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Abstract

This dissertation is based on the papers written by Platen and Rebolledo (1996),

and Platen (1999). The papers focuses on modeling the short term interest rate by

optimizing relative entropy of two probability measures Q and P .

The derivation of the model is done by applying the three principles of market clearing,

exclusion of arbitrage and minimization of increase of arbitrage information on a

simple financial market model. The last principle is equivalent to minimization of

the distance between the risk neutral and the real world probability measures. We

test the model on historical data from two countries, United States and South Africa

from different time frames. The results are then compared to the findings of Platen

(1999).
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Preface

Please note that in this dissertation too much repetition from Honours level is avoided,

we do not introduce concepts such as probability space, Wiener process, Itô formula,

etc. However enough background needed in this dissertation is covered.
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Chapter 1

Introduction

There are different types of models that exist that specify the Q-dynamics of the

interest rate, Vasic̆ek, Cox-Ingersoll-Ross (CIR) and Dothan, etc. But Platen and

Rebolledo [15] states that there seems to be no model in the financial market that

clearly explains the relationship between the dynamics of these processes, the pricing

of the contingent claim and some of the major economic factors. It is still a challenge

to find the model that not only is a good fit to historical data, but also explains the

relationship of these processes.

In this work we follow the approach and assumptions of Platen and Rebolledo.

In which they model the short term interest rate using the three principles of market

clearing, exclusion of instantaneous arbitrage and minimization of increase of arbi-

trage information. Björk [2] considers this a different approach since the dynamics

of the short rate are derived as a consequence of optimizing entropy. The dynamics

leads to a diffusion process that has a mean reverting property.

The first principle, Market clearing condition is a topic in economics which refers

to the principle that, the quantity of assets bought is equal to the quantity of as-

sets sold, and the market clearing price, depends on the actual demand and supply.

The second principle, Exclusion of arbitrage opportunities which relates to the exis-

tence of an equivalent martingale measure, is a topic that is well treated in Finance

and being discussed by a few authors like Delbaen and Schachermayer in their paper
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[5]. It should be noted that the authors in their paper [15], refers to this princi-

ple as the exclusion of instantaneous arbitrage opportunities, however it seems that

all the results in this work can be derived with the standard exclusion of arbitrage

opportunities which is used to obtain the equivalent martingale measure. Therefore

the difference between the principle of instantaneous arbitrage opportunities and ar-

bitrage opportunities will thus not be discussed in this work. The third principle

requires the minimization of increase of arbitrage information. As stated in their

paper [15]: “Arbitrage information also represents the negative relative entropy of

the market system, where maximization of negative relative entropy is equivalent to

minimization of the sum of the squared market price for risk processes. This principle

is thus understood to minimize the market prices of risk to be paid.”

We also study the short term interest rate model by Platen [14] and show how

it follows from the principle of minimizing entropy, then we look at the differences

between this model and the Vasiček model. Finally, we apply this model to both

American and South African historical data, for different time frames and compare the

fit with results obtained by Platen where he had compared this model with historical

data from three countries, United States, Australia and Germany.
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Chapter 2

Preliminaries

In this whole dissertation we consider the probability space (Ω,F , P ),where F is a

σ − algebra and P is a probability measure.

2.1 Martingale Measures

In order to give the definition of a martingale measure, we first give the definition of

a martingale.

Definition 2.1.1. ([1], page 443) Let Ft, t ≥ 0 be a filtration. A stochastic process

Xt, t ≥ 0 is an Ft-martingale if

1. X is adapted to Ft, i.e Xt is Ft measurable for each t.

2. Xt ∈ L1 for each t

3. For every s and t with 0 ≤ s ≤ t it holds that

Xs = E[Xt|Fs], P − a.s.

Definition 2.1.2. ([1], page 416) Consider a probability space(Ω,F) on which there

are defined two probability measures Q and P
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• If, for all A ∈ F , it holds that

P (A) = 0→ Q(A) = 0 (2.1)

then P is said to be absolutely continuous with respect to P on F and we write

this Q << P .

• If we have both Q << P and P << Q, then Q and P are said to be equivalent

and we write this as Q ∼ P .

Definition 2.1.3. ([1], page 136) A probability measure Q on FT is called an equiva-

lent martingale measure for a market model given by Xt on [0, T if it has the following

properties:

• Q ∼ P on FT

• All the price processes X0, X1, . . . . . . XN are martingales under Q

Theorem 2.1.4. ([1],Theorem A.52) (The Radon-Nikodym Theorem) Consider the

measure space (Ω,F , P ), where we assume that P (Ω) <∞. Assume that there exists

a measure Q on (Ω,F) such that Q << P on F . Then there exists a nonnegative

function Φ : Ω→ R such that Φ is F-measurable,∫
Ω

Φ(ω)dP (ω) <∞,

Q(A) =

∫
A

Φ(ω)dP (ω),

for all A ∈ F and ω ∈ Ω.

The function Φ is called the Radon-Nikodym derivative of Q w.r.t. P . It is uniquely

determined by Q-a.e. and we write

Φ(ω) =
dQ(ω)

dP (ω)
,

or alternatively,

dQ(ω) = Φ(ω)dP (ω)
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2.2 Complete and Arbitrage Free Market

Definition 2.2.1. ([1], page 84)

• A contingent claim is any random variable X, defined on Ω.

• The value process V h corresponding to the portfolio h is given by

V h
t =

N∑
i=1

hi(t)Si(t),

where Si(t) is the i-th price process of the stock at time t.

• A portfolio is said to be self-financing, if

dV h
t = htdSt,

where dSt P -dynamics of S.

• A given contingent claim X is said to be hedgeable, if there exists a self-

financing portfolio h such that the corresponding value process have the prop-

erty that

V h
T = X, P − a.s. (2.2)

In this case we say that h is a hedge against X, where VT is the value of the

portfolio h at time T . If every contingent claim can be hedged we say that the

market is complete.

2.2.1 Arbitrage Free Market

Definition 2.2.2. ([1], page 16) An arbitrage possibility on a financial market is a

self-financing portfolio h such that

V h
0 = 0

P (V h
T ≥ 0) = 1
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P (V h
T > 0) > 0.

We say that the market is arbitrage free if there are no arbitrage possibilities.

The next theorem is considered to be the First Fundamental theorem the market

model consisting of the asset price processes S0, S1, . . . , SN on the time interval [0, T ].

S0 is assumed to be strictly positive.

Theorem 2.2.3. ([1], page 150) The market model is free of arbitrage if and only if

there exists an equivalent martingale measure, i.e a measure Q ∼ P such that

the processes
Bt

Bt

,
S1(t)

Bt

, ...,
SN(t)

Bt

(2.3)

are martingales under Q.

From Theorem 2.2.3, we see that St

Bt
is a martingale under Q. In particular, if the

bank price process is given by:

Bt = e−
∫ t
0 r(s)ds,

for 0 < s < t where r is the short rate process, then by the General Pricing Formula

([1] p. 148) we have the following theorem:

Theorem 2.2.4. ([1], page 151) The arbitrage free price of the claim X is given by:∏
(t;X) = EQ[e−

∫ T
t r(s)dsX|Ft], (2.4)

where
∏

(t;X) is the price of the contingent claim X.

2.3 The Market Price of Risk

Assumption 2.3.1. We assume that the market consist of
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• Under the objective probability measure P , the S-dynamics are given by

dSi(t) = Si(t)µi(t)dt+ Si(t)σi(t)dW̄ (t)

for i = 1, . . . , n. Here W̄1, . . . , W̄n are independent P -Wiener processes.

• The coefficients µi and σi above are assumed to be known constants.

• A risk free asset (money account)with the dynamics

dBt = rBtdt,

where r is the deterministic short rate of interest.

Consider two fixed T -claims F and G, of the form

F = Φ(S(T )),

G = Γ(S(T )),

real where Φ and Γ are given deterministic real valued functions.

A model that is free of arbitrage possibilities, implies the existence of a martingale

measure, by Theorem 2.2.3. Such a measure is specified by the market price of risk

process given by the following formula:

σF (t)λt = µ̄F (t)− r, (2.5)

with r being the risk-free rate, µt is the expected rate of return of the stock St, σt

the volatility and ψt is the market price of risk.

The following result is typical, and illustrates a property of market price of risk.

Proposition 2.3.2. ([1], page 210) Assume that the market for derivatives is free of

arbitrage. Then there exist a process λt s.t.

λ(t) =
µ̄F (t)− r
σF (t)

(2.6)
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with probability 1, for all t regardless of the specific choice of the derivative F .

αF is the expected return on the claim F .

2.4 Relative Entropy

The concept of entropy will be used in the third principle of this dissertation, which

is the minimization of relative entropy. Before we define relative entropy, let us define

entropy and the properties thereof.

Entropy is a measure of uncertainty of a random variable. The formal definition for

discrete case is as follows:

Definition 2.4.1. ([17]) Let p = (p1 . . . , pn) be a finite discrete probability distribu-

tion. Then, the entropy of p is

H(p) = −
n∑
i=1

pi ln pi =
n∑
i=1

pi ln
1

pi
, (2.7)

where 0 ln 0 = 0 and pi is the probability of the i-th outcome.

Lemma 2.4.2. Properties of Entropy Let p = (p1, . . . , pn)

1. H(p) ≥ 0

2. H(p) = 0 when all the pi = 0, except for one probability that will be equal to 1.

3. Entropy is a maximum if pi = 1
n

for each i, 1 ≤ i ≤ n

For fixed n, entropy is zero when there is certainty that one outcome will be true,

otherwise it is always positive. Furthermore, when the events are equally likely to

occur, the entropy will be maximal. This is the maximum uncertainty of what the

outcome would be in a certain state of affairs. As an illustration of entropy for discrete

random variables, lets look at the following example of tossing two coins at the same

time.
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Example 2.4.3. Let X be number of heads that appear in the toss

X =


2 with probability 1

4
.

1 with probability 1
2
.

0 with probability 1
4
.

Then the entropy of H(X) is

H(X) = −[2(
1

4
ln

1

4
) +

1

2
ln

1

2
] =

3

2
ln 2 ≈ 1.03972 ≈ 1

The above entropy is calculated for a situation when using fair coins, where the

entropy of the outcome is maximal, that is 1, since all events have an equal chance

of appearance. If the coins were so unfair that the probability of landing on heads is

1, then the entropy would be zero.

For continuous random variables with density distribution function f(x), the en-

tropy is defined by

H(f) = −
∫ ∞
−∞

f(x) ln f(x)dx. (2.8)

Shannon in his paper [17]pp. 38 states that, entropy in the continuous case can be

considered as a measure of randomness relative to assumed standard.

For Relative Entropy or Kullback-Leibler divergence, which is a measure of the dif-

ference between two probability distributions, we have the following definition:

Definition 2.4.4. [7] Define the Relative Entropy or Kullback-Leibler divergence

between two probability measures Q and P to be

K(P,Q) =

{
EQ[dP

dQ
ln dP

dQ
] if P << Q

∞ otherwise

The Kullback-Leibler divergence can also be expressed as

K(P,Q) =

∫
dP

dQ
ln
dP

dQ
dQ =

∫
ln
dP

dQ
dP, (2.9)

which is a consequence of the following theorem in measure theory:
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Theorem 2.4.5. ([8], page 134) If λ and µ are totally σ-finite measures such that

µ � λ, and if f is a finite valued measurable function for which
∫
fdµ is defined,

then
∫
fdµ =

∫
f dµ
dλ
dλ.

2.5 The Girsanov Theorem

Theorem 2.5.1. ([1], Theorem 11.3) On a probability space (Ω,F , P ) consider ψ to

be any N-dimensional adapted column vector process and consider an N-dimensional

P -Wiener process denoted by W P . Fix t ∈ [0, T ] and define the process Φ on [0, T ] by

dΦt = ψΦtdW
P
t , (2.10)

Φ0 = 1 (2.11)

i.e.

Φt = exp{
∫ t

0

ψdW P
s −

1

2

∫ t

0

|ψs|2ds}.

Assume that

EP [ΦT ] = 1, (2.12)

and define the new probability measure Q on FT by

ΦT =
dQ

dP
, on FT . (2.13)

Then

dW P
t = ψtdt+ dWQ

t , (2.14)

where WQ is a Q-Wiener process.

Remark 2.5.2. Note that the Φ = dP
dQ

given in Theorem 2.1.4 is the same function as

in Theorem 2.5.1. Where Φ in both Theorems is called the Radon-Nikodym derivative.
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Chapter 3

Market clearing: The first principle

The market clearing principle ensures that, at any time and for each contingent claim,

the cumulative number of shares sold has to be equal to the cumulative number of

shares bought, where the traded amount depends on the actual demand and supply.

This principle is used to derive the logarithmic contingent claim price dynamics.

In this chapter, a simple market model is chosen to illustrate the three principle

used in the dissertation. Demand and supply of shares on a contingent claim is

first modeled, which allows us to describe the dynamics of the cumulative amount

of shares bought and sold respectively. The models that describe the behavior of

investors based on the increase or decrease in the log-price are chosen to be linear.

These models describe the reaction of investors towards buying and selling of assets

when there is an increase or decrease in the demand and the log-price of an asset.

This approach of modeling demand and supply is used by the authors Platen and

Rebolledo as they believe it is less complex than having to define utility functions.

To illustrate this principle of market clearing, let us first model supply and demand

of the contingent claim.

On a probability space (Ω,F , P ), consider N risky assets, S = {S1, . . . , SN} and

{W1, . . . ,WN} are the N independent Wiener Processes. The market information

available at time t ≥ 0 is expressed by the σ-algebra Ft generated by the independent

Wiener process up to this time. The dynamics of the ith asset price process is
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described by the following stochastic differential equation:

dSit = µitS
i
tdt+ Sit

N∑
j=1

σi,jt dW
j
t , (3.1)

The number of risky assets and noise sources are chosen to be equal to end up

with complete market. Also in the model we have the risk free asset process

B =
{

Bt : 0 ≤ t ≤ T
}

that satisfies the following differential equation

dBt = rtBtdt (3.2)

with initial value B0 = 1, where rt is the short term interest rate of return.

Let X i
t , i ∈ 1, . . . , N denote the price process of the ith contingent claim and

Lit, i ∈ {1 . . . N} be the logarithmic price process, given by

Lit = lnX i
t . (3.3)

Demand is the measure of the amount of shares that are bought by investors at a

specified price for a specific time. Then if we sum the total demand of a contingent

claim for a period of time, we call it cumulative demand.

Denote ρit, 0 ≤ t <∞ to be the cumulative demand process of investors for buying

shares of the ith contingent claim until time t. Assume that the stochastic differential

equation for ρit is given by

dρit = n(L̄it − Lit)dt+
N∑
j=1

bi,jt dW
j
t (3.4)

0 ≤ t and i ∈ 1, . . . , N , where L̄it is the risk neutral log-price process which is given,

and calculated using equation (2.4). Equation (3.4) has the expected drift rate that

is proportional to the difference between the risk neutral log-price L̄it and the actual
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log-price Lit. The constant n is positive, this is to reflect the realistic investment

strategy of profit making by most investors of wanting to “buy low” and “sell high”.

The diffusion coefficients bi,jt represent deterministic function of time.

Let

D(t, Lit, ρ
i
t) = at− lLit + pρit (3.5)

denote the cumulative amount of shares of the ith contigent claim bought until time

t. The N × 1 dimensional L is defined by

L =
(
L1

1 . . . L
N
N

)
,

and the N × 1-dimensional ρ by

ρ =
(
ρ1

1 . . . ρ
N
N

)
,

where equation (3.5) can now be written as

D(t, L, ρ) = at− lL+ pρ. (3.6)

The constants in equation (3.6) are all chosen to be positive, where a denotes the

number of shares bought per unit of time independently of the changes in the log-

price and the cumulative demand. The constant l stands for the proportional decrease

in the number of shares bought per currency if the price increases, this is so because

naturally investors would buy less shares if the price is high. If the price decreases

the term lL will be smaller hence, this will indicate more shares being purchased

because the term pρ will be high to indicate high cumulative demand. Lastly, p is the

intensity per currency with which the buyers react to an increase in the cumulative

demand and hence it is also assumed to be positive since higher cumulative demand

will encourage investors to buy larger number of shares.

In a similar way, describe the cumulative amount of shares sold by

S(t, L) = at+ fL, (3.7)
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where the constants on this equation are chosen again as in equation (3.6) to be

positive. a is the same constant as in equation (3.6), here it represents the number of

shares sold per unit of time independently of the log-price and cumulative demand.

The constant f > 0 denotes the proportional increase per currency of the number of

shares sold if the log-price increases. Since it is natural that the final decision on an

agreement is made by the buyer, S is chosen in a way that it does not depend on

cumulative supply. This is to keep the example simple, hence cumulative supply is

not modeled.

Equation (3.6) and (3.7) are chosen to be linear in order to keep the structure of

the model simple, and to avoid technical difficulties.

To satisfy the market clearing condition we then have

D(t, Lti, ρ
i
t) = S(t, Lit) (3.8)

for all 0 ≤ t and i ∈ {1, . . . , N}. Substituting equation (3.5) and equation (3.7) into

equation (3.8) and applying the Itô formula,

dS(t, Lit)− dD(t, Lti, ρ
i
t) = 0

adt+ fdLit − adt+ ldLit − pdρit = 0,

solving for dLit above, results in

dLit =
p

f + l
dρit, (3.9)

substituting equation (3.4) into (3.9), then the stochastic differential equation for

log-price process is of the form

dLit =
pn

f + l
(L̄it − Lit)dt+

p

f + l

d∑
j=1

bi,jt dW
j
t (3.10)

for all 0 ≤ t and i ∈ {1, . . . , N}.

We observe from equation (3.9), that the relationship between the log-price and
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the cumulative demand is directly proportional. The log-price will increase with

increasing cumulative demand. In equation (3.10), based on our choice of the cumu-

lative demand dynamics, we end up with the stochastic differential equation being

the Ornstein-Uhlenbeck type process. The drift term is described by

µit = c(L̄it − Lit), (3.11)

and

c =
pn

f + l

is the mean reverting rate. The mean, that is the risk neutral log-price L̄it, attracts

the actual log-price Lit to itself. If Lit < L̄it we have µ > 0, but if Lit > L̄it then µ < 0.

The value Lit reverts to the risk neutral log-price L̄it exponentially at a rate c, with the

value that is directly proportional to the difference between the risk neutral log-price

and the actual log-price. This can be seen if we ignore the dWt term, and consider

the ordinary differential equation

dLit = c(L̄it − Lit)dt (3.12)

with solution

Lit = L̄it + (Li0 − L̄i0) exp(−ct). (3.13)

The differential equation of the log-price, is an Ornstein-Uhlenbeck process as men-

tioned before, that is also known as mean reverting process, where the drift term

depends on the current value of the process.

Denote by σi,jt , t ≥ 0i, j ∈ 1, . . . , N to be the volatility of the contingent claim as

σi,jt =
p

f + l
bi,jt (3.14)

for all 0 ≤ t and j ∈ {1, . . . , N}, then equation (3.10) becomes

dLit = µitdt+
N∑
j=1

σi,jt dW
j
t . (3.15)
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We observe from equation (3.14) that, the volatility of the log price process is directly

proportional to the volatility of the cumulative demand. This means that the fluc-

tuations of the cumulative demand are directly transferred to those of the log-price

process.
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Chapter 4

Exclusion of Arbitrage: The

second principle

The main use of this principle in this chapter is to introduce the market price of risk.

Where we also show that the discounted price process is a martingale. The stochastic

differential equation for the price process is derived in this chapter. And we show the

dependency of ψt the market price of risk on the log-price Lit.

4.1 Deriving the dynamics of the price process for

assets

From equation (3.3) solving for X i
t , we see that

X i
t = eL

i
t . (4.1)
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If we let F (t, Lit) = eL
i
t then by applying Itô’s formula to the function F we obtain

dF =Ftdt+ FLdL+
1

2
FLL(dL)2 (4.2)

=eL
i
tdLit +

1

2
eL

i
t(dLit)

2 (4.3)

=X i
tdL

i
t +

1

2
X i
t(dL

i
t)

2 (4.4)

and substituting equation (3.15), we have the following stochastic differential equation

for the price process

dX i
t =

[
µit +

1

2

N∑
j=1

(σi,jt )2
]
X i
tdt+X i

t

N∑
j=1

σi,jt dW
j
t , (4.5)

for all 0 ≤ t and i ∈ {1, . . . , N}. The integral form of equation (3.15) is given by

Lit = Li0 +

∫ t

0

µisds+

∫ t

0

N∑
j=1

σi,js dW
j
s , (4.6)

and substituting into equation (4.1) for Lit

X i
t = exp

[
Li0 +

∫ t

0

µisds+
N∑
j=1

∫ t

0

σi,js dW
j
s

]
, (4.7)

which becomes

X i
t = X i

0 · exp
[ ∫ t

0

µisds+
N∑
j=1

∫ t

0

σi,js dW
j
s

]
, (4.8)

for all 0 ≤ t and i ∈ {1, . . . , N}. Equation (4.8) is the solution to (4.5). The above

derivation is in line with the theory studied in Hull ([9]) or most theoretical work done

on stochastic differential equations which shows that when the price of a contingent

claim follows a Geometric Brownian Motion of the form equation (4.5), with solution

(4.8), then the log-price will have the stochastic differential of the form (3.15).
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4.2 Discounted price process

As we assumed in our market model that the market is free of arbitrage opportunities.

Then by Theorem (2.2.3) this implies the existence of a martingale measure Q, under

which the discounted contingent claim price processes are martingales.

The martingale measure Q will be specified by introducing the market price of

risk process of the form λjt , 0 ≤ t <∞, j ∈ 1, . . . , N that is defined by

N∑
j=1

σi,jt λ
j
t = µ̄it − rt. (4.9)

Since

ψjt = −λjt (4.10)

for all t > 0, then

N∑
j=1

σi,jt ψ
j
t = rt − µ̄it, (4.11)

with

µ̄it = µit +
1

2

N∑
j=1

(σi,jt )2. (4.12)

Under the measure Q the processes W̃ j
t = {W̃ j

t ; 0 ≤ t <∞} with

W̃ j
t = W j

t −
∫ t

0

ψisds, (4.13)

i ∈ {1, . . . , N}, are Wiener processes by the Girsanov Theorem (2.5.1). The differen-

tial equation is given by

dW̃ j
t = dW j

t − ψitdt. (4.14)

Let

X̃ i
t =

X i
t

Bt

(4.15)
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be the discounted contingent claim price, which can also be written as

X i
t = X̃ i

tBt, (4.16)

where Bt is the price of the risk free asset. Applying Itô on equation (4.16) we get

dX i
t = X̃ i

tdBt +BtdX̃
i
t + dX̃ i

tdBt.

The term dX̃ i
tdBt will fall off this is because (dt)2 = 0 and also dt × dW = 0 since

we know that dBt = Btrtdt, and we assume that dX̃ i
t will contains the drift term and

the diffusion term since it will be a stochastic differential equation. Solving for dX̃ i
t

we get

dX̃ i
t =

1

Bt

× (dX i
t − X̃ i

tdBt).

Substituting equations (4.5), (4.15), (4.12) and (3.2) we get

dX̃ i
t =

1

Bt

× (µ̄itX
i
tdt+X i

t

N∑
j=1

σi,jt dW
j
t −X i

trtdt),

and substituting (4.14) for dW and for ψit from equation (4.11) we obtain

dX̃ i
t =

1

B t
× {X i

t(µ̄
i
t − rt)dt+X i

t

N∑
j=1

σi,jt dW̃
j
t −X i

t(µ̄
i
t − rt)dt},

which becomes

dX̃ i
t = X̃ i

t

N∑
j=1

σi,jt dW̃
j
t (4.17)

for t ≥ 0, i ∈ {1, . . . , N}. The discounted price process is a martingale, that is

X̃ i
t = E[X̃ i

s|Ft], for 0 ≤ t ≤ s < ∞0, i ∈ {1, . . . , N}since (4.17) contains only of the

diffusion term.
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4.3 Relation between market price of risk and the

Log-price

From equation (4.11) substituting equation (4.12) and solving for rt, we can derive

the short-term interest rate process rt as:

rt = µit +
1

2

N∑
j=1

(σi,jt )2 +
N∑
j=1

σi,jt ψ
j
t (4.18)

for all j ∈
{

1, . . . , N
}

and 0 ≤ t <∞.

Writing (4.11) in vector form we let the vector be denoted by ψt as

ψt =


ψ1
t
...

ψNt

 ,

and the N × 1-dimensional vector matrix of µ̄t by

µ̄t =


µ̄1
t
...

µ̄Nt

 ,

and we assume that the volatility matrix is invertible.

Assume also that the demands are uncorrelated, i.e. bi,jt > 0 for all i = j and

bi,jt = 0 for j 6= i and 0 ≤ t. Then the volatility of the log-price hence the price

process will also be uncorrelated. Then equation (4.11) can be written as

ψt = σ−1
t (rt1− µ̄t), (4.19)

for t ∈ [0, T ] where 1 is the n-dimensional column vector 1n given by

1 =
(

1 . . . 1
)T

.
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From (3.11), (4.12) and (4.19), for our Ornstein-Uhlenbeck-type log-price example we

obtain in the special case the market price of risk in the form

ψit(rt) =
1

σi,it
[rt − c(L̄it − Lit)−

1

2
(σi,it )2]. (4.20)

Note that ψit(rt) is large for larger values of the log-price Lit. If we square ψit(rt) we

get

(ψit(rt))
2 =

1

(σi,it )2
[rt − c(L̄it − Lit)−

1

2
(σi,it )2]2. (4.21)

Taking the partial derivative of (ψit)
2(rt) with respect to Lit we obtain

∂ψ2
s

∂Lit
=

2c

(σi,it )2
[rt − c(L̄it − Lit)−

1

2
(σi,it )2], (4.22)

equate to zero

0 =
2c

(σi,it )2
[rt − c(L̄it − Lit)−

1

2
(σi,it )2], (4.23)

and solve for Lit we obtain

Lit = L̄it −
1

c
(rt −

(σi,it )2

2
). (4.24)

The above shows that the square of ψit(rt) is minimal for Lit close to the value

given by equation (4.24) which is the optimal value. This observation will be helpful

for the interpretation of our result in chapter 5. As we will see that the third principle

chapter 5 minimizes the sum of squares of the market price of risk which will turn

out to be equivalent to the minimization of increase of arbitrage information.
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Chapter 5

Minimization of arbitrage

information: The third principle

The main application of the third principle in this work, is to derive the short term

interest rate. This will be done by first introducing the Kullback-Leibler information

process denoted by ht, then minimizing the rate of change of the information. Platen

and Rebolledo states that this approach of minimizing the increase of the arbitrage

information, is a different approach that substitute the principle of maximizing utility

functions. The rate of change, is described by the conditional expectation of the sum

of squares of the market price of risk. From this we end up with the short term

interest rate model which is derived in section (5.1).

In chapter 4 we have formulated ψ for which this specifies a Radon-Nikodym

derivative Φ = dQ
dP

of Q w.r.t. P ( Φ will be introduced in this chapter) and in turn

defines a martingale measure Q. The martingale measure, uniquely defines Φ, by the

Radon-Nikodym theorem. In this chapter, by minimizing the increase of the arbitrage

information, we are minimizing the market price of risk where we try to find the right

martingale measure that is closest to the ’real world’ measure P . By so doing we are

fixing r the short rate.
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5.1 The third principle

Define the Kullback-Leibler information process by h = {ht : 0 ≤ t <∞}, with

ht = Φ−1
t log Φ−1

t (5.1)

where Φt is the Radon-Nikodym derivative. The Kullback-Leibler divergence is

obtained by taking the E(ht|F0).

The dynamics of Φt, are given by:

dΦt = ψjtΦtdW
j
t (5.2)

Φ0 = 1 (5.3)

for all {0 ≤ t < ∞}. Consider F (Φt, t) = ln Φt applying Itô’s lemma on F (Φt, t),

then Φt can be explicitly described by

Φt = exp
{
− 1

2

N∑
j=1

∫ t

0

|ψjs|2ds+
N∑
j=1

∫ t

0

ψjsdW
j
s

}
(5.4)

for t ∈ [0, T ].

Define the arbitrage information for the measure P with respect to Qψ(r), where Ê is

the expectation with respect to Qψ(r) given by,

It(P,Qψ(r)) = Ê(ht|F0). (5.5)

Substituting ht we can write equation (5.5) as

It(P,Qψ(r)) = Ê((Φ−1
t log Φ−1

t )|F0). (5.6)

If the conditional expectation in equation (5.6) does not exist, we set It(P,Q) =∞.

From Theorem 2.4.5 and (2.9) we see that equation (5.6) can now be expressed as

It(P,Qψ(r)) = E((− log Φt)|F0), (5.7)
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for E being the expectation with respect to P . Equation (5.7) is the arbitrage infor-

mation up to t at time t = 0. Since F0 is a trivial σ-field, we can rewrite equation

(5.7) as

It(P,Qψ(r)) = E(− log Φt), (5.8)

Note that the arbitrage information is equivalent to the negative relative entropy, this

will be shown below, where we will start with the arbitrage information and end up

with the negative relative entropy:

Let Q ∼ P and the Radon-Nikodym derivative is given by Φ = dP
dQ

and Φ−1 = dQ
dP

.

It(P,Q) =Ê((Φ−1
t log Φ−1

t )|F0) (5.9)

=

∫
dQ

dP
ln
dQ

dP
dQ (5.10)

=

∫
ln
dQ

dP
dP (5.11)

=

∫
ln Φ−1dP (5.12)

=−
∫

ln ΦdP (5.13)

=−
∫

ln
dP

dQ
dP (5.14)

=−
∫
dP

dQ
ln
dP

dQ
dQ (5.15)

=−K(P,Q) (5.16)
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Substituting equation (5.4) into (5.7) it follows that

It(P,Qψ(r)) =E((− log(exp
{
− 1

2

N∑
j=1

∫ t

0

|ψjs|2ds+
N∑
j=1

∫ t

0

ψjsdW
j
s

}
))|F0) (5.17)

=E(
(1

2

N∑
j=1

∫ t

0

|ψjs|2ds−
N∑
j=1

∫ t

0

ψjsdW
j
s

)
|F0) (5.18)

=
1

2
E(
( N∑
j=1

∫ t

0

|ψjs|2
)
ds|F0). (5.19)

That is

It(P,Qψ(r)) =
1

2

N∑
j=1

∫ t

0

E((|ψjs|2)|F0)ds (5.20)

since E{
∫ t

0
ψjsdW

j
s } = 0.

Then the rate of change of equation (5.20) is given by

∂

∂t
It(P,Qψ(r)) =

1

2

N∑
j=1

E(|ψjs|2|F0). (5.21)

Note that the arbitrage information equation (5.20) is non-negative, where it would

be zero if the P and Qψ(r) were the same, that is, It(P,Qψ(r)) = 0 if and only if

Qψ(r) = P . Rényi [16] proved this property on page 554 for It(P,Q) = 0 with the

base of 2. The property is still true for base e since log2 b = ln b
ln 2

. If It(P,Qψ(r)) = 0

it will affect the market price of risk to be zero ψt(r) = 0, and this means that

αF (t) = r(t) i.e. the expected rate of return of investing in a risky asset is the same

as holding a risk free asset. This is not the case in general, but true in risk neutral

pricing theory where the market price of risk is zero.

The author’s [15] remark in this case is that: “ Arbitrage information equation (5.7)

represents negative relative entropy equation (2.4.4) that measures free energy in

the system. Free energy gives rise to fluctuations of contingent claims which creates

temporary over and underpricing. Investors exploit this phenomenon to generate

profit by buying underpriced contingent claims and selling them at times when these
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are overpriced. It turns out that information about such over or underpricing is

indicated by arbitrage information.”

5.2 The Derivation of the short rate model: Gen-

eral Case

In this section we derive the short rate model, by minimizing the rate of change of

the arbitrage information. We observe that to minimize the rate of increase of the

difference between the ‘real world’ measure P and the martingale measure Q equation

(5.21), we need to minimize the quadratic form of the market price of risk given by,

ψ2
s(ω) = (σ−1

s rs1)T (σ−1
s rs1)− 2(σ−1

s rs1)T (σ−1
s µ̄s(ω)) + (σ−1

s rsµ̄s(ω))T (σ−1
s µ̄s(ω)),

take the partial derivative with respect to rt of the quadratic form of the market price

of risk. Equate this to zero, then solve for rt to find the equation of the short rate,

where equation (5.21)

∂

∂t
It(P,Q) =

1

2

N∑
j=1

E[|ψjs|2|F′]

would be minimum when rt is given by this value. Then consider the short rate using

the specific case, that is, the rate of return being given by

µ̄ = µit +
1

2

N∑
j=1

(σi,jt )2.

The rate of change of the arbitrage information equation (5.21), becomes minimal

if for all s ≥ 0 and ω ∈ Ω the expression

ψ2
s(ω) =

N∑
i=1

|ψis,ω(rs(ω))|2 (5.22)

is minimized.
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The quadratic form of equation (4.19) is obtained by multiplying the vector by its

transpose, is given by

ψ2
s(ω) = (σ−1

s rs1)T (σ−1
s rs1)− 2(σ−1

s rs1)T (σ−1
s µ̄s(ω)) + (σ−1

s rsµ̄s(ω))T (σ−1
s µ̄s(ω)),

(5.23)

for all s ≥ 0 and ω ∈ Ω. Taking the partial derivative of (5.23) with respect to rs we

have,

∂ψ2
s

∂rs
=(σ−1

s 1)T (σ−1
s rs1) + (σ−1

s rs1)T (σ−1
s 1)− 2(σ−1

s 1)T (σ−1
s µ̄s(ω)) (5.24)

=rs(σ
−1
s 1)T (σ−1

s 1) + rs(σ
−1
s 1)T (σ−1

s 1)− 2(σ−1
s 1)T (σ−1

s µ̄s(ω)) (5.25)

=2rs(σ
−1
s 1)T (σ−1

s 1)− 2(σ−1
s 1)T (σ−1

s µ̄s(ω)), (5.26)

for s ≥ 0 and ω ∈ Ω, where AT denotes the transpose of matrix A.

Taking the second partial derivative of the above equation with respect to rs we

get

∂2ψ2
s

∂r2
s

=2(σ−1
s 1)T (σ−1

s 1), (5.27)

where we see that it is positive. This means that the first derivative ∂ψ2
s

∂rs
is increasing,

hence it implies that ∂ψ2
s

∂rs
has a minimum. Equate equation (5.26) to zero and solve

to find the minimal rs, equation (5.24) becomes

rs(ω) =
(σ−1

s 1)T (σ−1
s µ̄s(ω))

(σ−1
s 1)T (σ−1

s 1)
, (5.28)

for s ≥ 0 and ω ∈ Ω, where AT denotes the transpose of matrix A. So equation (5.21)

will be minimum if rs is defined by equation (5.28). Therefore the short rate is given

by

rt =
(σ−1

t 1)T (σ−1
t µ̄t)

(σ−1
t 1)T (σ−1

t 1)
, (5.29)

for t ≥ 0, which minimizes the increase of arbitrage information. We note that rt is

an average over the components of µ̄t, the expected rate of return.
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Let R0,t = E(rt|F0) denote the conditional expected short rate. To derive the

formula for R0,t, we first need to derive the equation for the conditional expected rate

of return, denoted by µ̂ = E(µ̄it|F0). Substitute equation (3.11) into equation (4.12),

to obtain

µ̄it =µit +
1

2

N∑
j=1

(σi,jt )2 (5.30)

=c(L̄it − Lit) +
1

2

N∑
j=1

(σi,jt )2. (5.31)

Then

µ̂i0,t = E(µ̄it|F0) = cE((L̄it − Lit)|F0) +
1

2

N∑
j=1

(σi,jt )2, (5.32)

where µ̄t = (µ̄1
t , . . . , µ̄

N
t )T . Then from equation (5.29), the expected short rate is then

given by

E(rt|F0) =
(σ−1

t 1)T (σ−1
t )

(σ−1
t 1)T (σ−1

t 1)
E(µ̄t)|F0). (5.33)

For uncorrelated demand processes ρi with bi,it = bi,i > 0 and bi,jt = 0 for i 6= j; j ∈
{1, ..., N}, t ≥ 0, equation (4.21) becomes

rt =
1

2

[
1

N

N∑
i=1

(σi,i)−2

]−1 [
1

N

N∑
i=1

2c

(σi,i)2
(L̄it − Lit) + 1

]
, (5.34)

that is

rt = r̄

(
1

N

N∑
i=1

2c

(σi,i)2
(L̄it − Lit) + 1

)
, (5.35)

with

r̄ =
1

2

(
1

N

N∑
i=1

(σi,i)−2

)−1

. (5.36)
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The expected short rate is then given by:

E(rt|F0) = r̄

(
1

N

N∑
i=1

2c

(σi,i)2
E(L̄it − Lit|F0) + 1

)
. (5.37)

If we assume that the expected drift rate is zero, that is E[(L̄it−Lit)|F0] = 0, then

the expected short rate is represented by r̄ that is

E(rt|F0) = r̄

equation (5.36). If the volatilities are the same, that is σ1,1, this then results in the

expression

r̄ =
(σ1,1)2

2
. (5.38)

Platen and Rebolledo [15] compare equation (5.38) with findings from a paper by

Finnerty and Leistikow (1993). They state that an average short rate of 6.12% from

the US Treasury Bank Bill Market for the period 1958-1989 was estimated. Finnerty

and Leistikow report an average inflation of 4.82% and an average equity volatility of

16.3% for the same period. Platen and Rebolledo [15] compute from equation (5.38)

the value to be r̄ = 0.013. They then state that this value corresponds almost exactly

with the value of the observed real short rate (without the inflation rate) of 1.3%.

This will be discussed again when we look at model testing chapter 8 later in our

dissertation.
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Chapter 6

Platen’s Model

In this chapter we discuss how Platen’s model was derived. We then test the model

on historical data from the United States and South Africa. We will first discuss the

results obtained by Platen [14].

In deriving the dynamics, Platen first assumes that the stochastic differential

equations for the market variance σ2, the inflation rate I and the market net growth

rate α are Itô processes. He also assume that the sum of the inflation rate and

the market growth remains constant, this assumption is used only in this section to

simplify the derivation of the short rate dynamics. We test the model on historical

data from the US and again SA historical data from different time intervals.

6.1 Interest rate dynamics

From the model derived in chapter 5 above, assume that the volatilities are the

same for each asset price dynamics, with µ̄jt = 1
2
σ2
t + µjt . Then equation (4.19) now

becomes

ψjt =
rt − 1

2
σ2
t − µ

j
t

σt
(6.1)
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for all t ∈ [0, T ], j ∈ {1, ..., N}. Then the quadratic form is given by

ψ2
t =

1

(σt)2
[r2
t − 2rt(

1

2
σ2
t + µjt) + (

1

2
σ2
t + µjt)

2] (6.2)

If we let µjt represents the trend of the jth asset price , defined by

µjt = ηjt + It + αt. (6.3)

Substituting equation (6.3) into (6.2) for µjt and assuming that
∑N

j=1 η
j
t = 0, then

equation (6.2) now becomes

ψ2
t =

1

σ2
t

[r2
t − 2rt(

1

2
σ2
t + It + αt) + (

1

2
σ2
t + It + αt)

2] (6.4)

for t ∈ [0, T ].

Following the same procedure as in the first section, by taking the first partial

derivative of equation (6.4) w.r.t rt, and
∂ψ2

t

∂r
= 0, then rt is the given by

rt =
σ2
t

2
+ It + αt. (6.5)

Therefore the model equation (6.5) minimizes the rate of increase of the difference

between the two probability measures mentioned in this work.

To derive the dynamics of equation (6.5), let us first assume that the stochastic

differential equations for the market variance σ2, the inflation rate I and the market

net growth rate α are given. Then the dynamics of the short rate are given by

drt =
1

2
dσ2

t + dIt + dαt, (6.6)

for t ∈ [0, T ].

To simplify the model let us also assume that the sum of the inflation rate and

the market net growth rate remains constant. This leaves us with defining only the

dynamics of the market variance (squared volatility) process σ2 = {σ2
t : 0 ≤ t ≤ T},
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then (6.6) becomes

drt =
1

2
dσ2

t (6.7)

for t ∈ [0, T ].

For the choice of the volatility dynamics, the author followed the same optimality

property he used for the short rate model. He then ends up with the stochastic

differential equation for the market variance of the form:

dσ2
t = cσ2

t (νt(τt + 1)− σ2
t p)dt− %σ3

t dW̃t (6.8)

for t ∈ [0, T ], where W̃ are the Q-Wiener process. νt is the average market variance,

with dynamics assumed to be given by

d(ln νt) = cτtdt. (6.9)

The parameter τ being the F -adapted volatility trend process, corresponding

initial values ν0 > 0, σ2
0 > 0 and τ0 which are deterministic. The constants c, p and %

are all assumed to be greater than zero. By substituting (6.8) into (6.7), that is

drt =
1

2

[
cσ2

t (νt(τt + 1)− σ2
t p)dt− %σ3

t dW̃t

]
, (6.10)

and for simplicity by setting p = 1 and σ2
t = 2(rt − It − αt) we obtain that

drt =
1

2

[
c2(rt−It−αt)(νt(τt+1)−2(rt−It−αt))dt−%

(√
2(rt − It − αt)

)3
dW̃t

]
. (6.11)

After some manipulation the stochastic differential equation for the short rate is now

given by

drt = 2c(rt − It − αt)(
1

2
νt(τt + 1) + It + αt − rt))dt−

√
2%(rt − It − αt)

3
2dW̃t (6.12)

which is written as

drt = bt[r̂t − rt]dt− stdW̃t, (6.13)

for t ∈ [0, T ].
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Note that bt = 2c(rt−It−αt), st =
√

2%(rt−It−αt)
3
2 and r̂t = 1

2
νt(τt+1)+It+αt

which is called the average interest rate. The model equation (6.12) has a mean

reverting property, where the drift term depends on the current value of the process.

Again we observe that equation (6.8), with τt = 0 and p = 1 has a mean reverting

property, with the mean variance given by νt.

6.2 Model Testing

Some of the most known short rate dynamics like, Vasiček model, Cox-Ingersoll-Ross

models, to mention a few, have a mean reverting property. So is the Platen model

(1996), given by

drt = 2c(rt − It − αt)(
1

2
νt(τt + 1) + It + αt − rt))dt−

√
2%(rt − It − αt)

3
2dW̃t. (6.14)

Platen [14] mentions that it is important that in the long run the theoretical model

correctly reflects major movements of the empirical short rate, which was his goal

with this model. He compares his model with historical data from three countries.

The countries are United States, Germany and Australia, where the values for the

inflation rate, average variance and the net market growth are taken from a study

done by Finnerty and Leistikow (1993).

6.2.1 Results by Platen

The author’s finding were as follows:

Set r̂t the average interest rate to be described by the following model

r̂t =
1

2
νt(1 + τt) + It + αt (6.15)

for t ≥ 0. Historical values are chosen for the inflation rate It, a constant average value

for α̂ for the market net growth rate, a constant average ν̂ for the average variance νt

and a given cyclical volatility trend τt, which will be studied in the average interest
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rate r̂t, equation (6.15).

The author compares the ”theoretical value” r̂t, with the historical data from the

United States, Australia and Germany. In his model equation (6.15), he states that

the equation (6.15) suggests a low volatility trend, since the if τ = 1 the average

variance contributes strongly to the average interest rate and if τ = −1, the average

variance does not contribute at all to the average short rate.

For his model he chose for the United States the market net growth α̂ = 0, which

reflects the fact that the US markets is the largest financial market in the world. From

the study done by Finnerty and Leistikow [6] the following values were taken, where

the study covers a period 1958 to 1989. For ν̂ = 0.027 and Î = 0.0482 for the 30

years average US inflation rate and the estimated average short rate was r̃ = 0.0612

in the same study. With these same values it was noted that for his model equation

(6.15) he gets a value that is close to the one given by [6], which is

r̂ =
1

2
ν̂ + Î = 0.0617 ≈ r̃ = 0.0612.

From the States again, one month’s US treasury bank bill rate is taken as the empirical

short rate, where this was compared to the theoretical model which produced a good

fit.

For the second market Platen considered the Australian data: Based on an average

market variance of ν̂ = 0.068 estimated from 25 leading stocks over the period of

1987-95, and a market net growth of α̂ = 0.03, he compares the average short rate

computed by his model equation (6.15) with empirical interest rate, represented by

the three months treasury bill bank rate from 1987 until 1995. The author chooses

the Australian inflation rate and volatility trend. There he also assume the volatility

trend to follow sinusoidal oscillations, again with a period of seven years but delayed

by six months from the corresponding US volatility trend.

Finally for Germany, the three months bank bill rate is taken as proxy for the

empirical interest rate. The average variance was estimated from 30 leading stocks

over the period 1987-1995 with a value of ν̂ = 0.0254, the market net growth rate

was set to α̂ = 0.03 and the cycle length in the volatility trend was again seven years
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but with eighteen months delay against the US market.

With these comparisons, the author indicates that the formula (6.15) represents

a reasonable model to explain the average of the empirical forward rate dynamics,

for major financial markets as his model resulted to be a good fit with the empirical

data from these three countries.

6.3 Historical Data Testing

In this section we test the model against US data for the same time period (1987-

1996) as with Platen [14], and also for (1958-1989) to see if we can obtain the same

values from the study by Finnerty and Leistikow [6]. We use the 3 months Treasury

bill instead of the 1 month Treasury bill and also test the model using historical data

from (2001-2009). We also test the model on South African historical data for the

times (1991-2009) and (2001-2009). The aim of these tests is to investigate if we can

come to the same conclusion as the author.

For both countries, we take the stock price observed at a fixed interval (daily) and

we define the following symbols, and derivations below with reference from [9]:

• n+ 1: the number of observations

• Si: Stock price at the end of the ith interval (i = 0, 1, . . . , n)

• ti − ti−1: length of time interval in years

• ui: continuously compounded return at ti for i = 0, 1, . . . n

• s: the standard deviation of the ui

• σ∗: estimated volatility

• ν: variance .

If the stock follows a geometric Brownian motion in discrete time:

Si − Si−1 = µSi−1 · [ti − ti−1] + σSi−1[Wi −Wi−1]
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then

ln[
Si − Si−1

Si−1

] = (µ− σ2

2
)ti − ti−1 + σ[Wi −Wi−1].

This means that

ln[
Si − Si−1

Si−1

] ∼ N
[
(µ− σ2

2
)(ti − ti−1), σ

√
ti − ti−1

]
(6.16)

Define the continuously compounded return between ti − ti−1 by ui. Then

Si = Si−1e
ui(ti−ti−1),

where

ui = ln(
Si
Si−1

) · 1

ti − ti−1

.

Therefore, it follows from (6.16) that

ui ∼ N
[
µ− σ2

2
,

σ√
ti − ti−1

]
. (6.17)

Let the standard deviation of ui be denoted by s, then from (6.17) we have that

s =
σ∗√

ti − ti−1

which implies that

σ∗ = s ·
√
ti − ti−1,

where ti − ti−1 is taken as the length of trading days in a year. And s is given by

s =

√√√√ 1

n− 1

n∑
i=1

u2
i −

1

n(n− 1)

( n∑
i=1

ui
)2
.
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6.3.1 US Empirical and Approximate short term rate

The following results were obtained in our test. For the US, a 3 months Treasury

bill was used as the historical short rate between the years (1958-1989),(1987-1996)

and (2001-2009). The historical inflation rate during 1987-1996 is shown in figure

6.4 and 2001-2009 in figure 6.5. The average inflation values are calculated to be

Î = 0.037, Î = 0.025 for 1987-1996 and 2001-2009 respectively. The average variance

ν̂ is calculated using the S & P 500 stock index as a constant, with values 0.019, 0.025

and 0.051 for (1958-1989),(1987-1996) and (2001-2009) respectively. We assume that

the net growth rate α̂ to be zero. As stated by Platen [14] that, this reflects the

fact that the US market is the largest financial market in the world. Figure 6.1, 6.2

and 6.3 shows the average rate r̂, as computed using equation (6.15) together with

historical US interest rate r̃. The market volatility trend τ , have been represented as

sinusoidal oscillation, with the average taken to be zero.
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Figure 6.1: US empirical and Platen’s model interest rate, 1958− 1989.
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Figure 6.2: US empirical and Platen’s model interest rate, 1987− 1996.

Table 6.1 below shows different estimated and calculated values of the short rate

for each time period.
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Figure 6.3: US empirical and Platen’s model interest rate, 2001− 2009.

Time Period Î ν̂ α̂ τ̂ r̂ r̃
1958-1989 0.0480 0.0194 0 0 0.0577 0.0613
1987-1996 0.0368 0.0255 0 0 0.0496 0.0547
2001-2009 0.0248 0.0506 0 0 0.0528 0.0235

Table 6.1: Summary of US empirical and Platen’s model for the short rate

We compare the values that we obtained with those of the authors. We observe that

the values of the average variance from our test and that from the study by Finnerty

and Leistikow during 1958-1989 are not the same. We obtained ν̂ = 0.0194, while

that form [6] is ν̂ = 0.027. It should be noted that, for both studies the historical

S & P 500 was used for that period. The average inflation values are almost equal,

with values of Î = 0.0480 and Î = 0.0482. In our test we use the historical 3 months

Treasury Bill as an empirical short rate, and [6] used a historical 1 month Treasury

Bill. The empirical average values from both studies, were surprisingly the same. We

obtained a r̃ = 0.0613, while that [6] obtained r̃ = 0.0612. However, because of the

different values we obtained of the average variance, when substituting in equation

(6.15) to estimate r̂, the values from our test and that from [14] are different. Platen
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Figure 6.4: US inflation rate, 1987− 1996.

obtained an estimate r̂ = 0.0617, and in our study, we obtained r̂ = 0.0577. Table 6.1

shows our calculated values using equation (6.15). The graphs of figure 6.1 and 6.2,

shows that Platen’s model is a good fit to the average empirical short rate. While

the graph of figure 6.3 shows the model is not a good representation for the average

empirical short rate, this is during the 2001-2009.
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Figure 6.5: US inflation rate, 2001− 2009.

6.3.2 SA Empirical and Platen’s model short term rate

In this section, we test the model equation (6.15) on South African historical data.

We test the model on a longer period (1991-2009), then on subperiods (1991-2000)

and (2001-2009). A 91 days Treasury bill was used as an empirical short rate. Figure

6.6 and 6.8 shows the South African inflation rate with the average values of Î =

0.0.0974 and Î = 0.0623. The average variance from the JSE Alshare Index for the

period (1991-2000) and (2001-2009) was calculated to be ν̂ = 0.0274 and ν̂ = 0.0469,

respectively. Market net growth with a values of α̂ = 0.03 and 0.0021 for 1991-2000

and 2001-2009 respectively. Figure 6.7 and 6.9, shows the empirical short rate and

the model using the equation (6.15). The market volatility trend was calculated to

represent a sinusoidal oscillations, this is to reflect the impact of the business cycle on

the market, with average set to be zero. Using these values in the model the following

was obtained: r̂ = 0.1411 for (1991-2000) and r̂ = 0.0879 for (2001-2009). Comparing

these values with the estimated average historical short rate, we obtain r̃ = 0.01328

for (1991-2000) and r̃ = 0.0901 for (2001-2009). See table 6.2 for reference. The
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Time Period Î ν̂ α̂ τ̂ r̂ r̃
1991-2009 0.0730 0.0370 0.01 0 0.1015 0.1114
1991-2000 0.0974 0.0274 0.03 0 0.1411 0.1328
2001-2009 0.0623 0.0496 0.0021 0 0.0879 0.0901

Table 6.2: Summary of SA empirical and Platen’s model for the short rate

graphs of the short rate for the empirical and the model, figure 6.7 and 6.9, shows

that equation (6.15) seems to be a good fit to the empirical short rate. The test we

did for the longer interval period, that is 1991-2009, was to see if there would be any

effect in longer time span compared to a shorter time span. With our findings, there

seems to be no difference in the values we obtain, see table 6.2.
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Figure 6.6: SA inflation rate, 1991− 2000.
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Figure 6.7: SA empirical and Platen’s model interest rate, 1991− 2000.
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Figure 6.8: SA inflation rate, 2001− 2009.
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Figure 6.9: SA empirical and Platen’s model interest rate, 2001− 2009.
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Chapter 7

Differences between the Vasiček

and the Platen Model

Bond prices, under the martingale measure are generated by equation

p(t, T ) = EQ
[ ∫ T

t

r(s)ds|Ft
]
, (7.1)

from [3]. Björk [1] states that, it is possible to derive the above equations for models

that describe the short rate using a linear SDE, this includes the Vasiček, Ho-Lee and

Hull-White models.

The Vasiček model is given by the following dynamics:

drt = (b− art)dt+ σdW̃t, (7.2)

for a&b being positive constants. Such equations, are said to be linear SDE’s by

Björk [1], he continues to state that such r-processes can be shown to be normally

distributed, where the normal property is inherited by the integral
∫ T
t
r(s)ds.

In this chapter, we use the Euler approximation with different value parameters,

to see if the r in Platen’s model is normally distributed or not. We also compare

Platen’s model to Vasiček, the comparison is not to determine which is the best

model, but to see if there are any similarities or how different is the Platen model to
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the already existing models.

From equation (6.12), the dynamics of the Platen model are given by

drt = 2c(rt − It − αt)(
1

2
νt(τt + 1) + It + αt − rt))dt−

√
2%(rt − It − αt)

3
2dW̃t. (7.3)

Rewriting Platen’s model in a simple form, we have:

drt = bt[r̄t − rt]dt− stdW̃t. (7.4)

The parameters of the model are time dependent whiles those of Vasiček are constant.

The similarities are that both models have the mean reverting property, while the

difference is that, the Vasiček model was assumed to be Gaussian and that of Platen,

was derived by means of an optimality property.

The dynamics of the Vasiček model are Gaussian, where the disadvantage for such

models is that rt can be negative for t > 0. Negative interest rate might bring rise to

arbitrage opportunities.

Using the Euler approximation and different values for parameters we investigate

the distribution of Platen’s model.

From equation (7.3), if we let It + αt = Mt and for simplicity, c = % = 1 and

average of the volatility trend τ = 0. Then the Euler’s approximation for equation

(6.13) is

Rt+h = Rt + 2(Rt −Mt)(
1

2
νt +Mt −Rt)∆t−

√
2(Rt −Mt)3(Wt+h −Wt), (7.5)

where (Wt+h −Wt) ∼ N(0, 1). We test different values of Mt where Mt is set to be

constant and νt being a sine function. We test the model for the following values:

M = r0, M > r0 and also for M < r0. For M = r0 we found the value of the Rt+h to

be constant with values lying between −0.5 and 0.5. Platen’s model is always positive

and this can also be observed by looking at the diffusion property in equation (7.3),

where it is not possible to take the square root of any negative number in the real

number system.
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Figure 7.1: Euler’s approximation of the short rate for M > R.

From figures (7.1) and (7.2) we can conclude that, the Platen’s model is not a

Gaussian distribution. The figures shows a tail to the right. Hence, it might be a

heavy task, if not impossible, do derive the equation of the bond prices for this model.

The following sketches below figure (7.3) and (7.4)shows the distributions of SA

and US empirical data respectively, none of which is closer to be a Gaussian distri-

bution.
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Figure 7.2: Euler’s approximation of the short rate for M < R.

Figure 7.3: SA short rate empirical data.
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Figure 7.4: US short rate empirical data.
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Chapter 8

Conclusion

The aim of this work was to present the completely different approach and possibly

more realistic short rate model introduced by Platen and Rebolledo [15], and Platen

[14]. This model links the short rate with other major economic factors such as

inflation, market variance, market net growth etc. We also investigated the relation

that this model might have with already well known models. We studied the tests

done by Platen [14]. And we did our own test to investigate if we could obtain the

same results as the author.

As already mentioned, Platen and Rebolledo [15] suggested a different approach of

deriving the short rate dynamics. Their approach was to use an optimality property

involving relative entropy to derive the dynamics of the short rate. This was done by

applying three principles to a simple financial market model.

The first principle considered in their work, was that of market clearing, where

demand and supply was modelled to derive the dynamics of the log-price process of

a contingent claim. These dynamics were in turn used to derive the dynamics of the

price process of a contingent claim on an underlying asset.

By using the second principle exclusion of arbitrage opportunities, we formulated

the market price of risk for which it specifies a Radon-Nikodym derivative of the

martingale measure w.r.t the ‘real world’ measure. This ensures the existence of a

martingale measure.
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Time Period r̂ r̃ difference
1958-1989 0.0577 0.0613 0.0036
1987-1996 0.0496 0.0547 0.0051
2001-2009 0.0528 0.0235 0.0293

Table 8.1: Difference of the US empirical and Platen’s model for the short rate

Time Period r̂ r̃ difference
1991-2009 0.1015 0.1114 0.0099
1991-2000 0.1411 0.1328 0.0083
2001-2009 0.0879 0.0901 0.0022

Table 8.2: Difference of the SA empirical and Platen’s model for the short rate

We use the third principle, Minimizing the increase of arbitrage information, to

minimize the market price of risk, where we try to find a martingale measure that is

closest to the ‘real world’ measure. This process then fixes the short rate rt.

The above procedure resulted in an equation for rt, which was used to derive the

dynamics of the short rate drt. The derived SDE for rt has a mean reverting property.

The mean is used in this case to test against historical data, since the value of the

short rate will always fluctuate towards the mean, in a mean reverting model. Platen

found [14] his model to be a good fit for the US, Germany and Australian historical

data. It should be noted that his conclusion was not from a statistical analysis, but

from a mere observations of the graphs maintaining the same movements for same

time period. It should also be noted that, for the calculation with the average values

in equation (6.15), Platen used values from a study over 30 years time interval period

by Finnerty and Leistikow. In our own investigations using the US and SA historical

data, we observed that the model is a good fit for 1958-1989 and 1987-1996 and not

for the years 2001-2009 for the US. The test on the SA data showed a good fit for

both interval periods.

Tables 8.1 and 8.2 show the difference obtained between the average empirical short

rate and the average short rate of the model. Platen’s values had a difference of 0.0005

between his model and the empirical short rate for the US, where he concluded that

the model is a good fit. Looking at the values in the above tables 8.1 and 8.2, we can

also conclude that these values seem to indicate that the model is a good fit to the
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historical short rate.

Platen’s model has a mean reverting property like the Vasiček model, however

unlike the Vasiček model it is not Gaussian. We could not conclude at this stage if it

is possible to derive an equation for bond prices using this model. Further research

using this approach, might result in obtaining a model that will have a link with other

major economic factors, for financial situations which might be relevant to describe

the economic down turn like the one in 2008.
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