)
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so that the diagram

MLm+k

T,k
(Ω) -MLk (Ω)K

T̂k

?
-XT Y

ιT ⊂

?
T̂

(9.60)

commutes. In particular, if the subspace convergence structure induced onMLk (Ω)K

from Y is coarser than the order convergence structure, then the mapping (9.59) is
uniformly continuous. Furthermore, in this case the mapping (9.59) extends to an
injective uniformly continuous mapping

ι]
T

: NLT,k
(Ω) → X]

T
(9.61)

so that the extended diagram

NLT,k
(Ω) -MLk (Ω)K

T̂
]

k

?
-X]

T
Y

ι]
T

⊂

?
T̂

]

(9.62)

commutes. The existence of the injective mapping (9.61) may be interpreted as fol-
lows. Any pullback type space of generalized functions X]

T
which is constructed as

above, and subject to the condition of generality of the nonlinear partial differential
operator T must contain the space NLT,k

(Ω). As such, within the context of gen-

eral, continuous systems of nonlinear PDEs, the generalized functions in NLT,k
(Ω)

may be considered to be ‘more regular’ than those in any other space of generalized
functions constructed in this way.
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9.4 Existence of Solutions in Sobolev Type Spaces

In the previous two section we obtained existence, uniqueness and regularity results
for the generalized solutions of large classes of systems of nonlinear PDEs in the
context of the so called pullback spaces of generalized functions. However, and as
explained at the end of Section 9.3, it is not possible, in the general case of arbitrary
systems of continuous nonlinear PDEs, to go beyond the basic regularity properties
of such generalized solutions within the framework of the mentioned pullback type
spaces of generalized functions.

In this regard, there are two obstacles. In particular, the spaces of generalized
functions NLT (Ω) are constructed with a given nonlinear operator T in mind. As

such, both the generalized functions U] ∈ NLT (Ω), as well as the uniform con-
vergence structure on NLT (Ω), may depend on this nonlinear mapping. A second
difficulty, and connected with the first, is that there is no concept of generalized
derivative on NLT (Ω). In fact, it is not clear how one should define the derivatives
of the generalized functions in NLT (Ω).

Within the context of the Sobolev type spaces of generalized functions intro-
duced in Section 8.2, the difficulties discussed above are resolved. In particular,
these spaces are constructed independent of any given nonlinear partial differential
operator T. Furthermore, the usual partial differential operators

Dα : MLm (Ω) →ML0 (Ω)

extend uniquely to uniformly continuous mappings

Dα] : NLm (Ω) → NL (Ω)

so that we may associate with each generalized function u] ∈ NLm (Ω) the vector
of generalized derivatives

D]u =
(
Dα]u

)
|α|≤m

∈ NL (Ω)M .

Note also that, in view of the commutative diagram (8.41), the space NLm (Ω)
provides also an additional clarification of the structure of generalized functions in
the pullback type spaces of generalized functions, in case the generalized equation
(8.39) admits a solution.

In this section we investigate the existence of solutions to the generalized equa-
tion (8.39). In this regard, the main result is that a large class of systems of nonlinear
PDEs have generalized solutions in the Sobolev type spaces of generalized functions
NLm (Ω). We also consider systems of equations that satisfy additional smooth-
ness conditions, such as those introduced in Section 8.3, over and above the mere
continuity of the mapping (8.2). Such equations turn out to admit solutions in the
Sobolev type spaces of generalized functions NLm+k (Ω)K , the elements of which
have generalized partial derivatives up to order m + k. Here m is the order of the
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system of equations (8.1) and k is the degree of smoothness of the righthand term
f and the mapping (8.2).

As mentioned, the central result of this section concerns the existence of solutions
to (8.39) for a large class of nonlinear partial differential operators. This result, and
as is also the case for the existence results presented in Sections 9.2 and 9.3, uses
only rather basic topological processes associated with the completion of uniform
convergence spaces, and the approximation results presented in Section 9.1, most
notably Theorem 70.

Theorem 78 Consider a system of nonlinear PDEs of the form (8.1) through (8.3)
that satisfies (9.19). Then there is some u] ∈ NLm (Ω)K such that

T]u] = f.

Proof. We may apply Theorem 70 to obtain a sequence (Γn) of closed nowhere
dense sets such that

∀ n ∈ N :
Γn ⊆ Γn+1

,

and a sequence of functions (Vn) such that

∀ n ∈ N :

Vn ∈ Cm (Ω \ Γn)K .

The sequence (Vn) satisfies

∀ j = 1, ..., K :
fj (x)− 1

n
≤ Tj (x,D)Vn (x) ≤ fj (x) , x ∈ Ω \ Γn

. (9.63)

Furthermore, for each |α| ≤ m and every i = 1, ..., K there are sequences
(
λα

n,i

)
and(

µα
n,i

)
so that λα

n,i, µ
α
n,i ∈ C0 (Ω \ Γn), and both

∀ n ∈ N :
∀ |α| ≤ m :
∀ i = 1, ..., K :

1) λα
n,i (x) < DαVn,i (x) < µα

n,i (x) , x ∈ Ω \ Γn

2) λα
n,i (x) < λα

n+1,i (x) < µα
n+1,i (x) < µα

n,i (x) , x ∈ Ω \ Γn+1

(9.64)

and

∀ x ∈ Ω \
(⋃

n∈N Γn

)
:

∀ |α| ≤ m :
∀ i = 1, ..., K :

sup{λα
n,i (x) : n ∈ N} = inf{µα

n,i (x) : n ∈ N}

(9.65)
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are satisfied. Consider the sequence of functions (un) inMLm (Ω)K , the components
of which are defined through

un,i = (I ◦ S) (Vn,i) , i = 1, ..., K.

In view of (9.63) it is clear that the sequence (Tun) converges to f ∈ ML0 (Ω)K .

Now define, for each i = 1, ..., K and every |α| ≤ m, the sequences
(
λ

α

n,i

)
and

(
µα

n,i

)
in ML0 (Ω) as

λ
α

n,i = (I ◦ S)
(
λα

n,i

)
and

µα
n,i = (I ◦ S)

(
µα

n,i

)
Applying (3.17), (3.20) and Propositions 46 to (9.64) it follows that, for each n ∈ N,

λ
α

n,i ≤ λ
α

n+1,i ≤ Dαun,i ≤ µα
n,i ≤ µα

n,i.

Furthermore, from (3.20), Definition 53 and (9.65) it follows that each of the filters

[{[λα

n,i, µ
α
n,i] : n ∈ N}]

is a Cauchy filter in ML0 (Ω). As such, each of the sequences (Dαun,i) is a Cauchy

sequence in ML0 (Ω) so that the sequence (un) is a Cauchy sequence in MLm (Ω)K .
The result now follows by Theorem 65.

Theorem 78 states that the generalized equation (8.39) corresponding to the
system of nonlinear PDEs (8.1) has a solution in NLm (Ω)K . Since the mapping
(8.38) which defines the left hand side of the equation (8.39) is the unique uniformly
continuous extension of the mapping (8.10), the solution u] ∈ NLm (Ω)K to (8.39)
is interpreted as a generalized solution to the system of PDEs (8.1).

Furthermore, each of the partial differential operators (8.8) extends uniquely to
uniformly continuous mapping (8.30) which represent the generalized derivatives of
the generalized functions u] ∈ NLm (Ω). In particular, and in view of the definition
of the uniform convergence structure JD on MLm (Ω) as the initial uniform conver-
gence structure with respect to the family of mappings (8.22), the mapping (8.26)
is a uniformly continuous embedding of MLm (Ω) into ML0 (Ω)M . As such, and
in view of Corollary 37, the mapping (8.26) extends uniquely to the injective uni-
formly continuous mapping (8.28). Thus, the commutative diagram (8.29) amounts
to a representation of the generalized functions that are the elements of NLm (Ω)
in terms of their generalized derivatives Dα]u] ∈ NL (Ω).

The representation of a generalized function u] ∈ NLm (Ω) in terms of its gen-
eralized derivatives may be interpreted as a regularity result for the generalized so-
lutions to (8.1) obtained in Theorem 78. Indeed, each generalized derivative Dα]u]

i
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of a component u]
i of the solution u] to (8.39) is a nearly finite normal lower semi-

continuous functions. As such, we have

∃ B ⊂ Ω of first Baire category :
∀ i = 1, ..., K :
∀ |α| ≤ m :
∀ x ∈ Ω \B :

Dαu]
i continuous at x

That is, each generalized solution u] ∈ NLm (Ω)K of (8.1) may be represented as
a K-tuple of usual nearly finite normal lower semi-continuous functions which, in
view of Proposition 46, are continuous and real valued on a residual subset of Ω.

The existence of generalized solutions of (8.1) in the Sobolev type space of gen-
eralized functions NLm (Ω)K also provides some insight into the structure of the
generalized solutions in the pullback type spaces of generalized functions. In this
regard, consider now a system of nonlinear PDEs of the form (8.1) such that the
mapping (8.2) is both open and surjective. In that case, it follows by Theorems 76
and 78 that

∀ f ∈ C0 (Ω)K :
∃! U] ∈ NLT (Ω) :

T̂
]
U] = f

and

∀ f ∈ C0 (Ω)K :
∃ u] ∈ NLm (Ω) :

T]u] = f

In view of the commutative diagram (8.41) it follows that the unique generalized
solution to (8.1) in NLT (Ω) consists precisely of all generalized solutions to (8.1)

in NLm (Ω)K . That is,

U] =
{
u] ∈ NLm (Ω)K : T]u] = f

}
.

Moreover, and as is explained in Section 8.3, the mapping (8.40) is the canonical
quotient mapping associated with the equivalence relation (8.43) on NLm (Ω)K .

The existence result presented in Theorem 78 applies to a general class of systems
of nonlinear PDEs. In particular, it requires rather minimal assumptions on the
smoothness of the both the nonlinear partial differential operator T, as well as the
righthand term f. In this regard, it is only assumed that the righthand term f and the
mapping (8.2) that defines the nonlinear operator T through (8.12) are continuous.

As is shown in Section 9.3 in connection with generalized solutions in the pull-
back type spaces of generalized functions, additional regularity assumptions on the
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operator T and the righthand term f, such as those introduced in Section 8.3, may
lead to significant improvements in the regularity of generalized solutions. As we
shall see shortly, this is also the case for solutions constructed in the Sobolev type
spaces of generalized functions.

In this regard, we now consider a system of nonlinear PDEs of the form (8.1),
with the mapping (8.2) which defines the nonlinear operator through (8.12) a Ck-
smooth function, for some k ∈ N. We may recall from Section 8.3 that, in this case,
we obtain a uniformly continuous mapping

T : MLm+k (Ω)K →MLk (Ω)K .

In particular, this mapping may be represented by the uniformly continuous map-
pings (8.48) and (8.50) in the commutative diagram (8.49). This shows that the
equation (8.57) is equivalent to (8.13). Furthermore, and in view of the uniform
continuity of the mappings (8.46), (8.48) and (8.50), each of these mappings extend
uniquely the uniformly continuous mappings (8.53), (8.54) and (8.55), respectively.
Moreover, since the mapping (8.55) is injective, one obtains also the representation
(8.56) for the extended nonlinear partial differential operator (8.53). In this regard,
it follows that the generalized equation (8.58) is equivalent to

T]u] = f, (9.66)

where the unknown u] is supposed to belong to the space NLm+k (Ω)K . Note,
however, that, as is mentioned in Section 8.3, the equivalence with the generalized
equation (8.39) breaks down, since in that case the solution is only assumed to have
generalized derivatives up to order m. Under assumptions similar to those required
for Theorem 78, we now obtain the existence of a solution to the generalized equation
(9.66). In this regard, the approximation result Theorem 71 is the key.

Theorem 79 Consider a system of nonlinear PDEs of the form (8.1) to (8.3) with
the mapping (8.2) and the righthand term f both Ck-smooth for some k ∈ N. If the
system satisfies (9.30), then there is some u] ∈ NLm+k (Ω)K such that

T]u] = f.

Proof. The proof of this result utilizes exactly the same techniques by which
Theorem 78 is verified. Hence we do not include it here.

The structure of the generalized solution to (8.1) obtained in Theorem 79 may
be explained by the same arguments used to describe the generalized solution con-
structed in Theorem 78. In particular, each solution u] ∈ NLm+k (Ω)K to (9.66)
may be uniquely represented through its generalized derivatives

Dα]u]
i, |α| ≤ m+ k and i = 1, ..., K

with each such generalized derivative a nearly finite normal lower semi-continuous
function on Ω.
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The existence results presented in Sections 9.2 and 9.3 for generalized solutions
to (8.1) within the context of pullback type spaces of generalized functions apply
to a large class of such systems of equations. In particular, every system of linear
PDEs, and more generally every system of polynomial type nonlinear PDEs satisfy
the condition (9.1), see [119], so that Theorem 76 applies to all such systems of
equations. In connection with the existence results presented in this section, namely
Theorems 78 and 79, a large class of equations to which these results apply will be
discussed in Section 10.2.

 
 
 



Chapter 10

Regularity of Generalized
Solutions

10.1 Compactness Theorems in Function Spaces

In chapter 9 we obtained several existence results for generalized solutions of systems
of nonlinear PDEs of the form (8.1) to (8.3). In particular, solutions are constructed
in the pullback type spaces of generalized functions, the elements of which may be
assimilated with usual nearly finite normal lower semi-continuous functions. Under
minimal assumptions on the smoothness of the nonlinear partial differential opera-
tor, it is shown that such solutions may in fact be assimilated even with piecewise
smooth functions. As is mentioned also in Section 9.3, this is to some extent the
maximal regularity for solutions in these pullback type spaces of generalized func-
tions.

In Section 9.4 solutions to (8.1) are constructed in the Sobolev type spaces
NLm (Ω)K of generalized functions. These solutions are represented as nearly finite
normal lower semi-continuous functions through the injective, uniformly continuous
mapping (8.28). These solutions provide additional insight into the structure of
the generalized solutions in the pullback type space NLT (Ω) of generalized func-
tions through the commutative diagram (8.41). In particular, the unique generalized
solution U] ∈ NLT (Ω) may be represented as the equivalence class{

u] ∈ NLm (Ω)K : T]u] = f
}

under the equivalence relation (8.43).

As discussed in Section 8.2, the generalized derivatives Dα]u] of a generalized
function u] ∈ NLm (Ω) are normal lower semi-continuous functions. In particular,
each such generalized derivative is continuous on a residual set, that is,

∃ B ⊂ Ω of first Baire category :
∀ |α| ≤ m :

Dαu] is continuous at every x ∈ Ω \B

175
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In general these generalized derivatives cannot be interpreted as usual derivatives
of real functions. However, as we shall show in Section 10.2, under rather mild
assumptions on the nonlinear partial differential operator (8.4), we can construct
generalized solutions to (8.1) in NLm (Ω)K such that

∃ u ∈MLm (Ω)K :
∀ |α| ≤ m :
∀ i = 1, ..., K :

Dα]u]
i = Dαui

(10.1)

The regularity property (10.1) for generalized solutions u] ∈ NLm (Ω)K is obtained
as an application of suitable compactness theorems in Ck (Ω), these being the subject
of the present section. Some of the results presented in this section can be found in
[1]. We include the proofs, as these are of independent interest.

In this regard, the notion of equicontinuity of sets of continuous functions is a key
concept. Recall that for a topological space X, a set A ⊂ C (X) is equi-continuous
at x0 ∈ X whenever

∀ ε > 0 :
∃ V ∈ Vx0 :
∀ u ∈ A :

x ∈ V ⇒ |u (x0)− u (x) | < ε

.

The set A is called equicontinuous on X if it is equicontinuous at each x0 ∈ X,
see for instance [81]. Equicontinuity is closely related to compactness in C (X). In
particular, the well known theorem of Arzellà-Ascoli is the standard result.

Theorem 80 *[110] Consider a subset A of C (X). Then A has compact closure in
the topology of uniform convergence on compacta in X whenever A is equicontinuous,
and

A (x) = {u (x) : u ∈ A}

has compact closure in R for each x ∈ X.
The converse holds whenever X is locally compact.

The special case of Theorem 80 which is relevant in the context of nonlinear
PDEs is when X is a suitable subset of Rn and A ⊂ Cm (X). In this regard, we at
first consider a compact, convex subset X of Rn with nonempty interior. We equip
the space Cm (X) with the norm

‖u‖m = sup

{
|Dαu (x) | 1) |α| ≤ m

2) x ∈ X .

}
(10.2)

Theorem 81 *[1] With the norm (10.2), the space Cm (X) is a Banach space.
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Proof. Let (un) be a Cauchy sequence in Cm (X). Then, in view of the complete-
ness of C0 (X) with respect to the uniform norm, it follows that

∀ |α| ≤ m :
∃ uα ∈ C0 (X) :

(Dαun) converges uniformly to uα

.

Denote by u the function uα for |α| = 0. We claim

∀ |α| ≤ m :
Dαu = uα (10.3)

which would complete the proof. In this regard, fix some i0 ∈ {1, ..., n} and consider
any c = (ci)i≤n ∈ intX. Define the nontrivial line segment Ii0 (c) as

Ii0 (c) =

{
x ∈ X ∀ i 6= i0 :

xi = ci

}
.

Fix x0 ∈ Ii0 (c). By virtue of the Mean Value Theorem we have

∀ x ∈ Ii0 (c) :
∀ m,n ∈ N :
∃ y ∈ Ii0 (c) :

(um (x)− un (x))− (um (x0)− un (x0))

=
(
xi0 − x0

i0

) (
∂um

∂xi0
(y)− ∂un

∂xi0
(y)
)

From this it follows that, whenever x0 6= x, we have∣∣∣∣um (x)− um (x0)

xi0 − x0
i0

− un (x)− un (x0)

xi0 − x0
i0

∣∣∣∣ ≤ ∥∥∥∥∂um

∂xi0

− ∂un

∂xi0

∥∥∥∥ .
As such, and in view of the uniform convergence of the sequence of derivatives, it
follows that

∀ ε > 0 :
∃ Mε ∈ N :
∀ m,n ≥Mε :∣∣∣∣um(x)−um(x0)

xi0
−x0

i0

− un(x)−un(x0)
xi0

−x0
i0

∣∣∣∣ < ε

.

Therefore we have∣∣∣∣u (x)− u (x0)

xi0 − x0
i0

− un (x)− un (x0)

xi0 − x0
i0

∣∣∣∣ < ε, n ≥Mε. (10.4)

Since the sequence
(

∂un

∂xi0

)
converges uniformly to uα, with α = (0, ..., 0, 1, 0, ..., 0),

it follows that

∃ Nε ∈ N :∣∣∣ ∂un

∂xi0
(x0)− uα (x0)

∣∣∣ < ε, n ≥ Nε
(10.5)
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Set K = sup{Mε, Nε}. Since uK ∈ Cm (X) it follows that

∃ δε (K) > 0 :
∀ x ∈ Ii0 (c)∣∣∣∣uK(x)−uK(x0)

xi0
−x0

i0

− ∂uK

∂xi0
(x0)

∣∣∣∣ < ε, 0 < |xi0 − x0
i0
| < δε (K)

. (10.6)

From the inequalities (10.4), (10.5) and (10.6) it follows that∣∣∣∣u (x)− u (x0)

xi0 − x0
i0

− uα
(
x0
)∣∣∣∣ < 3ε

whenever 0 < |xi0 − x0
i0
| < δε (K). This proves that ∂u

∂xi0
(x0) = uα (x0).

This argument can be replicated for all x ∈ X and all |α| ≤ m. As such, (10.3)
must hold, and the proof is complete.

The main result of this section, in regard to the space Cm (X), is a useful sufficient
condition for a set A ⊆ Cm (X) to be precompact. As mentioned, equicontinuity is
closely connected with compactness in spaces of continuous functions. Indeed, this
concept characterizes the compact sets in C (X) through the Arzellà-Ascoli Theorem
80. In this regard, within the context of sets of smooth functions discussed here, a
useful class of equicontinuous sets may be easily described.

Proposition 82 *[1] A subset A of C1 (X) is equicontinuous whenever

∃ C > 0 :
∀ |α| = 1 :
∀ u ∈ A :

‖Dαu‖ ≤ C

(10.7)

Proof. For u ∈ A, and c ∈ X, denote by Du (c) the Frechét derivative of u at x.
That is, the linear functional defined through

Du (c) : Rn 3 x 7→
n∑

i=1

xi
∂u

∂xi

(c) ∈ R.

By the Mean Value Theorem [19, 40.4], it follows that

∀ u ∈ A :
∀ x, y ∈ X :
∃ z on the line segment from x to y :

Du (z) (x− y) = u (x)− u (y)

This leads to

|u (x)− u (y) | ≤ ‖Du (z) ‖ · ‖x− y‖
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where we take the supremum norm of Du (z). It now follows from (10.7) that

∀ u ∈ A :
∀ x, y ∈ X :

|u (x)− u (y) | ≤ C‖x− y‖
.

For a fixed x ∈ X we now have

∀ u ∈ A :
|u (x)− u (y) | < Cδ

whenever ‖x− y‖ < δ. As such, for every ε > 0, and if we choose δ < ε
M

, it follows
that

∀ u ∈ A :
∀ x, y ∈ X :

‖x− y‖ < δ ⇒ |u (x)− u (y) | < ε

which completes the proof.

As an easy application of Proposition 82 we now obtain the following result on
the compactness of sets in Cm (X).

Theorem 83 *[1] Consider a set A ⊆ Cm+1 (X). If

∃ C > 0 :
∀ |α| ≤ m+ 1 :
∀ u ∈ A :

‖Dαu‖ ≤ C

, (10.8)

then A is precompact in Cm (X), with respect to the topology induced by the norm
(10.2).

Proof. It is sufficient to show that A is sequentially precompact. In this regard,
consider any sequence (un) in A. From Proposition 82 it follows that, for each
|α| ≤ m, the set

{Dαu : u ∈ A}

is equicontinuous. As such, and in view of (10.8) and Theorem 80, it follows that
there exists a subsequence (unk

) of (un), and functions uα ∈ C0 (X), for |α| ≤ m, so
that each sequence (Dαunk

) converges to uα. The result now follows by Theorem
81.

The results obtained so far apply only to functions defined on a compact, convex
subset of Rn, the interior of which is nonempty. As such, and in particular in
connection with nonlinear PDEs, the power of the respective results resides rather
in the sphere of local properties of solutions of a systems of nonlinear PDEs, as
apposed to the global properties of such a solution. More precisely, in general the
domain of definition Ω of a system of nonlinear PDEs (8.1) is in general neither
convex, nor compact. In particular, Ω is typically some open subset of Rn, which
may fail to be convex or bounded. In this regard, we introduce the following topology
on Cm (Ω), with Ω any nonempty and open subset of Rn.
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Definition 84 Denote by τm the topology on Cm (Ω) which is generated by the col-
lection of subsets{

S
(
A, {Uα}|α|≤m

) 1) A ⊂ Ω compact
2) Uα ⊆ R open, |α| ≤ m

}
of Cm (Ω), where for A ⊂ Ω compact and Uα ⊆ R, |α| ≤ m, open

S
(
A, {Uα}|α|≤m

)
=

{
u ∈ Cm (Ω)

∀ |α| ≤ m :
Dαu (A) ⊆ Uα

}
.

It is clear that τm does indeed define a topology on Cm (Ω). Furthermore, a sequence
(un) in Cm (Ω) converges to u ∈ Cm (Ω) if and only if

∀ |α| ≤ m :
∀ A ⊂ Ω compact :

(Dαun) converges Dαu uniformly on A
.

Theorem 85 The topology τm metrizable and complete.

Proof. Let {Ai : i ∈ N} be a collection of compact, convex perfect subsets of Ω
such that the family {intAi : i ∈ N} covers Ω, see for instance [58]. Then each of the
sets Cm (Ai) is a complete metric space with respect to the metric induced through
the norm (10.2). As such, the space∏

i∈N

Cm (Ai)

is complete and metrizable in the product topology. This follows by the Urysohn
Metrization Theorem, see for instance [110]. Consider the mapping

E : Cm (Ω) →
∏
i∈N

Cm (Ai)

defined through

E (u) =
(
u|Ai

)
i∈N , (10.9)

where u|Ai
denotes the restriction of u to Ai. Clearly the mapping (10.9) is injective

and continuous with a continuous inverse. As such, Cm (Ω) is homeomorphic to the
subspace E (Cm (Ω)) of

∏
i∈N Cm (Ai), and hence it is metrizable. Completeness now

follows by Theorem 81.

Now, as mentioned, in the context of nonlinear PDEs, Theorem 83 is inappropri-
ate, since the domain of definition of a system of nonlinear PDEs will in general fail
to be compact and convex. However, the metrizable topology τm on Cm (Ω), with
Ω a nonempty and open subset of Rn, provides a suitable framework for proving
similar results in the noncompact case.
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Theorem 86 Let Ω be a nonempty and open subset of Rn. Suppose that the set
A ⊂ Cm+1 (Ω) satisfies

∀ A ⊂ Ω compact :
∃ MA > 0 :
∀ |α| ≤ m+ 1 :
∀ x ∈ A :

u ∈ A ⇒ |Dαu (x) | < MA

.

Then A is precompact in Cm (Ω) with respect to the topology τm.

Proof. Note that, by Proposition 82, every set Dα (A), with |α| ≤ m is equicontin-
uous, and hence, by Theorem 80, precompact in C0 (Ω) with respect to the compact
open topology. As such, each sequence (un) in A contains a subsequence (unk

) such
that

∀ |α| ≤ m :
∃ uα ∈ C0 (Ω) :
∀ A ⊂ Ω compact :

(Dαunk
) converges uniformly to uα on A

.

The result now follows by the same techniques used in the proof of Theorem 81.

Theorems 83 and 86 provide a sufficient condition for a subset A of Cm+1 (X),
respectively Cm+1 (Ω), to be compact in Cm (X), respectively Cm (Ω). It should be
noted that, due to reasons from elementary Banach space theory, such sets need not
be compact in Cm+1 (X), Cm+1 (Ω) respectively. Indeed, suppose sets A ⊂ Cm+1 (X)
which satisfy (10.8) are compact in Cm+1 (Ω). Then the closed unit ball is also
compact, so that Cm+1 (X) is finite dimensional, which is obviously not the case.

In order to obtain compactness of a set A ⊂ Cm+1 (X), one must impose addi-
tional assumptions on the set A. In particular, in the one dimensional case when X
is a compact interval in R, the compact subsets of Cm (X) are characterized by the
conditions

1) A is bounded w.r.t. the norm (10.2)
2) {Dmu : u ∈ A} is equicontinuous

,

see for instance [49]. This characterization can be generalized to the arbitrary n
dimensional case studied here. However, within the context of nonlinear PDEs,
and in particular the construction of generalized solutions though approximation
by smooth functions, the condition of equicontinuity of the set of highest order
derivatives is rather difficult to satisfy.

Theorems 83 and 86 illustrate the phenomenon of ‘loss of smoothness’, which is
well known in the field of partial differential equations. In this context, Theorem
83 states that, if you obtain a solution u of a PDE as the limit of a sequence (un)
of functions that are Cm-smooth, then u will be only Cm−1-smooth. In this regard,
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consider some iterative method for constructing successive approximations to the
solution of a given nonlinear PDE

T (x,D)u (x) = f (x) , x ∈ Ω. (10.10)

Such an algorithm produces a sequence (un) of approximate solutions to (10.10). It
often happens, see for instance [108] , that if un ∈ Cm (Ω) for some n ∈ N, then the
next approximation un+1 in the sequence will be less smooth than un. That is, we
will typically have un+1 ∈ Cm−1 (Ω) \ Cm (Ω). This has lead to the consideration of
so called smoothing operators, which are supposed to restore the desired regularity
of the approximations, see for instance [108], [114] and [117].

In this way, we may come to appreciate another novelty of the method of obtain-
ing generalized solutions of systems of nonlinear PDEs of the form (8.1) presented
here. Namely, that no such loss of smoothness of the approximating solutions occur.
There is therefore no need to introduce any kind of smoothing operators. However,
the approximate solutions are not smooth on the whole domain of definition of the
system of equations. Indeed, each such approximate solution un ∈MLm (Ω)K may
be nonsmooth on some closed nowhere dense set Γn ⊂ Ω, and the sets ∪n≥KΓn, for
K ∈ N, are typically dense in Ω. As such, one cannot apply the results of this section
to obtain even just local regularity of generalized solutions. In the next section we
shall present a way, based on Theorem 74, of going beyond these difficulties.

10.2 Global Regularity of Solutions

As is mentioned in Section 10.1, in the method for obtaining generalized solutions of
systems of nonlinear PDEs presented in this work, and in particular, the construction
of solutions in the Sobolev type spaces of generalized functions in Sections 8.2 and
Section 9.4, there is no loss of smoothness of the approximating functions. Indeed,
recall that the generalized solutions to (8.1) in NLm (Ω)K are constructed as the
limits of sequences in MLm (Ω)K . As such, there is no need to introduce any kind of
smoothing operator in order to restore the regularity of successive approximations.

However, the results developed in Section 10.1, in particular Theorems 81, 83,
85 and 86 do not apply in the setting of the Sobolev type spaces of generalized
functions, since the approximate solutions to (8.1) in MLm (Ω) allow singularities
across arbitrary closed nowhere dense subsets of Ω. Furthermore, no suitable gen-
eralization of these results to the larger space MLm (Ω) seems possible. Indeed,
the compactness results presented in Section 10.1 is based on the Arzellà-Ascoli
Theorem 80, which requires pointwise boundedness and equicontinuity of the set of
functions. However, note that a function u ∈ ML (Ω), as well as its derivatives,
will typically become unbounded in every neighborhood of the singularity set Γu

associated with it through (8.5). Furthermore, if a set A of real valued functions on
Ω is equicontinuous on Ω, then we must have

A ⊆ C0 (Ω) ,
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which is is in general not the case for subsets of MLm (Ω).

The aim of this section is to show that there exist generalized solutions to (8.1)
in NLm (Ω)K which are in fact classical solutions everywhere except on a closed
nowhere dense set. This will follow as an application of Theorems 74 and 86. Note,
however, that Theorem 83, and therefore Theorem 86, involves a loss of smoothness.
In particular, given a sequence (un) of Cm-smooth functions on a compact, convex
subset X of Rn with nonempty interior, which is bounded with respect to the norm
(10.2), we are in general only able to extract a subsequence of (un) which converges in
Cm−1 (Ω). As such, and in view of the results presented in Section 9.4, it is clear that
some additional smoothness conditions on the nonlinear partial differential operator
(8.10), beyond the mere continuity of the mapping (8.2), must be imposed in order
to apply Theorem 86.

In this regard, we consider a system of nonlinear PDEs of the form (8.1) such
that the mapping (8.3), as well as the righthand term f are Ck-smooth, for some
k ≥ 1. Theorem 79 states that such a system of equations admits a solution u] ∈
NLm+k (Ω)K whenever the condition (9.30) is satisfied. The main result of this
section is a significant strengthening of Theorem 79 in terms of the regularity of the
solution constructed.

Theorem 87 Suppose that a system of nonlinear PDEs of the form (8.1) satisfies
(9.30). Then there exists some u ∈MLm+k−1 (Ω)K so that

Tu = f

Proof. By Theorem 79 we have

∃ u] ∈ NLm+k (Ω)K :
T]u] = f

.

In particular, there exists a Cauchy sequence (un) ⊂ MLm+k (Ω)K so that (Tun)
converges to f in NLk (Ω)K . Furthermore, for each j = 1, ..., K and each |β| ≤ k we
have

Dβfj −
1

n
≤ DβTjun ≤ Dβfj. (10.11)

For each n ∈ N there is a closed nowhere dense set Γn ⊂ Ω such that un ∈
Cm+k (Ω \ Γn)K . Therefore, in view of Theorem 74, we have

∀ n ∈ N :

∃ (un,r) ⊂ Cm+k (Ω)K :
∀ |α| ≤ m+ k :
∀ i = 1, ..., K :
∀ A ⊂ Ω \ Γn compact :

‖Dαun,r,i −Dαun,i‖A → 0

(10.12)

 
 
 



CHAPTER 10. REGULARITY OF GENERALIZED SOLUTIONS 184

where ‖ · ‖A denotes the uniform norm on C0 (A). It follows by the construction of
the sequence (un) in Theorem 71 that

∀ x ∈ Ω \
(⋃

n∈N Γn

)
:

∀ |α| ≤ m+ k :
∀ i = 1, ..., K :

|Dαun,i (x)−Dα]ui (x) | → 0

. (10.13)

Therefore, and in view of (10.12), it follows that there is a strictly increasing sequence
of integers (rn) so that

∀ x ∈ Ω \ (
⋃

Γn) :
∀ |α| ≤ m+ k :
∀ i = 1, ..., K :

|Dαun,rn,i (x)−Dα]uj (x) | → 0

(10.14)

From (10.11), as well as the continuity of the mapping (8.2) and its derivatives, it
follows that

∀ x ∈ Ω \ (
⋃

Γn) :
∀ |β| ≤ k :
∀ j = 1, ..., K :

|DβTjun,rn (x)−Dβfj (x) | → 0

(10.15)

In view of Proposition 49 there is a function µ ∈ML (Ω) so that

∀ n ∈ N :
∀ |β| ≤ k :
∀ j = 1, ..., K :

|DβTjun,rn| ≤ µ

.

As such, there is a closed nowhere dense set Γ ⊂ Ω so that

∀ A ⊂ Ω \ Γ compact :
∃ MA > 0 :
∀ |β| ≤ k :
∀ j = 1, ..., K :

‖DβTjun,rn‖A ≤MA, n ∈ N

.

As an application of Theorem 86 it follows that there is a subsequence of (un,rn),
which we dote by (vn), so that

(
DβTvn

)
converges to Dβf uniformly on compact

subsets of Ω \ Γ for each |β| ≤ k − 1. Hence the sequence (Tvn) converges to f in
MLk−1 (Ω)K .
By similar arguments as those used above, it may be shown that there is a closed
nowhere dense set Γ0 ⊂ Ω so that

∀ A ⊂ Ω \ Γ0 compact :
∃ M0

A > 0 :
∀ |α| ≤ m+ k :
∀ i = 1, ..., K :

‖Dαvn,i‖A ≤M0
A, n ∈ N
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Applying Theorem 86, we find that there is a subsequence of (vn), which we again
denote by (vn), and some v ∈ Cm+k−1 (Ω \ Γ0)

K so that

∀ A ⊂ Ω \ Γ0 compact :
∀ |α| ≤ m+ k − 1 :
∀ i = 1, ..., K :

‖Dαvn,i −Dαvi‖A → 0

Clearly the sequence (un), the components of which are defined as

un,i = (I ◦ S) (vn,i) ,

converges in MLm+k−1 (Ω)K to the function u ∈ MLm+k−1 (Ω)K , the components
of which are defined as ui = (I ◦ S) (vi). The result now follows by the uniform
continuity of the mapping T : MLm+k−1 (Ω)K →MLk−1 (Ω)K .

Theorem 87 states that every system of nonlinear PDEs of the form (8.1) such
that the mapping (8.2) and the righthand term f are Ck-smooth, has a generalized
solution u] ∈ NLm (Ω)K such that u] ∈MLm+k−1 (Ω), provided that the condition
(9.30) is satisfied. That is,

∃ Γ ⊂ Ω closed nowhere dense :

∃ u ∈ Cm+k−1 (Ω \ Γ)K :
T (x,D)u (x) = f (x) , x ∈ Ω \ Γ

A highly important particular case of Theorem 87 occurs when the system of
equations is C1-smooth, in the sense that the mapping (8.2) and the righthand term
f in (8.1) are C1-smooth. In this case, Theorem 87 may be stated as

∃ Γ ⊂ Ω closed nowhere dense :

∃ u ∈ Cm (Ω \ Γ)K :
T (x,D) = f (x) , x ∈ Ω \ Γ

(10.16)

We may recall [129] that a property of a system is called a strongly generic property
of this system if and only if it holds on an open and dense subset of the domain of
definition of that system. Therefore, in view of (10.16) the existence of a classical
solution to a system of nonlinear PDEs (8.1) that satisfies (9.30) is a strongly generic
property of such a system.

A question naturally arises as to the actual scope of the result. That is, can we
describe a significantly large class of systems of nonlinear PDEs to which Theorem
87 applies? To this question, the answer is affirmative. In this regard, note that
the condition (9.30) is sufficient for the existence of classical solutions to (8.1) on
an open and dense subset of the domain of definition Ω of the system of equations.
As such, we need only demonstrate that this condition is satisfied. Furthermore,
and as we shall shortly see, the condition (9.30) is, in many cases, rather easily
verified through some standard techniques in real analysis. In particular, certain

 
 
 



CHAPTER 10. REGULARITY OF GENERALIZED SOLUTIONS 186

open mapping type theorems [19] are useful in this regard. We shall exhibit one
considerably general class of equations to which Theorem 87 applies.

In this regard, we consider a system of K nonlinear PDEs of the form

Dtu (x, t) + G (x, t, ..., Dαui (x, t) , ...) = f (x, t) , i = 1, ..., K (10.17)

where (x, t) ∈ Ω× [0,∞), with Ω ⊆ Rn nonempty and open, and

G : Ω× [0,∞)× RM → RK (10.18)

a C1-smooth mapping. With the system of equations (10.17) we may associate a
mapping

T : MLm (Ω× [0,∞))K →ML0 (Ω× [0,∞))K . (10.19)

In particular, and in view of the fact that the mapping (10.21) is C1-smooth, the
mapping (10.19) satisfies

T : MLm+1 (Ω× [0,∞))K →ML1 (Ω× [0,∞))K . (10.20)

Theorem 88 Consider a system of nonlinear PDEs of the form (10.17). If both
the mapping (10.21) and the righthand term f are C1-smooth, then the system of
equations satisfies (9.30).

Proof. Note that, for each β ∈ {0, 1}n, and every j = 1, ..., K there is a jointly
continuous mapping

Gβ
j : Ω× [0,∞)× RL → R (10.21)

so that, for each u ∈ Cm+1 (Ω)K , we have

DβTju (x, t) = DβDtuj (x, t) +Gβ
j (x, t, ..., Dαui (x, t) , ...) , |α| ≤ m+ 1.

As such, the K × 2n components of the mapping (8.51) may be expressed as

Fj,β : (x, t, ξ) 7→ ξj +Gβ
j (x, t, ..., ξi, ...) , K × 2n < i ≤ L. (10.22)

From (10.22) it is clear that the mapping (8.51) is both open and surjective. As
such, the condition (9.30) is satisfied.

The following is now a straight forward consequence of Theorems 87 and 88.

Corollary 89 Consider any system of nonlinear PDEs of the form (10.17). Then
there is some u ∈MLm (Ω× [0,∞))K such that

Tu = f

The results on the existence of generalized solutions to (8.1) presented in Chap-
ter 9, as well as the regularity properties of such solutions obtained in this chapter,
do not take into account any possible initial and / or boundary conditions that may
be associated with a particular system of nonlinear PDEs. In the next chapter, we
shall adapt the general method developed over the course of the last three chapters
so as to also incorporate such additional conditions. We shall see that, in contradis-
tinction with with usual functional analytic methods, in particular those involving
distributions, boundary and / or initial value problems are solved by, essentially, the
same techniques that apply to the free problem.

 
 
 



Chapter 11

A Cauchy-Kovalevskaia Type
Theorem

11.1 Existence of Generalized Solutions

The first general and type independent existence and regularity result for the solu-
tions of systems of nonlinear PDEs, namely, Theorem 2, dates back to Cauchy. The
first rigorous proof of this result was given by Kovalevskaia [86] more than a century
ago. It should noted that, and as mentioned in Section 1.1, the original proof of
Theorem 2 does not involve any so called ‘advanced mathematics’. In particular,
functional analysis is not used at all.

As is well known, ever since Sobolev [148], [149] introduced the sequential method
for solving linear and nonlinear PDEs in the setting of Hilbert spaces over 70 years
ago, the main, and to some extent nearly exclusive, approach to PDEs has been that
of linear functional analysis. However, during the nearly eighty years of functional
analysis, the mentioned Cauchy-Kovalevskaia Theorem has not been extended on its
own general and type independent grounds. It was only in the 1987 monograph [139],
see also [141], that, based on algebraic rather than functional analytic methods, a
global version of the local existence and regularity result in Theorem 2 was obtained.
The mentioned global version of Theorem 2 still requires both the equation (1.2) and
the initial data (1.3) to be analytic. As such, this does not present a generalization
of the type of equations that may be solved, but rather the domain of definition of
the solution is enlarged. In fact, and in view of Lewy’s impossibility result [97], see
also [88], it may appear that an extension of Theorem 2 to nonanalytic equations is
highly unlikely. As we shall see in the sequel, this is in fact a misunderstanding.

In this section, we present a first in the literature. Namely, we show that a
system of K nonlinear PDEs of the form

Dm
t u (t, y) = G

(
t, y, ..., Dq

yD
p
t ui (t, y) , ...

)
(11.1)

with t ∈ R, y ∈ Rn−1, m ≥ 1, 0 ≤ p < m, q ∈ Nn−1, |q| + p ≤ m and with the

187
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Cauchy data

Dp
t u (t0, y) = gp (y) , 0 ≤ p < m, (t0, y) ∈ S (11.2)

on the noncharacteristic analytic hypersurface

S = {(t0, y) : y ∈ Rn−1}

admits a generalized solution u] ∈ NLm (Rn−1 × R), provided that the mapping

G : Rn−1 × R× RM → RK (11.3)

is jointly continuous, and the initial data (11.2) satisfies

∀ 0 ≤ p < m :

gp ∈ Cm−p (Rn−1)
K (11.4)

That is, we give the first extension of the Cauchy-Kovalevskaia Theorem, on its own
general and type independent grounds, to equations which are not analytic.

Furthermore, if the mapping (11.3) is C1-smooth, and the initial condition (11.2)
satisfies

∀ 0 ≤ p < m :

gp ∈ Cm−p+2 (Rn−1)
K (11.5)

then the generalized solution of (11.1) through (11.2) is in fact a classical solution
in the sense that

∃ Γ ⊂ Rn−1 × R closed nowhere dense :
1) Γ ∩ S closed nowhere dense in S
2) u] ∈ Cm ((Rn−1 × R) \ Γ)

(11.6)

It is clear that the existence of a solution of the system of nonlinear PDEs (11.1)
is a straight forward consequence of the general existence results proved in Chapter
9. Furthermore, the regularity property (11.6) of the solution follows easily from
the results in Chapter 10. In order to also incorporate the initial data (11.2), the
methods presented in the mentioned chapters need only be adapted slightly. In
this way, we come to appreciate yet another key feature of the solution method
for systems of nonlinear PDEs presented in Chapters 6 through 10. Namely, that
initial and / or boundary value problems may be solved by essentially the same
techniques that apply to the free problem. This should be compared with the
customary functional analytic methods, in particular those involving distributions,
where such additional conditions often lead to significant complications which often
require entirely new techniques.

 
 
 



CHAPTER 11. A CAUCHY-KOVALEVSKAIA TYPE THEOREM 189

In order to incorporate the initial condition (11.2) into our solution method, we
introduce the following spaces of functions. Denote by MLm

g (Ω) the set

MLm
g (Ω) =

u ∈MLm (Ω)K

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ |q|+ p ≤ m :

1) Dqp
ytui (y, t0) = Dqgp,i (y) , y ∈ Rn−1

2) Dqp
ytui continuous at (y, t0)


where Ω = Rn−1×R. For each i = 1, ..., K, every 0 ≤ p < m and each q ∈ Nn−1 such
that 0 ≤ |q|+ p ≤ m, we consider the space ML0

i,q,p (Ω), which is defined through

ML0
i,q,p (Ω) =

u ∈ML0 (Ω)
∀ y ∈ Rn−1 :

1) u (y, t0) = Dqgp,i (y)
2) u continuous at (y, t0)

 .

Clearly, for every 0 ≤ p < m, and p ∈ Nn−1 such that 0 ≤ |q| + p ≤ m, and each
i = 1, ..., K we may define the partial differential operators

Dqp
i,yt : MLm

g (Ω) →ML0
i,q,p (Ω) , (11.7)

as in Chapter 8, through

Dqp
i,ytu = (I ◦ S)

(
Dqp

ytui

)
.

The partial differential operators Dm
i,t, is defined in a similar way, namely, as

Dm
i,t : MLm

g (Ω) 3 u 7→ (I ◦ S) (Dm
t ui) ∈ML0 (Ω) . (11.8)

The method for constructing generalized solutions to the initial value problem
(11.1) to (11.2) presented here is essentially the same as that used in the case of
arbitrary systems of nonlinear PDEs, which is developed in Chapters 8 and 9. In
particular, generalized solutions are constructed as elements of the completion of
the space MLm

g (Ω), equipped with a suitable uniform convergence structure. In

this regard, the space ML0 (Ω) carries the uniform order convergence structure
introduced in Chapter 7. We introduce the following uniform convergence structure
on ML0

i,q,p (Ω).

Definition 90 Let Σ consist of all nonempty order intervals in ML0
i,q,p (Ω). Let

Ji,q,p denote the family of filters on ML0
i,q,p (Ω) ×ML0

i,q,p (Ω) that satisfy the fol-
lowing: There exists k ∈ N such that

∀ j = 1, ..., k :
∃ Σj = (Ij

n) ⊆ Σ :

1) Ij
n+1 ⊆ Ij

n, n ∈ N
2) ([Σ1]× [Σ1]) ∩ ... ∩ ([Σk]× [Σk]) ⊆ U

(11.9)
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where [Σj] = [{I : I ∈ Σj}]. Moreover, for each j = 1, ..., k and every open subset
V of Ω one has

∃ uj ∈ML0
i,q,p (Ω) :

∩n∈NI
j
n|V = {uj}|V

or ∩n∈NI
j
n|V = ∅ (11.10)

Proposition 91 The family of filters Ji,q,p on ML0
i,q,p (Ω)×ML0

i,q,p (Ω) is a Haus-
dorff uniform convergence structure.
Furthermore, a filter F on ML0

i,q,p (Ω) converges to u ∈ ML0
i,q,p (Ω) if and only if

there exists a family ΣF = (In) of nonempty order intervals on ML0
i,q,p (Ω) such

that

1) In+1 ⊆ In, n ∈ N

2)
∀ V ⊆ Ω nonempty and open :

∩n∈NIn|V = {u}|V
and [ΣF ] ⊆ F .

Proof. The first four axioms of Definition 21 are clearly fulfilled, so it remains to
verify

∀ U ,V ∈ Jo :
U ◦ V exists ⇒ U ◦ V ∈ Jo

(11.11)

In this regard, take any U ,V ∈ Jo such that U ◦ V exists, and let Σ1, ...,Σk and
Σ′

1, ...,Σ
′
l be the collections of order intervals associated with U and V , respectively,

through Definition 90. Set

Φ = {(l, j) : [Σl] ◦ [Σ′
j] exists}

Then, by Lemma 54

U ◦ V ⊇
⋂
{([Σl]× [Σl]) ◦ ([Σj]× [Σj]) : (l, j) ∈ Φ} (11.12)

Now (l, j) ∈ Φ if and only if

∀ m,n ∈ N :
I l
m ∩ Ij

n 6= ∅

For any (l, j) ∈ Φ, set Σl,j =
(
I l,j
n

)
where, for each n ∈ N

I l,j
n = [inf

(
I l
n

)
∧ inf

(
Ij
n

)
, sup

(
I l
n

)
∨ sup

(
Ij
n

)
]

Now, using (11.12), we find

U ◦ V ⊇
⋂
{[Σl]× [Σj] : (l, j) ∈ Φ} ⊇

⋂
{[Σl,j]× [Σl,j] : (l, j) ∈ Φ}

Clearly each Σl,j satisfies 1) of (11.9). Since ML0 (Ω) is fully distributive, see
Corollary 52, (11.10) follows by Lemma 92.
The second part of the proposition follows by the same arguments used in the proof
of Theorem 56.

The proof of Proposition 91 relies on the following.
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Lemma 92 The set ML0
i,q,p (Ω) is a lattice with respect to the pointwise order.

Proof. Consider any functions u, v ∈ ML0
i,q,p (Ω), and set w = sup{u, v} ∈

ML0 (Ω). In view of Theorem 45 it follows that

w (x) = (I ◦ S) (ϕ) (x) , x ∈ Ω

where

ϕ (x) = sup{u (x) , v (x)}, x ∈ Ω.

Assume that

∃ y0 ∈ Rn :
∃ a ∈ R :

w (y0, t0) > a > Dqgp,i (y0)
. (11.13)

It then follows that S (ϕ) (y0, t0) > a > Dqgp,i (y0). Therefore

∀ δ > 0 :
∃ (yδ, tδ) ∈ Bδ (y0, t0) :

ϕ (yδ, tδ) > a > Dqgp,i (y0)

so that we obtain a sequence (yn, tn) in Ω which converges to (y0, t0) and satisfies

∀ n ∈ N :
u (yn, tn) > a > Dqgi,p (y0) = u (y0, t0)

(11.14)

or

∀ n ∈ N :
v (yn, tn) > a > Dqgi,p (y0) = v (y0, t0)

. (11.15)

But both u and v are continuous at (y, t0) for each y ∈ Rn, which contradicts (11.14)
to (11.15). Hence (11.13) cannot hold, so that w ∈ML0

i,q,p (Ω).
The existence of the infimum of u and v follows in the same way.

The completion of ML0
i,q,p (Ω) may be represented as a suitable space of nearly

finite normal lower semi-continuous functions. In particular, we consider the space

NLi,q,p (Ω) =

{
u ∈ NL (Ω)

∃ λ, µ ∈ML0
i,q,p (Ω) :

λ ≤ u ≤ µ

}
.

Note that ML0
i,q,p (Ω) ⊂ NLi,q,p (Ω). As such, in order to show that NLi,q,p (Ω)

is the completion of ML0
i,q,p (Ω), we must introduce a Hausdorff uniform conver-

gence structure J ]
i,q,p on NLi,q,p (Ω) in such a way that the following conditions are

satisfied:

1. NLi,q,p (Ω) is complete with respect to J ]
i,q,p.
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2. NLi,q,p (Ω) contains ML0
i,q,p (Ω) as a dense subspace.

3. If Y is a complete, Hausdorff uniform convergence space, then any uniformly
continuous mapping ϕ : ML0

i,q,p (Ω) → Y extends in a unique way to a uni-
formly continuous mapping ϕ] : NLi,q,p (Ω) → Y .

In this regard, the definition of the uniform convergence structure on NLi,q,p (Ω)
is similar to Definition 58

Definition 93 Let J ]
i,q,p denote the family of filters on NLi,q,p (Ω)×NLi,q,p (Ω) that

satisfy the following: There exists k ∈ N such that

∀ j = 1, ..., k :
∃ (λj

n) , (µj
n) ⊆ML0

i,p (Ω) :
∃ uj ∈ML0

i,p (Ω) :

1) λj
n ≤ λj

n+1 ≤ µj
n+1 ≤ µi

n, n ∈ N
2)

⋂k
j=1 (([Σj]× [Σj]) ∩ ([uj]× [uj])) ⊆ U

(11.16)

where each uj ∈ NLi,q,p (Ω) satisfies uj = sup{λj
n : n ∈ N} = inf{µj

n : n ∈ N}.
Here Σj = {Ij

n : n ∈ N} with

Ij
n = {u ∈MLi,q,p (Ω) : λj

n ≤ u ≤ µj
n}.

That the family of filters J ]
i,q,p does indeed constitute a Hausdorff uniform con-

vergence structure on NLi,q,p (Ω) can easily be seen. Indeed, J ]
i,q,p is nothing but the

uniform convergence structure associated with the following Hausdorff convergence
structure through (2.70): A filter F on NLi,q,p (Ω) converges to u ∈ NLi,q,p (Ω) if
and only if

∃ (λn) , (µn) ⊂ML0
i,q,p (Ω) :

1) λn ≤ λn+1 ≤ µn+1 ≤ µn, n ∈ N
2) ∩n∈N[λn, µn]|V = {u}|V , V ⊆ Ω open
3) [{[λn, µn] :n ∈ N}] ⊆ F

.

Theorem 94 The space NLi,q,p (Ω) equipped with the uniform convergence struc-

ture J ]
i,q,p is the uniform convergence space completion of ML0

i,q,p (Ω).

Proof. That NLi,q,p (Ω) is complete follows immediate by our above remarks. Fur-
thermore, it is clear that the subspace uniform convergence structure on ML0

i,q,p (Ω)
is equal to Ji,q,p.
The extension property for uniformly continuous mappings follows by a straight
forward argument.

An important property of the uniform convergence space ML0
i,q,p (Ω) and its

completion NLi,q,p (Ω) relates to the inclusion mapping

i : ML0
i,q,p (Ω) →ML0 (Ω) (11.17)
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and its extension through uniform continuity

i] : NLi,q,p (Ω) → NL (Ω) . (11.18)

Indeed, it is clear form Definitions 53 and 90 that the mapping (11.17) is in fact
uniformly continuous. Similarly, the inclusion mapping

i0 : NLi,q,p (Ω) → NL (Ω) (11.19)

is uniformly continuous. Since the mappings (11.18) and (11.19) coincide on a dense
subset of NLi,q,p (Ω), it follows that (11.18) is simply the inclusion mapping (11.19).

This is related to the issue of consistency of generalized solutions of (11.1) to
(11.2) that we construct in the sequel with solutions in the space NLm (Ω)K , that
is, solutions of the generalized equation (8.39). We will discuss this in some detail
in what follows, after the uniform convergence structure on MLm

g (Ω) has been
introduced.

In this regard, the uniform convergence structure Jg on MLm
g (Ω) is defined

as the initial uniform convergence structure with respect to the mappings (11.7) to
(11.8). That is, a filter U on MLm

g (Ω)×MLm
g (Ω) belongs to Jg if and only if

∀ i = 1, ..., K :(
Dm

i,t ×Dm
i,t

)
(U) ∈ Jo

,

and

∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 < |q|+ p ≤ m :
∀ i = 1, ..., K :(

Dqp
i,yt ×D

qp
i,yt

)
(U × U) ∈ Ji,q,p

,

Clearly the family consisting of the mappings (11.7) through (11.8) separates the
points of MLm

g (Ω). As such, the uniform convergence structure Jg is uniformly
Hausdorff. In particular, and in view of Theorem 44, the mapping

D : MLm
g (Ω) →

(∏
ML0

i,q,p (Ω)
)
×ML0 (Ω)K

which is defined through

D : u 7→
(
...,Dqp

i,ytu, ...Dm
i,tu, ...

)
(11.20)

is a uniformly continuous embedding. As such, it follows from Theorem 37 that the
mapping (11.20) extends to an injective, uniformly continuous mapping

D] : NLm
g (Ω) →

(∏
NLi,p (Ω)

)
×NL (Ω)K
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where NLm
g (Ω) denotes the uniform convergence space completion of MLm

g (Ω).

In particular, for each i = 1, ..., K 0 ≤ p < m, and each q ∈ Nn−1 such that
0 ≤ p+ |q| ≤ m the diagrams

NLm
g (Ω) - (

∏
NLi,q,p (Ω))×NL (Ω)KD]

@
@

@
@

@
@

@
@

@
@R

�
�

�
�

�
�

�
�

�
�	

NLi,q,p (Ω)

Dqp]
i,yt πi,p,q

(11.21)

and

NLm
g (Ω) - (

∏
NLi,q,p (Ω))×NL (Ω)KD]

@
@

@
@

@
@

@
@

@
@R

�
�

�
�

�
�

�
�

�
�	

NL (Ω)

Dm]
i,t πi

(11.22)

commute, with πi,q,p and πi the projections, andDqp]
i,yt andDm]

i,t the extensions through
uniform continuity of the mappings (11.7) and (11.8), respectively.

The meaning of the diagrams (11.21) and (11.22) is twofold. In the first in-
stance, it explains the regularity of generalized functions in NLm

g (Ω). In particular,

each generalized partial derivative of a generalized function u] ∈ NLm
g (Ω) is a nearly

finite normal lower semi-continuous function. Therefore, each such generalized func-

tion may be represented as an element of the space
(∏0≤p<m

i≤K NLi,p (Ω)
)
×NL (Ω)L.

Secondly, these diagrams state that each generalized function u] ∈ NLm
g (Ω) satisfies
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the initial condition (11.2) in the sense that

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m :

Dp]
i,tu

] (t0, y) = gp,i (t0, y) , y ∈ Rn−1

. (11.23)

With the system of nonlinear PDEs (11.1) we may associate a mapping

T : MLm
g (Ω) →ML0 (Ω)K , (11.24)

the components of which are defined as in (8.12). Generalized solutions to the initial
value problem (11.1) and (11.2) are obtained by suitably extending the mapping
(11.24) to a mapping

T] : NLm
g (Ω) → NL (Ω)K . (11.25)

Such an extension is obtained through the uniform continuity of the mapping (11.24).
In this regard, we have the following.

Theorem 95 The mapping (11.24) is uniformly continuous.

Proof. It follows from (11.17) through (11.18) that the inclusion mapping

i : MLm
g (Ω) →MLm (Ω)K

is uniformly continuous. The result now follows from the commutative diagram

MLm
g (Ω) -ML0 (Ω)KT

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

MLm (Ω)K

i T0

(11.26)

and Theorem 65, with T0 the mapping defined on MLm (Ω)K through the nonlinear
partial differential operator.

In view of Theorem 95 the mapping (11.24) extends in a unique way to a uni-
formly continuous mapping with domainNLm

g (Ω) and range contained inNL (Ω)K ,
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which is the generalized nonlinear partial differential operator (11.25). As such, the
generalized initial value problem corresponding to (11.1) and (11.2) is the single
equation

T]u] = 0, (11.27)

where 0 denotes the the element in NL (Ω)K with all components identically 0. A
solution to (11.27) is interpreted as a generalized solution to (11.1) through (11.2)
based on the facts that the mapping (11.25) is the unique and canonical extension
of (11.24), and each solution of (11.27) satisfies the initial condition in an extended
sense, as mentioned in (11.23). Furthermore, in view of (11.17) to (11.19) and the
diagram (11.26) we obtain the commutative diagram

NLm
g (Ω) -NL (Ω)KT]

@
@

@
@

@
@

@
@

@
@R �

�
�

�
�

�
�

�
�

��

NLm (Ω)K

i] T]
0

(11.28)

with i] injective and T]
0 the uniformly continuous extension of the mapping

T0 : MLm (Ω)K →ML0 (Ω)K

associated with the system of nonlinear PDEs (11.1). In particular, the mapping
i] is the inclusion mapping. As such, each solution u] ∈ NLm

g (Ω) of (11.27) is a
solution of the system of nonlinear PDEs (11.1) in the sense of the Sobolev type
spaces of generalized functions introduced in Section 8.2. In this regard, the main
result of this section is the following.

Theorem 96 For each 0 ≤ p < m, let gp ∈ Cm−p (Rn−1)
K
. Then there is some

u] ∈ NLm
g (Ω) so that

T]u] = 0.

Proof. Let us express Ω = Rn−1 × R as

Ω =
⋃
ν∈N

Cν
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where, for ν ∈ N, the compact sets Cν are n-dimensional intervals

Cν = [aν , bν ] (11.29)

with aν = (aν,1, ..., aν,n), bν = (bν,1, ..., bν,n) ∈ Rn and aν,j ≤ bν,j for every j = 1, ..., n.
We assume that the Cν , with ν ∈ N, are locally finite, that is,

∀ x ∈ Ω :
∃ V ⊆ Ω a neighborhood of x :

{ν ∈ N : Cν ∩ V 6= ∅} is finite
(11.30)

Such a partition of Ω exists, see for instance [58]. We also assume that, for each
ν ∈ N,

S ∩ Cν = ∅

or

S ∩ IntCν 6= ∅ (11.31)

where S is the noncharacteristic hypersurface

S = {(y, t0) : y ∈ Rn−1}

For the sake of convenience, let us write x = (y, t) for each (y, t) ∈ Rn−1 × R. Let
F : Ω× RM → RK is the mapping that defines the nonlinear operator T through

T (x,D)u (x) = F (x, ..., Dαui (x) , ...) .

Fix ν ∈ N such that (11.31) is satisfied. In view of the fact that the mapping F is
both open and surjective, we have

∀ x1 = (y1, t1) ∈ Cν :
∃ ξ (x1) ∈ RM , F (x1, ξ (x1)) = 0 :
∃ δ, ε > 0 :

1) {(x, 0) : ‖x− x1‖ < δ} ⊂ int

{
(x,F (x, ξ))

‖x− x1‖ < δ
‖ξ − ξ (x1) ‖ < ε

}
2) F : Bδ (x1)×B2ε (ξ (x1)) → RK open

(11.32)

In particular, if t1 = t0, we may take ξ (x1) = (ξq,p
i , ξm

i ) such that

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 < |q|+ p ≤ m :

ξq,p
i = Dqgp,i (y1)

(11.33)
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For each x1 ∈ Cν , fix ξ (x1) ∈ RM in (11.32) so that (11.33) is satisfied in case
t1 = t0. Since Cν is compact, it follows from (11.32) that

∃ δ > 0 :
∀ x1 ∈ Cν :
∃ εx1 > 0 :

1) {(x, 0) : ‖x− x1‖ < δ} ⊂ int

{
(x,F (x, ξ))

‖x− x1‖ < δ
‖ξ − ξ (x1) ‖ < εx1

}
2) F : Bδ (x1)×B2εx0

(ξ (x1)) → RK open

(11.34)

Subdivide Cν into n-dimensional intervals Iν,1, ..., Iν,µν with diameter not exceeding
δ such that their interiors are pairwise disjoint and, for each j = 1, ..., µν ,

Iν,j ∩ S = ∅ (11.35)

or

intIν,j ∩ S 6= ∅ (11.36)

If aν,j with j = 1, ..., µν is the center of the interval Iν,j that satisfies (11.35), then
by (11.34) we have

∃ εν,j > 0 :

1) {(x, 0) : x ∈ Iν,j} ⊂ int

{
(x,F (x, ξ))

x ∈ Iν,j

‖ξ − ξ (aν,j) ‖ < εν,j

}
2) F : Iν,j ×B2εν,j

(ξ (aν,j)) → RK open

(11.37)

On the other hand, if Iν,j satisfies (11.36), set aν,j equal to the midpoint of S ∩ Iν,j.
Then we obtain (11.37) by (11.34) such that (11.33) also holds. Take 0 < γ < 1
arbitrary but fixed. In view of Proposition 68 and (11.37), we have

∀ x1 ∈ Iν,j :

∃ Ux1 = U ∈ Cm (Rn)K :
∃ δ = δx1 > 0 :

x ∈ Bδ (x1) ∩ Iν,j ⇒
(

1) (DαUi (x))
|α|≤m
i≤K ∈ Bεν,j

(ξ (aν,j))
2) i ≤ K ⇒ γ < Ti (x,D)U (x) < 0

) ,

with α = (q, p). Furthermore, if Iν,j satisfies (11.36), then we also have

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 < |q|+ p ≤ m :
∀ y ∈ Rn−1 :

Dpq
ytUi (y, t0) = Dqgp,i (y)

.

As above, we may subdivide Iν,j into pairwise disjoint, n-dimensional intervals
Jν,j,1, ..., Jν,j,µν,j

so that for k = 1, ..., µν,j we have

∃ Uν,j,k = U ∈ Cm (Rn)K :
∀ x ∈ Jν,j,k :

1)
(
DαUi (x)

|α|≤m
i≤K

)
∈ Bεν,j

(ξ (aν,j)) , |α| ≤ m

2) i ≤ K ⇒ fi (x)− γ < Ti (x,D)U (x) < fi (x)

(11.38)

 
 
 



CHAPTER 11. A CAUCHY-KOVALEVSKAIA TYPE THEOREM 199

and

Jν,j,k ∩ S = ∅ (11.39)

or

intIν,j,k ∩ S 6= ∅. (11.40)

Furthermore, whenever Jν,j,k satisfies (11.40), we have

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 < |q|+ p ≤ m :
∀ y ∈ Rn−1 :

Dqp
ytUi (y, t0) = Dqgp,i (y)

.

In particular, in this case we may simply set

Ui (y, t) =
m−1∑
p=0

(t− t0)
p gp,i (y) + wi (t)

for a suitable function wi ∈ Cm (R) that satisfies

∀ 0 ≤ p < m :

w
(p)
i (t0) = 0

.

Set

Γ1 = Ω \

(⋃
ν∈N

(
µν⋃
j=1

(
µν,j⋃
k=1

intJν,j,k

)))
.

and

V1 =
∑
ν∈N

(
µν∑
j=1

(
µν,j∑
k=1

χJν,j,k
Uν,j,k

))

where χJν,j,k
is the characteristic function of Jν,j,k. Then Γ1 is closed nowhere dense,

and V1 ∈ Cm (Ω \ Γ1)
K . Furthermore, S ∩ Γ1 is closed nowhere dense in S and

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 < |q|+ p ≤ m :
∀ (y, t0) ∈ S \ (S ∩ Γ1) :

Dqp
ytV1,i (y, t0) = Dqgp,i (y)

.

In view of (11.38) we have, for each i = 1, ..., K

−γ < Ti (x,D)V1 (x) < 0, x ∈ Ω \ Γ1
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Furthermore, for each ν ∈ N, for each j = 1, ..., µν , each k = 1, ..., µν,j, each |α| ≤ m
and every i = 1, ..., K we have

x ∈ intJν,j,k ⇒ ξα
i (aν,j)− ε < DαV1,i (x) < ξα

i (aν,j) + ε (11.41)

For 0 ≤ p < m, define the functions λα
1,i, µ

α
1,i ∈ C0 (Ω \ Γ1), where α = (p, q) with

|q| = 0, as

λα
1,i (x) =


ξα
i (aν,j)− 2εν,j if x ∈ intIν,j,k and Iν,j,k ∩ S = ∅

Dp
tV1,i (y, t)− vν,j (t) if x ∈ intIν,j,k and Iν,j,k ∩ S 6= ∅

and

µα
1,i (x) =


ξα
i (aν,j) + 2εν,j if x ∈ intIν,j,k and Iν,j,k ∩ S = ∅

Dp
tV1,i (y, t) + vν,j (t) if x ∈ intIν,j,k and Iν,j,k ∩ S 6= ∅

Here vν,j is a continuous, real valued function on R such that

vν,j (t0) = 0 (11.42)

and

0 < vν,j (t) < 2εν,j, t ∈ R (11.43)

For all other α, consider the functions

λα
1,i (x) = ξα

i (aν,j)− 2εν,j if x ∈ intIν,j

and

µα
1,i (x) = ξα

i (aν,j) + 2εν,j if x ∈ intIν,j.

Then it follows by (11.41) that

λα
1,i (x) < DαV1,i (x) < µα

1,i (x) , x ∈ Ω \ Γ1

and

µα
1,i (x)− λα

1,i (x) < 4εν,j, x ∈ intIν,j

Applying (11.37) restricted to Ω \ Γ1, and proceeding in a fashion similar as above,
we may construct, for each n ∈ N such that n > 1, a closed nowhere dense set
Γn ⊂ Ω such that

Γn ∩ S closed nowhere dense in S,
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a function Vn ∈ Cm (Ω \ Γn)K and functions λα
n,i, µ

α
n,i ∈ C0 (Ω \ Γn) so that, for each

i = 1, ..., K

−γ
n
< Ti (x,D)Vn (x) < 0, x ∈ Ω \ Γn. (11.44)

and for every |α| ≤ m

λα
n−1,i (x) < λα

n,i (x) < DαVn,i (x) < µα
n,i (x) < µα

n−1,i (x) , x ∈ Ω \ Γn (11.45)

and

µα
n,i (x)− λα

n,i (x) <
4εν,j

n
, x ∈ (intIν,j) ∩ (Ω \ Γn) . (11.46)

Furthermore, for each 0 ≤ p < m and q ∈ Nn−1 so that 0 ≤ |q|+ p ≤ m we have

Dqp
ytVn,i (y, t0) = λα

n,i (y, t0) = µα
n,i (y, t0) = Dqgp,i (y) , (y, t0) /∈ S ∩ Γn

where α = (p, q).
Notice that the functions un, the components of which are defined through

un,i = (I ◦ S) (Vn,i)

belongs to MLm
g (Ω). In view of (11.45) it follows that the functions λ

α

n,i, µ
α
n,i ∈

ML0 (Ω), which are defined as

λ
α

n,i = (I ◦ S)
(
λα

n,i

)
, µα

n,i = (I ◦ S)
(
µα

n,i

)
,

satisfies

λ
α

n−1,i ≤ λ
α

n,i ≤ Dαun,i ≤ µα
n,i ≤ µα

n−1,i

Furthermore, in case α = (p, q) with q ∈ Nn−1 such that 0 ≤ p + |q| ≤ m, then
λ

α

n,i, µ
α
n,i ∈ML0

i,q,p (Ω). It now follows by (11.46) that the sequence (un) is a Cauchy
sequence in MLm

g (Ω). Moreover, (11.44) implies that the sequence (Tun) converges

to 0 in ML0 (Ω)K . The result now follows from Theorem 95.

We have shown that the initial value problem (11.1) through (11.2) admits a
generalized solution in the space NLm

g (Ω). In particular, and in view of the com-
mutative diagram (11.26), the generalized solution constructed in Theorem 96 is
a generalized solution of the system of nonlinear PDEs (11.1) in the sense of the
Sobolev type spaces of generalized functions introduced in Section 8.2. Furthermore,
this solution satisfies the initial data (11.2) in the sense that

∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ |q|+ p ≤ m :
∀ y ∈ Rn−1 :

Dqp]
yt,iu

] (y, t0) = Dqgp,i (y)

.
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As such, it follows from Proposition 46 the singularity set(y, t) ∈ Ω

∃ |α| ≤ m :
∃ i = 1, ..., K :

Dα]
i u not continuous at (y, t)


of the solution is of first Baire category.

This result is a first in the literature. Indeed, during the seventy years since
Sobolev introduced functional analysis in the study of PDEs, the Cauchy-Kovalevskaia
Theorem 2 has not been extended, in the context of any of the usual spaces of gen-
eralized functions, on its own general and type independent grounds. The only
improvement upon this result which has been obtained to date is related to the
domain of definition of the solutions. In particular, it has been shown [139] that
the Cauchy problem (1.2) and (1.3) admits a generalized solution in a suitable al-
gebra of generalized functions, which is defined on the whole domain of definition
of the respective system of equations (1.2). Furthermore, such a solution is analytic
everywhere except possibly for a closed nowhere dense set. However, the class of
equations to which the result applies is the same as in the original version of the
theorem, which was obtained more than a hundred years ago [86].

Theorem 96 delivers the existence of global generalized solutions of the initial
value problem (11.1) and (11.2), as described above, provided only that the mapping
(11.3) is continuous, and that the initial data satisfies rather obviously necessary
smoothness conditions. As such, it is an extension of both the original Cauchy
Kovalevskaia Theorem 2, and the global version of that result obtained in [139]
in the context of the Sobolev type spaces of generalized functions introduced in
Chapter 8.

11.2 Regularity of Generalized Solutions

The results presented in the previous section, in particular Theorem 96, concern
only the first and basic properties regarding existence and regularity of solutions of
the Cauchy problem (11.1) to (11.2). In contradistinction with Theorem 2, and the
global version of that result [139], the solution cannot be interpreted as a classical
solution on any part of the domain of definition of the equation. However, and
as we shall see in the sequel, such additional regularity properties of the solution
may be obtained with only minimal additional assumptions on the nonlinear partial
differential operator (11.24). In particular, such conditions do not involve any re-
strictions on the type of equation, but instead involves only very mild assumptions
on the smoothness of the mapping (11.3) and the initial data (11.2).

In this regard, consider now a system of nonlinear PDEs of the form (11.1) such
that the mapping (11.3) is C1-smooth. Furthermore, we shall assume that the initial
data (11.2) satisfies (11.5). In this case, and in view of the results presented in
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Chapter 10, it is clear that the system of equations (11.1) admits a generalized
solution u] ∈ NLm (Ω)K that satisfies

∃ Γ ⊂ Rn−1 × R closed nowhere dense :

∃ U ∈ Cm (Ω \ Γ)K :
∀ i = 1, ..., K :
∀ |α| ≤ m :

Dα]u]
i (y, t) = DαUi (y, t) , (y, t) ∈ Ω \ Γ

. (11.47)

That is, the solution u] is in fact a classical solution everywhere except for a closed
nowhere dense set. Indeed, in this regard it is sufficient to show that the mapping

F : Ω× RM → RK

which defines the system of equations through (8.3) satisfies (9.30). This follows
easily from the fact that the equation is linear in the terms Dm

t ui. We now show
that such a solution, that is, one that satisfies (11.47) may be constructed so as to
also satisfy the initial condition (11.2).

The idea is to apply the techniques from Chapter 10. In particular, we will con-
struct a suitable generalized solution of the system of nonlinear PDEs (11.1) in the
space NLm+1 (Ω)K . Smooth approximations are then constructed using Theorem
74. Note, however, that this approach can, in its present form, deliver only the exis-
tence of solutions in MLm (Ω)K of the system of PDEs (11.1), solutions which may
not satisfy the initial condition (11.2). Indeed, suppose that a generalized solution
u] ∈ NLm+1 (Ω)K of the system of equations (11.1) is constructed so as to also
satisfy the initial condition (11.2) in the sense that

∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :
∀ i = 1, ..., K :
∀ y ∈ Rn−1 :

1) Dqp]
yt,iu

] (y, t0) = Dqgp,i (y)

2) Dqp]
yt,iu

] (y, t0) continuous at (y, t0)

.

Such a solutions is constructed as the limit of a sequence (un) in MLm+1 (Ω)K that
satisfies

∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :
∀ i = 1, ..., K :
∀ y ∈ Rn−1 :

1) Dqp
yt,iun (y, t0) = Dqgp,i (y)

2) Dqp
yt,iun (y, t0) continuous at (y, t0)

.
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The next step is to approximate each function un by a sequence (un,r) ⊂ Cm+1 (Ω)K ,
in the sense that

∀ i = 1, ..., K :
∀ |α| ≤ m+ 1 :
∀ A ⊂ Ω \ Γn compact :

‖Dαun,i −Dαun,r,i‖A → 0

where Γn ⊂ Ω is closed nowhere dense such that un ∈ Cm+1 (Ω \ Γn)K . Using
Proposition 49 and Theorem 86, one may extract a sequence (un,rn) which converges

to some function u ∈ MLm (Ω)K such that (Tun,rn) converges to 0 in ML0 (Ω)K .
In particular, the sequence (un,rn) may be chosen in such a way that, for some closed
nowhere dense set Γ ⊂ S

∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m :
∀ i = 1, ..., K :
∀ A ⊂ S compact :

‖Dq
yD

p
t un,rn,i −Dqgp,i‖A → 0

.

However, the above construction does not imply that the solution u ∈MLm (Ω)K

of the system of PDEs (11.1) satisfies the initial condition (11.2). Indeed, the se-
quence (un,rn) may be unbounded on every neighborhood of every point of S. In
this regard, consider the following.

Example 97 For each n ∈ N, consider the function un ∈ C1 (R) given by

un (t) =


e(n2t2−1)

4

if |t| < 1
n

0 if |t| ≥ 1
n

Clearly, un (0) = e for every n ∈ N. However, this sequence, and the sequence (u′n)
converge to 0 uniformly on every compact subset of R \ {0}, and the sequence of
derivatives (u′n) is unbounded on every neighborhood of 0.

The difficulties mentioned above may be overcome by carefully constructing the
original approximating sequence in MLm+1 (Ω). As such, the method used to con-
struct the approximations in the proof of following result is slightly different from
those used in the proofs of Theorems 76 and 96.

Theorem 98 The nonlinear Cauchy problem

Dm
t u = G

(
y, t, ..., Dq

yD
p
t ui (y, t) , ...

)
Dp

t u (y, t0) = gp (y) ,

with 0 ≤ p < m and q ∈ Nn−1 such that 0 ≤ p + |q| < m, admits a generalized
solution u] ∈ NLm (Ω) that also satisfies (11.47), provided that the mapping (11.3)
is C2-smooth, and the initial data satisfies (11.5).
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Proof. Write

Rn−1 =
⋃
ν∈N

Jν

where, for each ν ∈ N, Jν is a compact n − 1-dimensional interval [aν , bν ], with
aν,i < bν,i for each i = 1, ..., n− 1. We also assume that the Jν are locally finite, and
have pairwise disjoint interiors.
Fix ν ∈ N and y0 ∈ Jν . Then it follows by Picard’s Theorem 1 and the compactness
of Jν that there is some δν > 0 such that the system of ODEs

F1 (y0, t, ..., D
pvq

i (t) , ...) = 0 (11.48)

has a solution v = vy0 =
(
vq

y0,i

)|q|≤m+1

i≤K
∈ Cm+1 (t0 − δy0 , t0 + δν)

L such that

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

Dp
t v

q
y0,i (t0) = Dq

ygp,i (y0)

. (11.49)

Here F1 : Ω× RL → RP is the continuous mapping such that(
Dβ (Dm

t u + G (y, t, ..., Dp
tD

qui, ...))
)
|β|≤1

= F1
(
y, t, ..., Dq

yD
p
t ui, ...

)
.

Also note that since the mapping F1, as well as the functions Dp
ygp,i defining the

initial data are C1-smooth, the solutions vy0 of (11.48) may be chosen in such a way
that they depend continuously on y0 ∈ Jν , see for instance [69]. That is,

∀ ε > 0 :
∃ θε > 0 :
∀ i = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :
∀ |t− t0| < δν :

‖y0 − y1‖ < θε ⇒ |Dp
t v

q
y0,i (t)−Dp

t v
q
y1,i (t) | < ε

2

. (11.50)

Now define the functions Uy0,i ∈ Cm+1 (Rn−1 × [t0 − δν , t0 + δν ]) through

Uy0,i (y, t) =
∑

|q|≤m+1

(
n−1∏
j=1

(yj − y0,j)
qj vq

y0,i

)

where q = (q1, ..., qn−1). Then we have

∀ i = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :
∀ |t− t0| < δν

Dp
tD

q
yUy0,i (y0, t) = Dpvq

y0,i (t)

(11.51)
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and

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

Dp
tD

q
yUy0,i (y0, t0) = Dq

ygp,i (y0)

(11.52)

As such, and in view of the fact that v = (vq
i )
|q|≤m+1
i≤K satisfies the system of ODEs

(11.48), it follows that

∀ |β| ≤ 1 :
∀ |t− t0| < δν :
∀ j = 1, ..., K :

DβTj (y, t,D)Uy0 (y0, t) = 0

where Uy0 = (Uy0,i)i≤K and the Tj are the components of the partial differential
operator T (y, t,D). As such, and in view of the continuity of the mapping F1 and
the function Uy0 and its derivatives, it now follows that

∀ ε > 0 :
∃ δε

y0
> 0 :

∀ ‖y − y0‖ < δε
y0

:
∀ |t− t0| < δν :
∀ |β| ≤ 1 :

−ε < DβTj (y, t,D)Uy0 (y, t) < ε

. (11.53)

Furthermore, from (11.50) and (11.51) it follows that

∀ ε > 0 :
∃ δε

y0
> 0 :

∀ ‖y − y0‖ < δε
y0

:
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :
∀ |t− t0| < δν :

‖y0 − y1‖ < δε
y0
⇒
(

1) |Dqp
yt,iUy0 (y, t)−Dqp

yt,iUy1 (y, t) | < ε
2) |Dqp

yt,iUy1 (y, t)−Dp
t v

q
y0,i (t) | < ε

)
. (11.54)
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Fix ε > 0. Since Jν is compact, it follows by (11.53) and (11.54) that

∃ δν , δε > 0 :
∀ y0 ∈ Jν :

∃ Uy0 ∈ Cm+1 (Jν × [t0 − δν , t0 + δν ])
K :

∀ |β| ≤ 1 :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :
∀ i, j = 1, ..., K :
∀ ‖y − y0‖ < δε :
∀ |t− t0| < δν :

1) −ε < DβTj (y, t,D)Uy0 (y, t) < ε
2) DβTj (y, t,D)Uy0 (y, t) = 0

3) ‖y0 − y1‖ < δε ⇒
(

3.1) |Dqp
yt,iUy0 (y, t)−Dqp

yt,iUy1 (y, t) | < ε
3.2) |Dqp

yt,iUy1 (y, t)−Dp
t v

q
y0,i (t) | < ε

)

.

Furthermore, (11.52) implies that

∀ y0 ∈ Rn−1 :
∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

Dqp
yt,iUy0 (y0, t0) = Dqgp,i (y0)

.

Subdivide Jν into n− 1-dimensional, compact intervals Iν,1, ..., Iν,γν with nonempty
interiors, and diagonal not exceeding δε. In particular, the Iν,k must be locally finite
with pairwise disjoint interiors. Let yν,k denote the midpoint of Iν,k. Then

∀ k = 1, ..., γν :

∃ Uν,k ∈ Cm+1 (Iν,k × [t0 − δν , t0 + δν ])
K :

∀ (y, t) ∈ Bν,k :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :
∀ |β| ≤ 1 :
∀ i, j = 1, ..., K :

1) −ε < Dβ (Tj (y, t,D)Uν,k (y, t)) < ε
2) Dβ (Tj (y, t,D)Uν,k (yν,k, t)) = 0
3) Dqp

yt,iUν,k (yν,k, t) = Dp
t v

q
i (t) , |t− t0| < δν

4) y0 ∈ Iν,k ⇒
(

4.1) |Dqp
yt,iUy0 (y, t)−Dqp

yt,iUν,k (y, t) | < ε
4.2) |Dqp

yt,iUy0 (y, t)−Dp
t v

q
yν,k

(y, t) | < ε

)

, (11.55)

where Bν,k is the set

Bν,k = Iν,k × [t0 − δν , t0 + δν ],
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and

∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

Dqp
yt,iUν,k (yν,k, t0) = Dqgp,i (yν,k)

(11.56)

Consider the set

Ω1 =
⋃
ν∈N

(Jν × [t0 − δν , t0 + δν ])

and the function

V1 =
∑
ν∈N

(
γν∑

k=1

χν,kUν,k

)

where each χν,k denotes the characteristic function of the interior of Bν,k. The
function V1 is clearly Cm+1-smooth everywhere on Ω1 except for a closed nowhere
dense subset Γ1 of Ω1 which satisfies

Γ1 ∩ S closed nowhere dense in S.

It follows from (11.55) that the function V1 satisfies

∀ ν ∈ N :
∀ k = 1, ..., γν :
∀ |β| ≤ 1 :
∀ (y, t) ∈ intBν,k :
∀ i, j = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

1) −ε < Dβ (Tj (y, t,D)V1 (y, t)) < ε
2) Dβ (Tj (y, t,D)V1 (yν,k, t)) = 0
3) Dqp

yt,iV1 (yν,k, t) = Dp
t v

q
yν,k,i (t)

4) y0 ∈ IntIν,k ⇒
(

4.1) |Dqp
yt,iV1 (y, t)−Dqp

yt,iUy0 (y, t) | < ε
4.2) |Dqp

yt,iV1 (y, t)−Dp
t v

q
yν,k

(y, t) | < ε

)

, (11.57)

and from (11.56) we obtain

∀ ν ∈ N :
∀ k = 1, ..., γν :
∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn, 0 ≤ p+ |q| ≤ m+ 1 :

Dqp
yt,iV1 (yν,k, t0) = Dqgp,i (yν,k)

.
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From (11.57) it follows that the function V1 satisfies

∀ ν ∈ N :
∀ k = 1, ..., γν :
∀ i = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :

(y, t) ∈ Ω1 \ Γ1 ⇒ λp,q
1,i (y, t) ≤ Dqp

yt,iV1 (y, t) ≤ µp,q
1,i (y, t)

(11.58)

where λp,q
1,i , µ

p,q
1,i ∈ C0 (Ω1 \ Γ1) are the functions

λp,q
1,i (y, t) = Dp

t v
q
yν,k,i − 2ε, (y, t) ∈ IntBν,k (11.59)

and

µp,q
1,i (y, t) = Dp

t v
q
yν,k,i + 2ε, (y, t) ∈ IntBν,k. (11.60)

Continuing in this way, we may construct a countable and dense subset A =
{yk : k ∈ N} of Rn−1, a sequence (Γn) of closed nowhere dense subsets of Ω1 that
satisfies

Γn ∩ S closed nowhere dense in S and (yk, t0) /∈ Γn,

and functions Vn ∈ Cm+1 (Ω1 \ Γn)K so that

∀ |β| ≤ 1 :
∀ (y, t) ∈ Ω1 \ Γn :
∀ j = 1, ..., K :

− ε
n
< Dβ (Tj (y, t,D)Vn (y, t)) < ε

n

. (11.61)

Furthermore, the sequence (Vn) also satisfies

∀ k ∈ N :
∃ Nk ∈ N :
∀ i = 1, ..., K :

1) n ≥ Nk ⇒ Dqp
yt,iVn (yk, t0) = Dq

ygp,i (yk) , 0 ≤ p < m, 0 ≤ p+ |q| ≤ m+ 1
2) n ≥ Nk ⇒ Dqp

yt,iVn (yk, t) = Dp
t v

q
yk,i, 0 ≤ p ≤ m+ 1, 0 ≤ p+ |q| ≤ m+ 1

(11.62)

and

∀ ν ∈ N :
∀ k = 1, ..., γν :
∀ i = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :

(y, t) ∈ Ω1 \ Γ1 ⇒ λp,q
n,i (y, t) ≤ Dqp

yt,iVn (y, t) ≤ µp,q
n,i (y, t)
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where λp,q
n,i, µ

p,q
n,i ∈ C0 (Ω1 \ Γn) are functions that satisfy

0 < λp,q
n,i (y, t)− µp,q

n,i (y, t) <
4ε

n
(11.63)

and

λp,q
n+1,i (y, t) < λp,q

n,i (y, t) < µp,q
n+1,i (y, t) < µp,q

n+1,i (y, t) (11.64)

for each n ∈ N.
Let (Un) denote the sequence of approximating solutions to the system of PDEs
(11.1) constructed Theorem 71. That is, for each n ∈ N, we have Un ∈ Cm+1 (Ω \ Γn)K ,
for some closed nowhere dense set Γn ⊂ Ω. Consider the functions

Wn = χ1Un + Vn

where χ1 is the characteristic function of Ω \ Omega1. Clearly, for each n ∈ N, we
have Wn ∈ Cm+1 (Ω \ Γ′n)K for some closed nowhere dense set Γ′n ⊆ Ω. In particular,

Γ′n ∩ S closed nowhere dense in S and yk /∈ Γ′n.

Furthermore, it follows from (11.61) and the corresponding property of the functions
Un, that the sequence (Wn) satisfies

∀ |β| ≤ 1 :
∀ j = 1, ..., K :
∀ (y, t) ∈ Ω \ Γ′n

− 1
n
< DβTj (y, t,D)Wn (y, t) < 1

n

(11.65)

and (11.62) implies

∀ k ∈ N :
∃ Nk ∈ N :
∀ i = 1, ..., K :
∀ 0 ≤ p < m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :

n ≥ Nk ⇒ Dqp
yt,iWn (yk, t0) = Dq

ygp,i (yk)

. (11.66)

Moreover, for 0 ≤ p < m+ 1 and q ∈ Nn−1 such that 0 ≤ p+ |q| ≤ m+ 1 in (11.66)
we have

n ≥ Nk ⇒ Dqp
yt,iWn (yk, t) = Dpvq

yk,i (t) , (yk, t) ∈ S1 \ Γ′n (11.67)

As such, it follows from (11.65), (11.66) and (11.67) that the sequence (un) in
MLm+1 (Ω)K , the components of which are defined as

un,i = (I ◦ S) (Wn,i)
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satisfies

∀ |β| ≤ 1 :
− 1

n
≤ DβTju < 1

n

, (11.68)

∀ k ∈ N :
∃ Nk ∈ N :
∀ n ≥ Nk :
∀ (yk, t) ∈ S1 \ Γ′n :

1) Dp
tDq

yun,i (yk, t0) = Dq
ygp,i (yk) , 0 ≤ p < m, 0 ≤ p+ |q| ≤ m+ 1

2) Dp
tDq

yun,i (yk, t) = Dp
t v

q
yk,i, 0 ≤ p ≤ m+ 1, 0 ≤ p+ |q| ≤ m+ 1

(11.69)

and

∀ n ∈ N :
∀ i = 1, ..., K :
∀ 0 ≤ p ≤ m+ 1 :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m+ 1 :

λ
q,p

n,i ≤ Dqp
yt,iun ≤ µq,p

n,i

. (11.70)

where

λ
q,p

n,i = (I ◦ S)
(
λq,p

n,i

)
and

µq,p
n,i = (I ◦ S)

(
µq,p

n,i

)
.

In particular, the sequence (un) in MLm+1 (Ω)K is a Cauchy sequence, while the
sequence (Tun) converges to 0 in ML1 (Ω)K . It now follows by exactly the same ar-
guments used in the proof of Theorem 87 that there is a sequence (vn) in Cm+1 (Ω)K ,
and a function u ∈ MLm (Ω)K such that (Tvn) converges to 0 in ML0 (Ω)K , and
(vn) converges to u in MLm (Ω)K . In particular, there is a closed nowhere dense
set Γ ⊂ Ω such that u ∈ Cm (Ω \ Γ)K and

∀ A ⊂ Ω \ Ω compact :
∀ |α| ≤ m :
∀ i = 1, ..., K :

‖Dαvn,i −Dui‖A → 0

. (11.71)

It now follows by Theorem 65 that

Tu = 0.

We claim

Γ ∩ S closed nowhere dense in S. (11.72)
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In this regard, fix ν ∈ N and consider, for each i =, ..., K, every 0 ≤ p ≤ m and
q ∈ Nn−1 such that 0 ≤ p+ |q| ≤ m the function

wpq
i,ν : intJν × [t0 − δν , t0 + δν ] 3 (y, t) 7→ Dp

t v
q
y,i (t)

It follows from (11.50) that the function wpq
i,ν is continuous at every point (y, t) ∈

Jν × [t0 − δν , t0 + δν ]. Furthermore, in view of (11.69), it is clear that the sequence
(vn) may be constructed in such a way that

∀ ν ∈ N
∀ y ∈ A ∩ intJν :
∃ δν > 0 :
∃ Ny ∈ N :
∀ n ≥ Ny :
∀ 0 ≤ p ≤ m :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m :
∀ i = 1, ..., K :

Dqp
yt,ivn (y, t) = Dp

t v
q
y,i (t) , |t− t0| < δy

.

As such, it follows that the solution u satisfies

∀ ν ∈ N
∃ δν > 0 :
∀ 0 ≤ p ≤ m :
∀ y ∈ A ∩ intJν :
∀ i = 1, ..., K :
∀ q ∈ Nn−1, 0 ≤ p+ |q| ≤ m :

Dqp
yt,iu (y, t) = Dp

t v
q
y,i (t) , |t− t0| < δy

. (11.73)

Since A∩intJν is dense in intJν , our claim (11.72) follows from Proposition 46. That
u satisfies the initial condition on S \ Γ follows by (11.73) and (11.49)

It should also be mentioned that many of the interesting systems of PDEs that
arise in applications may be written in the form (11.1). In particular, the equations
of fluid mechanics typically take the form

Dtu (y, t) + G
(
y, t, ..., Dq

yui (y, t) , ...
)

= 0

where G : Ω × RM → RK is often a C∞-smooth mapping. These include, amongst
others, the Navier-Stokes equations which have attracted a lot of attention in recent
years, see for instance [36], [41] and [98]. Although such equations may not be
expressed in exactly the form (11.1), and while the additional conditions, such as
boundary and / or initial conditions, may in general not take the form (11.2), the
techniques presented here may be applied in these cases as well.

 
 
 



Chapter 12

Concluding Remarks

12.1 Main Results

We have constructed a general and type independent theory for the solutions of a
large class of systems of nonlinear PDEs. The spaces of generalized functions upon
which the theory is based are constructed as the Wyler completions of suitable uni-
form convergence spaces. A significant advantage of this method, when compared
with the typical spaces of generalized functions used in the customary functional an-
alytic methods is that the generalized functions introduced here may be represented
with usual nearly finite normal lower semi-continuous functions. This provides a
first basic, and so far unprecedented, blanket regularity for the generalized solutions
of systems of nonlinear PDEs that are constructed.

It should be noted that, in the basic construction of spaces of generalized func-
tions, and the fundamental existence results for the solutions of systems of nonlinear
PDEs, those functional analytic techniques that are typical in the study of PDEs, do
not appear. However, this is not to say that functional analysis, or, for that matter,
any mathematics, may not, and should not, be used in the study of nonlinear PDEs.
Rather, the meaning of this is that such sophisticated mathematical tools should
perhaps not form the basis for the study of the existence of solutions of nonlinear
PDEs, but rather of their additional regularity properties, beyond the mentioned
blanket regularity which anyhow results from the theory presented here. Indeed,
perhaps the most dramatic results presented in this work, namely, the regularity
results obtained for the solutions of a large class of systems of nonlinear PDEs in
Chapter 10, and the Cauchy-Kovalevskaia type Theorem proved in Chapter 11, cer-
tainly make use of advanced tools from functional analysis. Namely, it is based on
sufficient conditions for precompactness of sets in suitable Frechét spaces. However,
these results arise as an application of the general existence and regularity theory
presented in Chapters 7, 8 and 9, which is based on far simpler techniques.

Let us now summarize the main results of this work. In Chapter 6 we present
some auxiliary results on the completion of uniform convergence spaces. These
results are used extensively in the text, in particular in regard to the interpretation
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of generalized functions as nearly finite normal lower semi-continuous functions.
Chapter 7 introduces suitable spaces of nearly finite normal lower semi-continuous
functions. These are the fundamental spaces upon which the spaces of generalized
functions studied here are constructed. It should be noted that the results obtained
in Chapter 7, and especially those connected with the construction of the uniform
order convergence structure and its completion, are of interest in their own right.
Indeed, the uniform convergence structure Jo on ML (X) does not depend on the
uniform structure on R, or the algebraic structure of ML (X). This might suggest
more general result on constructing the Dedekind order completion of a partially
ordered set as the completion of a suitable uniform convergence structure.

Chapter 8 concerns the construction of spaces of generalized functions, and the
action of nonlinear partial differential operators on the mentioned spaces of general-
ized functions. As mentioned, the generalized functions, which are the elements of
these spaces, may be represented as usual nearly finite normal lower semi-continuous
functions. This may be interpreted as a blanket regularity for these generalized func-
tions. The development of pullback type spaces of generalized functions introduced
in Section 8.1 comes down to a reformulation, in terms of uniform convergence
spaces, of the construction of spaces of generalized functions in the Order Com-
pletion Method [119]. Such a recasting of the Order Completion Method in terms
of uniform convergence spaces allows for the application of convergence theoretic
techniques to problems related to the structure and regularity of generalized solu-
tions. As is shown in this work, such tools turn out to be highly effective in this
regard. The mentioned spaces are associated with a given nonlinear partial differen-
tial operator. In particular, one cannot, in general, define generalized derivatives of
the elements in these spaces. The Sobelev type spaces of generalized functions are
introduced in Section 8.2 in order to address these issues. In particular, the spaces
are defined without reference to any particular nonlinear partial differential opera-
tor, which, to a certain extent, makes them universal. Furthermore, the generalized
functions in these spaces may be uniquely represented through their generalized
partial derivatives as nearly finite normal lower semi-continuous functions.

The issue of existence of generalized solutions of systems of nonlinear PDEs in
the spaces constructed in Chapter 8 is addressed in Chapter 9. Section 9.1 contains
the approximation results upon which the theory is based. These include a multi-
dimensional version of (1.110), as well as relevant refinements of this result. In Sec-
tion 9.2, the basic existence and regularity result obtained in the Order Completion
Method [119] is recast in the setting of the so called pullback uniform convergence
spaces of generalized functions, while Section 9.3 deals with additional regularity
properties of these solutions. In particular, it is shown that such solutions in the
pullback spaces of generalized solutions may be assimilated with functions that are
Ck-smooth, for k ∈ N ∪ {∞}, everywhere except on a closed nowhere dense set,
provided that the nonlinear operator is Ck-smooth. It should be noted that such
regularity results have so far not been obtained within the setting of the partially
ordered sets within which the Order Completion Method [119] is formulated. In-
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deed, our result relies on the existence of a compatible complete, Hausdorff uniform
convergence structure on a given Hausdorff convergence space [26]. Section 9.4 deals
with the question of existence of generalized solutions in the Sobolev type spaces of
generalized functions. It is shown that a large class of systems of nonlinear PDEs
admit generalized solutions in this sense. This also provides additional insight into
the structure of generalized solutions in the pullback type spaces of generalized
functions. Indeed, each unique generalized solution in the pullback type spaces may
be identified with the set of all solutions in the Sobolev type spaces of generalized
functions. We also consider the effect of additional smoothness conditions on the
nonlinear partial differential operator and the righthand term f of the system of
equations on the regularity of generalized solutions. In this regard, it is shown that,
under suitable conditions on the operator T, an equation of the form (8.1) admits
a generalized solution in the Sobolev type space of order m + k, provided that the
nonlinear operator T, and the righthand term f are Ck-smooth.

As mentioned, the generalized solutions constructed in the Sobolev type spaces of
generalized functions may be uniquely represented through their generalized partial
derivatives, which are nearly finite normal lower semi-continuous functions. As such,
there is a set R ⊆ Ω with complement a set of first Baire category such that each
generalized partial derivative is continuous and real valued at each x ∈ R. However,
even in case the set R has nonempty interior, the generalized derivatives cannot, in
general, be interpreted as usual partial derivatives at any point of R. In Chapter
10 it is shown that a large class of systems of nonlinear PDEs admit generalized
solutions, in suitable Sobolev type spaces of generalized functions, which are in fact
classical solutions everywhere except possibly on a closed nowhere dense set. This
result is based on a useful sufficient condition for the precompactness of subsets
of a suitable Frechét space of sufficiently smooth functions. In view of the various
nonexistence results for certain partial differential equations, see for instance [97],
this result is counter intuitive. Indeed, these results show that, contrary to common
belief, most systems of nonlinear PDEs admit generalized solutions which are in
fact classical solutions everywhere except on a closed nowhere dense subset of the
domain of definition of the system. That is, the existence of a classical solution to
such a system of nonlinear PDEs is a strongly generic property of that system [129].

The solution methods for systems of nonlinear PDEs developed in Chapters 8
to 10 do not take into account any possible additional conditions, such as initial
and / or boundary conditions. However, and as is shown in Chapter 11, the theory
developed in Chapters 8 to 10 may be applied to problems including such additional
conditions with only minimal modifications. This results in the first extension of the
Cauchy-Kovalevskaia Theorem 2 to systems of equations that may not be analytic,
on its own, general and type independent grounds. In particular, it is shown that any
initial value problem of the form (11.1) to (11.2) admits a generalized solution in a
suitably constructed Sobolev type space of generalized functions. Furthermore, if the
system of equations, and the initial data satisfy suitable smoothness conditions, such
a solution can be constructed so that it is a classical solution everywhere except on
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a closed nowhere dense set. Furthermore, this solution satisfies the initial condition
in the classical sense. It should be noted that these methods may be applied to
many of the equations that arise in applications. In particular, the equations of
fluid mechanics, including the Navier-Stokes equations, may be treated by similar
techniques.

12.2 Topics for Further Research

In this work we have initiated a general and type independent theory for the exis-
tence and regularity of generalized solutions for a large class of systems of nonlinear
PDEs. The results obtained in this regard apply also to many of those equations
that that have been proven to be unsolvable in the usual linear topological spaces
of generalized functions, and are therefor generally believed to be unsolvable, such
as the Lewy equation (1.32), see for instance [88] and [97]. As such, the issues of
solvability of such systems of linear and nonlinear PDEs must be carefully reconsid-
ered.

Systems of linear and nonlinear PDEs appear frequently in the applications of
mathematics to physics, chemistry, engineering and, recently, even biology. For such
applications, knowledge of the qualitative properties of the solutions of such systems,
and effective numerical computation of the solutions are required. The development
of analytic and numerical tools for this purpose is an important issue.

The spaces of generalized functions that we have constructed are not contained
in any of the standard linear functional analytic spaces of generalized functions
that are typical in the literature. In fact, even if some generalized function may be
represented in, say, one of the Sobolev type spaces of generalized functions, and in
one of the standard spaces, such as the D′ distributions, they may exhibit rather
different properties. Indeed, the Heaviside function

u (x) =


1 if x ≤ 0

0 if x > 0
(12.1)

belongs to both NL1 (R), and to D′ (R). However, in NL1 (R) its derivative is
u′ (x) = 0, while in D′ (R) its derivative is u′ = δ, the Dirac distribution, which is
not the 0 function. The exact clarification of the interrelations between the new
spaces of generalized functions introduced here, and those of the classical theory of
PDEs, is another interesting and important open problem.
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