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Abstract

The classical SIR and SIS epidemiological models are extended by considering the num-

ber of adequate contacts per infective in unit time as a function of the total population in

such a way that this number grows less rapidly as the total population increases. A diffu-

sion term is added to the SIS model and this leads to a reaction–diffusion equation, which

governs the spatial spread of the disease. With the parameter R0 representing the basic

reproduction number, it is shown that R0 = 1 is a forward bifurcation for the SIR and SIS

models, with the disease–free equilibrium being globally asymptotic stable when R0 is less

than 1. In the case when R0 is greater than 1, for both models, the endemic equilibrium

is locally asymptotically stable and traveling wave solutions are found for the SIS diffusion

model. Nonstandard finite difference (NSFD) schemes that replicate the dynamics of the

continuous SIR and SIS models are presented. In particular, for the SIS model, a nonstan-

dard version of the Runge-Kutta method having high order of convergence is investigated.

Numerical experiments that support the theory are provided.

On the other hand the SIS model is extended to a Volterra integral equation, for which

the existence of multiple endemic equilibria is proved. This fact is confirmed by numerical

simulations.
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Chapter 1

Introduction

The application of mathematics to the understanding of infectious disease was initiated

by D. Bernoulli (1760) who was interested in evaluating the effectiveness of techniques

of “variolation” against smallpox, with the aim of influencing public health policy. Apart

from Malthus law, i.e. the exponential growth in population, that was formulated in 1798,

the other two main principles in epidemiology were published far later namely, early in the

nineties. These are: the mass action principle (W.H.Hamer (1906) and R. Ross (1908))

and the threshold theory (see [33]). Since then, many researchers have been interested

in mathematical epidemiology. In the process, compartmental models whereby the host

population of parasites is divided into the following classes have been occupying an im-

portant place: M (Infants with passive immunity), S (Susceptible individuals), E (Exposed

individuals), I (Infected individuals) and R (Recovered individuals). Based on the flow pat-

terns between compartments, several models have been developed with acronyms such as

MSEIR, MSEIRS, SEIR, SEIRS, SIR, SIS, etc. (See [28]).

The primary objective of this dissertation is to provide a comprehensive analysis of some

of the key issues in the modeling of infectious diseases. The simpler the model is, the more

explicit and precise are the results. That is why, we focus on the SIR and SIS Kermack–

McKendrick models, which are among the simplest ones. However, these simple models

will be investigated under the following extended settings:

(A1) In the SIR and SIS models the number of adequate contacts per infective in unit time

is assumed to be a function of the total population in such a way that this number

grows less rapidly as the total population increases (see comments at the beginning
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of Section 3.2.1 and Section 3.4.1 for the biological relevance of this assumption);

(A2) A diffusion term is added to the SIS model and this leads to a reaction–diffusion

equation, which governs the spatial spread of the disease;

(A3) The SIS model is formulated as a Volterra integral equation (of the second kind) or

integro–differential equation.

Under these specific settings, our first set of contributions is from the theoretical point of

view and can be outlined as follows:

(B1) We establish the well–posedness of each of the models mentioned in (A1), (A2) and

(A3) in such a way that the obtained unique solution is biologically meaningful; this

includes the boundedness and positivity properties of solutions.

(B2) We give precise stability properties of the equilibria of the systems, including the

global asymptotic stability of the disease–free equilibrium. Furthermore, the value 1

of the basic reproduction number R0 is shown to be a forward bifurcation for the

SIR and SIS models in (A1), whereas the possibility of backward bifurcation or co–

existence of stable disease–free equilibrium with at lease one stable multiple endemic

equilibrium is alluded for the Volterra integral equation formulation.

It should be noted that the continuous model under consideration cannot be completely

solved by analytical techniques. Thus, numerical schemes and simulations are of fundamen-

tal importance in gaining some useful insights on the solutions of the continuous models.

Consequently, the additional, but not the least, objective of this dissertation is to provide

reliable numerical schemes. Our second set of contributions is from the constructive point

of view and can be outlined as follows:

(C1) We design nonstandard finite difference (NSFD) schemes which replicate the quali-

tative properties of the continuous models stated in (B) above.

(C2) We propose the nonstandard version of the Runge–Kutta method, which is proved

theoretically and computationally to be of order 4.

In order to achieve the theoretical contributions in (B) above, we used the following math-

ematical tools:
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The Banach fixed–point theorem or contraction principle [60] is the main ingredient for

the proof of the existence and uniqueness of solutions of each model. This was coupled

with techniques such as the integrating factor and the comparison theorem [54] to show

the positivity of the solutions. For the SIR and SIS models, Hartman–Grobman Theorem

[55] helped to establish the local stability properties, while LaSalle Invariance Principle

[35] led to the global asymptotic stability of the disease–free equilibrium. In both cases,

a threshold condition defined through the basic reproduction number R0 is involved. For

the SIS diffusion model, the stability property resulted from the spectral theory of the

Sturm–Liouville problem corresponding to its linearization.

Regarding our constructive contributions, the main strategies are the following two of

Mickens’ rules [48], as singled out in [2]:

• The standard denominator of the discrete derivative is replaced by a more complex

function.

• Nonlinear terms must be approximated in a nonlocal way.

Given the importance of the NSFD schemes in this dissertation, we elaborate here a bit

more on the two rules. To this end, we consider the SIS– diffusion model in its dimensionless

form, i.e.,

It = (1− I)I + Ixx, (1.0.1)

which is the Fisher equation. For the model (1.0.1), we propose the NSFD scheme

Ik+1
m − Ikm
e∆t − 1

= (1− Ik+1
m )

Ikm+1 + Ikm + Ikm−1

3
+
Ikm+1 − 2Ikm + Ikm−1

4 sin2 ∆x
2

, (1.0.2)

where Ikm represents an approximation of I(x, t) at x = m∆x with m ∈ Z and

t = k∆t with k ∈ N, ∆x > 0 and ∆t > 0 being the space and time step sizes,

respectively. Unlike the standard finite difference method

Ik+1
m − Ikm

∆t
= (1− Ikm)Ikm +

Ikm+1 − 2Ikm + Ikm−1

(∆x)2
,

the NSFD scheme (1.0.2), which is characterized by the mentioned Mickens’ rules, replicates

essential properties of the continuous model (1.0.1) such as positivity and boundedness of

solutions.
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Although the SIR and SIS models are simple, the results on the qualitative analysis

summarized under (B) above extend to most compartmental models and have been studied

extensively [6, 7, 8, 14, 17, 18]. However, the design and analysis of reliable numerical meth-

ods such as the NSFD schemes considered here have not yet been sufficiently investigated.

Existing works on NSFD schemes in epidemiology include [3, 4, 21, 24]. Further discussions

and comments as to how our findings fit in the literature will be done within the relevant

chapters and/or sections of the dissertation. Some results of the dissertation are published

in [41]. Some other results are presented at the last two annual congresses of the South

Africa Mathematical Society [39, 40].

The rest of the dissertation is organized as follows: Chapter 2 deals with the review of

selected basic concepts on dynamical systems defined by ordinary differential and difference

equations. These revisions are helpful in the analysis of the SIR and SIS models. The

discrete dynamical systems on which we place the emphasis are NSFD schemes. The

general rules for their construction are presented in this chapter. Although the chapter

deals with preliminaries, we conclude it by proposing a new numerical method of high

order, i.e. the nonstandard Runge–Kutta method of order 4.

Chapter 3 is devoted to SIR and SIS models with a general contact rate. It is shown

that these models are continuous dynamical systems on a biologically feasible region of

the positive cone. It is further shown that the disease–free equilibrium E0 is globally

asymptotically stable whenever the basic reproduction number R0 is less than 1, while this

equilibrium becomes unstable and a unique locally asymptotically stable endemic equilibrium

E∞ is born when R0 > 1. On the constructive side, NSFD schemes that replicate all these

properties of the continuous models are designed and analyzed. From the discussion on

commonly used contact rates, we single out the standard incidence formulation in order

to provide more illustrative results. Of particular importance is the application to the SIS

model of our new NSFD Runge–Kutta method which shows excellent performance.

In Chapter 4, the SIS model is extended to a reaction–diffusion (partial differential)

equation that governs the spatial spread of an epidemic. The existence of a unique and

biologically meaningful solution is proved by using the Banach fixed point theorem. Neces-

sary and sufficient conditions for the existence of traveling wave solution are investigated.

Once again, the chapter ends with the design and analysis of various NSFD schemes that

4

 
 
 



preserve qualitative properties of the continuous model such as positivity and boundedness

of solutions, conservation law and stability of equilibria.

Chapter 5 is an introduction to the extension of the SIS model to Volterra integral equa-

tions. The existence of a unique solution being established by the Banach fixed theorem,

the main focus of this chapter is on showing the possible existence of multiple endemic

equilibrium points when the basic reproduction number is less than 1. This is illustrated

numerically as the backward bifurcation phenomenon.

In the last chapter, we gather concluding remarks on our findings and on possible future

research directions.
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Chapter 2

Dynamical Systems

2.1 Introduction

The mathematical models investigated in this dissertation are all in the framework of dynam-

ical systems defined either by ordinary differential equations, difference equations, partial

differential equations or integral equations. In this chapter, we collect the main tools we

need for the quantitative and qualitative analysis of continuous (ODE) dynamical systems

(Section 2.2) and discrete dynamical systems (Section 2.3). Although, this chapter is

concerned with generalities on dynamical systems, the last part of Section 2.3 includes a

contribution to higher order nonstandard finite difference schemes.

2.2 Continuous Dynamical Systems

Throughout this section, dynamical systems defined by ordinary differential equations are

considered. Our standard reference for such dynamical systems is [55]. We can also mention

the thesis [32], where some of the material is presented according to our needs.

2.2.1 Generalities

Consider the following initial–value problem for an autonomous first–order system of dif-

ferential equations in the time independent variable t ∈ [0,∞) and dependent variable
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x ∈ Rm:

ẋ ≡ dx

dt
= f(x), x(0) = x0. (2.2.1)

Here f : Rm → Rm and x0 ∈ Rm are the given data.

Definition 2.2.1. The ordinary differential equation in (2.2.1) is said to define a dynamical

system on a subset Ω ⊆ Rm if for any x0 ∈ Ω there exists a continuous differentiable

function x(t) on (0,∞) that is continuous on [0,∞) and is the unique solution of the

initial value problem (2.2.1) such that x(t) ∈ Ω for all t ∈ [0,∞).

In order to advance conveniently the solution through time t, we introduce the following

concept:

Definition 2.2.2. For a dynamical system on Ω, we define its evolution semigroup operator

or solution operator to be the map Φ(t) : Ω → Ω such that x(t) = Φ(t)x0.

The terminology “semigroup” for the evolution operator Φ is motivated by the following

properties:

1. For any s, t > 0, Φ(t+ s) = Φ(t)Φ(s) = Φ(s)Φ(t),

2. For t = 0, Φ(0) = I, the identity operator.

With Definition 2.2.2 in mind, we introduce for x0 ∈ Ω, the set

Γ+ = {Φ(t)x0 : t ∈ (0,∞)} ⊂ Ω

which is called the (positive or forward) orbit of x0. The terminology trajectory is also used

for orbits.

The existence of dynamical systems is often based on some structural assumptions on

the function f . The widely used assumption is contained in the next definition.

Definition 2.2.3. The function f : Rm → Rm is said to be Lipschitz on Ω ⊂ Rm with

Lipschitz constant L ≥ 0 if

‖f(x)− f(y)‖ ≤ L‖x− y‖

for all x, y ∈ Ω. Here ‖ · ‖ denotes the Euclidean norm in Rm. If f is Lipschitz on Rm,

then f is said to be globally Lipschitz. If f is Lipschitz on every bounded subset Ω of Rm,

then f is said to be locally Lipschitz.
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The following existence and uniqueness result is well-known:

Theorem 2.2.4. Let f : Rm → Rm be globally Lipschitz. Then (2.2.1) defines a dynamical

system on Rm.

In the more realistic case, when f is locally Lipschitz, a global existence result can be

obtained under some a priori estimate as stated in the following classical result.

Theorem 2.2.5. Let f : Rm → Rm be Lipschitz on an ε−neighborhood Ωε of a bounded

set Ω ⊆ Rm. If for any x0 ∈ Ω, the solution x(t) of (2.2.1) satisfies x(t) ∈ Ω for each time

t ≥ 0 where the solution exists, then (2.2.1) defines a dynamical system on Ω.

In many instances of the analysis of dynamical systems, we will use the Gronwall in-

equality that reads as follows:

Lemma 2.2.6. (Gronwall inequality)

Let x(t) be a real valued function on [0,∞) such that

x′(t) ≤ ax(t) + b, x(0) = x0

for a and b constant. Then for t ≥ 0,

x(t) ≤ x0e
at +

b

a
(eat − 1), a 6= 0

and

x(t) ≤ x0 + bt, a = 0.

2.2.2 Qualitative Properties

In this subsection, we are interested in the trajectories or orbits initiated at x0 in any set

Ω ⊂ Rm and the action of the evolution semigroup operator Φ(t) on Ω.

Definition 2.2.7. For a dynamical system defined by (2.2.1), a set Ω is said to be

1. positively invariant (under Φ(.)) if Φ(t)Ω ⊆ Ω for all t ≥ 0,

2. negatively invariant (under Φ(.)) if Φ(t)Ω ⊇ Ω for all t ≥ 0,

3. invariant (under Φ(.)) if it is both positively and negatively invariant, i.e Φ(t)U = U

for all t ≥ 0.
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Special trajectories play an important role in the qualitative analysis of dynamical sys-

tems. The simplest of such trajectories are equilibrium points (or solutions): they do not

change with time and turn out to be also the simplest invariant sets.

Definition 2.2.8. A point x̄ ∈ Rm is called an equilibrium point of the dynamical system

defined by (2.2.1) if f(x̄) = 0.

Remark 2.2.9. It is clear that x̄ ∈ Rm is an equilibrium point of (2.2.1) if and only if x̄ is

a fixed point of the evolution semigroup operator, that is, Φ(t)x̄ = x̄. This fact explains

why an equilibrium point is also called a fixed point of the dynamical system. Other terms

often substituted for equilibrium point are critical point, steady state or rest point.

Given the simplicity of equilibrium points as invariant sets of the dynamical system, it

is natural to wonder how other orbits behave compared to them. This is given in the next

definition.

Definition 2.2.10. Let x̄ ∈ Rm be an equilibrium point of a dynamical system on Ω

defined by (2.2.1). Then x̄ is said to be:

1. stable if for any ε > 0, there exists δ = δ(ε) > 0 such that if ‖x0 − x̄‖ < δ then

‖x(t)− x̄‖ < ε for all t ≥ 0,

2. locally attractive, if ‖x(t)− x̄‖ → 0 as t→∞ for all ‖x0 − x̄‖ sufficiently small,

3. locally asymptotically stable if x̄ is stable and locally attractive. For an asymptotically

stable equilibrium point x̄ of (2.2.1), the set of all initial data x0 such that

lim
t→∞

Φ(t)x0 = x̄

is said to be the basin of attraction of x̄,

4. globally attractive if (2) holds for any x0 ∈ Ω i.e. the basin of attraction of x̄ is Ω,

5. globally asymptotically stable if (1) and (4) hold,

6. unstable if (1) fails to hold.

The intuitive meaning of the above definition is given in the next remark.
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Remark 2.2.11. An equilibrium point x̄ is said to be stable if all nearby solutions stay

nearby. It is asymptotically stable if all nearby solutions not only stay nearby, but also tend

to x̄ or are attracted by x̄ as t goes to infinity. On the other hand, if there exist some

solutions starting near x̄ that move away from it for future time t, then x̄ is unstable.

It is not easy to apply Definition 2.2.10 to check stability and asymptotic stability of an

equilibrium solution. The simplest natural way to proceed would have been to replace the

system (2.2.1) by its linearized system

u′ = Ju (2.2.2)

near x̄, where J ≡ Jf(x̄) is the Jacobian of the function f at x̄. It is of course assumed

that f : Rm → Rm is of class C1.

Definition 2.2.12. If the matrix J has no eigenvalues with zero real part, then x̄ is called

a hyperbolic equilibrium point; otherwise the equilibrium point is called non–hyperbolic.

The behavior of dynamical systems in the neighborhood of a hyperbolic equilibrium

point can be investigated by using the linearization process (2.2.2) as specified in the next

theorem.

Theorem 2.2.13. (Hartman–Grobman Theorem)

Assume that f : Rm → Rm is of class C1 and consider a hyperbolic equilibrium point

x̄ of the dynamical system defined by (2.2.1). Then, there exist δ > 0, a neighborhood

N ⊂ Rm of the origin and a homeomorphism h from the ball B = {x ∈ Rn : ‖x− x̄‖ < δ}

onto N such that (see Fig. 2.1)

u(t) := h(x(t)) solves (2.2.2) if and only if x(t) solves (2.2.1).

Theorem 2.2.13 states that the behavior as t→∞ of solution x(t) of (2.2.1) near an

equilibrium point x̄ is the same as the behavior of solution u(t) of its linearization (2.2.2)

near the origin. This observation leads us to the following result.

Theorem 2.2.14. Assume that f : Rm → Rm is of class C1 and that x̄ ∈ Rm is a hyper-

bolic equilibrium point of the dynamical system defined by (2.2.1). Then x̄ is asymptotically

10

 
 
 



Figure 2.1: Hartman–Grobman Theorem

stable if and only if for the solution u(t) = etJu0 of (2.2.2) with ‖u0‖ = ‖x0 − x̄‖ small

enough, we have

lim
t→∞

u(t) = 0. (2.2.3)

This is equivalent to

Reλ < 0, ∀λ ∈ σ(J), (2.2.4)

where σ(J) is the set of all eigenvalues of the matrix J . The equilibrium point is unstable

if and only if there exists at least one λ ∈ σ(J) such that

Reλ > 0, or lim
t→∞

u(t) = ∞. (2.2.5)

Remark 2.2.15. In applications, specifically for epidemiological models, the conditions

(2.2.4) and (2.2.5) are expressed in terms of the so–called basic reproduction number R0

by the fact that R0 < 1 or R0 > 1, respectively. We will be more explicit on the definition,

computation and use of R0 later.

Remark 2.2.16. For a non–hyperbolic equilibrium point x̄, Theorem 2.2.13 fails to hold.

Moreover, Theorem 2.2.13 motivates the terminology “linear stability” and “linear insta-

bility” that we will sometimes use in place of asymptotic stability and instability for a

hyperbolic equilibrium point.

Theorem 2.2.14 suggests that the real parts of the eigenvalues of the Jacobian matrix

J play an important role in classifying equilibrium points. This is confirmed in the next

definition.
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Definition 2.2.17. An equilibrium point x̄ ∈ Ω of the dynamical system defined by (2.2.1)

is

1. a saddle point if some, but not all, of the eigenvalues of the associated Jacobian

matrix at x̄ have positive real parts and the remaining eigenvalues have negative real

parts,

2. a sink or a stable node, if all eigenvalues have negative real parts,

3. a source or an unstable node, if all of the eigenvalues have positive real parts,

4. a center, if the eigenvalues are purely imaginary and nonzero numbers.

In order to include all possible situations with regard to the signs of the real part of

the eigenvalues of the matrix J , we assume that J has k eigenvalues with negative real

parts and m−k eigenvalues with positive real parts. It is well-known that the (generalized)

eigenvectors associated with the k eigenvalues with negative real parts determine a stable

subspace denoted by Es ⊂ Rm, while the m− k remaining eigenvalues lead to an unstable

subspace Eu ⊂ Rm. With these notations in mind, Theorem 2.2.14 is extended to the

so–called stable–unstable manifold theorem. To have a clear vision of this theorem, let us

recall the following definition:

Definition 2.2.18. Suppose that x̄ is an equilibrium point of a dynamical system Ω ⊆ Rm

defined by (2.2.1). Then:

1. the set W s(x̄) = {x0 ∈ Rm : Φ(t)x0 → x̄ as t→∞} is called the stable manifold

of x̄.

2. the set W s
ε (x̄) = {x0 ∈ W s(x̄) : ‖Φ(t)x0 − x̄‖ ≤ ε ∀ t ≥ 0 } is called ε–local

stable manifold of x̄.

3. the set W u(x̄) = {x0 ∈ Rm : Φ(t)x0 → x̄ as t → −∞} is called the unstable

manifold of x̄.

4. the set W u
ε (x̄) = {x0 ∈ W u(x̄) : ‖Φ(t)x0 − x̄‖ ≤ ε ∀ t ≤ 0 } is called ε–local

unstable manifold of x̄.
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Remark 2.2.19. The terminology “stable” for the set W s(x̄) is to be understood in the

sense of a uniformly stable set defined in [55]. Indeed it is easy to check that the set W s(x̄)

is closed and invariant. Thus, for x0 ∈ Rm and z0 ∈ W s(x̄), we have

inf
y0∈W s(x̄)

‖Φ(t)x0 − y0‖ ≤ inf
y0∈W s(x̄)

‖Φ(t)x0 − Φ(t)y0‖

≤ ‖Φ(t)x0 − Φ(t)z0‖.

By uniform continuity of Φ(t), we know that for each ε > 0, ∃ δ > 0 such that

‖x0 − z0‖ < δ ⇒ ‖Φ(t)x0 − Φ(t)z0‖ < ε.

Now if

inf
y0∈W s(x̄)

‖x0 − y0‖ <
δ

2
,

then we have

inf
y0∈W s(x̄)

‖Φ(t)x0 − y0‖ < ε.

The announced stable–unstable manifold theorem is stated in the following form.

Theorem 2.2.20. (The stable–unstable manifold theorem)

Let x̄ ∈ Rm be an equilibrium point of a dynamical system on Ω defined by (2.2.1).

Then there exists a k-dimensional differentiable manifold W s which is positively invariant

and is tangent to the stable subspace Es at the equilibrium point x̄. Furthermore, there

exists an m−k dimensional unstable manifold W u which is negatively invariant and tangent

to the unstable subspace Eu at x̄.

As mentioned in Remark 2.2.16, the linearization approach we used so far works when

the equilibrium point is hyperbolic. Otherwise, we can use the Lyapunov direct method

which we outline below.

Definition 2.2.21. Assume that Equation (2.2.1) defines a dynamical system on an open

subset Ω ⊂ Rm and x̄ ∈ Ω is an equilibrium point. A function V ∈ C1(Ω,R) is called a

Lyapunov function of the system (2.2.1) for x̄ on a neighborhood B ⊂ Ω of x̄ provided

that

V̇ (x) := lim
h→0

V (x+ hf(x))− V (x)

h
= ∇V (x).f(x) ≤ 0, ∀x ∈ B, (2.2.6)
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where V̇ (x) is the directional derivative of V in the direction of f . If in addition, V (x̄) = 0

and V (x) > 0 for all x ∈ B\{x̄}, then V is said to be a positive definite Lyapunov function

at x̄.

When there is no risk of confusion about the equilibrium point x̄ and its neighborhood

B, we will simply use the expression Lyapunov function V for B.

If x = x(t) is a solution of Equation (2.2.1), then by the chain rule, from Equation

(2.2.6), we get

d

dt
V (x(t)) = V̇ (x(t)), (2.2.7)

which motivates the fact that V̇ is often called the derivative of V along trajectories. It

is also because of the relation (2.2.7) that one can expect to have information about the

behavior of V along trajectories without prior knowledge of the solutions. The Lyapunov

method is exploited to check the stability/instability of an equilibrium solution as we specify

below.

Theorem 2.2.22. Let V be a positive definite Lyapunov function of the dynamical system

(2.2.1) on a neighborhood B of an equilibrium point x̄. Then x̄ is stable. If, in addition,

V̇ (x) < 0 ∀ x ∈ B\{x̄}, then x̄ is asymptotically stable; while x̄ is unstable if V̇ (x) >

0, ∀ x ∈ B\{x̄}.

The asymptotic stability of an equilibrium point stated in Theorem 2.2.22, constitutes

the simplest final state of a dynamical system. Other types of final states are specified in

the next definition.

Definition 2.2.23. Let (2.2.1) define a dynamical system on Ω. For x0 ∈ Ω the set of all

points z ∈ Rm such that

lim
n→∞

Φ(tn)x0 = z

for some sequence 0 < tn → ∞ is called the ω− limit set of x0. This set is denoted by

ω(x0):

ω(x0) = {z ∈ Rm : ∃ tn > 0 such that Φ(tn)x0 → z as n→∞}.

Similarly, the α− limit set of x0 denoted by α(x0) is given by

α(x0) = {z ∈ Rm : ∃ tn < 0 such that Φ(tn)x0 → z for n→∞}.
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The critical issue with the Lyapunov function is that it is not easy to construct. However,

when it is available, it has the advantage of easily leading to some global properties of an

equilibrium point, particularly in the case of dissipative systems defined below.

Definition 2.2.24. A dynamical system Ω ⊂ Rm is said to be dissipative if there exists a

bounded, positively invariant set U with the property that for any bounded set B ⊆ Rm,

there exists a time t∗ = t∗(U,B) ≥ 0 such that Φ(t)B ⊆ U for all t > t∗. The set U is

called an absorbing set.

The said global stability result is the LaSalle invariance principle that reads as follows:

Theorem 2.2.25. [35] (LaSalle Theorem)

Let x̄ be an equilibrium point of a dissipative dynamical system on Ω defined by (2.2.1).

Let V be a positive definite Lyapunov function for x̄ on the set Ω. Furthermore, let

E = {x ∈ Ω̄ : V̇ (x) = 0}. If M is the largest invariant set of E such that M⊂ Ω, then x̄

is globally asymptotically stable on Ω if and only if it is globally asymptotically stable for

the system restricted to M.

Two–dimensional dynamical systems enjoy some interesting properties. Two of such

properties that we will use are stated in the next two theorems.

Theorem 2.2.26. [59](Bendixson’s Criterion)

Consider a dynamical system on R2 defined by

ẋ = f(x, y); ẏ = g(x, y).

If on a simply connected region D ⊂ R2, the divergence

∂f

∂x
+
∂g

∂y

is not identically zero and does not change sign, then this dynamical system has no closed

orbits lying entirely in D.

Theorem 2.2.27. [59] (Poincaré−Bendixson)

Consider a dynamical system in R2 and let M be a positively invariant compact region

on R2 containing a finite number of equilibrium points. Let p ∈ M and consider ω(p).

Then one of the following possibilities holds:
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1. The set ω(p) is an equilibrium point;

2. The set ω(p) is a closed orbit;

3. The set ω(p) consists of equilibrium points p1, p2, ... , pn and orbit γ with α(γ) = pi

and ω(γ) = pj, for i 6= j and i, j = 1, 2, 3, ..., n. In the particular case when there

are only two equilibria p1 and p2 in ω(p), there exists at most one orbit γ ⊂ ω(p)

such that α(γ) = p1 and ω(γ) = p2.

Bifurcation of equilibria is the last qualitative property of dynamical systems that we

outline now.

Consider a dynamical system (2.2.1) that depends on a parameter µ:

ẋ = f(x, µ), x ∈ Rm, µ ∈ R. (2.2.8)

Here the function f is as smooth as needed so that Taylor expansions can be considered.

The equilibria of (2.2.8) are all vectors (x̄, µ0) ∈ Rm × R such that

f(x̄, µ0) = 0. (2.2.9)

Intuitively, Fred–Brauer and Castillo–Chavez [7] define a bifurcation as a point in the pa-

rameter space where equilibria appear, disappear, or change stability.

The general definition of a bifurcation point is given below.

Definition 2.2.28. [60] An equilibrium point (x̄, µ0) for (2.2.8) or simply the point µ0

is called a bifurcation point for (2.2.8) if for each k ∈ N there exist two distinct solu-

tions (xk, µk) and (yk, µk) to Equation (2.2.9) such that the corresponding sequences both

converge to (x̄, µ0).

Definition 2.2.28 does not reflecting directly the issue of our interest. To be more

specific, we make some restrictions on the dynamical system (2.2.8) on balls:

ẋ = f(x, µ0), on B(x̄, δ) (2.2.10)

and

ẋ = f(x, µ) on B(x̄, ε1)× (µ0 − ε2, µ0 + ε2) =: Uε1,ε2(x̄, µ0). (2.2.11)
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Definition 2.2.29. [59] An equilibrium point (x̄, µ0) is said to undergo a bifurcation at

µ = µ0 if there exist δ > 0, ε1 > 0 and ε2 > 0 such that the equilibrium point (x̄, µ0) for

(2.2.11) is not qualitatively the same as the equilibrium point x̄ for (2.2.10).

An alternative formulation of Definition 2.2.29 is as follows. The number µ = µ0 is said

to be a bifurcation value for (2.2.8) if there exists an equilibrium point (x̄, µ0) of (2.2.8)

with the following property: ∃ δ > 0, ∃ ε1 > 0 and ∃ ε2 > 0 such that the equilibrium

point (x̄, µ0) for (2.2.11) on Uε1, ε2(x0, µ0) is not qualitatively the same as the equilibrium

point x̄ for (2.2.10) on B(x̄, δ).

The next two definitions constitute some classifications of bifurcation points.

Definition 2.2.30. A bifurcation point µ0 at which an equilibrium point (x̄, µ0) undergoes

a bifurcation is called a transcritical bifurcation if the three conditions below hold:

1. at least two curves x = x(µ) of equilibrium points exist in the µ−x space for µ < µ0

and µ > µ0;

2. the curves of the equilibrium point branch at µ = µ0 or intersect at the point (x̄, µ0);

3. the stability of an equilibrium point along a given curve changes on passing through

µ = µ0.

Definition 2.2.31. A bifurcation point µ0 is called a pitchfork bifurcation if:

1. x̄ is the only equilibrium point on one side of µ = µ0, this means, for µ < µ0 or

µ > µ0;

2. two curves x = x(µ) of equilibrium points are created on the other side of µ = µ0.

We have two types of pitchfork bifurcations.

Definition 2.2.32. A pitchfork bifurcation at µ0 is said to be supercritical or forward if

the condition (2) in Definition 2.2.31 occurs for µ > µ0. It is called subcritical or backward

if the condition (2) in Definition 2.2.31 occurs for µ < µ0.

Definition 2.2.33. A bifurcation point µ0 is a fold bifurcation point or saddle–node bifur-

cation if there exists an equilibrium point (x̄, µ0) with the property that for all δ > 0, there

exists ε > 0 such that for |µ− µ0| < ε
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Type of Bifurcation Conditions

saddle–node ∂f
∂µ

(x̄, µ0) 6= 0, ∂2f
∂x2 (x̄, µ0)) 6= 0

transcritical ∂f
∂µ

(x̄, µ0) = 0, ∂2f
∂x∂µ

(x̄, µ0) 6= 0, ∂2f
∂x2 (x̄, µ0) 6= 0

pitchfork ∂f
∂µ

(x̄, µ0) = 0, ∂2f
∂x2 (x̄, µ0) = 0, ∂2f

∂x∂µ
(x̄, µ0) 6= 0, ∂3f

∂x3 (x̄, µ0) 6= 0

Table 2.1: Types of bifurcations and corresponding existence conditions.

1. B(x̄, δ) has no equilibrium point for µ < µ0

2. B(x̄, δ) has two solutions for µ > µ0.

In the scalar case, i.e. m = 1 in (2.2.8), sufficient conditions for existence and type of

bifurcations at µ = µ0 for the equilibrium point (x̄, µ0) are known [59] and are summarized in

Table 2.1 . The situation for higher dimensions is more difficult. Some sufficient conditions

based on the asymptotic expansions

x(ε) = εη +O(ε2), µ(ε) = µ0 +O(ε), 0 < ε << 1, (2.2.12)

are stated in the following result:

Theorem 2.2.34. [55] Assume that (x̄, µ) ∈ Rm ×R is an equilibrium solution of (2.2.8)

for each µ ∈ R. Let the Jacobian matrix Jf(x̄, µ) be singular at µ = µ0. Assume further

that the null space of the linear operator Jf(x̄, µ0) has dimension one, its basis being

given by a vector η ∈ Rm such that the range of Jf(x̄, µ0) does not contain the vector

d
dµ

[df(x̄, µ)]|µ=µ0 .η. Then there exists an equilibrium solution of (2.2.8) of the form (2.2.12)

and µ = µ0 is a transcritical bifurcation if dµ
dε

(µ0) 6= 0, whereas it is a pitchfork bifurcation

whenever dµ
dε

(µ0) = 0 and d2µ
d2ε

(µ0) 6= 0.

2.3 Discrete Dynamical Systems

In this section dynamical systems generated by vector–valued mappings are presented. The

definitions and properties for discrete dynamical systems are in some sense analogous to

those of continuous dynamical systems on the understanding that the continuous variable

t ∈ [0,∞) is replaced by the discrete variable n ∈ N. We shall focus on the main tools

that we need. Our main references for this section are [32, 34, 55].
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2.3.1 Generalities

Let F : Rm → Rm. Consider a sequence {xn}∞n=0 defined recursively from x0 ∈ Rm by

xn+1 = F (xn). (2.3.1)

Definition 2.3.1. Equation (2.3.1) defines a discrete dynamical system on Ω ⊆ Rm if, for

every x0 ∈ Ω, the sequence {xn}∞n=0 remains in Ω.

Remark 2.3.2. Generalized discrete dynamical systems, whereby the explicit relation (2.3.1)

is replaced by the implicit relation

G(xn, xn+1) = 0,

can be defined. But we will not deal with them in this work.

Definition 2.3.3. Given a discrete dynamical system defined on a set Ω ⊆ Rm, its

evolution semigroup operator is the map Φn : Ω → Ω such that xn = Φnx0 for all

n = 0, 1, 2, 3, · · ·

The evolution semigroup operator has the following properties:

1. Semigroup property: xn+m = Φnxm = Φmxn = Φn+mx0, for all

m, n = 0, 1, 2, 3, · · ·

2. Identity Property: Φ0 ≡ I is the identity operator.

The discrete Gronwall inequality reads as follows:

Theorem 2.3.4. [55](Gronwall inequality)

Let a positive sequence {xn}Nn=0 satisfy

xn+1 ≤ cxn + d, n = 0, 1, 2, . . ., N − 1,

for some constants c > 0 and d. Then

xn ≤
d

1− c
(1− cn) + x0c

n, n = 0, 1, . . ., N, if c 6= 1

and

xn ≤ nd+ x0, n = 0, 1, . . ., N, if c = 1.
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2.3.2 Qualitative Properties

Definition 2.3.5. Let Φn be the evolution semigroup operator of a discrete dynamical

system on Ω. A subset U ⊂ Ω ⊆ Rm is said to be

1. positively invariant if ΦnU ⊆ U for all n ≥ 0.

2. negatively invariant if ΦnU ⊇ U for all n ≥ 0.

3. invariant if U is both positively and negatively invariant. This means ΦnU = U for

all n ≥ 0.

Definition 2.3.6. A vector x̄ ∈ Ω ⊂ Rm is said to be a fixed point of a discrete dynamical

system on Ω defined by Equation (2.3.1) if F (x̄) = x̄ or equivalently if Φnx̄ = x̄ for all

n ≥ 0.

Definition 2.3.7. Let x̄ ∈ Ω ⊂ Rm be a fixed point of a discrete dynamical system (2.3.1)

on Ω. Then x̄ is said to be

1. stable if, for any ε > 0, there exists δ = δ(ε) > 0 such that x0 ∈ Ω,

‖x0 − x̄‖ < δ

implies

‖xn − x̄‖ < ε for all n ≥ 0.

2. (locally) asymptotically stable if (1) holds and in addition there exists a constant

b > 0 such that, x0 ∈ Ω, ‖x0 − x̄‖ < b implies

lim
n→∞

‖xn − x̄‖ = 0.

3. globally asymptotically stable (on Ω) if (1) holds and

lim
n→∞

‖xn − x̄‖ = 0 for any x0 ∈ Ω.

4. unstable if (1) fails to hold.
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To determine the stability property of a fixed point x̄, we assume that the map F is of

class C1 and we denote by J = DF (x̄), the Jacobian matrix of F at x̄. Then,

yn+1 = Jyn, n = 0, 1, 2, 3, · · · (2.3.2)

is the linearization of (2.3.1) around x̄ where yn = xn − x̄. The stability properties of

this linear system is determined by the eigenvalues of the Jacobian matrix J . Hence, the

stability property of x̄ for the original system would be an easy task if it is related to the

stability property of the fixed point ȳ = 0 for the linear system (2.3.2).

Definition 2.3.8. A fixed point x̄ of the discrete dynamical system given by Equation

(2.3.1) is said to be hyperbolic if the Jacobian matrix J has no eigenvalue of unit modulus.

Otherwise the fixed point is called non–hyperbolic.

Remark 2.3.9. The map F in (2.3.1) is said to be hyperbolic if all fixed points are

hyperbolic.

Theorem 2.3.10. (Hartman–Grobman Theorem)

Let F : Rm → Rm of class C1 have a hyperbolic fixed point x̄. Then there exist

δ > 0, a neighborhood N ⊂ Rm of the origin and a homeomorphism h : B(x̄, δ) → N

such that

h(F (x0)) = Jh(x0) for all x0 ∈ B(x̄, δ).

Consequently, by setting yn = h(xn) for all n ≥ 0, the mapping (2.3.1) in the neighbor-

hood B(x̄, δ) of x̄ is equivalent to the mapping (2.3.2) in the neighborhood N of the

origin (see Fig 2.2).

In practice, Theorem 2.3.10 is used as stated in the next result.

Theorem 2.3.11. Let F be a continuously differentiable function defined on a set Ω ⊆ Rm,

and let x̄ ∈ Ω be a hyperbolic fixed point of (2.3.1).

1. Then x̄ is asymptotically stable if and only if for

yn = Jny0,

with ‖y0‖ := ‖x0 − x̄‖ small enough, we have

lim
n→∞

yn = 0,
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Figure 2.2: Hartman–Grobman Theorem for discrete systems.

or equivalently, all the eigenvalues of the Jacobian matrix J have modulus less than

one.

2. The fixed point x̄ is unstable if there exists at least one eigenvalue of the Jacobian

matrix J with modulus greater than one, or

lim
n→∞

‖yn‖ = ∞.

If the fixed point x̄ is non–hyperbolic, the matrix J has at least one eigenvalue with

modulus equal to one. Then Theorem 2.3.11 does not apply: x̄ may be either stable, asymp-

totically stable or unstable. To overcome this difficulty, we can use the Lyapunov function

in conjunction with LaSalle invariance principle as for continuous dynamical systems.

Definition 2.3.12. [44] Let x̄ be a fixed point of dynamical system (2.3.1) defined on

Ω ⊂ Rm. A function V ∈ C1(Ω,R) is said to be Lyapunov a function for x̄ on some

neighborhood B ⊂ Ω if

1. the function V satisfies V (x̄) ≤ V (x) for all x ∈ B.

2. the inequality V (F (x)) ≤ V (x) holds for all x ∈ B.

In addition, if V (x̄) = 0 and V (x) > 0 for all x ∈ B\{x̄} then V is said to be positive

definite function at x̄.

Once a Lyapunov function is determined, it becomes possible to check stability proper-

ties of a fixed point as specified below.
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Theorem 2.3.13. [44] (Lyapunov’s Stability Theorem)

If there exists a Lyapunov function V (x) for the fixed point x̄ on the ball B(x̄, δ), then

the fixed point x̄ is stable. If V (F (x)) < V (x) for every point x ∈ B(x̄, δ)\{x̄}, then

x̄ is asymptotically stable. But if V (F (x)) > V (x) for all x ∈ B(x̄, δ)\{x̄}, then x̄ is

unstable.

It is important to notice that Theorem 2.3.13 guarantees the local asymptotic stability

of a fixed point. Much more is needed for the global asymptotic stability. The following

concept plays an important role in this regard.

Definition 2.3.14. A discrete dynamical system on Ω is said to be dissipative if there exists

a compact, positively invariant set U ⊂ Rm with the property that for any bounded set

B ⊆ Ω, there exists an integer n∗ = n∗(U,B) ≥ 0 such that ΦnB ⊆ U for all n > n∗.

The set U is called an absorbing set. In the case when B is replaced by each point x0 ∈ Ω,

the dynamical system is said to be point dissipative.

Theorem 2.3.15. [4] Suppose x̄ is a fixed point of the dynamical system on Ω given by

(2.3.1). Assume that the system (2.3.1) is point dissipative. Assume further that there

exists a continuous function V : Ω → R such that

1. the function V is bounded from below on Ω;

2. the inequality V (F (x)) ≤ V (x) holds for all x ∈ Ω;

3. The fixed point x̄ is globally asymptotically stable when the system (2.3.1) is restricted

to the set M, which is the largest invariant set contained in

E = {x ∈ Ω : V (F (x)) = V (x)}.

Then, the fixed point x̄ is globally asymptotically stable on the whole set Ω.

Remark 2.3.16. Theorem 2.3.15 is a version of LaSalle Invariance Principle [36]. The

function V is some kind of Lyapunov function, though the lower bound required for V (x)

is not specifically V (x̄) as stated in part (1) of Definition 2.3.12 . The substance of the

invariance principle is contained in part (3) of Theorem 2.3.15.
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2.3.3 Nonstandard Finite Difference Schemes

Most of the discrete schemes that we will consider in this dissertation are nonstandard finite

difference (NSFD) schemes. The NSFD method was introduced more than two decades

ago by R.Mickens as a powerful approach that replicates the dynamics of the continuous

dynamical systems, apart from guaranteeing the convergence of the discrete solution to the

exact solutions.

A comprehensive reference on the NSFD schemes is [48]. The method was subsequently

developed by Anguelov and Lubuma [2] who gave its mathematical foundation. Further

references can be found in [42]. The definition below is taken from this fundamental

reference [2].

Definition 2.3.17. A difference equation

D∆txn = F∆t(f, xn) (2.3.3)

that produces a sequence {xn}∞n=0 of approximate solutions to the differential equation

(2.2.1) at the times tn = n∆t, is called a nonstandard finite difference scheme if at least

one of the following conditions is satisfied:

• In the first order discrete derivative D4txn ' x′(tn), the classical denominator

h = 4t is replaced by a nonnegative function φ : (0,∞) → (0,∞) satisfying

φ(h) = h+O(h2). (2.3.4)

For instance φ(h) = 1− e−h or φ(h) = eλh−1
λ

where λ is a constant in (2.2.1).

• In the expression F4t(f, xn), nonlinear terms are approximated in a non–local way.

For instance a term like x2(tn) is approximated by xn+1xn instead of x2
n.

Remark 2.3.18. Mickens [48] puts the following criteria to identify nonstandard schemes

apart from the requirements in Definition 2.3.17:

1. The order of the discrete derivative should be equal to the order of the corresponding

derivative of the differential equation,

2. Special conditions that hold for the solutions of the differential equations should also

hold for the solutions of the finite difference scheme,
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3. The scheme should not introduce extraneous or spurious solutions.

The additional requirements made by Mickens are particular cases of the following more

general concepts introduced in [2].

Definition 2.3.19. Assume that the solution of (2.2.1) satisfies a property P . The dif-

ference Equation (2.3.3) is said to be qualitatively stable or dynamically consistent with

respect to the property P if for all step sizes h > 0, the discrete solution for (2.3.3) satisfies

property P .

A minimal property P that is desirable for any scheme is described as follows:

Definition 2.3.20. A difference scheme (2.3.3) for approximating (2.2.1) is said to be

elementary stable if, for any value of step size h, its fixed points are exactly the equilibrium

points of the differential system (2.2.1) and these fixed points for the difference scheme

have the same linear stability/instability properties as for the differential system.

A typical situation when a scheme is dynamically consistent with respect to any property

is contained in the next definition.

Definition 2.3.21. The numerical method (2.3.3) to approximate (2.2.1) is called an exact

scheme whenever the difference equation (2.3.3) and the differential equation (2.2.1) have

the same general solutions at the discrete time t = tn. In particular, with x(t) being the

solution of the initial value problem (2.2.1), we have xn = x(tn).

The nonstandard version of the classical θ method has been extensively studied in

literature (see [32, 43]). These NSFD schemes, which are of order 1 for θ 6= 1
2

and of

order 2 for θ = 1
2
, will be used in the next chapters. Here, we want to develop NSFD

Runge–Kutta methods as higher order schemes.

The classical explicit k - stage Runge–Kutta method for the solution of (2.2.1) is defined

by ([34])

xn+1 = xn + h
k∑
i=1

biKi, (2.3.5)

where

Ki = f

(
xn + h

i−1∑
j=1

aijKj

)
, i = 1, 2, ..., k, bj =

j−1∑
i=1

aij , (2.3.6)
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(aij)1≤i, j≤k is a lower triangular matrix with zero diagonal and

k∑
j=1

bj = 1. (2.3.7)

The condition (2.3.7) is necessary and sufficient for the Runge–Kutta method to be con-

sistent and in fact convergent, with the local truncation error Tn+1 being given by

Tn+1 := x(tn+1)− x(tn)− h
k∑
i=1

biKi = O(h2), (2.3.8)

where the exact solution x(tn) is used in the definition of Ki given in (2.3.6).

The interest in the explicit k–stage Runge–Kutta method, with 1 ≤ k ≤ 4, arises from

the following result, which is more precise than (2.3.8).

Theorem 2.3.22. [34] An explicit k–stage (k ≤ 4) Runge–Kutta method is of order k in

the sense that

Tn+1 = O(hk+1). (2.3.9)

In order to test the efficiency of a numerical scheme, it is normal to take a test model.

For this, consider the explicit k–stage (k ≤ 4) Runge–Kutta method. We apply it to the

model differential system

x′ = Jx, x(0) = x0, (2.3.10)

where J is a diagonalizable m×m matrix with eigenvalues λl having negative real parts:

Q−1JQ = Λ := diag(λ1, λ2, ..., λm). (2.3.11)

Under this assumption, the solution

x(t) = etJx0, (2.3.12)

of (2.3.10) has the asymptotic behavior

lim
t→∞

‖x(t)‖ = 0. (2.3.13)

It can be shown that the Runge–Kutta method applied to (2.3.10) reads as

xn+1 = R(∆tJ)xn, (2.3.14)
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with the matrix function

R(∆tJ) := Q diag[R(λl∆t)]Q
−1, (2.3.15)

where (see [34])

R(λl∆t) =
k∑
j=0

1

j!
(λl∆t)

j. (2.3.16)

Hence, (xn) replicates the property (2.3.13) or xn → 0 as n→∞ if and only if

|R(λl∆t)| < 1 ∀l. (2.3.17)

Definition 2.3.23. [32] The Runge–Kutta method (2.3.5)−(2.3.6) is said to be absolutely

stable for a given λ∆t, Reλ < 0, if |R(λ∆t)| < 1.

The argument that led to Definition 2.3.23 suggests that we modify the k–stage Runge–

Kutta method (2.3.5) − (2.3.6) into the NS Runge–Kutta method through the following

steps.

Consider a function ϕ : R → R+ such that 0 < ϕ(z) < 1 for z > 0 and

ϕ(z) = z +O(zk+1). (2.3.18)

For instance, we can take

ϕ(z) =
z

1 + c zk
,

where c is a positive constant.

We consider the function

φ(h) =
ϕ(qh)

q
,

where q ≥ |λ| and λ traces all the eigenvalues of all the Jacobian matrices at the fixed

points for (2.2.1). Our NS Runge–Kutta method is given by

xn+1 = xn + φ(h)
k∑
i=1

biKi, (2.3.19)

where

Ki = f

(
xn + φ(h)

i−1∑
j=1

aijKj

)
, i = 1, 2, ..., k .
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Theorem 2.3.24. Assume that 1 ≤ k ≤ 4. Then the NS Runge–Kutta method (2.3.19)

is of order k. Furthermore, this scheme replicates the asymptotic behavior of the model

equation (2.3.10) in the following sense: For any h > 0, the discrete solution xn → 0

if Reλl < 0 ∀λl whereas ‖xn‖ → ∞ if there exists at least one eigenvalue λl with

Reλl > 0.

Proof: The order of the method results from the relation (2.3.18). The conver-

gence/divergence as n → ∞ is based on the analogous of the representations (2.3.14)

and (2.3.16):

xn+1 = R (λφ(h))xn and R (λφ(h)) =
k∑
j=0

(λφ(h))j

j!
.
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Chapter 3

Classical SIR and SIS Models

3.1 Introduction

In this chapter, we deal with the simplest well–known compartmental mathematical models

for transmission of diseases in a population. These are the SIR and SIS models. However,

we consider these models with an extended contact rate.

The SIR models is considered in Section 3.2. After presenting the model formulation

in Section 3.2.1, the study is organized in the main directions given below.

• Quantitative analysis ( Section 3.2.2): we prove the well–posedness of the problem,

• Qualitative analysis (Section 3.2.2): we investigate the stability of equilibria, including

the global asymptotic stability of the disease–free equilibrium,

• Constructive analysis (Section 3.2.3): we design nonstandard finite difference schemes

that are dynamically consistent with the properties of the continuous model.

The study of the SIS model in Section 3.3 is shortened, given the similarities with the

presentation of the SIR model.

The last part (Section 3.4) of the chapter reports on frequently used contact rates

with emphasis on illustrations including bifurcation diagrams and numerical experiments.

In particular, the nonstandard Runge–Kutta method is presented for the first time to the

best of our knowledge and tested to be a higher order scheme (Section 3.4.4).
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3.2 SIR Model with General Contact Rate

3.2.1 Model Formulation

In the mathematical formulation of a model for the transmission of a disease, the number

C(N) = Nβ(N) ≥ 0 of contacts made by an average infective in unit time plays an

important role. Experience has shown that this number of contacts tends:

1. to grow less rapidly as the population size N increases and/or

2. to saturate or stabilize as the population size N becomes large.

Therefore, following [8], we assume in the first instance that

C ′(N) ≥ 0 and β′(N) ≤ 0. (3.2.1)

The second condition in (3.2.1) implies that C ′(N) is bounded in the following specific

manner:

C ′(N) ≤ β(N) ≤ sup
N
β(N).

Thus

C(N) ≤ aN + b, a > 0, b ≥ 0. (3.2.2)

The general conditions in (3.2.1) are sufficient for the analysis in this section. However,

in order to comply strictly with the requirement in items (1) and (2) above, the functions

C(N) and β(N) in (3.2.1) will be chosen such that the additional conditions below are

met. Either

lim
N→∞

β(N) = 0, (3.2.3)

in which case the property in (1) holds; or

C(N) is bounded, (3.2.4)

which guarantees both the less rapidly increasing and saturation properties.

The basic SIR model for the spread of diseases is well–known and goes back to Kermack–

McKendrick [33]. However, we present it here with an extended contact rate C(N) as

introduced above.
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Figure 3.1: Flow chart for SIR model.

The total population N is divided into three disjoint classes: individuals S who are

susceptible to infection, infective individuals I and individuals R who are recovered from

infection. In all classes, individuals die naturally at the rate µ > 0, while in I the disease

induces additional death at the rate α ≥ 0. Infective individuals are recovered at the rate

γ > 0. Susceptible individuals are recruited at the rate µK with K > 0 being the carrying

capacity.

With the flow diagram of the SIR model given in Fig 3.1, the SIR model with general

contact rate reads as follows:

S ′ = µK − β(N)SI − µS (3.2.5)

I ′ = β(N)SI − (α+ µ+ γ)I (3.2.6)

R′ = γI − µR. (3.2.7)

The term β(N)SI represents the average number of new cases per unit time. The system

(3.2.5)− (3.2.7) is appended with the following initial conditions:

S(0) = S0, I(0) = I0, and R(0) = R0. (3.2.8)

3.2.2 Quantitative and Qualitative Analysis

Our first concern is the well–posedness of the initial value problem (3.2.5) − (3.2.8) in a

manner that is biologically feasible. To this end, we are interested in nonnegative solutions,
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assuming that the initial conditions are nonnegative.

By adding (3.2.5)− (3.2.7), we get

N ′ = µ(K −N)− αI, (3.2.9)

where N(t) = S(t) + I(t) +R(t). (3.2.10)

From Equation (3.2.9), we have the following conservation law:

µK − (µ+ α)N ≤ N ′ ≤ µK − µN. (3.2.11)

By Gronwall Inequality (Lemma 2.2.6) applied from above and below to Equation (3.2.11),

we have for t ≥ 0

N(t) ≤ K + (N0 −K)e−µt

and

N(t) ≥ µK

α+ µ

(
1− e−(α+µ)t

)
+N0e

−(α+µ)t.

Thus for 0 ≤ N0 ≤ K, we have

0 ≤ N(t) ≤ K. (3.2.12)

Therefore, the compact set

Ω = {(S, I, R) ∈ R3
+ : 0 ≤ S + I +R ≤ K} (3.2.13)

constitutes the biologically feasible region for the model (3.2.5) − (3.2.8). The well–

posedness result reads as follows.

Theorem 3.2.1. The SIR model (3.2.5)− (3.2.7) defines a dynamical system on Ω.

Proof: We will apply Theorem 2.2.5. It is clear that the right–hand side of (3.2.5) −

(3.2.7) is locally Lipschitz. We now show that for S0 ≥ 0, I0 ≥ 0 and R0 ≥ 0, any

solution of (3.2.5) − (3.2.7) is such that S(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0. We restrict

ourselves to the component S(t) of the solution, the situation being similar for the other

components I(t) and R(t).

Equation (3.2.5) is a first order linear equation in S(t) that can be written as

S ′ + (β(N)I + µ)S = µK (3.2.14)
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and has integrating factor

ρ(t) = e
∫ t
0 P (u)du, where P = β(N)I + µ.

Thus, Equation (3.2.14) is equivalent to

(ρS)′ = ρµK.

If we take the integral of both sides on the closed interval [0, t], we obtain

ρ(t)S(t) = ρ(0)S(0) + µK

∫ t

0

ρ(u)du.

Hence,

S(t) = e−
∫ t
0 P (u)du

(
S(0) + µK

∫ t

0

ρ(u)du

)
≥ 0, because ρ(0) = 1 and S0 ≥ 0.

In view of (3.2.10) and (3.2.12), any solution corresponding to the initial value

(S0, I0, R0) ∈ Ω satisfies the a priori bound (S(t), I(t), R(t)) ∈ Ω. Consequently, Theo-

rem 2.2.5 applies and guarantees that to any (S0, I0, R0) in Ω, there exists a corresponding

unique global solution of (3.2.5)−(3.2.7) that remains in Ω. 2

Equation (3.2.6) of infective individuals can be written as

I ′ = (α+ µ+ γ)

[
R0

C(N)

C(K)

S

N
− 1

]
I, (3.2.15)

where R0 =
C(K)

α+ µ+ γ
. (3.2.16)

A close look at (3.2.15) shows two interesting cases based on the values of R0. Firstly, if

R0 < 1, it follows from (3.2.15) and (3.2.1) that, for the solution of (3.2.5) − (3.2.7) as

in Theorem 3.2.1, we have

I ′ ≤ 0,

so that I is decreasing. Hence, the disease will die out.

Secondly, if R0 > 1 and provided that there are sufficiently enough susceptible individ-

uals S(t), we have

I ′(t) ≥ 0
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so that I is increasing. Thus, there will be an epidemic situation. Indeed if S(t) ∈
(
K
R0
, K
)
,

then we have from (3.2.15)

R0
C(N)

C(K)

S

N
− 1 > R0

C(N)

C(K)

K
R0

N
− 1

=
β(N)

β(K)
− 1

≥ 0, because β is decreasing (see (3.2.1)).

The numberR0 given in (3.2.16) plays an important role in the study of the epidemiological

model (3.2.5)− (3.2.7). It is the so–called basic reproduction number defined as follows:

Definition 3.2.2. [1, 16] The basic reproduction number is the average number of sec-

ondary cases produced by a single infected individual in a completely susceptible population.

Remark 3.2.3. The expression (3.2.16) for R0 is in line with Definition 3.2.2. Indeed, the

average number of susceptible individuals that one infective will infect for the duration

1

α+ µ+ γ

of its life in the infective class is

(period of infection in the infective class)× (contact rate). (3.2.17)

Formula (3.2.16) or (3.2.17) is a byproduct of the so–called next generation matrix method

[18], which is used for the calculation of R0 for more general epidemiological models.

The relevance of R0, mentioned above in the qualitative analysis of the model (3.2.5)−

(3.2.7) is made more explicit in the rest of this chapter.

In what follows, it will be convenient from time to time to consider the system (3.2.5)−

(3.2.7) in the equivalent form (3.2.5), (3.2.6) and (3.2.9). In this case, the region Ω

becomes

Ω∗ = {(S, I,N) ∈ R3
+ : 0 ≤ N − S − I and N ≤ K}.

But in order to simplify notation, we will sometimes write Ω instead of Ω∗. It is in this

specific context that equilibria of (3.2.5) − (3.2.7) are investigated as solutions of the

system:

µK − β(N)SI − µS = 0, (3.2.18)

β(N)SI − (α+ µ+ γ)I = 0, (3.2.19)

µ(K −N)− αI = 0. (3.2.20)
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From equation (3.2.19), we have either I = 0 or β(N)S − (α+ µ+ γ) = 0.

If I = 0, then from (3.2.18) and (3.2.20), we get S = K and N = K, respectively.

Hence,

E0 := (K, 0, K) for (3.2.5)− (3.2.6) and (3.2.9)

or equivalently

E0 = (K, 0, 0) for (3.2.5)− (3.2.7)

is the disease–free equilibrium (DFE) point of the SIR model.

Proposition 3.2.4. The disease–free equilibrium point E0 is hyperbolic if R0 6= 1.

Proof: To show that E0 is a hyperbolic equilibrium point, we use the Jacobian matrix

of (3.2.5)− (3.2.6) and (3.2.9):

J(S, I,N) =



−β(N)I − µ −β(N)S −β′(N)SI

β(N)I β(N)S − (α+ µ+ γ) β′(N)SI

0 −α −µ


. (3.2.21)

Then

J(E0) =



−µ −C(K) 0

0 C(K)− (α+ µ+ γ) 0

0 −α −µ


.

To find the eigenvalues r of J(E0), we solve the equation det[rI − J(E0)] = 0, where I is

the 3× 3 identity matrix. This equation can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r + µ C(K) 0

0 r − (C(K)− (α+ µ+ γ)) 0

0 α r + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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or

(r + µ)2(r − (C(K)− (α+ µ+ γ))) = 0.

Hence, r1 = −µ (with multiplicity 2) and r2 = C(K)− (α + µ + γ) are real eigenvalues

which are not equal to zero if C(K)−(α+µ+γ) 6= 0. Thus, by Definition 2.2.13, E0 is a

hyperbolic equilibrium point in this case. 2

Theorem 3.2.5. The disease–free equilibrium point E0 is locally asymptotically stable

(LAS) if R0 < 1 and unstable if R0 > 1.

Proof: Since the equilibrium E0 is hyperbolic (see Proposition 3.2.4), we can apply

Hartman–Grobman linearization theorem (see Theorem 2.2.13) and Theorem 2.2.14.

From the proof of Proposition 3.2.4, the eigenvalue r1 = −µ of the Jacobian matrix

J(E0) is negative. The other eigenvalue r2 = C(K)− (α + µ+ γ) satisfies r2 < 0 if and

only if R0 < 1. This proves the theorem. 2

In terms of the celebrated threshold theory of Kermack and McKendrick (see [1]), the

epidemiological implication of Theorem 3.2.5 is that a small influx of infected individuals into

the community would not result in a major epidemic provided R0 < 1. On the other hand,

the disease will be established in the community if R0 > 1. To ensure disease elimination

is independent of the initial size of the sub–populations of the model (3.2.5)− (3.2.7), it is

necessary to investigate when the DFE is globally asymptotically stable (GAS) in Ω. This

is considered below.

Theorem 3.2.6. The disease–free equilibrium E0 is globally asymptotically stable (GAS)

if R0 < 1.

Proof: We will apply LaSalle invariance principle in Theorem 2.2.25, observing that

the dynamical system under consideration is dissipative (see Theorem 3.2.1).

On the compact region Ω∗ introduced earlier, we consider the function

V : Ω∗ ⊂ R3 → R, V (S, I,N) = I,

which clearly satisfies the properties V (E0) = 0 and V (E) > 0 for E0 6= E ∈ Ω∗. Let

E = (S, I,N) ∈ Ω∗. By definition of the derivative of V in the direction of the vector that
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is defined by the right–hand f(S, I,N) side of (3.2.5), (3.2.6) and (3.2.9), we have

V̇ = ∇V.f(S, I,N),

= (0, 1, 0).f(S, I,N),

= [β(N)S − (α+ µ+ γ)]I, by (3.2.6)

≤ [β(N)N − (α+ µ+ γ)]I, because S ≤ N

= [C(N)− (α+ µ+ γ)]I, since β(N)N = C(N)

≤ [C(K)− (α+ µ+ γ)]I, because C is increasing

= (α+ µ+ γ)(R0 − 1)I, by definition in (3.2.16).

Thus V̇ ≤ 0 on Ω∗ if R0 ≤ 1.

Hence, V is a positive definite Lyapunov function for E0 on Ω∗. Furthermore, when

(S, I,N) ≡ (S(t), I(t), N(t)) ∈ Ω∗ is a solution of (3.2.5) − (3.2.6) and (3.2.9) and

R0 < 1, we have from V̇ = I ′, I(t) = 0, ∀t if I ′(t) = 0, ∀t and V ′(t) < 0 ∀t if

I(t) > 0 ∀t.

Next in accordance to Theorem 2.2.25, we consider the set

E = {(S, I,N) ∈ Ω∗ : V̇ (S, I,N) = 0}.

We claim that {E0} is the largest invariant set that is contained in E . Indeed let A ⊂ E be

an invariant set. Take (S0, I0, N0) ∈ A. Then (S(t), I(t), N(t)) = Φ(t)(S0, I0, N0) ∈ A,

because A is invariant. Furthermore, (S(t), I(t), N(t)) ∈ E for t ≥ 0 since A ⊂ E . Thus,

V̇ (S(t), I(t), N(t)) = İ(t) = 0. In view of the condition R0 < 1, the first part of this

proof implies that I(t) = 0 for every t ≥ 0. Therefore, S(t) = N(t) = K, ∀t. This shows

that (S0, I0, N0) = (K, 0, K) and thus A ⊂ {E0}.

Since for the dynamical system (3.2.5), (3.2.6) and (3.2.9) restricted to {E0}, the

equilibrium point E0 is the only GAS, we infer from Theorem 2.2.25 that E0 is GAS on Ω∗

for the dynamical system (3.2.5), (3.2.6) and (3.2.9). 2

The fact stated in Theorem 3.2.4 that the disease–free equilibrium is unstable when

R0 > 1 is made more precise in the next result.

Theorem 3.2.7. Assume that R0 > 1. Then, there exists a unique additional equilib-

rium point E∞ = (S∞, I∞, N∞), I∞ > 0 called “endemic equilibrium”. This endemic

equilibrium (EE) point is LAS.
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Proof: Consider Equation (3.2.19) with I > 0. Then we have N > 0, β(N) > 0 and

β(N)S = (α+ µ+ γ), (3.2.22)

which transforms Equation (3.2.18) into

(α+ µ+ γ)I = µK − µ(α+ µ+ γ)

β(N)
. (3.2.23)

If we substitute the resulting expression of I into Equation (3.2.20), we get

K −N − α

(
K

α+ µ+ γ
− 1

β(N)

)
= 0,

which is equivalent to

f(N) := Kβ(N)− C(N)− α

(
Kβ(N)

α+ µ+ γ
− 1

)
= 0. (3.2.24)

It should be noted that the function f(N) is decreasing on (0,∞) since

f ′(N) = Kβ′(N)− C ′(N)− αKβ′(N)

α+ µ+ γ

= Kβ′(N)

(
1− α

α+ µ+ γ

)
− C ′(N)

< 0,

by the properties of β and C in (3.2.1).

At N = µK
α+µ

, we have after computation, f
(
µK
α+µ

)
= Kβ

(
µK
α+µ

)(
αγ

(α+µ)(α+µ+γ)

)
+α >

0. At N = K, f(K) = −α
(
Kβ(K)
α+µ+γ

− 1
)
< 0, because R0 > 1. Since the function f(N)

is continuous and decreasing on the interval [ µK
α+µ

, K], we infer from the intermediate

value theorem that there exists a unique N∞ ∈ ( µK
α+µ

, K) such that f(N∞) = 0. Given

the fact that f is injective on (0,∞), the number N∞ is actually the unique root of f in

the interval (0, K). Plugging the value N = N∞ into (2.4.22) and (2.4.23), we obtain in

view of the expression R0 in (2.4.16) the following susceptible and infective coordinates of

the endemic equilibrium E∞ = (S∞, I∞, N∞):

S∞ =
β(K)K

β(N∞)R0

, I∞ =
µ

β(K)β(N∞)
[R0β(N∞)− β(K)] . (3.2.25)

The second part of the proof is the stability property of the endemic equilibrium E∞. For

this we use Theorem 2.2.14 and the Jacobian matrix given in (3.2.21) at the point E∞:
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J(E∞) =



−β(N∞)I∞ − µ −β(N∞)S∞ −β′(N∞)S∞I∞

β(N∞)I∞ 0 β′(N∞)S∞I∞

0 −α −µ


The eigenvalues of the matrix J(E∞) are the roots r of the characteristic equation

det(rI − J(E∞)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r + (β(N∞)I∞ + µ) β(N∞)S∞ β′(N∞)S∞I∞

−β(N∞)I∞ r −β′(N∞)S∞I∞

0 α r + µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

We can write this equation as

r3 + a2r
2 + a1r + a0 = 0,

where

a2 = 2µ+ β(N∞)I∞,

a1 = µ [µ+ β(N∞)I∞] +
[
αβ′(N∞) + β2(N∞)

]
S∞I∞,

and a0 = µ
[
αβ′(N∞) + β2(N∞)

]
S∞I∞.

It is clear that a2 > 0. It is also true that a1 > 0 and a0 > 0 in view of the decreasing

property of β(N) stated in (3.2.1) and,

αβ′(N∞) + β2(N∞) = α

(
C ′(N∞)N∞ − C(N∞)

N2
∞

)
+
C2(N∞)

N2
∞

=
C2(N∞)− αC(N∞) + αC ′(N∞)N∞

N2
∞

≥ C(N∞) [C(N∞)− α]

N2
∞

> 0,

because by using Equation (3.2.22), we have

C(N∞) = β(N∞)N∞ ≥ β(N∞)S∞ = α+ µ+ γ > α.
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On the other hand, we have

a2a1 = [2µ+ β(N∞)I∞]
[
µ(µ+ β(N∞)I∞) + [αβ′(N∞) + β2(N∞)]S∞I∞

]
> µ

[
αβ′(N∞) + β2(N∞)

]
S∞I∞

= a0.

By the Routh–Hurwitz condition [23], we conclude that all the eigenvalues of J(E∞) have

negative real parts. Thus, the endemic equilibrium E∞ is locally asymptotically stable by

Theorem 2.2.14. 2

Remark 3.2.8. A remark is in order regarding the explicit expression of the endemic equi-

librium E∞ under the condition R0 > 1 in Theorem 3.2.7. Assume that there is no death

induced by the disease, i.e. α = 0. Then we have

E∞ = (S∞, I∞, N∞) =

[
µ+ γ

β
,

µ

µ+ γ

(
K − µ+ γ

β

)
, K

]
,

which readily follows from (3.2.20), (3.2.19) and (3.2.18) respectively. However, no such

explicit expression for E∞ is available in the general case when α > 0. Nevertheless, the

proof of Theorem 3.2.7 permits us to apply a constructive method for approximating E∞.

More precisely, the bisection method applies and works as follows [53]:

For n = 0, we consider the initial interval I0 = [a0, b0], where a0 = 0 and b0 = K.

At the iteration n ≥ 1, we introduce the mid–point

cn =
an−1 + bn−1

2

and consider the interval In = [an, bn] given by

an = cn and bn = bn−1 if f(an−1)f(cn) > 0,

an = an−1 and bn = cn if f(an−1)f(cn) < 0.

In this way, we have constructed by mathematical induction a nested sequence

I0 ⊃ I1 ⊃ ... ⊃ In ⊃ ...

of nonempty closed intervals, each of which contains the endemic equilibrium coordinate

N∞, and such that

max{N∞ − an, bn −N∞} ≤
K

2n
. (3.2.26)
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In view of (3.2.26), an, cn and bn are approximations of N∞ at the nth iteration. The

bisection iteration terminates at the nth step for which, K
2n < ε where ε > 0 is a fixed

tolerance. Once an approximation of N∞ is obtained, we find an approximation of S∞ and

I∞ by using the formula (3.2.25).

Remark 3.2.9. If R0 = 1 then from Equation (3.2.24), we observe that N = K is the

unique zero of the function f(N), which implies, in view of (3.2.25), that the endemic

equilibrium collapses to disease–free equilibrium.

Theorem 3.2.5 and Theorem 3.2.7 illustrate the statement in Remark 2.2.15 regarding

the basic reproduction number R0. Combining these two theorems , we have, in view of

Definition 2.2.32, established the following result.

Theorem 3.2.10. For the SIR model (3.2.5) − (3.2.7), the value R0 = 1 is a forward

bifurcation point.

3.2.3 NSFD Schemes

In this section, we design numerical schemes that are dynamically consistent with the prop-

erties of the SIR model (3.2.5)− (3.2.7). Given the well-known power of the nonstandard

finite difference schemes in replicating the properties of dynamical systems, we use this

approach, the generalities of which were presented in Section 2.3.

Following the strategy proposed in [49], it is instructive to start with the conservation

law (3.2.11), which we recall here for convenience:

µK − (α+ µ)N ≤ N ′ ≤ µK − µN.

Assume that N takes the value N0 ≤ K at the time t = 0. Application of Gronwall

inequality (Lemma 2.2.6) to the conservation law yields

µK

α+ µ
+

(
N0 −

µK

α+ µ

)
e−(α+µ)t ≤ N(t) ≤ K + (N0 −K)e−µt

for any t ≥ 0. At the discrete time t = tn+1 = (n + 1)∆t defined in Section 2.4.2, the

previous double inequality becomes

µK

α+ µ
+
(
N0 −

µK

α+ µ

)
e−(α+µ)tn+1 ≤ N(tn+1) ≤ K + (N0 −K)e−µtn+1 . (3.2.27)
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By using the semi–group property of the evolution operator for differential equations,

Equation (3.2.27) can be written as

µK

α+ µ
+

(
N(tn)−

µK

α+ µ

)
e−(α+µ)∆t ≤ N(tn+1) ≤ K + (N(tn)−K)e−µ∆t.

Subtracting N(tn) from all sides, we have[
µK

α+ µ
−N(tn)

] (
1− e−(α+µ)∆t

)
≤ N(tn+1)−N(tn) ≤

[K −N(tn)] (1− e−µ∆t). (3.2.28)

Observe that
1

1− e−(α+µ)∆t
≤ 1

1− e−µ∆t
.

Hence Equation (3.2.28) implies that

µK

α+ µ
−N(tn) ≤

N(tn+1)−N(tn)
1− e−(α+µ)∆t

≤ N(tn+1)−N(tn)
1− e−µ∆t

≤ K −N(tn). (3.2.29)

On setting Nn := N(tn), Equation (3.2.29) provides two types of exact schemes, which

we investigate now. The first exact scheme is

µK

α+ µ
−Nn ≤

Nn+1 −Nn

1− e−µ∆t
≤ K −Nn, (3.2.30)

which is written in the more convenient form

µ2K

α+ µ
− µNn ≤

Nn+1 −Nn

1−e−µ∆t

µ

≤ µK − µNn. (3.2.31)

The second exact scheme is

µK

α+ µ
−Nn ≤

Nn+1 −Nn

1− e−(α+µ)∆t
≤ K −Nn,

or equivalently,

µK − (α+ µ)Nn ≤
Nn+1 −Nn

1−e−(α+µ)∆t

α+µ

≤ (α+ µ)K − µNn. (3.2.32)

Apart from the forward Euler type schemes (3.2.31) and (3.2.32), we have their backward

counterparts

µ2K

α+ µ
− µNn+1 ≤

Nn+1 −Nn

eµ∆t−1
µ

≤ µK − µNn+1 (3.2.33)
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and

µK − (α+ µ)Nn+1 ≤
Nn+1 −Nn

e(α+µ)∆t−1
α+µ

≤ (α+ µ)K − µNn+1. (3.2.34)

To obtain (3.2.33), we proceed as follows from Equation (3.2.30) which leads successively

to:

µK

α+ µ
(1− e−µ∆t)−Nn(1− e−µ∆t) ≤ Nn+1 −Nn ≤ K(1− e−µ∆t)−Nn(1− e−µ∆t)

by multiplying with (1− e−µ∆t);

µK

α+ µ
(eµ∆t − 1)−Nn(e

µ∆t − 1) ≤ eµ∆tNn+1 − eµ∆tNn ≤ K(eµ∆t − 1)−Nn(e
µ∆t − 1)

by multiplying with eµ∆t ;

µK

α+ µ
(eµ∆t − 1)−Nn+1(e

µ∆t − 1) ≤ Nn+1 −Nn ≤ K(eµ∆t − 1)−Nn+1(e
µ∆t − 1)

by adding Nn+1 to all sides and simplifying.

Equation (3.2.34) is obtained in a similar manner.

In summary, we have the following result:

Theorem 3.2.11. Explicit exact schemes of (3.2.11) are given by Equations (3.2.31) and

(3.2.32), whereas Equations (3.2.33) and (3.2.34) represent implicit exact schemes.

Remark 3.2.12. The exact schemes given in Theorem 3.2.11 are not in contradiction with

the conservation law (3.2.11) since we also have the “less” sharp conservation law

µ

α+ µ
(µK − (α+ µ)N) ≤ N ′ ≤ (α+ µ)K − µN.

Let us denote by φ = φ(∆t) the different denominator functions of the discrete deriva-

tive in the exact schemes presented above. For all these schemes, the denominator satisfies

the asymptotic property

φ(∆t) = h+O(h2), where h = ∆t. (3.2.35)

This fact explains why we will, in what follows, replace the traditional denominator h by

any function φ(h) that meets the requirement (3.2.35). Such a function being fixed, we
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consider for the SIR model (3.2.5)− (3.2.7), the following NSFD scheme:

Sn+1 − Sn
φ(h)

= µK − C(Nn)

Sn+1 + In +Rn

InSn+1 − µSn+1 (3.2.36)

In+1 − In
φ(h)

=
C(Nn)

Sn+1 + In +Rn

InSn+1 − (α+ µ+ γ)In+1 (3.2.37)

Rn+1 −Rn

φ(h)
= γIn+1 − µRn+1, (3.2.38)

where Nn = Sn + In +Rn.

By adding (3.2.36)− (3.2.38), we get the equation

Nn+1 −Nn

φ(h)
= µ(K −Nn+1)− αIn+1. (3.2.39)

Remark 3.2.13. The function C(N) is generally implicit in N , which makes sense to

approximate it by C(Nn). In the case when C(N) is explicit (as in many applications),

it might be useful to approximate it by C(Nn+1). This will be considered later on in the

discussion of the specific examples presented in the frequently used contact rates, Section

3.4.

Proposition 3.2.14. Assume that Sn ≥ 0, In ≥ 0 and Rn ≥ 0 are given. Then Equation

(3.2.36) admits a unique solution Sn+1 ≥ 0 given explicitly in (3.2.43) below.

Proof: Assume that Sn ≥ 0, In ≥ 0 and Rn ≥ 0 are given. Then Equation (3.2.36)

is equivalent to the following quadratic equation in Sn+1:

AS2
n+1 +BSn+1 +D = 0.

Here

A = 1 + µφ > 0, (3.2.40)

B = (1 + µφ)(In +Rn) + C(Nn)φIn − (Sn + µφK), (3.2.41)

and D = −(Sn + µφK)(In +Rn) < 0. (3.2.42)

Hence,

Sn+1 =
−B +

√
B2 − 4AD

2A
≥ 0 (3.2.43)

is the only nonnegative solution. 2
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From the computational point of view, it is better to write the NSFD scheme (3.2.36)−

(3.2.39) in the following form, Sn+1 being given by (3.2.43),

In+1 =

(
C(Nn)

Sn+1+In+Rn
φSn+1 + 1

)
In

1 + (α+ µ+ γ)φ
(3.2.44)

Rn+1 =
Rn + γφIn+1

1 + µφ
(3.2.45)

Nn+1 =
Nn + (µK − αIn+1)φ

1 + µφ
. (3.2.46)

From now on, we want to show that the NSFD scheme (3.2.36)− (3.2.38) is dynamically

consistent with the properties of the continuous SIR model (3.2.5)− (3.2.7). The first set

of properties is contained in Propositions 3.2.15 – 3.2.17 which are summarized in Corollary

3.2.18.

Proposition 3.2.15. The NSFD scheme (3.2.36)− (3.2.37) preserves the positivity prop-

erty.

Proof: We use the principle of mathematical induction. Assume that we have S0 ≥

0, I0 ≥ 0 and R0 ≥ 0. Then S1 ≥ 0 by Proposition 3.2.14 (cf (3.2.43)). This incorporated

in (3.2.44) gives I1 ≥ 0, which in turn leads to R1 ≥ 0 if plugged in (3.2.45).

Assume that we have Sn ≥ 0, In ≥ 0 and Rn ≥ 0. Then the same argument of using

the following Gauss–Seidel cycle in the formulae (3.2.43)− (3.2.45) applies:

(Sn ≥ 0, In ≥ 0) → (Sn+1 ≥ 0, In ≥ 0) → (In+1 ≥ 0, Rn ≥ 0) → Rn+1 ≥ 0.

This proves the claim for n+ 1. 2

Proposition 3.2.16. The NSFD scheme (3.2.36) − (3.2.37) replicates the conservation

law (3.2.11) in the following specific form:

µK − (α+ µ)Nn+1 ≤
Nn+1 −Nn

φ(h)
≤ µK − µNn+1.

Proof: This is a direct consequence of (3.2.39) and of Proposition 3.2.15, where

Nn ≥ 0. 2

Proposition 3.2.17. The NSFD scheme (3.2.36)− (3.2.37) is dynamically consistent with

respect to the boundedness property, i.e. 0 ≤ Nn ≤ K for any n whenever 0 ≤ N0 ≤ K.
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Proof: From Proposition 3.2.16, we have

Nn

1 + (α+ µ)φ
+

µφK

1 + (α+ µ)φ
≤ Nn+1 ≤

Nn

1 + µφ
+

µKφ

1 + µφ
.

By using the discrete Gronwall inequality (Theorem 2.3.4) from the right and the left side,

we obtain

Nn ≤ K + (N0 −K)(1 + µφ)−n)

and

Nn ≥ N0[1 + (α+ µ)φ]−n +
(
1− [1 + (α+ µ)φ]−n

) µK

α+ µ
,

respectively. The combination of the above two inequalities leads to 0 ≤ Nn ≤ K if

0 ≤ N0 ≤ K. 2

At this point in time, Propositions 3.2.15, 3.2.16 and 3.2.17 can be summarized as

follows:

Corollary 3.2.18. The NSFD scheme (3.2.36) − (3.2.37) defines a discrete dynamical

system on the same biologically feasible domain as for the continuous model:

Ω = {(S, I, R) ∈ R3
+ : 0 ≤ S + I +R = N ≤ K}.

Furthermore, the system is dissipative.

The second set of properties is related to the fixed points of the NSFD scheme (3.2.36)−

(3.2.39) and to their stability.

Proposition 3.2.19. The NSFD scheme (3.2.36) − (3.2.37) has no ghost or spurious

equilibria. In other words, the disease–free equilibrium E0 = (K, 0, 0) of the continuous

model (3.2.5) − (3.2.7) is the only fixed point of the discrete system (3.2.36) − (3.2.38)

whenever R0 ≤ 1, whereas, the endemic equilibrium E∞ = (S∞, I∞, R∞) is the only

additional fixed–point of the NSFD scheme for R0 > 1.

Proof: It is convenient to use the NSFD scheme (3.2.36)− (3.2.39) in the equivalent
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form (3.2.43)− (3.2.46) so that we can find the fixed–points of the system

−B +
√
B2 − 4AD

2A
= S, (3.2.47)

( C(N)
S+I+R

φS + 1)I

1 + (α+ µ+ γ)φ
= I, (3.2.48)

R + γφI

1 + µφ
= R, (3.2.49)

N + (µK − αI)φ

1 + µφ
= N. (3.2.50)

Equation (3.2.48) holds if and only if

I = 0 or C(N)S = N(α+ µ+ γ). (3.2.51)

If I = 0, then from (3.2.47) and (3.2.49) we get S = K and R = 0, respectively. Hence,

E0 = (K, 0, 0) is a fixed point of the NSFD scheme.

If the second condition holds in (3.2.51) with I > 0, then (3.2.51) with (3.2.16) give

S =
NC(K)

C(N)R0

. (3.2.52)

From Equation (3.2.50) and Equation (3.2.49), we obtain

I =
µ

α
(K −N) and R =

γ

α
(K −N). (3.2.53)

From Equations (3.2.52) and (3.2.53), we get

NC(K)

C(N)R0

+
µ

α
(K −N) +

γ

α
(K −N) = N. (3.2.54)

If we simplified (3.2.54), it gives an implicit equation for N ∈ [0, K]:

αC(K) + (µ+ γ)KR0β(N) = (α+ µ+ γ)R0C(N),

or f(N) := αC(K) + (µ+ γ)KR0β(N)− (α+ µ+ γ)R0C(N) = 0. (3.2.55)

If R0 > 1, it follows from the proof of Theorem 3.2.7 that there exists a unique zero

N∞ of (3.2.55) in the interval (0, K), which helps us to find S∞, I∞ and R∞ from

(3.2.52) and (3.2.53), respectively. Hence, E∞ = (S∞, I∞, R∞) is the only fixed point of

the NSFD scheme.
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If R0 < 1, then from (3.2.55), f(K) = α C(K)(1 − R0) > 0, which implies that

f(N) > 0 for all N ∈ (0, K], because f is decreasing on (0, K]. Thus, f has no root in

(0, K) and the disease–free equilibrium point is the only fixed–point in this case.

If R0 = 1, then N = K is the unique zero of (3.2.55). Thus, from (3.2.52) and

(3.2.53), we have I = 0, R = 0 and S = K, respectively. 2

Proposition 3.2.20. The disease–free fixed point E0 = (K, 0, 0) of equations (3.2.36)−

(3.2.37) is a hyperbolic fixed point if R0 6= 1.

Proof: The Jacobian matrix of the system under consideration at E0 is

J(E0) =



1
1+µφ

−C(K)φ
1+µφ

0

0 C(K)φ+1
1+(α+µ+γ)φ

0

0 γφ
1+µφ

( C(K)φ+1
1+(α+µ+γ)φ

) 1
1+µφ


. (3.2.56)

Since,

C(K) = R0(α+ µ+ γ),

the characteristic equation can be written as

det(rI − J) =

(
r − 1

1 + µφ

)2(
r − 1 +R0(α+ µ+ γ)φ

1 + (α+ µ+ γ)φ

)
= 0.

This shows that

r1 =
1

1 + µφ
(3.2.57)

is an eigenvalue of J(E0) (with multiplicity two) and

r2 =
1 +R0(α+ µ+ γ)φ

1 + (α+ µ+ γ)φ
(3.2.58)

is a simple eigenvalue. By using Definition 2.3.8, and the assumption R0 6= 1, E0 is

hyperbolic fixed point. 2

The stability property of E0 reads as follows.

Theorem 3.2.21. For R0 < 1, the disease–free fixed point E0 = (K, 0, 0) is locally

asymptotically stable and unstable for R0 > 1.
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Proof: Since the fixed–point E0 is hyperbolic and in view of the expressions (3.2.57)

and (3.2.58), the theorem is a direct consequence of the linearization theorem of Hartman–

Grobman (Theorem 2.3.10) in its practical form given in Theorem 2.3.11. 2

Actually, we have more than the local asymptotic stability of E0, as stated in the next

theorem.

Theorem 3.2.22. For R0 < 1, the disease–free fixed point E0 is globally asymptotically

stable.

Proof: We know from Theorem 3.2.21 that E0 is stable for R0 < 1. Thus, the task

ahead of us is to prove that E0 is globally attractive. From Equation (3.2.44), we have

In+1 =

(
C(Nn)

Sn+1+In+Rn
φSn+1 + 1

)
In

1 + (α+ µ+ γ)φ
,

≤ (C(K)φ+ 1)In
1 + (α+ µ+ γ)φ

,

=
(R0(α+ µ+ γ)φ+ 1) In

1 + (α+ µ+ γ)φ
, by definition of R0.

Thus, In+1 ≤ DIn, where

D =
R0(α+ µ+ γ)φ+ 1

1 + (α+ µ+ γ)φ
.

Since 0 < D < 1 for R0 < 1, the sequence (In)n≥0 tends to zero for any initial value

0 ≤ I0 ≤ N0 ≤ K. Using this convergence in (3.2.45), we deduce that the sequence

(Rn)n≥0 converges equally to zero for any initial value 0 ≤ R0 ≤ N0 ≤ K. Finally ,

we consider Equation (3.2.43), with Equations (3.2.41) − (3.2.42), to conclude that the

sequence (Sn)n≥0 converges to K for any initial value 0 ≤ S0 ≤ N0 ≤ K. Hence, the

theorem is proved. 2

Remark 3.2.23. Along the lines of the proof of Theorem 3.2.22, one reads the discrete

counterpart of LaSalle Invariance Principle (Theorem 2.2.31 and Theorem 2.3.15).

Indeed, the function

V (E) ≡ V (S, I, R) := I

defined on the compact set Ω is a Lyapunov function for the discrete dynamical system

(3.2.43) − (3.2.45), which satisfies the conditions in Theorem 2.3.15. Thus, E0 is indeed

globally asymptotically stable.
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To study the stability of the unique endemic fixed point, E∞, we need the following

notation:

Let a function ϕ : R → R satisfy (3.2.35) such that

0 < ϕ(h) < 1 for h > 0. (3.2.59)

Let r1, r2 and r3 be the eigenvalues of the Jacobian matrices in (3.2.21) at the disease-free

equilibrium and endemic equilibrium. Let us define a denominator function

φ(h) =
ϕ(qh)

q
, where q = max{|r1|, |r2|, |r3|}. (3.2.60)

Then we have the following result:

Theorem 3.2.24. ForR0 > 1, the NSFD scheme (3.2.36)−(3.2.37) is elementary stable

whenever φ(h) is chosen according to (3.2.59) and (3.2.60).

Proof: To prove this theorem, we apply the technique in [4]. By Definition 2.3.20 of

elementary stability of a discrete scheme, we have to prove the following two facts:

1. The NSFD scheme (3.2.36)− (3.2.37) has only E0 and E∞ as fixed points.

2. These fixed points preserve the stability of the continuous system when applied to its

linearized system.

Part 1 is covered by Proposition 3.2.19. Regarding part 2, it is convenient to write the

(3.2.5)− (3.2.6) and (3.2.9) in matrix form. To this end , we introduce the vector notation

X = (S, I,N). Then our system (3.2.5)− (3.2.6) and (3.2.9) reads as

Ẋ = A(X)X + F, (3.2.61)

where

A(X) =



−β(N)I − µ 0 0

β(N)I −(α+ µ+ γ) 0

0 −α −µ


and
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F =



µK

0

µK


.

Likewise with Xn+1 = (Sn+1, In+1, Nn+1), the NSFD scheme (3.2.36) − (3.2.37) and

(3.2.39) can be written as

Xn+1 −Xn

φ
= B(Sn+1, Sn, In, Nn)Xn+1 + F, (3.2.62)

where

B(Sn+1, Sn, In, Nn) =



− C(Nn)In
Sn+1+Sn+Rn

− µ 0 0

C(Nn)In
Sn+1+Sn+Rn

−(α+ µ+ γ) 0

0 −α −µ


.

The linear approximation of the continuous model about the endemic equilibrium point E∞

is

Ẏ = J(E∞)Y, Y = X − E∞, (3.2.63)

where J(E∞) is the corresponding Jacobian matrix at E∞ given in Equation (3.2.21). The

NSFD scheme (3.2.62) applied to (2.4.63) yields

Yn+1 − Yn
φ

= J(E∞)Yn+1, with Yn = Xn − E∞, (3.2.64)

or equivalently,

Yn+1 = (I − φJ(E∞))−1 Yn.

Notice that here (I − φJ(E∞)) is a non-singular matrix by definition of φ(h) in (3.2.60).

Notice also that the eigenvalues (ri)
3
i=1 of J(E∞) are complete. Thus, the matrix J(E∞)

is diagonalizable and we have

S−1JS = diag(r1, r2, r3).
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If we substitute the dependent variables by

Z = S−1Y

and

Zn = S−1Yn,

then Equations (3.2.63) and (3.2.64) become

Ż = diag(r1, r2, r3)Z

and

Zn+1 = diag(
1

1− φr1
,

1

1− φr2
,

1

1− φr3
)Zn,

respectively. Since by Theorem 3.2.7, E∞ is locally asymptotically stable for (3.2.63), the

real parts of the eigenvalues r1, r2, and r3 are negative. Hence for the spectral radius of

the matrix (I − φJ(E∞))−1, we have:

ρ ((I − φJ(E∞))−1) = max{ 1
|1− φri|

: i = 1, 2, 3} (3.2.65)

= max{ 1√
1− 2φ(Rer1) + φ2|r1|2

,
1√

1− 2φ(Rer2) + φ2|r2|2
,

1√
1− 2φ(Rer3) + φ2|r3|2

}

< 1.

This shows that E∞ is locally asymptotically stable for the given NSFD scheme.

As for the Jacobian matrix J(E0) at the disease–free equilibrium, a similar argument to

the above shows that

ρ((I − φJ)−1) = max{ 1

1 + φµ
,

1

|1− φr3|
}

> 1,

because |1− φr3| < 1 and r1 = r2 = −µ. (see after Eq (3.2.21)) 2

From Theorem 3.2.21 and Theorem 3.2.22, we have the following bifurcation result:

Theorem 3.2.25. The NSFD model (3.2.36) − (3.2.37) is dynamically consistent with

the fact that the value R0 = 1 of the basic reproduction number is a forward bifurcation.
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3.3 SIS Model with General Contact Rate

In this section, we consider a second type of basic deterministic model for infectious diseases

which are spread by direct contact in a population. That is the SIS model which is among

the simplest models for diseases in which an infection does not confer immunity. The

total population is divided into two disjoint classes: susceptible individuals S to infection

and infective individuals I. Infective individuals return to susceptible class after an infective

period. The results presented here and in the next sections for the SIS model are published

in [41].

3.3.1 Quantitative and Qualitative Analysis

The SIS model with demographic effects and with disease induced death is given by

S ′ = µK − β(N)SI − µS + γI (3.3.1)

I ′ = β(N)SI − (α+ µ+ γ)I. (3.3.2)

The flow chart of the SIS model is given in Fig 3.2. The parameters used have the same

meaning as in Section 3.2. For convenience, we recall that

• µ is the natural death rate;

• α is the death rate induced by the disease;

• C(N) = Nβ(N) is the average contact rate by an infective;

• γ is a rate that infective individuals return to susceptible class;

• K is the carrying capacity of the environment;

• N is the total population at time t : N(t) = S(t) + I(t).

The qualitative properties of the SIS model are summarized in the following theorem.

Theorem 3.3.1. 1. The SIS model (3.3.1)− (3.3.2) is a dynamical system on

Ω = {(S, I) ∈ R2
+ : 0 ≤ S + I = N ≤ K}.

2. The basic reproduction number is R0 = C(K)
α+µ+γ

.
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Figure 3.2: Flow chart for SIS model.

3. If R0 < 1, the disease-free equilibrium E0 = (K, 0) is globally asymptotically stable.

4. If R0 > 1, E0 is unstable and there exists a unique endemic equilibrium

E∞ = (S∞, I∞), which is locally asymptotically stable.

5. The following conservation law holds:

µK − (α+ µ)N ≤ N ′ ≤ µ(K −N). (3.3.3)

Proof: This theorem is proved in a similar manner to the proofs of the corresponding

theorems in Section 3.2.

Remark 3.3.2. For SIS model (3.3.1)− (3.3.2), R0 = 1 is a forward bifurcation point.

Remark 3.3.3. In addition to the reasoning in Section 3.2, the local asymptotic stability

of the endemic equilibrium of the SIS model can be obtained by the following alternative

procedure. Indeed, the relevant Jacobian matrix,

J(E∞) =


β(N∞)(N∞ − 2I∞)− (µ+ α+ γ)

(
β′(N∞)(N∞ − I∞) + β(N∞)

)
I∞

−α −µ

 ,

reduces to

J(E∞) =


−β(N∞)I∞

(
β′(N∞)(N∞ − I∞) + β(N∞)

)
I∞

−α −µ

 ,
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because β(N∞)(N∞− I∞)− (µ+α+ δ) = 0, by the defining relation of an equilibrium

point. Clearly, the trace of J(E∞) is negative. For the two eigenvalues to be negative, the

determinant should be positive; we need to have

β′(N∞)(N∞ − I∞) + β(N∞) > 0,

which is true because

β′(N∞)(N∞ − I∞) + β(N∞) > β′(N∞)N∞ + β(N∞)

= (β(N)N)′|N=N∞

= C ′(N∞)

≥ 0.

Therefore, the endemic equilibrium point is locally asymptotically stable.

Remark 3.3.4. Analogous to Remark 3.2.7, when R0 > 1 and α = 0, the endemic

equilibrium is explicitly given by E∞ = (K − (µ+γ)
β

, K).

3.3.2 NSFD Schemes

In this subsection, we design dynamically consistent NSFD schemes for the classical SIS

model with general contact rate. The continuous and discrete conservation laws for the SIS

model (3.3.1) − (3.3.2) are exactly the same as the conservation laws (3.2.11) as well as

(3.2.31) and (3.2.33), though the variables have different meanings. Therefore, following

the procedure that led to the NSFD scheme (3.2.35) − (3.2.37) for the SIR model, we

consider for the SIS model the scheme

Sn+1 − Sn
φ

= µK − C(Nn)

Sn+1 + In
Sn+1In − µSn+1 + γIn (3.3.4)

In+1 − In
φ

=
C(Nn)

Sn+1 + In
Sn+1In − (α+ µ)In+1 − γIn. (3.3.5)

However, we have to approximate the linear term (α + µ+ γ)I in a nonlocal way in order

to obtain the essential equation

Nn+1 −Nn

φ
= µ(K −Nn+1)− αIn+1, (3.3.6)
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that leads to the conservation law

µK − (α+ µ)Nn+1 ≤
Nn+1 −Nn

φ
≤ µ(K −Nn+1). (3.3.7)

It should also be noted that the denominator function φ = φ(h) is chosen in accordance

with (3.2.35).

Of course for computation reasons, we use the following Gauss-Seidel equivalent for-

mulation of (3.3.4)− (3.3.6), which is the analogue of (3.2.43)− (3.2.46):

Sn+1 =
−B +

√
B2 − 4AD

2A
, (3.3.8)

In+1 =

(
C(Nn)
Sn+1+In

φSn+1 + (1− γφ)
)
In

1 + (α+ µ)φ
, (3.3.9)

Nn+1 =
Nn + (µK − αIn+1)φ

1 + µφ
, (3.3.10)

where,

A = 1 + µφ, (3.3.11)

B = [1 + (C(Nn) + µ− γ)φ] In − (Sn + µφK), (3.3.12)

and D = −(Sn + µφK + γφIn)In. (3.3.13)

The power of the NSFD scheme (3.3.4)−(3.3.5) is stated in the next theorem, the proof of

which can be reproduced from the SIR model word–for–word (see Corollary 3.2.18, Theorem

3.2.22, and Theorem 3.2.24):

Theorem 3.3.5. 1. The NSFD scheme is a dynamical system on

Ω = {(S, I) ∈ R2
+ : 0 ≤ S + I = N ≤ K}.

2. The discrete dynamical system defined by the NSFD scheme (2.5.4)− (2.5.5) has a

forward bifurcation at the point R0 = 1. That is

• If R0 < 1, the disease free fixed point E0 = (K, 0) is globally asymptotically

stable.

• If R0 > 1, E0 is an unstable fixed point and E∞ = (S∞, I∞) is the unique

endemic fixed point and it is locally asymptotically stable.

3. For R0 > 1, the NSFD scheme (3.3.4)− (3.3.5) is elementary stable.
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3.4 Frequently Used Contact Rates

3.4.1 Generalities

The extended formulation of the contact rate C(N) considered in the previous sections is

motivated by the most frequently used contact rates on which we discuss below. This also

gives us the opportunity to comment further on the general conditions (3.2.1), (3.2.3) and

(3.2.4).

The first formulation goes back to the beginning of the 20th century and is due to

Hamer and R. Ross. It is known as the “mass action principle or incidence ”and it reads as

follows:

Mass action principle: The rate of spread of infection is proportional to the product of

the susceptible population S and the infectious population I, the constant of proportionality

being λ > 0:

C(N) = λN , i.e. β(N) = λ. (3.4.1)

(The letters λ, b, etc. represent here and below various positive constants.)

Following the comments in [28], it might seem plausible that the population density,

and hence the contact rate, would increase with the population size. But the daily contact

patterns of people are often similar in large and small communities, cities and regions. For

human diseases and also for animal diseases such as mice in a mouse–room or animals in a

herd, the contact rate seems to be weakly dependent on the population size. As reported

by several studies [28], the simple mass action principle is not appropriate since it translates

the above–mentioned naive perception of having the contact rate increasing indefinitely

with the population size.

To address the shortcoming of the mass action principle, the standard incidence formu-

lation was introduced [47] on the basis of the following more realistic assumptions:

Standard incidence: The contact rate grows less rapidly as the population size in-

creases. More precisely, we take

C(N) = λ i.e β(N) =
λ

N
. (3.4.2)

The interaction between the infectious and the susceptible populations is naturally a complex

and highly nonlinear process. Several researchers have chosen standard incidence based
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formulations which involve much stronger nonlinearities than λSI. We quote here three of

these formulations:

• The Michaelis–Menten type of interaction corresponds to the contact rate

C(N) =
λN

1 + bN
, b > 0. (3.4.3)

The formula in Equation (3.4.3), which arises in pharmacology to model the basic

enzyme reaction [51], was used for the first time in epidemiology by Dietz [20].

• For population that mixes randomly, Heesterbeek et al. [27] suggested the contact

rate

C(N) =
λN

1 + bN +
√

1 + 2bN
, b > 0. (3.4.4)

• Rational power incidence is our final example for the transmission of disease in

cities of moderate size where the contact rate was tested to be a rational power of

the population [8]:

C(N) = λNa, (3.4.5)

for a very small number 0 < a < 1.

It should be noted that all these commonly used contact rates meet the general requirements

in (3.2.1). As mentioned earlier, the mass action incidence follows neither the less rapidly

grow property (3.2.3) nor the saturation property (3.2.4). On the contrary, both properties

are satisfied by the standard, the Michaelis–Menten and the saturated contact incidences.

Finally the rational power incidence fails to have saturation property though the contact

rate grows less rapidly as the population size increases.

For convenience, the different contact rates C(N) are summarized in Table 3.1 along

with the corresponding incidence rates and basic reproduction number, R0.

Remark 3.4.1. The use of different contact rates naturally raises the question of comparing

the models and identifying the best ones. The question can be answered by testing the

models on real data and experiment, an aspect that is beyond the scope of this dissertation.

Our interest in this dissertation is to provide the qualitative behavior of the contact rate
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Type of contact rate C(N) β(N)SI R0

Mass action incidence λN λSI λK
α+µ+γ

Rational power incidence λNa λNa−1SI λKa

α+µ+γ

Standard incidence λ λSI
N

λ
α+µ+γ

Michaelis–Menten reaction λN
1+bN

λSI
1+bN

λK
(1+bK)(α+µ+γ)

Saturated contact incidence λN
1+bN+

√
1+2bN

λSI
1+bN+

√
1+2bN

λK
(1+bK+

√
1+2bK)(α+µ+γ)

Table 3.1: Some types of contact rates.

C(N) with respect to its growth in comparison to the increase of N . In particular, consider

two models with contact rates C1(N) and C2(N) satisfying (3.2.1) and (3.2.3). If it can

be shown that

lim
N→∞

β1(N)

β2(N)
= 0,

then the model with C1(N) has its contact rate growing much less rapidly than N compared

to the other model which has also C2(N) growing less rapidly than N . An illustration of

this situation is given by the standard incidence and rational power incidence, respectively.

Remark 3.4.2. In some cases, it is necessary to express the contact rates as a function of

the susceptible population S and/or the infective population I. For instance, if the number

of infective individuals is very high in the population, then the exposure to the disease agent

is virtually certain [39]. Examples of contact rates of this type include the following:

• Michaelis – Menten type incidence rates [15, 47]:

C(S) =
λ

S + c
or C(I) =

λ

I + c
.

• Ratio–dependent type incidence rate [21]:

C(S, I) =
λ

bS + I
.

• Beddington–DeAngelis type incidence rate [13]:

C(S, I) =
λ

aS + bI + c
, where a, b, c > 0.
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• Nonlinear incidence rates of the form [37]:

C(S, I) = λIp−1Sq−1,

where p ≥ 1, q ≥ 1.

3.4.2 Illustrations for the SIR Model

This section is meant to illustrate theoretically, graphically and numerically the results we

obtained for the SIR model. We deal mainly with the SIR model with standard incidence

i.e. with contact rate given in (3.4.2):

S ′ = µK − λIS

N
− µS (3.4.6)

I ′ =
λIS

N
− (α+ µ+ γ)I (3.4.7)

R′ = γI − µR. (3.4.8)

By adding (3.4.6) − (3.4.8), we obtain the Equation (3.2.9). It should be noted that the

system of equations (3.4.6)−(3.4.8) is equivalent to the system of equations (3.4.6), (3.4.7)

and (3.2.9).

Remark 3.4.3. It is a common practice to present epidemiological models in terms of

fractions of the populations in the different compartments. In the current case, introducing

the fractions

s =
S

N
, i =

I

N
and r =

R

N
, (3.4.9)

the model (3.4.6)− (3.4.8) is equivalent to the system

s′ =
µK

N
− µK

N
s− (λ− α)si (3.4.10)

i′ = λsi− (α+ γ +
µK

N
)i+ αi2 (3.4.11)

r′ = γi− µK

N
r + αir, (3.4.12)

where s+ i+ r = 1.

Indeed from (3.4.9), we have

S ′ = s′N + sN ′,
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which in view of (3.4.6) and (3.2.9), yields

µK − λSI

N
− µS = s′N + s(µ(K −N)− αI).

Dividing the two sides by N , we obtain Equation (3.4.10). The other equations (3.4.11)

and (3.4.12) are obtained in a similar manner.

The presence, in the model (3.4.10)− (3.4.12), of the unknown function N(t) could be

a source of difficulty for the actual use of this formulation. To overcome this difficulty, the

model (3.4.10) − (3.4.12) is coupled with the conservation law (3.2.11) which, as shown

after this equation, yields

N(t) ≤ N(t) ≤ N(t),

where the lower and upper solutions are given by

N(t) = K + (N0 −K)e−µt

and

N(t) =
µK

α+ µ
+

(
N0 −

µK

α+ µ

)
e−(α+µ)t,

respectively. An exception to the above mentioned difficulty occurs when K is replaced by

the total population N(t). In this case, the population N(t) is a decreasing function, as

a result of (3.2.9). Furthermore, the model (3.4.10) − (3.4.12) reduces to the following

equations which can be fully studied without any problem:

s′ = µ− µs− (λ− α)si (3.4.13)

i′ = λsi− (α+ µ+ γ)i+ αi2 (3.4.14)

r′ = γi− µr + αir. (3.4.15)

Since the contact rate in the Equations (3.4.6) − (3.4.8) satisfies the condition given

in Equation (3.2.1), the results obtained in Section 3.2 hold and can be summarized as

follows:

Theorem 3.4.4. The SIR model (3.4.6)−(3.4.8) is a dynamical system on the biologically

feasible region

Ω = {(S, I, R) ∈ R3
+ : 0 ≤ S + I +R = N ≤ K}.

61

 
 
 



The basic reproduction number and the disease–free equilibrium point are

R0 =
λ

α+ µ+ γ
and E0 ≡ (S∗, I∗, R∗) = (K, 0, 0),

respectively.

The value 1 of the parameter R0 is a forward bifurcation point. More precisely, E0

is the unique equilibrium point whenever R0 < 1 and this equilibrium point is globally

asymptotically stable. When R0 > 1, a unique locally asymptotically stable endemic

equilibrium point E∞ is obtained:

E∞ ≡ (S∞, I∞, R∞) =

(
(µ+ γ)K

λ− α
,
µK(R0 − 1)

λ− α
,
γK(R0 − 1)

λ− α

)
.

Theorem 3.4.4 is illustrated in Figures 3.3–3.6 where the bifurcation diagrams are given.

In all these examples, we take K = 1000, µ = γ = 0.2, and α = 0.1 so that λ is the

parameter that makeR0 varies. The bifurcation diagrams corresponding to the mass action

(a) standard incidence (b) mass action

Figure 3.3: Bifurcation diagrams: I versus R0.

incidence are also given (Theorem 3.2.10). The similarity of these bifurcation diagrams

reinforces what we said in Remark 3.4.1: no conclusion can be made on the quality of the

model on the basis of the form of the contact rates unless the models are tested with real

data.

For our second series of illustrations, we propose a new example of contact rate:

C(N) =
λeN

1 + eN
, i. e. β(N) =

λeN

N(1 + eN)
, (3.4.16)
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(a) standard incidence (b) mass action

Figure 3.4: Bifurcation diagrams: S versus R0.

Here, λ is a positive constant. Despite its similarity with the Michaelis–Menten incidence

rate, the interest in this example is, as we will see, that the endemic equilibrium E∞ can

not be found explicitly. Our starting point is to establish the following result:

Proposition 3.4.5. The functions C(N) and β(N) in (3.4.16) satisfy the conditions stated

in (3.2.1) and (3.2.4).

Proof: The bounded function C(N) = λeN

1+eN is clearly increasing since

C ′(N) =
λ
(
eN(1 + eN)− e2N

)
(1 + eN)2

=
λeN

(1 + eN)2
> 0.

On the other hand, for β(N) = λeN

N(1+eN )
, we have

β′(N) =
λ
(
eN(N(1 + eN))− eN(1 + eN +NeN)

)
(N(1 + eN))2

=
λ
(
eN(N +NeN)− eN(1 + eN +NeN)

)
(N(1 + eN))2

=
λeN

(
N − (1 + eN)

)
(N(1 + eN))2

< 0.

This completes the proof. 2.

The underlying SIR model for the contact rate (3.4.16) is reproduced here for conve-
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(a) standard incidence (b) mass action

Figure 3.5: Bifurcation diagrams: R versus R0.

nience and reads as follows:

S ′ = µK − λeNSI

N(1 + eN)
− µS (3.4.17)

I ′ =
λeNSI

N(1 + eN)
− (α+ µ+ γ)I (3.4.18)

R′ = γI − µR (3.4.19)

N ′ = µ(K −N)− αI. (3.4.20)

In view of equation (3.2.16), the basic reproduction number is

R0 =
λeK

(1 + eK)(α+ µ+ γ)
.

The disease–free equilibrium is

E0 ≡ (S∗, I∗, N∗) = (K, 0, K).

However, the endemic equilibrium

E∞ = (S∞, I∞, N∞),

which is born when R0 > 1 cannot be found explicitly. It is rather given by (cf (3.2.25))

S∞ =
eKN∞(1 + eN∞)
R0eN∞(1 + eK)

, I∞ =
µ

λ

(
KR0(1 + eK)

eK
− N∞(1 + eN∞)

eN∞

)
, (3.4.21)

where N = N∞ is the unique solution of the equation

f(N) :=
λeN

1 + eN
(K −N)− α

(
λKeN

(α+ µ+ γ)(1 + eN )
−N

)
= 0, (3.4.22)
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(a) standard incidence (b) mass action

Figure 3.6: Bifurcation diagrams: N versus R0.

obtained from Equation (3.2.24) in the interval [0, K].

As a consequence of Proposition 3.4.5, the analogue of Theorem 3.4.4 holds for the

model (3.4.17) − (3.4.20). However, from (3.4.22), it is clear that N∞ cannot be found

explicitly when R0 > 1.

In order to approximate N∞, we use the bisection method presented in Remark 3.2.8

and applied it to Equation (3.4.22) to generate a sequence (Nn
∞)n≥1 of approximations.

This will then provide En
∞ via (3.4.21). The result is displayed on Fig 3.7 which gives the

approximations

S∞ = 17.1025, I∞ = 16.2137 R∞ = 38.3642, and N∞ = 71.6804.

In this figure, we used the values K = 1000, µ = 0.02, γ = 0.2, α = 0.1.

Our next aspect of interest in the process of illustrating the previous results for the SIR

model is to consider the NSFD scheme (3.2.36)−(3.2.38) for the SIR model (3.4.6)−(3.4.8),

with standard incidence. We have the NSFD scheme:

Sn+1 − Sn
φ(h)

= µK − λInSn+1

Sn+1 + In +Rn

− µSn+1 (3.4.23)

In+1 − In
φ(h)

=
λInSn+1

Sn+1 + In +Rn

− (α+ µ+ γ)In+1 (3.4.24)

Rn+1 −Rn

φ(h)
= γIn+1 − µRn+1 (3.4.25)

Nn+1 −Nn

φ(h)
= µ(K −Nn+1)− αIn+1, (3.4.26)
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Figure 3.7: Approximation of the endemic equilibrium by the bisection method.

where φ(h) = eµh−1
µ

.

For computational purpose, Equations (3.4.23)− (3.4.26) are rearranged into the form

(3.2.43) together with (3.2.44)− (3.2.46) that reduces to:

In+1 =
[(1 + λφ)Sn+1 + In +Rn]In

(Sn+1 + In +Rn)[1 + (α+ µ+ γ)φ]
(3.4.27)

Rn+1 =
Rn + γφIn+1

1 + µφ
(3.4.28)

Nn+1 =
Nn + (µK − αIn+1)φ

1 + µφ
. (3.4.29)

The qualitative properties of the SIR model (3.4.23) − (3.4.26) are summarized in the

following theorem.

Theorem 3.4.6. 1. The NSFD scheme (3.4.23)−(3.4.26) defines a discrete dynamical

system on the biologically feasible domain

Ω = {(S, I, R) ∈ R3
+ : 0 ≤ S + I +R = N ≤ K}.

2. The disease–free and the endemic fixed points are E0 = (K, 0, 0) and

E∞ =
(

(µ+γ)K
λ−α , µK(R0−1)

λ−α , γK(R0−1)
λ−α

)
where the basic reproduction number is R0 is

given in Theorem 3.4.4.

3. The disease–free fixed point E0 is globally asymptotically stable for R0 < 1 and

unstable for R0 > 1.

66

 
 
 



4. The NSFD scheme (3.4.23)− (3.4.26) is elementary stable.

Theorem 3.4.6 is illustrated in Figures 3.8–3.10, where we take the values K =

1000, µ = γ = 0.2, α = 0.1, λ = 1.3, h = 0.01 so that R0 = 2.6.

Figure 3.8: Susceptible individuals as a function of time with S0 = 990.

Figure 3.9: Infected individuals as a function of time with I0 = 10.
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Figure 3.10: Recovered individuals as a function of time with R0 = 0.

3.4.3 Illustrations for the SIS Model

The illustrations for the SIS model are based on the standard incidence formulation (3.4.30)−

(3.4.32) as well as the less classical model (3.4.33)− (3.4.35) given below.

S ′ = µK − λIS

N
− µS + γI (3.4.30)

I ′ =
λIS

N
− (α+ µ+ γ)I (3.4.31)

N ′ = µ(K −N)− αI (3.4.32)

S ′ = µK − λeN

N(1 + eN)
SI − µS + γI (3.4.33)

I ′ =
λeN

N(1 + eN)
SI − (α+ µ+ γ)I (3.4.34)

N ′ = µ(K −N)− αI. (3.4.35)

Given the similarity of the results with what was presented for the SIR model in Subsection

3.4.2, we proceed directly with the illustrations of Theorem 3.3.1 and Theorem 3.3.5.

Observe that the NSFD scheme for (3.4.30)− (3.4.32) is

Sn+1 − Sn
φ

= µK − λInSn+1

Sn+1 + In
− µSn+1 + γIn (3.4.36)

In+1 − In
φ

=
λInSn+1

Sn+1 + In
− (α+ µ)In+1 − γIn (3.4.37)

Nn+1 −Nn

φ
= µK − µNn+1 − αIn+1. (3.4.38)
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Fig 3.11 illustrates the approximation of the endemic equilibrium of the model (3.4.33) −

(3.4.35) by the bisection method, where K = 1000, µ = 0.02, γ = 0.2. The picture

gives the values S∞ = 5.1613, I∞ = 15.8065 and N∞ = 20.9678.

Figure 3.11: Endemic equilibrium by the bisection method for the SIS model.

The fact that R0 = 1 is a forward bifurcation is depicted in Figures 3.12–3.14, where

K = 1000, µ = γ = 0.2 and α = 0.1.

The performance of the NSFD scheme (3.4.36)− (3.4.38) is illustrated in Figures 3.15–

3.16, where K = 1000, µ = γ = 0.2, α = 0.1, λ = 1.3, and h = 0.01, which for

R0 > 1 display the LAS of the endemic equilibrium. For R0 < 1, analogously the disease–

free equilibrium is GAS.

3.4.4 Higher Order NSFD Schemes

In this subsection, we are interested in designing a higher order NSFD scheme for the

SIS model. We assume that N = K = constant and α = 0 so that the SIS model
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(a) standard incidence (b) mass action

Figure 3.12: Bifurcation diagrams: I versus R0.

(3.4.30)− (3.4.31) is reduced to the scalar equation

I ′ = (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I, (3.4.39)

where R0 = λ
µ+γ

. From (3.4.39), I = 0 and I = N(1− 1
R0

) are equilibrium points.

The higher order NSDF scheme we have in mind for (3.4.39) is the 4th Runge–Kutta

method introduced in (2.3.19). To this end and in accordance with Section 2.3.3, we define

the function

φ(h) =
h

1 + c[|λ− µ− γ|h]4
, (3.4.40)

where c > 0 is any constant.

The nonstandard Runge-Kutta scheme is

In+1 − In
φ(h)

=
1

6
(k1 + 2k2 + 2k3 + k4), (3.4.41)

where

f(I) = (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I

k1 = f(In)

k2 = f

(
In +

1

2
φ(h)k1

)
k3 = f

(
In +

1

2
φ(h)k2

)
and k4 = f (In + φ(h)k3) .
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(a) standard incidence (b) mass action

Figure 3.13: Bifurcation diagrams: S versus R0.

The method is illustrated in Table 3.2, which shows convergence of order 4. The excellence

performance of the nonstandard Runge-Kutta method is also illustrated in Fig 3.17 and Fig

3.18, which show the GAS of the DFE (R0 < 1) as well as the LAS of the EE and the

instability of DFE (R0 > 1). Note also that all discrete solutions are positive as should be,

whereas the standard Runge–Kutta method could produce negative solutions.
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(a) standard incidence (b) mass action

Figure 3.14: Bifurcation diagrams: N versus R0.

Figure 3.15: Susceptible individuals as a function of time with S0 = 990 and R0 = 2.6.
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Figure 3.16: Infected individuals as a function of time with I0 = 10 and R0 = 2.6.

t NSFD exact Error: h = 0.5 Error: h = 1 Error: h = 2

RK4 solution φ = 0.398 φ = 0.1961 φ = 0.030

0.0 80.000000 80.000000 1.421085e-014 1.421085e-014 1.421085e-014

18.0 23.573736 23.572750 9.854203e-004 1.036865e-002 1.576336e-001

36.0 8.620017 8.619360 6.480276e-004 1.036865e-002 1.659326e-001

54.0 3.366977 3.366612 3.647248e-004 5.837070e-003 9.375971e-002

72.0 1.347421 1.347230 1.915396e-004 4.944246e-002 3.066153e-003

90.0 0.544358 0.544262 9.610898e-005 1.538893e-003 2.491507e-002

108 0.220757 0.220710 4.664874e-005 7.471302e-004 1.214611e-002

126 0.089662 0.089640 2.208081e-005 3.537403e-004 5.774793e-003

144 0.036440 0.036429 1.025124e-005 1.642706e-004 2.692999e-003

162 0.014813 0.014809 4.687258e-006 7.513052e-005 1.236873e-003

180 0.006022 0.006020 2.117170e-006 3.394436e-005 5.611959e-004

198 0.002449 0.002448 9.468135e-007 1.518416e-005 2.521040e-004

Table 3.2: NS Runge-Kutta method with c = 100,R0 = 0.89
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Figure 3.17: NS Runge-Kutta scheme for I0 = 100 and I0 = 300.

Figure 3.18: NS Runge-Kutta scheme for I0 = 300.
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Chapter 4

SIS Model for the Spatial Spread of

an Epidemic

4.1 Introduction

In this chapter the classical SIS model studied in the previous chapter is extended to govern

the spread of disease in space. This is done by including a diffusion term. This leads to

a reaction–diffusion equation, the generalities and well–posedness of which are outlined in

Section 4.2. This is followed by the study of the specific SIS diffusion model from the

following point of view: well–posedness and continuous qualitative analysis (Section 4.3);

discrete qualitative and computational analysis (Section 4.4). Our main references for the

theoretical part are [38, 52, 54]

4.2 Generalities on Reaction–Diffusion Equations

In this section, we give some properties of one dimensional parabolic equations of the form

ut −Duxx = f(u). (4.2.1)

Equation (4.2.1) is referred to as a reaction–diffusion equation and the involved quantities

have the following meaning:

• The number D ≥ 0 is the diffusion–coefficient;
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• The function f : R → R defines the reaction term;

• The unknown function u : R× [0, ∞) → R represents the diffusion phenomenon.

Equation (4.2.1) is appended with the initial condition

u(x, 0) = u0(x), (4.2.2)

where the function u0 : R → R is given. Sometimes, Equation (4.2.1) is considered on the

sub–domain

[a, b]× [0, ∞) ⊂ R× [0, ∞), −∞ < a < b <∞,

in which case boundary conditions are prescribed at the end–points x = a and x = b.

Equation (4.2.1) is called linear in the case when

f(u) = αu+ β, (4.2.3)

where α and/or β can be functions of the variables (x, t). Otherwise, it is nonlinear.

The particular case when f(u) = 0 is known as the heat or diffusion equation:

ut −Duxx = 0. (4.2.4)

Theorem 4.2.1. Assume that u0 : R → R is continuous and bounded. Then the heat

equation (4.2.4) associated with the initial condition (4.2.2) is well–posed. That is, there

exists a unique solution u : R × [0, ∞) → R, which is continuous on R × [0, ∞),

C1 in the time variable t and C2 in the space variable x and satisfies the inequality

supx∈R |u(x, t)| ≤ supx∈R |u0(x)|. More precisely, we have

u(x, t) =

∫ ∞

−∞

u0(y)√
4πDt

e
−(x−y)2

4Dt dy. (4.2.5)

Proof: Theorem 4.2.1 is well–known. For convenience, we outline here how (4.2.5) is

obtained. We use the Fourier transform

v̂(y) =
1√
2π

∫ ∞

−∞
e−ixyv(x)dx

of a function v : R → R as well as the inverse Fourier transform

v(x) =
1√
2π

∫ ∞

−∞
eixyv̂(y)dy, (4.2.6)
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assuming that v and v̂ are such that these integrals make sense. Applying the Fourier

transform, the initial value problem (4.2.4), (4.2.2) is transformed into

dû

dt
+Dy2û = 0 (4.2.7)

û(y, 0) = û0(y) =
1√
2π

∫ ∞

−∞
e−ixyu0(x)dx. (4.2.8)

Here, we assume first that u0 has a compact support so that the integral in (4.2.8) is

convergent. The solution of (4.2.7)− (4.2.8) is

û(y, t) = û0(y)e
−Dy2t. (4.2.9)

We have successively,

u(x, t) =
1√
2π

∫ ∞

−∞
eixyû(y, t)dy (by inverse Fourier transform (4.2.6)),

=
1√
2π

∫ ∞

−∞
eixyû0(y)e

−Dy2tdy (by (4.2.9)),

=
1√
2π

∫ ∞

−∞
eixy

(
1√
2π

∫ ∞

−∞
e−iyzu0(z)dz

)
e−Dy

2tdy,

=
1

2π

∫ ∞

−∞
u0(z)

(∫ ∞

−∞
e−iy(x−z)−Dy

2tdy

)
dz.

In view of Cauchy theorem, we have [22]∫ ∞

−∞
e−iy(x−z)−Dy

2tdy =

√
π

Dt
e
−(x−y)2

4Dt .

Therefore, (4.2.5) gives the solution in this case.

When u0 has no compact support, we approximate it in the sense of uniform convergence

on compact sets by a sequence (uj0) of functions of compact support. The sequence (uj0)

can be constructed by truncation. Thus, we take the limit as j →∞ in

uj(x, t) =

∫ ∞

−∞

uj0(y)√
4πDt

e
−(x−y)2

4Dt dy,

and we get (4.2.5).

From the representation (4.2.5), we have

u(x, t) =

∫ ∞

−∞

u0(y)√
4πDt

e
−(x−y)2

4Dt dy ≤ sup
x∈R

|u0(x)| ∀t > 0, ∀ x ∈ R

because ∫ ∞

−∞

1√
4πDt

e
−x2

4Dt dx = 1, (4.2.10)

77

 
 
 



as a result of the following well–known fact:

1√
π

∫ ∞

−∞
e−z

2

dz = 1.

This completes the proof of the theorem. 2

Remark 4.2.2. From the solution (4.2.5) of the heat equation (4.2.4), (4.2.2), we intro-

duce the function

K(x, t) =

 1√
4πDt

e
−x2

4Dt , if x ∈ R, t > 0,

0, if x ∈ R, t < 0,

which is known as the fundamental solution of heat equation [22]. The kernel of convolution

type defined by K(x− y, t− s) is called the Poisson kernel. It will be used shortly.

Theorem 4.2.3. Let u0 be as in Theorem 4.2.1. Let g : R× [0, ∞) → R be a continuous

and bounded function in the x − variable. Then the linear nonhomogeneous initial value

problem

ut −Duxx = g(x, t) x ∈ R, t > 0 (4.2.11)

u(x, 0) = u0(x) (4.2.12)

admits a unique solution given by the formula

u(x, t) =
∫ ∞

−∞
K(x− y, t)u0(y)dy +

∫ t

0

∫ ∞

−∞
K(x− y, t− s)g(y, s)dyds. (4.2.13)

Furthermore, for every time T > 0, there exists CT > 0 such that

sup
x∈R

|u(x, t)| ≤ sup
x∈R

|u0(x)|+ CT sup
x∈R

|g(x, t)| for 0 ≤ t ≤ T. (4.2.14)

Proof: Observe that the integrals in (4.2.13) are convergent in view of the properties

of u0, g and K. From Theorem 4.2.1, the first integral in (4.2.13), i.e.

u1(x, t) =

∫ ∞

−∞
K(x− y, t)u0(y)dy,

is the unique solution of (4.2.4) and (4.2.2).

For a fixed time t > 0, denote by X[0, t], the characteristic function of the interval [0, t].

By the properties of the fundamental solution K(x, t) of the heat equation, the function

u2(x, t) defined by convolution as

u2(x, t) = K(x− ., t− .) ∗ X[0, t]g(. , .),

=

∫ t

0

∫ ∞

−∞
K(x− y, t− s)g(y, s)dyds
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is the solution of the initial value problem:

ut −Duxx = g(x, t) x ∈ R, t > 0 (4.2.15)

u(x, 0) = 0. (4.2.16)

Using the principle of superposition, which applies due to the linearity of the problem,

u1 + u2 is a solution of (4.2.11) − (4.2.12). The representation (4.2.13) proves the

uniqueness of the solution as well as the relation (4.2.14). 2.

In view of Theorem 4.2.3, it makes sense to expect the representation

u(x, t) =
∫ ∞

−∞
K(x− y, t)u0(y)dy +

∫ t

0

∫ ∞

−∞
K(x− y, t− s)f(u(y, s))dyds (4.2.17)

for any solution of (4.2.1)− (4.2.2). This is confirmed by the following result:

Lemma 4.2.4. Assume that for each fixed t > 0, the function f(v(x, t)) is continuous and

bounded whenever v is continuous and bounded. Then a function u = u(x, t) is a solution

of (4.2.1)− (4.2.2) if and only if u = u(x, t) is a solution of the integral equation (4.2.17).

Proof: If u = u(x, t) ∈ Cb(R) is a solution of (4.2.1)− (4.2.2), we set

g(x, t) = f(u(x, t)). Then by Theorem 4.2.3, u = u(x, t) is a solution of (4.2.17).

Conversely, if u = u(x, t) ∈ Cb(R) is a solution of (4.2.17), then by differentiation under

the sum, we have

ut(x, t)−Duxx(x, t) =
∫ ∞

∞
[Kt(x− y, t)−DKxx(x− y, t)]u0(y)dy

+
∫ t

0

∫ ∞

−∞
[Kt(x− y, t− s)−DKxx(x− y, t− s)] f(u(y, s))dyds

+
∫ ∞

−∞
K(x− y, 0)f(u(y, t))dy.

But, the property of the fundamental solution K(x− y, t) yields for x 6= y:

Kt(x− y, t)−DKxx(x− y, t) = 0.

Furthermore, by Theorem 4.2.1 applied to the function u0(x) := f(u(x, t)) which for each

fixed t > 0 is continuous and bounded, we have∫ ∞

−∞
K(x− y, 0)f(u(y, t))dy = f(u(x, t)).

Finally, from the representation (4.2.17), we have the initial condition (4.2.2). 2.
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Theorem 4.2.5. Consider the initial value problem (4.2.1)−(4.2.2). Assume that f(v(x))

is continuous and bounded if v is continuous and bounded. Assume also that u0 is a

continuous and bounded function. Assume further that f is a globally Lipschitz function

on R and f(0) = 0. Then there exists a unique solution

u : R× [0, ∞) → R,

of the reaction–diffusion equation (4.2.1) − (4.2.2), which is continuous on R × [0, ∞),

C2 in the space variable x and C1 in the time variable t.

Proof: To prove this theorem, we use the Banach contraction principle (see [60]).

Let Cb(R) be the space of all bounded continuous real–valued functions equipped with

the supremum norm. We introduce the space Ck consisting of continuous functions v :

[0, ∞) → Cb(R) such that

‖v‖Ck
:= sup

0≤t<∞
‖e−ktv(., t)‖Cb(R) = sup

0≤t<∞
e−kt sup

x∈R
|v(x, t)| <∞.

The expression ‖.‖ck , where k > 0 will be fixed shortly, provides a Banach structure to

Ck([0,∞);Cb(R)). We define an operator Φ on Ck by

(Φv)(x, t) =
∫ ∞
−∞

K(x− y, t)u0(y)dy +
∫ t

0

∫ ∞
−∞

K(x− y, t− s)f(v(y, s))dyds. (4.2.18)

By Lemma 4.2.4, it is clear that solving (4.2.1) − (4.2.2) is equivalent to finding fixed

point of the operator Φ:

Φu = u.

Let v ∈ Ck([0,∞);Cb(R)). Since u0 and f are continuous and bounded functions, the

function t (Φv)(., t) belongs to Ck. Thus, Φ operates from Ck into Ck.
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For v, w ∈ Ck, we have

|(Φv)(x, t)− (Φw)(x, t)| ≤
∫ t

0

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))− f(w(y, s))|dyds,

≤
∫ t

0

∫ ∞

−∞
K(x− y, t− s) sup

x∈R
|f(v(x, s))− f(w(x, s))|ds,

≤
∫ t

0

sup
x∈R

|f(v(x, s))− f(w(x, s))|ds (by (4.2.10)),

≤ L

∫ t

0

sup
x∈R

|v(x, s)− w(x, s)|ds ( f is globally Lipschitz),

≤ L sup
x∈R, s∈[0,∞)

e−ks|v(x, s)− w(x, s)|
∫ t

0

eksds,

≤ L

k
sup

x∈R, s∈[0,∞)

e−ks|v(x, s)− w(x, s)|ekt.

If we take supremum of both sides for x ∈ R and t ∈ [0, ∞), we get

‖Φv − Φw‖Ck
≤ L

k
‖v − w‖Ck

.

For the choice k > L, the operator Φ is a contraction on Ck. Therefore, the Banach

contraction principle guarantees the existence of a unique solution u ∈ Ck such that

Φu = u. 2

In order to relax the global Lipschitz condition, which is strong in applications, we

consider the next result.

Theorem 4.2.6. Assume that f and u0 are functions as in Theorem 4.2.5 with f being

only locally Lipschitz. That is, for every M > 0, there exists L ≡ LM > 0 such that

|f(v)− f(w)| ≤ LM |v − w|, ∀ |v| ≤M and |w| ≤M.

Then, there exists a time T > 0 such that the problem (4.2.1)− (4.2.2) admits a unique

solution on the interval [0, T ] that satisfies the relation

sup
x∈R, t∈[0, T ]

|u(x, t)| ≤ 2 sup
x∈R

|u0(x)|.

Proof: Let k > 0 and T > 0 to be fixed shortly. Define Ck to be the set of continuous

functions from [0, T ] into the set of functions Cb(R). We equip Ck with the structure of

a metric space through the distance

dk(v, u) = sup
x∈R, t∈[0,T ]

e−kt|v(x, t)− u(x, t)|.
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Define a subset G of Ck([0, T ];Cb(R)) by

G = {v ∈ Ck([0, T ]; Cb(R)) : sup
x∈R

|v(x, t)−
∫ ∞

−∞
K(x− y, t)u0(y)dy| ≤ sup

x∈R
|u0(x)|, t ∈ [0, T ]}.

The set G is nonempty, because v = 0 ∈ G. The set G is also a closed subset of Ck,

because any convergent sequence in G, has its limit in G.

Furthermore, for any v ∈ G, we have

sup
x∈R

|v(x, t)| ≤ 2 sup
x∈R

|u0(x)| =: M. (4.2.19)

Indeed from the the triangle inequality and the relation

sup
x∈R

|
∫ ∞

−∞
K(x− y, t)v(y, t)dy| ≤ sup

x∈R
|v(x, t)|, (4.2.20)

we get

sup
x∈R

|v(x, t)| ≤ sup
x∈R

|v(x, t)−
∫ ∞

−∞
K(x− y, t)u0(y)dy|+ sup

x∈R
|
∫ ∞

−∞
K(x− y, t)u0(y)dy|

≤ sup
x∈R

|u0(x)|+ sup
x∈R

|u0(x)|.

Moreover, taking supremum of both sides on t ∈ [0, T ], we obtain (4.2.19). We define on

G the operator Φ by the formula (4.2.18). By using the assumption on u0 and f , it is clear

that Φu is continuous. We claim that for a suitable time T > 0, Φ operates from G into

G. More precisely, for v ∈ G and t ∈ [0, T ], from (4.2.18) we have

|(Φv)(x, t)−
∫ ∞

−∞
K(x− y, t)u0(y)dy| ≤

∫ t

0

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))|dyds,

sup
x∈R

|(Φv)(x, t)−
∫ ∞

−∞
K(x− y, t)u0(y)dy| ≤ sup

x∈R

∫ t

0

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))|dyds,

≤
∫ t

0
sup
x∈R

|f(v(x, s))|ds, (by (4.2.10) and (4.2.20)),

≤ LM

∫ t

0
sup
x∈R

|v(x, s)|ds ( by the local Lipschitz

property of f applied to v, 0 and M = 2‖u0‖),

≤ 2LM
∫ t

0
sup
x∈R

|u0(x)|ds (by using (4.2.19)),

= 2LM t sup
x∈R

|u0(x)|,

≤ 2LMT sup
x∈R

|u0(x)|.

Thus, putting T = 1
2LM

, we have

sup
x∈R

|(Φv)(x, t)−
∫ ∞

−∞
K(x− y, t)u0(y)dy| ≤ sup

x∈R
|u0(x)|,
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which shows that Φ operates from G into G for this specific time T , which we use in what

follows.

For v, w ∈ G and 0 ≤ t ≤ T , we have

|(Φv)(x, t)− (Φw)(x, t)| ≤
∫ t

0

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))− f(w(y, s))|dyds

≤
∫ t

0
sup
x∈R

|f(v(x, s))− f(w(x, s))|ds (by (4.2.10) and (4.2.20)),

≤ LM

∫ t

0
sup
x∈R

|v(x, s)− w(x, s)|ds ( f is locally Lipschitz),

≤ LM sup
x∈R, s∈[0,T ]

e−ks|v(x, s)− w(x, s)|
∫ t

0
eksds,

≤ LM
k

sup
x∈R, s∈[0,T ]

e−ks|v(x, s)− w(x, s)|et.

The supremum of both sides for x ∈ R and t ∈ [0, T ] gives

sup
x∈R, t∈[0,T ]

e−kt|(Φv)(x, t)− (Φw)(x, t)‖ ≤ LM
k

sup
x∈R, t∈[0,T ]

e−kt|v(x, t)− w(x, t)|,

or

dk(Φv,Φw) ≤ LM
k
dk(v, w).

For k > LM , Φ is a contraction on G. Hence, by the Banach contraction princi-

ple, there exists a unique fixed point u ∈ G, which is the unique solution to the initial

value problem (4.2.1) − (4.2.2) and satisfies (4.2.19), by definition of G. Notice that the

Lipschitz condition and Gronwall inequality guarantee that there are no solutions outside

G. 2

Theorem 4.2.6 is even more disappointing than Theorem 4.2.5, because the solution

only exists locally. Fortunately, it is possible for this theorem to lead to the existence of

a global solution whenever some a priori estimate is available. This is clarified in the next

result.

Theorem 4.2.7. Assume that the conditions of Theorem 4.2.6 hold. Furthermore, we

assume that there exists a constant M > 0 such that for any finite time interval [T∗, T ] on

which (4.2.1) admits a solution u(x, t) with initial condition prescribed at t = T∗, we have

the a priori estimate

sup
x∈R, t∈[T∗,T ]

|u(x, t)| ≤M. (4.2.21)
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Then (4.2.1)− (4.2.2) possesses a unique global solution u : R× [0, ∞) → R that satisfies

(4.2.21).

Proof: We provide the details of the idea outlined in [38] and [54]. Given the estimate

(4.2.21), it makes sense that we take the initial condition such that supx∈R |u0(x)| ≤M .

By assumption, the function f is Lipschitz on the interval [−2M, 2M ] with Lipschitz

constant LM . Therefore, by Theorem 4.2.6, there exists a finite time T = 1
2LM

such that

(4.2.1)− (4.2.2) admits a unique solution on the interval [0, T ], which satisfies (4.2.21) for

this time T .

For m = 0, 1, 2, . . . , we define

Tm = mT.

Denote by u1(x, t) the solution of (4.2.1)− (4.2.2) on [0, T1]. Let us consider the equation

(4.2.1) for t ∈ [T1, T2] and look for a solution u2(x, t) that satisfies the initial condition

(4.2.2) replaced by

u2(x, T1) = u1(x, T1) =: u1,1(x). (4.2.22)

By Lemma 4.2.4, solving (4.2.1) and (4.2.22) is equivalent to solving the integral equation

u2(x, t) =
∫ ∞
−∞

K(x− y, t)u1,1(y)dy +
∫ t

T1

∫ ∞
−∞

K(x− y, t− s)f(u2(y, s))dyds. (4.2.23)

To solve (4.2.23), we introduce as previously, the following objects:

• By Ck, we denote the set of continuous functions from [T1, T2] into Cb(R) equipped

with the structure of complete metric space via the distance dk given by

dk(v, w) = sup
x∈R, t∈[T1, T2]

e−kt|v(x, t)− w(x, t)|,

where k will be fixed shortly;

• By G1, we denote the following closed subset of Ck:

G1 = {v ∈ Ck([T1, T2];Cb(R)) : sup
x∈R

|v(x, t)−
∫ ∞
−∞

K(x− y, t)u1,1(y)dy| ≤M

for T1 ≤ t ≤ T2};

Note that for v ∈ G1, triangle inequality and the fact that supx∈R |u1,1(x)| ≤ M

yield ‖v‖Cb
≤ 2M .
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• The operator Φ on G1 is defined by

(Φv)(x, t) =

∫ ∞

−∞
K(x− y, t)u1,1(y)dy +

∫ t

T1

∫ ∞

−∞
K(x− y, t− s)f(v(y, s))dyds.

We claim that G1 is invariant under Φ. Indeed, it is clear that for v ∈ Ck, Φv ∈ Ck. Next

for v ∈ G1, we have

sup
x∈R

|(Φv)(x, t)−
∫ ∞

−∞
K(x− y, t)u1,1(y)dy| ≤ sup

x∈R

∫ t

T1

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))|dyds,

≤
∫ t

T1

sup
x∈R

|f(v(x, s))|ds (by (4.2.10) and (4.2.20)),

≤ LM

∫ t

T1

sup
x∈R

|v(x, s)|ds, (f is Lipschitz on

[-2M, 2M] and ‖v‖Cb
≤ 2M),

≤ LM

∫ T2

T1

2Mds,

≤ LM2(T2 − T1)M,

= M by definition of Tm.

Thus, Φ operates from G1 into G1.

On the other hand, if v ∈ G1 and w ∈ G1 then for x ∈ R and t ∈ [T1, T2], we have

|(Φv)(x, t)− (Φw)(x, t)| ≤
∫ t

T1

∫ ∞

−∞
K(x− y, t− s)|f(v(y, s))− f(w(y, s))|dyds,

≤
∫ t

T1

∫ ∞

−∞
K(x− y, t− s) sup

x∈R
|f(v(x, s))− f(w(x, s))|dyds,

≤
∫ t

T1

sup
x∈R

|f(v(x, s))− f(w(x, s))|ds (by (4.2.10)),

≤ LM

∫ t

T1

sup
x∈R

|v(x, s)− w(x, s)|ds (f is Lipschitz on [−2M, 2M ]),

≤ LM sup
x∈R, s∈[T1, T2]

e−ks|v(x, s)− w(x, s)|
∫ t

T1

eksds,

≤ LM
k

sup
x∈R, s∈[T1, T2]

e−ks|v(x, s)− w(x, s)|ekt.

Thus,

e−kt|(Φv)(x, t)− (Φw)(x, t)| ≤ LM
k

sup
x∈R, s∈[T1, T2]

e−ks|v(x, s)− w(x, s)|.

Taking the supremum in x ∈ R and t ∈ [T1, T2] on both sides, we get

dk(Φv,Φw) ≤ LM
k
dk(v, w).
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For the choice k > LM , Φ is a contraction and has therefore a unique fixed point u2 in

G1.

Here again, there are no fixed–points of Φ outside G1. Since by Lemma 4.2.4, u2 ∈ G1

is the unique solution of (4.2.1) and (4.2.22) on [T1, T2], we infer from the assumption

(4.2.21) that

sup
x∈R, t∈[T1,T2]

|u2(x, t)| ≤M.

Proceeding by induction, we obtain a sequence of functions um ∈ Ck ([Tm−1, Tm];Cb(R))

such that each um is the unique solution of (4.2.1) that satisfies the initial condition, defined

recursively by

u1(x, 0) = u0(x) and um+1(x, Tm) = um(x, Tm) =: um,m(x) for m = 1, 2, 3, . . . ,

as well as the inequalities

sup
x∈R, t∈[Tm,Tm+1]

|um+1(x, t)−
∫ ∞

−∞
K(x− y, y)um,m(y)|dy ≤M

and

sup
x∈R, t∈[Tm, Tm+1]

|um+1(x, t)| ≤M.

Since ⋃
m≥0

[Tm, Tm+1] = [0, ∞),

the function

u :=
⋃
m≥0

um : R× [0, ∞) → [−M, M ]

is the unique solution of (4.2.1)− (4.2.2). 2

Finding solutions of Equation (4.2.1) is in general not possible. For this reason, we will

consider its simplest solutions and compare them with any other solutions when the time

evolves. The concept of these simple solution is clarified in the next definition.

Definition 4.2.8. [54] A function ū : R → R such that

f(ū) +Dūxx = 0, x ∈ R (4.2.24)

is called an equilibrium solution of the reaction–diffusion equation (4.2.1).
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Remark 4.2.9. For any ū : R → R satisfying (4.2.24), the time independent function

u : R× [0,∞) defined by u(x, t) = ū(x) is necessarily a solution of the reaction–diffusion

equation (4.2.1). This motivates the terminology in Definition 4.2.8.

The specific manner in which equilibrium solutions of (4.2.1) are compared to its other

solutions reads as follows:

Definition 4.2.10. [54] An equilibrium solution ū of (4.2.1) is said to be stable if for every

ε > 0, there exists δ > 0 such that for any initial condition u0 : R → R satisfying

supx∈R |u0(x)− ū(x)| < δ, we have supx∈R |u(x, t)− ū(x)| < ε for all t > 0. In addition,

if limt→∞ supx∈R |u(x, t)− ū(x)| = 0 for supx∈R |u0(x)− ū(x)| sufficiently small, then

ū is called locally asymptotically stable. If ū is not stable, it is said to be unstable.

In practice, the stability is established by the linearization process described below.

Let ū be an equilibrium solution of (4.2.1). By Taylor expansion about ū and by (4.2.24),

we have

f(u) ≈ f(ū) + f ′(ū)(u− ū),

= −Dūxx + f ′(ū)(u− ū).

Therefore, the nonlinear reaction–diffusion Equation (4.2.1) can be replaced by the linear

equation

Ψt = DΨxx + f ′(ū)Ψ, (4.2.25)

where Ψ = u − ū. By separation of variables, i.e Ψ(x, t) = ω(t)φ(x), Equation (4.2.25)

leads to the equation
ω′(t)

ω(t)
=
Dφ′′(x)

φ(x)
+ f ′(ū) = K,

which is equivalent to the system

ω′(t) = Kω(t) (4.2.26)

Dφ′′(x) = (K − f ′(ū))φ(x), (4.2.27)

where K is independent of x and t. We append (4.2.27) with the Dirichlet boundary

conditions

φ(0) = φ(b) = 0 (4.2.28)
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to make it a Sturm–Liouville problem. The stability of equilibrium solutions is determined

by the next theorem.

Theorem 4.2.11. Suppose that ū is an equilibrium solution of (4.2.1). If f ′(ū) < π2D
b2

,

then ū is locally asymptotically stable; if there exists an n ∈ N such that f ′(ū) > n2π2D
b2

,

then ū is an unstable equilibrium solution.

Proof: It is well–known that

Φn(x) =
2

b
sin
(nπ
b
x
)
, n = 1, 2, . . .

constitute the eigenfunctions of the Sturm–Liouville problem (4.2.27) − (4.2.28) with as-

sociated eigenvalues

Kn = f ′(ū)− n2π2D

b2
.

Equally, it is known that the sequence (φn)n≥1 is a Hilbert basis of the space L2(0, b).

Therefore, any solution u(x) = u(x, t) ∈ R× (0, b) admits the Fourier expansion

u(x, t) =
∞∑
n=1

cne
Knt sin

(nπ
b
x
)
, x ∈ (0, b), t > 0, (4.2.29)

where cn = 2
b

∫ b
0
u0(x) sin

(
nπx
b

)
. From Equation (4.2.29), it follows that ū(x) is locally

asymptotically stable if Kn < 0 or f ′(ū) < π2D
b2

≤ n2π2D
b2

for all n ∈ N and unstable if

there exists n ∈ N such that Kn > 0 or f ′(ū) > n2π2D
b2

. 2.

Remark 4.2.12. The linearization process is not applicable when the involved Sturm–

Liouville problem has at least one eigenvalue with zero real part.

4.3 SIS Epidemic Model with Diffusion

In this section, we assume that a population of size N = N(x, t) consists of only two

disjoint compartments, susceptible S = S(x, t) and infective I = I(x, t), which interact:

S(x, t) + I(x, t) = N(x, t). (4.3.1)

We model the dynamics of I and S by simple diffusion. Our additional assumption is that

the dispersion is completely random and has the same structural properties. Then the
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model is given by

St = µK − λIS

N
− µS + γI + Sxx (4.3.2)

It =
λIS

N
− (µ+ γ)I + Ixx. (4.3.3)

In general, a diffusion coefficient D, which could be species-dependent [20], is needed in

front of the terms Sxx and Ixx of the model (4.3.2)− (4.3.3). Here, we take D = 1, which

is possible by the dimensionless process.

By adding equations (4.3.2)− (4.3.3), we have the conservation law:

Nt = µ(K −N) +Nxx. (4.3.4)

In this model, there is no death induced by the disease. The assumptions in Chapter 3

regarding the parameters apply in this section and are recalled here for convenience:

• The constant µ > 0 is the birth or natural death rate.

• The constant γ > 0 is the rate infective individuals return to the susceptible class.

• The constant K is the carrying capacity of the environment.

We have used the standard incidence formulation where β(N) = λ
N

, though it is possible

to consider a general contact rate as in the previous chapters.

Theorem 4.3.1. Assume that Equation (4.3.4) is coupled with a continuous initial data

N0 : R → R,

N(x, 0) = N0(x), (4.3.5)

such that 0 ≤ N0(x) ≤ K. Then, Equation (4.3.4) − (4.3.5) admits a unique solution

N : R× [0,∞) → R that satisfies the condition 0 ≤ N(x, t) ≤ K.

Proof: For a given initial data N0(x), the existence of a unique solution N(x, t) for

(4.3.4)− (4.3.5) is guaranteed by Theorem 4.2.3. By the transformation

N(x, t) = K − u(x, t)e−µt
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(4.3.4)− (4.3.5), becomes the standard heat equation,

ut = uxx, (4.3.6)

u(x, 0) = K −N0(x), (4.3.7)

which, in view of Theorem 4.2.1 , has its unique solution u(x, t) represented by

u(x, t) =

∫ ∞

−∞

(K −N0(y))√
4πt

e
−(x−y)2

4t dy.

Hence, the corresponding solution N(x, t) of (4.3.4)− (4.3.5) is

N(x, t) = K − e−µt
∫ ∞

−∞

(K −N0(y))√
4πt

e
−(x−y)2

4t dy. (4.3.8)

By using Equation (4.3.8), we have 0 ≤ N(x, t) ≤ K, since 0 ≤ N0(x) ≤ K. 2

In what follows, the reaction–diffusion system (4.3.2)− (4.3.3) will be considered as a

scalar reaction–diffusion equation in the dependent variable I. This is possible, due to the

explicit expression (4.3.8) of the solution of (4.3.4)− (4.3.5) and to the equation (4.3.1),

which lead to the parabolic equation

It =
λI(N − I)

N
− (µ+ γ)I + Ixx. (4.3.9)

The fact that we are dealing with the spread of the disease in space implies biologically the

following for the basic reproduction number R0:

R0 =
λ

µ+ γ
> 1. (4.3.10)

In terms of this epidemiological threshold parameter, Equation (4.3.9) has the equivalent

formulation

It = (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I + Ixx. (4.3.11)

Theorem 4.3.2. Under the condition of Theorem 4.3.1, let us assume that Equation

(4.3.11) is coupled with the initial condition

I(x, 0) = I0(x), (4.3.12)

where I0 : R → R is a given continuous function such that 0 ≤ I0(x) < N0(x) ≤ K.

Then the reaction–diffusion equation (4.3.11) − (4.3.12) admits a unique solution I(x, t)

that satisfies the condition 0 ≤ I(x, t) ≤ N(x, t) ≤ K.
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Proof: We introduce the differential operator L defined by

L(I) = It − Ixx − (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I.

Let I be a solution of the problem (4.3.11) with initial condition 0 ≤ I0(x) ≤ N0(x).

It is clear that

L(0) = L(I) = 0.

On the other hand, we have

L(N) = Nt −Nxx − (λ− µ− γ)

(
1− 1

(1− 1
R0

)

)
N

= µ(K −N)− (λ− µ− γ)

(
1− 1

(1− 1
R0

)

)
N by (4.3.4)

> 0, since R0 > 1 ( see (4.3.10)) and 0 < N ≤ K.

Thus, we have

L(0) ≤ L(I) ≤ L(N) on R× (0,∞)

and

0 ≤ I0(x) ≤ N0(x) on R,

which show that the null function 0 is a sub–solution of (4.3.11) whereas the function N

is a super–solution of the same equation [25].

By the comparison theorem (see [38], [54]), we have

0 ≤ I(x, t) ≤ N(x, t) on R× (0,∞). (4.3.13)

In view of the fact that N ≤ K, the condition (4.3.13) means that any solution of

(4.3.11)− (4.3.12) satisfies a priori boundedness estimate. Since the function

f(I) = (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I (4.3.14)

is locally Lipschitz (being of class C∞), we apply Theorem 4.2.7 to conclude that the

problem (4.3.11)−(4.3.12) admits a unique solution I such that 0 ≤ I ≤ N. 2

The well–posedness of the problems (4.3.4) − (4.3.5) and (4.3.11) − (4.3.12) being

established, we are now interested in its stability analysis. A constant equilibrium solution
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(Ī , N̄) must satisfy the following system:

(λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I + Ixx = 0 (4.3.15)

µ(K −N) +Nxx = 0. (4.3.16)

Simple computation show that the constant equilibrium solutions are:

(Ī1, N̄) = (0, K) and (Ī2, N̄) =

(
K(1− 1

R0

), K

)
.

Theorem 4.3.3. The equilibrium solution N̄ = K of the conservation law (4.3.4) is globally

asymptotically stable. The equilibrium solution Ī1 = 0 of (4.3.11) is unstable whereas the

equilibrium solution Ī2 = K(1− 1
R0

) is locally asymptotically stable.

Proof: The GAS of N̄ = K for (4.3.4) follows from the explicit expression (4.3.8).

Regarding Ī1 and Ī2, we apply Theorem 4.2.11 where with f(I) given in (4.3.14). We have

f ′(0) = λ− µ− γ > 0 and f ′
(
K(1− 1

R0

)

)
= −(λ− µ− γ) < 0. 2

Remark 4.3.4. To get a nonconstant equilibrium solution (Ī , N̄) of (4.3.15) − (4.3.16),

we need to solve first Equation (4.3.16). Its general solution is

N̄(x) = c1e
√
µx + c2e

−√µx +K,

where c1 and c2 are constants. We plug this function into Equation (4.3.15) to determine

the corresponding component Ī of (Ī , N̄). Note that the resulting equation in Ī is a

Bernoulli equation when N is constant (N = K) and can therefore be easily solved. When

N is not a constant, the solution of the equation can be difficult.

Often, the disease is spread in space as a wave with speed c. It is therefore legitimate

to seek for traveling wave solutions in the following sense:

Definition 4.3.5. A traveling wave solution (TWS) with speed c > 0 for the equation

(4.3.11)− (4.3.12) is a solution I(x, t) of the form

I(x, t) = W (z), z = x− ct ∈ R (4.3.17)

such that

lim
z→±∞

W (z) ∈ R. (4.3.18)
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Theorem 4.3.6. A Traveling Wave Solution to (4.3.11) − (4.3.12) exists if and only if

N = K = constant.

Proof: Assume that (4.3.11)−(4.3.12) has a TWS. This implies that Equation (4.3.4)−

(4.3.5) also admits a TWS of the form

N(x, t) = M(z), z = x− ct ∈ R.

If we substitute this in Equation (4.3.4), we get

M ′′ + cM ′ + µ(K −M) = 0

which has the general solution

M(z) = c1e
r1z + c2e

r2z +K,

where

r1 =
−c−

√
c2 + 4µ

2
< 0,

r2 =
−c+

√
c2 + 4µ

2
> 0,

c1 ∈ R and c2 ∈ R. The analogue condition (4.3.18) applied to M(z) implies that

c1 = c2 = 0.

Hence, M(z) = K and N(x, t) = K = constant, as announced. Conversely, assume that

N = K = constant. We want to show that Equation (4.3.11)− (4.3.12) admits a TWS.

Let a traveling wave solution

I(x, t) = W (z) (4.3.19)

of the form (4.3.17) be such that W (z) is non-negative and bounded. Since I1 = 0 and

I2 = K(1− 1
R0

) > 0 are unstable and stable equilibrium solutions of (4.3.11) respectively,

we look for a TWS that satisfies

0 ≤ W (z) ≤ K

(
1− 1

R0

)
,

with the relation (4.3.18) being specifically

lim
z→−∞

W (z) = K

(
1− 1

R0

)
and lim

z→∞
W (z) = 0. (4.3.20)
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We have to determine the wave form W as well as the speed c. Using the chain rule, we

have from (4.3.17)

∂I

∂t
= −cdW

dz
= −cW ′ and

∂2I

∂x2
=
d2W

dz2
= W ′′.

Then Equation (4.3.11) becomes:

W ′′ + cW ′ + (λ− µ− γ)

(
1− R0W

K(R0 − 1)

)
W = 0. (4.3.21)

For the qualitative analysis of the equation (4.3.21), we make the substitution

W ′ = V

so that (4.3.21) is equivalent to first order system of autonomous differential equations

W ′ = V =: f(W,V ) (4.3.22)

V ′ = −cV − (λ− µ− γ)

(
1− R0W

K(R0 − 1)

)
W =: g(W,V ). (4.3.23)

Firstly, let D ⊂ R2 be a simply connected region. For the functions f and g in (4.3.22)−

(4.3.23) which are of class C1 (in fact C∞) on D, we have

∂f

∂W
+
∂g

∂V
= −c < 0

for any c > 0.

By Bendixson’s criterion (see Theorem 2.2.34), we infer that the system (4.3.22) −

(4.3.23) has no closed orbit lying entirely in D. Note that this statement holds true for any

simply connected region D.

Next, we observe that the equilibria of the system (4.3.22)− (4.3.23) are

P = (0, 0) and Q =

(
K(1− 1

R0

), 0

)
.

The Jacobian of the system being

J(W,V ) =

 0 1

−(λ− µ− γ)
(
1− 2WR0

K(R0−1)

)
−c

 ,

we have

J(0, 0) =

 0 1

−(λ− µ− γ) −c


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with eigenvalues

r1,2 =
−c±

√
c2 − 4(λ− µ− γ)

2
(4.3.24)

and

J(K(1− 1
R0

), 0) =

 0 1

λ− µ− γ −c


with eigenvalues

r3,4 =
−c±

√
c2 + 4(λ− µ− γ)

2
. (4.3.25)

Note that λ > µ+ γ by (4.3.10).

For c 6= 0, it follows from (4.3.24) and (4.3.25) that the eigenvalues have nonzero

real parts. Thus the equilibria are hyperbolic, which makes Hartman-Grobman theorem

applicable (see Definition 2.2.13 and Theorem 2.2.14). Applying this theorem, we find that

the equilibrium P = (0, 0) is locally asymptotically stable if c ≥ 2
√
λ− µ− γ, because the

eigenvalues are negative; whereas this equilibrium is a stable spiral if c < 2
√
λ− µ− γ,

because the eigenvalues are complex numbers with negative real parts.

Moreover the equilibrium Q = (K(1− 1
R0

), 0) is a saddle point, because the eigenvalues

are real numbers of opposite signs. Therefore, c ≥ 2
√
λ− µ− γ is the right wave speed

for the required TWS. Hence, for N = K = constant, Equation (4.3.11)− (4.3.12) admits

a TWS. 2

Remark 4.3.7. When N = K, Equation (4.3.11) is the famous Fisher equation, which

has been extensively studied (see [51]).

In addition to Theorem 4.3.6 which guarantees the existence of a TWS, we have the

next result which specifies its monotonic property.

Theorem 4.3.8. Assume that N(x, t) = K = constant. Then the TWS W (z) = I(x, t)

obtained in Theorem 4.3.6 is a monotonic decreasing function with horizontal asymptotes

W = 0 and W = K(1− 1
R0

) (see Fig 4.2).

Proof: Let c ≥ 2
√
λ− µ− γ be the speed of the TWS W (z), which exists and is

unique by Theorem 4.3.6. For convenience, we work in the phase plane W − V .
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Let E3 and E4 be the eigenspaces (associated with the eigenvalues r3 > 0 and r4 < 0,

respectively which are straight lines in this case)( see Fig 4.1). Then the trajectories on E3

leave Q whereas those on E4 are attracted by Q.

Let D be a simply connected subset of the positive sector W ≥ 0, V ≥ 0 such that D

is compact, invariant and contains the stable equilibrium point P = (0, 0) and the saddle

point Q = (K(1 − 1
R0

), 0). By Poincaré − Bendixon Theorem (Theorem 2.2.36) there

exists a unique trajectory S called separatrix which coincides with E3 near Q and such that

the omega limit, ω(S) = P and the alpha limit, α(S) = Q.

Furthermore any point R ∈ D\S is the initial point of a unique trajectory that does

not intersect with S and is attracted by P . Transposed to the z −W axes, the above–

constructed unique trajectory S constitutes the TWS W (z) which is a decreasing function

(see Fig 4.2). 2

Figure 4.1: Phase portrait for (4.3.20)− (4.3.21) when c ≥ 2
√
λ− µ− γ.

Remark 4.3.9. The explicit expression of the TWS is available in [10] and reads as

I(x, t) =
K(R0 − 1)

R0[1 + b exp(z)]2
, (4.3.26)

where

z =

√
λ− µ− γ√

6
x− 5

6
(λ− µ− γ)t

and b = constant.
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Figure 4.2: Traveling wave solution for c ≥ 2
√
λ− µ− γ.

4.4 Dynamically Consistent NSFD Schemes

In this section, we construct numerical schemes that are dynamically consistent with the

properties of the SIS-diffusion model stated in Theorems 4.3.1, 4.3.2 . We recall that the

time variable t ∈ [0,∞) and the space variable x ∈ R are replaced by the discrete variable

tk = k∆t, k ∈ N and xn = n∆x, n ∈ Z with ∆t and ∆x being the time and the space

step sizes, respectively. The notation ukn means an approximation of u(x, t) at x = xn and

t = tk.

We start with the conservation law (4.3.4) and we use the methodology based on

sub–equations as developed in [2] and [48].

The space independent equation of the conservation law (4.3.4) is the linear equation

Nt = µ(K −N), N(0) = N0 (4.4.1)

which has the exact solution

N(t) = (N0 −K)e−µt +K.

At the time t = tk+1, the exact solution

N(tk+1) = (N0 −K)e−µtk+1 +K (4.4.2)

= (N(tk)−K)e−µ∆t +K,
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has the equivalent formulation

Nk+1 −Nk

φ1(∆t)
= µ(K −Nk+1), (4.4.3)

or

Nk+1 −Nk

φ2(∆t)
= µ(K −Nk), (4.4.4)

where Nk = N(tk),

φ1(∆t) =
eµ∆t − 1

µ
and φ2(∆t) =

1− e−µ∆t

µ
. (4.4.5)

The equivalent equation (4.4.2), (4.4.3) or (4.4.4) is, following [48], the exact scheme of

(4.4.1). More generally, any scheme of the form

Nk+1 −Nk

φ(∆t)
= µ(K −Nk+1) (4.4.6)

or

Nk+1 −Nk

φ(∆t)
= µ(K −Nk) (4.4.7)

where the denominator function φ(∆t) satisfies the relation

φ(∆t) = ∆t+O(∆t2) (4.4.8)

is called a NSFD scheme for (4.4.1) (see Section 2.3.3).

The stationary equation of the conservation law (4.3.4) is the linear equation

Nxx + µ(K −N) = 0 (4.4.9)

or equivalently

uxx − µu = 0, where u := N −K. (4.4.10)

Equation (4.4.10) has general solutions u1(x) = e
√
µx and u2(x) = e−

√
µx. Thus setting

un = u(xn), the theory of linear difference equations shows that the second order linear

difference equation
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

un−1 e
√
µxn−1 e−

√
µxn−1

un e
√
µxn e−

√
µxn

un+1 e
√
µxn+1 e−

√
µxn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

or equivalently
un+1 − 2un + un−1

4
µ
sinh2(

√
µ∆x

2
)

− µun = 0

is the exact scheme of (4.4.10) (see [42]). Consequently, the exact scheme of the Equation

(4.4.9) is

Nn+1 − 2Nn +Nn−1

4
µ
sinh2(

√
µ∆x

2
)

+ µ(K −Nn) = 0. (4.4.11)

Again any scheme of the form

Nn+1 − 2Nn +Nn−1

ψ2(∆x)
+ µ(K −Nn) = 0, (4.4.12)

where

ψ(∆x) = ∆x+O(∆x2) (4.4.13)

is a NSFD scheme for (4.4.9).

We will also make use of the following NSFD scheme:

Nn+1 − 2Nn +Nn−1

ψ2(∆x)
+ µ

(
K − Nn+1 +Nn +Nn−1

3

)
= 0. (4.4.14)

Three possible combinations of (4.4.6), (4.4.7), (4.4.12) and (4.4.14) yield below three

NSFD schemes for the conservation law (4.3.4):

Nk+1
n −Nk

n

φ(∆t)
= µ(K −Nk+1

n ) +
Nk
n+1 − 2Nk

n +Nk
n−1

ψ2(∆x)
, (4.4.15)

Nk+1
n −Nk

n

φ(∆t)
= µ(K −Nk

n) +
Nk
n+1 − 2Nk

n +Nk
n−1

ψ2(∆x)
(4.4.16)

and

Nk+1
n −Nk

n

φ(∆t)
= µ

(
K −

Nk
n+1 +Nk

n +Nk
n−1

3

)
+
Nk
n+1 − 2Nk

n +Nk
n−1

ψ2(∆x)
. (4.4.17)
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For their implementation, the schemes (4.4.15), (4.4.16) and (4.4.17) are rearranged

into the following explicit forms:

Nk+1
n =

µφK + φ
ψ2 (N

k
n+1 +Nk

n−1) + (1− 2φ
ψ2 )N

k
n

1 + µφ
, (4.4.18)

Nk+1
n = µφK +

φ

ψ2
(Nk

n+1 +Nk
n−1) + (1− 2φ

ψ2
)Nk

n , (4.4.19)

and

Nk+1
n = µφK +

(
φ

ψ2
− µφ

3

)(
Nk
n+1 +Nk

n−1

)
+
(

1− µφ

3
− 2φ
ψ2

)
Nk
n . (4.4.20)

The methodology of sub–equations is also used for Equation (4.3.11). The space indepen-

dent equation of (4.3.11) reads as

It = (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I, I(0) = I0. (4.4.21)

To proceed, we assume for the moment that N is constant. Then (4.4.21) is the logistic

equation. Its exact solution is

I(t) =
N(1− 1

R0
)I0

I0 +
(
N(1− 1

R0
)− I0

)
e−(λ−µ−γ)t

. (4.4.22)

Thus, when N is constant the exact scheme of (4.4.22) is

I(tk+1) =
N(1− 1

R0
)I(tk)

I(tk) +
(
N(1− 1

R0
)− I(tk)

)
e−(λ−µ−γ)∆t

(4.4.23)

which is equivalent to

Ik+1 − Ik

(1−exp(−(λ−µ−γ)∆t))
λ−µ−γ

= (λ− µ− γ)

(
1− Ik+1

N(1− 1
R0

)

)
Ik. (4.4.24)

The stationary equation of (4.3.11) is

Ixx + (λ− µ− γ)

(
1− I

N(1− 1
R0

)

)
I = 0. (4.4.25)

To proceed, we assume once again that N is constant. Then Equation (4.4.25) is the type

of conservative oscillators investigated in [2] and [48]. Ignoring from (4.4.25) the nonlinear

part, we obtain the harmonic oscillator

Ixx + (λ− µ− γ)I = 0 (4.4.26)
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whose exact scheme, obtained using the procedure applied to (4.4.10), is (see [42] and

[48]):

In+1 − 2In + In−1

4
λ−µ−γ sin

2
(√

λ−µ−γ
2 ∆x

) + (λ− µ− γ)In = 0. (4.4.27)

At this point in time, there are several possibilities of extending (4.4.27) in order to have a

NFSD scheme that approximates the nonlinear equation (4.4.25) when N is constant. We

will use the NSFD scheme

In+1 − 2In + In−1

4
λ−µ−γ sin

2
(√

λ−µ−γ
2 ∆x

) + (λ− µ− γ)

(
1− In

N(1− 1
R0

)

)(
In+1 + In + In−1

3

)
= 0 (4.4.28)

investigated in [2], which has the advantage of replicating the property of conservation of

energy that characterizes Equation (4.4.25) when N is constant.

In view of (4.4.24) and (4.4.28), we can now consider the following NSFD schemes for

(4.4.21) and (4.4.25), respectively when N is not constant:

Ik+1 − Ik

1−exp[−(λ−µ−γ)∆t]
λ−µ−γ

= (λ− µ− γ)

(
1− Ik+1

Nk+1(1− 1
R0

)

)
, (4.4.29)

and

In+1 − 2In + In−1

4
λ−µ−γ sin

2
(√

λ−µ−γ
2 ∆x

) + (λ− µ− γ)

(
1− In

Nn(1− 1
R0

)

)(
In+1 + In + In+1

3

)
= 0. (4.4.30)

Combining (4.4.29) and (4.4.30), our NSFD scheme for (4.3.11) reads as

Ik+1
n − Ikn
φ(∆t)

= (λ− µ− γ)

(
1− Ik+1

n

Nk+1
n (1− 1

R0
)

)(
Ikn+1 + Ikn + Ikn−1

3

)

+
Ikn+1 − 2Ikn + Ikn−1

(ψ(∆x))2
, (4.4.31)

where

φ(∆t) =
1− exp [−(λ− µ− γ)∆t]

λ− µ− γ
and ψ(∆x) =

2√
λ− µ− γ

sin

(√
λ− µ− γ

2
∆x
)
. (4.4.32)

Note that the implementation of the NSFD scheme (3.7) is carried out by using its

equivalent formulation

Ik+1
n = Nk+1

n (1− 1
R0

)
φ
ψ2 (Ikn+1 + Ikn−1) +

(
1− 2φ

ψ2

)
Ikn + φ(λ− µ− γ)

(
Ik

n+1+I
k
n+Ik

n−1
3

)
Nk+1
n (1− 1

R0
) + φ(λ− µ− γ)

(
Ik

n+1+I
k
n+Ik

n−1
3

) . (4.4.33)

Remark 4.4.1. Simple manipulation shows that the NSFD scheme (4.4.31) also admits

the equivalent formulation

Ik+1
n − Ikn
φ(∆t)

= λ
Sk+1
n

Nk+1
n

(
Ikn+1 + Ikn + Ikn−1

3

)
− (µ+ γ)

(
Ikn+1 + Ikn + Ikn−1

3

)

+
Ikn+1 − 2Ikn + Ikn−1

ψ2(∆x)
, (4.4.34)
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which compares nicely with the original Equation (4.3.3). Furthermore, subtracting (4.4.34)

from (4.4.17), we obtain the following NSFD scheme for (4.3.2):

Sk+1
n − Skn
φ(∆t)

= µK − λSk+1
n

Nk+1
n

(
Ikn+1 + Ikn + Ikn−1

3

)
− µ

(
Skn+1 + Skn + Skn−1

3

)

+ γ

(
Ikn+1 + Ikn + Ikn−1

3

)
+

(
Skn+1 − 2Skn + Skn−1

ψ2(∆x)

)
. (4.4.35)

By rearranging (4.4.35), we get

Sk+1
n =

µφ
(
K − Sk

n+1+S
k
n+Sk

n−1
3

)
+ γφ

(
Ik

n+1+I
k
n+Ik

n−1
3

)
+ φ

ψ2

(
Skn+1 − 2Skn + Skn−1

)
+ Skn

1 + λφ

Nk+1
n

(
Ik

n+1+I
k
n+Ik

n−1
3

) . (4.4.36)

Remark 4.4.2. Since the conservation law (4.3.4) is studied in conjunction with the epi-

demic model (4.3.11), it makes sense to consider in the NSFD scheme (4.4.15)− (4.4.17)

the denominator functions in (4.4.32) where all the epidemiological parameters are involved

instead of the denominator functions φ1 in (4.4.3) and ψ in (4.4.11).

Theorem 4.4.3. Under the functional relation

φ

ψ2
=

1

3
(4.4.37)

between the step sizes and the condition

1− µφ ≥ 0, (4.4.38)

the NSFD scheme (4.4.17) replicates the positivity and boundedness properties of the exact

solution. This means, if 0 ≤ Nk
n ≤ K then 0 ≤ Nk+1

n ≤ K.

Proof: Assume that 0 ≤ Nk
n ≤ K for all k ∈ N and n ∈ Z. By using Equations

(4.4.37) and (4.4.38), Equation (4.4.20) is reduced into

Nk+1
n = µφK +

1
3

(
Nk
n+1 +Nk

n +Nk
n−1

)
(1− µφ) ≥ 0. (4.4.39)

Thus, Nk+1
n ≤ µφK +K(1− µφ), since Nk

n+1 +Nk
n +Nk

n−1 ≤ 3K.

= K. 2

Theorem 4.4.4. Under the functional relation

φ

ψ2
=

1

2
(4.4.40)

between the step sizes, the NSFD scheme (4.4.15) replicates the positivity and boundedness

properties of the exact solution. This means, if 0 ≤ Nk
n ≤ K then 0 ≤ Nk+1

n ≤ K.
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Proof: We assume that 0 ≤ Nk
n ≤ K. By using the functional relation (4.4.40), from

Equation (4.4.18), we have

0 ≤ Nk+1
n =

µφK +
Nk

n+1+Nk
n−1

2

1 + µφ

≤ K. 2

Theorem 4.4.5. Under the conditions of Theorem 4.4.3, the NSFD scheme (4.4.31)

replicates the positivity and boundedness properties of the exact solution. This means

if 0 ≤ Ikn ≤ Nk
n ≤ K then 0 ≤ Ik+1

n ≤ Nk+1
n ≤ K.

Proof: By using (4.4.37), Equations (4.4.33) and (4.4.36) are reduced into

Ik+1
n = Nk+1

n (1− 1
R0

)
1
3 (Ikn+1 + Ikn + Ikn−1) + φ(λ− µ− γ)

(
Ik

n+1+I
k
n+Ik

n−1
3

)
Nk+1
n (1− 1

R0
) + φ(λ− µ− γ)

(
Ik

n+1+I
k
n+Ik

n−1
3

) (4.4.41)

and

Sk+1
n =

µφ
(
K − Sk

n+1+S
k
n+Sk

n−1
3

)
+ γφ

(
Ik

n+1+I
k
n+Ik

n−1
3

)
+ 1

3

(
Skn+1S

k
n + Skn−1

)
1 + λφ

Nk+1
n

(
Ik

n+1+I
k
n+Ik

n−1
3

) , (4.4.42)

respectively. For 0 ≤ Ikn ≤ Nk
n ≤ K, from Theorem 4.4.3 and (4.4.41), we have

Nk+1
n ≥ 0 and Ik+1

n ≥ 0. Similarly, Equation (4.4.42) gives 0 ≤ Sk+1
n whenever

0 ≤ Skn ≤ Nk
n ≤ K. Thus, from

Sk+1
n + Ik+1

n = Nk+1
n ,

we have

0 ≤ Ik+1
n , Sk+1

n ≤ Nk+1
n ≤ K.

This completes the proof. 2

Theorem 4.4.5 is of course valid for traveling wave solution when N = K is constant.

More importantly, in this case, we have the next result where the condition between step

sizes is more relaxed.

Theorem 4.4.6. Under the functional relation (4.4.40), the NSFD scheme (4.4.33) repli-

cates the positivity and boundedness properties of the exact solution. More precisely,

0 ≤ Ikn ≤ K(1− 1
R0

) ⇒ 0 ≤ Ik+1
n ≤ K(1− 1

R0
), (4.4.43)

and K(1− 1
R0

) ≤ Ikn ≤ K ⇒ K(1− 1
R0

) ≤ Ik+1
n ≤ K. (4.4.44)
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Proof: By using (4.4.40), Equation (4.4.33) reduced into

Ik+1
n = K(1− 1

R0
)

1
2(Ikn+1 + Ikn−1) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

)
K(1− 1

R0
) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

) . (4.4.45)

By using the assumption 0 ≤ Ikn ≤ K(1− 1
R0

), we get the inequality:

Ikn+1 + Ikn−1

2
≤ K(1− 1

R0
). (4.4.46)

Adding

φ(λ− µ− γ)

(
Ikn+1 + Ikn + Ikn−1

3

)
in both sides of Equation (4.4.46), after some manipulations, gives

1
2

(
Ikn+1 + Ikn−1

)
+ φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

)
K(1− 1

R0
) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

) ≤ 1.

This combined with (4.4.45) yields

Ik+1
n ≤ K(1− 1

R0

).

On the other hand, assume that K(1− 1
R0

) ≤ Ikn ≤ K. By using the relations

K(1− 1
R0

) = K(1− 1
R0

)
K(1− 1

R0
) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

)
K(1− 1

R0
) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

) ,
and K(1− 1

R0
) ≤ 1

2
(Ikn+1 + Ikn−1) with Equation (4.4.45), we obtain

K(1− 1

R0

) ≤ Ik+1
n .

Further simplification of (4.4.45) gives

Ik+1
n = K

(1− 1
R0

)1
2(Ikn+1 + Ikn−1) + (1− 1

R0
)φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

)
K(1− 1

R0
) + φ(λ− µ− γ)

(
Ik
n+1+Ik

n+Ik
n−1

3

) ≤ K,

since
Ik
n+1+Ik

n−1

2
≤ K. 2

To conclude this chapter, we illustrate for the NSFD scheme (4.4.15) its dynamical

consistency with respect to positivity and boundedness, as stated in Theorem 4.4.4 (Fig 4.3).
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In Fig 4.4, the same thing is done for the NSFD scheme (4.4.31) whose properties are given

in Theorems 4.4.5 and 4.4.6. In both examples, we took λ = 1.3, µ = γ = 0.2, K = 100

so that R0 = 3.1. The initial conditions are taken to be N0(x) = 10 + 10 sin(2πx/5)

and I0(x) = 10 + 10 sin(2πx/5). The figures show that the positivity and boundedness

properties are indeed preserved.

Figure 4.3: NSFD scheme (4.4.15) and Theorem 4.4.4.
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Figure 4.4: NSFD scheme (4.4.31) and Theorem 4.4.6.
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Chapter 5

SIS–Volterra Integral Equation Model

5.1 Introduction

In the previous chapter, the classical SIS model which is equivalent to a specific class of

Volterra integral equations, was extended to a diffusion-reaction partial differential equation

to govern the spread of disease in space. In this chapter, we go a bit further in the

formulation of the SIS model by using some more general Volterra integral equations of the

second kind where the contact rate is assumed to be a function of the infective individuals.

One of the main advantages of this approach is that the period of infectivity is incorpo-

rated in the model. Furthermore, the formulation by Volterra integral equations permits us

to exhibit important biological phenomena, which do not arise in the simple setting of the

classical SIS model. These include the existence of one or multiple endemic equilibria, which

could be locally asymptotically stable even though the basic reproduction number is less

than the threshold value 1. This refers to the so-called backward bifurcation phenomenon.

Usually, for epidemiological models defined by a system of ordinary differential equations,

the backward bifurcation phenomenon arises when there are multiple strains of the disease

and there are multiple compartments of infective individuals [3, 24].

This chapter is meant to be a “simple” introduction to the role of Volterra integral

equations in epidemiology. We restrict the study to the SIS model following the work of

[57]. Our main focus is firstly on the existence and uniqueness of solutions of Volterra

integral equations (Section 5.2). Secondly, we formulate the SIS-Volterra integral equation

model in Section 5.3. This is followed by Section 5.4 where we demonstrate theoretically
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and computationally the existence of multiple endemic equilibria. The stability analysis of

equilibria of Volterra integral equations is omitted from this introductory study. We will

undertake this study elsewhere.

5.2 Generalities on Volterra Integral Equations

In this section, we essentially gather the material that is needed to prove well-posedness

results. This will then be applied to the epidemiological model considered in the next

section. Our standard reference in this section is [12].

Let f : [0, a] → R and g : ∆a × R → R be given functions where ∆a is the triangle

∆a := {(t, s) ∈ R2 : 0 ≤ s ≤ t < a}.

We are interested in finding a function x : [0, a] → R such that

x(t) = f(t) +

∫ t

0

g(t, s, x(s))ds. (5.2.1)

Notice that the number a can be finite or infinite. In the later case, we consider the

interval [0, ∞) instead of [0, ∞] and we write ∆ instead of ∆∞. Furthermore, we assume

that the integral in (5.2.1) is convergent.

Definition 5.2.1. Equation (5.2.1) is called a Volterra integral equation of the second

kind. When the unknown function is not involved outside the integral symbol, i.e

0 = f(t) +

∫ t

0

g(t, s, x(s))ds,

the equation is referred to as the Volterra integral equation of the first kind.

Remark 5.2.2. The fundamental difference between Volterra integral equations and ordi-

nary differential equations is seen on differentiating formally Equation (5.2.1) with respect

to the variable t. Indeed, in doing so, we obtain the following relation which is the so-called

integro-differential equation:

x′(t) = f ′(t) + g(t, t, x(t)) +

∫ t

0

∂g

∂t
(t, s, x(s))ds. (5.2.2)

Without any assumption on the data f and g, there is no hope for the Volterra integral

equation (5.2.1) to have a solution. In order to deal with the important aspect of existence

and uniqueness of solutions, we start with the following concept.
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Definition 5.2.3. A real-valued function g = g(t, s, x) defined on ∆a × R is said to be

globally Lipschitz in the third argument provided that there exists a constant L ≥ 0, called

Lipschitz constant, such that

|g(t, s, x1)− g(t, s, x2)| ≤ L|x1 − x2| (5.2.3)

for any (t, s, x1) and (t, s, x2) in the set ∆a × R.

Theorem 5.2.4. Assume that f : [0,∞) → R and g : ∆×R → R are bounded continuous

functions such that g is globally Lipschitz in the sense of Definition 5.2.3. Then there exists

a continuous function x : [0,∞) → R, which is the unique solution of the Volterra integral

equation (5.2.1).

Proof: We employ the Banach contraction principle (see [60]). To this end, we intro-

duce the space Ck([0, ∞); R) consisting of continuous real-valued functions x : [0, ∞) →

R such that supt∈[0,∞) e
−kt|x(t)| <∞. The number k will be determined shortly.

It is clear that Ck([0, ∞); R) is a Banach space under the norm

‖x‖Ck
:= sup

0≤t<∞
e−kt|x(t)|.

We consider the operator Φ on Ck([0, ∞); R) defined by

(Φx)(t) = f(t) +

∫ t

0

g(t, s, x(s))ds. (5.2.4)

It is also clear that solving (5.2.1) is equivalent to finding fixed-points of the operator Φ:

Φx = x.

Since f and g are bounded functions, the obviously continuous function t  (Φw)(t)

belongs to the space Ck([0, ∞); R) if w ∈ Ck([0, ∞); R). Thus, Φ operates from

Ck([0, ∞); R) into Ck([0, ∞); R).

Using the Lipschitz condition in Definition 5.2.3, with Lipschitz constant L, we have
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for v, w ∈ Ck([0, ∞); R):

|(Φv)(t)− (Φw)(t)| ≤
∫ t

0

|g(t, s, v(s))− g(t, s, w(s))|ds

≤ L

∫ t

0

|v(s)− w(s)|ds

= L

∫ t

0

ekse−ks|v(s)− w(s)|ds

≤ L‖v − w‖Ck

∫ t

0

eksds.

≤ L

k
‖v − w‖Ck

ekt.

Thus

e−kt|(Φv)(t)− (Φw)(t)| ≤ L

k
‖v − w‖Ck

and

‖Φv − Φw‖Ck
≤ L

k
‖v − w‖Ck

.

For the choice k > L, Φ is a contraction and has therefore a unique fixed point, solution

of Equation (5.2.1). 2

In the next result, we get rid of the boundedness assumption that was used in Theorem

5.2.4.

Theorem 5.2.5. Assume that f : [0,∞) → R and g : ∆ × R → R are continuous

functions such that g is globally Lipschitz in the sense of Definition 5.2.3. Then there

exists a continuous function x : [0,∞) → R, which is the unique solution of the Volterra

integral equation (5.2.1).

Proof: The difficulty to use the proof of Theorem 5.2.4 is in showing that the space

Ck([0, ∞); R) is invariant under the operator Φ defined in Equation (5.2.4).

To overcome this difficulty, we fix a time T > 0 and consider rather the space Ck([0, T ]; R)

of continuous real–valued functions on [0, T ] equipped with the structure of Banach space

through the norm

‖x‖Ck
:= sup

0≤t≤T
e−kt|x(t)|.

Then proceeding as in the proof of Theorem 5.2.4, Φ : Ck([0, T ]; R) → Ck([0, T ]; R)

is, for an appropriate choice of k > 0, a contraction that admits a unique fixed point
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x ∈ Ck([0, T ]; R), which is the unique solution of the Volterra integral equation (5.2.1)

for 0 ≤ t ≤ T .

Define

Tm = mT, m = 0, 1, 2, . . . .

What we did earlier can be rephrased as follows: There exists a continuous function x1 :

[0, T1] → R, which is the unique solution of the Volterra integral equation (5.2.1) for

0 ≤ t ≤ T1:

x1(t) = f(t) +

∫ t

0

g(t, s, x1(s))ds, h0(t) = f(t), 0 ≤ t ≤ T1. (5.2.5)

We want to obtain a solution x2 of the Volterra integral equation (5.2.1) for 0 ≤ t ≤ T2

such that

x2(t) = x1(t) for 0 ≤ t ≤ T1.

We look first at the restriction of x2(t) to T1 ≤ t ≤ T2, which we denote by x∗2(t):

x∗2 := x2|[T1, T2].

By translation, we have for 0 ≤ t ≤ T1:

x∗2(t+ T1) = f(t+ T1) +

∫ t+T1

0

g(t+ T1, s, x2(s))ds

x∗2(t+ T1) = h0(t+ T1) +

∫ T1

0

g((t+ T1, s, x1(s)))ds

+

∫ t+T1

T1

g(t+ T1, s, x
∗
2(s))ds. (5.2.6)

Thus, for T1 ≤ t ≤ T2, we have

x∗2(t) = h1(t) +

∫ t

T1

g(t, s, x∗2(s))ds, (5.2.7)

where

h1(t) = h0(t) +

∫ T1

0

g(t, s, x1(s))ds. (5.2.8)

As we did before, we can define a contraction operator Φ : Ck([T1, T2]; R) → Ck([T1, T2]; R)

whose fixed point x∗2 ∈ Ck([T1, T2]; R) is the unique solution of the integral equation

(5.2.7). The required solution of the Volterra integral equation (5.2.1) for 0 ≤ t ≤ T2 is

then defined by
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x2 = x1 ∪ x∗2 i.e x2(t) =

 x1(t), if 0 ≤ t ≤ T1

x∗2(t), if T1 ≤ t ≤ T2.

Assume by induction that two sequences (h0, h1, . . ., hm−1) and (x1, x2, . . ., xm) of

continuous functions have been constructed such that for Ti−1 ≤ t ≤ Ti,

i = 2, 3, . . . ,m, the following holds:

hi−1(t) = hi−2(t) +

∫ Ti−1

0

g(t, s, xi−1(s)ds,

and

xi(t) =

 xi−1(t), if 0 ≤ t ≤ Ti−1

x∗i (t), if Ti−1 ≤ t ≤ Ti,

where, x∗i is the unique solution of the integral equation

x∗i (t) = hi−1(t) +

∫ t

Ti−1

g(t, s, x∗i (s))ds,

and xi is the unique solution of the Volterra integral equation (5.2.1) for 0 ≤ t ≤ Ti.

To construct the functions hm, x∗m+1 and xm+1, we proceed as we did for the

construction of x2 from x1. More precisely, we want to obtain the solution xm+1 of the

Volterra integral equation (5.2.1) for 0 ≤ t ≤ Tm+1, such that

xm+1(t) = xm(t), for 0 ≤ t ≤ Tm.

The restriction of xm+1 to [Tm, Tm+1] is denoted by

x∗m+1 := xm+1|[Tm, Tm+1].

By translation, we have for 0 ≤ t ≤ T ,

x∗m+1(t+ Tm) = f(t+ Tm) +

∫ t+Tm

0

g(t+ Tm, s, xm+1(s))ds

x∗m+1(t+ Tm) = h0(t+ Tm) +

∫ Tm

0

g((t+ Tm, s, xm(s))ds

+

∫ t+Tm

Tm

g(t+ T1, s, x
∗
m+1(s))ds. (5.2.9)

Thus, for Tm ≤ t ≤ Tm+1, we have

x∗m+1(t) = hm(t) +

∫ t

Tm

g(t, s, x∗m+1(s))ds, (5.2.10)
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where

hm(t) = hm−1(t) +

∫ Tm

0

g(t, s, xm(s))ds. (5.2.11)

As we did previously, we can define a contraction operator

Φ : Ck([Tm, Tm+1]; R) → Ck([Tm, Tm+1]; R)

whose fixed point x∗m+1 ∈ Ck([Tm, Tm+1]; R) is the unique solution of the integral equation

(5.2.10). The required solution xm+1 of the Volterra integral equation (5.2.1) for

0 ≤ t ≤ Tm+1 is then given by

xm+1 = xm ∪ x∗m+1 i.e xm+1(t) =

 xm(t), if 0 ≤ t ≤ Tm

x∗m+1(t), if Tm ≤ t ≤ Tm+1,

Hence, we have by induction constructed a sequence (xm)m≥1 of continuous functions

xm : [0, Tm] → R that are the unique solutions of the Volterra integral equation (5.2.1)

and that satisfy the compatibility condition

xm+1|[0, Tm] = xm.

Since ⋃
m≥0

[Tm, Tm+1] = [0, ∞),

the function

x(t) :=
⋃
m≥1

xm(t) : [0, ∞) → R

is the unique solution of (5.2.1). 2

In practice, the global Lipschitz requirement is weakened as follows.

Definition 5.2.6. With the notation in Definition 5.2.3, a function g is said to be locally

Lipschitz in the third argument provided that g restricted to any ∆a×[−b, b], where b > 0,

is Lipschitz in the third argument. That is, the inequality (5.2.3) is valid for (t, s, x1) and

(t, s, x2) in ∆a × [−b, b], with the constant L depending on b : L ≡ Lb.

Theorem 5.2.7. Let a > 0 and b > 0. Consider the compact set

Ua, b, f := {(t, s, x) ∈ ∆a × R : |x− f(t)| ≤ b}.

Assume that
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1. the function f is continuous on [0,a].

2. the function g is continuous on Ua, b, f .

3. the function g : Ua, b, f → R is Lipschitz in the third argument x with Lipschitz

constant L ≡ Lb, f > 0 not depending on the first two arguments.

Then the Volterra integral equation (5.2.1) has a unique solution on [0, T ], where

T = min{a, b

1 + max(t,s,x)∈Ua, b, f
|g(t, s, x)|

}.

Proof: We will, as in the previous situations, employ the fixed point theorem. But,

this time Ck is the set (not space) of continuous functions from [0, T ] into

V = {x ∈ R : |x− f(t)| ≤ b ∀t ∈ [0, a] },

where k will be fixed shortly. We equip Ck with the structure of a metric space through

the distance defined by

dk(v, w) = sup
0≤t≤T

e−kt|v(t)− w(t)|.

Since the set V ⊂ R is compact, the metric space Ck is complete. Similarly to (5.2.4), we

define on Ck the operator Φ:

(Φv)(t) = f(t) +

∫ t

0

g(t, s, v(s))ds, 0 ≤ t ≤ a. (5.2.12)

We claim that Φ operates from Ck into Ck. Indeed, for v ∈ Ck, the continuity of Φv is

obvious. Furthermore, we have

|(Φv)(t)− f(t)| ≤
∫ t

0

|g(t, s, v(s))|ds,

≤ max
(t,s,x)∈Ua,b,f

|g(t, s, x)|T,

≤ b. (by definition of T)
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On the other hand, we have for v, w ∈ Ck,

|(Φv)(t)− (Φw)(t)| ≤
∫ t

0

|g(t, s, v(s))− g(t, s, w(s))|ds,

≤ L

∫ t

0

|v(s)− w(s)|ds,

= L

∫ t

0

ekse−ks|v(s)− w(s)|ds,

≤ L sup
0≤s≤T

e−ks|v(s)− w(s)|
∫ t

0

eksds,

= L sup
0≤s≤T

e−ks|v(s)− w(s)|e
kt − 1

k
,

≤ L

k
sup

0≤s≤T
e−ks|v(s)− w(s)|ekt.

Thus,

sup
0≤t≤T

e−kt|(Φv)(t)− (Φw)(t)| ≤ L

k
sup

0≤t≤T
e−kt|v(t)− w(t)|

and

dk(Φv,Φw) ≤ L

k
dk(v, w).

By choosing k such that k > L, Φ is a contraction on Ck. Hence, the contraction mapping

theorem guarantees the existence of a unique solution for the Volterra integral equation

(5.2.1). 2.

While the global Lipschitz requirement in Theorem 5.2.4 and Theorem 5.2.5 are too

strong, the local existence and uniqueness Theorem 5.2.7 is equally not interesting, because

the end time is finite. In what follows, we establish the existence and uniqueness of a global

solution under realistic assumptions.

Theorem 5.2.8. Let f : [0,∞) → R be continuous. Let g : ∆×R → R be a continuous

function which is locally Lipschitz in the third argument and bounded in (s, t) ∈ 4. Assume

that there exists a constant M > 0 such that

sup
0≤s≤t

|x(s)− f(s)| ≤M (5.2.13)

for any time t ≥ 0 where a solution x(t) of Equation (5.2.1) exists. Then the Volterra

integral equation (5.2.1) admits one and only one solution defined on the interval [0,∞).
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Proof: Fix a > 0 and define b := sup0≤t≤a |f(t)|. With ε > 0 sufficiently small, we

associate Uε, the ε-neighborhood of Ua,b,f given by

Uε := {(t, s, x+ xε) : 0 ≤ s ≤ t ≤ a; |x− f(t)| ≤ b; |xε| ≤ ε}.

By the assumption made in the theorem, the function g : Uε → R is locally Lipschitz in

the third argument with Lipschitz constant independent on (s, t) and denoted by Lε. By

Theorem 5.2.7, there exists a unique solution x(t) of the Volterra integral equation (5.2.1)

on [0, Tε] for some finite time Tε > 0. Note that this solution must satisfy the relation

(5.2.13) for t = Tε.

For m = 0, 1, 2, ..., we define

Tm = m×min{a, ε

sup{|g(t, s, x)| : (t, s) ∈ 4, |x− f(t)| ≤ b}
}.

As in the proof of Theorem 5.2.5, we let Ck be the set of continuous function from

[Tm, Tm+1] into Vε = {x + xε ∈ R : |x − f(t)| ≤ b, |xε| ≤ ε}. We equip Ck with

the structure of a complete metric space via the distance dk given by

dk(v, w) = sup
t∈[Tm,Tm+1]

e−kt|v(t)− w(t)|,

where k is determined by proceeding as in the proof of Theorem 4.2.4 to get a contraction

operator Φ : Ck ([0, Tε]; Vε) → Ck ([0, Tε]; Vε) such that its fixed point is the unique

solution of (5.2.1).

As we did in the proof of Theorem 5.2.5, define the operator Φ on Ck([Tm, Tm+1]; Vε)

whose fixed–point x∗m+1 is the unique solution of the integral equation (5.2.10). Thus, the

solution xm+1 of the Volterra integral equation (5.2.1) for t ∈ [0, Tm+1] is given by

xm+1(t) =

 xm(t), if 0 ≤ t ≤ Tm

x∗m+1(t), if Tm ≤ t ≤ Tm+1,

Hence, by mathematical induction principle, we constructed a sequence (xm)m≥1 of con-

tinuous function

xm : [0, Tm] → Vε

which is the unique solution of the Volterra integral equation (5.2.1).

Since ⋃
m≥0

[Tm, Tm+1] = [0,∞),
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the function

x :=
⋃
m≥0

xm : [0, ∞) → Vε

is the unique solution of the Volterra integral equation (5.2.1). In view of (5.2.13), x(t)

satisfies |x(t)−f(t)| ≤M for all t ∈ [0,∞). 2

Remark 5.2.9. If the boundedness assumption on the function g(t, s, x) is not satisfied,

the argument similar to that in the proof of Theorem 5.2.8 shows that we can obtain a

sequence of times (Tm)m≥0 of which two consecutive times are not equally distanced and

such that
⋃
m≥0[Tm, Tm+1] 6= [0, ∞). Thus, the integral equation (5.2.1) has a unique

non-global solution x on
⋃
m≥0[Tm, Tm+1].

As for ordinary differential equations, the qualitative analysis of Volterra integral equa-

tions amounts to comparing solutions with simple solutions. The simplest of such solutions

are equilibrium points as defined as follows.

Definition 5.2.10. For a Volterra integral equation (5.2.1), a point x̄ ∈ R is called an

equilibrium solution if the constant function x(t) = x̄, t ≥ 0, is solution of the integral

equation:

x̄ = f(t; x̄) +

∫ t

0

g(t, s, x̄)ds.

Despite the fact that we intend to consider the qualitative analysis of Volterra integral

equations in our further work, it is worthwhile to specify here the stability of equilibrium

points. This is done in the next definition.

Definition 5.2.11. [12] Let x̄ be an equilibrium solution of Equation (5.2.1) where

f : [0, ∞) → R represents any possible initial function.

1. The equilibrium x̄ is (Lyapunov) stable if, for each ε > 0 and t0 ≥ 0, there exists

δ ≡ δ(ε, t0) > 0 such that for any f satisfying

|f(t)− x̄| < δ for t ∈ [0, t0], we have |x(t, f)− x̄| < ε

for all t ≥ t0, where the function x(t) ≡ x(t, f) is solution of the Volterra integral

equation (5.2.1).
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2. The equilibrium x̄ is uniformly stable if, for each ε > 0, there exists δ ≡ δ(ε) > 0

such that for t0 ≥ 0 and f satisfying

|f(t)− x̄| < δ for t ∈ [0, t0], we have |x(t, f)− x̄| < ε

for all t ≥ t0.

3. The equilibrium x̄ is locally asymptotically stable if it is stable and if for each t0 ≥ 0,

there exists η ≡ η(t0) > 0 such that for f satisfying

|f(t)− x̄| < η for t ∈ [0, t0], we have lim
t→∞

x(t, f) = x̄.

If the limit holds for any initial function f, x̄ is said to be globally asymptotically

stable.

4. The equilibrium x̄ is uniformly asymptotically stable, if it is uniformly stable and if

there exists a number η > 0(independent of t0) such that, for t0 ≥ 0, f satisfying

|f(t)− x̄| < η for t ∈ [0, t0], we have lim
t→∞

x(t, f) = x̄.

5.3 Model Formulation

In this section, we consider an extension of the classical SIS model in terms of the Volterra

integral equation. The study is based on the paper [57] and is aimed at a better under-

standing of this work. We will therefore elaborate whenever it is necessary and clarify some

of the concepts that are used .

As a motivation to this section, we consider the classical SIS model investigated in

Chapter 3. To simplify the presentation, we make once and for all the following assumptions:

• There is no death induced by the disease: α = 0;

• The recruitment term by birth is µN with the birth and the natural death rate

constants being both equal to µ > 0;

• The rate of leaving infective class for susceptible class is γ > 0.
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Under these assumptions, the total population

N = S + I (5.3.1)

is constant. As we did in Section 3.4, the SIS system can be written in terms of fractions

i = I
N

and s = S
N

as dependent variables (see (3.4.30)− (3.4.31)):

s′ = µ− Csi− µs+ γi (5.3.2)

i′ = Csi− (µ+ γ)i. (5.3.3)

Clearly, the system (5.3.2)− (5.3.3) is equivalent to the scalar equation

i′ = Ci(1− i)− (µ+ γ)i, (5.3.4)

which takes the following equivalent form in terms of the basic reproduction number

R0 =
C

µ+ γ
: (5.3.5)

i′ = C(1− i)i

(
1− 1

R0(1− i)

)
. (5.3.6)

By the fundamental theorem of calculus, Equation (5.3.6) is equivalent to the following

Volterra integral equation of the second kind:

i(t) = i0 +

∫ t

0

C [1− i(u)] i(u)

(
1− 1

R0(1− i(u))

)
du. (5.3.7)

In Equation (5.3.7), the integrand is the balance of infected individuals that are entering

or leaving the infective class at time 0 ≤ u ≤ t. More precisely, if R0 < 1, then we

will have infected individuals continuously leaving the infective class until the disease dies

out. On the contrary, if R0 > 1, then we will have infected individuals entering into the

infective class. This interpretation of Equation (5.3.7) is the basis of its extension that

we will present now. But, before we get there, it is worth mentioning that C ≡ C(N) in

(5.3.7) is a constant because N is constant. Therefore, it is impossible to subject C to

the conditions (3.2.1)− (3.2.4). What makes sense is to assume that the contact rate is a

function of infective individuals, namely

λ ≡ λ(i) ≥ 0 for i ∈ [0, 1]. (5.3.8)
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Other conditions on the contact rate λ(i) will be stated later.

Let us now come back to the issue of extending (5.3.7). In view of the fact that the

variable u runs from the time 0 to the time t, it is realistic to incorporate the infectivity

period or duration in the model. To this end, with i(u), representing the fraction of infective

individuals at time u ≥ 0, we associate the following notation and definitions:

• For 0 ≤ u ≤ t, Pu(t) denotes the fraction of individuals that one infective individual

has infected at time u and they remain infective through to time t;

• For 0 ≤ u ≤ t, pu(t) denotes the probability for an individual to be infected at time

u by one infective and to remain infective at least t time units before either dying or

returning to the susceptible class;

• We adopt the following convention: P (t) = P0(t).

Let an initial value function i0 ≡ i0(t), 0 ≤ t < ∞ be given. That is for a fixed

t ≥ 0, i0(t) is the fraction of individuals that were infective at time 0 and have remained

infective through to time t. Then the fraction of infective individuals at time t ≥ 0 is given

by the Volterra integral equation (of the second kind)

i(t) = i0(t) +

∫ t

0

λ (i(u)) [1− i(u)] i(u)Pu(t)pu(t)du. (5.3.9)

Note that the integral in (5.3.9) sums the individuals that entered the infective class at

time u ≥ 0 and have remained infective through to time t. Indeed, λ(i(u)) [1− i(u)] i(u)

represents the individuals that enter the infective class at time u ≥ 0, while Pu(t)pu(t) is

the fraction of all individuals infected at time u by one infective individual and remained

infective at least t time units before either dying or returning to the susceptible class.

Our next task is to make the Volterra integral equation (5.3.9) explicit and meaningful.

We start with the following assumptions:

(D1) The contact rate λ(i) is such that λ(i) > 0 on (0,∞), λ(0) ≥ 0,

λ(i) is continuous and the rate of infection λ(i)i(1− i)

has a continuous derivative on its domain; (5.3.10)

(D2) The function P (t) ≥ 0 is non-increasing, differentiable for t ≥ 0

and satisfies P (0+) = 1; (5.3.11)
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(D3) The initial function i0(t) ≥ 0 is non-increasing, differentiable

for t ≥ 0 and satisfies lim
t→∞

i0(t) = 0. (5.3.12)

Lemma 5.3.1. With µ > 0 being the death rate and γ > 0 the recovery rate, we have the

following results for 0 ≤ u ≤ t:

• The kernel Pu(t)pu(t) in (5.3.9) is of convolution type; more precisely:

pu(t) = p0(t− u) = e−(µ+γ)(t−u) (5.3.13)

Pu(t) = P (t− u). (5.3.14)

Proof: To show the first part of (5.3.13) and (5.3.14), let i0 = i(0) represent individuals

that are infective at time 0. As time progresses continuously from s = 0 to s = t, we know

by definition that P0(t) is the fraction of individuals i0 that were infected by one infective

at time s = 0 and have remained infective through to time s = t. Now, if the process

starts at time r = u and ends at time r = t, we make the change of dependent variable

ĩ(s) = i(s + u), where 0 ≤ s := r − u ≤ t − u. Then the fraction Pu(t) generated

by one infective from i(u) at time r = u through to time r = t is equal to the fraction

P0(t−u) = P (t−u) = Pu(t) due to the same one infective from i(u) at s = 0 through to

time s = t− u. The second part of (5.3.13) holds because the function t pu(t) satisfies

the following differential equation, (in accordance with Malthus law for the dynamics of

population [56]):

dpu(t)

dt
= −(µ+ γ)pu(t), with initial condition pu(0) = 1. (5.3.15)

Indeed, following [9], we have for small h > 0,

pu(t+ h)− pu(t)

h
=

pu(t)pt(t+ h)− pu(t)

h

= −1− pt(t+ h)

h
pu(t),

where we make use of the semi-group property

pr(t) = pr(s)ps(t) for r ≤ s ≤ t.

If we consider the limit of both sides as h → 0, we get the differential equation (5.3.15),

because 1− pt(t+ h) is by definition the probability of an individual to be removed from

the infective class by natural death or recovery from time t to time t+ h. 2
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Remark 5.3.2. As a consequence of Lemma 5.3.1 and in accordance with standard defini-

tion in statistics [1], the mean time an individual remains infective or the life expectancy of

an individual or the expected value of the function P (u) is given by the convergent integral

τ =

∫ ∞

0

P (u)e−(µ+γ)udu. (5.3.16)

Note that the improper integral in (5.3.16) is indeed convergent due to the assumptions

made on the bounded function P (t). Furthermore, in the language of ecologists [1], the

function t  e−(µ+γ)t or more generally, the function t  exp
(
−
∫ t

0
[µ(s) + γ(s)]ds

)
,

when the death rate µ and the recovery rate γ are not constant is called the “survival

function probability”.

In view of the notation in Lemma 5.3.1, the Volterra integral equation (5.3.9) becomes

i(t) = i0(t) +
∫ t

0
λ [i(u)] i(u) [1− i(u)]P (t− u)e−(µ+γ)(t−u)du. (5.3.17)

It should be noted that the presence of the variable t in the integrand makes the Volterra

integral equation (5.3.17) fundamentally different from the classical SIS model (5.3.7).

Indeed, if we formally differentiate Equation (5.3.17), with respect to the time variable t,

we obtain:

di

dt
(t) =

di0
dt

(t) + λ [i(t)] i(t) [1− i(t)]

+
∫ t

0

λ [i(u)] i(u) [1− i(u)]
(
dP (t− u)

dt
− (µ+ γ)

)
e−(µ+γ)(t−u)du. (5.3.18)

Thus, the Volterra integral equation (5.3.17) is rather equivalent to the integro-differential

equation (5.3.18), which is more complicated than the ODE (5.3.4) (for the study of

integro-differential equation, see [12] and [58]).

The well-posedness of the Volterra integral equation (5.3.17) is considered in the next

theorem.

Theorem 5.3.3. Assume that the function i0(t) satisfying the assumption (D3) or (5.3.12)

is such that 0 ≤ i0(t) ≤ 1. Then the Volterra integral equation (5.3.17) admits a unique

solution i : [0, ∞) → R, which is a continuous function satisfying the condition

0 ≤ i(t) ≤ 1 on [0, ∞). If in addition the datum i0 is differentiable on [0, ∞), then the

solution i is differentiable on the same interval.

Proof: To show the existence of a unique solution, we proceed as in the previous

sections by introducing the space Ck of real–valued continuous functions from [0, T ]
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equipped with the Banach structure defined by the norm

‖v‖Ck
= sup

t∈[0, T ]

e−kt|v(t)|,

where k > 0 and T will be determined shortly.

Define G a subset of Ck by

G = {i ∈ Ck : |i(t)− i0(t)| ≤ i0(t) ∀ t ∈ [0, T ]}

= {i ∈ Ck : 0 ≤ i(t) ≤ 2i0(t) ∀ t ∈ [0, T ]}.

Then the set G is nonempty, because i = 0 ∈ G. The set G is also a closed subset of Ck,

because any convergent sequence in G has its limit in G.

On G, we define the operator Φ by

(Φi)(t) = i0(t) +

∫ t

0

λ [i(u)] i(u) [1− i(u)]P (t− u)e−(µ+γ)(t−u)du.

Then, we have for i ∈ G and 0 ≤ t ≤ T

|(Φi)(t)− i0(t)| = |
∫ t

0

λ [i(u)] i(u) [1− i(u)]P (t− u)e−(µ+γ)(t−u)du|,

≤ t sup
s∈[0, 2]

[1 + |λ(s)(1− s)|] 2 sup
u∈[0, t]

i0(u),

≤ T sup
s∈[0, 2]

[1 + |λ(s)(1− s)|] 2 sup
u∈[0, T ]

i0(u).

We therefore take

T =
1

2 sups∈[0, 2][1 + |λ(s)(1− s)|]
,

which implies that

|(Φi)(t)− i0(t)| ≤ sup
u∈[0, T ]

i0(u)

and so Φ operates from G into G.

On the other hand, putting

g(t, u, i) = λ(i)i(1− i),

we have for i1, i2 ∈ G

|(Φi1)(t)− (Φi2)(t)| = |
∫ t

0

[g(t, u, i1)− g(t, u, i2)]P (t− u)e−(µ+γ)(t−u)du|

≤
∫ t

0

|g(t, u, i1)− g(t, u, i2)|P (t− u)e−(µ+γ)(t−u)du.
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Since g is Lipschitz on [0, 2] in the third argument in view of the assumption (D1) or

(5.3.10) with Lipschitz constant denoted by LG, we have

|(Φi1)(t)− (Φi2)(t)| ≤ LG

∫ t

0

|i1(u)− i2(u)|du,

= LG

∫ t

0

ekte−kt|i1(u)− i2(u)|du

≤ LG‖i1 − i2‖Ck

∫ t

0

ektdu

≤ LG
k
‖i1 − i2‖Ck

ekt.

This gives ‖Φi1 − Φi2‖Ck
≤ LG

k
‖i1 − i2‖Ck

. For the choice k > LG, the operator Φ is

a contraction. By Banach contraction principle, there exists a unique solution i ∈ G such

that

i(t) = i0(t) +

∫ t

0

λ [i(u)] i(u) [1− i(u)]P (t− u)e−(µ+γ)(t−u)du, 0 ≤ t ≤ T.

Using the translation method as in the proof of Theorem 5.2.8, it can be shown that the

integral equation (5.3.17) admits a global solution i which is continuous and satisfies the

inclusion

0 ≤ i(t) ≤ 2 ∀ t ∈ [0, ∞).

From the condition (5.3.1) or

s(t) + i(t) = 1, t ≥ 0 (5.3.19)

of the model, the integral equation (5.3.17) in i leads to the following integral equation in

s:

s(t) = s0(t)−
∫ t

0

λ[1− s(u)]s(u)[1− s(u)]P (t− u)e−(µ+γ)(t−u)du, (5.3.20)

where s0(t) = 1− i0(t).

By duality, it follows using the previous reasoning, that there exists a unique continuous

solution s : [0, ∞) → [0, 2] of the integral equation (5.3.20). In view of (5.3.19), we

necessarily have 0 ≤ i(t), s(t) ≤ 1.

When i0 is differentiable, then the solution i is differentiable with its derivative being

given by (5.3.18), because the integral equation is a continuous function in u and the

t P (t−u)e−(µ+γ)(t−u) is differentiable. 2.
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Remark 5.3.4. By the assumption (D3) or (5.3.12), we have i0(t) = 0 for all t ≥ 0 if

i0(0) = 0. In this case, the unique solution of the integral equation (5.3.17) is the null

function i ≡ 0. This solution is referred to here and after as the disease-free equilibrium.

A nontrivial solution will then be obtained whenever i0(0) > 0.

Remark 5.3.5. The proof of the positivity and boundedness of the solution i in [57] and

[29] is not clear, since it is based on the assumption s ≥ 0, which precisely need to be

proved.

5.4 Equilibrium Solutions

In order to do the qualitative study of the integro–differential equation (5.3.18), it is essential

by analogy with the classical SIS model (5.3.2)−(5.3.3) or (5.3.7) to rewrite (5.3.17) in such

a way that the parameter that characterizes the dynamics of this system is incorporated.

The said characteristic parameter is the basic reproduction number R∗0 of the model. Using

Equation (3.2.17) of the basic reproduction number, we have

R∗0 = λ(0)τ, (5.4.1)

where τ given in (5.3.16) is the period of infectivity for a single infective individual, while

λ(0) assumed to be greater than 0, is the adequate contact per unit time made by a single

infective near the disease-free equilibrium i = 0. However, since by assumption we can

have λ(0) = 0, Equation (5.4.1) for the definition R∗0 need to be adjusted. To this end,

we introduce the parameter

λ0 =

 λ(0), if λ(0) >0 ;

1, if λ(0) = 0.

The adjusted reproduction number to be used in what follows is then defined by

R0 = λ0τ. (5.4.2)

For convenience, we also introduce the following notation in order to simplify the integrand

in (5.3.17) through an adjusted force of infection f(i) and Kernel P̃ (t− u):

f(i) =
1

λ0

λ(i)(1− i), 0 ≤ i ≤ 1; (5.4.3)

P̃ (t) =
1

τ
P (t)e−(µ+γ)t, t ≥ 0. (5.4.4)
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The Volterra integral equation (5.3.17) can then be written in the form

i(t) = i0(t) +R0

∫ t

0

i(u)f(i(u))P̃ (t− u)du. (5.4.5)

Proposition 5.4.1. A real number i ∈ [0, 1] is an equilibrium solution of the Volterra

integral equation (5.3.17) or (5.4.5) if and only if

i = R0if( i ). (5.4.6)

Proof: Assume first that i(t) = i is a constant solution to Equation (5.4.5) with the

corresponding initial function denoted by i0(t) = i0(t; i). Then we have

i = i0(t; i) +R0if(i)

∫ t

0

P̃ (t− u)du. (5.4.7)

If we consider the limit of both sides of (5.4.7) as t goes to infinity, we obtain the expression

i = R0if(i), 0 ≤ i ≤ 1,

in view of the assumption (5.3.12) and of the formula∫ ∞

0

P̃ (u)du = 1 (5.4.8)

due to (5.3.16) and (5.4.4). Conversely, assume that i is a constant solution of (5.4.6).

Consider the function i0(t; i) defined by

i0(t; i) = i−R0if(i)

∫ t

0

P̃ (t− u)du.

Then this function meets the requirement (D3) or (5.3.12) due to (5.4.6) and (5.4.8).

Furthermore, we have

i = i0(t; i) +R0if(i)

∫ t

0

P̃ (t− u)du,

which shows that i is a solution of (5.4.5). 2

Remark 5.4.2. Note that i = 0 always solves (5.4.6) and is, as mentioned earlier in

Remark 5.3.4, referred to as the disease-free equilibrium. Any i ∈ (0, 1) that solves (5.4.6)

is called an endemic equilibrium; we denote an endemic equilibrium by ie. In this case,

(5.4.6) leads to

R0f(ie) = 1, (5.4.9)

which is equivalent to saying that in the i − y axes, the graph of the function y = f(i)

intersects with the horizontal line y = 1
R0
.

126

 
 
 



The last comment in Remark 5.4.2 regarding the role of the horizontal line y = 1
R0

in

the existence of endemic equilibria leads us to doing some analysis on the extremum values

of the function y = f(i). Being continuous on the compact interval [0, 1], the function

i  f(i) admits a (global) maximum M and a minimum m values. Notice that from

the explicit expression of f in (5.4.3), we have

0 = m = f(c),

where c = 1 or c = 0 for λ(0) = 0. However, M is in general not explicitly known. In

order to get further insight on the extremum values of f , we consider the next definition.

Definition 5.4.3. Let h : [a, b] → R be given for a, b ∈ R. For a number c ∈ (a, b), h(c)

is called a local maximum value of h on [a, b] provided that there exists δ > 0 such that

(c− δ, c+ δ) ⊂ (a, b) and h(x) ≤ h(c) for all x ∈ (c− δ, c+ δ). In the case when we have

the opposite inequality, h(x) ≥ h(c), ∀x ∈ (c− δ, c+ δ), then the number h(c) is called a

local minimum value. The terminology global minimum / maximum is used whenever the

above inequalities hold for x ∈ [a, b].

Since the function f in (5.4.3) is differentiable on (0, 1), the set [0, 1] on which we are

looking for its minimum and/or maximums can be reduced to a much smaller set in view

of the following well-known result:

Theorem 5.4.4. If a function h : [a, b] → R has local maximum or minimum value

at c ∈ (a, b) and if h′(c) exists, then c is a critical point of h. That is h′(c) = 0.

Consequently, for h : [a, b] → R continuous and differentiable on (a, b), we have

max
x∈[a, b]

h(x) = max
x∈B

h(x); min
x∈[a, b]

h(x) = min
x∈B

h(x),

where

B = {a} ∪ {b} ∪ { c ∈ (a, b) : h′(c) = 0}.

Applying Theorem 5.4.4 to our function f : [0, 1] → R given in (5.4.3) and taking

into account the fact that f(1) = 0, the global minimum, we exclude the right end-point

1 from the set B to obtain the set

A = {0} ∪ { c ∈ (0, 1) : f ′(c) = 0}, (5.4.10)
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for which we have

max
i∈[0, 1]

f(i) = max
i∈A

f(i) =:
1

Rc
0

. (5.4.11)

In addition to (5.4.11), we consider the local minimum mini∈A f(i), which is not the global

minimum mini∈B f(i) = 0, since 1 /∈ A. We put

min
i∈A

f(i) =:
1

Rm
0

if f(0) 6= 0, i.e f(0) = 1. (5.4.12)

Notice that the exclusion of the number 1 from the set A and the definition of Rm
0

imply that

Rm
0 ≥ 1. (5.4.13)

Furthermore, we have the relation

0 ≤ Rc
0 ≤ Rm

0 <∞. (5.4.14)

The material accumulated so far regarding the extremum values of the function f enables

us to specify the possible intersections between y = f(i) and y = 1
R0

in terms of the

following result:

Theorem 5.4.5. For the disease transmission model (5.4.5), with assumptions (5.3.10),

(5.3.11) and (5.3.12), we have the following facts:

1. The constant i = 0 is always an equilibrium (disease-free equilibrium);

2. There is no endemic equilibrium ie if R0 < Rc
0;

3. There exists at least one endemic equilibrium ie if R0 > Rc
0;

4. There exists exactly one endemic equilibrium ie if R0 > Rm
0 .

Proof:

1. On setting i0(t) = 0, it is clear that the constant function i(t) = i = 0 is the unique

solution of the Volterra integral equation (5.4.5).

2. Assume that R0 < Rc
0. Then by Equation (5.4.11), we have f(i) ≤ maxc∈A f(c) <

1
R0

for all i ∈ [0, 1]. Thus, there is no intersection between the graphs of y = f(i)

and y = 1
R0

(see Fig 5.1a).
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3. If R0 > Rc
0, then maxi∈A f(i) > 1

R0
by Equation (5.4.11). Since f(1) = 0 <

1
R0

< maxi∈A f(i) and f(i) is continuous on [0, 1], the intermediate value theorem

guarantees the existence of at least one ie ∈ (0, 1) such that f(ie) = 1
R0

(see Fig

5.1b).

4. Assume that R0 > Rm
0 , which implies that f(0) = 1. Since Rm

0 ≥ Rc
0, we infer

from part (3) above that there exists at least one endemic equilibrium ie ∈ (0, 1).

We claim that the endemic equilibrium is unique. To this end, we assume by contra-

diction that there exist two endemic equilibria ie1 , ie2 ∈ (0, 1) such that ie1 < ie2 .

Since f(ie1) = f(ie2) = 1
R0

and the continuous function f : [ie1 , ie2 ] → R is differ-

entiable on (ie1 , ie2), it follows from Rolle’s theorem that there exists c ∈ (ie1 , ie2)

such that f ′(c) = 0, which means that c ∈ A. Then we have two cases. The first

case is when f(c) < 1
R0

. i.e f(c) is a local minimum. This is impossible in view of

the fact that the smallest local minimum satisfies mini∈A f(i) > 1
R0

( see Fig 5.2a).

We are then left with the second case, which read as f(c) > 1
R0

. i.e f(c) is a

local maximum (see Fig 5.2b). Thus f(c) ≥ mini∈A f(i) > 1
R0

> 0. Under these

circumstances, there exists a point ie3 ∈ (0, 1) ∩ A with ie3 6= c and ie3 6= r, where

f(r) = mini∈A f(i), r ∈ (0, 1), such that f(ie3) <
1
R0

is a local minimum. This

contradicts the fact that f(r) is the smallest local minimum. Therefore, there exists a

unique endemic equilibrium in this case. 2

Some comments are in order regarding Theorem 5.4.5 as compared to the classical

SIS model for which we have Rm
0 = Rc

0. When Rm
0 ≥ 1 and R0 > Rm

0 , the fact that

Theorem 5.4.5 guarantees the existence of a unique endemic equilibrium ie agrees with the

situation of the classical SIS model and other classical epidemiological models. By analogy

with this classical case, we expect the disease–free equilibrium to be unstable, while the

unique endemic equilibrium ie is locally asymptotically stable. Similarly for R0 < Rc
0 ≤ 1,

the fact that the disease-free equilibrium is the only equilibrium is in line with the classical

case and so we expect this equilibrium to be globally asymptotically stable in this case.

The situation Rc
0 < R0 < Rm

0 which, according to Theorem 5.4.5 could lead to multiple

endemic equilibrium, is a major difference between the classical SIS model and the one

considered here. This coupled with Rm
0 ≤ 1 is the case when the backward bifurcation
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(a) (b)

Figure 5.1: Non–existence (a) and existence (b) of endemic equilibrium

phenomena can surprisingly occur for such a simple model.

These expectations on the stability and bifurcation of the equilibria turn out to confirm

the results established in [57]. We will more carefully consider the stability and bifurcation

analysis of general Volterra integral equations in our future work. Our interest here is

restricted in demonstrating computationally the results of [57] regarding (5.3.17) or

(5.4.5) on numerical examples.

In all examples given below, we use the initial condition function

i0(t) = e−t,

which clearly satisfies the assumption (D3) or (5.3.12).

Furthermore, in accordance with assumption (D2) or (5.3.11), the fraction P (t) of

individuals that an infective individual has infected at time 0 and remain infective through

to time t is taken to be

P (t) = e−t.

Given the fact that the existence of the solution of the integral equation (5.3.17) was

obtained by Banach fixed theorem, the successive approximation method is applicable. It

reads as follows:
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(a) (b)

Figure 5.2: Existence of unique endemic equilibrium

From the initial guess i0(t) = i0(t), we generate a sequence of approximations

ik(t), k = 0, 1, . . . , given recursively by

ik+1(t) = e−t +

∫ t

0

λ
(
ik(u)

)
ik(u)

[
1− ik(u)

]
e−(1+µ+γ)(t−u)du. (5.4.15)

To approximate the integral in (5.4.15), we use the composite trapezoidal rule [11] based

on the nodes defined as follows for a fixed t and integer n ≥ 2:

uk = k∆t, k = 0, 1, . . ., n :=
t

∆t
. (5.4.16)

Introducing the notation

g(i; t, u) = λ(i(u))i(u)[1− i(u)]e−(1+µ+γ)(t−u),

we eventually obtain the scheme

ik+1(t) = e−t +
∆t

2

(
g(ik; t, 0) + 2

n−1∑
j=1

g(ik; t, uj) + g(ik; t, t)

)
. (5.4.17)

Example 5.4.6. In this numerical example, we are interested in the case when R0 <

Rc
0 ≤ 1. To this end, in (5.3.8) and (5.4.3), we take f(i) = 1 − i and λ(i) = 1. Then,

from (5.3.16) we have R0 = 1
1+µ+γ

< 1 = Rc
0 so that there is no intersection between

y = f(i) = 1 − i and y = 1
R0

. Figure 5.3 for the scheme (5.4.17) confirms this and

displays further the fact that the disease-free equilibrium is globally asymptotically stable

for appropriate choice of µ > 0 and γ > 0.
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Example 5.4.7. We focus on the case when Rc
0 < R0 < Rm

0 ≤ 1. We take f(i) =

(1 + 5i)(1− i) and λ(i) = 1 + 5i so that R0 = 1
1+µ+γ

, Rc
0 = 5

9
and Rm

0 = 1. Figure

5.4 for the scheme (5.4.17) illustrates the existence of one or multiple endemic equilibria

when R0 < 1 as well as the backward bifurcation phenomenon.

Remark 5.4.8. In order to make use of the powerful NSFD schemes developed in the

previous chapters, we outline below what can be done for the integro-differential equation

(5.3.18). If there was no integral term in (5.3.18), the results of the previous chapters

would have led to the following NSFD scheme:

ik+1 − ik

φ(∆t)
=
i0(t)

dt
+ λ(ik)ik(1− ik+1), (5.4.18)

where φ(∆t) = eµ∆t−1
µ

.

In order to approximate the integral in (5.3.18), we can use the first mean value theorem

for integrals [45]: there exists a number c ≡ ct ∈ (0, t) such that∫ t

0

λ[i(u)]i(u) [1− i(u)]

(
d

dt
P (t− u)− (µ+ γ)

)
e−(µ+γ)(t−u)du =

λ[i(c)]i(c)[1− i(c)]

∫ t

0

(
d

dt
P (t− u)− (µ+ γ)

)
e−(µ+γ)(t−u)du. (5.4.19)

Fix a discrete time tk = k∆t, where we recall that we want to obtain the approximation

ik+1 of i(tk+1) assuming that ik is known. Given an integer n ≥ 2, we partition the interval

[0, tk] through the nodes uk, j defined similarly to (5.4.16) as follows:

uk, j = jdk, j = 0, 1, 2, . . ., n :=
tk
dk
. (5.4.20)

Now in view of (5.4.18) and (5.4.20), we can start the process of obtaining a numerical

scheme for (5.3.18):

ik+1 − ik

φ(∆t)
=

di0
dt

(tk) + λ(ik)ik[1− ik+1] (5.4.21)

+
n∑
j=1

∫ uk, j

uk, j−1

λ[i(u)]i(u)[1− i(u)]
(
d

dt
P (t− u)− (µ+ γ)

)
e−(µ+γ)(tk−u)du.

Taking into account the explicit values i0(t) = e−t and P (t) = e−t, Equation (5.4.21)

becomes

ik+1 − ik

φ(∆t)
= −e−t + λ(ik)ik[1− ik+1] (5.4.22)

+
n∑
j=1

∫ uk, j

uk, j−1

λ[i(u)]i(u)[1− i(u)] (−(1 + µ+ γ)) e−(1+µ+γ)(tk−u)du.
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Figure 5.3: Example 5.4.6: GAS of the disease–free equilibrium.

To finalize the process, we approximate each integral on the subinterval [uk, j−1, uk, j]

using the product integration method of Atkinson [5]. That is, we use the formula (5.4.19),

where we take c = uk, j. This gives the following NSFD scheme:

ik+1 − ik

φ(∆t)
= −e−tk + λ(ik)ik[1− ik+1] (5.4.23)

+
n∑
j=1

λ(ij)ij [1− ij ]
∫ uk, j

uk, j−1

(−(1 + µ+ γ)) e−(1+µ+γ)(tk−u)du,

or equivalently

ik+1 =

(
−e−tk + λ(ik)ik

)
φ(∆t)

1 + λ(ik)ik
(5.4.24)

+
φ(∆t)

1 + λ(ik)ik

n∑
j=1

λ(ij)ij[1− ij]e−(1+µ+γ)tk
[
e(1+µ+γ)uk, j−1 − e(1+µ+γ)uk, j

]
.
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Figure 5.4: Example 5.4.7: Existence of endemic equilibria when R0 < 1.
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Chapter 6

Conclusion

This dissertation was initially motivated by the work [24], where it is shown theoretically

and computationally that some models for the transmission dynamics of multiple strains of

a disease in a given population can undergo the backward bifurcation phenomenon. That

is a stable endemic equilibrium co–exists with a stable disease–free equilibrium despite the

fact that the classical epidemiological threshold condition R0 < 1 holds, where R0 is the

associated basic reproduction number.

Given the complexity of models with multiple strains of diseases and the interesting

results obtained in [57], our goal changed into the investigation of the backward bifurcation

in the simple setting of the SIS model. One of the key ingredients in [57] is a general

formulation of the contact rate. This led us to focus this dissertation on the study of the

SIR and SIS models with the contact rate expressed more generally as a function of the

total population such a way that this extended contact rate satisfies properties that are

biologically relevant [8].

In this general setting of the contact rate, we showed and better understood the following

results:

• the SIR and SIS models are dynamical systems on biologically feasible regions;

• the value R0 = 1 of the basic reproduction number is a forward bifurcation. That is

the disease–free equilibrium is globally asymptotically stable when R0 < 1 whereas

it is unstable and an additional locally asymptotically stable endemic equilibrium is

born when R0 > 1. In this regard, we used the bisection method to find the endemic
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equilibrium in the case when the contact rate is an implicit function of the total

population.

On the other hand, we placed strong emphasis on the design and analysis of nonstandard

finite difference schemes, which are dynamically consistent with respect to all the essential

properties (e.g. positivity, boundedness of solutions, etc.) of the continuous models. In

particular, we designed for the first time a nonstandard Runge–Kutta scheme, which is a

method of order 4.

The analysis for the SIS model with R0 > 1 was taken one step further in considering

the SIS diffusion model for the spread of the disease in space. We proved that the disease–

free equilibrium is unstable and the endemic equilibrium is locally asymptotically stable.

Here again, these dynamics of the model were preserved by innovative nonstandard finite

difference schemes that we designed.

Coming back to our initial goal, the SIS–Volterra integral equation model, we did not

manage to go into details due to time constraints. Nevertheless, we established the existence

of one or multiple endemic equilibria when the basic reproduction number is less than 1.

This property was confirmed on a numerical test.

The natural continuation of this dissertation is therefore a full qualitative analysis of the

SIS–Volterra integral equation model. Once this is done, another challenge is the design of

nonstandard finite difference schemes that are dynamically consistent with the properties

(including the backward bifurcation phenomenon) of the SIS–Volterra integral equation

model.

It is also of great interest to investigate other situations when the SIR model undergoes

the backward bifurcation phenomenon. In this regard, the work [31] can be mentioned.

As far as partial differential equations are concerned, the extension of the SIR and

SIS models into advection–reaction diffusion equations and the corresponding numerical

treatment are desirable.
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