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ABSTRACT 

Especially important in developing improved cochlear implants is to develop a deeper 

understanding of the processing of sound in the central auditory nervous system, for both 

acoustic and electrical stimulation of the auditory system. This thesis contributes to this 

objective through cochlear implant psychoacoustic research and modelling of auditory system 

sound processing. 

The primary hypothesis of the thesis was that the same underlying mechanisms are responsible 

for sound perception in both electric and acoustic hearing. Thus, if appropriate models are 

created for normal acoustic hearing, they should be able to predict psychoacoustic data from 

electric hearing when the model input is changed from acoustic to electrical stimulation. A 

second hypothesis was that electrode interaction could be measured by gap detection and that 

predictions of current spread in the cochlea could be obtained from gap detection data. 

Measured gap detection thresholds in three cochlear implant users were a function of the 

physical separation of electrode pairs used for the two stimuli that bound the gap, resulting in 
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a U-shaped "tuning curve" for this across-channel condition. Models of gap detection in 

acoustic and electric hearing were created to explain these U-shaped curves. A technique was 

developed to obtain estimates of cochlear current spread from gap detection data. Predictions 

of electrode discrimination were obtained from the current spread estimates, and these were 

compared to data measured in cochlear implant users. 

The model for acoustic hearing could predict the U -shaped curves found in acoustic hearing, 

and when the input spike train statistics were adapted appropriately, the same model could also 

predict gap detection data for electric hearing. Predictions of current spread exhibited current 

peaks close to the electrodes and had length constants between 0.5 mm and 3 mm, similar to 

measured data quoted in literature. Predictions of electrode discrimination correlated well with 

measured data in one subject, but not in two others. 

The primary conclusion from the modelling results is that if the mechanisms of central auditory 

nervous system signal processing of acoustic stimulation are understood, these same 

mechanisms may be applied to understand the signal processing in auditory electrical 

stimulation and to predict psychoacoustic data for electrical stimulation. A second conclusion 

is that spatial mechanisms, as opposed to temporal mechanisms, may determine gap detection 

thresholds in the across-channel condition. This is important in cochlear electrical stimulation, 

where spike trains are strongly phase-locked to the stimulus and temporal mechanisms cannot 

predict gap detection thresholds. A third conclusion is that gap detection can be used to 

measure channel interaction and to predict current distributions in the cochlea, although there 

is still uncertainty about the accuracy of these predictions. However, the gap detection data and 

predictions for current distributions indicate that electrodes are not discriminable when they 

are closer than 1.5 mm. The implication of these last two conclusions taken together is that 

research should focus on obtaining better spatial resolution in cochlear implants. 
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OPSOMMING 

Tydens die ontwikkeling van beter kogleere inplantings is dit besonder belangrik om In dieper 

begrip van die verwerking van klank in die sentrale ouditiewe senuweestelsel te ontwikkel, 

beide vir akoestiese en elektriese stimulasie van die ouditiewe stelsel. Hierdie proefskrif dra 

by tot hierdie oogmerk deur psigoakoestiese navorsing en modellering van klankverwerking 

deur die ouditiewe stelsel. 

Die primere hipotese is dat dieselfde onderliggende meganismes verantwoordelik is vir 

klankpersepsie in beide elektriese en akoestiese gehoor. Dus, indien toepaslike modelle vir 

normale akoestiese gehoor geskep word, behoort hulle psigoakoestiese data van elektriese 

gehoor te kan voorspel indien die modelinset verander word vanaf akoestiese na elektriese 

stimulasie. In Tweede hipotese is dat elektrode-interaksie gemeet kan word met 

gapingsdeteksie en dat voorspellings van die stroomverspreiding in die koglea verkry kan word 

uit gapingsdeteksiedata. 
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Gemete gapingsdeteksiedrempels in drie gebruikers van kogleere inplantings was In funksie van 

die fisiese afstand tussen elektrodepare wat gebruik is vir die twee stimuli aan weerskante van 

die gaping en het gelei tot In U-vormige "stemkromme" vir hierdie inter-kanaal geval. Modelle 

van gapingsdeteksie in akoestiese en elektriese gehoor is geskep om hierdie U -vormige 

krommes te verduidelik. In Tegniek is ontwikkel om skattings van stroomverspreiding in die 

koglea te verkry vanuit gapingsdeteksiedata. Voorspellings van elektrodediskriminasie is verkry 

uit die stroomverspreidingskattings en is met gemete data van kogleere inplantinggebruikers 

vergelyk. 

Die model vir akoestiese gehoor kan die U-vormige gapingsdeteksiekrommes van akoestiese 

gehoor voorspel, en met gepaste aanpassing van die statistieke van die senuwee-impulsreeks 

op die modelinset kan dieselfde model ook gapingsdeteksiedata vir elektriese gehoor voorspel. 

Voorspellings vir stroomverspreidings to on pieke naby die elektrodes en het lengtekonstantes 

van 0.5 mm tot 3 mm, soortgelyk aan data waarna in die literatuur verwys word. Voorspellings 

van elektrodediskriminasie korreleer goed met gemete data in een proefpersoon, maar dieselfde 

geld nie in twee ander proefpersone nie. 

Die primere gevolgtrekking uit die resultate van die modellering is dat indien die meganismes 

van seinverwerking in die sentrale ouditiewe senuweestelsel verstaan word, kan hierdie 

meganismes toegepas word om seinprosessering in die elektries-gestimuleerde gehoorstelsel 

te verstaan en om psigoakoestiese data vir elektriese gehoor te voorspel. In Tweede 

gevolgtrekking is dat ruimtelike meganismes eerder as temporale meganismes verantwoordelik 

kan wees vir gapingsdeteksiedrempels in die inter-kanaal geval. Dit is belangrik in kogleere 

elektriese stimulasie waar senuwee-impulsreekse sterk fasegesluit is aan die stimulus en waar 

temporale meganismes nie gapingsdeteksiedrempels kan voorspel nie. In Derde gevolgtrekking 

is dat gapingsdeteksie gebruik kan word om kanaalinteraksie te meet en om 

stroomverspreidings in die koglea te voorspel, alhoewel onsekerheid bestaan oor die 

akkuraatheid van hierdie voorspellings. Nietemin, die gapingsdeteksiedata en voorspellings vir 

stroomverspreiding wys dat elektrodes nie diskrimineerbaar is as hulle nader as 1.5 mm aan 

mekaar is nie. Die implikasie van die laaste twee gevolgtrekkings is dat dit nodig is dat 

navorsing fokus op die verkryging van beter ruimtelike resolusie in kogleere inplantings. 
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Chapter 1 

INTRODUCTION 

Cochlear implants have been developed to stimulate the auditory systems of deaf individuals 

to create a hearing sensation (Clark, 1993;Clark, 1996;Clark, Tong, and Patrick 1990). 

Cochlear implants are intended to elicit firing patterns on the auditory nerve that are faithful 

replicas of firing patterns found in normal hearing. Many thousands of deaf people worldwide 

use cochlear implants with varying degrees of success (Kou, Shipp, and Nedzelski, 1994). 

1 ISSUES IN COCHLEAR IMPLANT RESEARCH 

A primary problem with cochlear implants is the large variability in speech recognition 

performance across users (Clark, 1996). This is also reflected in inter-subject performance 

variability in psychoacoustic experiments. Most implant listeners cannot appreciate music 

(Fujita and Ito, 1999) and many users cannot use a telephone or struggle to follow speech in 

noisy environments (Hirsch, 1993). Auditory sensations vary as a result of complex interactions 

between several patient and device related factors, among others electrode distance from nerve 

fibres, surviving nerve fibre distribution (Zimmerman, Burgess, and Nadol, 1995), and current 

distribution in the cochlea due to non-homogeneous cochlear impedance (Ifukube and White, 

1987). 

Initially, cochlear implant research was driven by clinical objectives. Safety and reliability 

issues, like biocompatibility of electrodes and implantable electronics, needed to be solved. 

Design and development of the external speech processors, the implantable stimulator, 

electrode arrays and communication protocols between the stimulator and the speech processor 

required attention. Stimulation parameters (currents and waveforms) and stimulation strategies 
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needed to be developed. 

Medical-ethical aspects, including animal experiments to prove safety and functionality, 

proving that deaf people would benefit from cochlear implants and determining which 

segment of the deaf population (including children) would benefit needed to be addressed and 

regulatory body approval had to be obtained. 

After this initial phase, research focus shifted to more fundamental issues. Many of the issues 

identified in chapter 25 of (Miller and Spelman, 1990) are still topics of active research. 

Progress has been made in finite element modelling to predict current flow through excitable 

tissue in the cochlea (Frijns, de Snoo, and Schoonhoven, 1995; Hanekom, 2001). New and 

more selective electrode designs have been introduced. Methods to limit channel interaction 

and current spread is a topic of current research (Kral et aI., 1998). Techniques are being 

researched to determine channel interaction in individual cochlear implant users (Fu, 1997; 

Hanekom and Shannon, 1998; Shannon, 1985), to enable optimum setting of stimulation 

parameters. New encoding strategies have been developed (Loizou, 1999), based on improving 

either spectral or temporal presentation of sound, or both. 

Especially important in developing improved cochlear implants is to develop a deeper 

understanding of the processing of complex speech signals in the central auditory nervous 

system. This needs to be achieved through neurophysiological animal experiments, 

psychoacoustic experiments with cochlear implant users, and the development of models of the 

neurophysiology of the coding and processing of information in the central auditory nervous 

system in both acoustic and electric hearing. Relating psychoacoustic results to the underlying 

neurophysiology is essential. Appropriate models can greatly assist in this effort. 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 2 

 
 
 



Chapter 1 Psychoacoustics and models of acoustic and electric hearing 

2 MODEL BASED RESEARCH 

This thesis promotes a model-based research approach. Therefore, it is appropriate to give a 

more detailed description of the process and value of modelling in cochlear implant research, 

before the objectives of this thesis are described. The objective of this section is to place the 

models created in this thesis into context. 

Engineers and scientists frequently create mathematical models to represent processes and 

predict the effects of changes on a system. A model is a mathematical description of a natural 

phenomenon, in this case a mathematical description of the functioning of the central auditory 

nervous system under acoustic or electrical stimulation. 

Neurophysiological research, psychoacoustic research and modelling research are interrelated 

and cannot exist in isolation (figure 1.1). Without models to aid interpretation, psychoacoustics 

research may follow an empirical or trial and error approach, without a clear route to follow 

to improve cochlear implant designs. 

2.1 Types of models 

The researcher creates a system of mathematical equations that describes the behaviour of the 

normal or electrically stimulated auditory system. Modelling equations may be solved with 

analytical methods (e.g. Siebert, 1970), or with numerical methods (e.g. Finley, Wilson, and 

White, 1990) or a combination of both (e.g. Bruce et aI., 1999b). Numerical solutions can be 

obtained with computer simulations. It is a requirement that any type of model produce 

numerical predictions. 

Furthermore, models can vary from biology-faithful models to black box models. Biology

faithful models incorporate as much as possible of the existing knowledge about the anatomy 

and physiology. These models may, for example, represent the function of a specific system in 

the brain by modelling a large number of nerve fibres and combining these nerve fibres into a 
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larger structure (Bower, 1990). More specifically for the current application, these models may 

describe each nerve fibre in the model by a full-blown Hodgkin-Huxley model (Rattay and 

Motz, 1986). The Hodgkin-Huxley model is one of a number of biology-faithful nerve fibre 

models and uses a number of differential equations to describe the functioning of a single nerve 

cell. Biology-faithful models can be accurate, but may require substantial computer time for 

simulation. 

Figure 1.1. 

Relationship between neurophysiological research, psychoacoustic 

research and modelling research. 

Black box models are phenomenological models that simply describe input-output data with 

a mathematical equation without consideration for the biology. Some nerve fibre models model 

the nerve fibre as a simple generator of neural spikes (e.g. Gabbiani and Koch, 1996). In the 

simplest form black box models simply fit a curve to the data and assumes no knowledge of the 

functioning of the system that is modelled. Black box models tend to be very limited in terms 

of the data sets that can be predicted. 
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A whole continuum of models that incorporate existing knowledge of the biology to a greater 

or lesser extent exists between biology-faithful models and black box models. Some models 

deliberately ignore existing knowledge (thus are more idealized than biology-faithful models) 

with the objective to exclude extraneous factors (e.g. variations between people or noise in 

signals) to uncover the core calculations performed by the system that is investigated. 

Therefore, models sometimes deliberately simplify the real situation to get rid of "noise" that 

hides the true function that the system under consideration performs. Examples of this 

approach will be evident in this thesis. 

Models are characterized by the model structure and the parameters. Modelling is frequently 

an iterative process. Based on the researcher's understanding of the processing performed in 

the system that is modelled, the researcher determines a model structure. Parameters for the 

model must subsequently be measured and can sometimes be found in the literature. Estimating 

model parameters is frequently necessary and sometimes it is adequate if the estimate is only 

roughly correct. With the structure and parameters known, computer simulations can be 

performed with the model and numerical predictions can be obtained. 

If the model is well-behaved, i.e. the model can reproduce measured data accurately (it can 

predict magnitudes and trends), the choice of structure may be presumed to be appropriate. 

Sometimes trends are predicted correctly, but the magnitudes of the measured and predicted 

data do not correspond. This may be because the structure of the model is correct, but 

parameters have been guessed or measured incorrectly. Or it may happen that the model cannot 

predict the measured data at all, in which case the model structure may be incorrect. 

2.2 The value of models 

An important question that should be answered about each model is: can the model explain 

measured data outside the data set for which the model was created? If not, the model 

probably requires further development. The wider the data set that a model can explain, the 

more confident the researcher may be that the functionality of the underlying system is 
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understood and that the model structure is correct. For example, if a model were created to 

predict frequency discrimination of pure tones, but it can also predict discrimination of complex 

tones, it gives confidence in the validity of the model. As models are developed, understanding 

of the system that is modelled grows. 

Models cannot predict the effect of stimulation or the behaviour of the auditory system 

perfectly, since they represent a simplification of the real system. However, an exact 

representation of reality is not necessarily required, or available, to describe the functioning of 

a system. The cochlear implant is a good example of this, because development of and 

improvements to implants have been successful, based on, among others, modelling studies, 

although the functioning of the auditory system is not fully understood (Clark, 1996). If a 

model can predict the most important characteristics of a system accurately enough, the model 

may be useful. 

Finally, models may be regarded as part of the measuring tools in psychoacoustic and 

neurophysiological research. Models enable the researcher to test some concepts in computer 

simulations rather than performing experiments directly on humans or animals. Models 

summarize knowledge and show gaps in knowledge, but perhaps most important, they build 

understanding. This will be demonstrated in the various models discussed in this thesis. Many 

conclusions of this thesis (see the ends of the chapters) are based on discoveries made during 

the process of deriving numerical predictions that mimic measured data. 

3 OBJECTIVES OF THIS THESIS 

The absence of comprehensive, anatomically and physiologically faithful models to predict the 

effect of electrical stimulation on the auditory system is a primary deficiency in cochlear implant 

research. The creation of new, more comprehensive models, to incorporate a broader base of 

data is crucial for the further development of cochlear implants. Specifically, many gaps exists 

in our knowledge of the relationship between electrical stimuli and the perceived sound. It is 
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Chapter 1 Psychoacoustics and models of acoustic and electric hearing 

unclear why certain stimuli elicit certain perceived sounds (perception is measured 

psychoacousticall y). 

The primary objective of this thesis is to build understanding of the functioning of the peripheral 

and central auditory system in acoustic and electric hearing, through measurement and 

modelling. The study of auditory electrical stimulation provides a window on the auditory 

system that provides new perspectives on how the auditory system functions. 

4 HYPOTHESES OF THIS THESIS 

Four hypotheses are investigated in this thesis, as described here. Although not all of these can 

be proven conclusively, they are proven qualitatively by examples. 

4.1 Hypothesis 1 

Psychoacoustic data for electric hearing can be predicted by models for acoustic 

hearing 

A lack of an integrated interpretation of different psychoacoustic results exists in literature. 

Throughout, the models in this thesis aim to reconcile psychoacoustic and neurophysiological 

data. An important assumption in this thesis is that the same underlying processes (in the central 

auditory nervous system) are responsible for the perception of electrical and normal acoustic 

stimulation. The primary hypothesis of this thesis is that appropriate models for normal acoustic 

hearing should be able to predict psychoacoustic data from electric hearing when the model 

input is changed from acoustic to electrical stimulation (figure 1.2). Chapters 3 and 4 (that 

describe models of acoustic and electric gap detection) and 6 and 7 (that describe models of 

acoustic and electric frequency discrimination) investigate this hypothesis. 
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The same underlying model of the central auditory nervous system is used 

to predict psychoacoustic data for both acoustic and electric hearing. 

4.2 Hypothesis 2 

The auditory system employs an internal model to interpret sounds 

Classical detection and estimation theory as applied to auditory research asserts that the 

auditory system has no prior knowledge of the type of signals (speech, music, environmental 

sounds) that it receives. But evidence exists that the brain does use its prior knowledge to aid 

it in estimating input signals. A secondary hypothesis of this thesis is that the auditory system 

employs an internal model or an analysis-by-synthesis mechanism to estimate sounds impinging 

on the ear. This hypothesis is investigated in chapters 5 and 6. 

4.3 Hypothesis 3 

Temporal and spatial mechanisms can be explained by the same underlying 

neurophysiology 

Mechanisms that neurophysiologists and psychophysicists interpret as "temporal mechanisms", 

and "frequency" or "spatial mechanisms", are based on and should therefore be explained by 

the same underlying neuroanatomy and neurophysiology. This hypothesis is investigated in this 

thesis. This is important in cochlear implants, where a trade-off between temporal and spectral 
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Chapter 1 Psychoacoustics and models of acoustic and electric hearing 

resolution exists. If fewer electrodes are stimulated, higher stimulation rates may be achieved. 

Thus it is necessary to know what information transmitted to the electrically stimulated 

cochlear nerve is perceptually significant. Strategies used in current cochlear implant systems 

reflect different approaches. In the Spectral Peak (SPEAK) strategy (Skinner et aI., 1994; 

Loizou, 1999), which relies on the existence of a rate-place mechanism, spectral peaks are 

extracted and presented to electrodes that are arranged tonotopically. In contrast, the 

Continuous Interleaved Sampling (CIS) strategy (Wilson et aI., 1991; Loizou, 1999) assumes 

that it is important to conserve temporal waveform information and therefore employs high 

pulse-rate stimulation. 

Chapters 3 and 4 employ a spatial model to predict psychoacoustic data for temporal gap 

detection. Chapters 5 and 6 employ spatial and temporal models respectively to obtain 

predictions for frequency discrimination. 

4.4 Hypothesis 4 

Electrode interaction in cochlear implants can be measured with gap detection 

Multiple-electrode stimulation is preferred in cochlear implants, because it is generally accepted 

that the tonotopic organization found along the length of the cochlea in the healthy auditory 

system is retained to some degree for electrical hearing. Many research studies, including earlier 

work by Eddington (1980) and more recent studies by Nelson et al. (1995) and Donaldson and 

Nelson (2000), have shown that electrodes stimulating the more basal areas of the cochlea 

result in higher perceived pitches (or sharper tonal quality) and stimulation closer to the apex 

results in lower perceived pitches. 

Assuming that tonotopic organization in electrical hearing is retained by multiple electrodes 

selectively stimulating discrete neural populations would be natural. However, the assumption 

that discrete neural populations can be excited is not always true. When electrodes are closely 

spaced, considerable overlap occurs in the neural populations excited by the stimulation 

current. This electrode interaction problem was addressed by (among others) Townshend and 
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Chapter 1 Psychoacoustics and models of acoustic and electric hearing 

White (1987). This is the result of spread of electrical current in the biological medium of the 

cochlea. 

The implication of electrode interaction is that, if two electrodes stimulate the same neural 

population or overlapping neural populations, sound sensations elicited by the two stimuli 

might be confused or might even be indistinguishable. This reduces the number of independent 

channels of information that can be conveyed to the cochlear implant user's auditory system. 

Realizing that the number of independent channels of information is not equal to the number 

of electrodes is important in the design of processors for cochlear implants. Chapters 2 and 4 

investigates the hypothesis that electrode interaction can be measured with gap detection, and 

shows that estimates can be obtained for the current distribution in the cochlea. 

5 THESIS OUTLINE 

The hypotheses summarized in 4.1 to 4.4 above is reflected in the layout of this thesis. The 

chapters are entirely self-contained and some of them have been published. 

Gap detection 

acoustic electric 

Chapter 3 Chapter 4 

J 

--.--------------

Figure 1.3. 

Frequency discrimination 

acoustic electric ., 

sp atial L 
poral j 

.... __ ......... _-
tern 

J 1/ Chapter 6 
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classical 
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approach 

internal 
model 
approach 

Illustration of the multidimensional problem addressed in this thesis, and 

an indication of where each chapter fits in. 
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Chapter 1 Psychoacoustics and models of acoustic and electric hearing 

Figure 1.3 summarizes the layout of the thesis. The figure shows that in some chapters model 

are created using a classical statistical approach, while in other chapters an internal model 

approach is followed. Temporal and spatial models of acoustic and electric hearing are 

investigated, and psychoacoustic experiments that use frequency and time signals are modelled. 

Chapter 2 describes psychoacoustic data for gap detection, a technique usually used for probing 

the temporal ability of the auditory system, but used here to measure spatial characteristics in 

auditory electrical stimulation. The material in this chapter has been published in Hanekom and 

Shannon (1998). 

Chapter 3 creates a model of gap detection in acoustic hearing and shows that gap detection 

data can be explained in terms of spatial mechanisms. 

Chapter 4 expands the model of chapter 3 for electric hearing to predict the data of chapter 2. 

This chapter shows that the same model used for acoustic hearing may be applied to electric 

hearing if the inputs are appropriate. The chapter also shows that current distribution in the 

cochlea influences channel interaction. 

In addition, chapter 4 shows how predictions for current distributions in the cochlea may be 

obtained from gap detection data. Predicted current distributions (based on the gap detection 

data in chapter 2) are then used to predict electrode discriminability. These predictions are 

compared with electrode discriminability data measured in the same subjects (previously 

published in Hanekom and Shannon, 1996). 

Chapter 5 develops a spatial model for frequency discrimination in acoustic hearing. The model 

is built on the concept of an internal model. A priori knowledge about spike train statistics and 

possible frequencies that may exist in the "external world" is used in a Markov model for the 

signal. A non-linear frequency estimator that observes a spatial spike train pattern then 

estimates the frequency of a pure tone impinging on the auditory system. The material in this 

chapter has been published in Hanekom (1999). 
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Chapter 6 develops a model for frequency discrimination in acoustic hearing, based on temporal 

mechanisms. This model uses a Kalman filter to estimate the pure tone auditory input frequency 

from temporal information in spike trains. The Kalman filter incorporates an internal model of 

the system that generates the spike trains and uses an analysis-by-synthesis mechanism to arrive 

at frequency estimates. The material in this chapter has been published in Hanekom and KrUger 

(2001). 

Chapter 7 extends the temporal model for frequency discrimination in acoustic hearing (chapter 

6) to electric hearing. The chapter then interprets psychoacoustic data obtained with cochlear 

implants in terms of spatial and temporal mechanisms for the coding of frequency information 

in the auditory system. The material in this chapter has been published in Hanekom (2000). 

The thesis is concluded in chapter 8 with a summary and discussion of the main results and 

findings. It is shown there that the four hypotheses have been proven in a qualitative fashion. 
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Chapter 2 

GAP DETECTION AS A MEASURE OF ELECTRODE 

INTERACTION IN COCHLEAR IMPLANTS 

The results in this chapter have previously been published: Hanekom, J.J. & Shannon, R.V. 1998, "Gap 

detection as a measure of electrode interaction in cochlear implants" , Journal of the Acoustical Society of 

America, vol. 10 no. 4, pp. 2372-2384. 

1 INTRODUCTION 

The individual electrodes in a modern multi-electrode cochlear implant are intended to 

selectively stimulate discrete neural populations. However, the assumption that discrete neural 

populations can be activated is not always true. It is widely assumed that stimuli applied 

between closely-spaced or adjacent bipolar electrode pairs lead to the localized activation of 

neurons, whereas widely spaced bipolar electrode pairs (including monopolar stimulation) will 

lead to broad electrical fields and wide areas of neural activation (van den Honert and 

Stypulkowski, 1987b; Busby et aI., 1994). Even for a closely spaced electrode pair, a broad 

region can be activated at high stimulation current levels (van den Honert and Stypulkowski, 

1987b). The consequence is that when two sets of bipolar electrode pairs are stimulated, and 

these two sets are closely spaced, overlap can occur in the neural populations excited by the 

stimulation currents. This overlap of neural populations can occur regardless of whether the 

stimuli are non-simultaneous or simultaneous. Simultaneous stimuli give rise to direct electrical 

field interactions, which pose additional problems for electrical stimulation, but even non

simultaneous stimuli may produce activation of overlapping neural regions. 

If two electrode pairs stimulate the same neural population or overlapping neural populations, 

the implication is that sound sensations elicited by the two stimuli might be confused or might 
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Chapter 2 Gap detection as a measure of electrode interaction 

even be indistinguishable. This may reduce the number of independent channels of information 

that can be conveyed to the cochlear implant user's auditory system, presumably resulting in 

a deterioration of speech recognition ability. If two electrode pairs stimulate the same 

population of neurons and are perceptually indistinguishable, they probably cannot convey two 

separate channels of information. 

1.1 The number of information channels in an implant 

Studies by Fishman et aI. (1997) and Lawson et aI. (1993, 1996) indicate that increasing the 

number of electrodes does not necessarily lead to better speech recognition. In fact, very slight 

or no improvement was evident when the number of electrodes used was increased from 7 to 

20. For some speech recognition tasks, no improvement in performance was found when the 

number of electrodes used increased from 4 to 20. In these experiments, all spectral 

information that is usually presented across all 20 electrodes, was applied to a limited number 

of electrodes, i.e. no spectral information was discarded. In a more recent study, Friesen et aI. 

(2001) tested speech recognition as a function of the number of electrodes used in noisy 

conditions. Nineteen implant users of two different implants (Nucleus-22 and Clarion) 

participated. A general finding was that, for all noise levels, consonant and vowel recognition 

scores improved up to seven electrodes, and that speech recognition improved up to ten 

electrodes, irrespective of the implant used. A reduction in the number of channels was 

equivalent to a reduction in the signal-to-noise ratio at low signal to noise ratios. 

These results suggest that the actual number of information channels available to these patients 

was not a function of the number of electrodes, and that the actual number of information 

channels might be limited to somewhere between 4 and 7. Interestingly, in a study with 

normal-hearing listeners, Shannon et aI. (1995) used 4 channel processors and found that 

listeners achieved near-perfect speech recognition, implying that 4 information channels might 

be adequate, at least in quiet listening conditions. The study of Friesen et aI. (2001) included 

normal-hearing listeners that listened to a noise-band simulation of a CIS-like processor. (CIS 

is a stimulation strategy used in the Clarion implant. See Wilson et aI., 1991). It was found that 
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Chapter 2 Gap detection as a measure of electrode interaction 

speech recognition continued to improve up to 20 channels under similar noise conditions than 

used for the cochlear implant listeners. 

In another study, on patients with the Nucleus cochlear implant device, Hanekom and Shannon 

(1996) showed that for several different seven-electrode speech processors, speech recognition 

performance was a function of which set of 7 electrodes were used. This indicates that 

different choices of which electrodes are used in a processor might lead to different numbers 

of information channels. A reduced number of electrodes, including only discriminable 

electrodes, were also used in the speech processors of eleven Nucleus cochlear implant users 

who participated in a study by Zwolan et ai. (1997). While some subjects showed significant 

improvement in specific speech recognition tasks, others showed a decline in speech 

recognition performance. Although no strong relationship between electrode discrimination 

performance and speech recognition was observed, this study again indicates that the choice 

of electrodes in a reduced electrode processor influences speech recognition ability in some 

implant users. This supports the suggestion that the number of information channels is a 

function of the choice of electrodes in a reduced electrode processor. Lawson et ai. (1996) 

measured a larger difference in performance between two different selections of six electrodes 

than between six and 20 electrodes. This suggests that there should be a way to maximize the 

number of information channels used for a specific subject by judicious choice of electrodes. 

Further maximization may be possible using electrical field focussing (Townshend et aI., 1987), 

or by compensating for a missing patch of nerve, or by shifting the speech analysis filters to 

better match the electrode location (Fu and Shannon, 1999). No maximization of this sort is 

presently done in implant programming strategies, partly because measurement tools are not 

yet available and partly because the relation between the electrode interaction and information 

channel capacity is not well understood. 

1.2 Physical factors affecting electrode interaction 

To fully account for the effects of electrode interaction we must (1) identify the factors in the 

patterns of speech that are most important for speech recognition (Shannon et aI., 1995), (2) 
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Chapter 2 Gap detection as a measure of electrode interaction 

be able to measure the electrode interaction pattern in an individual implant patient, and (3) use 

the information from both (1) and (2) to optimize the reception of the most important speech 

pattern information for an individual patient. 

A number of variables can influence the interaction of electrodes in a cochlear implant user. 

These include the electrode placement within the cochlea and nerve survival at the cochlear 

level and also at the central auditory level. 

1.2.1 Electrode placement. 

The proximity of the electrode to the surviving neurons, as well as the impedance and paths of 

current flow between the electrode and the neural population, will determine the spatial 

selectivity of the stimulation. The impedance and the current pathways could be influenced by 

new bone formation in the implanted cochlea and encapsulation tissue around the electrode 

(Grill and Mortimer, 1994). Broad spread of activation will occur if the electrode is physically 

distant from the excitable neurons (along the lateral wall of the cochlea for example, rather than 

next to the modiolus) or if nerve survival is poor immediately adjacent to the electrode. 

Although not routinely used, techniques such as spiral tomography (Wang et aI., 1996) are 

available to measure the exact placement of the electrodes inside the scala tympani. The 

absolute electrode location can then be used to deduce which nerve fibers will be activated. 

Finley et al. (1990) modeled nerve fiber activation in a finite element model with idealized 

electrode placement, but no work has been reported using real electrode placement data. 

Although it is clear that placement of electrodes further from the modiolus requires higher 

stimulus levels to reach threshold and consequently leads to larger current spread, the influence 

of electrode placement is not yet quantified regarding the interaction or independence of 

information channels. It is generally assumed that placement of electrodes close to the modiolus 

is preferable because more focused stimulation can be achieved (Reb scher et aI., 1994). 

Unfortunately, very few tools are available for perceptually assessing and quantifying electrode 

absolute location and spatial selectivity and their exact influence on speech recognition. 
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1.2.2 Nerve survival. 

A second factor that should affect electrode interaction is the nerve survival pattern in an 

individual patient. Several anatomical post-mortem studies (Zimmermann et aI., 1995; 

Linthicum et aI., 1991; Fayad et aI., 1991) have shown from human temporal bones that nerve 

survival patterns vary greatly among subjects, even for the same disease. It is not clear how 

the amount and pattern of neuron survival affects implant performance. However, with fewer 

neurons, the distance between the stimulating electrode and neurons might be larger. Certainly, 

the further the neurons are distant from the electrode, the larger the current required for 

activation and the broader the spread of activation. This, in turn, may reduce the number of 

independent information channels. 

It is clear that it is necessary to quantify the available auditory abilities and to optimize the use 

of the available information channels, i.e. to optimize information transfer in the current 

generation of implants. Tools are needed to establish the number, the location, and the 

characteristics of information channels available in each individual cochlear implant user. In 

this chapter, gap detection is proposed as one such tool. 

1.3 Gap detection as a measure of tonotopic spread 

Gap detection has traditionally been used as a measure of temporal processing (Plomp, 1969). 

At moderate levels and higher, normal-hearing listeners can detect 3-5 ms gaps in a stimulus 

when identical stimuli are bounding the gap, irrespective of the frequency of the stimuli 

(Penner, 1976; Fitzgibbons, 1983; Florentine and Buus, 1984; Hall et aI., 1996; Shailer and 

Moore, 1983). This results is characterized as the "within-channel" temporal resolution. 

However, when the frequencies or levels of the two stimuli that bound the gap are different, 

gap detection thresholds increase about an order of magnitude - to 30-50 ms (Divenyi and 

Danner, 1978; Divenyi and Sachs, 1979; Formby and Forrest, 1991, Formby et aI., 1992). In 

this case, even the standard stimulus with no gap is perceived as having a discontinuity. The 

discontinuity that identifies the actual gap must be long enough to be distinctive from this no

gap, standard condition. This temporal comparison must be done centrally "across channels" 
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in that the two stimuli bounding the gap are processed through largely independent neural 

pathways. A simple model of peripheral frequency resolution can largely explain these results, 

indicating that gap detection can indicate the degree of neural population overlap between two 

stimuli (Heinz et aI., 1996). 

In cochlear implant users, Chatterjee et ai. (1998) observed that "within-channel" gap detection 

thresholds increase when the stimuli marking the gap were of unequal amplitude or unequal 

pulse rate. They concluded that the perceptual discontinuity caused by dissimilar markers 

complicated the gap detection task, and suggested that under these conditions gap detection 

thresholds may be a function both of limitations caused by peripheral mechanisms and a central 

perceptual distance detector. Their results also emphasize the importance of loudness balancing 

the stimuli marking the gap. 

Shannon (1989) measured gap detection thresholds in cochlear implant users as a function of 

stimulus level, for both closely spaced (bipolar) and widely spaced (monopolar) electrode 

configurations, using sinusoids and pulsatile stimuli. He found that gap detection thresholds 

were a strong function of stimulus level, with the shortest gap thresholds in the order of 1.5 to 

3.1 ms regardless of the separation between the active and reference electrodes. He concluded 

that the temporal resolution for implant subjects was as good as or better than for normal

hearing listeners. However, all measures were made with the stimuli marking the gap on a 

single electrode pair, i.e., no cross-channel gap detection was done. 

The present study measures gap detection thresholds as an indicator of the characteristics of 

the available neural channels, i.e. the number of channels available, the position of these 

channels (which electrodes provide independent channels) and the width of the channels. A 

simple conceptual model is hypothesized which relates gap detection thresholds to neural 

excitation. When the two stimuli that bound the gap are presented on different electrode pairs, 

it is expected that gap thresholds will be short if the two electrode pairs stimulate the same 

neural population. Gap detection in this case is presumably determined by a "within-channel" 

temporal mechanism and so is determined by the time constant of the peripheral auditory 
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system. As the electrode pairs are separated and the amount of neural overlap decreases, 

temporal information is carried in separate neural pathways, the stimuli sound more dissimilar 

and the gap thresholds are expected to increase. Gap detection in this case is presumably 

limited by the time constant of the centrally located auditory integration because the 

comparison is made "across-channels". As the two electrodes defining each of the electrode 

pairs are separated, moving from BP stimulation mode (bipolar between adjacent electrodes) 

toward BP+3 stimulation mode (bipolar between nonadjacent electrodes with three electrodes 

separating the stimulation pair), the amount of neural overlap between the two electrode pairs 

is also expected to increase, resulting in reduced gap thresholds. Using the same argument, the 

gap thresholds should presumably also be higher for lower levels of stimulation, as there would 

be less spread of excitation. According to this model, gap detection thresholds can be used to 

infer the amount of overlap in neural populations stimulated by two pairs of electrodes. 

2 METHODS 

2.1 Subjects 

Three users of the Nucleus cochlear implant participated in this study. All were users of the 

Nucleus Spectra speech processor, which implements the SPEAK speech processing strategy 

(McDermott, 1989; McDermott et aI., 1991). They were highly trained in various 

psychoacoustic experiments, having participated in many similar experiments over a period of 

months. Table 2.1 contains detailed demographic information on the three subjects. 

2.2 Electrode parameters 

All three subjects used the Nucleus 22 electrode array (Clark et aI., 1990), implanted into the 

scala tympani. The electrodes are numbered from 1 at the basal end to 22 at the apical end. 

Adjacent electrodes were separated by 0.75 mm. Electrode pairs are referenced by their basal

most member (the active electrode); the reference electrode is the apical-most member of an 

electrode pair. 
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Table 2.1. 

Subject information for the three subjects who participated in this study. Insertion depth 

refers to the number of electrode bands inside the cochlea. The first twenty-two 

electrodes are active, but eight additional inactive electrode rings aid in placing the 

electrode and measuring the insertion depth. Speech recognition scores for these subjects 

were obtained in a previous study (Fishman et aI., 1997). Recognition of words from 

sentences was measured with the CUNY everyday sentences. For consonant and vowel 

recognition tests, sixteen medial consonants in a v/C/v context and eight vowels in a 

hlV/d context were used. 
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N3 55 Male 45 6 years SPEAK 27 trauma 61 58 46 

N4 39 Male 35 4 years SPEAK 26 trauma 95 92 95 

N7 54 Male 47 6 months SPEAK 22 unknown; 71 98 75 

progressive 

hearing loss 

The Nucleus speech processor allows different stimulation modes. Stimuli were presented 

either in bipolar mode between adjacent electrodes (BP); bipolar between nonadjacent 

electrodes for electrode separations up to 3 mm (BP+ 1: 1.5 mm separation; BP+2: 2.25 mm 

separation; BP+3: 3mm separation); or in pseudo-monopolar mode, using the apical-most 

electrode as reference electrode. Pseudo-monopolar mode is not a true monopolar mode, as 

the reference electrode is not located remotely, but inside the scala. In this mode, which will 

be called AR (apical reference) mode for simplicity, the actual mode of stimulation varies with 

the active electrode position, so that, for example, when electrode 20 is used as active 

electrode, the mode is BP+ 1. The spread of the current field should be larger for larger spacing 
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between the active and reference electrodes of the pair. 

2.3 Stimulus parameters 

All stimuli were charge-balanced, 200 lls/phase biphasic pulses, with anodic phase first, and 

were presented at a stimulation rate of 1000 pulses per second. Stimuli were presented at a 

comfortable level of stimulation. The stimuli were loudness balanced across electrodes before 

the start of the experiment, using a bracketing loudness balance procedure. First, thresholds and 

upper loudness levels were obtained in each stimulation mode. Then the subjects were asked 

to choose a comfortable level of stimulation on electrode 10. All subjects chose comfort levels 

somewhere between 50% and 85% of their dynamic ranges in the various stimulation modes. 

All other electrodes were then loudness balanced to this electrode by instructing the subject to 

adjust the loudness of an adjustable stimulus to be just louder than, then just softer than and 

finally equal to the reference stimulus. Loudness was adjusted by adjusting pulse amplitude. 

This was repeated as many times as was necessary to obtain consistent decisions about the 

relative loudnesses. Loudness balancing was repeated for all conditions (each level of 

stimulation in each stimulation mode). 

Gaps were presented between two 200 ms stimuli. These two stimuli were presented on the 

same electrodes in the baseline condition and on different electrodes otherwise. Gap thresholds 

were measured as a function of the separation of the two electrodes. In a single run, the first 

electrode position was held constant, and gap thresholds were measured for different positions 

of the second electrode. The experiment was performed in BP, BP+1, BP+2, BP+3 and a 

pseudo monopolar mode as described above. 

A computer program generated the appropriate stimuli and recorded the subject responses. 

The stimuli were encoded in the correct format to enable presentation directly to the internal 

receiver of the Nucleus device (without using the subjects' processors), via a custom interface 

(Shannon et aI., 1990). 
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2.4 Psychophysical procedure 

Gap thresholds were collected using an adaptive, two-interval, forced-choice procedure. The 

gap was initially 100 ms and two consecutive correct decisions led to a decrease in gap size, 

and one error increased gap size. This procedure estimates the gap size required for 70.7% 

correct responses (Levitt, 1971). Initially the increase or decrease was by a factor of two, but 

after four reversals this factor was 1.3. Data collection was for twelve reversals and the mean 

of the last eight reversals was used to estimate the gap threshold. 

Gap detection thresholds were obtained in BP+ 1 mode for all three subjects using all the even

numbered electrodes as standard (the first stimulus). For each standard, the gap thresholds 

were measured as a function of probe electrode Gust even numbered or both even and odd 

numbered) separation from the standard. Three repetitions were made for each measurement, 

which resulted in six measurements of gap threshold for each combination of stimulation 

electrodes when using both orderings of electrodes. (That is, when electrode i was used as 

standard, three measurements were obtained for probe electrode j, and when j was the 

standard, another three measurements were obtained with i as probe). Also, gap detection 

thresholds were obtained in BP, BP+2, BP+3 and AR modes for all three subjects using 

electrodes 6, 10 and 14 as standard. Again, gap thresholds were measured on even numbered 

electrodes as a function of probe electrode separation from the standard. In this task two to six 

measures were taken at each probe electrode location. 

3 RESULTS 

3.1 Gap threshold as a function of electrode separation 

Figure 2.1 compares gap threshold data from Formby et al. (1996) (in normal hearing listeners) 

to gap threshold data from cochlear implant patients. Formby et al. (1996) measured gap 

thresholds as a function of marker frequency separation and the study described in this chapter 
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measured gap thresholds as function of electrode separation in cochlear implant patients. The 

electrode axis in figure 2.1 is scaled to match the approximate location of the linearly spaced 

electrodes to the cochlear frequency-position function of Greenwood (1990). There is good 

agreement between the two sets of data in the shape of the gap threshold curves and in the 

absolute values of gap thresholds for implant subjects N3 and N7. Gap thresholds for implant 

listener N4 were consistently lower than those from Formby et al. at every comparison point. 

Gap thresholds were measured as a function of electrode separation for ten standard electrodes 

(all the even numbered electrodes) for each of the three subjects (figures 2.2 to 2.4). The 

lowest gap thresholds were always achieved when the two stimuli that bound the gap were 

presented on the same electrode. The minimum values of gap threshold were near 1 ms for 

most electrodes for N4 and 3 to 4 ms for the other two subjects. This is consistent with the 

range of gap thresholds reported by Shannon (1989). 

Figure 2.1. 
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Comparison of gap detection as a function of electrode separation with 

comparable results from Formby et al. (1996) on gap detection as a 

function of frequency separation between marker stimuli. The electrode 

number axis (top) has been reversed and scaled to match the approximate 

location and extent of the electrode according to Greenwood's (1990) 

formula. Data for N3, N4 and N7 was obtained in BP+ 1 stimulation mode. 
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Chapter 2 Gap detection as a measure of electrode interaction 

Gap thresholds increased considerably as electrode separation increased. In general, gap 

thresholds increased by almost a factor of 10 as the two electrodes were separated. The 

absolute values and ranges of gap thresholds varied considerably among the subjects, 

particularly when electrodes were widely separated. Subject N4 had gap thresholds of between 

10 and 20 ms for widely separated electrodes, while subject N7 had maximum gap thresholds 

of 20-70 ms, and N3 had maximum gap thresholds of 100-200 ms. 

For most electrodes towards the basal end of the array, the spatial selectivity of the gap 

threshold curves was sharpest for N4, while N7 had broader selectivity, and N3 had broad 

"spatial tuning" that covered most of the length of the electrode array. For simplicity, the gap 

threshold curves will be referred to as "tuning curves". Many of the gap detection tuning 

curves have two portions: a sharply tuned "tip" region in the vicinity of the standard electrode, 

and a shallow, bowl-shaped portion for electrodes distant from the standard. These two 

sections may reflect two different mechanisms relating electrode similarity to gap detection. 

Figures 2.2 to 2.4 show a general tendency for the slopes of the bowl-shaped portion to 

become steeper on the apical side of the gap threshold tuning curves (i.e. towards electrode 20) 

and shallower on the basal side as the standard moved from base to apex. For electrodes near 

the base, asymmetry was towards the apex (slopes were shallower on the apical side). This is 

consistent with measurements of electrode interaction in the same three subjects, using forward 

masking (Chatterjee and Shannon, 1998). The shallower slopes towards the base (for apical 

electrodes) suggest larger current flow towards the basal region, but the shallower slopes 

towards the apex (for basal electrodes) suggest larger current flow towards the apex. Previous 

measures of electrode interaction using forward masking (Lim et aI., 1989) suggested larger 

current flow towards the basal region for stimulated electrodes at all cochlear locations, but the 

data presented here does not confirm this observation. 
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Gap detection for N3 in BP+ 1 stimulation mode as a function of separation between 

electrodes. One of the marker bursts was presented to the standard electrode pair and 

the other to another electrode pair. Gap detection "tuning curves" are shown for all 

even numbered electrodes as standard. Gap detection thresholds were measured on all 

even-numbered electrodes. 
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Same as figure 2.2, but for subject N4, using BP+ 1 stimulation mode. 
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Figure 2.4. 

Gap detection as a measure of electrode interaction 
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Same as figure 2.2, but for subject N7, using BP+ 1 stimulation mode. 
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3.2 Gap thresholds as a function of level of stimulation 

Figures 2.5 to 2.7 show the gap thresholds for two levels of stimulation for each of the three 

subjects, for three standard electrodes. Stimulation was either at a relatively loud level (comfort 

level was at 81 % of the dynamic range for N3, 84% for N4 and 69% for N7) or a softer level 

(around 30% of the dynamic range for all subjects). BP+ 1 stimulation mode was used 

throughout. The most striking difference between the gap threshold tuning curves at high 
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Figure 2.5. Figure 2.6. 

Gap detection tuning curves for N3 for two Gap detection tuning curves for N4 for two 

stimulation levels. The comfortable stimulation levels at three standard 

stimulation level was at 81 % of the electrode locations. The comfortable 

dynamic range. Each panel represents a stimulation level was at 84 % of the 

different standard electrode location. dynamic range. 
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and low levels is the absence of the sharp tip region in most cases at low levels. In the region 

of the tuning curve tips gap thresholds increased at the softer levels in every case. In addition 

to the loss of the sharp tips, for N4 there was also a 5 to 10 ms increase in gap thresholds 

across the whole pattern at the lower level. Subjects N3 and N7 did not show a clear shift in 

gap thresholds with level away from the tip region. 
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Figure 2.7. 

Gap detection tuning curves for N7 for 

two stimulation levels at three standard 

electrode locations. The comfortable 

stimulation level was at 69 % of the 

dynamic range. 
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The five curves in each panel are gap 

detection tuning curves for N3 for five 

different spacings between the two 

electrodes of a bipolar pair (i.e., five 

stimulation modes). The three panels 

represent measurements at three 

standard electrode locations. 
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3.3 Gap threshold as a function of mode of stimulation 

N3 (figures 2.8 and 2.11) exhibited the sharpest tuning in BP+ 1 mode and poorer tuning in all 

other modes, with the exception of sharp tuning in AR mode when the standard was on 

electrode 6. Surprisingly, his poorest tuning occurred in BP mode, which should produce the 

most localized current field. Tuning curves were so flat in BP+2 mode and in AR mode when 

the standard was on electrode 6 that tuning curve widths could not be calculated. Gap 

thresholds were greater than 10 ms even at the tip of the tuning curve. There was a 10 ms 

difference between the AR and the BP gap threshold curves near the tip and a difference as 

large as 50 ms across stimulation modes away from the standard electrode. 
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Figure 2.9. Figure 2.10. 

Same as figure 2.8, but for subject N4. Same as figure 2.8, but for subject N7. 

Gap detection tuning curves for five Gap detection tuning curves for five 

stimulation modes at three standard stimulation modes at three standard 

electrode locations. electrode locations. 
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N4 (figures 2.9 and 2.11) demonstrated almost the same sharp tuning in most stimulation 

modes, with decidedly broader tuning in AR mode. The difference between the stimulation 

modes was most pronounced for electrode 6, with BP having a significantly steeper slope than 

AR. At the tip of the tuning curve, BP+ 1 produced the lowest gap threshold among the 

stimulation modes. 

For N7 (figure 2.10), tuning did not change dramatically across all conditions. bverall, BP 

exhibited the widest tuning - even wider than AR mode. Lowest gap threshold also did not 

change for N7 across all stimulation modes and standard electrode locations. 
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Figure 2.11. 

Width of the gap detection tuning curves at twice the gap threshold value 

at the tip as a function of the separation of active and reference electrodes. 

The three curves in each panel represent the tuning width measures for 

three standard electrode locations. 
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Overall, these three implant listeners showed quite different patterns of tuning as a function of 

stimulation mode. Based simply on electrical field spread it would have been expected that 

tuning curve widths would have broadened as the separation between active and reference 

electrodes in each pair increased. It was expected that AR mode would produce the poorest 

tuning. No subject showed this expected pattern, although N4 at least showed the poorest 

tuning in AR mode. N3 showed the lowest gap thresholds and the sharpest tuning in BP+ 1 

mode, which was the stimulation mode used in his normal speech processor. There was no 

clear change in the pattern of tuning for different standard electrode locations - similar tuning 

was generally observed for a given listener whether the standard electrode was 6, 10 or 14. 

4 DISCUSSION 

4.1 Relation between spatial selectivity and gap detection thresholds 

The hypothesized relationship between gap detection thresholds and neural activation is 

reflected in the graphs of gap detection as a function of electrode separation (figures 2.2 to 

2.4). Short gap detection thresholds were found where neural interaction was assumed to be 

large (zero or small electrode separation) and larger gap detection thresholds were found as 

the separation between the two electrode pairs increased. The conclusion is that a narrow 

"tuning" in the gap detection thresholds is an indication of good neural selectivity. 

The data in figure 2.11 was used to calculate a two-factor ANOV A, to test the statistical 

relationship between tuning width and two factors: stimulation mode and subject. The ANOV A 

indicated a statistically significant difference between the tuning widths obtained for the three 

subjects (F(2,30)=4.74, p=O.016). For these data, the sentence recognition scores (table 2.1) 

were higher in subjects with smaller tuning widths, although this cannot be stated as a general 

rule as the statistical sample was too small. 

The shortest gap thresholds observed at the tip of the tuning curves were similar across 
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Chapter 2 Gap detection as a measure of electrode interaction 

subjects, 1-4 ms. This is consistent with the results of Shannon (1989) who saw similar gap 

thresholds across patients at the highest stimulation levels. The two studies thus indicate that 

there is little relation between the best gap thresholds and speech recognition performance. 

Both studies found similar gap thresholds across subjects and included subjects with a wide 

range of speech recognition performance. 

However, the longest gap threshold, generally observed for widely separated electrodes, may 

be related to speech recognition performance. Gap thresholds in this case differed by an order 

of magnitude between the best and poorest implant user. It is not clear what factor might 

underlie such a large difference in gap thresholds. The two curve segments (sharp tip and 

shallow bowl) may indicate the selectivity of two mechanisms of similarity between electrodes 

(figure 2.12). The sharp tip may reflect a peripheral/neural process that indicates the amount 

of overlap in the neural populations excited by the two electrodes. The "shoulder" of the gap 

threshold tuning curves may indicate a point of transition to a condition where electrodes do 

not stimulate overlapping neural populations. When electrodes are moved even further apart, 

a further increase in gap detection thresholds would not be expected according to our 

conceptual model. However, the shallow bowl portion of the function may indicate a weak 

effect of perceptual similarity for two electrodes that do not activate overlapping neural 

populations. Although the gap detection must be performed centrally in this case the shallow 

bowl-shaped function may indicate that there is also a mild effect of overall perceptual 

similarity on gap detection. The transition that is heard between electrodes that are highly 

distinctive complicates the gap detection task. Electrodes that are highly distinctive require 

longer gaps for detection than two electrodes that are less distinctive, even if no neural 

populations are in common in either case. 

The models developed in chapters 3 and 4 shows that the gap detection tuning curves can also 

be predicted by peripheral mechanisms alone. In the model in chapter 3 (for gap detection in 

acoustic hearing), the shoulder of the gap detection tuning curve (where the sharp tip 

transforms into the shallow bowl) is speculated to be a transition from a gap detection task to 

a gap discrimination task. In the model in chapter 4 it is shown that the sharp tip is obtained 
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Chapter 2 Gap detection as a measure of electrode interaction 

when entrainment is close to 100% (i.e. spike occur on every cycle of the stimulus waveform), 

while the shallow bowl results when entrainment is less than 100%. This notion is supported 

by the data in figures 2.5 to 2.7, where the sharp tips disappear at lower stimulation levels 

where entrainment levels are expected to be below 100%. 
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Figure 2.12. 

Schematic representation of a conceptual model of gap detection. When 

the two markers defining the gap excite overlapping neural populations 

gap thresholds are lowest, but this mechanism is not useful if the neural 

populations do not overlap. When the neural populations of the two 

markers do not overlap the gap threshold is determined by a slower, 

central mechanism. This hypothesized mechanism is only broadly tuned 

in that markers that are more similar produce slightly lower gap 

thresholds than markers that are highly dissimilar. 

Our original hypothesis was that the longer gap detection time was indicative of the time 

constant of a central mechanism comparing outputs from different peripheral neural channels. 

If this is the case, then the long gap thresholds exhibited by N3 may be long enough to interfere 

with recognition of speech transitions across channels. Long gap thresholds can presumably 

lead to the misinterpretation or missing of important temporal cues for the identification of 

consonants (e.g. voice onset time; Divenyi and Sachs, 1978), resulting in poorer speech 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 34 

 
 
 



Chapter 2 Gap detection as a measure of electrode interaction 

recognition performance. In the case ofN4, poorest gap detection was still 10-20 ms, which 

may be rapid enough to allow processing of all relevant cross-channel speech transitions. It 

may be that within-channel gap detection is not a limiting factor for speech recognition, but that 

long, central cross-channel comparison times can interfere with speech temporal distinctions. 

It is not clear what might cause the large difference observed in these gap thresholds between 

different subjects. It appears that there is a larger range of individual differences in the implant 

results than in similar conditions with acoustic hearing in normal listeners (Formby et aI., 1991). 

4.2 Relation between stimulation level and spatial selectivity 

Gap thresholds are a strong function of stimulus level in cochlear implant users (Shannon, 

1989). All of Shannon's measurements were made with identical markers before and after the 

gap, a condition similar to the tips of the tuning curves in the present data. The data in figures 

2.5 to 2.7 also show longer gap thresholds at softer stimulus levels around the tip region. 

However, gap thresholds did not change as much with level away from the tip region, resulting 

in the loss of the sharp tips of the tuning curves at lower levels. Less interaction would be 

expected at lower stimulus levels, because the region of neurons activated should be smaller. 

Our conceptual model would predict narrower tips at low stimulus levels rather than no tips. 

However, the interpretation of the present data are confounded by the strong change in gap 

thresholds with level. In conditions where the markers before and after the gap were on 

different electrodes (away from the tip region), little change in gap thresholds with level was 

observed in two of the three subjects. According to our conceptual model this suggests that 

central mechanisms of gap detection are less dependent on stimulus level than peripheral 

mechanisms of gap detection. Clearly, more data is needed to validate this suggestion. 

4.3 Relation between stimulation mode and spatial selectivity 

As the active and reference electrodes in a bipolar pair are separated the electric field becomes 

more diffuse and spatial selectivity decreases. In general, broader tuning in the gap detection 

threshold curves was not found as the active and reference were separated. What was not 
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expected was the inconsistency across subjects - gap thresholds varied much more across 

subjects than across stimulation modes. The ANOV A on the data in figure 2.11 indicated a 

statistically significant difference between the tuning widths obtained for the three subjects, but 

no statistical difference between tuning widths for different stimulation modes. 

Three possible explanations are proposed. The first is that current spread is already so large 

that the effect of using stimulation modes with widely separated electrodes has little additional 

effect (see Lim, Tong and Clark, 1985). A second explanation is that stimulation modes with 

larger electrode separation do not increase current spread as much as expected. The electrical 

field model of Finley et al. (1990) predicted a broadly spreading field around banded electrodes, 

such as those used in the Nucleus implant. Other electrode designs with more localized current 

distributions might produce more significant and consistent variations in gap detection 

thresholds in different stimulation modes. A third explanation is that the effects of changing 

stimulation mode were confounded by the fact that stimulation current level also changed with 

stimulation mode. Lower currents were used in the stimulation modes with larger spacing 

between the active and reference electrodes, because these modes produce lower thresholds 

and uncomfortable loudness levels. The original goal was to change the extent of the neural 

population activated by using more widely spaced electrodes in a stimulation pair. However, 

widely spaced electrodes in a stimulation pair result in lower stimulation currents, presumably 

exhibiting less current spread, and so may partially offset the increased neural extent due to the 

electrode separation. The net observed result was that sharpness of the gap threshold tuning 

curves remained effectively unchanged. So it is possible that the effect of stimulation modes 

with anticipated larger current spread was offset by using lower currents in these stimulation 

modes. 

An additional unanticipated result is that in AR stimulation mode gap thresholds were not the 

very low values that should correspond to wide spread of stimulation. For wide spread of 

stimulation, all neural channels receive similar input and there are more channels to aid in gap 

detection, so a flat tuning curve with very low values of gap thresholds was expected for all 

separations of electrode pairs. In fact, although AR mode had a slightly flattened curve, the 
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curve was not entirely flat and in most instances the lowest gap threshold values were higher 

than the tip region of the other stimulation modes. Because true monopolar stimulation was 

not used, the current paths were directed towards the apical region (where the reference 

electrode was situated). When detecting the gap between, for example, stimuli on electrode 

pair (10,22) and electrode pair (19,22), gap detection is performed for an electrode pair with 

wide current spread activating a large neural population and an electrode pair activating a 

subset of the same neural population. This complete neural overlap would have been expected 

to produce low values of gap thresholds. This observation again suggests that the amount of 

neural overlap is not the only factor in determining the gap detection thresholds. Perceptual 

dissimilarity between the two stimuli may have confounded the peripheral gap detection 

mechanism. Our simple conceptual model about this peripheral mechanism cannot explain all 

the data presented here, and some of the trends might be ascribed to central mechanisms. This 

is the interpretation in Chatterjee et al. (1998), who found short gap thresholds only when the 

two stimuli bounding the gap were identical; gap thresholds were long if the two stimuli were 

perceptually different in any way (pitch or loudness). This result suggests that even if the two 

stimuli marking the gap activate mostly overlapping neuron populations, the differences in 

neuron activation may produce a sufficiently different percept that the gap detection decision 

is primarily central. However, the relative importance of central and peripheral processing 

mechanisms is unknown. 

4.4 Channel characteristics 

Gap detection threshold was employed as a tool to provide more insight into the channel 

characteristics, i.e. the number of channels, the location of channels, the width of channels and 

the factors that determine channel characteristics. The present results show that the gap 

detection tuning curves are wider for some choices of electrodes and stimulation modes, and 

also vary widely across subjects. However, it is not clear at this time how to interpret the gap 

detection tuning curves in terms of information channels. The following two assumptions are 

proposed to assist in defining channel width: 

(1) Each subject has a minimum gap threshold when the two stimuli are presented to the 
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same electrode and a large gap threshold when the two electrodes are widely separated. 

It was initially assumed that the value of the gap threshold corresponds to the relative 

amount of neural interaction. Thus, for each electrode for each subject, there exists 

a value of gap threshold relative to the minimum such that larger values of gap 

threshold correspond to negligible channel interaction. 

(2) It is then necessary to make an assumption as to how much neural interaction is 

negligible, i.e. how much interaction can be tolerated between two neural channels for 

them to still be distinct channels. This value is unknown, but it might correspond to the 

"shoulder" of the gap threshold "tuning curves". It is speculated that this shoulder 

indicates the point of transition from a peripherally-limited task to a centrally limited 

task (figure 2.12). As a first approximation a fixed gap threshold value at 40% between 

the lowest and highest gap threshold can be used, which is in the general vicinity of the 

shoulder of the gap threshold tuning curves. Another candidate measure for deciding 

whether two electrode pairs correspond to two different channels, is electrode 

discriminability. As the electrode pairs are separated and the amount of neural overlap 

decreases, the stimuli become easier to discriminate. The electrode separation at a 

chosen level of electrode discrimination (say 75% correct) may be used to find the 

corresponding gap threshold (from the gap threshold tuning curves). This defines a 

minimum gap threshold value for electrodes to be discriminable. Gap thresholds larger 

than this value correspond to two electrodes constituting two different channels. 

Electrode discriminability was measured in these same subjects (Hanekom and Shannon, 1996) 

as described in Appendix 2.A. The 40% measure does not match very well with the electrode 

discriminability measure. The electrode discrimination measure may be too strict. Two 

electrodes might be discriminable if there is any difference in the neural populations that they 

stimulate, but that might not be enough difference to allow them to be independent information 

channels. Better choices than the 40% measure may be available, but this gives an example of 

how channels may be defined and this measure was used in the discussion that follows. 
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Using these assumptions, the following deductions emerge from the results. 

(1) Number of channels 

The number of distinct channels may be small. Estimating the number of channels from the 

above assumptions, itis found thatN3 (a relatively poor user) may have only a few information 

channels available, and the upper limit in the number of available channels may be around six 

or seven (for N4, the best user in the group). Clearly, the number of channels will generally 

be less than the number of electrodes. One key question raised by this observation is whether 

improvements in speech recognition can be achieved by selecting electrodes appropriately 

(Zwolan et aI., 1997; Henry et aI., 1997; Hanekom and Shannon, 1996). Specifically, can 

better speech recognition be achieved with a smaller number of independent electrodes or a 

larger number of interacting electrodes? 

When speech processors are programmed with a subset of the total number of available 

electrodes, many combinations of electrodes are available from which to select. Because of the 

pattern of interactions in an individual subject, processors with the same number of electrodes 

can be selected that will have quite different numbers of independent channels (Hanekom and 

Shannon, 1996). Hanekom and Shannon (1997), using fourteen different seven-electrode 

processors, made a very simple estimation of the number of channels using gap detection 

thresholds and the assumptions above and found significant correlation between vowel 

recognition and the estimated number of channels. Presumably, this relation was due to a 

clearer formant structure when a larger number of distinct channels were available. 

(2) Width and location of channels 

The shapes of the gap threshold curves suggest that the tuning may be broad or that channels 

are relatively wide and typically span many electrodes. Channels become only slightly wider 

when using stimulation modes with widely spaced active and reference electrodes. Channels 

are in general wider for the poorest user (N3) and narrower for the best user (N4) in the group. 

Using the assumptions above, channel width may be between 2 electrodes for N4 (1.5 mm) and 

14 electrodes for N3 (10.5 mm). The location of the best (most selective) channels may be 
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deduced directly from the gap detection curves. 

(3) Factors determining the characteristics of channels 

At least four physical factors determine channel characteristics: (1) electrode placement relati ve 

to the remaining nerve fibers; (2) electrode design, which determines the electrical field 

distribution (Finley et aI., 1990), e.g. the Nucleus has a banded electrode design while the 

Clarion device (Schindler and Kessler, 1993) has a radial electrode placement; (3) nerve 

survival (Zimmerman et aI., 1995); and (4) the current pathway that the stimulation current 

follows between the active and reference electrodes. Apart from these physical factors, channel 

characteristics may also be influenced by central auditory nervous system processing. 

In existing implants we can only control the current pathway and current spread to some degree 

by choice of the stimulation electrode pair. Results reported here for the Nucleus device 

indicate very little difference between the gap threshold tuning curves for different stimulation 

electrode pair separations and larger variations across subjects. Electrode placement and nerve 

survival are fixed for an individual implant patient and so cannot be modified after surgery to 

achieve a larger number of channels. 

Although much research has focused on the physical factors influencing cochlear implant user 

performance, the important question is how these effect the information actually received. It 

is proposed that more research needs to be concentrated on how the channel capacity depends 

on or is related to the physical aspects of cochlear stimulation (electrode design, electrode 

placement, electrical fields patterns and nerve survival patterns). 
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4.5 Implications for cochlear implants 

4.5.1 Comparison of electrode designs 

Different electrode designs exhibit different current spread characteristics (Finley et aI., 1990). 

The results suggest that electrode designs cannot be compared by simply calculating which 

design produces the most localized current field. All the subjects in our study had the same 

electrode design, but large differences in selectivity were observed. Selectivity is not a linear 

function of either current spread or the spacing between the stimulation electrode pair. 

4.5.2 Reduced electrode processors 

In any non simultaneous delivery of biphasic pulses to a number of electrodes there is an 

inherent trade-off between the number of electrodes and the overall pulse rate. As the number 

of electrodes decreases a higher pulse rate can be maintained on each electrode. However, the 

trade-off between pulse rate and number of electrodes is not well understood in terms of their 

importance to speech recognition. Several recent studies (Fishman et aI., 1997; Lawson et aI., 

1993, 1996) suggest that implant patients are not making full use of all electrodes. It is 

possible that better speech performance could be achieved with a smaller number of electrodes, 

selected to be maximally independent channels, that are stimulated at a higher pulse rate. 

Techniques such as gap detection, forward masking (Shannon, 1983, Lim et aI., 1989; 

Chatterjee and Shannon, 1998), electrode discrimination (Hanekom and Shannon, 1996; Kileny 

et aI., 1997; Zwolan et aI., 1997; Henry et aI.,1997), or loudness summation (Fu et aI., 1996) 

could be used to help select electrodes for inclusion or exclusion in a processor that uses only 

a subset of all available electrodes. 

4.5.3 Choice of electrodes for a reduced electrode processor 

Gap detection thresholds may also be used to compare different choices of speech processors 

regarding the number of channels, using the assumptions mentioned earlier. Although the 

actual number of channels is unknown, this method could be used to find the speech processor 

that maximizes the number of calculated channels. As discussed earlier, Hanekom and Shannon 

(1997) found that seven electrodes in a processor can lead to a quite different number of 
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distinct channels depending on which electrodes are chosen. Thus, a simple relationship 

between number of electrodes and quality of speech recognition cannot be assumed. 

4.5.4 Choice of electrode pair separation (stimulation mode). 

It has been widely assumed that closely spaced bipolar electrodes are necessary for achieving 

good spatial selectivity in a cochlear implant. However, the present gap detection tuning 

curves show only minor differences in spatial selectivity as a function of the separation of the 

bipolar pair. Indeed, in a recent study electrode discrimination and speech recognition were 

each similar for monopolar and bipolar stimulation (Zwolan, Kileny et aI., 1997). To the extent 

that stimulation mode does effect channel interaction, the optimal configuration may change 

from one end of the electrode array to the other. This may result in the use of multi-mode 

speech processors, with each information channel optimized by choosing the electrodes and 

stimulation modes that result in the best selectivity. Present clinical speech processor fitting 

software for the Nucleus device allows mixed-mode processor designs, but this feature is not 

generally used. 

5 CONCLUSIONS 

(1) Gap detection thresholds are a function of the physical separation of the electrode pairs 

used for the two stimuli that bound the gap. Gap thresholds increase from a minimum 

when the two stimuli are presented on the same electrode pair to a maximum when the 

two stimuli are presented on widely separated electrode pairs. This change may be due 

to a change-over from a peripheral, within-channel gap detection process for closely 

spaced electrode pairs to a central cross-channel process for widely spaced electrode 

pairs. 

(2) When the two marker bursts are presented to the same electrode, gap detection 

thresholds are similar across subjects at 1-4 ms. Gap thresholds for widely separated 

electrodes vary considerably among subjects and may be related to speech recognition 

performance, with better implant users having lower gap thresholds in this condition. 
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(3) The area of neural activation by each electrode (as inferred from the width of the tip 

region of the gap detection tuning curves as a function of electrode pair separation) 

varies across subjects and across electrodes. For the three subjects in the present study, 

the better implant users exhibit sharper tuning, i.e., a smaller area of neural activation 

around each stimulation pair. 

(4) U sing stimulation modes with larger separation between active and reference electrodes 

has limited effect on spatial selectivity. AR stimulation mode, although presumably 

having larger current spread, has better neural selectivity than BP mode for some 

subjects. This implies that there is no fixed optimal stimulation mode, but that the 

optimal stimulation mode may vary across subjects and from one end of the electrode 

array to the other. 

The research presented in this chapter was supported in part by the NIDCD (National Institute on Deafness and 

other Communication Disorders). The research was made possible by travel grants towards the first author by 

the University of Pretoria, South Africa and by the House Ear Institute, Los Angeles. 

APPENDIX 2.A 

SUMMARY OF ELECTRODE DISCRIMINATION STUDY 

Electrode discriminability was measured in the same subjects that participated in the study 

described in this chapter. Details can be found in Hanekom and Shannon (1996), but as this 

publication may not be easily accessible, a brief description of the study is given here. 

This electrode discrimination study determined the amount of electrode confusion with a pitch 

discrimination experiment. A place pitch ranking matrix (or electrode discrimination matrix) 

was compiled by using a very simple psychophysical procedure. Consecutive stimuli of 500 ms, 

separated by a brief quiet interval of 200 ms, were presented on two of the subject's electrodes. 

The subject's task was to judge which stimulus was higher pitched. 

Each stimulus pair consisted of stimuli on two different electrodes stimulated in BP+ 1 mode. 

All stimuli were current-balanced biphasic pulses, positive phase first. Stimulation rate was 
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1000 pulses per second and the pulse phase duration was 200 microseconds. Stimuli were 

presented at a comfortable level of stimulation above 50%, but below 80% of the dynamic 

range of the subject. The stimuli were balanced for loudness to minimize confusions between 

loudness and pitch. 

A computer program generated the appropriate stimuli and recorded the subject responses. 

The electrodes used for the stimulation pairs during the pitch discrimination experiment were 

completely randomized for each run. One run consisted of the presentation of all possible 

combinations of electrodes, in both orders of presentation, excluding comparisons of electrodes 

with themselves. Twenty runs were completed in BP+ 1 mode for each of the subjects, which 

gave a total of forty comparisons of each electrode with every other electrode. 

Subject reaction, indicating which stimulus was judged to be higher-pitched, was recorded for 

each stimulation pair and compiled into a response matrix. The response matrix tabulated the 

number of times that the more basal electrode of a stimulation pair was judged to be higher 

pitched than the more apical (which would be the expected order based on the tonotopic 

organization of the cochlea). This matrix was then converted to a percentage correct matrix, 

under the assumption that a judgement of the more apical electrode to be higher pitched than 

the more basal in a specific stimulation pair, was an incorrect decision. This resulted in a lower

triangular matrix. This lower-triangular matrix was then converted to a matrix of d' values. The 

d's gave an indication of the perceptual distance between the stimuli. 

Figures 4.34 and 4.36 summarize some of the results. It was found the three subjects required 

different distances between electrodes for two electrodes to be discriminable (d'> 1). This 

distance (LlE, the number of inter-electrode distances) was also found to be variable across the 

electrode array for all three subjects. N3 required electrodes to be far apart to be discriminable. 

Figure 4.36 suggests that electrodes 1 to 16 were not discriminable in N3's case. N4 generally 

required a LlE of 2 (see figure 4.34), while N7 generally required a LlE of 4 or more. 
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Chapter 3 

MODELS OF GAP DETECTION IN ACOUSTIC HEARING 

1 INTRODUCTION 

Gap detection has often been used as a measure of temporal resolution in the auditory system, 

e.g. Penner (1977), Divenyi and Danner (1977), Fitzgibbons (1984), Formby and Forrest 

(1991). The gap detection task has traditionally been within-channel (i.e. gap markers were the 

same). Across-channel gap detection has been used in acoustic stimulation (Phillips et aI., 

1997) to investigate how temporal gaps between spectrally different sounds are detected, a 

situation that is typical in everyday speech understanding tasks. It has been hypothesized that 

across-channel gap detection thresholds reflect the extent of neural activation (Hanekom and 

Shannon, 1998; chapter 2). In both the acoustic and electrical stimulation cases, it has been 

found that gap thresholds increase as the gap markers are separated in frequency (Divenyi and 

Danner, 1977; Divenyi and Sachs, 1978; Phillips et aI., 1997; Formby and Forrest, 1991; 

Formby, Sherlock, and Forrest, 1996) or presented on two electrode pairs with increasing 

spacing (Hanekom and Shannon, 1998). Examples of the resulting U-shaped gap detection 

"tuning curves" have been given in chapter 2. 

A model of gap detection in acoustic hearing is created in this chapter, with the primary 

objective of investigating which underlying factors bring about the U-shaped gap detection 

curves found in across-channel gap detection tasks. 

1.1 Models of gap detection in acoustic auditory stimulation 

Previous models of auditory duration discrimination or gap detection have been presented by 

Creelman (1962), Formby, Sherlock, and Forrest (1996), Forrest and Formby (1996), and 

Heinz, Goldstein, and Formby (1996). Creelman (1962) modelled duration discrimination of 
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brief signals in a signal detection theoretical context. He hypothesized that an internal counter 

counted the number of spikes elicited by a brief signal to measure the signal duration. The spike 

train was assumed to be Poissonian, so that noise was present in the duration measurement, but 

the signal onset and offset were assumed to be known exactly. Divenyi and Danner (1977) 

expanded this model to include the effects of noise in the determination of the signal offset and 

onset in gap discrimination. These models cannot explain the U-shaped curves found in across

channel gap detection. 

In a series of articles, Formby and co-workers (Formbyet aI., 1996; Forest and Formby, 1996; 

Heinz et aI., 1996) described models for gap detection with sinusoidal markers that differed in 

frequency. They ascribed the increased gap thresholds in across-channel gap detection to 

peripheral filtering. They noted that listeners may enhance gap thresholds when permitted to 

improve signal-to-noise ratio by shifting the auditory filter centre frequency to midway between 

the two marker frequencies. In essence, their single channel model (Forrest and Formby, 1996) 

had a single auditory filter stage (including nonlinear compression to model stimulus 

transduction at the hair cell) that bandpass-filtered the marker frequencies. This auditory filter 

was centred between the two marker frequencies to optimize performance on the gap detection 

task. The simulation used the same 2IFe procedure as used with listeners. The filter outputs 

in the two intervals of the 2IFe procedure were compared and the interval with the largest ratio 

of maximum to minimum output (the max-min statistic) was chosen as the interval containing 

the gap. Simulated gap thresholds could be obtained by taking the average of several model 

runs. The model generated results similar to those of human listeners in a gap detection task, 

except that the asymptotic thresholds for large marker frequency separations could not be 

reproduced. 

The multi-channel model of these authors (Heinz, Goldstein, and Formby, 1996) is similar to 

the single-channel model, but used multiple bandpass filters and calculated the max-min ratio 

for each channel. Each channel then decided which of the two intervals in the 2IFe procedure 

contained the gap, and the final decision was base on a majority vote. Only channels within a 

decision region centred between the two marker frequencies were included in the decision. The 
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model generated results similar to those of human listeners in a gap detection task. 

1.2 Extension of previous models 

The model described in this chapter extends the work of Formby and co-workers in two 

respects: 

(1) Closed form equations are obtained for gap discrimination and gap detection thresholds. 

This makes the model easy to interpret and allows effortless investigation of the effects of 

model parameters. 

(2) The model is developed to be more detailed and closer to the underlying neurophysiology, 

by using spike trains and spike train statistics to derive equations for gap thresholds. This is 

important, as spike train statistics are dramatically different in electrical stimulation of the 

auditory nerve. The models of Formby and co-workers cannot be used for prediction of gap 

thresholds in electric hearing. 

Consequentl y, by using the statistics of the spike train (rather than the max-min statistic based 

on analogue waveforms as in Formby), modelling what happens in both electrical stimulation 

and acoustic stimulation is possible. The basic principle used in the model in this and the next 

chapter is that neural channels stimulated by gap markers that are more closely spaced (in 

frequency or in physical electrode position), result in an easier gap detection task so that gap 

thresholds decrease. Following the arguments of Formby and co-workers, it is assumed that 

the auditory system places a filter between the two areas stimulated by the two markers. The 

exact nature of this filter is unimportant. This may be an "attentional filter" as suggested by 

Divenyi and Danner (1977) and Phillips et al. (1997). The current model makes this notion 

explicit. As the markers move apart, the task of the gap detector becomes more difficult, 

because the difference in spike rate during the marker and within the gap becomes smaller. 

Conceptually, the model presented in this chapter incorporates the following ideas. Two factors 

limit measurement of the duration of a temporal gap. Uncertainty exists about the times at 

which the edges of the gap occur, and when the edges are known (or have been estimated) 
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there is noise in the actual measurement of the duration of the gap. The origin of this noise is 

the Poissonian nature of the spike trains in the central auditory nervous system. 

1.3 Objectives of this chapter 

A model of gap detection in acoustic hearing is created in this chapter, with the objective of 

investigating which underlying factors bring about the V-shaped gap detection curves found 

in across-channel gap detection tasks. This model extends previous models as described above. 

As it is believed that the same underlying mechanisms operate in acoustic and electrical gap 

detection, the intention is to create a model that can also be expanded for the electrical gap 

detection situation (see chapter 4). 

2 A MODEL FOR GAP DETECTION IN ACOUSTIC HEARING 

2.1 Assumptions about the acoustically evoked spike train 

At the auditory periphery, an estimate of when the edges of the gap occur may be influenced 

by three different situations. First, in acoustic stimulation, spike trains are random and Poisson

like for high frequencies (above 5 kHz). In this case, the positions of the edges of a gap will 

be the most difficult to estimate, and gap thresholds may have been expected to be the largest 

of the three cases. Second, for low frequencies (acoustic stimulation below 5000 Hz), spike 

trains are phase-locked to the cycles of the stimulus (e.g., Johnson (1980)). This may have been 

expected to improve the ability to judge the edges of the gap accurately. However, Shailer and 

Moore (1983) showed that a close correspondence exists between the auditory filter bandwidth 

and gap detection thresholds at low frequencies. Also, gap thresholds decrease for increasing 

frequencies (Fitzgibbons, 1983; Fitzgibbons, 1984). This effect has been ascribed to the 

decreasing auditory filter bandwidth at lower frequencies, which presumably leads to more 

ringing in these narrower auditory filters, and to inherent fluctuations in narrowband noise 

(Shailer and Moore, 1983; Shailer and Moore, 1987). The rate of fluctuation is determined 
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approximately by the reciprocal of the bandwidth of the filter. Smaller bandwidth results in 

slower fluctuations, that may be confused with the gap. 

Third, for electrical stimulation, spikes are tightly phase-locked, especially to pulsatile stimulus 

waveforms (Javel, 1990). The only limitation in the correct judgement of the positions of gap 

edges is the small jitter in spike positions relative to a preferred latency. If gap detection was 

based on temporal information only, gap detection might have been expected to be more acute 

than in normal hearing, but results show that gap detection thresholds in cochlear implantees 

are similar to those measured in normal-hearing listeners (Shannon, 1989). 

These observations suggest that temporal phase-locking does not playa major role in 

determining gap thresholds, but that spatial mechanisms (i.e. peripheral filtering) may playa 

more important role, consistent with the models of Formby and co-workers as cited above. Of 

course, peripheral filtering does not playa role in cochlear electrical stimulation, but the current 

distribution from the site of an electrode may playa role similar to an auditory filter. This idea 

is expanded in chapter 4. 

Based on the foregoing observations, the use of Poisson processes in the gap detection model 

to model spike trains seems justifiable, especially for acoustic stimulation. Assuming that spike 

trains are Poisson processes simplifies the mathematical analysis. 

2.2 Nerve fibre model 

The nerve fibre model used in the acoustic gap detection models is described here. The gap 

detection model is based primarily on the rate response profile (called the A-profile in this text, 

where A is the average rate parameter in a Poisson process that describes neural spike train). 

The nerve fibre model has a significant influence on the A-profile, which in turn influences the 

size of ~A when the gap marker frequencies are separated. ~A is the difference in spike rates 

during the gap and markers. The larger this rate difference, the more detectable the transition 

from marker to gap or gap to marker becomes. 
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2.2.1 Nature of the nerve fibre model 

The fibre model described is not a biology-based model, but rather a black box model that 

incorporates the major spike train characteristics that are important in audition. The well

known Hodgkin-Huxley model, e.g. Kistler, Gerstner, and van Hemmen (1997), is an example 

of what is termed here a biology-based model. It incorporates the nerve fibre cell membrane 

dynamics to predict firing characteristics in response to stimuli. Neither the Hodgkin-Huxley 

model, nor the current model has any statistical characteristics. They always fire when 

threshold is reached, unlike biological models that incorporate sources of noise, e.g. Lecar and 

Nossal (1971). 

The nerve fibre model used in this chapter is an average rate model, meaning that it models the 

average spike count characteristics, but not the instantaneous spike characteristics. For 

example, the fibre model does not incorporate phase-locking of spike trains to a preferred 

stimulus phase (see chapter 5). The nerve fibre model can be used for calculating A-profiles and 

predicting average firing rates. Finally, the model is based on pure-tone stimulus data. The 

input to the fibre model is the frequency f and amplitude A of a pure tone stimulus. The output 

is the average firing rate at different locations in the cochlea. 

2.2.2 Nerve fibre model equations 

The nerve fibre model builds on a model by Colburn (1973). The model is straightforward and 

simple to interpret. The average rate for fibre m for a pure tone stimulus of frequency f is 

r m = SR + MR . g(A) . Hm{f) . (3.1) 

In this equation, SR is the spontaneous rate of the fibre, MR is the maximum rate, A is the 

stimulus intensity in dB SPL, g(A) is a function that characterizes spike rate as a function of 

intensity (rate-intensity curve), and Hm(f) is a tuning parameter (explained below). The function 

g(A) is 

1 A - A (m) 
g(A) = -(1 + Erl( thr) • (3.2) 

2 {ia 
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This is an integrated Gaussian that provides an s-shaped curve that can be fitted to typical rate

intensity data. The parameter 0 controls the slope of the curve. Athr(m) is the threshold of fibre 

m in dB SPL. By definition, threshold is reached when the spike rate increases by 10% from 

SR. Thresholds of fibres excited by the stimulus (of frequency f) differ as fibres may be 

stimulated at a frequency different from their CF. Fibres stimulated at their CF have the lowest 

threshold, and the threshold increases as fibres are stimulated with frequencies increasingly 

different from CF. This is described by the tuning function Hm(f). Thus AthrCm) in equation 3.2 

is 

(3.3) 

AthrCm) is the threshold of a fibre at a specific stimulus frequency f, when the best frequency for 

that fibre is CF. Athr,CF is the threshold at CF in dB SPL. Typical values for Athr,CF are 0 to 30 

dB SPL (as determined in cat by Shofner and Sachs, 1986). g(A) takes on values between 0 

and 1 and is centred on Athr, unless the offset parameter Aoff is used, i.e., at Athr there is already 

a 50% increase in spike rate. The offset parameter Aoff is used to ensure that the spike rate has 

increased by 10% at Athr. 

For a fixed value, the parameter 0 results in a fixed slope for the rate-intensity curve. However, 

data show that the slope changes for stimulus frequency I more distant from CF for frequencies 

above CF (Evans, 1975; also see Javel and Viemeister, 2000). A model for 0 is then 

for f ~ f m: 0' = 0'0 ' 

forf>fm: 
f- f. 

0' = 0' + ( __ m) • k 
o fm ' 

(3.4) 

wherelm is the CF of fibre m. Parameter k changes the slope as a function of II-1m I. To fit the 

data in Colburn (1973), 0 0=5 is used, while 0 0=6 and k=20 provides a reasonable fit to the data 

in Evans (1975). 

The tuning function Hm(f) in equations 3.1 and 3.3 characterizes the threshold of a fibre with 
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best frequency CF when the acoustic stimulus frequency is varied. Thus, it is (the inverse of) 

a normalized frequency tuning curve (maximum tuning is 1), so that 20 log Hm gives an 

approximation to the tuning curve, but has threshold at 0 dB. The actual threshold at CF is then 

specified explicitly in equation 3.3 as Athr,cF' Hm(f) is given by 

Hm(/) = ~r for f,;. fm 

= (;r« for f> f m· 

The parameter et controls the rolloff of the tuning curve, and is given by 

a = a 0 for fm ~ 800 Hz 

= ao ' fm forfm> 800Hz. 
800 

(3.5) 

(3.6) 

eto =4 provides a good fit to the AN data. Note that the roll off becomes sharper at higher 

frequencies. These last two are the same equations as given in Colburn (1973). The tip part of 

the data is fitted well, but not the tail. For the current model, the tail is ignored. 

The set of equations from 3.1 to 3.6 define the auditory nerve fibre model. 

2.3 Cramer-Rao Lower Bound for the Poisson change-point problem 

The objective of this section is to derive a simple equation for the gap threshold as a function 

of the difference in spike rates elicited by the pre-gap and post-gap markers. The Poissonian 

nature of the neural spike trains complicates the detection of the edges of a gap, as it makes 

a change in spike rate difficult to detect. The Cramer-Rao Lower Bound (CRLB) for the 

detection of the gap edges is derived for this problem. The CRLB gives the variance in the 

estimate of a (classical) optimal estimator. 

The problem is to calculate the CRLB for the time of a step change in the rate of a Poisson 
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process. It is natural to suspect that the accuracy with which the change-point may be found 

depends on the difference in rates of the Poisson process before and after the step change, as 

well as the time that the detector has to observe the non-homogeneous Poisson process. The 

rate of change of the rate function (i.e. whether it is a step function or a ramp) should also 

influence the accuracy of the change-point detection. 

As far as is known, the CRLB for the Poisson change-point problem has not been addressed 

in literature. Much literature exists on solving the change-point problem for Poisson processes 

(e.g.Bremaud (1981), Karr (1986), Davis (1976), Raftery and Akman (1986), West and Ogden 

(1994), Gal'chuk and Rozovskii (1971)), but the objective of all of these authors was to find 

an algorithm to detect the change-point in a given Poisson process, rather than addressing the 

question of how accurately this could be done. 

A parallel problem is that of determining the change-point of a signal in Gaussian noise that has 

a step change in amplitude. The task in this case is to estimate the time of step change by 

observing the signal plus noise. Samples are taken at regular intervals, whereas in the Poisson 

problem no sampling is done, but the discrete or continuous point process is observed. This 

signal in Gaussian noise problem is solved in e.g. McDonough and Whalen (1995). It may be 

expected that the change point detection accuracy is dependent on the variance of the Gaussian 

noise, as well as the differences in signal amplitude before and after the step, and also the time 

that the detector has for observation before and after the step. The CRLB on this estimate has 

been calculated in Reza and Doroodchi (1996). 

The CRLB for signals in Gaussian noise may then be used as an estimate of the bound for the 

Poisson problem. For a Poisson process, the average rate A equals the variance, so a signal that 

jumps in amplitude from Al to A2 at time t, can be equated to a Poisson process that has a 

jump in rate from AI=AI to A2=A2• The variance of the Gaussian noise is Al before the jump 

and A2 after the jump. This argument redefines the Poisson problem as a signal in Gaussian 

noise problem. 
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To calculate the CRLB, a differentiable function is required to characterize the jump in rate of 

the Poisson process. A sigmoidal function may be used to model the change-point, instead of 

a step change. For a jump from average rate Al to average rate A2 at a change-point time t, the 

rate of the Poisson process is given by equation 3.7, 

(A - A ) 
A ('&') = A + 2 1 

t 1 l+e-a;(t-,;) 

(3.7) 

1 + e -a; (t-,;) 

where a determines the rate of change from Al to A2. As shown in equation 3.26, a is inversely 

proportional to ~t, where ~t is the duration of a transition from Al to A2. Physical factors 

determine ~t, as the transition between marker and gap cannot occur instantaneously. The data 

of Zhang, Salvi, and Saunders (1990) show that spike rate decays exponentially after the offset 

of a gap marker with time constants in the order of 1 ms. Westerman and Smith (1984) 

measured minimum decay time constants of 1 ms in auditory nerve fibres. As shown below 

equation 3.6, this implies values in the order of a=4000. 

The CRLB is lIF(8) with F(8) the Fisher information and 8 a parameter. Snyder (1975) 

derived a general form for the Fisher information for Poisson processes, 

1<16) = J(At(6»)-1(a~t~6»)2dt. (3.8) 
to 

F(8) is a function of the intensity At of the Poisson process only. [to, T] is the period over 

which the CRLB is required. For the signal model in equation 3.7, the Fisher information, 

parameterized by t, may be rewritten as 

(3.9) 
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It follows from equation 3.7 that 

(3.10) 

Accordingly, the Fisher information is 

(3.11 ) 

The integral in equation 3.11 has a solution in closed form, but this solution is a rather 

complicated expression that does not provide insight into the effect of the different variables 

(AI' A2 and ct) on the accuracy with which 't can be estimated. Therefore, equation 3.11 is 

solved numerically. The CRLB gives the variance in the estimate of 't and is calculated as the 

inverse of equation 3.11. 

One approach for obtaining a closed-form expression for the CRLB in terms of Al and A2, is 

to approximate the Poisson process by a Gaussian process as explained above. An equivalence 

between the two processes exists when the Poisson process is interpreted as a discrete Poisson 

process. The discrete Poisson process with intensity Al has an average of Al T points in a time 

interval T. The variance in the number of points in T is also AlT. Accordingly, the discrete 

Poisson process is equivalent to a Gaussian process with a sampling period of T seconds, 

average AIT and variance AlT. The problem of estimating the change-point in a Gaussian 

process has been solved by Reza and Doroodchi (1996). Their model is similar to equation 3.7, 

but they discretized the problem. In their formulation, the objective is to estimate the discrete 

sampling interval no in which the change-point occurs. The solution is 

CRLB = 8 . (~Jk)-l = var (no) , 
(d'?rx T n=O 

(3.12) 

where T is the sampling interval and N samples are observed. ct is the rate of change parameter 

as before, d' is a parameter that measures the distance between the two pdfs, and J k is defined 
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below. If the average value of the two Gaussian pdfs were ml and m2 and the two distributions 

had the same variance 0, 

(3.13) 

d' may be interpreted as a signal-to-noise ratio. For 0 1 "* O2 the average 0 2 = (o~ + 0;)/2is 

used. Substituting AlT for ml and A2T for m2, AlT for 0 1
2 and A2T for 0/, d' is found as 

(3.14) 

Jk in equation 3.12 is given by Reza and Doroodchi as 

(3.15) 

When equation 3.14 is substituted into equation 3.12, a closed-form expression for the CRLB 

in terms of A 1 and A2 is obtained as 

(3.16) 

The solution in equation 3.16 is an approximation to the actual CRLB that can be calculated 

from equation 3.11, but as figure 3.1 shows, the approximation is quite acceptable. The 

variance in equation 3.16 is in number of sampling intervals, so that var(t) = r2 . var(no)' 

If multiple observations of the same signal is available, it is generally true that the signal-to

noise ratio (SNR) for estimating the signal improves. Thus if the same change in rate of the 

Poisson process is observed in M simultaneous but independent Poisson processes, the signal

to-noise ratio (SNR) improves as indicated in equation 3.17, 

SNRM = t SNR i • 
i= 1 
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Generally, SNRj will not be the same in different fibres that convey information about the same 

signal, but in this model the M fibres are within the same critical band (as explained in section 

2.4) so that the SNRj are of comparable magnitudes in these channels. To simplify calculations, 

it is assumed that the SNR j are identical in the M channels, so that SNR M = M. SNR. For the 

CRLB calculation this implies that the minimum variance in the estimate of t is obtained when 

the SNR is the signal-to-noise ratio of the channel with the largest difference between Al and 

A2 (if it is assumed that Al and A2 are not equal on all M channels). 

Figure 3.1 
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This figure shows the standard deviation in the estimate of the position of 

a gap edge, calculated from equation 3.11 (solid line) and equation 3.16 

(dashes). The values calculated from equation 3.16 were multiplied by T 

to obtain the standard deviation in ms. 

For the detection of a gap, Al may be the rate during the marker, while A2 may be the rate 

during the gap. For within-channel gap detection, the task is to detect the change in rate, and 

not to estimate the time of change. Thus, the probability P of detection as a function of dA, 
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where ~A = IA2 - All, is required. The gap threshold is assumed to be at P = 0.76. For across

channel gap detection, the task is to discriminate between gap lengths in the two intervals. 

The final equation for the variance in the estimate of l' is therefore 

var(t) = 
T2 . 4(AI + A2) 1 1 

a T2(A2 - AI? ~ M 
Jk 

n=O 
(3.18) 

4(AI + A2) 1 1 

a (A2 - AI)2 ~ M 
Jk 

n=O 

The summation in equation 3.18 does not lend itself to physical interpretation. Arriving at an 

even simpler form of equation 3.18 by the following derivation is possible. Suppose the task 

is to estimate the time of change l' of the average value of a Gaussian process (figure 3.2), from 

a value Al to a value A2. The Gaussian process has a standard deviation Oy. Let the change take 

place within ~t seconds. The task is to estimate the time of change l' at the centre of the 

transition. This task is the same as estimating the time at which the Gaussian process has an 

average value exactly halfway between Al and A2. Because of the Gaussian noise in 

measurement of 0y, there is noise in the estimate of 1'. Thus, the Gaussian variable on the y-axis 

is transformed to another Gaussian variable on the t-axis. The average value of this Gaussian 

is 1', while the standard deviation is 0t. It can easily be shown that 

(3.19) 

This is the standard deviation in the estimate of l' when one sample is taken at the time when 

the average value of the Gaussian is (AI+A2)/2. It follows for M samples that 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 58 

 
 
 



Chapter 3 Models o[gap detection in acoustic hearing 

2 

var(t) = at2 . 
0y 1 

-
(A2 - AI? M 

(3.20) 

at2 1 ---
SNR M 

If, as before, the Poisson process is discretized, SNR may be substituted by equation 3.14 to 

obtain 

Therefore, 

std dev('t') = 
at2 (A I + A2) 

2T(A2 - AI? 

1 

M 

(3.21) 

(3.22) 

The equivalence between equations 3.18 and 3.22 is clear. Note that while equation 3.18 gives 

the minimum standard deviation predicted by the CRLB, equation 3.22 is the actual standard 

deviation of an estimate formed as described above. For ex » 1, (for rapid transitions) the 

summation term in equation 3.18 saturates at a value of 4/3. It will be shown below that ex will 

always be large in these calculations. Equation 3.18 simplifies to 

(3.23) 

Comparison of equation 3.21 and equation 3.23 suggests that an equivalent ex may be found 

for a transition duration of Llt seconds. If the slope of a sigmoidal function at t='t in equation 

3.7 is equated to the slope of the transition in figure 3.2, ex can be solved for in terms of Llt. 

The slope is 
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= 
a (A2 - A1)e -a.(t - t) 

(1 + e -a. (t - t)? (3.24) 

JM~ •• N.fIN ) Gaussian with standard 
UII deviation cry 

~t t 

Figure 3.2 

The Poisson change-point problem is re-interpreted as a Gaussian change

point problem, which is shown in this figure. The transition from average 

value Al to average value A2 takes dt seconds. 

Replacing t with t and equating this with the slope of the transition in figure 3.2, 

= 

so that 

4 a =-. 
Ilt 

(3.25) 

(3.26) 

For example, if calculation resolution is 1 ms, the fastest transition takes place in 1 ms. Thus, 

dt= 1 ms and a=4000. This shows that large a is always used, which in turn shows that the 

approximations in equation 3.23 are correct. The choice of dt= 1 ms is also supported by the 

auditory nerve fibre decay time constant data discussed after equation 3.7. 
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Using equation 3.26 in equation 3.23, it is found that 

(3.27) 

If, in equation 3.21, the transition takes place in one sampling period, then T=Llt, so that the 

variance in the estimate of 't' predicted by equation 3.27 is 1.5 times the variance predicted by 

equation 3.11. However, it is merely the nature of the transition model (ramp in equation 3.19 

or sigmoidal in equation 3.7) which results in this difference. The sigmoidal function with slope 

as calculated in equation 3.26 does not quite complete a transition within one sampling period. 

When cx= 6/ Llt, the transition is completed within one sampling period. With this cx in equation 

3.23, it is seen that equation 3.21 equals equation 3.23. Thus the estimate is efficient and the 

variance in estimate is given by the simplified version of equation 3.21, 

(3.28) 

Equation 3.28 is a simple closed form expression for the variance in the estimate of the change 

point. This equation can be used to predict the standard deviation in the estimate of the time 

of transition from an average rate Al to a new average rate A2 in a Poisson process, as a 

function of LlA, the difference between the two rates. 

2.4 Bounds on the gap detection and discrimination thresholds as a function of LlF 

For the gap detection or gap discrimination problem, the variance in the estimate of the time 

of transition is required as a function of LlF, the difference in frequency between the two 

markers that mark the gap. As it is known from the derivations above how LlA influences the 

accuracy with which a change-point can be located, a relation between LlF and LlA is required. 

It is assumed that the auditory system places a filter halfway between the two marker 

frequencies FI and F2. This "filter" is just an "attention window" or observation window and 
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does not apply any weighting. The width of the window is assumed to be one critical band. 

When Fl and F2 are closely spaced (closer than one critical band), the largest part of the 

activation pattern of each of the marker frequencies falls within the attention window. A central 

integration centre that observes inputs from fibres within this observation window will see large 

differences in firing rate when the fibres are excited by the presence of a marker tone, as 

opposed to the low firing rate during the gap. Not all the fibres fire at the same rate, of course. 

The central integration centre will see a firing rate profile. The data of Zhang, Salvi, and 

Saunders (1990) show that discharge rate may be suppressed below SR during the gap. The 

rate during the gap is assumed to be SR or lower. The rate profiles for the pre-gap and post

gap markers will be similar, but not equal (figure 3.3). As the marker frequencies are separated 

(~F increases) the observation window will eventually contain just the tails of the 
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Figure 3.3 

Spatial excitation profiles of two marker frequencies are shown when 

observed in a window one critical band wide (midway between the two 

sites of maximum excitation). The solid line is for excitation by the first 

marker of 500 Hz, and the dashed line is for excitation by the second 

marker of 600 Hz. 

activation patterns. Little or no difference in firing rate between the gap and marker conditions 

exists for this situation, so that the transition between the gap and marker will be difficult to 
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detect. Using the model in paragraph 2.1 to obtain the firing profile, different values Al (i) for 

each fibre in the observation window during the marker is obtained, while it is assumed that a 

fixed A2 exists on all fibres during the gap. Al is the rate during a marker, while the superscript 

(i) indexes the fibre number. 

To combine information from the spike trains in the observation window, one option is to 

calculate the SNR on each fibre and then to add the SNRs (see equation 3.17; Green and 

Swets, 1966, equation 9.1) to obtain a combined SNR for N channels. This can be substituted 

into equation 3.20 to obtain a new equation 3.21. Or, to simplify calculations, the maximum 

Al could be used. This will give the best possible SNR and thus the best possible performance. 

The effect ofN fibres can then be added by multiplying the SNR by N. This method does not 

take the poorer signal-to-noise ratio on other fibres into account. The first option was used in 

calculations. This was used in equation 3.21 to calculate the variance in the estimate of t, the 

time of the transition between the marker and the gap. 

It was further assumed in calculations that the two markers had the same average value of AI' 

and that both transitions (from marker to gap and from gap to marker) were of equal difficulty 

to estimate. If the noise in measuring the exact time of transitions were the only source of noise 

in estimating gap length, then the variance in the estimate of the gap length is the sum of the 

variances of the estimates of the two transition times. Following Siebert (1970), the standard 

deviation in the estimate of gap duration can be equated to the gap duration discrimination 

threshold jndgap ' 

jndgap = v2var(t) . (3.29) 

Var(t) is calculated from equation 3.21. Equation 3.29 is for a single fibre and is valid under 

the assumption that the two random variables indicating the two transitions on either side of 

the gap are independent. 

Figure 3.4 shows data sets for gap detection (Formby et aI., 1996) and gap discrimination 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 63 

 
 
 



Chapter 3 Models o[gap detection in acoustic hearing 

(Divenyi and Danner, 1977) along with predictions obtained from equation 3.29 and other 

predictions to be described in the sequel. 

Figure 3.4 
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Gap detection and discrimination data and model predictions for gap 

discrimination are shown. Circles are gap detection data from Formby et 

ale (1996). The standard (first marker) was at 500 Hz in these data. Open 

circles are for a signal-to-noise ratio of 40 dB with noise presented at 10 

dB SL, while closed circles are for the same signal-to-noise ratio, but 

presented at a louder level (noise at 30 dB SL). Squares are gap 

discrimination data from Divenyi and Danner (1977). Model predictions 

have been obtained only for F 2 (post-gap marker frequency) higher than 

F 1 (pre-gap marker frequency). The thin solid line and dashed line are 

model predictions for gap discrimination, while the bold solid line is a 

prediction for gap detection. The dashed line for gap discrimination was 

obtained when the Poissonian timer was implemented, and the solid line 

was obtained without the Poissonian timer. Model parameters were: fibre 

threshold = 45 dB, k=20, 0 0=5, SR=35 spikes/s, maximum spike rate = 200 

spikes/so 
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2.5 Measurement of gap duration with a Poissonian timer 

It is possible that the internal time measurement is also noisy, i.e. when the only source of noise 

is not only the noisy measurement of gap edges, but also imperfect measurement of the time 

between the two estimates of gap edges. Creelman (1962) and Divenyi and Danner (1977) 

addressed the problem of measuring the gap duration with a timing mechanism that measured 

the gap duration by counting the number of spikes of a Poisson spike train when the gap edge 

positions are known. In this document, this mechanism of measuring gap duration is referred 

to as a "Poissonian timer". 

With the gap edge positions known, but measurement of gap duration is done with a Poissonian 

timer, d' is (Divenyi and Danner, 1977) 

(3.30) 

~t is the average number of spikes during a gap with duration t. For a Poisson process, ~t=A.t, 

with A the rate during the gap, ~t+L1t=A.(t+Llt), and the spike count variances are 0t2=A.t and 

Ot2 +L1t=A.(t+Llt). The jnd for gap duration is Llt. 

The average number of spikes during a gap of duration t is still the same when the gap edges 

cannot be determined accurately, but the variance in the number of spikes increases. If O-c 2 is 

the variance in the estimate of the gap edge time, the additional number of spikes for one 

uncertain edge is OrA. Thus, the total variance in the spike count when estimating gap duration 

IS 

var(spike count) = 2 . (Ot"-? + 0; . (3.31) 

Then, substituting equation 3.31 in equation 3.30, d' for gap duration is 
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d,= ___ V2_2_(~_t_+_at_-__ ~_J __ 
.J 2 2 '12 2 Vat + at + 4 a't' A + at 

which is an equation also given in Divenyi and Danner (1977). 

(3.32) 

The gap durationjnd can be solved for from equation 3.32 by setting d'=l (this is by definition 

the discrimination threshold; at d'= 1 the percentage of correct decisions is 76%). llt and Ot
2 

are substituted by A.t, and ~t+~t and Ot2+~t by A.(t+dt) and then equation 3.32 is solved for dt, 

where dt is the jnd in gap duration, 

ilt = _1_ + _I_JI + I6At + 32a2A2. 
4A 4A 't' 

(3.33) 

The variable t is the base duration for gap discrimination in this equation, and A is the average 

spike rate that the Poissonian timer uses to measure the gap duration. By assumption, this rate 

is different from the spike rate during the gap, but is the spike rate used by a Poissonian timer 

somewhere in the central auditory system. To use this equation, 0.2 is required. This is the 

variance in the estimate of the transition from gap to marker as given in equation 3.29. Figure 

3.4 shows the effect on gap thresholds of using a Poissonian timer. 

2.6 Gap detection 

The derivation so far is valid for a gap discrimination task. For gap detection, the task is quite 

different, and in this section equations are derived for gap detection thresholds. 

In the gap detection task, the listener has to detect the presence of a gap, but does not have to 

estimate the gap duration. If both markers have the same frequency (the within-channel 

condition), the task is to detect a transition. If the gap markers differ in frequency (the across

channel condition), there will be a transition whether a gap is present or not. To detect the gap 

in a 2IFe paradigm, the listener will have to decide which interval has two transitions. 

Accordingly, two transitions must be detected. The detection of a transition depends on both 
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the rate difference between two Poisson processes (during the gap and markers), and the time 

that the detector has to observe the Poisson process before and after the transition. If the gap 

is too brief, the change in spike rate after the first gap edge will not be detected, and neither 

will the change in spike rate at the end of the gap. Only one transition will be detected if the 

markers differ in frequency. 

In other words, if the gap is too brief, the listener does not discriminate between the Poisson 

spike rate during the marker and during the gap. If the difference in spike rate is not 

discriminated, the gap cannot be detected. Therefore, the central detection mechanism has to 

obtain an estimate of the spike rate. 

Spike rate estimates can be obtained by an optimal nonlinear estimator as described in chapter 

5, or sub-optimal estimates may be obtained from spike counts. The nonlinear estimator 

described in chapter 5 uses the spike train as input and estimates the spike rate of that specific 

spike train. It bases estimates on a prior model of the expected signal. To obtain statistical 

information (e.g. variance in estimate), Monte Carlo analysis is required. 

On the other hand, statistical methods can be used to evaluate the performance of a classical 

estimator. In this chapter, the central gap detection mechanism is hypothesized to discriminate 

spike trains based on the sub-optimal statistic of spike counts. If two Poisson processes that 

differ in rate have to be discriminated based on the number of spikes in an interval T, the signal

to-noise ratio for the discrimination task is (Rieke et aI., 1997; see also equation 3.14). 

SNR = T· (aA? 
Aavg 

(3.34) 

= 

In this equation, Aavg is the average A and T is the total observation interval of the Poisson 

process with rate of either Ai (during a marker) or A2 (during a gap). As the critical interval for 

discrimination between the two spike rates is the gap (because it is brief), T can be equated to 
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the gap duration. In other words, the assumption is that if an observation period of T seconds 

is too brief to discriminate between two rates Al and A2, the gap will not be detected. If T is 

long enough for discrimination of the spike rate during the first marker from the gap spike rate, 

and also for discrimination of the gap spike rate from the second marker spike rate, the gap will 

be detected. If it is assumed that both marker stimuli elicit the same spike rate, and that the 

(lower) spike rate during the gap is stationary, detection of both transitions are equally likely. 

The threshold value for the detection of the gap is where Pd=P(gap detected)=0.76 (i.e., when 

d'= 1 in a 2IFC paradigm). For the detection of a gap, 

P (gap detect) = P (detect first transition) . P (detect second transition) . (3.35) 

For achieving a detection probability of Pd=0.76, the probability of detection for either 

transition has to be 0.87 (0.872 = 0.76), if it is assumed that the detection of both markers is 

equally likely. 

The detectability d' required for P=0.87 is then calculated from 

P(detection o/transition) = 1 - Eifc( /2
2 
d') = 0.87 , (3.36) 

which is valid for a 2IFC experimental paradigm. 

For P=0.87, it is found that d'~ 1.6. This value for d' is substituted into equation 3.34, keeping 

in mind that d' = .f SNR. Solving for T, 

1.62 (A 1 + A2) 
T=-----

2(A2 - AI)2 
(3.37) 

This is the final equation for the gap detection threshold, where T is the gap duration, and Al 

and A2 are the spike rates during the marker and gap respectively. For comparison with the gap 

discrimination threshold, equation 3.22 is repeated here, 
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at2 (A I + A2) 

2T(A2 - Al)2 

1 
M 

(3.22) 

Note that in equation 3.37 the quantity (AI + A2)/2(A2 - AI)2 appears, while the square root of 

this same quantity appears in equation 3.22. This characterizes the difference between gap 

detection and discrimination. This is equivalent to the situation of intensity discrimination, 

where it is well known that for detection, data can be fit by a normal integral of A 2 (where A 

is the stimulus intensity), while for discrimination the data is fit by a normal integral of i1A 

(e.g., Laming (1986)). 

As before, values of i1A correspond to a particular i1F, so that curves for the gap detection 

threshold as a function of i1F can be plotted. Examples of gap detection threshold predictions 

are shown in figures 3.4-3.7 (discussed below). 

3 RESULTS 

Figures 3.4-3.7 show gap detection data (Formby, Sherlock, and Forrest, 1996) and gap 

discrimination data (Divenyi and Danner, 1977) for acoustic stimulation and listeners with 

normal hearing, along with model predictions. The Formby data were measured for F 1 =500 Hz 

and a variable F2. Two data sets are shown, both measured at a SNR of 40 dB, but the data set 

with the lower gap threshold was measured at higher intensity (the noise level was 30 dB SPL 

instead of 10 dB SPL). The data show that discrimination of gap duration is an easier task than 

gap detection under the conditions of these experiments (where noise complicated the gap 

detection task). Possibly, the presence of the base duration makes this task simpler than gap 

detection. 

Model predictions for various parameter choices are shown in figures 3.4 to 3.7. Model 

parameters are described in the figure captions. Three model curves are shown in each figure, 

one for gap detection thresholds (equation 3.37), one for gap duration discrimination when the 
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only source of noise is the uncertainty in gap edge positions (equation 3.22), and one for gap 

duration discrimination when the gap duration is measured with a Poissonian timer (equation 

3.33 together with equation 3.21). 

Overall, the trends shown by the gap detection model and the gap duration discrimination 

model parallel those observed in the data. The gap detection curves have steeper slopes than 

the gap duration discrimination curves. The latter curves are wide, bowl-shaped curves. 

However, the predicted gap detection thresholds are lower than the gap discrimination 

threshold for within-channel gap detection (LlF=O) when the Poissonian timer is used. 

Figure 3.5 
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Same as figure 3.4, but with different model parameters: fibre 

threshold = 55 dB, k=20, 0 0=5, SR=25 spikes/s, maximum spike rate = 200 

spikes/so The thin solid line and dashed line are model predictions for gap 

discrimination, while the bold solid line is a prediction for gap detection. 

For the parameter choices in figure 3.5, the tip region of the gap detection data is predicted by 

the gap detection model, while the tails of the gap detection data are predicted by the gap 

discrimination model. However, neither model predicts the gap discrimination data. Note that 

for both the gap detection and gap discrimination models, the same fibre parameters were used. 

It is, however, conceivable that gap detection and gap discrimination are performed by fibres 
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with different parameters. 

The model predictions in figure 3.6 are interesting. For these parameter values, the gap 

detection model predicts the gap detection data, while the gap discrimination model with the 

same parameters predicts gap duration discrimination thresholds in the correct range, although 

the wide-bowl shaped curve is not predicted. Considering the gap discrimination model where 

the Poissonian timer is used, it is observed that the sharp peak in the electrical stimulation data 

(see figures 2.2, 2.3 and 2.12) is predicted by the gap detection model, while the wide bowl

shaped part of the electrical stimulation data is predicted by the gap discrimination model. 

There is a change-over point at a gap duration of 13 ms, so it seems possible that at this 

duration the task changes from detection to discrimination. This is at a value of .dF of 100 to 

150 Hz, which is approximately one critical band at a marker frequency of 500 Hz. 

Interestingly, this is supported by pitch discrimination data for electrical stimulation (Hanekom 

and Shannon, 1996), where electrode sounds generally become distinct when electrode pairs 

are 1.5 mm apart (approximately one critical band). 

Figure 3.6 
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Same as figure 3.4, but with different model parameters: fibre threshold 

= 55 dB, k=20, 0 0=2, SR=35 spikes/s, maximum spike rate = 200 spikes/so 

If the resolution is 1 ms, and if cx is chosen as 4/ .dt, then cx=4000. With this choice and with 

fibre threshold set at 45 dB in the gap discrimination model, it is seen in figure 3.4 that a 
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reasonable fit is obtained to the gap discrimination data. This suggests the possibility that the 

gap detection thresholds and gap discrimination thresholds are not determined by the same 

population of nerve fibres. For these parameter choices, it is also observed that only one fibre 

is required to achieve the gap discrimination data if gap duration measurement is perfect, but 

if the measurement is done with a Poissonian timer, more fibres are required. Other parameter 

choices also need to be changed to predict the data in this case. Specifically, the base duration 

for discrimination has to be 0 to achieve low enough gap discrimination values with the 

Poissonian timer. Equation 3.33 shows that gap thresholds may be decreased by decreasing the 

base duration, or by increasing A, the rate of the Poissonian timer. 

In some of these simulations, the neural threshold was set at 55 dB. This is an unrealistic 

choice. This value is required to achieve a sharper cutoff in A2 (i.e. a narrower region of 

activation). This means that after the auditory nerve, an additional system must exist which 

sharpens neural tuning, or, equivalently, inhibits neural firing when the frequency difference 

between CF and the stimulus frequency is large enough. 

Figure 3.7 
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Same as figure 3.4, but with different model parameters: lXo=12, fibre 

threshold = 35 dB, k=20, 0 0=7, SR=40 spikes/s, maximum spike rate = 200 

spikes/so 

Apart from the unrealistically high value of threshold, another parameter controls the roll-off 
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rate of A2• This is the tuning parameter CX in equation 3.5, which controls the sharpness of 

tuning. With cxo=4 in equation 3.6, the model tuning curves provide good approximations to 

the data of Kiang et al. (1965). This is at the auditory nerve level. With cxo= 12, tuning is much 

sharper, but compares with the tuning found at higher levels of the central auditory nervous 

system. 

Cells in the DCN (dorsal cochlear nucleus) are known to exhibit sharp cutoff and inhibitory 

areas. Cells have also been found in the DCN that have extremely sharp roll-off (Rhode and 

Greenberg, 1992). Also, frequency tuning in the central auditory system improves deeper into 

the auditory system. Tuning is sharper at the auditory cortex than at the CN level, which in turn 

has sharper tuning than the auditory nerve (Sutter, 2000). Sutter gives examples of cells in Al 

that have much sharper tuning than what is required to fit the gap detection data. It is quite 

possible that gap detection takes place at the CN level but the goal here is not to prove or 

disprove this. 

Using this sharper tuning (cxo=12 in equation 3.6), and other more realistic parameter choices, 

it is shown in figure 3.7 that the gap detection data are approximated quite well by the model. 

The parameters are shown in the figure caption. Note that the sharp curve is still obtained for 

high threshold fibres only, but now the model fibre threshold is more realistic. For low 

threshold fibres, the model predicts better performance. Thus, it seems the auditory system 

does not perform optimally in this task. 

4 DISCUSSION 

4.1 Strengths and shortcomings of the model 

The expressions that were derived for gap detection and discrimination thresholds as a function 

of the spike rates during the gap and markers, seem intuitively correct. Building on these, the 

model provides closed form expressions for gap detection and discrimination thresholds. It is 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 73 

 
 
 



Chapter 3 Models of gap detection in acoustic hearing 

seen that the model can predict both the magnitude and the trends in the gap detection and gap 

discrimination data for certain choices of model parameters. The sharper curves for gap 

detection and the shallower curves for gap discrimination are predicted. 

The model assumes that the gap detection mechanism uses sub-optimal statistics (spike counts) 

in a classical detector to detect the presence of a gap. No prior knowledge of the signal 

dynamics is used (as opposed to the model of chapter 5). However, as argued in chapter 5, it 

is likely that the auditory system uses an internal model of the spike generation mechanism. 

The models for gap detection and discrimination do not provide an explicit mechanism that can 

detect a gap from a spike train input. Therefore, it is perhaps not immediately evident that the 

model for gap discrimination implicitly assumes that AI' A2 and A3 are known, i.e. the 

calculated CRLB for position of the gap edge assumes that the spike rate during the gap and 

markers are known. This is not an unreasonable restriction, as it is possible that the auditory 

system estimates spike rates. Regardless, the CRLB gives a lower bound on the accuracy of 

the estimation of gap edge times, and possibly the auditory system does not achieve this lower 

bound. This is supported by gap detection and discrimination data. 

To use classical signal detection theory to predict gap thresholds, meant that a simple signal 

model (spike train model) was required. Closed form expressions could be obtained because 

spike trains were assumed to be Poissonian. The Poissonian assumption is usually only valid 

at higher frequencies or deeper in the central auditory nervous system where no phase-locking 

occurs. However, as argued in the introduction, it is reasonable to use Poissonian spike trains 

in a model for gap detection, as it seems that temporal information does not playa significant 

role in determining across-channel gap detection thresholds. Chapter 4 discusses the gap 

detection problem when phase-locking occurs. 

4.2 Parameter sensitivity and the origin of the shape of the gap detection tuning curves 

The predicted magnitude of gap detection thresholds by equation 3.37 is consistent with data 

when realistic values for Al and A2 are used. The shapes of the gap detection tuning curves are 
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determined by several model parameters. 

The sharp tips of the gap tuning curves are controlled primarily by the roll-off of the A versus 

~F function. The sharper the slope of this function, the sharper the tip of the gap detection 

tuning curve. The slope of this function is, in turn, controlled by ao in equation 3.6, which 

determines the sharpness of tuning. 

The slopes of the tuning curve flanks are controlled by 0 0, which determines the slope of the 

rate-intensity curve. Larger 0 0 result in shallower rate-intensity curves and shallower tuning 

curve slopes. 

The flattening of the gap detection tuning curve beyond the shoulder of the curve is obtained 

when the spike rate during a gap is less than the SR. The spike rate during the gap may be less 

than SR when suppression of spike rate occurs after the offset of the first marker (Zhang et aI., 

1990). The flattening of the tuning curve occurs because, for widely spaced marker electrodes 

(large ~F) the spike rate in the observation window during a marker reaches a steady state 

value (the spontaneous rate SR). As the spike rate during the gap is also fixed in the model, it 

is seen from equation 3.37 that gap threshold T will reach a steady state value. 

4.3 Temporal and spatial models for gap detection 

The model hinges on the idea that the auditory system uses an attention filter or observation 

window that is placed midway between the regions excited by the two markers. As explained 

in more detail in chapter 4, evidence does exist which challenges this idea. Nonetheless, the 

model has made concrete the notion that "the task becomes more difficult" as marker 

frequencies are separated. Increased difficulty of the task is reflected in spike rates during the 

markers and gap that become more similar as marker frequencies are separated. This is a spatial 

model for gap detection, as opposed to a temporal model for gap detection. As discussed in 

the introduction, evidence exists that supports the notion that at least across-channel gap 

thresholds are based on spatial mechanisms. 
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Zhang, Salvi, and Saunders (1990) have shown that spike rate decays exponentially after the 

offset of the first marker, so that the gap is filled with continuing spike activity and therefore 

brief gaps are difficult to detect. Filling of the gap provides a feasible explanation for within

channel gap detection thresholds, but cannot explain increases in gap thresholds in the across

channel condition. 

Whether temporal mechanisms or spatial mechanisms are used to explain gap thresholds, it is 

clear that separating the marker frequencies results in deteriorated signal-to-noise ratios in the 

spike train or set of spike trains that the detection mechanism observes. The "signal" that has 

to be detected in either case is the transition from marker to gap (or gap to marker) that is 

masked by some source of noise. 

4.4 Interpretation of modelling results 

To predict gap detection data accurately, especially the sharp tip region, the model requires 

unrealistically high fibre thresholds when neural tuning curves are modelled after auditory nerve 

tuning. When sharper tuning is assumed, similar to that found in some DeN fibres or deeper 

in the central auditory nervous system, the sharp tip region is predicted more easily, but still 

using high threshold fibres. There is no apparent reason why only high threshold fibres would 

take part in gap detection. 

Assuming more realistic fibre parameters, predicted gap thresholds are smaller than measured 

gap thresholds in the across-channel condition. The auditory system seems to operate sub

optimally in this task, an observation that has also been made regarding frequency 

discrimination ability (Siebert, 1970; Hanekom and Kruger, 2001). Spike count statistics are 

already suboptimal for rate discrimination or transition detection, but even so deterioration of 

gap detection thresholds in the across-channel condition is faster than the model predicts. 

The fact that sharp tuning is required to predict gap detection data with this model suggests 

that theoretically the auditory system should be able to perform much better on the gap 

detection task, but is somehow limited by internal noise or other confounding factors. It may 
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be that subjects find it difficult to attend to the gap because of the different-sounding markers 

(van Wieringen and Wouters, 1999), but this is probably more important in cochlear implantees 

than in normal-hearing listeners. The task of detecting a gap between spectrally different 

sounds occurs frequently in normal hearing, e.g. voice onset time is one feature that 

distinguishes different consonants. 

It is outside the scope of this work to determine where in the auditory system the gap detection 

mechanism is situated, but it can be speculated on. With many free parameters controlling the 

shape of the model-predicted gap detection tuning curves, it is important that parameter 

choices should be biologically plausable. It is therefore adequate to show that the parameter 

values required to fit the data are in line with neural parameters published in literature. The fact 

that sharp tuning is required to predict gap detection data points to the possibility that the gap 

detection mechanism is implemented at the CN level or deeper in the central auditory nervous 

system. 

Finally, comparing model predictions with the data, it seems possible that the task changes from 

gap detection to gap discrimination at a certain frequency separation (possibly at one critical 

band, as shown before). 

5 CONCLUSIONS 

The CRLB for the Poisson change-point problem, which appears not to be documented in 

literature, has been derived here. The result is intuitively satisfying. 

It is shown that the quantity (AI + A2)/2(A2 - A1)2 appears in the model for the gap detection 

task, while the square root of this same quantity appears in the gap discrimination model. A 

similar observation regarding intensity discrimination has been made before. 

A model that can predict the U-shaped curves found in across-channel gap detection has been 

created. The model is simply based on signal detection theory considerations. 
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The model shows that a spatial mechanism, as opposed to temporal mechanisms, may 

contribute to gap detection thresholds in the across-channel condition. This is important in 

cochlear electrical stimulation, where spike trains are strongly phase-locked to the stimulus and 

where temporal mechanisms do not seem to determine gap detection thresholds. Accordingly, 

techniques similar to those used in this chapter are applied in chapter 3 to create a model that 

can predict gap detection thresholds in auditory electrical stimulation. 
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Chapter 4 

MODELS OF GAP DETECTION IN ELECTRIC HEARING 

1 INTRODUCTION 

Gap detection is often employed as a way to probe the temporal resolution ability of the 

auditory system (Shannon, 1989). Gap detection thresholds in electrical stimulation were 

measured by Shannon (1983a), Preece and Tyler (1989), Shannon (1989), Hanekom and 

Shannon (1998), Chatterjee, Fu, and Shannon (1998), Busby and Clark (1999) and Van 

Wieringen and Wouters (1999) under various conditions. 

Shannon (1989) measured gap detection as a function of intensity of stimulation, using 

sinusoids and pulse trains, with both gap markers presented on the same electrode pair (a 

within-channel condition). He found that gap thresholds are a strong function of stimulus level, 

with longest gap thresholds of more than 50 ms (at near audible threshold stimulation levels), 

and shortest gap thresholds of less than 1 ms (at high stimulation levels). 

Preece and Tyler (1989), who measured gap detection thresholds in cochlear implants using 

sinusoidal electrical stimulation, ascribed the longer gap thresholds at lower stimulation levels 

to a decay of sensation theory of gap detection (Penner, 1977). According to this theory, the 

gap is detectable when the sensation has decayed by a just-noticeable amount, or when the 

signal level has changed by more than the intensity difference limen, which is larger near 

auditory threshold. 

Although neural synchrony is much higher in biphasic electrical stimulation than in acoustic 

stimulation (Javel, 1990) and differs in the pattern and extent of activated nerve fibres (Kral 
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et aI., 1998), Shannon (1989) showed that electrical and acoustic stimulation produced similar 

gap detection performance. This suggests that gap thresholds are not primarily determined by 

temporal processing of individual fibre spike trains. 

Hanekom and Shannon (1998) employed gap detection, not as a measure of temporal 

resolution, but as a way to measure electrode interaction in cochlear implants (see chapter 2). 

The hypothesis was that if the two gap markers were presented on different electrode pairs, 

gap thresholds would be small when the two electrode pairs stimulated the same neural 

population (a within-channel condition), and would increase as the neural populations became 

more disjunct (an across-channel condition; electrode interaction becomes less). If this 

hypothesis is true, the pattern of gap thresholds as a function of distance between the two 

marker electrode pairs will also reflect the current distribution in the cochlea. This suggests that 

one should be able to estimate the current distribution pattern in the cochlea from gap detection 

tuning curves. 

Chatterjee et aI. (1998) argued that the U -shaped curves achieved by Hanekom and Shannon 

(1998) (see chapter 2) could be attributed to a perceptual discontinuity, rather than reflecting 

the amount by which stimulated neural populations overlap (an across-channel mechanism). 

They showed that U-shaped curves can also be obtained with a within-channel gap detection 

mechanism, by presenting both gap markers on the same electrode, but using different 

stimulation pulse rate or intensity of stimulation for the two markers. Busby and Clark (1999) 

showed that rate of stimulation (pulse rates of 200 pps, 500 pps and 1000 pps were used) does 

not influence gap thresholds when the rate of stimulation is the same on both markers. 

Van Wieringen and Wouters (1999) measured gap detection thresholds in users of the LAURA 

cochlear implant. They measured gap detection thresholds in various within-channel and 

across-channel conditions. Not all of their data showed an effect of distance between electrode 

pairs when pre- and post-gap markers were presented on different electrode pairs (as was 

found in Hanekom and Shannon (1998)) and, furthermore, a strong effect of training was 

found. It appeared that once subjects had been trained to attend to the gap in the presence of 
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confounding factors, the effect of distance between pre- and post-gap electrode pairs 

disappeared in some subjects. A primary interpretation of their results was that gap detection 

thresholds depend more on the subject's inability to attend to the gap when confounding factors 

are present than on neural interaction. Finally, it is noted that, as in most cochlear implant 

psychoacoustics studies, the subjects in the Van Wieringen and Wouters study showed much 

inter-subject variability. 

The poorer gap detection performance in acoustic across-channel experiments has been 

attributed to an auditory attentional process (Phillips et aI., 2000). These authors proposed that 

two different mechanisms operate in within-channel and across-channel gap detection tasks. 

For within-channel gap detection (in cochlear implants, this is when both markers are presented 

on the same electrode pair), the task of the auditory system is to detect a discontinuity. In 

across-channel gap detection (in cochlear implants, this is when markers are presented on 

different electrode pairs that stimulate disjunct or overlapping but non-identical neural 

populations), the discontinuity always exists. The task now becomes one of gap duration 

discrimination. The authors speculated that (in across-channel gap detection) attention 

resources are allocated to the first marker, resulting in deteriorated ability to measure the time 

interval between the two markers. A related idea, expanded on later, is employed in the current 

model. It should be noted that Oxenham (2000) provides reasonable arguments against the idea 

that attention resources are loaded to the extent that gap detection ability deteriorates. 

1.1 Information available to the central detector in acoustic and electric gap 

detection 

1.1.1 Temporal response properties 

Two major differences exist in the information available to the central detector in acoustic and 

electric gap detection. First, in acoustic gap detection, spike trains are much more Poissonian 

in nature than the highly entrained spike trains found in electric gap detection. This is especially 

true for acoustic gap detection employing bandlimited noise markers (as used in e.g. Phillips 

et al. (2000)). Spikes may also occur during the gap, which is seldom the case in electric 
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hearing (Shepherd and Javel, 1997), as spontaneous activity is usually not present in the 

deafened auditory system. In the acoustic gap detection situation, the central gap detector 

probably has to base decisions on the envelope of the marker-gap-marker auditory event as 

reflected in spatially distributed neural spike train patterns, rather than on individual inter-spike 

intervals. As explained below, it is likely that the gap detector bases its decisions on inter-spike 

intervals in electric hearing. 

Phase locking of spike trains to the stimuli, similar to what happens in electric hearing, occurs 

(below 5 kHz, Johnson, 1980) in acoustic gap detection experiments using sinusoidal markers 

(e.g. Formby and Forrest, 1991). However, 100% entrainment (spikes occur in response to 

each stimulus pulse) to the preferred stimulus phase as is found in electrical stimulation (Javel, 

1990) seldom occurs in acoustic stimulation (Rose et aI., 1968). 100% entrainment in pulsatile 

electrical stimulation can occur at pulse repetition frequencies of up to 800 Hz for healthy or 

short-term deaf ears, but the ability to entrain to high frequencies is reduced in long-term 

deafness. Shepherd and Javel (1997) observed entrainment only up to 400 pps in long-term 

deaf fibres. This is probably a result of prolonged refractory periods that occur in nerve fibres 

that are demyelinating (Shepherd and Javel, 1997). 

Spike position jitter relati ve to a preferred latency (following a stimul us pulse) has significantly 

larger standard deviation in acoustic stimulation (Javel and Mott, 1988) than in electrical 

stimulation (Javel and Shepherd, 2000). Spike position jitter increases with higher frequency 

in electrical stimulation (Javel, 1990; Javel and Shepherd, 2000), but decreases in acoustic 

stimulation (Javel and Mott, 1988). 

Different response types may be evoked in response to an electric stimulus pulse. As shown 

in Javel and Shepherd (2000) and Javel (1990), spikes that occur in response to electrical pulse 

stimuli, cluster into one of four discrete latency windows. These have been labelledA, B, C and 

D responses, in order of increasing latency. Different spike latencies probably result from spike 

initiation at multiple sites. A responses have short latency (in response to the stimulus pulse) 

and have small temporal jitter. B responses have longer latency and more spike position jitter. 
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Both A and B responses are observed in deafened ears, but the A response is predominant. Just 

A responses are often observed in the majority of fibres in long-term deaf ears (Shepherd and 

Javel, 1997). 

D responses occur with long latency and are not observed in deaf animals and are therefore not 

relevant to cochlear implants. The C response is primarily found at near-threshold intensities, 

and is possibly just a near-threshold extension of the B response. This response probably arises 

from spikes initiated at the peripheral processes of the spiral ganglion cells. The short latency 

A response probably results from spikes initiated at the central processes of spiral ganglion 

cells. Latency transitions from B to A responses are sometimes observed as stimulus intensity 

is increased, but this transition is not found in long-term deaf ears (Shepherd and Javel, 1997). 

Van den Honert and Stypulkowski (l987a) observed that both phases of a biphasic pulse 

stimulus can elicit spikes and that these spikes may be initiated at different sites, and therefore 

with different latencies. A and B responses may result from different phases of a biphasic 

stimulus pulse. 

1.1.2 Spatial excitation patterns 

The second difference between acoustic and electric gap detection is that a wider extent of 

neural activation is brought about with electrical stimulation. Maximum slopes of spatial tuning 

curves of 8 dB/mm have been measured for bipolar electrical stimulation with the Nucleus 

electrode array (Kral et aI., 1998), while tuning curves in the 8 kHz region can have slopes of 

up to 100 dB/mm in acoustic stimulation. Furthermore, current spread may increase in long

term deafness, due to demyelination of nerve fibres (and therefore changing resistive pathways) 

(Shepherd and Javel, 1997). 

In summary, in electric gap detection a wide spatial extent of spike trains, weakly to highly 

entrained to the stimulus pulse train, contains the gap. The area of activation is narrower in 

acoustic gap detection and the gap is contained in much noisier spike trains. 
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1.2 Differences in the gap detection task between acoustic and electric hearing 

Although the neural circuitry of the central detector will be the same in both cases, the task of 

the central detector in electric and acoustic gap detection is probably different. As discussed 

before, the within-channel gap detection task in acoustic stimulation is one of detection of a 

transition. The across-channel gap detection task is a time duration discrimination task, with 

gap detectability limited by (i) the masking of edges of the gap as a result of Poisson encoding, 

and (ii) the measurement accuracy of the "Poissonian timer" (see chapter 3). 

When entrainment is 1 00% in electrical stimulation, the task is to detect one slightly longer 

inter-spike interval within a series of fixed duration inter-spike intervals observed with high 

signal to noise ratio (the noise being the spike position jitter). This is a classical detection task. 

When entrainment is less than 100%, the real gap is hidden by spike trains containing "gaps" 

that are multiples of the stimulation pulse repetition period. Detecting the actual gap when it 

is small (a fraction of one pulse period for 100% entrainment) will be quite difficult for a 

detector by observing a spike train from just a single fibre. In this case, the gap will have to be 

longer than the typical inter-spike intervals obtained when entrainment is 100%. This notion 

will be explained in more precise terms later. 

In both cases (100% entrainment or less) in electric hearing, the detector will need to compare 

each inter-spike interval against a threshold. Accurate measurement of the inter-spike interval 

is not required. So it seems the task in gap detection in electric hearing does not reduce to a 

duration measurement task in the across-channel condition. 

1.3 Models for gap detection 

Several models for gap detection in acoustic hearing were discussed in the previous chapter. 

As far as is known, no previous models of gap detection in electric hearing exist. An 

appropriate model for gap detection should be able to predict (i) the sensitivity of gap detection 
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thresholds to intensity of stimulation as found by Shannon (1989), (ii) the U-shaped curves 

found by Hanekom and Shannon (1998) and Chatterjee, Fu, and Shannon (1998) (under 

different conditions) and (iii) the correct magnitude of gap detection thresholds as found by 

several authors. Such a model should employ a biologically plausible mechanism and plausible 

parameter values. 

Two possible mechanisms, or a combination thereof, may be adopted to explain gap detection 

thresholds. The first explanation is primarily based on temporal mechanisms. It has been 

hypothesized that ringing in the mechanical response of the basilar membrane following 

stimulus offset prolongs the neural response, so that these spikes will tend to fill the gap 

(Zhang et al. 1990). 

Cochlear implants stimulate nerve fibres in the cochlea directly, so that the cochlear filtering 

step is bypassed. Neural synchronization is high, with 100% entrainment of neural spike trains 

to the stimulation pulses often occurring in fibres close to the electrodes (Javel, 1990), and 

generally no neural activity occurring when the stimulus is absent. Improved gap detection 

thresholds might reasonably have been expected for electrical stimulation of the auditory 

system. However, evidence suggests that gap detection thresholds do not depend on neural 

synchronization alone (Shannon, 1989), and that other sources of noise affect the ability of the 

central gap detection mechanism to detect the presence of the gap accurately. 

A second possible explanation of gap detection thresholds in cochlear implants lies in the 

mechanism of "auditory attention". This is a spatial, rather than temporal, mechanism. The 

hypothesis is that the auditory system can only attend to a limited spatial extent of neural 

activity. Accordingly, an idea related to the auditory attention mechanism suggested by Phillips 

et al. (2000) is employed in the current model. The model proposes that the detectability of 

the second marker onset deteriorates when the marker electrode pairs are moved apart. In 

contrast to the explanation of Phillips et al. (2000), no time measurement is required in the 

model. 
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It is implicitly assumed that the listener attends to the gap in the gap detection task. Taking a 

neurophysiological view, it is assumed that attention in this case means that the central detector 

observes a spatially limited extent of fibres. To detect the gap, it is necessary that the detector 

observes a set of fibres with spike trains entrained (not necessarily 100%) to both the gap 

markers. If this is not so, the central detector would either observe the offset of the pre-gap 

marker, or the onset of the post-gap marker, and the gap will not be detected. The limited 

extent of fibres observed will consequently probably be situated somewhere midway between 

the two electrode pairs defining the two markers. When the marker electrodes are f~r apart, 

the observation window will contain fibres with low entrainment. 

This attentional mechanism is explored in this chapter. It is emphasized that this is a viewpoint 

that is based on unproved assumptions. 

1.4 Objectives of this chapter 

In summary, this chapter intends to build understanding of the processes underlying the results 

achieved in the psychoacoustics of gap detection in electric hearing, by creating models that 

can predict the data reported in chapter 2. It is shown that gap detection data can be predicted 

by a model that uses cochlear spatial information, using plausible model parameters. 

Accordingly, gap detection ability does not necessarily reflect temporal processing mechanisms. 

The model hinges on the idea that a spatially limited neural observation window is available to 

a central detector. A final and important result in this chapter is the estimation of current 

distribution profiles in the cochlea from psychoacoustic gap detection data. 

2 A MODEL FOR GAP DETECTION IN ELECTRIC HEARING 

2.1 Assumptions about the electrically evoked spike train 

The model assumes a long-term deaf auditory system. Consequently, it is assumed that spikes 
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are highly entrained to the stimulus pulse train and that only A responses occur. This last 

assumption is motivated by the fact that responses other than the short latency, small jitter A 

responses are seldom observed in electrically stimulated long-term deaf ears. The assumption 

is made to simplify the model so that obtaining analytical predictions for gap thresholds without 

reverting to time-consuming (and sometimes less enlightening) Monte Carlo simulation 

techniques is possible. It would, however, be possible to incorporate "noisier" spike train 

models (that include Band C latency responses as well) in a numerical model. 

2.2 General formulation of a gap detection model for electric hearing 

In a general formulation, the gap detection problem in electric hearing is similar to the acoustic 

gap detection problem, where (for sinusoidal markers of low frequency) spike trains are phase

locked to the stimulus. 100% entrainment is assumed in this treatment. So it is assumed that 

spikes occur in response to each marker stimulus pulse with some temporal dispersion (or 

jitter) and that spontaneous discharges occur during the gap. The average spike rates Al and 

A3 during the markers differ in this general formulation, and they also differ from the average 

spike rate A2 in the gap. To simplify the formulation, it is assumed that spontaneous discharges 

during the gap do not occur randomly, but rather that these discharges are periodic. Spike 

position standard deviation is 0sl during the markers, and 0s2 during the gap. Figure 4.1 

visualizes the spike train model for this formulation. 

The optimal detector for an a priori known signal is a matched filter. In the gap detection 

problem, the "known signal" is the expected transition in spike rate that will occur when the 

gap occurs. Ideally, the matched filter will know the spike rate during the gap and during each 

marker. The matched filter for the first transition is shown in figure 4.1 (e). If more samples are 

available, the matched filter detection probability will improve. It is assumed that the signal 

samples that the matched filter operates on are the inter-spike intervals. The matched filter in 

figure 4.1 observes the spike train for a time 2T. Assume that N inter-spike intervals are 

observed in T. 
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If T is too short, the gap will not be detected. The shortest T for which the percentage of 

correct transition detections is 76% (d'= 1), is the "transition threshold". This threshold will 

depend on how much Al and A2 differ. Both transitions (pre-gap marker to gap, and gap to 

post-gap marker) need to be detected to detect the gap. The gap will be detected if two 

consecutive transitions are detected with d'=1.6 as explained in chapter 3. 

(a) 

(b) 

(d) 

(e) 

Figure 4.1 
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This figure gives a general model for the gap detection problem in electric 

hearing. The progression from the first marker with spike rate A., 

through the gap with spike rate A2, to the second marker with spike rate 

A3 is depicted in (d). The stimulus (gap-marker-gap) is shown in (c). The 

matched filter shape is shown in (e). (a) shows the distribution of spikes 

around the preferred stimulus latency. The resulting spike train is shown 

in (b). 

If just one sample (one inter-spike interval) is observed, the detectability is 

d' = 
2(tJ. 2 - tJ.1)2 

2 2 
0 1 + O2 

2(tJ. 2 - tJ.1? 

20 2 + 20 2 
81 82 

(tJ.2 - tJ.1)2 

0 2 +0 2 
81 82 

(4.1) 
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with ~I=lIAI and ~2=lIA2' where Al and A2 are the spike rate during the first marker and gap 

respectively. oland O2 are the standard deviations of samples during the marker and gap 

respectively. The standard deviation 0 of a sample is the standard deviation in an inter-spike 

interval, which is 20s' where Os is the spike position standard deviation. 0sI is the standard 

deviation during a marker, and 0s2 during the gap. 

1fT is longer, so that N samples are observed in T, detectability improves with the square root 

ofN, 

(Green and Swets, 1966). Hence, 

d~= IN 

The number of samples in T is 

(1l2 - 1l 1)2 

0 2 +0 2 
81 82 

AT - 1 , 

where A is Al or A2. The detectability is then 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where A2 was used in the expression for N, because it is assumed that A2 < AI' which implies 

that spike rate A2 during the gap is the critical factor that will determine smallest detectability. 

For detection of the gap (detection of two transitions), d'N=1.6 and equation 4.5 is solved for 

T, 

(4.6) 
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This T is the shortest T that the matched filter will require to detect the gap with at least 76% 

probability. When the spike standard deviations osl and osl are small, 

1 T-;:;-. 
A2 

(4.7) 

The minimum value of T is 1IA2. Therefore, for small spike jitter (as obtained in pulsatile 

electrical stimulation), this shows that the matched filter does not require the observation of 

several stimulation pulses, but will be able to detect the gap by comparing just two inter-pulse 

intervals (as reflected in the inter-spike intervals), i.e. one interval that does not contain the 

gap, and one longer interval that does contain the gap. 

The gap detection problem can then be reformulated as in figure 4.2. If the duration of the 

interval that contains the gap is 1IA2' 

1 
gap threshold = T - -

A2 

(J 2 + (J 2 1.62 
91 92 

(_1 __ I? ~' 
A2 Al 

which is the gap threshold if the detector searches for two transitions. 

2.3 Gap detection model structure for electric hearing 

(4.8) 

The gap detection problem for electric hearing is depicted in figure 4.2. Having proven that the 

gap detector only needs to compare each observed sample (inter-spike interval) with the 

standard inter-spike interval, the task of the detector simplifies to the detection of one longer 

inter-pulse interval embedded in a pulse train with fixed period (1 ms in this case). The detector 

does not need to search for two transitions, but just for the longer interval, so that the gap 

threshold is not given by equation 4.8, but by equation 4.11 below. The gap threshold is taken 

as the additional time added to the standard stimulus period, when this longer interval is just 

detectable (76% correct decision in a 2IFe experiment). 
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2.3.1 Gap detection based on a single fibre when entrainment is 100% 

In the experiments modelled here, the stimulation pulse repetition frequency is always the same 

on both markers. In the simplest scenario, the pre- and post-gap markers are presented to the 

same electrode pair (the within-channel condition) and the input to the central detector is a 

spike train on a single nerve fibre. In this scenario, the input to the central gap detector is a 

spike train that is ideally 100% entrained to the stimulation pulse train with only a small amount 

of spike position jitter. 

~ ~gap 

IJ+ga~1 

Figure 4.2 

A part of a stimulation pulse train with pulse repetition frequency lIT, 

showing the definition of the gap. 

In this situation, the gap detection problem reduces to a simple signal detection problem: the 

central detector has to decide which of two inter-pulse intervals occurred, the standard, or the 

probe (standard plus gap). For this problem, d' is given as 

d'= 
(~1 - ~2)2 

0 2 + 0 2 ' 
81 82 

(4.9) 

with ~I=lIAI and ~2=lIA2' where Al and A2 are the spike rate during a marker and during the 

gap respectively. For 100% entrainment, the spike rate Al equals the stimulus rate. 

Note that in general spikes may occur during the gap, with the spike rate during the gap being 

A2• It was, however, shown in the previous paragraph that under ideal circumstances, when 

spikes occur only on stimulus pulses (with 100% entrainment), the window T required to 

detect a gap is equal to lIA2 plus a small duration that is determined by the spike jitter (spike 

position standard deviation, as), Hence, for 100% entrainment, the temporal window T 
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required to detect a gap is just slightly longer than the pulse repetition period, so that the 

detection problem in figure 4.2 is obtained. The detector does not have a large number of 

samples (inter-spike intervals) in the gap to compare with inter-spike intervals during the 

marker. For each input sample, the detector has to decide whether the gap was present or not. 

This is a standard signal detection problem. 

With standard deviation in spike jitter 0s=0.1 ms (assumed to be identical for spikes marking 

the gap, and spikes marking other inter-pulse intervals), and using d'=1 for 76% correct 

decisions, ~2 is calculated as 1.14 ms. The gap threshold is then ~2 - ~ l' Hence, the shortest 

detectable gap is 0.14 ms for this example. More generally, 

d I = gap threshold 

Va 2 + a 2 
81 82 

_ gap threshold 

lia 8 

if 0s1=os2' which is assumed to be true. Hence for d'=1 the gap threshold is given by 

gap threshold = Ii a 8 

for the case of 100% entrainment. 

2.3.2 Gap detection based on multiple fibres when entrainment is less than 100% 

(4.10) 

( 4.11) 

More generally, the detector will observe M parallel neural channels (M adjacent or closely 

spaced nerve fibres), of which not all spike trains will be 100% entrained. A stimulus on a 

particular electrode pair will produce a current distribution with current decaying away from 

the electrode, so that it may be expected that some fibres close to the electrode will have 100% 

entrainment, but distant fibres may not fire at all, and some fibres will have intermediate 

entrainment. Fibres stimulated considerably above their thresholds will have 100% entrainment, 

but fibres stimulated near threshold will not have a spike probability of one on each stimulus 

pulse. 
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2.3.2.1 Model assumptions 

Several assumptions are made for modelling purposes. These assumptions are intended to fulfil 

one of two purposes: either they reflect a certain belief about the nature of the gap detection 

mechanism, or they are meant to disregard "noise" so as to focus on the underlying signal 

processing hypothesized to take place. 

(1) It is assumed that the central detector observes an attentional window of nerve fibres 

situated midway between the two markers when the markers are not presented on the 

same electrode pair. This observation window is chosen to provide optimal detection 

probability. If the observation window is closer to one electrode than to the other, one 

electrode might elicit high spike entrainment, while the other electrode does not elicit 

any neural response in the observation window. The gap will then not be detected. An 

observation window midway between the two marker electrode positions will provide 

optimal detection probability. 

(2) It is assumed that this observation window cannot be of any given spatial extent, but 

is limited. In the current model, the observation window is assumed to be limited to one 

critical band or auditory filter. The observation window is essentially just an off

frequency auditory filter. The psychophysical concepts of critical bands, auditory filters 

and off-frequency listening are discussed in (Patterson and Moore, 1986). 

(3) Finally, it is assumed that the observation window can shift along the axis of the 

cochlea with a resolution of one nerve fibre, i.e. the M nerve fibres observed can be 

shifted by one nerve fibre towards the apex or base. This seems to be a reasonable 

assumption, as critical bands shift dynamically to centre on a given stimulus frequency 

(Patterson and Moore, 1986). 

2.3.2.2 Inter-spike interval probability density function for less than 100% 

entrainment 

The further the marker electrode pairs are apart, the more distant the observation window will 

be from the electrodes, and the smaller the probability of 100% entrainment becomes. The 

inter-spike interval histogram (lSI histogram) measured on a single fibre has more than one 
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mode if entrainment is less than 100%. These modes occur at multiples of the stimulation pulse 

repetition period. The standard deviation of each mode is os' If the lSI histogram is normalized 

to an area of 1, it is the pdf (probability density function) of the inter-spike interval of a single 

fibre (referred to as the lSI pdf in the text that follows). A typical lSI histogram is shown in 

figure 4.3. 

rn 
2: 
Q) ....... 
c 
Q)~ 
~~ 
'c..~ en.o 1m 
L...o 
Q)o 

....... L.. 

.f:a. 

Figure 4.3 

0.4 

0.3 

0.2 

0.1 

~ 

0 

. 

I. 
T 3T 5T 7T 

Duration of inter
spike interval 

A typical lSI pdf for entrainment less than 100%. T is the stimulation 

pulse repetition period. This figure was calculated using the model of 

(Bruce et al., 2000). Note that although the figure shows a mode standard 

deviation of os=O, mode standard deviation is typically up to 0.1 ms. The 

model used here does not take mode standard deviation (spike jitter) into 

account. 

Assume now that the task is to detect the gap when there is not 100% entrainment. The signal 

detection task of the central detector is now complicated by the multi-mode pdfs that 

characterise the two conditions that have to be discriminated, i.e. the pdf of inter-spike 

intervals when a marker is observed, and the pdf of inter-spike intervals when the gap occurs. 

The first two modes in these two pdfs will be at T and T +gap respectively, as shown in 

figure 4.4. It is clear that, to achieve a large fraction of correct decisions, T +gap will be more 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 94 

 
 
 



Chapter 4 Models of gap detection in electric hearing 

distant from T than in the single-mode pdf case. Hence, in this case the gap threshold will be 

determined by the standard deviation of the multi-mode pdf and not by the spike position jitter. 
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Two lSI pdfs, with first mode (of zero amplitude) at T and T +gap 

respectively, with T +gap chosen for high gap detection probability in this 

figure. 

The model of Bruce, as described in Bruce et al. (2000), Bruce et al. (1999a), Bruce et al. 

(1999b) and Bruce (1997) calculates the probability of a spike occurring on each stimulation 

pulse in a pulse train for a given current distribution and stimulation pulse repetition frequency. 

The complete mathematical model is derived in Bruce et al. (2000) and the derivation is not 

repeated here. Their model implementation in Matlab is employed for some of the calculations 

in the current model (with permission from the author of the code). 

The Bruce model calculates the normalized lSI histogram internally. It does not take spike 

position jitter into account. Typical lSI histograms obtained with the Bruce model are shown 

in figure 4.5. 
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lSI pdfs (with no jitter) for several situations in which entrainment is not 100 %. 

The probability of a spike occurring on each stimulus pulse is as follows: 

(a) P(spike)=0.8, (b) P(spike)=0.5, (c) P(spike)=0.3 and (d) P(spike)=0.16. 

Bruce uses the concept of renewal time in his model. The renewal time is the waiting time 

between the occurrence of one spike and the next. The average renewal time and standard 

deviation in renewal time are calculated by the Bruce model. These are respectively the mean 

and standard deviation of the lSI pdf. For example, the average renewal time in figure 4.5a is 

1.25T and the standard deviation in renewal time is 0.46T, where T=l ms is the period of the 

stimulus pulse train. The average renewal time in figure 4.5c is 3.3T and the standard deviation 

in renewal time is I.25T. 
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2.3.2.3 Approximation to the lSI pdf 

To simplify calculations, the lSI pdfs are approximated by their envelopes. For small standard 

deviation in renewal time, the envelope of the lSI pdf is well approximated by a gamma pdf, 

a b X b- 1 e-ax 
pdj{x) = ---

reb) 
(4.12) 

where x is the time axis, and a and b are parameters used to fit the gamma pdf to the lSI pdf 

envelope. Parameters a and b together determine the mean and standard deviation of the 

gamma pdf. Parameter b determines the order of the gamma function. To obtain a good fit to 

the lSI pdf data, it was found that a can be taken as 

2 a =-, 
(Jr 

(4.13) 

where or is the standard deviation in renewal time calculated by the Bruce model. For small or 

(below 2 ms), the fit is quite good for a gamma function of order b=5. For larger of' smaller 

values of b are required to obtain a good fit. A polynomial was fit to the required b values for 

values of or between 2 ms and 100 ms 

(4.14) 

The polynomial coefficients are given in Appendix 4.A. 

2.3.2.4 Combining information from M channels 

Assume now that the observation window is M neural channels wide (i.e. M nerve fibres 

terminate on the central detector). The information from the M channels is assumed to be 

combined optimally. The lSI pdfs for the M channels in the observation window are very 

similar if the observation window is not wider than one critical band, and may be approximated 

by an observation ofM identical neural channels. For M identical channels, d'M improves with 

the square root of M, 

dm = 1M d' , (4.15) 
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where d' is for each individual channel (Green and Swets, 1966). 

2.3.2.5 Calculation of the gap threshold 

The gap threshold is now obtained as follows. First, the d' required in each individual channel 

is calculated from equation 4.15, assuming that the gap threshold is reached when d'M= 1. This 

is an equivalent d', as d' is only defined for Gaussian pdfs. From this d', the required probability 

of detection P d in each channel is calculated, for a 2IFe experimental context. 

(4.16) 

00 

Pd = f pdf(xlT + gap)dx. ( 4.17) 
Xth 

The pdf in this equation is the inter-spike interval pdf, conditioned on the occurrence of the 

gap. The integral is from xth, the detection threshold that the detector uses. This detection 

threshold is obtained by the Neyman-Pearson criterion (Kay, 1998), which employs a constant 

false alarm probability Pfa. A false alarm probability of Pfa=O.05 is used, and xth is calculated 

from 

00 

Pia = f pdf{xl1) dx. (4.18) 

Equation 4.17 must then be solved for T +gap. The integrals in equations 4.17 and 4.18 can be 

found in closed form. The solution to the integral 

(4.19) 
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is 

r(b,xo oa) 

reb) 
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(4.20) 

The definitions of the gamma function r(b) and incomplete gamma function r(b,a) are given 

in Appendix 4.A. 

Equations 4.17 and 4.18 are nonlinear equations that can be solved with optimization 

procedures. The gap threshold model was implemented in Matlab. In the Matlab 

implementation, equation 4.18 is first solved for xth, using the fsolve function in the Matlab 

Optimization Toolbox. This routine employs a Newton method nonlinear least squares 

algorithm to solve (a system of) nonlinear equations. 

With xth known, and the required P d known from equation 4.16, the gap threshold is obtained 

from equation 4.17. In implementation it is equivalent, but easier, to solve for the value of Xl 

(using the fsolve function) that satisfies 

00 

f pdf(xl1) dx = Pd' (4.21) 

The gap threshold is then 

(4.22) 

2.3.2.6 Software implementation 

The procedure defined by equations 4.12 to 4.22 was used to calculate the gap threshold for 

electrical stimulation when entrainment of some nerve fibres in the observation window was 

less than 100%. The gap threshold was calculated from equation 4.11 for 100% entrainment. 

All calculations were done in Matlab 5.3 on a Pentium III based computer running Windows 

2000. 
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2.4 Model parameters 

The following model parameters can be varied: neural parameters of fibre threshold and RS 

(relative spread, a parameter that characterizes the slope of the rate-intensity function, Bruce 

et aI., 2000), current distribution, distance between electrode and fibres, extent of the 

observation window, and stimulation parameters (intensity, pulse width and pulse repetition 

frequency). It is shown that with realistic choices of model parameters, predicting measured 

gap thresholds is possible. 

2.4.1 Current distribution 

A simple exponential model of current decay, which assumes a homogeneous resistive medium, 

was one of the two models of current spread investigated in the current study. Bruce et aI. 

(1999b) approximated the current distribution with a point source of current at the active 

electrode, with a current decay of 4 dB/mm for bipolar stimulation. The model and 

measurements of Kral et aI. (1998) found a current decay of between 4 and 8 dB/mm for 

bipolar electrical stimulation with the Nucleus-22 electrode array. Electrodes were spaced 0.75 

mm apart. Black et aI. (1983) measured current decay of 6 dB/mm close to the bipolar 

electrode (within 1 mm of the electrode), but slower current decay further away from the 

electrode. Various rates of decay were investigated as appropriate models for the data. 

The three-dimensional spiralling finite element model of Hanekom (2001) does not assume a 

homogeneous medium, but attempts to model the impedance characteristics of the different 

types of tissue in the cochlea more accurately. Her model uses various electrode positions to 

predict the voltage distribution in the cochlea. The voltage distribution on the cochlear nerve 

is then used as input to a nerve fibre model that predicts which fibres will fire. The model 

clearly shows that, for bipolar stimulation, two peaks of neural activity exist close to the active 

and return electrodes. The peaks do not occur simultaneously, but on each phase of the 

biphasic stimulation pulse. The model does not take refractory effects into account. 
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Figure 4.6 

The figure shows predicted neural thresholds obtained by the finite 

element model of Hanekom (2001) (dotted line) along with a curve fit to 

these data (solid line). The dashed lines El and E2 on the figure mark the 

positions of the two electrodes in a bipolar pair (BP+ 1 stimulation mode). 

Hanekom's results are given as threshold predictions. The threshold of the nerve fibre that fires 

at the lowest stimulation current (typically a fibre closest to an electrode) is used as reference, 

and the thresholds of fibres further away from the electrodes are calculated relative to this 

reference threshold. An example is shown in figure 4.6. For use in calculations, curves have 

been fit (figure 4.6) to the model-predicted data of Hanekom (2001). Hence, the threshold 

current (stimulation current at the electrode) of each nerve in the observation window can be 

calculated. 

Assuming that fibres have fixed thresholds, it can be calculated how far above threshold a fibre 

is stimulated, 

(4.23) 

where Ia is the current relative to threshold (in dB ~A), Ie is the electrode stimulation current 
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and Ie,th is the electrode current at which the fibre reaches threshold. Then the current at 

position x is given by 

(4.24) 

where Ith is the fixed fibre threshold. The Ix values for all positions x in the observation window 

define the current spread profile in this window. Position x is defined as the linear distance 

along the axis of the cochlea, as shown in figure 4.7. Figure 4.7 shows how the physical setup 

is modelled in the current model. The distance y in this figure is the shortest distance between 

the electrode array and the neural plane, while the distance z is the direct distance between a 

specific electrode and a specific nerve fibre. 

electrode array 

Figure 4.7 

This figure defines the spatial relationship between the electrode array 

and the closest point of stimulation on the neural plane. 
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The current distribution model in equation 4.24 was the second of the two models of current 

spread investigated in the current study. 

2.4.2 Distance between electrodes and nerve fibres 

Distance y in figure 4.7 is the shortest distance between the electrode array and the neural 

plane. In the Bruce model (Bruce et aI., 2000), y=O. More realistically, the electrode array is 

further away from the neural plane in the base region of the cochlea and nearer to the neural 

plane in the apex region as a result of the tapering of the cochlea (figure 4.8). Typical values 

are y=0.8 mm 25 mm from the base, and y=1 mm near to the base of the cochlea (Shepherd 

et aI., 1993). In the Hanekom (2001) model, the electrode is 0.62 mm from the neural plane 

for an electrode that lies against the outer wall of the cochlea. 

0000000 neural plane 

base .....-
y 

electrode array 

Figure 4.8 

The electrode array is closer to the neural plane towards the apex. The 

distance y varies linearly along the length of the cochlea. 

In the current model, fixed distance between the electrode array and neural plane, and also 

varying distance, were investigated. The fixed distance was taken as 0.5 mm and the electrode 

array that varied in distance from the neural plane was 0.1 mm away at the apex and 2 mm at 

the base. Although these values were not realistic, they were chosen to amplify the effect of 

electrode distance. It turns out that electrode distance has little influence in the model. 
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2.4.3 Rate-intensity function of nerve fibres 

Electrically stimulated nerve fibres have very limited dynamic range, and this is also a function 

of the state of the nerve fibres. The dynamic range of input intensity (between threshold and 

saturation) can be as little as 2 dB IlA for fibres in a non-deafened cat (Javel and Shepherd, 

2000). For the non-deafened cat as well as for a short-term deaf animal, the rate-intensity 

function is logarithmic (Javel and Shepherd, 2000). However, for the long-term deaf animal, 

wider dynamic ranges are found, and the rate-intensity function is linear. For the current model, 

which is intended to model psychoacoustic data of subjects that have been deaf for a long time, 

it is assumed that the fibre rate-intensity function follows the pattern seen in long-term deaf 

animals. 

The saturation discharge rate, and consequently the dynamic range, is also determined by the 

stimulation pulse rate for electrical stimulation. Spike rates can be entrained to pulse rate up 

to very high pulse rates (800-1000 Hz), although some fibres reach saturation rates at lower 

pulse rates (Javel, 1990; Javel and Shepherd, 2000), especially in long-term deaf ears. 

Bruce et al. (1999b) determined mean values and standard deviations for fibre thresholds and 

RS for the population of (non-deaf) nerve fibres measured by Dynes (1996) (see also Dynes 

and Delgutte, 1992) and modelled by Bruce. The average fibre threshold was 46 dB IlA and 

the average RS was 0.14. However, as is shown in figure 4.9, larger values ofRS replicate the 

rate-intensity data much better. In the current model, fixed neural parameters (for threshold and 

RS) are assumed, and specifically, the data for neuron 3-21 as documented in Bruce et al. 

(1999b) is used. Neuron 3-21 had RS=0.151. In the current model, the effect of RS=0.151, 

RS=0.3 and RS=0.5 are investigated. 

2.4.4 Other stimulation parameters 

The following stimulation parameters were fixed in the current model. 

The observation window was never wider than one critical band. The number of hair cells per 

critical band is around 150 (Zwicker and Fastl, 1990), and it was assumed that the central 
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detector used information from anything between M= 1 and M= 150 fibres. 
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Figure 4.9 

The data of Javel and Shepherd (2000) for a long term deaf cat stimulated 

at 600 pps (e) and at 800 pps (-) are shown together with rate-intensity 

functions obtained with the Bruce model, with RS=0.5 (solid lines) and 

RS=0.151 (dotted lines). In both cases, curves for 600 pps and 1000 pps 

stimulation rates are shown. The 600 pps curves saturate at 600 spikes per 

second. 

Stimulation pulse rate of 1000 Hz and pulse width of 200 ~s/phase were used in the model, 

as these were the parameters used in the psychoacoustic experiments that this model is 

intended to model. For similar reasons, BP+ 1 mode was assumed, and it was assumed that the 

electrode array was the Nuc1eus-22 design (Clark et aI., 1990). Electrodes in a bipolar pair 

were 1.5 mm apart. 
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3 RESULTS 

3.1 Gap detection tuning curves predicted by model 

Figures 4.10 to 4.22 show gap detection tuning curves for various parameter choices in the 

model. Parameters investigated for their influence on gap detection thresholds are described 

below. 

(1) The effect of the number of fibres in the observation window (M= 1 to M= 150) was 

investigated. The width of the observation window was at most one critical band. 

(2) The effect of current distribution was investigated. The rate of current decay away 

from the active electrode site was varied for simple exponential current decay. The 

twin-peaked current distributions predicted by the model of Hanekom (2001) were also 

investigated as an alternative current distribution model. 

(3) Neural parameters (fibre threshold and RS) were either random (according to the 

model of Bruce et aI., 1999b) or fixed (parameters of neuron 3-21 in Bruce et aI., 

1999b). 

(4) A random component was added to the current distribution to simulate the effects of 

current decay that varied as a result of a non-homogeneous current path impedance. 

(5) The distance between the neural plane and the electrodes was either fixed at 0.5 mm, 

or varied linearly between 2 mm (near the base) and 0.1 mm (near the apex). These 

values are not realistic, but were chosen to magnify the effect of the relative distance 

between the neural plane and the electrodes. 

(6) In one embodiment of the model, gap threshold was always calculated from equation 

4.17 (which assumes less than 100% entrainment). In a second embodiment, equation 

4.11 was used when entrainment was 100%, and equation 4.17 when entrainment was 

less than 100%. These two conditions are identified as a single process model and dual 

process model respectively. 
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Figure 4.10 Figure 4.11 

Model predictions for gap detection This figure shows the effect of a different 

thresholds for a pulsatile stimulus of 55 dB rate of exponential current decay. The 

IlA. The neural parameter RS was either solid curve is for a current decay of 

0.3 (solid lines) or 0.5 (dashes). In these 0.5 dB/mm, while the dashed curve is for 4 

two sets of curves, either M=1 (upper dB/mm. M=150 in both model curves, 

curve) or M=150 (lower curve). A single RS=0.3, and the subject data are also 

process model was employed, and the shown. 

distance between the electrode plane and 

neural plane was 0 mm. The exponential 

current decay was 4 dB/mm. The data 

with electrode 10 as standard for subjects 

N3 (0), N4 (e) and N7 (D) are also shown. 

Figure 4.10 shows model predictions with M=1 and M=150, for a stimulus of 55 dB IlA. A 

single process model was employed, and the distance between the electrode plane and neural 

plane was 0 mm. The exponential current decay was 4 dB/mm, and the neural parameter RS 

was (for a long-term deaf ear) either 0.3 (solid lines) or 0.5 (dashes). The Neyman-Pearson 

detection threshold was calculated to obtain a false alarm probability of 0.05. The gap 

detection tuning curves for N3, N4 and N7, with electrode 10 as standard (from Hanekom and 
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Shannon, 1998, or chapter 2), are also shown. The model-predicted gap tuning curves do not 

show the sharp tip seen in the data of N4 and N7, but has the shallow bowl shape of the N3 

data. 
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Figure 4.12 Figure 4.13 

This figure shows the effect of the distance The distance between the electrode array 

between the neural plane and the electrode and the neural plane varied along the 

plane, for a non-varying distance between length of the array in this figure (solid 

the electrode array and the neural plane. curve). The distance varied linearly 

From top to bottom, the model-predicted between 2 mm for the most basal electrode 

curves are for distance y of Imm, 0.5 mm to 0.1 mm for the most apical electrode. 

and 0 mm. Exponential current decay was This is compared to fixed electrode array 

4 dB/mm, the stimulus intensity was 55 dB distances of 0.1 mm (lower dashed curve) 

J..LA, and M=150. and 1 mm (upper dashed curve). 

Figure 4.11 shows the effect of a different rate of exponential current decay. M=150 in both 

model curves, and the subject data are also shown. The slope of the 0.5 dB/mm model curve 

is similar to the slope of N4's data, but does not show the sharp tip. A current decay of 

4 dB/mm is typical of bipolar stimulation, while 0.5 dB/mm is more typical of monopolar 

stimulation. The N4 gap detection data exhibit trends that can be predicted by fast current 

decay (> 8 dB/mm) near the electrode, but to predict trends in the far field, a current decay 
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more typical of monopolar stimulation is required. 

Figure 4.12 shows the effect of the distance between the neural plane and the electrode plane, 

assuming a non-varying distance between the electrode array and the neural plane. More distant 

positions for the electrode array result in larger gap detection thresholds, and the sharp tip is 

not observed for more distant positions. 

The distance between the electrode array and the neural plane varied along the length of the 

array in Figure 4.13. The distance varied linearly between 2 mm for the most basal electrode 

to 0.1 mm for the most apical electrode. This is compared with fixed electrode array distances 

of 0.1 mm and 1 mm. The electrode array with linearly varied position is shown to deform the 

gap tuning curve towards the apex. 
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Figure 4.14 Figure 4.15 

Model-predicted gap detection tuning The gap tuning curve predicted by the 

curves when the twin-peaked current Hanekom current distribution model is 

distributions predicted by the model of compared to a decay of 6 dB/mm. 

Hanekom (2001) are used. Model 

parameters are M=150, and Neyman-

Pearson threshold=O.I. 
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The twin-peaked current distributions predicted by the model of Hanekom (2001) result in the 

gap detection tuning curves in figure 4.14. Model parameters are M= 150, and Neyman-Pearson 

threshold=O.I. The twin-peaked current distribution results in a twin-tipped gap detection 

tuning curve with large gap thresholds when the standard and probe are on the same 

electrodes. This is not consistent with the trends observed in the data. The flanks of the gap 

tuning curves predicted by the Hanekom model exhibit a 6 dB/mm decay, as shown in figure 

4.15 where it is compared to a single-peaked exponential decay of 6 dB/mm. 
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Figure 4.16 Figure 4.17 

The dual process model predicts the sharp The effect of neural threshold is shown at 

tip at high intensity (57 dB tJ.A). fixed stimulation intensity of 50 dB tJ.A, 

with M=1 and RS=0.3. From top to 

bottom, the neural threshold was 55 dB 

tJ.A, 49 dB tJ.A and 45 dB tJ.A. 

The dual process model predicts the sharp tip at high intensity (figure 4.16). A 2 dB/mm decay 

is used to obtain the simulation results in figures 4.16 and 4.17. This current distribution 

produced tuning curve flanks consistent with the data of N7. The dual process model is 

employed in figure 4.17 and M= 1. The effect of neural threshold is shown at fixed stimulation 

intensity of 50 dB tJ.A. As neural threshold increases, the gap threshold also increases, as 

expected. 
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With a 2 dB/mm current decay, different values of stimulation intensity result in gap tuning 

curves that show some of the trends observed in the data (figure 4.18). At lower intensities, 

the model predicts a bowl-shaped curve similar to the data of N3. At higher intensities, the 

model predicts the sharp tip seen in the data of N4 and N7. 
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Figure 4.18 Figure 4.19 

The effect of intensity of stimulation on The influence of neural parameter RS 

predicted gap thresholds. From top to (relative spread) is shown in this figure. 

bottom, stimulus current was 53 dB J.LA, 55 The shallow curve is for RS=O.6, the 

dB J.LA and 57 dB J.LA. Other parameters steepest curve is for RS=O.15, and the third 

are y=O, RS=O.151, current decay is 2 curve is for RS=O.3. Other parameters are 

dB/mm, M= 1. M=150, stimulation intensity is 55 dB J.LA, 

and current decay is 4 dB/mm. 

A likely explanation is that the electrode array for N3 is more distant from the neural plane than 

that ofN4. The argument is that the gap tuning curves for N3 and N4 where obtained at similar 

loudness levels. Possibly then, the N3 gap tuning curve may also have shown the sharp tip at 

higher intensities. This in turn suggests that the current distribution for N3 is wider, although 

figure 4.11 suggests a wider (far field) current distribution for N4 (or slower far field current 

decay). However, it is also seen that the slopes on the flanks of the gap tuning curves are 

shallower at higher stimulation intensities, similar to the trend in N4's data, which supports the 

idea that N4's array is closer to the nerve fibres. 
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The neural parameter RS (relative spread) influences the fibre rate-intensity curve and therefore 

affects the shape of the gap tuning curve (figure 4.19). When RS is larger, the tip of the gap 

tuning curve is sharper, and the slopes on the flanks of the curves are steeper. 

When the neural parameters are allowed to be random (in accordance with Bruce et aI., 

1999b), the gap tuning curves show the jagged trends seen in the data. When the neural 

threshold is allowed to vary over a 10 dB range, large variance is seen in the gap tuning curves 

(figure 4.20), while a range of 1 dB or 5 dB simulates the trends in the data more closely 

(figure 4.21). 
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5 11Gl 15 20 
Probe electrode number 

The neural threshold varies over a 10 dB The neural threshold varies over a 5 dB 

range. Other parameters are M=150, range in this figure. Other parameters are 

stimulation intensity is 50 dB ~A, and M=150, stimulation intensity is 50 dB ~A, 

current decay is 4 dB/mm. and current decay is 1 dB/mm (solid line) 

or 4 dB/mm (dashed line). 

U sing fixed neural parameters, but adding a random component of standard deviation of just 

1 dB to the current distribution, it is seen in figure 4.22 that the non-monotonicity of the data 

can also be predicted by variation in current decay. The figure shows that the trends of data 

of N3 are predicted (solid line) by a general trend of 4 dB/mm current decay, with a 1 dB 

standard deviation in the current that reaches the (fixed threshold) fibres. Non-monotonic 
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current decay can result from non-homogeneous impedance paths. The general trends ofN4's 

data are predicted (dashed line) by current decay of 1 dB/mm (with a 1 dB standard deviation 

in the current). 

15 20 
Probe electrode number 

Figure 4.22 

A random component of standard deviation of 1 dB is added to the 

exponential decay current distribution. The solid line has a 4 dB/mm 

exponential current decay, and the dashed has a current decay of 1 

dB/mm. 

3.2 Current distributions predicted by model 

Figures 4.23 to 4.25 show the electrode current required by the model to obtain the measured 

gap tuning curves for the three subjects. These curves assumed an electrode-neural distance 

that varied across the length of the electrode array. A general trend in these curves is that 

larger currents are required to obtain the measured gap detection thresholds when the electrode 

is more distant from the nerve fibres. However, the curves are non-monotonic and all three 

curves have a peak at the standard electrode, so that larger currents are required to obtain the 

small values of gap threshold that are generally observed when both markers are on the same 

electrode. 

From these curves, the current distribution is calculated (figures 4.26 to 4.28), i.e. for a fixed 
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electrode stimulation current, these curves show the calculated current at a number of positions 

on the neural plane. More specifically, the model can only calculate the currents at the set of 

positions of observation windows used by the model. 
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Figure 4.23 Figure 4.24 

This figure shows the electrode current Same as figure 4.23, but for subject N4. 

that is required in the model to obtain the 

measured (Hanekom and Shannon, 1998) 

gap tuning curves for subject N3. Model 

parameters are as follows. M=1 and 

RS=O.3, while the model assumed a 4 

dB/mm current decay. 

20 

The current distribution curves obtained depend on model assumptions. In figures 4.26 to 4.28, 

an electrode array with varying distance y to the neural plane was assumed. RS=O.3 was used 

in these simulations. A numerical value for the current decay model parameter (e.g. 4 dB/mm) 

is required by the model to calculate the gap thresholds in the optimization routine that solves 

for the required current. Different choices of this parameter lead to slightly different predictions 

for the current distribution. In calculation of the current spread, the current decay parameter 

will specify only the general trends in the data. As the results show, the actual (model

calculated) rate of decay is non-monotonic and not necessarily close to 4 dB/mm. This is as a 

result of variations in current pathways and non-homogeneous impedance. 
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Same as figure 4.23, but for subject N7. 
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Figure 4.26 

The current distribution curve for N3 as 

calculated from figure 4.23, assuming an 

electrode array with varying distance y to 

the neural plane. 

Figure 4.26 shows a wide, unfocussed current distribution for N3, with a rate of current decay 

of 2.7 dB/mm (towards base) and 2.5 dB/mm (towards apex). N4 has a sharp current peak at 

fibres closest to the standard electrode position and then a gradual decay of current towards 

the more distant nerve fibres « 1 dB/mm). Hence, N4 has sharply focussed stimulation close 

to the electrode, but also a wide activation pattern with higher levels of current than N3 and 

N7 still present far from the electrode (figure 4.29). 

N7 also has a sharply focussed current distribution close to the electrode (8 dB/mm towards 

the apex), and a somewhat more gradual decay in current of 3.2 dB/mm (towards the apex) 

and 2.67 dB/mm (towards the base) when measured from the tip to the tail on either side of 

the tip. 

The current intensity does not decay more than 14 dB for any of the subjects even at the most 

distant nerve fibres modelled. Predictions are not available throughout for the current at the 

-10 dB point, as the current has not always decayed that much. As a measure of the focussing 

of current, the -6 dB focussing width and the -10 dB focussing width are calculated. Curves 
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were extrapolated if the current did not decay by 10 dB or more to obtain the values for 

focussing width. The -6 dB focussing widths for the subjects are 4.4 mm (N3), 0.7 mm (N4) 

and 1.1 mm (N7). The -10 dB focussing widths for the subjects are 8 mm (N3), 5.3 mm (N4) 

and 5.3 mm (N7). 
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Figure 4.27 Figure 4.28 

Same as figure 4.26, but for subject N4 Same as figure 4.26, but for subject N7 

and calculated from figure 4.24. and calculated from figure 4.25. 

With different model assumptions than those for figures 4.26 to 4.28, different model

calculated current distribution curves are obtained. The predicted current distribution does not 

change by more than 5% when the electrode array is at fixed distance of 0.5 mm from the 

neural plane, while the trends remain the same. However, when the model assumption for the 

current decay rate is different, the predicted current distributions are notably different to those 

obtained in figures 4.26 to 4.28. A current decay of 4 dB/mm appears to model the gap data 

for N3 quite well (figure 4.22), but N4 has a current decay of closer to 1 dB/mm on the flanks 

(figure 4.22), while the N7 data is probably modelled better by a 1 dB/mm decay on the base 

flank and a 4 dB/mm decay on the apex flank of the data. Using 1 dB/mm for both the N 4 and 

N7 data, the current distribution curves in figure 4.30 and 4.31 are obtained. 

Particularly notable in these model-calculated current distribution curves are the widely varying 

patterns of predicted current distribution in these three subjects. Many psychophysical studies 
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have reported considerable inter-subject variability and this is regarded as a major obstacle in 

the way of progress in development of more advanced cochlear implants. 

Figure 4.29 
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Current distributions for all three subjects plotted on the same graph 

(circles: N3; squares: N4; triangles: N7). Current decay is plotted relative 

to the current that reached the fibres closest to the standard electrode. 

Also shown (dashed lines) are two exponential current decay curves with 

length constants of 0.5 mm and 3 mm respectively (decay of 8.7 dB/mm 

and 1.4 dB/mm respectively). 

Published data for current distributions in cochlear electrical stimulation are scarce. More 

often, voltage distributions are measured (lfukube and White, 1987; Spelman et aI., 1995) or 

modelled (Hanekom, 2001). However, as was shown by Black et aI. (1983) and Kral et aI. 

(1998), voltage distributions do not necessarily reflect the current distributions at the neural 

excitation sites. This is because of non-homogenous impedance in the cochlea. Voltage 

distributions cause currents and these currents excite nerve fibres. Accordingly, using current 

distributions to predict which fibres will be excited is more appropriate. 

It is noted, however, that some more complex voltage distribution models (Frijns et aI., 1995; 
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Hanekom, 2001) calculate nerve excitation directly from the voltage distributions via finite 

difference or finite element models that take the non-homogeneous cochlear impedances into 

account and via Hodgkin-Huxley (or equivalent) nerve fibre models that predict when fibres 

will fire. 
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With different model assumptions than in Same as figure 4.30, but for subject N7. 

figure 4.24, the predicted current 

distribution for subject N4 is as shown in 

this figure. The model now assumes a 1 

dB/mm current decay. 

As a further note, spatial excitation data are also usually given as threshold data rather than as 

spatial excitation profiles. Several studies measured the thresholds of fibres at various cochlear 

positions in response to electrical stimulation at a fixed position in the cochlea (e.g. Van den 

Honert and Stypulkowski, 1987b; Shepherd and Javel, 1997), but no data on supra-threshold 

spatial excitation patterns appear to be available. 

Figure 4.32 compares the model-calculated current distribution curves to current distribution 

data from Black et al. (1983). These data were not obtained in vivo, but were measured in a 

tank model (a 5 mm saline-filled tube). The data show a current decay length constant of 0.7 

mm at the tip, which is the same as the length constant obtained by Kral et al. (1998) in their 

measurements. Close to the peaks the model-calculated current distributions for N4 and N7 
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follow the data quite well. The tails of the calculated current distributions are elevated by 5-10 

dB relative to the tank data. 
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Figure 4.32 

This figure compares the model-calculated current distribution curves to 

measured current distribution data. Filled circles are data from Black et 

aI. (1983). Open symbols are predicted current distributions for the three 

subjects (open circles: N3; open squares: N4; open triangles: N7). 

3.3 Predictions for electrode discrimination from the predicted current distributions 

Predictions for current distributions were obtained for all the electrodes for which gap 

detection tuning curves were available for all three subjects. Predictions were then obtained for 

the discriminability of electrodes. This was done as follows. The average and standard 

deviation of each electrode's current distribution was required. As the rate of current decay was 

different towards the base than towards the apex, the standard deviation was calculated on 

either side of the peak current. Electrode discriminability was then calculated from 

d'= 
2(m2 - m1)2 

2 2 
(J El + (J E2 

(4.25) 
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where m! and m2 are the active electrode positions (in mm from the base), and 0El and 0E2 are 

the standard deviations of the current spread on the appropriate flanks of the current 

distribution curves of the two electrodes. The predicted electrode discriminability is shown as 

two-dimensional contour plots (figure 4.33 and 4.35) for N4 and N3 respectively. These 

figures show how discriminability varies with distance between the electrode pairs. In both 

cases, a distance of at least two electrodes (in BP+ 1 mode in the Nucleus cochlear implant, see 

chapter 2) is required to achieve d' > 1 (defined as the discrimination threshold). 
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~~ 
~ 
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Electrode discriminability for N4 (BP+ 1 

mode) measured in a pitch 

discrimination experiment (Hanekom 

and Shannon, 1996). 

This means that electrodes need to be spaced at least 1.5 mm apart (in the Nucleus cochlear 

implant, see chapter 2) to be discriminable. As the two electrodes in an electrode pair is 1.5 mm 
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Predicted electrode discriminability for 

N3 in BP+ 1 mode. 
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Electrode discriminability for N3 (BP+ 1 

mode) measured in a pitch 

discrimination experiment (Hanekom 

and Shannon, 1996). 

apart, this means that stimuli on overlapping electrode pairs will be poorly discriminated. This 

is probably because these electrode pairs stimulate the same neural population to a large extent. 

The predictions in figures 4.33 and 4.35 also suggest that electrodes with closer spacing will 

be more discriminable for N4 than for N3. 

Predicted discriminability of electrodes is compared with electrode discrimination data (figures 

3.34 and 4.36) for the same subjects (Hanekom and Shannon, 1996). The predicted 

discriminability correlates well to the measured electrode discrimination data for N4, but not 

for N3 or N7 (not shown). The data for N4 suggests that a separation of at least two electrodes 
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is required to achieve d' > 1, as is also predicted by the model. This suggests that the current 

distributions predicted by the model is a fair reflection of the actual current distributions for 

N4. 

N3 (and N7, not shown) should have performed better on the electrode discrimination task 

than what is reflected in the data in figure 4.36 if the current distribution predictions are 

accurate. Other factors may have played a role in N3 's case (and in NTs) in the electrode 

discrimination task. The actual task was a pitch discrimination task, and it is possible that 

electrodes were discriminable, but that these subjects were not able to judge pitch. Anecdotaly, 

N7 reported that he "has always been tone deaf". Thus, the electrode discrimination data do 

not provide conclusive evidence that the predicted current distributions are correct. 

4 DISCUSSION 

4.1 Modelling of gap detection data 

The model can predict both the magnitude of gap thresholds and the U-shaped curves with the 

correct choice of parameters. The trends in the slopes on the flanks of the predicted gap 

thresholds curves follow those seen in the data, and depend primarily on the current 

distribution and rate of current decay. Realistic choices for rate of decay can predict the slopes. 

If an exponential decay is assumed, the model cannot predict the sharp tip seen in the data of 

N4 and N7, but the shallow bowl is predicted. It is possible that two separate mechanisms exist 

that determine gap thresholds, so that gap thresholds are very small in the within-channel 

condition and larger in the across-channel condition. It is possible that a perceptual similarity 

process plays a role in the across-channel condition as suggested in chapter 2. 

However, the model shows that hypothesizing different mechanisms for across-channel and 

within-channel conditions is not necessary. When entrainment is close to 100%, gap thresholds 

are determined by the spike position jitter (spike position standard deviation) alone. Gap 
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thresholds are then expected to be small for pulsatile electrical stimulation, as temporal jitter 

of spikes is small. This situation is most likely to occur when the two markers are presented 

on the same electrode. 

When entrainment in the observation window is lower that 100%, gap thresholds are primarily 

determined by the standard deviation of the inter-spike interval pdf and the temporal jitter of 

spikes does not play an important role. The standard deviation of the inter-spike interval pdf 

for less than 100% entrainment is typically much larger than temporal jitter, so that gap 

thresholds are expected to be much larger. Figures 2.5 to 2.7 provides further support for this 

notion. The sharp tips in the gap detection tuning curves disappear at lower stimulation levels 

where entrainment should be below 100%. Thus it appears that this model provides a plausible 

explanation for the origin of the gap detection tuning curves. 

Finally, it is not clear why the twin-peaked voltage distribution predicted by Hanekom (2001) 

fails to be a good predictor for gap thresholds. A less than satisfying explanation is that the 

nonhomogeneous cochlear impedance introduces enough variability in the current arriving at 

different fibres to mask the twin-peaked pattern. 

4.2 Modelling of current distributions 

Predicted current distribution profiles are consistent with tank measurements (Black et aI., 

1983) of current distribution (figure 4.32) for the first millimeter on either side of the current 

peaks and the trends are similar throughout the modelled region. Exponential current decay 

cannot explain the sharp tip, but a more sharply focussed current distribution can explain the 

sharp tip (see figures 4.26 to 4.28). Differences between model predictions and tank data in 

the tail sections of the current distributions may be due to differences between the 

nonhomogeneous cochlear impedances and homogeneous tank impedances. Shepherd and 

Javel (1997) remarked that current spread may increase in long -term deafness due to 

demyelination of nerve fibres. The length constant of the predicted current distributions ofN4 

and N7 is 0.5 mm near the tip, which is comparable to the length constants measured by Kral 
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et aI. (1998). The length constant of the current distribution of N3 is 3 mm, which is also the 

length constant measured by Black et aI. (1983). 

Interesting results are presented in figures 4.29 and 4.33. Close to the electrodes, predicted 

current distributions for N4 and N7 show current decays that are typical of bipolar stimulation, 

while the current decay of N3 is more reminiscent of monopolar stimulation. The data of N4 

and N7 show sharp (predicted) current peaks close to the electrodes, with current decay very 

similar to what has been obtained in a tank model. The predicted current distribution tails more 

distant from the electrode follows the trend seen in the tank model data. 

The wide current distribution pattern of N3 is reflected in the electrode discriminability data 

shown in figure 4.36, while the more sharply focussed current distribution (close to the 

stimulation electrodes) ofN4 is reflected in the electrode discriminability data shown in figure 

4.34. Even though the tail in the predicted current distribution of N4 is equally far below the 

current peak than N3's predicted current distribution, N4 has much better electrode 

discriminability. Thus it appears the tail of the current distribution does not contribute to the 

listener's ability to discriminate electrodes. This emphasizes the importance of current focussing 

techniques in stimulus pattern design (Townshend et aI., 1987) and electrode designs to obtain 

better current focussing (Cords et aI., 2000). 

It is clear from figure 4.36 that N3 had difficulty in discriminating closely spaced electrodes, 

which may be ascribed to the wide current distribution. Hanekom and Shannon (1996) 

endeavoured to relate place pitch discrimination data to current spread and the definition of 

information channels in electric hearing. While the measurement of electrode discrimination 

relied on the pitch discrimination ability of subjects in the experiments of Hanekom and 

Shannon, gap detection may provide a more objective approach to arrive at predictions for 

current distributions. The similarity between the trends seen in the predicted current 

distributions and the electrode discrimination data is encouraging. 

There is, however, still a large discrepancy between the predicted electrode discriminability 
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pattern and the place pitch discrimination data (figures 4.35 and 4.36). It is possible that the 

pitch discrimination experiment of Hanekom and Shannon (1996) underestimated the ability 

of subjects who had poor pitch perception to discriminate electrodes. Experiments that are 

designed for electrode discrimination (e.g. Collins et aI., 1997) rather than for place pitch 

discrimination would have been more appropriate for comparisons between predictions and 

data. It is possible that electrode discrimination is better than reflected in the place pitch 

discrimination data. 

As a final remark, predicted current distributions vary widely between subjects, which may be 

a major factor determining speech recognition ability in cochlear implant users. 

4.3 Applicability of the model 

The model described in this chapter is only applicable for auditory electrical stimulation, and 

specifically the situation where the gap is defined as in figure 4.1. If stimulation pulses can 

occur in the gap, i.e. when the gap is not silent, the model will not necessarily model the task 

of the central detection mechanism very well. Also, when spikes can occur during the gap (in 

a model with spontaneous activity), the task changes. These situations were investigated in 

paragraph 4.2.2. The model is applicable in a gap discrimination situation, but as no gap 

discrimination data for cochlear electrical stimulation is available, model predictions for the 

discrimination task were not explored further. 

4.4 Free parameters and parameter sensitivity 

The model has a small number of free parameters that control different aspects of the gap 

threshold tuning curves. The U-shaped gap tuning curves and correct magnitude of gap 

thresholds are obtained by the model primarily because spike probability decreases as gap 

marker electrodes are separated. This results in larger standard deviation in the pdfs in the 

signal detection task, which in turn results in larger gap thresholds. 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 125 

 
 
 



Chapter 4 Models of gap detection in electric hearing 

The number of fibres combined in a central detector and the electrode-nerve distance can be 

varied, but the model is not very sensitive to these parameters. The model suggests that 

variations in electrode-nerve distance may slightly skew the gap tuning curves, but is not as 

important as current distribution. This statement is based on the assumption that fibres are 

exci ted at a fixed threshold. However, the model of Hanekom (2001) shows that apparent fibre 

thresholds change considerably when electrodes are placed close to the modiolus. 

The model suggests that the major factor determining the gap threshold tuning curve shapes 

is the current distribution, which depends on electrode design and cochlear impedance 

characteristics. Exponential current decay at different rates can control the slopes of the gap 

tuning curve flanks. Other irregular current distributions can predict the jagged shape of the 

gap tuning curves. 

Neural parameters (threshold and RS) can be varied and, as has been shown, the variability of 

these can also predict the non-monotonic shape of the gap tuning curves. RS controls the slope 

of the gap tuning curve flanks. Finally, stimulation parameters (intensity of stimulation, pulse 

width, and frequency of stimulation) can be varied. The magnitude as well as the shape of 

predicted gap thresholds is sensitive to the intensity of stimulation. 

4.5 Strengths and weaknesses of the current model 

4.5.1 Strengths 

As far as is known, this is the first model for gap detection in electric hearing. The model 

provides a simple explanation for gap detection thresholds as measured in cochlear implantees, 

using realistic model parameters. Gap detection threshold magnitudes are correct, and the U

shaped curves can be predicted. It is based on simple signal detection theory considerations. 

The model implementation performs analytical calculations and does not require lengthy Monte 

Carlo simulations. 

The model also provides estimates of the current distributions based on psychophysical gap 
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detection data. Hence, current distributions may be estimated non-invasively. Evaluating 

whether the predicted current distributions are a fair reflection of the actual current 

distributions is impossible with currently available techniques. Tank measurements (Black et 

aI., 1983) show similar trends than observed in the model predictions. If it can be proven that 

these predictions are good estimates of the actual current distributions, the model will be a 

particularly useful tool to individualise settings in cochlear implant programming. 

4.5.2 Weaknesses 

Three important criticisms of the current model are discussed here. First, a primary model 

assumption is that a limited extent observation (or attention) window is employed by the 

central gap detection mechanism. Not enough neurophysiological evidence is available to 

support this assumption. In fact, gap detection studies in normal acoustic hearing have shown 

that gap detection improves when the gap is present in more neural channels (Hall et aI., 1996), 

although a similar result was not obtained in cochlear implantees in the study by Van Wieringen 

and Wouters, 1999. 

Second, model assumptions about the neural spike train may be an oversimplification. It is 

assumed that only the A response occurs, while the Band C responses may also occur and 

complicate the central gap detector's task. However, it is believed that for modelling purposes 

it is reasonable to assume that only the A response occurs, as this response is predominant in 

long-term deaf ears. Occurrence of multiple spikes with different latencies in response to an 

electrical stimulus pulse will complicate the task of the central detector and makes it difficult 

to obtain model predictions for gap thresholds without reverting to Monte Carlo modelling. 

Creating such a model is possible. However, conceptually these multiple spikes just decrease 

the signal to noise ratio (i.e. they "fill the gap"), so that gaps become more difficult to detect 

and gap thresholds increase. 

Finally, the signal detection calculations were based on gamma functions that approximated the 

multi-mode inter-spike interval histograms. This was to simplify calculations, but will influence 

the predicted gap thresholds. 
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4.5.3 Other arguments against the model 

Chatterjee et al. (1998) and Van Wieringen and Wouters (1999) have argued against the notion 

that V -shaped gap detection curves originate from an across-channel gap detection mechanism 

where smaller neural overlap leads to increased gap thresholds. 

One argument was that the same V-shaped curves can also be obtained with within-channel gap 

detection by either using markers with different stimulation pulse rate or intensity of stimulation 

(Chatterjee et aI., 1998). This result will also be obtained with the current model. Although no 

calculations have been made, it is conceptually easy to see that the signal detection task is 

complicated by markers that differ in frequency, as gap detection is based on inter-spike 

interval duration. In the model, the gap detection mechanism searches for a change in inter

spike interval duration and detects a gap when this occurs. Inter-spike intervals that change 

without a gap occurring, confounds the gap detection mechanism, which will result in increased 

gap thresholds. So, although Chatterjee et al. (1998) are correct to suggest that within-channel 

processes can also result in V-shaped gap tuning curves, this does not negate the current 

model. 

The role of perceptual dissimilarity processes cannot be precluded. V-shaped gap tuning curves 

obtained with differences in marker loudness (Chatterjee et aI., 1998) are explained more easily 

by perceptual dissimilarity than by the current model. Van Wieringen and Wouters (1999) also 

argued that perceptual processes probably determine gap thresholds. A strong argument by 

these authors was that training eliminated the increase in gap thresholds in across-channel 

conditions in some subjects. 

4.6 Future improvements of the model 

One model limitation is the way that information is combined across a number of fibres that 

carry information about the gap. It has been assumed that spike train information from one 

critical band is combined to obtain predictions of gap thresholds. Vnder the (valid) assumption 

that these spike trains are very similar, the model simply calculates what the improvement in 
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signal-to-noise ratio is, and predicts gap thresholds under the assumption that spike trains are 

observed by a classical detector. 

The model does not take into account that spike trains from widely-spaced positions in the 

cochlea may be combined to obtain predictions for gap thresholds. One future improvement 

will be that the model will incorporate mechanisms to combine non-similar spike trains from 

more widely-spaced positions. 

Also, the model provides no implementation for the detection mechanism, but employs a 

statistical approach based on classical detection theory to provide gap threshold predictions. 

The model currently does not allow one to have a set of (simulated) spike trains containing the 

gap as input to a gap detection mechanism, which then has to detect the gap. Bayesian (as 

opposed to classical) estimation techniques, which employ an internal model of the signal to 

be detected, are explored in chapter 5 (for frequency discrimination). Chapters 5 to 7 explore 

the implementation-driven modelling approach, rather than the statistical approach used in this 

chapter and in chapter 3, by which an implementation for an optimal detector is devised. Such 

a detector can then use simulated spike trains as input and predictions can be derived with 

Monte Carlo simulation. The advantage of this approach is that complexities in spike trains 

(e.g. multiple spikes with multiple latencies) can be investigated. 

Finally, the model takes only spatial, and not temporal, information into account. Decay of 

spike rate does not occur in cochlear electrical stimulation as in acoustic gap detection, but 

spike latencies are also not taken into account. Furthermore, adaptation and bursting (Shepherd 

and Javel, 1997) are not taken into account. All these complexities can be incorporated into 

an implementation-driven model. 

5 CONCLUSION 

A number of conclusions may be drawn from the modelling exercise in this chapter. 

(1) Obtaining realistic gap detection thresholds in electric hearing by a spatial model that 
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does not allow for temporal models of gap detection is possible. 

(2) Predictions for the current distribution in the cochlea of a specific implant user can be 

obtained from the gap detection tuning curves. It is not known how accurate these 

predictions are, but they do show trends similar to those found in current distribution 

measurements. 

(3) The sharp tip seen in some gap tuning curves is possibly obtained when entrainment is 

close to 100%, when the primary factor determining gap thresholds is probably the 

temporal dispersion of spike placement in response to a stimulus pulse. 

(4) The shallow bowl portion of the gap tuning curve is probably obtained when 

entrainment is not close to 100%, when gap thresholds are probably determined by 

standard deviation of the inter-spike interval pdf. 

(5) Electrode array placement relative to the neural plane plays a secondary role in 

determining gap thresholds. 

(6) The primary factor determining gap thresholds is probably the shape of the current 

distribution. Modelling results suggest that exponential current decay is not a good 

model of current distribution in the cochlea. Possibly, for bipolar stimulation, sharper 

current peaks are obtained close to the electrode. 

(7) The model rests on the important assumptions that an attention window or observation 

window exists, that this window is placed for optimal gap detection probability, and 

that the gap detection mechanism uses spike train information from this window 

exclusively. This assumption cannot be proven or disproven by the current model. 
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APPENDIX 4.A 

Equation 4.14 is a polynomial that was fit to obtain the required b values for values of or 

between 2 ms and 100 ms. The coefficients in this equation are Pl= -5.2745 x 10-12, P2=2.1284 

x10-9
, P3=-3.5133 x 10-9

, P4=3.0544 X 10-5, P5=-0.0015, P6= 0.0416, P7=-0.6214 and pg=5.8933. 

The definitions of the gamma function r(b) and incomplete gamma function r(b,a) as used in 

chapter 4 are given in equations 4.A.1 and 4.A.2. 

00 

r (b) = J t b- 1 e -tdt 

o 

00 

r (b,a) = J t b- a e -t dt 

a 

(4.A.1) 

(4.A.2) 
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Chapter 5 

A SPATIAL MODEL OF FREQUENCY DISCRIMINATION 

IN ACOUSTIC HEARING 

The results in this chapter have previously been published: Hanekom, 1.1. 1999, "A model of frequency coding 

in the central auditory nervous system", South African Journal of Communication Disorders, vol. 46, pp. 81-89. 

1 INTRODUCTION 

A sound stimulus received by the peripheral auditory system is transformed to neural spike 

train activity in a population of auditory nerve fibres (called a spike train pattern). The 

auditory system varies a number of parameters of the neural spike train pattern to accurately 

represent a sound, e.g. average spike rate, spread of excitation over a specific subset of the 

neural population and synchronization of spikes to the stimulus waveform (Delgutte, 1996). 

This process of transformation of the original sound stimulus to an internal spike train pattern 

representation is called coding (Bialek, 1991) and the internal representation of a stimulus is 

referred to as the neural code for this stimulus (figure 5.1). Two mechanisms known to be 

involved in frequency coding in the auditory system are rate-place coding and phase lock 

coding (Delgutte, 1997; Moore and Sek, 1996). In rate-place coding, the auditory system may 

use the excitation pattern across the entire auditory nerve population to determine the stimulus 

frequency. Rate-place coding operates over the entire stimulus frequency range, but is 

dominant for the coding of high frequencies (above about 5000 Hz) (Kim and Parham, 1991; 

Moore, 1973). Phase lock coding, i.e. synchronization of neural firing rate to individual cycles 

of a periodic stimulus, is the primary cue used for determination of the frequency of a pure 

tone at low frequencies. Phase locking is progressively lost as stimulus frequency increases 

above about 2500 Hz (Delgutte, 1996), although there is evidence that temporal information 

may be useful up to at least 10000 Hz (Heinz et aI., 2001). Both coding mechanisms probably 
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operate in parallel over a large range of frequencies, but it is not clear yet to which extent the 

central auditory system uses either mechanism alone or both mechanisms simultaneously in 

the determination of the frequency of a pure tone (Johnson, 1980). It is however known that 

at increasingly higher auditory nerve centres more phase-locking is lost and the auditory 

system relies increasingly on rate-place codes alone (Langner, 1992). 

Shofner and Sachs (1986), Kim et aI. (1990) and Kim et aI. (1991) studied spatial response 

profiles of the discharges of populations of auditory nerve fibres. A "spatial response profile" 

or "rate response profile" is simply the spatial distribution of neural responses (average neural 

firing rates) to single tone stimuli along the length of the cochlea. An earlier study by Kim and 

Molnar (1979) indicated that the rate response profiles become very broad and exhibit very 

little tuning at all but very low stimulation intensities (20 dB SPL). However, they did not 

clearly distinguish between low spontaneous rate and high spontaneous rate fibres in their 

study. Low spontaneous rate (SR) fibres have wider dynamic range (Shofner and Sachs, 1986) 

and are more likely candidates for rate coding. Shofner and Sachs studied specifically the rate 

response profiles at low frequency for very low SR fibres (fibres with SR < one spike per 

second). These fibres account for about 15% of the afferent auditory nerve population. 

Shofner and Sachs found that the rate response profiles for these fibres exhibit clear peaks at 

the stimulation frequency (1500 Hz in their experiments) over a wide range of sound pressure 

levels (in their experiments, from 34 dB SPL to 87 dB SPL). Kim et aI. (1990) observed the 

same effect with a 1000 Hz stimulus. These studies suggested that the rate-place code operates 

not only at high frequencies, but also over a wide range of sound pressure levels at low 

frequencies. 

High SR fibres saturate at relatively low stimulation intensities (Kim et aI., 1990) and the peak 

in the excitation pattern at the stimulus frequency is quickly flattened as excitation begins to 

spread along the length of the cochlea at higher stimulation intensities. Spread of excitation 

is a cue for loudness (Smith, 1988) and it is therefore fair to assume (for the purposes of this 

chapter) that high SR fibres are primarily involved in intensity coding. Of course, low and 

high SR fibres are involved in coding of frequency via phase locking as well. However, this 

chapter focusses on rate coding only and so only low SR fibres are considered. 
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Figure 5.1. 

A spatial model offrequency discrimination in acoustic hearing 

Input: 
sound stimulus 

Encoder 
(peripheral auditory 
system from outer 

ear to cochlear level) 

Auditory nerve 

,~ 

Central decoder 
(central auditory nervous 

system from cochlear nucleus 
level to higher auditory centres) 

A simple model of the encoding of sound stimuli by the auditory system. 

The model presented in this chapter describes the encoding process 

(which primarily takes place in the cochlea) and the decoding process 

(which takes place in the central auditory nervous system at the cochlear 

nucleus level and higher). The encoder output is the sound stimulus 

encoded as a neural spike train pattern. 

The articles by Shofner and Sachs (1986), and Kim et al. (1990) established that a pure tone 

stimulus is represented in the rate code, but it is not actually known whether the rate 

information is utilized by the central auditory system for the extraction of frequency, and if 

so, how this is achieved. In other words, how does the central auditory system go about 

extracting a single frequency tone from about 28000 (Kim, 1984) nerve fibre spike trains? Of 

course, the auditory system does not have to extract the tone explicitly, i.e. there need not be 

an explicit representation of the tone somewhere in the central auditory system. By this it is 

meant that it is not necessary that the auditory system has a representation where (for 
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example) only a single neuron fires somewhere in the central auditory system when a 1000 

Hz tone at 60 dB SPL is heard. It is however known that pure tones are extracted and 

represented centrally in some form, as is demonstrated by (for example) the ability of subjects 

to discriminate between two frequencies and vocalize which was higher in pitch. 

This chapter presents a modelling study and proposes a mechanism for the extraction of 

frequency information from a population of nerve fibres. This model is phenomenological and 

does not reveal the complexity of the underlying biophysical processes. The intention of the 

model is to explain how a tone might be extracted from the activities of a population of nerve 

fibres (i.e. the tone is encoded by a population code), and this is achieved by demonstrating 

how we can account for psychophysically observed frequency discrimination difference 

limens or just noticeable frequency differences (jndfs or .LIf's). 

Mathematical detail of the numerical model is not included in the description in this chapter. 

The philosophy was to elucidate the principles behind the model rather than to obscure them 

with mathematical details of the implementation. 

2 POPULATION CODING 

In neural systems (including the auditory system), sensory information is represented in the 

activities of a population of nerve fibres. Population coding models have been studied before 

in a more general context of parameter coding by neurophysiological systems (Baldi and 

Heiligenberg, 1988; Shadlen and Newsome, 1994). In population coding systems, input 

sensory information (in this chapter, auditory information in the form of a single tone) is 

sampled by a limited number of receptors (the inner hair cells in this case). The receptors have 

rather wide tuning profiles which overlap considerably. For the tuning profiles of the 

receptors of the auditory system, see, for example, Kiang (1965) or Ruggero (1992). Because 

of the broadness of tuning, a large number of receptors will be activated by the stimulus. For 

example, if a listener hears a 1000 Hz pure tone, not only are the fibres that have a 

characteristic frequency (CF) of 1000 Hz activated, but so are many other fibres with CF in 
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the vicinity of 1000 Hz. However, the fibres with CF of 1000 Hz are maximally activated and 

fibres not tuned to 1000 Hz are activated less strongly. Because the tuning profiles are so wide 

(see, for example, Johnson (1980) or Kiang (1965)), even fibres an octave away from the 

stimulus may be activated, although weakly. 

By comparing the relative activity of all the different receptors, an internal picture may be 

formed by the central auditory system of the acoustic environment (i.e. the actual physical 

signal, the pure tone, in this chapter). Activities of fibres in the neural population are in the 

form of trains of action potentials, or spike trains. 

In the model described in this chapter, the viewpoint of an ideal central observer (Bialek, 

1991) is adopted. In other words, the central auditory system is imagined as being a central 

observer with no knowledge of the "outside world", except that which is reflected by the 

activity of the population of auditory nerve fibres. Each nerve fibre forms an information 

channel. 

The central observer is a conceptual model of all the signal processing that take place in the 

entire central auditory system. It has available an entire population of nerve fibres responding 

with different activities to the same stimulus. The reconstruction of the physical signal by the 

central observer can be much more precise than the spacing between adjoining receptors 

(Snippe and Koenderink, 1992). Just noticeable differences are typically smaller than the 

tuning widths of the individual receptors. 

In the human auditory system, the central observer receives its only image of the acoustic 

environment by observing spike trains from about 28000 afferent auditory nerve fibres (Kim, 

1984; Spoendlin and Schrott, 1989). From these 28000 spike trains, it has to somehow extract 

the single tone (or tone in noise) which is presented to the listener in a frequency 

discrimination experiment. 
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3 POINT PROCESS DESCRIPTION OF SPIKE TRAINS 

The spikes (or action potentials) of a neural spike train are all very similar in shape and size, 

but the information-bearing aspect of a spike train is the times of occurrence of the spikes. 

Furthermore, spikes are random in the sense that two identical presentations of the same 

stimulus do not lead to two identical spike trains. Spike trains may differ in the number of 

spikes in a given time period and in different times of occurrence of spikes. 

Spike trains can be described mathematically as point processes (Johnson, 1996). The theory 

of point processes describes the occurrence of isolated events (in this case, individual neural 

spikes) with the mathematical tools of probability theory and statistics. The point process 

description can provide a basis for mathematical analysis of coding of information in spike 

trains. The point process having the simplest structure is the Poisson process. Here a Poisson 

process is a train of spikes, such that the spikes have a Poisson distribution. The Poisson 

distribution is a mathematical function describing the probability of having exactly k spikes, 

placed at entirely random moments, in a time interval T. The Poisson process is characterized 

by the intensity parameter A. The number of spikes (k) in an interval T is random, so that the 

exact number of spikes in the interval T is not known when A is known. However, for larger 

values of A, a larger number of spikes are expected in the time interval T. The expected 

number of spikes in an interval T is AT. 

Nerve fibres respond to the stimulus by modulating their firing rates (Shadlen and Newsome, 

1994). Every nerve fibre shows an increase in discharge rate over a specific range of pure 

tone frequency, but the spikes are randomly spaced over the duration of the stimulus and 

repetitions of the same stimulus do not produce the same number of spikes. This suggests that 

the Poisson distribution provides an adequate description of the statistics of neural spike trains 

on the auditory nerve (Keidel et aI., 1983; Shadlen and Newsome, 1994). After the 

occurrence of a spike, there is a short period (the refractory period) during which the nerve 

fibre is unable to produce another spike. The Poisson process disregards refractory effects 

(Johnson and Swami, 1983) and is therefore not an entirely accurate model for neural spike 

trains. However, it was chosen for use in the model described in this chapter, as it is easy to 
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manipulate mathematically as it has only one parameter (the intensity or rate parameter, A). 

The rate parameter A gives an indication of the instantaneous rate of spikes, and even though 

spikes occur at random times, A can under certain conditions be estimated in a straightforward 

way by counting the number of spikes N in a time period T and by then dividing N by T, i.e. 

A * =N/T, where A * is an estimation or guess of the value of A. This equation is only a good 

estimate for the value of A in the case where it is known that A does not change during the 

time period T. 

The rate of the spike train, A, is the only parameter that the central observer needs to extract 

(Johnson, 1996) in order to have complete knowledge of the stimulus. However, any 

estimation of A will never be entirely accurate because of the random nature of the Poisson 

process. For example, if a time period of T seconds is observed, different numbers of spikes 

will be observed at each repetition of the same stimulus, although on average the number of 

spikes will equal AT. Thus, there will be variance in the spike count (as a result of the 

mathematical definition of a Poisson process, both the average spike rate and the variance 

equal A). 

The central observer has to expect any normal speech or sound pattern as input and has no 

way of "knowing" that it is presented with a single pure tone only in a frequency 

discrimination experiment. So the central observer cannot assume that the A-parameter 

remains constant for a specific neural channel; it has to assume that the spike rate is driven 

by the normal acoustic environment and thus that the A-parameter is constantly changing. 

The A-parameter is a function of the external acoustic signal set). This signal is in general 

random (consider for example a speech signal) and so the random spike train described by a 

Poisson process has a rate A driven by a random input signal. Such a process is called a 

doubly stochastic (i.e. doubly random) Poisson process. The task of the central observer in 

this general context is to estimate set) from the observed set of spike trains. In general, the 

estimation task of the central observer is extremely difficult. Although the central observer 

may assume a constant rate A and use A * =N/T, this will be an extremely poor estimation of 

the actual A. If, however, the statistics of the signal set) are known (for example, the average 

and the variance of set)), it is possible to obtain better estimators for set) and A. It is assumed 
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that the auditory system has prior knowledge of the mechanisms that generate signals that it 

receives. This prior knowledge may be summarized mathematically by a Markov process. A 

Markov process evolves with known transition probabilities between states. The states in this 

case are the possible frequencies of the pure tone input. The task of the estimator is to judge 

which state best represents the frequency of the pure tone input. When a large number of 

different input frequencies are equally likely, the task of the estimator becomes difficult and 

errors are made. The point of this discussion is that any estimator of A or of set), even the best 

estimator, will have variance in the estimation. The mathematical description of the Markov 

model used here is provided in Appendix 5.A. 

This variance leads to limitations in the discrimination performance of the auditory system 

(Delgutte, 1996), because, as should be obvious, two frequencies may be confused if the 

estimation variance is large enough that tone A might sometimes produce the same estimated 

spike rate A * as tone B. The theory of signal detection (Green and Swets, 1966) describes how 

estimation variance (which may be regarded as an internal noise source) and external 

environmental noise influence signal detectability and discriminability. 

The standard deviation in estimation (the square root of the variance) can be shown to be 

equivalent to the just noticeable difference Gnd) for the parameter estimated (Siebert, 1970), 

and this observation is used in the present model. For example, if the stimulus was a 100 Hz 

pure tone, and the central auditory nervous system estimated this frequency with a standard 

deviation of 1 Hz, the just noticeable difference in frequency will be 1 Hz. So the task of our 

model of the central observer will be to observe the spike trains on the population of nerve 

fibres and (l) to estimate from this the rate A of each neural channel and then (2) to combine 

this information to estimate the input frequency f Although the auditory system need not have 

any explicit representation of the extracted tone, it is fair to design the central observer of the 

model to indeed extract the tone explicitly. The standard deviation of the estimated value of 

f is then calculated and this is used as the value for the frequency discrimination jnd, Llf 
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4 MODELLING AND SIMULATION 

A suitable model must be able to predict documented psychophysically measured frequency 

discriminationjnds (Zwicker and Fastl, 1990; Sek and Moore, 1995; Moore, 1973). With an 

adequate number of neural channels, it is expected that the variance of the estimation should 

be reduced relative to an estimation of the tone frequency f made on the basis of a single nerve 

fibre spike train only. How many nerve fibres should be included in a population coding 

model and what should their extent be? For the model discussed here, the extent of the neural 

channels was restricted to one critical band. The critical band is a band of frequencies within 

which loudnesses of all constituent tones are integrated (Moore, 1997). It is assumed that 

frequencies within one critical band are processed as a unit by the auditory system. It is known 

that the critical band is dynamically shifted to be symmetrical around the tone (Zwicker and 

Fastl, 1990). By restricting the model to one critical band, the following model of the signal 

processing at the auditory periphery is implicitly assumed: namely that there is a preliminary 

coarse filtering of the input signal into critical bands, after which the auditory system 

performs a fine filtering process that extracts the frequency by decoding the population code 

in this critical band. 

There are around 3500 inner hair cells, which provide the primary source of afferent 

information to the central auditory system. A total of around 28000 afferent nerve fibres 

innervate these hair cells (Kim, 1984; Spoendlin and Schrott, 1989) so that each inner hair cell 

is innervated by about eight afferent nerve fibres. About 15% of these, i.e. around one nerve 

fibre per hair cell, have very low SR (Shofner and Sachs, 1986). As the model is restricted to 

these low SR nerve fibres, it will be assumed that only one or two nerve fibres per hair cell 

contribute to the rate-place coding of the input acoustic signal. 

By modelling one critical band, a range of around 150 hair cells (Zwicker and Fastl, 1990), 

spaced 9 Ilm apart, is considered, i.e. a total range of about 1.3 mm along the basilar 

membrane. So there are 150 channels of spike trains from which the central observer has to 

estimate the tone frequency f 
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Various techniques exist for combining the channels in a population coded model to decode 

the input signal (Bialek, 1991; Snippe and Koenderink, 1992; Pouget et aI., 1998), the most 

common of these being to find the centre of gravity of the activities of the population of nerve 

fibres (Snippe and Koenderink, 1992). This may be explained as follows. Suppose a pure 

tone stimulus/is presented to the auditory system model. Denote by Rn the "response" of the 

nth neuron in the auditory nerve population. The response may be the average spike rate of 

the neuron (for example) in response to the tone. Each neuron has a characteristic frequency 

In' the stimulus frequency to which its response Rn is maximal. In centre-of-gravity estimation, 

the estimator judges the relative likelihood of all possible stimulus frequencies by using the 

response Rn of neuron n to weigh the contribution of a frequency at /n to the received 

stimulus. For example, if the stimulus frequency was 100 Hz and neuron n had a characteristic 

frequency of 200 Hz, the response Rn would be lower than for a neuron with characteristic 

frequency of 100 Hz. Weighing is achieved by multiplying each characteristic frequency /" 

by the response Rn of the corresponding neuron. The centre of gravity estimate is then 

(5.1) 

n 

where/* is the estimate of/and the summations are over all the neurons in the auditory nerve 

population. It is not known how real neural systems combine information from populations 

of nerve fibres, but this is not important for the model discussed here. The present model has 

to combine the 150 channels in an optimal way, as we are interested in determining the 

optimal frequency discrimination capability of the auditory system, given the available 

information. Because we are dealing with random variables, information is combined from 

the population of nerve fibres by calculating the most probable input frequency / using 

arguments from probability theory. This estimate / * of the input tone frequency / is not 

necessarily the same as the estimate calculated by using the more common centre of gravity 

method. 
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5 METHODS 

The modelling process has two main steps (figure 5.3). In the first step, the activities of the 

population of 150 nerve fibres which the central observer receives are generated (i.e. the 150 

spike trains are generated). In the second step, the best estimatej* of the input tone frequency 

j is calculated from the 150 spike trains observed by the central observer. The estimator 

assumes that the pure tone frequency evolves according to a Markov process. The 

mathematical details can be found in Appendix 5.A. The discussion below is intended to 

elucidate the principles. 
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Figure 5.2. 

Model tuning curves (solid lines) superimposed on tuning curve data 

(circles) from Kiang et al. (1965). Tuning curves are for three nerve 

fibres with characteristic frequencies (439 Hz, 1328 Hz and 5289 Hz) close 

to the stimulation frequencies used in the model, as tuning curve data 

were available from Kiang (1965) for nerve fibres with these 

characteristic frequencies. Tuning curves were normalized by 

substracting the threshold at the characteristic frequency from all the 

data points on a curve. 

The equations describing the model were coded in Matlab 5.3. Simulations were run on a 

Pentium II personal computer under the Windows 95 operating system. 
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5.1 Step 1: Generation of auditory spike trains in response to a pure tone stimulus 

1. Low frequency tones (500 Hz, 1500 Hz) and a high frequency tone ( 5000 Hz) were used. 

The choice of the 1500 Hz frequency was guided by the availability of data for the population 

response profiles at this frequency (Shofner and Sachs, 1986). Stimuli were always presented 

at 60 dB SPL. This intensity was chosen to be well above discrimination threshold of low SR 

fibres (Shofner and Sachs, 1986) to ensure that the peaks in the population response profiles 

were well-defined and because of the availability of data measured at intensities in this 

vicinity (Shofner and Sachs, 1986). 

2. The input tones were passed through a set of 150 filters which approximated isorate tuning 

curves measured for auditory nerve fibres (Kiang et aI., 1965). The isorate contours in figure 

5.2 are plots of the intensity required at each frequency to achieve a given firing rate 20% 

above the spontaneous spike rate. The figure shows three representative isorate contours 

(plotted from data from Kiang et aI., 1965) for nerve fibres with characteristic frequencies 

close to the pure tone input frequencies used in the model. The tuning curves of three model 

nerve fibres are superimposed on the data. The output of each of the filters was a single value 

for the average firing rate, A, of the particular nerve fibre when the input was one of the three 

tones. The 150 filters were all placed within a range of one critical band, arranged 

symmetrically around the input tone. Table 5.1 provides information about the range of 

frequencies for these filters. 

Table 5.1. Ranges of critical bands around the input tones used in the model. 

Input tone Range of filters which react Number of Physical spacing of 

to the input tone (1 critical filters in this filters along the cochlea 

band) range 

500Hz 450 - 570 Hz 150 911m 

1500 Hz 1350 - 1650 Hz 150 911m 

5000 Hz 4500 - 5500 Hz 150 91lm 
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3. With the activities of each nerve fibre in the neural population known, spike trains were 

then generated for a 200 ms interval for all the fibres in the population. The spike trains were 

series of spikes occurring at random times according to a Poisson-distribution with rate 

parameter A. 

ENCODER 

Input tone 
Frequency: f 
Duration: T 

r---------------- ----------------
N cochlear filters 

spread over one critical 
band 

Average rate generator 
Compressive nonlinearity 

(spike rate saturation) 

Poisson-distributed spike 
train generator 

(spike train i has Poisson intensity Ai) 

DECODER r-------
Optimal estimator for 

Poisson intensity 
of each s ike train i of N s ike trains 

Population code decoder 
Optimal combination of 
N estimated intensities 

Frequency jnd determination 
Calculate standard deviation 

of • over interval T 

Figure 5.3. 

Schematic diagram of the neural 

encoding and decoding operations 

implemented in the model. The 

encoder encodes stimulus parameters 

(in this case, frequency) in the spike 

train pattern. The cochlear filters are 

used to calculate activities of a neural 

population of N nerve fibres (centred 

approximately at the input tone 

frequency) in response to the input 

tone. The amount of activation of each 

cochlear filter is then used to calculate 

the appropriate average spike rate for 

each fibre, using parameters for low 

spontaneous rate fibres and taking 

spike rate saturation into account. 

The N spike trains now carry the 

neural code for the input frequency. 

The spike rate (Poisson process 

intensity) is estimated separately for 

AI each spike train. These estimations 

are then combined to provide an estimate for the input frequency. The frequency jnd Llj 

is determined by equating it to the standard deviation in estimated frequency over the 

duration of the stimulus. 
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5.2 Step 2: Estimation of the input by a central observer 

1. The first calculation that the central observer had to perform, was to find an estimation A * 

of the rate A on each neural channel. This calculation is in general quite complex as explained 

previously. A non-linear estimator that assumed a Markov model for the process that 

generates the pure tone input frequencies was used. The rate estimator in the central observer 

had 150 inputs (the spike trains from the neural population) and 150 outputs (the estimated 

value A * on each channel). 

2. The second calculation was to combine the outputs from the 150 neural channels to form 

a single estimate f * of the frequency f of the input tone. This was done in an optimal way as 

explained before. This estimate varies over the period of 200 ms of signal presentation. The 

standard deviation of this signal was calculated and this value was used as an approximation 

to the value of the frequency discrimination jnd Llf at the specific input frequency f 

6 RESULTS 

A typical nerve fibre spike train as simulated is shown in figure 5.4(a). The output A * of one 

channel of the estimator is shown in figure 5.4(b). The estimator had to estimate the value of 

A, but as can be seen from the figure, this is a quite difficult task and relatively large 

estimation errors are made. 

Figure 5.5 shows a typical estimate of the input frequency as a function of time of a 500 Hz 

tone of 200 ms duration. This is the frequency estimate after combination of the spike rate 
I 

estimates of each spike train. Only a small fragment of the frequency axis is shown. The 

variance in estimation of the frequency of the tone over the 200 ms period can be seen clearly. 

Fortunately the input tone is coded by a multiplicity of nerve fibres, and the variance of the 

collective estimation of the tone frequency is far smaller than what would have been expected 

from figure 5.4 for one nerve fibre alone. 
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Relative frequency discrimination jnds (iJj/j) for humans as measured by Sek and Moore 

(1995) and Moore (1973) (solid lines) are compared to the predictions from the model 

(markers) in figure 5.6. Clearly, although the task of the central observer seems very difficult 

(figure 5.4), the population code is quite effective in representing information about the 

frequency of a single tone. As was observed by Siebert (1970), we see here as well that, given 

enough channels in the population code, the ideal central observer does better than human 
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Figure 5.4. 

A typical nerve fibre spike train as simulated is shown in (a). The 

frequency of the tone was 1500 Hz and the characteristic frequency of the 

nerve was 1503 Hz. The average rate A was 125 spikes/second. The output 

A * of one channel of the estimator is shown in (b). The tone was presented 

for 200 ms. 
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observers in psychoacoustic frequency discrimination experiments. This is true when one or 

two low SR nerve fibres per hair cell were used and where it was assumed that the other nerve 

fibres do not contribute to frequency discrimination. When there is less than one low SR nerve 

fibre per hair cell, the central observer does not have enough information and fares worse than 

the human observer data of Moore (1973). 
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Figure 5.5. 

o 50 100 150 200 

Time (ms) 

Estimated frequency as a function of time for a 5000 Hz pure tone input 

of 200 ms duration. Only a small fragment of the frequency axis is shown 

to show the variance in estimation of the frequency of the tone clearly. 

The standard deviation is 13.3 Hz. 
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Figure 5.6. 

Just noticeable difference in frequency (jndf or Llj) is normalized by 

frequency (Llflf) and plotted as a function of frequency. Human frequency 

Llflf data (dotted lines) as measured by Sek and Moore (1995) (X) and 

Moore (1973) (*) are shown. The filled squares are the Llflf values 

predicted by the model when a population of 150 nerve fibres is used. 

Filled circles are for 300 fibres, open squares for 75 fibres and open 

circles for 30 fibres. The datapoints for 75 fibres and 30 fibres coincide at 

500 Hz. In all cases the population of nerve fibres was spread over a range 

of one critical band around the tone. Predictions for Llflf obtained by 

Heinz et ale are also shown (triangles). 
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7 DISCUSSION 

7.1 Characteristics of the model 

The central observer in the model presented here is a single black box that models all the 

signal processing tasks of the central auditory system from the input of the auditory nerve 

signals right through to the final decision that the listener has to make in a typical two

alternative forced-choice psychoacoustical experiment. This model has a number of strengths, 

but also several shortcomings. 

The trends in the predicted frequency discrimination just noticeable differences are correct. 

As frequency rises, the relative Llf's also rise. For a model with 150 nerve fibres representing 

the tone in a population code, the model predicts values for frequency discrimination jnds 

close to the data of Moore (1973) at lower frequencies. Furthermore, when human nerve fibre 

density is taken into account (Spoendlin and Schrott, 1989), around 200 low SR nerve fibres 

are expected in a critical band centred at 500 Hz, 300 fibres at 1500 Hz and 150 fibres at 500 

Hz. A curve plotted through the relevant datapoints in figure 5.6 (the square at 500 Hz, the 

circle at 1500 Hz and the square at 5000 Hz) has a bowl shape similar to human frequency 

Llflf data. 

It has to be taken into account that the choice of various model parameters influences the 

ability of the population code to present tonal information accurately. We completely ignored 

the role of the outer hair cells and also the role that the cochlear nucleus plays in sharpening 

tuning curves (Kim et aI., 1991). Also, we assumed that high SR fibres do not contribute to 

the rate-place code. If they did, the predicted frequency discrimination jnds would decrease. 

Furthermore, the role of phase-locking in coding the identity of a single tone was ignored in 

the present model. But phase-locking is ubiquitous in the peripheral auditory system and 

probably plays an important role in the coding of frequency. It was not the purpose of this 

chapter to prove the opposite, but rather to indicate how the rate-place code may be 

interpreted. If the central observer uses phase-locking information as well, listeners should 
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in theory be able to perform far better on frequency discrimination tasks than what has been 

observed in psychoacoustical experiments. This was also observed by Siebert (1970). 

The approach followed by Heinz et al. (2001) is related to the approach described in this 

chapter in that both have a physiologically based computational model that provides the input 

to an optimal estimator. The primary difference between the approaches is that Heinz et al. 

use statistical estimation theory to calculate performance bounds, while the model in this 

chapter and in chapter 6 generates nonhomogeneous Poissonian spike trains. These spike 

trains are then used as input to an implementation of an optimal estimation mechanism. This 

is closer to reality and closer to identifying the underlying signal processing than the 

approaches followed in many other models. 

The Heinz et al. model shows that rate-place information can predict the absolute values of 

human performance, but not the trend. Their analysis shows that rate-place information fails 

to predict human deterioration in frequency discrimination thresholds at high frequencies 

(figure 5.6). However, the frequency discrimination thresholds predicted by the rate-place 

model described in this chapter does show a trend of deterioration toward higher frequencies. 

The input to the central estimator in this model always is a set of 150 spike trains with 

maximum spike rate of 200 spike/s, irrespective of which critical band is the source. If the 

width of the critical band (which determines the frequency resolution if there are 150 model 

inputs per critical band) was the only factor that determined frequency discrimination 

thresholds, relative frequency discrimination thresholds (iJj/j) would not increase with 

frequency. Deterioration of frequency discrimination at higher frequencies may be ascribed 

to differences in the rate response profiles at different frequencies. 

7.2 Hair cell loss 

Apart from indicating that the assumption of more nerve fibres contributing to the rate-place 

code leads to better frequency resolution, figure 5.6 can also be interpreted as showing the 

effect of hair cell loss. With a smaller number of available hair cells, the model leads us to 

expect that frequency discrimination jnds will rise. 
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8 CONCLUSIONS 

Siebert (1970) predicted the best achievable frequency jnd by other methods, but did not 

indicate which signal processing the auditory system requires to do to achieve this 

discrimination threshold. The model presented in this chapter proposes a mechanism for the 

signal processing required for frequency discrimination. 

The model clearly shows (as was also remarked by Siebert, 1970), that the human observer 

does not make full use of all the information relevant to frequency which is available in the 

auditory nerve spike trains. The reasons for this are not clear. One possibility is that there are 

other sources of noise not taken into account in this model. It is concluded from the model 

that the rate-place code alone is adequate to account for frequency discrimination behaviour 

in humans. 

The model employed an internal model for the process that generates pure tone input 

frequencies. This internal model takes the form of a Markov model in this chapter. It is shown 

that the model is able to predict the magnitude of frequency discrimination data for acoustic 

stimulation, and that some of the trends in the data can also be predicted. 
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APPENDIX S.A 

OPTIMAL ESTIMATOR FOR THE INPUT FREQUENCY 

This appendix briefly describes the optimal nonlinear estimator that was used to estimate the 

rate parameter A of a Poissonian spike train that evolves as a Markov process. It is assumed 

that a specific pure tone that a listener hears is the output of one state of a Markov process. 

This assumption is made, as it simplifies the design of an optimal estimator. 

It is further assumed that a listener can discriminate a limited number of pure tones in a critical 

band. This number is taken as 150, the number of hair cells in a critical band (Zwicker and 

Fastl, 1990). The underlying assumption is that a physical spacing of one hair cell represents 

the auditory frequency resolution limit (see Zwicker and Fastl, 1990). For example, for the 

critical band ranging from 450 Hz to 570 Hz (table 5.1), the lower bound for frequency 

discrimination threshold should be 0.8 Hz. For the critical band around 5000 Hz, frequency 

discrimination thresholds should be larger than about 6.7 Hz, which is true (Moore, 1973; Sek 

and Moore, 1995). 

The task of the optimal estimator is to observe 150 spike trains and then to estimate the state 

of a Markov process with 150 states. The estimated state then corresponds with the estimate 

of the pure tone frequency. 

A continuous-time Markov process evolves according to the Kolmogorov equation (Ross, 

1983), 

(5.A.1) 

where Pk is the probability that the Markov process is in state k at time t. The instantaneous 

rate of jumps from state i to state j is qik' and the rate of jumps out of state k is qk' 

This equation can be rewritten for a Poisson point process (Rudemo, 1972) as 
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dpit) = -qkPit) + L plt)qik - [Ak - l(t)] Pk(t) , 
i~k 

(S.A.2) 

where 

(S.A.3) 

In these equations, Ak is the Poisson rate parameter (the spike rate) in state k, i\ is the estimate 

of the state at time t, and 1 is the estimate of the rate at time t. These equations have to be 

solved simultaneously and are valid between Poisson points (i.e. between spikes). When a spike 

occurs, the probability of being within state k at time t+ (directly after the spike) is given by 

(S.AA) 

The system of equations defined in equations S.A.2 and S.A.3 is quadratic. To solve these 

equations, Rudemo (1972) derives an associated linear system. The forward Kolmogorov 

equation in this linear system is 

(S.A.S) 

which may be written in matrix notation as 

(S.A.6) 

where Q is a matrix with elements 

The solution of S.A.6 is well known as 

p *(t) = p * (to) e Q(t - t~ , (S.A.7) 
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The probability of being within state k at time t is then 

(5.A.8) 

Equations 5.A.5 to 5.A.8 are valid between spikes. Equation 5.A.4 is used at the occurrence 

of a spike. 

Equations 5.A.3 to 5.A.8 can then be used recursively to obtain the time-varying estimated 

value of spike rate A(t) for each of the 150 spike train inputs. An example is shown in figure 

5.4. The estimated rates are then combined to obtain a single estimate of the state at time t. 

This is achieved through the Viterbi algorithm (Rabiner and luang, 1993). The Viterbi 

algorithm uses the .t k (t) as noisy observations of the underlying (hidden) Markov state to find 

the most probable sequence of hidden states. The algorithm is well known and is not repeated 

here. See Rabiner and luang (1993) for details on the algorithm. 

The time-varying estimate of the state is then used to find the (time-varying) estimate of the 

input pure tone frequency. This is a simple matter, as each critical band has 150 states, which 

are for simplicity assumed to be linearly spaced (although cochlear filter arrangement is based 

on Greenwood's (1990) frequency-position function). Finally, the frequency discrimination 

threshold is assumed to equate the standard deviation in the calculated frequency estimate as 

explained in the text. 
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Chapter 6 

A TEMPORAL MODEL OF FREQUENCY DISCRIMINATION 

IN ACOUSTIC HEARING 

The results in this chapter have previously been published: Hanekom, J.J. & Kruger, J.J. 2001, "A model of 

frequency discrimination with optimal processing of auditory nerve spike intervals", Hearing Research, vol 

.151 no. 1-2,pp. 188-204. 

1 INTRODUCTION 

Two mechanisms are hypothesized to be involved in the coding of frequency in the auditory 

system: rate-place coding and phase-lock coding (Dye and Hafter, 1980; Moore and Sek, 

1996; Delgutte, 1997; Moller, 1999). Rate-place coding is a spectral analysis mechanism 

whereby the auditory system may combine firing rate information from nerves originating 

from spatially restricted sections of the cochlea to determine the stimulus frequency. Phase

lock coding is a temporal mechanism, wherein the auditory system presumably uses the 

synchronization of neural discharges to individual cycles of periodic stimuli as the primary 

cue to determine the frequency of a pure tone. 

Rate-place coding operates over the entire stimulus frequency range, but is usually presumed 

to be dominant for the coding of high frequencies (above about 5000 Hz) (Moore, 1973; Kim 

and Parham, 1991). Phase-lock coding is usually presumed to operate primarily at lower 

frequencies, since phase-locking is progressively lost as stimulus frequency increases above 

about 2500 Hz (Delgutte, 1996). No phase-locking is observed above 5000 Hz (Rose et aI., 

1968; Johnson, 1980). It is possible that both coding mechanisms operate in parallel over a 

large range of frequencies, but it is not known yet to which extent the central auditory system 

uses either mechanism alone or both mechanisms simultaneously to determine the frequency 
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of a pure tone (Dye and Hafter, 1980; Johnson, 1980; Moller, 1999) and there are possibly 

also inter-species differences in the frequency ranges in which the two mechanisms operate 

(Hienz et aI., 1993). 

One motivation for the study of the mechanism used by the central auditory nervous system 

to code frequency is that understanding the mechanism will influence the stimulation 

strategies used in cochlear implant speech processors. It is important to know what 

information transmitted to the electrically stimulated cochlear nerve is perceptually important. 

Two strategies used in current cochlear implant systems reflect two different approaches. In 

the Spectral Peak (SPEAK) strategy (Skinner et aI., 1994; Loizou, 1999), which is based on 

the rate-place mechanism, spectral peaks are extracted and presented to electrodes that are 

arranged tonotopically. In contrast, the Continuous Interleaved Sampling (CIS) strategy 

(Wilson et aI., 1991; Loizou, 1999) uses high pulse-rate stimulation to conserve temporal 

waveform information. 

Several models exist to explain psychoacoustic frequency difference limens (Llf's). These 

models are based on either the extraction of frequency directly from one or more neural spike 

trains (i.e. a temporal approach) (Goldstein and Srulovicz, 1977; Javel and Mott, 1988) or the 

rate-place code (Javel and Mott, 1988), or both mechanisms simultaneously (Siebert, 1970), 

which includes template matching models (Srulovicz and Goldstein 1983; Erell, 1988). All 

these models were based on available neurophysiological data (mostly from cat) and were 

intended to explain psychoacoustic data from neurophysiological data. 

Plausible models should account for the absolute values of the ..df IS and explain the origin 

of the bowl shape of the curve of the Weber fraction (..dflf) plotted as a function of frequency 

(e.g. Moore, 1973; Moore, 1993; Sek and Moore, 1995), without the need to manipulate many 

free parameters to fit the psychoacoustic data. Moreover, Dye and Hafter (1980) have shown 

that for pure tone frequencies in noise at constant signal to noise ratios, Llf grows larger with 

increased signal intensity for frequencies below 2000 Hz, while for higher frequencies Llf 

becomes smaller. 
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A listener's ability to discriminate between two signals is limited by neural noise, i.e. the 

Poissonian nature of the neural spike train (Siebert, 1970; Colburn, 1973; Johnson, 1996). 

Siebert was first to propose the notion that the difference limen in a discrimination task (e.g. 

frequency or intensity discrimination) is equal to the standard deviation in estimating the 

magnitude of the stimulus variable (e.g. frequency or intensity). The implication is that 

estimators may be designed to extract a stimulus variable from its neurally encoded form. The 

difference limen can then be evaluated by applying known bounds on estimation variance or 

by calculating estimation variance. The Cramer-Rao Lower Bound (CRLB) (Kay, 1993) 

provides one such lower bound on the estimation variance of any estimator intended to 

estimate the magnitude of a stimulus variable, but it does not provide clues to the structure 

of the optimal estimator. Many authors (e.g. Siebert, 1970, Goldstein and Srulovicz, 1977, 

Srulovicz and Goldstein, 1983, Wakefield and Nelson, 1985 and Erell, 1988) have used this 

bound to calculate difference limens for various discrimination tasks. Thus, one shortcoming 

of many existing models is that they do not provide a neural mechanism by which the central 

auditory nervous system could implement the psychoacoustic task. 

One conclusion from Siebert's work (1970) was that, using all the temporal information 

available in the set of spike trains of the entire auditory nerve population, the auditory system 

should be able to perform much better on frequency discrimination tasks than what is actually 

observed in psychoacoustic experiments. Goldstein and Srulovicz (1977) proposed a temporal 

model of frequency discrimination wherein frequency is encoded in inter-spike intervals only. 

They demonstrated that with the combination of a small number of fibers, sufficient 

information is available to account for perceptually measured frequency discrimination 

thresholds. Although their model provides acceptable predictions for both absolute magnitude 

of Llf and the shape of the curve of Weber fraction (Llflf) as a function frequency, Goldstein 

and Srulovicz did not consider the effect of intensity of stimulation on frequency 

discriminati on. 

An extension of their 1977 model (Srulovicz and Goldstein, 1983) accounts for a wider range 

of psychoacoustic phenomena. The more complex extended model is a template matching 

model including both temporal and rate-place cues. They concluded that phase-lock coding 
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is a more likely mechanism than rate-place coding for the frequency discrimination task. 

Wakefield and Nelson (1985) extended the temporal model of Goldstein and Srulovicz (1977) 

to include intensity effects. Erell (1988) built on the template matching approach to create a 

rate-place model that could account for frequency discrimination data in noise. 

A recent model by Heinz et al. (200 1) provides an important extension to the work of 

Goldstein and Srulovicz (1977) and Siebert (1970). This model combines computational 

auditory modelling and theoretical calculation of performance limits predicted by signal 

detection theory. A physiologically based computational model that can process an arbitrary 

stimulus is used to produce a time-varying discharge rate. This discharge rate is then used to 

calculate the CRLB or is used in a likelihood ratio test to calculate performance bounds for 

two situations. Frequency discrimination performance is predicted when all information in the 

spike trains are used, and when only rate-place information is used. 

Several noteworthy findings emerged from the Heinz et al. (200 1) study. First, optimal 

processing of rate-place information can predict the absolute values of frequency 

discrimination data, but not the trends. Rate-place predictions are especially poor at high 

frequencies, where the deterioration in human performance is not predicted. Second, 

performance predicted by using all available information (in the spike trains of all fibres) 

shows trends similar to that found in human listeners, although a discrepancy of two orders 

of magnitude exists. Third, the deterioration in human performance at high frequencies is 

predicted accurately when using all available information. As phase-locking is lost above 

5000 Hz, it is usually assumed that rate-place information is responsible for high frequency 

behaviour, but Heinz et al. interpreted these results as suggesting that adequate temporal 

information to account for human frequency discrimination data is available up to at least 

10000 Hz. 

All of these models use statistical optimal processing arguments via the CRLB to arrive at 

closed form expressions for frequency discrimination thresholds. The CRLB gives the 

variance of the minimum variance unbiased estimator and holds for classical estimation 

problems, i.e. where the parameter to be estimated is unknown, but constant (Kay, 1993). 
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When the parameters are allowed to vary according to a known probability density function 

(pdf), Bayesian estimation approaches may provide better estimators as a priori knowledge 

is built into the estimator. The Bayesian estimation approach is used in this chapter. 

Recent neurophysiological data measured by McKinney and Delgutte (1999) provide evidence 

in favour of an inter-spike interval based extraction of pitch or frequency estimation for pure 

tones. Their data show that low-order modes of inter-spike interval histograms (lSI histograms) 

are consistently offset from multiples of the stimulus period. Using this observation, they could 

predict the octave enlargement effect. The octave enlargement effect is the observation that 

listeners judge an octave as slightly larger than a 2: 1 frequency ratio. 

Based on the success of the simple inter-spike interval based model of Goldstein and 

Srulovicz (1977) in predicting the shape and magnitude of frequency discrimination 

thresholds, and motivated by the objective to construct a simple, but optimal frequency 

estimation mechanism that can account for psychoacoustic frequency discrimination 

thresholds, a new model for frequency discrimination is presented in this chapter. The 

objectives with this model are: 

(1) to extend the well-known model of Goldstein and Srulovicz (1977) to account for 

intensity dependence and stimulus duration dependence of the frequency 

discrimination thresholds. The extension is similar to that of Wakefield and Nelson 

(1985), but we approdch the problem from the viewpoint of providing an 

implementation of the frequency estimation mechanism, whereas Wakefield and 

Nelson used the statistical approach described earlier; 

(2) to provide a simple descriptive model of the statistics of phase-locking; 

(3) to construct a central estimation mechanism based on this simple model, by which 

frequency information can be extracted from one or more neural spike trains; 

(4) to demonstrate the role of spatiotemporal integration (Bruce, Irlicht and Clark, 1998) 

or the volley principle (Wever, 1949) in frequency discrimination; 

(5) to demonstrate the role of an internal model in frequency discrimination. 

Of course, the auditory system does not have to extract the frequency of a tone explicitly, i.e. 
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there need not be an explicit representation of the tone somewhere in the central auditory 

nervous system. This paper does not present any hypotheses about the central representation 

of pure tones. 

Also, the auditory system does not necessarily perform its operations in an optimal way. Even 

though the objective in the present paper is to describe a possible structure for an optimal 

frequency estimation mechanism, the emphasis is on the interpretation of the frequency 

discrimination performance of such an estimator and the factors affecting performance, rather 

than on suggesting that such a structure exists in the central auditory nervous system. 

2 METHODS 

2.1 Structure of an optimal processor 

Goldstein and Srulovicz (1977) and Wakefield and Nelson (1985) modelled the spike train 

as a non-homogeneous Poisson process (Johnson, 1996) with the rate parameter being driven 

by a pure tone. The instantaneous spike rate ret) is given by 

ret) = aekG(f,A)cos(2rcjt) , (6.1) 

which is similar to the equations used by Colburn (1973) and Srulovicz and Goldstein (1983). 

f is the stimulus frequency and t is time in this equation. The product factor k G(f,A) is a 

synchrony parameter that depends on the degree of phase-locking to the stimulus. G(f,A) is 

the synchronization index that has been defined by Johnson (1980). The synchronization index 

may take on values between one (all spikes occur on the same phase of the stimulus cycle) and 

zero (when there is no preferred phase for spikes), although the maximum value of G(f,A) is 

0.85 in the current model to fit Johnson's data. Scaling factors a and k are required to fit 

equation 6.1 to measured values of the instantaneous spike rate (Colburn, 1973). The choice 

k = 7.5 is used in the current model, so that the synchrony parameter k G(f,A) has a maximum 

value of 6.4. This is close to the maximum synchrony value of 6.5 in Srulovicz and Goldstein 

(1983) and Wakefield and Nelson (1985). 
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The inter-spike interval distribution of a Poissonian spike train is exponential, and the exact 

form for this pdf is given in Goldstein and Srulovicz (1977) and in Wakefield and Nelson 

(1985). With the pdf known, the CRLB can be used to calculate the variance in estimation 

of the optimal estimator. By modelling the inter-spike intervals differently, constructing an 

optimal estimator for this problem is possible. Phase-locking is the tendency of the spikes to 

cluster around multiples of the stimulus period at a preferred phase. It is assumed that these 

clusters have Gaussian distributions (Javel and Mott, 1988) of which the variance depends on 

the amount of phase-locking. Perfect phase-locking occurs when spikes always occur at the 

same phase and when spikes are also entrained to the stimulus (i.e. spikes occur at each 

stimulus cycle), it is very simple to calculate the stimulus frequency perfectly. Thus the 

distribution of the spikes around the preferred stimulus phase is a source of noise. 

Measurements of inter-spike intervals used to estimate frequency are just noisy measurements 

of the actual period of the stimulus waveform. The problem is similar to the task of estimating 

the value of a dc signal embedded in noise, except that successive samples (each measured 

inter-spike interval is one sample) are correlated pairwise, as will be explained. This problem 

can be solved optimally with a Kalman filter (Kalman, 1960; Kay, 1993; Mendel, 1995). 

Thus, under these circumstances, the structure of the optimal estimator is known. 

2.2 Model of phase-locking 

At high stimulation intensities, for fibres with characteristic frequency (CF) at or close to the 

stimulus frequency, spikes may occur on each stimulus cycle for low frequencies (lower than 

about 1000 Hz), although this is usually not the case and cycles are often missed (Rose et aI., 

1968). Spikes can be very scarce at low intensities or when the stimulus frequency is far from 

the CF of a fibre. Two requirements for creating a realistic model of phase-locking are that 

(1) spikes should cluster around a specific phase of the stimulus cycle, and (2) the model 

should allow for cycles in which no spikes occur. Thus, the expected number of spikes in an 

interval should depend on the stimulus intensity and the closeness of the stimulus frequency 

to the fibre CF. Many complexities of neuronal responses to sound are not explicitly taken 

into account in this model. More than one firing per stimulus cycle is often observed at low 
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frequencies (below about 200 Hz) (Rose et aI., 1968). This results in an additional skewed 

distribution in the lSI histogram, which occurs before the mode at the period of the stimulus. 

The shapes of the modes of the lSI histogram may be non-Gaussian or skewed, especially at 

low frequencies (Rose et aI., 1968). The influence of these idealizations is discussed below. 

Accomodation is not taken into account. 

In the current model, neural spike trains are produced by a spike generator. The number of 

spikes in an interval follows a Poisson distribution, with the average spike rate determined by 

the amount of activation at a specific cochlear place as a result of the stimulus. The average 

spike rate is determined by a model of peripheral auditory filtering (Colburn, 1973; Goldstein 

and Srulovicz, 1983). While the actual number of stimulus cycles receiving spikes is calculated 

according to a Poisson distribution, this does not mean that the spikes are Poisson-distributed. 

Only the number of spikes in an interval is calculated according to a Poisson distribution and 

the spike generator then randomly (with a uniform distribution) places spikes on the correct 

number of stimulus cycles, clustered at a preferred phase. The distribution of spikes is 

Gaussian with standard deviation 

(J = {k _1 arccos (_G-,=,-(f,_,A--,-)_-_1 1_2) 
n 21t/ G(f,A)' (6.2) 

where G(f,A) is the synchronization index, k is the scaling factor as explained before, and f 

is the stimulus frequency. Equation 6.2 was derived from equation 6.1 by equating the value 

of a Gaussian distribution at one standard deviation to ret), solving for t and equating this t 

to an (Appendix 6.A). The factor"[ k is required to rescale an to appropriate values and would 

not have been required if the scale factor k was not used in equation 6.1. Figure 6.1 shows an 

as a function of frequency together with data from lavel and Mott (1988). This standard 

deviation in spike position grows from below 20% of the period of the pure tone stimulus at 

low frequencies to 35% at 5000 Hz. (Typical spike trains for pure tone stimuli of 1000 Hz and 

5000 Hz are shown in figure 6.4). 
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Figure 6.1. 

Standard deviation an of spike clusters around the preferred stimulus 

phase (solid line) as calculated from equation 6.2 is shown together with 

data on the standard deviations of peaks of inter-spike interval 

histograms (filled circles) from Javel and Mott (1988). 

The synchronization index G(f,A) is a function of both frequency and intensity. G(f,A) may 

be written as the product of two factors, G(f,A) = Gif) GiA), where A is intensity in dB SL 

andfis frequency in Hz. Gil) is given by 

G (j) = 0.85 
1 ~' 1+ -L 

3500 

(6.3) 

and GiA) is given by 

- 0.6 . (6.4) 

Equation 6.3 and equation 6.4 are curve fits to typical values of synchronization index as a 

function of frequency and intensity respectively. In equation 6.4, K is a sensitivity constant 

which controls the threshold of the model fibre. H is a tuning constant that takes on a 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 163 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

>< 0.8 
(l) 

"C 
c: 
c: 0.6 0 

:;::. 
ro 
N 
'c 

0.4 e 
.c: 
0 
c: 
>-en 0.2 

• 
1 00 300 600 1 000 3000 6000 

Frequency (Hz) 

Figure 6.2. 

Synchronization index as a function of frequency. The solid curve was 

calculated from equation 6.3. Filled circles are data from Johnson (1980) 

and open circles are data from Javel and Mott (1988). 

maximum value of 1 when the model fibre has CF at the stimulus frequency. It is assumed 

that the auditory system uses fibres tuned to the stimulus for temporal estimates of the 

stimulus frequency, so that H=l in the current model. G(f,A) is shown in figure 6.2 as a 

function of frequency at maximum GiA), along with measurements of the synchronization 

index by two authors. G(f,A) is shown in figure 6.3 as a function of intensity at maximum 

Gil), along with neurophysiological data. 

2.3 Model of the pooling of spike trains 

It is assumed that the auditory system has a way in which to combine spike trains from a 

number of fibres to obtain a single spike train that has one spike per stimulus cycle. This 

assumption is an idealization and was made to obtain a simple Kalman filter model, as is 

explained below. This idea is essentially the same as the volley principle of Wever (1949). 

Javel (1990) speculated that the great redundancy in auditory nerve fibre innervation of the 

inner hair cells may exist to ensure that a spike occurs on every stimulus cycle. Superimposing 
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Figure 6.3. 

The synchronization index G(f,A) is shown as a function of intensity (solid 

curve) at a fixed frequency of 1000 Hz, using equation 6.4 with H=1 and 

K=0.0045. Data from Johnson (1980) is shown for a fibre with CF of 809 

Hz. Filled circles are for a pure tone stimulus at CF, while open circles 

are for a 1162 Hz stimulus. This fibre had a detectable synchronized 

response at -15 dB SPL, and this was used as the threshold value. 

a number of spike trains results in clusters of spikes, with cluster centers spaced 

approximately 1/j apart. If more spike trains are superimposed, estimates of the cluster 

centers become more accurate, resulting in more accurate estimates of the actual stimulus 

period. 

A very simple model of the combining of spike trains across fibres is proposed. The task of 

a pooling or integrating neuron is to recognize clusters of spikes and to generate a spike to 

"mark" each cluster. This may be achieved by an integrating neuron which fires when a 

number of incoming spikes arrive on its dendrites (as postsynaptic potentials) within a certain 

time window. This neuron model is part of the family of integrate-and-fire neuron models 

(e.g. Gabbiani and Koch, 1996). The model incorporates several idealizations as explained 

below. The model assumes that several auditory nerve fibres synapse with the dendrites of a 

single integrating neuron located in the cochlear nucleus (eN). 
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Typical values of postsynaptic potentials, refractory periods and membrane time constants 

were used in the integrate-and-fire neuron model. The membrane time constant T can be 

calculated from the membrane leakage resistance R and the membrane capacitance C as 

T=RC. These parameters vary across a wide range and are dependent on the function, location 

and size of the nerve fibre (Deutsch and Deutsch, 1993). Membrane time constants for onset 

units in the eN may be very short (Rhode and Greenberg, 1992). Values for Rand C from 

Rattay (1999) reduce to a membrane time constant of 1 00 ~s for myelinated auditory nerve 

fibres, while the membrane time constant for a motoneuron in cat may be 2 ms (Aidley, 

1998). A membrane time constant of 0.5 ms was chosen for the neuron model. 

The generation of postsynaptic potentials is a highly non-linear process. Non-linearities 

include that the post-synaptic potential is a function of the amplitude of the presynaptic action 

potential (Aidley, 1998) and that the amplitude of the dendritic potential reaching the soma 

is dependent on the travelling distance from the synapse to the soma and the number of 

dendrite branchings (Deutsch and Deutsch, 1993). The summation of postsynaptic potentials 

is also non-linear (Aidley, 1998). These non-linearities were ignored and the model assumed 

that dendritic potentials reaching the soma have the same amplitude and add linearly. 

Postsynaptic potentials of eN onset units are small with a maximum amplitude of 4 m V 

(Rhode and Greenberg, 1992). A value of 1 m V was used for the dendritic potential at the 

soma as the result of a single spike arriving at a presynaptic terminal. 

The absolute refractory period for cat auditory nerve fibres is no shorter than 0.5 ms, and is 

typically around 0.75 ms (Rose et aI., 1968; Gaumond, Molnar and Kim, 1982). A figure of 

0.5 ms for the refractory period is also consistent with the responses of fibres in the eN 

(Rhode and Greenberg, 1992). This refractory period corresponds to a maximum spike rate 

of 2000 spikes/s, which is higher than the spike rates that auditory nerve fibres are known to 

be able to sustain. Auditory nerve fibres may attain these high firing rates in the first 10 ms 

after a stimulus, after which the rate declines (Rattay, 1990). The model assumes an absolute 

refractory period of 0.5 ms, but does not incorporate a relative refractory period. 

The input to an integrating neuron in the eN is a number of postsinaptic potentials arriving 
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on its dendrites as a result of presynaptic spikes. The response properties of onset units in the 

CN are thought to be the result of convergence of several auditory nerve fibres (Rhode and 

Greenberg, 1992). The current model has 40 fibres converging onto the integrating neuron. 

Although phase-locked auditory nerve fibres do not necessarily fire at the same preferred 

phase, it is assumed here that the dendritic potentials arriving at the soma have approximately 

the same preferred phase (or that mean arrival times from different inputs do not differ too 

much). Synchronization may be achieved by variations in dendritic architecture and 

properties. Passive properties like dendrite branching patterns, dendrite length, and location 

of synapses are thought to support information processing operations (Koch, Poggio and 

Torre, 1982). Voltage-gated channels in dendrites (Cook and Johnston, 1999) may also play 

a role in supporting or counteracting synapse location-dependent properties of dendritic 

potential propagation. The fibre model used has less output spike jitter than input spike jitter, 

even for moderately different mean arrival times. This is consistent with the study of Marsalek 

et al (1997), who found that output jitter is less than input jitter under a wide range of 

conditions. 

Each input spike is represented by a dendritic potential of 1 m V at the soma that decays 

exponentially with the membrane time constant of 0.5 ms. A fixed fibre threshold is assumed 

10 mV above the resting potential (Johnston and Wu, 1995) and when the threshold is 

reached, the fibre generates a spike with probability one. During the absolute refractory period 

of 0.5 ms after the generation of a spike, the membrane potential decays according to its time 

constant of 0.5 ms and input spikes are ignored. 

Simulations with this model at 60 dB SPL showed that the spike train at the output of the 

integrating neuron has a Gaussian distribution around the preferred phase. The maximum 

firing frequency is around 2000 Hz for this model. Across the frequency range up to 2000 Hz, 

the model generates a spike train with exactly one spike per stimulus cycle on most cycles, 

but in some cycles two spikes occur and in others none. The probability of obtaining two or 

more consecutive stimulus cycles without spikes is less than 10% and cycles with more than 

two spikes did not occur in simulations. Simulations show that at 300 Hz, two or more 

consecutive stimulus cycles without spikes or two spikes per cycle occur for less than 2 % of 
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stimulus cycles. The probability of single cycles with no spikes is 20% at 300 Hz, 2% at 600 

Hz and below 1 % at 1000 and 2000 Hz, while no dual spikes occur at 600 Hz or above. 

These results suggest that it should be possible for the central auditory system to obtain spike 

trains which fire regularly on each stimulus cycle across a frequency range limited to a 

maximum of 1000-2000 Hz, with only a small percentage of cycles in which no spikes or dual 

spikes occur. Candidates for the function of pooling spike trains are the onset locker cells in 

the CN, which can fire once per stimulus cycle for frequencies up to 1100 Hz (Langner, 1992; 

Rhode and Greenberg, 1992). 

As will be shown, when the proposed model of spike train pooling was used to generate an 

input spike train for the proposed Kalman filter model, it was found that at low frequencies 

the standard deviation in estimation is much larger than for the condition of exactly one spike 

per stimulus cycle. The reason is simply that the state space model as formulated below only 

allows for the one spike per stimulus cycle condition. However, it is possible to formulate 

more complex Kalman filter models than the model proposed here to contend with missing 

spikes or dual spikes. As will be explained in the discussion, a more complex Kalman filter 

structure with more realistic spike train input will lead to the same conclusions than a simpler 

Kalman filter that has to contend with the idealized situation of exactly one spike per stimulus 

cycle. This idealization was used in the current model. As further motivation for using this 

assumption in subsequent calculations, we remark that a simplifying assumption like this is 

often made to circumvent extraneous issues that may obscure understanding of the primary 

signal processing task that the system being modelled has to perform. 

An additional motivation for not using the pooling model in subsequent calculations is that 

the model is constrained to frequencies below 2000 Hz. As phase-locking is known to operate 

up to 5000 Hz, it was assumed for modelling purposes that it is possible to obtain exactly one 

spike per stimulus cycle up to and beyond 5000 Hz. It must be emphasized that no known 

fibres can fire at this rate. Nonetheless, it is interesting to consider the Kalman filter model 

results at higher frequencies where phase-locking still operates. As elaborated later, the 
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Figure 6.4. 

Panels (a) and (c) show spike trains typical of those used as inputs to the 

Kalman filter for stimuli of 1000 Hz and 5000 Hz respectively. Note that 

different scales are used on the time axes. The time window is 25 cycles of 

the pure tone stimulus for both frequencies. One spike was generated per 

stimulus cycle. Spikes had a Gaussian distribution around a preferred 

phase of the stimulus. The standard deviation in spike position is 18 % of 

the period of the pure tone stimulus at 1000 Hz and 35% at 5000 Hz. 

Pooled spike trains from 15 fibres are shown in (b) and (d). Phase locking 

is evident in the pooled spike train for the 1000 Hz stimulus (b) but is 

difficult to see for the 5000 Hz stimulus (c) because of the large spike 

position jitter around the preferred phase. 

phase-lock code may be transformed directly into a rate-place code without the need for fibres 

firing at high rates. 
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To summarize, spike trains were not combined explicitly for the results presented in 

subsequent sections. It was assumed that one spike per stimulus cycle was available. 

Furthermore, improvement of estimates because of superposition was not taken into account, 

i.e. the spike standard deviation specified in equation 6.2 was used. Typical spike trains are 

shown in figure 6.4. 

2.4 Design of the optimal estimator 

When the simplifying assumption of one spike per stimulus cycle is used, the only difficulty 

in formulating the Kalman filter arises from the fact that the measurement noise is coloured, 

i.e. there is correlation between samples. This is demonstrated below. The state equations 

describing the system and measurement are: 

x(k+ 1) = ax(k) + bw(k) 

z(k+ 1) = x(k+ 1) + v(k+ 1) , 

(6.5) 

(6.6) 

where equation 6.5 is the system equation and equation 6.6 is the measurement equation. 

Here x(k) is the current inter-spike interval, x(k+ 1) is the next, and w(k) is the system noise. 

The system equation models the dynamics of the "signal" x(k). If we expect the inter-spike 

interval to remain constant, we may assume a=1 and b=O. z(k) is the noisy observation of the 

period x(k), with v(k) the measurement noise. 

The current inter-spike interval clearly depends on both the placement of the current spike and 

the previous spike: 

v(k) n(k) - n(k-l) , (6.7) 

where n(k) is the noise in the placement of the spike around the preferred stimulus phase. This 

is consistent with the neurophysiological data of McKinney and Delgutte (1999), which show 

a clear dependence between consecutive inter-spike intervals. The variance of n(k) is Gn
2

• 

Noise is correlated between consecutive samples, i.e. the value of v(k) depends on the value 
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of v(k-l). Correlated noise is dealt with by augmenting the system and measurement 

equations. v(k) is eliminated and the system and measurement equations are rewritten in terms 

of the noise n(k) of which the statistics are assumed to be known. If we let 

x1(k) = -n(k-l) , (6.8) 

the system equation can be rewritten as a set of two equations: 

[
X(k+ 1)] [a 0] [X(k)] [bw(k)] 
x1(k+ 1) = 0 0 x

1
(k) + -n(k) . (6.9) 

The measurement equation becomes 

z(k+ 1) [
X(k+ 1)] 

[1 1] xl(k+l) + n(k+l) . (6.10) 

Clearly, the system and measurement have correlated noise. With the augmented system and 

measurement equations having been obtained, the Kalman filtering equations are defined in 

the usual way to obtain recursive estimates for the period x(k). The Kalman filtering 

equations are well-known (Kay, 1993; Mendel, 1995) and are not repeated here. 

The Kalman filter is characterized by two parameters, the system noise aw
2 and the 

measurement noise a/. The choice of these parameters is based on physiological 

considerations as described below and the model then predicts frequency discrimination 

performance very close to perceptual performance. As will be explained later, other choices 

of these two parameters may lead to frequency discrimination performance far exceeding that 

observed in humans. 

2.5 Choice of Kalman filter parameters 

The measurement noise an 2 is simply the variance of the spike distribution around the 
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preferred phase of a stimulus cycle. The system noise aw
2 models the dynamics of the process 

that generates the stimulus. If the Kalman filter is optimized for a pure tone stimulus (a dc 

value), aw
2 may be set to zero. This, however, makes the Kalman filter slow to react to 

variations in stimulus frequency as the filter does not "expect" changes. Gap detection 

thresholds (Zhang and Salvi, 1990; Eddins and Green, 1995) provide a clue of how to choose 

more realistic values of aw
2

• The usual explanation of gap thresholds is that the gap is filled, 

perhaps by the ringing of a cochlear filter (Shailer and Moore, 1987), but gap thresholds are 

not determined by processing at the auditory periphery alone (Forrest and Formby, 1996). A 

central observer may not be the primary factor limiting gap detection performance, but at 

least, the Kalman filter tracking response should be faster than that shown by the neural 

response as determined by Zhang and Salvi (1990), or otherwise the central observer will 

introduce even longer gap thresholds. 

The variance of the frequency estimate depends on the system noise. A gap can be detected 

only when the frequency estimate (during the gap) changes by a value greater than the 

standard deviation aw' Variance aw
2 may be chosen as zero, but then the response of the filter 

is too slow and the filter response fills gaps longer than the 2 to 3 ms observed in humans 

(Eddins and Green, 1995). A tradeoff exists between frequency discrimination thresholds and 

gap detection thresholds. Larger system noise variance aw
2 will allow shorter gaps to be 

detected, but introduces more estimation variance, which leads to larger estimates for Llf, 

inconsistent with measurements. Simulations indicate values of aw
2 to the order of 10-12 to be 

consistent with both Llj measurements and gap detection thresholds. 

2.6 Simulations 

In simulations, inter-spike intervals were used as the noisy observations z(k) of the periodx(k) 

of the stimulus. These inter-spike intervals were used as input samples to the Kalman filter. 

Estimates were obtained for frequency by observing the spike train from a single fibre under 

the assumption that one spike per stimulus cycle was available. Spikes were placed according 

to a Gaussian distribution with standard deviation an , the standard deviation of the 

measurement noise n(k). 
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Llf was assumed to be equal to the standard deviation in the frequency estimate, following 

Siebert (1970) and several other authors after him. The standard deviation in the frequency 

estimate was obtained by repeating the pure tone stimulus of duration Tmany (typically 200) 

times and calculating the standard deviation of the frequency estimate at a specific time. This 

time was either at the end of the interval T or after 50 observations of z(k), as will be 

explained in the discussion. Values of Llf were obtained as a function of stimulus frequency, 

intensity and duration. 

3 RESULTS 

3.1 Llf/f as a function of frequency 

Figure 6.5 shows the normalized frequency difference limen (Llflf) as a function of frequency 

as predicted by the model. Parameters are indicated in the caption of the figure. Frequency 

discrimination data as measured by Sek and Moore (1995) are plotted on the same axes. The 

shapes of the two curves are very similar, and both reach minima at 500 Hz. The absolute 

values of iJflf as predicted by the model correspond well to measured values across the entire 

frequency range, except at 10000 Hz, where the model predicts frequency discrimination that 

is superior to the psychoacoustic data. 

3.2 Llf as a function of intensity 

Figure 6.6 shows the model predictions for iJf as a function of intensity A. For intensities 

below 30 dB SL, Llf decreases monotonically with increasing intensity. As intensity grows 

above 30 dB SL, the curves level off. For these simulations, it was assumed that the auditory 

system has access to one spike per stimulus cycle at all intensities down to threshold. Model 
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Figure 6.5. 

Values of the frequency difference limen L1f expressed as a proportion of 

frequency (L1flf) are plotted as a function of the frequency of a pure tone 

stimulus on logarithmic axes. Open circles are model predictions, while 

closed circles are the perceptual frequency discrimination data of Sek and 

Moore (1995) and closed squares are the data of Moore (1973). 

Parameters of the Kalman filter were a/ =10-12 and A=60 dB SPL. The 

measurement noise variance an 2 was a function of frequency as shown in 

figure 6.1. 

predictions are compared with data from Wier et al. (1977) at two frequencies. The model 

predictions are consistent with the psychoacoustic data in both absolute values and in shapes 

of the curves. The model prediction at 300 Hz was shifted right by 4 dB to fit the data of Wier 

et al. at 200 Hz, and the prediction was shifted to the right by 8 dB for the 1000 Hz stimulus, 

but no other scaling was done on either curve. 

The shape of the L1j intensity curve is sensitive for the slope of the synchronization index as 

a function of intensity (figure 6.3), especially at lower frequencies where fewer observations 

are available for a given stimulus duration T. This is because an decreases monotonically as 

synchronization index increases. To account for high L1j 's at low intensities, it is a 

requirement that the synchronization index approaches zero as intensity approaches threshold. 

This is consistent with the data in Johnson (1980). 
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Figure 6.6. 

The effect of stimulus intensity (dB SL) on the frequency difference limen 

Llfis shown for two frequencies. Open circles and open squares are model 

predictions at 200 Hz and 1000 Hz respectively, while filled circles and 

filled squares are perceptual frequency discrimination thresholds (Wier 

et a!., 1977). The system noise parameter of the Kalman filter was aw
2 =10-

12, while measurement noise parameter 0;,2 was a function of frequency as 

shown figure 6.1. 

3.3 ilflf as a function of duration 

The effect of duration on the relative frequency difference limen eLl/if) is shown in figure 6.7. 

This is compared with psychoacoustic data obtained by Moore (1973). The model does not 

fit the data perfectly, but demonstrates the same trends. At short durations, model predictions 

for frequency discrimination thresholds are inferior to psychoacoustical performance. 

The slopes of the curves are steeper than the psychoacoustic data at short durations, but slope 

decreases with higher frequencies, which is consistent with the data. Both the model and the 

data show that an increase in signal duration results in improved performance, until a limit 

in duration is reached after which performance levels off. The models of Srulovicz and 
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Figure 6.7. 

A temporal model offrequency discrimination in acoustic hearing 
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Frequency difference limen (Llf), expressed as a proportion of frequency 
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Goldstein (1983) and Wakefield and Nelson (1985) do not predict this effect, but continue to 

improve with longer stimulus duration. These authors had to introduce a cutoff time for the 

maximum duration useful to the central auditory nervous system for estimating the signal 

frequency, but were not able to assign a single value for cutoff time. The results from the 

current model suggest that a fixed number of observations (a fixed number of inter-spike 

intervals, assuming one spike per stimulus cycle), and not a fixed duration, are required to 

achieve an optimal estimate of each frequency. The required number of observations is 

estimated at around 50 from the results presented here. This is why longer durations are 

required to achieve optimal frequency discrimination at lower frequencies. The duration 

required for optimal frequency discrimination decreases monotonically with an increase in 

frequency. 
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3.4 Performance when the one spike per cycle assumption is violated 

The Kalman filter model as formulated assumes that one spike occurs per stimulus cycle. This 

assumption is built into the state space equations. Violations of this assumption, e.g. when 

cycles are skipped, constitute modelling errors rather than additional noise. If the neural 

model of spike train pooling as presented above is used, the possibility exists that this may 

happen. The Kalman filter is very sensitive to modelling errors. When these kinds of errors 

occur the estimator may lock onto an incorrect frequency and the variance in estimation will 

grow. Using the neural spike train pooling model (which allows for missed cycles or more 

than one spike per cycle) over its valid range (up to 2000 Hz), it is found that the shape of the 

iJ.flf curve does not change for frequencies below 1000 Hz, but iJ.flfvalues are generally larger 

by an order of magnitude. As the spike train pooling model generates (with high probability) 

one spike per stimulus interval at frequencies in the range 1000 Hz to 2000 Hz, iJ.flf values 

are comparable to the values obtained under the one spike per interval assumption. 

4 DISCUSSION 

4.1 Nature of the model 

An attractive attribute of the model proposed here is the simplicity. Firstly, Goldstein and 

Srulovicz (1977) used an exponential model (equation 6.1) for the instantaneous spike rate, 

and from this obtained a pdf for the inter-spike intervals from which the CRLB could be 

calculated. Instead of this exponential model the current model simply models the distribution 

of spikes as clusters with Gaussian distributions with standard deviation (In around the 

preferred stimulus phase. Secondly, only first order spike intervals (inter-spike intervals) are 

required to obtain accurate predictions of psychoacoustic data, as has been shown previously 

by Goldstein and Srulovicz (1977) and Wakefield and Nelson (1985). 

Thirdly, a major difference arises with the implementation of the optimal processor; the 

current model provides an explicit mathematical implementation of the optimal processor 
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while previous authors, including Goldstein and Srulovicz (1977 and 1983) and Wakefield 

and Nelson (1985) used the CRLB to calculate .1j without providing an implementation. It 

has to be emphasized that we are not referring to a biological implementation here, but rather 

to the capability of the model to calculate numerical estimates of the stimulus frequency with 

any given spike train as input. This extends previous models which operate on spike train 

statistics only, rather than on the spike trains themselves. Comments on biological 

implementation are given below. 

A primary difference between the approaches in the Heinz et al. (2001) model and the model 

in this chapter is that these authors used statistical estimation theory to calculate performance 

bounds, whereas the models in this chapter and chapter 5 generate non-homogeneous 

Poissonian spike trains as input to an implementation of an optimal estimation mechanism. 

This approach is closer to identifying the actual signal processing that may be performed by 

the auditory system. Furthermore, spike trains need not be observed for long times to gather 

statistical information (e.g. to form lSI histograms), but new estimates are formed in real time 

as new spikes arrive. 

4.2 Significance of the Kalman filter model 

The Kalman filter model for frequency discrimination is a very simple example of what may 

be a more general principle of perception, namely an "analysis-by-synthesis" mechanism for 

perception. The Kalman filter is one of a more general class of estimators which possess an 

internal model of the system that generates the variable to be estimated (i.e. an internal model 

of the signal source). In these estimators, input measurement data are compared to predictions 

generated by the internal model and the prediction error, weighed by a gain, is used to 

improve estimates of the state of the external system, 

i(kl k) = i(klk-l) + K(z(k)-i(klk-l») (6.11) 

In equation 6.11 x(k / k) is the estimated state at the current sample k, given measurements up 

to this sample. z(k) is the measurement at sample k, while x(k / k-J) is the prediction by the 
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internal model of the state at sample k, given data up to the previous sample k-l. The error in 

the prediction z(k)-x(k/k-l) is weighed by a gain K. 

The notions of an internal representation and analysis-by-synthesis have been applied to 

models of thinking and the brain (Maron, 1965), speech perception (Stevens and Halle, 1967; 

Lewis, 1996), rhythm and time perception (Todd, O'Boyle and Lee, 1999) and the integration 

of sensory input and motor control (Wolpert, Ghahramani and Jordan, 1995). As applied to 

speech perception, the analysis-by-synthesis model contends that when a speech sound is 

received, the listener attempts to reproduce it by using an internal model of his own 

production of the sound. This internally generated signal does not activate the musculoskeletal 

system. If the external and internally generated signals match, the perception is accepted as 

correct. 

The Kalman filter is an explicit implementation of an analysis-by-synthesis mechanism which 

provides the ability to produce numerical predictions. The class of estimators to which the 

Kalman filter belongs have a number of characteristics in common. An internal model of an 

external system is present, often in the form of a state space model (such as Eqs. 6.5 and 6.6). 

Calculations are recursive in nature, so that there is no need to store previous values of 

measurements. The gain used to weigh the prediction error follows an exponential-like decay 

profile until it reaches a steady-state value. For linear state space models, the optimal gain 

profile as a function of time is given by the Kalman gain, and the optimal estimator is the 

Kalman filter. Initially, when the first measurement is made, the gain is large, which means 

that the estimator has little confidence in the internal model's estimates and relies primarily 

on the measurements to produce estimates of the unknown variable. While the gain is large, 

the estimator adapts quickly and (if the model is correct) locks onto the variable to be 

estimated. The internal model is trusted increasingly and the measured data are given less 

weight as the gain is reduced. Thus, the estimator "grows in confidence". When the gain has 

reached the steady state value, the noisy measurements still contribute to the estimates, but 

the estimator primarily trusts its internal estimates. This allows the estimator to suppress noise 

in the measurements. 
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The Kalman filter incorporates two sources of noise. System dynamics not explicitly included 

in the state space model are often represented as a system noise parameter, while measurement 

noise characterizes imperfections in the measurement process. The steady state value of the 

Kalman gain is determined by these noise parameters. If the system state to be estimated has 

large variance or fast dynamics, the steady state gain is larger to allow rapid tracking of 

changes. However, larger steady state gain results in larger estimation variance. 

4.3 Comparison between different classes of models of frequency discrimination 

The current model (which provides a numerical implementation) and the statistical models 

of investigators including Siebert (1970), Goldstein and Srulovicz (1977, 1983) and 

Wakefield and Nelson (1985) may be regarded as two different classes of models. A third 

class of models, of which a recent model of McKinney and Delgutte (1999) is an example, 

operates on lSI histograms. The frequency of a pure tone may be extracted from the interval 

between the modes of the lSI histogram. Although this class of models is related to the model 

described in this chapter, they still operate on a statistical representation of spike trains. 

To implement a histogram-based frequency estimation mechanism in neural "hardware" 

would require the central estimator to be able to create and store histograms. Three 

possibilities exist for the central creation of histograms. Either the central estimator will have 

to store the values of a large number of inter-spike intervals over a relatively long period, or 

it will have to pool lSI histograms or spike trains across many fibres. To obtain lSI histograms 

smooth enough to make reasonably reliable frequency judgements will require long spike 

records or the pooling of many lSI histograms across fibres. Pooling lSI histograms still 

requires storage of a large number of inter-spike interval values to form a histogram. 

However, as a stable pitch sensation is formed within only around 6 stimulus cycles for low 

frequencies or 10 ms for high frequencies (Pollack, 1967; McKinney and Delgutte, 1999), it 

is unlikely that the auditory system creates lSI histograms to estimate frequency. It is more 

likely that spike trains are combined directly across fibres to form a histogram-like 

representation. Pooling spike trains across fibres creates a many-cycle period histogram rather 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 180 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

than an lSI histogram. Pooling may occur where many fibres converge onto a single 

integrating neuron, for exampl.e at the onset locker cells in the eN. Note that combining spike 

trains across fibres in this way does present the additional requirement that phase-locked 

spikes have the same preferred phase, while the pooling of lSI histograms does not have this 

requirement. 

To summarize, histogram-based frequency estimation mechanisms (Schroeder, 1968; 

McKinney and Delgutte, 1999) can substantiate that neural spike train statistics are sufficient 

to enable the auditory system to estimate frequency. However, histogram-based schemes for 

frequency estimation are only feasible when relatively short periods of spike trains are pooled 

across many fibres, and not when long spike records are required to construct a histogram. 

Histogram-based models are similar to the current model in some respects. Histogram-based 

models may pool histograms across fibres to form an lSI histogram, while the current model 

pools spike trains across fibres. Although this was not necessary in the current model, a many

cycle period histogram could then be constructed if an adequate number of spike trains were 

pooled. 

Histogram-based models calculate the stimulus frequency from the distance between mode 

peaks. Although mode offsets may occur for lower order modes of an lSI histogram, higher 

order modes may be included in the calculation to estimate the stimulus frequency (McKinney 

and Delgutte, 1999) more accurately. The current model assumed that the pooling of spike 

trains resulted in a new spike train with one spike per stimulus cycle, with spikes randomly 

occurring close to a preferred phase. The Kalman filter model does not estimate the mode 

peak positions, but uses the spike times directly to estimate the stimulus frequency. 

Herein lies an important dissimilarity between the Kalman filter model and the histogram

based models. The standard deviation in spike position results in estimation variance that is 

used to explain frequency discrimination data in the Kalman filter model. On the other hand, 

the mode widths (or standard deviations) in an lSI histogram-based model have no influence 

on the estimated stimulus frequency, so that these models offer no clear-cut explanation for 
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the variance in estimation of frequency. Mode offsets in lSI histograms vary between different 

fibres with the same characteristic frequency (McKinney and Delgutte, 1999), which may 

explain estimation variance if lSI histograms are pooled across fibres. 

4.4 The influence of lSI histogram mode offsets 

Unlike lSI histograms which may have mode offsets, multi-cycle period histograms formed 

by combining spike trains across fibres cannot exhibit mode offsets. If one spike occurs a little 

before the preferred phase, the next spike interval must be a little longer if phase-locking is 

maintained. Successive inter-spike intervals are correlated (equation 6.7), as also shown by 

joint first order histograms (McKinney and Delgutte, 1999). Mode offsets in lSI histogram

based models may bias the frequency estimates of these models, but do not playa role in the 

Kalman filter model. At any rate, as frequency discrimination is assumed to be related to the 

variance in estimation only, biases in frequency estimates will not influence frequency 

discrimination in the current model. 

4.5 The influence of peak splitting 

Peak splitting occurs in lSI histograms when two or more spikes occur per stimulus cycle 

(Ruggero and Rich, 1989; McKinney and Delgutte, 1999). Less than 10% of the fibres 

demonstrated peak splitting in the extensive data of McKinney and Delgutte (1999). The 

authors argue that only a small fraction of fibres will exhibit peak splitting at a specific 

stimulus intensity, as the intensity at which peak splitting occurs is a function of stimulus 

frequency as well as fibre CP. Peak splitting does not influence the current model if the 

proposed model of spike train pooling is used. Peak splitting will result in dual spikes in a 

small number of stimulus cycles at the input to an integrating neuron. The temporal and 

spatial integration of spikes that occur at the integrating neuron ensures that dual spikes on 

the input usually do not result in dual spikes on the neuron output. Peak splitting may still 

occur at the output of an integrating neuron, as explained in section 2.3. 
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4.6 Robustness with respect to the number of spikes per stimulus cycle 

The Kalman filter model as formulated is very sensitive to modelling errors. A tenfold 

increase in iJJ/f occurs at frequencies below 1000 Hz because of the way the state space model 

was formulated, i.e. the model does not permit the possibility of either more or less than one 

spike per stimulus cycle. This problem may be overcome by creating more elaborate Kalman 

filter models. One example of a slightly more complex Kalman filter model would be a model 

that assumes that either one spike occurs in every stimulus cycle, or not more than one cycle 

is skipped. Even more elaborate Kalman filters may allow more realistic spike train patterns. 

These more complex estimators will have a relationship between the variance in spike position 

(around the preferred phase) and the estimation variance similar to the original Kalman filter. 

Development of such models is beyond the scope of this chapter, but they will lead to similar 

conclusions as have been reached from the results with the simple Kalman filter model 

presented here. 

4.7 Robustness with respect to spike distribution 

One of the assumptions of the model is that spike clusters around the preferred stimulus phase 

have Gaussian distributions (Javel and Mott, 1988). Although it was a natural idealization that 

simplified the equations, this assumption was not necessary. The Kalman filter is based on 

second order statistics and any distribution with the correct mean and variance will give the 

same results. Thus, the model is not sensitive to non-Gaussian or skewed lSI histogram 

modes. 

4.8 Parameter sensitivity and the origin of the shape of the !lf/f frequency curve 

The iJJ obtained is a tradeoff between three parameters of the model: the number of 

observations, the system noise and the measurement noise. The choice of the system noise 

parameter Ow is least obvious. When the system noise variance ow
2= 0 and the appropriate 

variation is used for the measurement noise on (equation 6.2), the shape of the LlJ/ffrequency 
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curve obtained is similar to the psychoacoustic curve, but flatter at the high and low frequency 

ends. The iJ.flf curve shifts downwards with increasing number N of observations. The same 

absolute values of iJ.flf as found in the psychoacoustic data are achieved with 40 to 50 

observations. It is possible for the model to significantly outperform human observers with 

correct parameter choice. One possibility is to use zero system noise and to increase the 

number of observations N. 

If aw
2 is chosen as a constant but non-zero value, the expected standard deviation of stimulus 

period from observation to observation is a constant over frequency, which implies that the 

ratio of spike standard deviation to stimulus signal period grows, or in other words the signal 

(stimulus period) to noise (standard deviation) ratio decreases with increasing frequency. This 

results in growth in iJ.flf towards higher frequencies. As shown before, to be consistent with 

gap detection data, aw
2=10-12 is a good choice. This results in a high frequency iJ.flf slope 

consistent with psychoacoustic data. For this choice of aw
2 it is also found that the number 

of observations needs to be close to N=50 to achieve the same iJ.flf values as the 

psychoacoustic data. Larger N results in little further decrease in iJ.flf 

For these parameter choices, i.e. N=50 and aw
2=10-12

, the model predictions are consistent 

with psychoacoustic data at frequencies above 500 Hz. To account for psychoacoustic data 

below 500 Hz, stimulus duration T is limited to 100 ms so that the number of observations 

decreases with lower frequencies, which results in a growth in iJ.flf at lower frequencies 

consistent with psychoacoustic data. This choice for T is consistent with known auditory 

integration times. Longest integration time for pure tones has been estimated to be in the 100 

ms to 300 ms range (Green, 1973; Eddins and Green, 1995). Although perceptions of loudness 

or pitch emerge well before 200 ms, computations of loudness and pitch, as required in 

discrimination experiments, continue to improve up to approximately 200 ms (Lewis, 1996). 

The assumption could also have been made that the auditory system uses a constant frequency 

deviation criterion, i.e. the system noise aw
2 should be chosen such that a constant frequency 

deviation rather than a constant period deviation is expected across frequency. This results 

in a growth in aw
2 towards higher frequencies, resulting in even smaller signal to noise ratios 
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at high frequencies, in turn resulting in larger values of iJ.jlf and a steep slope towards high 

frequencies, which is inconsistent with psychoacoustic data. This suggests that the auditory 

system uses estimates of stimulus period rather than frequency to obtain frequency estimates. 

The significance of the choice of a 1 ~s standard deviation (ow= 10-6
) in period is not clear. 

Coincidence detectors in the CN (Delgutte, 1997) can respond to spike timing differences 

which is an order larger than ow. CN cells are probably not able to react to differences in 

period as small as 1 ~s, which means that this is in the neural noise bed. As it is possible that 

the auditory system may be able to regulate the internal noise (Tomlinson and Langner, 1998), 

the auditory system may have chosen to work with a non-zero system noise that is in the noise 

bed, as opposed to choosing o}=O, to avoid divergence in the estimate (Mendel, 1995). 

4.9 Frequency range 

The current model provides accurate predictions of frequency discrimination over the entire 

frequency range up to at least 6000 Hz. However, several studies have shown that no 

observable phase-locking is present above about 5000 Hz (Rose et aI., 1968; Johnson, 1980; 

Palmer and Russell, 1986) and model predictions should be disregarded at frequencies where 

no phase-locking exists. Within the frequency range of 100 Hz to 5000 Hz, the model predicts 

psychoacoustic frequency discrimination thresholds accurately, suggesting the possibility that 

the phase-lock code operates across this entire frequency range. Other investigators (Dye and 

Hafter, 1980; Javel and Mott, 1988; Javel, 1990) have suggested that phase-locking is used 

at frequencies below 1000 Hz while rate-place coding is used for higher frequencies. 

Model predictions for high frequencies can be explained by the standard deviation in spike 

distribution around the preferred phase (the spike jitter). It is interesting that model 

predictions are accurate up to 5000 Hz, even though cells that can sustain entrained firing at 

rates higher than around 1000 Hz have not been found. Many auditory afferent fibres 

converge on onset cells in the CN. Onset locker cells fire once per stimulus cycle for 

frequencies up to 1100 Hz, on a very precise phase of every stimulus cycle (Langner, 1992; 

Rhode and Greenberg, 1992), with better precision than found in the auditory nerve. This is 
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consistent with the notion that a volley principle may be operational in the CN, at least for low 

frequencies. It may be reasonable to assume that a model based on phase-locking and the 

volley principle can hold up to 1000-1500 Hz (Rhode and Greenberg, 1992) only. 

However, why are model predictions still accurate at higher stimulation frequencies? One 

explanation may be that the auditory system may have a mechanism to estimate frequency 

from fibres that fire at integer multiples of the stimulus period rather than on each stimulus 

cycle. Chopper units in the CN can lock onto integer multiples of the stimulus period very 

precisely (Wiegrede and Winter, 2000). The constraints under which the central estimator has 

to perform are still the same, i.e. estimation variance is limited by neural noise and the number 

of available observations. 

A second explanation may be the gradual transformation of temporal information on the 

auditory nerve into a rate-place code at higher levels of the central auditory system. It is 

possible that this transformation takes place at the level of the CN (Rhode and Greenberg, 

1992), although it is not known how such a transformation takes place (Brugge, 1992). A 

large number of auditory afferents carrying a phase-lock code converge on CN cells. These 

fibres should, as a population, provide at least one spike per stimulus cycle on the input to a 

CN neuronal assembly. The possibility exists that the phase-lock code may be transformed 

directly into a rate-place code without the need for fibres firing at rates up to 5000 Hz, but the 

accuracy of such a transformation would still be dependent on auditory afferent spike jitter. 

Such a mechanism could operate over the entire frequency range of phase-locked activity. 

However, evidence is available that suggests that the upper limit for the encoding of frequency 

by phase-locking is below 1000 Hz. Cochlear implant users cannot discriminate changes in 

sinusoidal electrical stimulation frequency above about 300-500 Hz (Shannon, 1983a), while 

modulation detection performance decreases monotonically above 100 Hz for normal-hearing 

listeners (Bacon and Viemeister, 1985) and for cochlear implant users (Shannon and Otto, 

1990). 
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To summarize, the Kalman filter model results are consistent with an optimal central estimator 

that is constrained by limitations in the number of observations at low frequencies (below 500 

Hz) and by spike position jitter at higher frequencies (above 500 Hz). Although the model can 

predict frequency discrimination data over the entire frequency range in which phase-locking 

is observed (up to 5000 Hz), not enough neurophysiological evidence is available to support 

a claim that phase-locking is used for the encoding of frequency across this entire range, and 

evidence exists which suggests that phase-lock coding is used only at low frequencies. 

4.10 Number of fibres required 

Previous models predict considerably better human frequency discrimination performance 

than measured perceptually. Siebert (1970) used the entire array of nerve fibres and the 

occurrence times of all spikes in an optimal processing model to obtain predictions for Lljfar 

surpassing human frequency discrimination ability. Goldstein and Srulovicz (1977) and 

Wakefield and Nelson (1985) used inter-spike intervals only and required only nine nerve 

fibres to account for human frequency discrimination data. If one spike were available for 

each stimulus cycle, the current model would require only a single nerve fibre to account for 

human frequency discrimination data. However, even at high intensities, firings do not occur 

at every stimulus cycle (Rose et aI., 1968). The current model is for the availability of spikes 

on every stimulus cycle and estimation errors grow rapidly when spikes are missed as shown 

previously. 

At high intensities, the combination of spike information from just a few nerve fibres will 

ensure the availability of at least one spike per stimulus cycle. At lower intensities, the 

combination of more nerve fibres is required to account for human frequency discrimination 

data. If too few fibres are pooled, it cannot be ensured that at least one spike is available per 

stimulus cycle. As mentioned previously, more complex Kalman filter models can contend 

with the condition where spikes do not occur on every stimulus cycle. Calculating the least 

number of fibres to be combined to have a combined average of at least one spike per 

stimulus cycle is simple. There is no guarantee that spikes will be available on each stimulus 

cycle when fibres are combined, but the probability of missing cycles decreases as the number 
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of fibres to be combined increases. It is estimated from simulations that the current model 

requires the combination of not more than 100 fibres to ensure at least one spike per stimulus 

cycle at all frequencies and supra-threshold intensities. 

4.11 Behavior of the model in noise 

The Kalman filter model incorporates noise in the system noise and measurement noise 

parameters. The system noise characterizes the variability of the stimulus frequency because 

of signal dynamics. The measurement noise is a result of imprecise measurement of the 

stimulus period because of the Gaussian distribution of spikes around the preferred stimulus 

phase. These noise sources exist even when the stimulus is a pure tone in quiet. Additive 

external noise may be incorporated into the measurement noise parameter, as addition of noise 

tends to desynchronize the neural spikes so that phase-locking becomes less precise (Dye and 

Hafter, 1980). The effect is that for all frequencies, 4t grows and the Llj intensity curves 

flatten. 

This is contrary to the observation by Dye and Hafter (1980) that Llj in humans is frequency 

dependent at constant signal to noise ratios. For pure tone frequencies at 3000 Hz or above, 

Llj grows larger with increased signal intensity, while at 1000 Hz or lower frequencies Llj 

becomes smaller. The crossover point is around 2000 Hz. The current model cannot predict 

these effects. The current model, or any model based on phase-locking, predicts decreasing 

Llj with increasing intensity, as the temporal dispersion of spikes around the preferred 

stimulus phase will become smaller with increased intensity. To predict increasing Llj with 

intensity, the synchronization index should become smaller with increasing intensity. This 

possibility exists. The cat data presented in Johnson (1980) show examples of a fibre tuned 

to intensity, i.e. for which the synchronization index grows with intensity at lower intensities 

and declines again at higher intensities. 
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4.12 Comments on the use of cat neurophysiological data to predict human 

performance 

Neurophysiological data used in the current model to predict human psychoacoustic data were 

obtained in cat. Several authors have cautioned that cross-species comparisons are subject to 

interpretational difficulties, especially because of a lack of neurophysiological stimulus 

encoding data from humans (Hienz et aI., 1993). Also, humans discriminate smaller frequency 

increments than monkeys (Prosen et aI., 1990) or cats (Javel and Mott, 1988; Hienz et aI., 

1993) and frequency discrimination dependence on intensity differs in these species (Hienz 

et aI., 1993). Previous studies suggested that differences between frequency discrimination 

thresholds in humans and other animals may be a result of different frequency encoding 

mechanisms in different species (Prosen et aI., 1990; Hienz et aI., 1993). From several studies 

it is clear that frequency information is available in both rate-place codes and phase-lock 

codes. The accurate prediction of human frequency discrimination thresholds with the current 

model suggests that encoding of stimuli in neural spike trains may be very similar in cat and 

human, although different animals may still use different decoding strategies to extract 

frequency information at different frequencies, resulting in differences in discrimination 

thresholds. 

4.13 Comments on neural implementation 

The Kalman filter model proposed here is a purely mathematical operation, but is believed 

to have biological significance. Although a possible biological implementation has been 

proposed for a volley principle, no attempt has been made to suggest a potential biological 

implementation for the Kalman filter or to speculate where in the auditory system such a 

mechanism may exist. This is outside the scope of this chapter. It is not the intention with the 

current model to claim that the central auditory nervous system implements a Kalman filtering 

mechanism to extract frequency information, but rather to demonstrate by example how an 

analysis-by-synthesis principle may be used for the estimation of a biological parameter. Two 

primary intentions were (1) to demonstrate that most of the psychoacoustic frequency 

discrimination data may be explained by the statistics of a simple spike generation model, (2) 
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using a recursive optimal processor that operates on spike trains with these statistics. 

A recursi ve mechanism for noise suppression and parameter estimation may be attractive from 

a biological implementation viewpoint. The neural implementation of a Kalman estimator 

requires that the central auditory system has an internal model of the signal source (as 

reflected in the state space model equations and the Kalman filter parameters) and the ability 

to perform recursive calculations. Instead of explicitly storing information from the entire 

duration of a stimulus, the history of a sequence can be stored in the internal states of fibres 

(Lewis, 1996). Computations can then be carried out so that the output of a neural calculation 

is a function of past inputs and the present input. This will limit the amount of data that have 

to be stored in short term memory, which is attractive from a biological implementation 

viewpoint. Although these kinds of computations are of theoretical use, more support from 

neurophysiological and psychophysical work is needed to establish the biological relevance. 

Plausible biological implementations for recursive calculations have been discussed in 

literature, e.g. McLaren (1989), but there is little biological evidence for the existence of these 

mechanisms. Wolpert, Ghahramani, and Jordan (1995) present experimental data that support 

the notion of the existence of an internal model and recursive calculations in sensorimotor 

integration. 
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5 CONCLUSIONS 

(1) It was shown that an analysis-by-synthesis type of mechanism may be used to explain 

frequency discrimination data. The Kalman filter model described here is an explicit 

implementation of an analysis-by-synthesis mechanism which provides the ability to 

produce numerical predictions. 

(2) This recursive implementation of a frequency estimation mechanism can account for 

most of the psychoacoustic data for frequency discrimination in quiet. 

(3) The particular Kalman filter model constructed in this chapter depends on the 

availability of one spike per stimulus cycle, which may be provided by the operation 

of a volley principle. More complex recursive estimators will free the model from the 

one spike per stimulus cycle constraint. 

(4) The temporal information in inter-spike intervals is sufficient to account for human 

frequency discrimination performance up to 5000 Hz. 

(5) The number of observations of spike intervals, rather than the integration time used 

for estimates, is probably fixed. 

(6) Under the assumption of constant system noise across frequency, the number of 

observations accounts for the low frequency part of the iJf/f frequency curve, while 

the measurement noise accounts for the high frequency part of the curve. Thus model 

results are consistent with an ideal observer that is limited by the number of available 

observations at low frequencies (below 500 Hz) and by spike position jitter at higher 

frequencies (above 500 Hz). 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 191 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

APPENDIX 6.A 

DERIVATION OF EQUATION 6.2 

The instantaneous spike rate r(t) for a fiber that is phase-locked to a pure tone stimulus is given 

by equation 6.1, which is also interpreted as the envelope of a multi-cycled period histogram. 

This envelope is bell-shaped and close to being Gaussian for arguments of the cosine function 

in the range (-TI, TI). To approximate r(t) by a Gaussian, it is necessary to calculate the standard 

deviation of a Gaussian with the same width than this period histogram envelope. Ignoring 

temporarily the scale factor k in equation 6.1 gives 

r 1 (t) = a e G(f,A)cos(2rtft) • 

Equation 6.A.1 is first normalized to have a maximum value of 1 at t=O, 

a e G(f,A)cos(2rtft) = 1 . 

Solving for a, 

a = e -G(f,A) • 

(6.A.l) 

(6.A.2) 

(6.A.3) 

The normalized period histogram envelope is now equated to a Gaussian which has also been 

normalized to height 1 at the origin. To calculate the width of the Gaussian that fits rit), the 

heights of r it) and the Gaussian are equated at t= a, 

(6.A.4) 

Solving for ain terms of the synchronization index G(f,A), 

a = _1_ arccos(G(f,A) -112) 
n 2rtf G(f,A) 

(6.A.5) 

Equation 6.A.S is a good fit to the standard deviations of peaks of inter-spike interval 

histograms from lavel and Mott (1988). Reintroducing the scale factor k into equation 6.A.1 

to obtain equation 6.1, it is necessary to scale equation 6.A.S as well to fit the data. Scaling 

equation 6.A.5 by ..f k, equation 6.2 is obtained, which provides a good fit to the data from 

lavel and Mott (1988). 
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Chapter 7 

A TEMPORAL MODEL OF FREQUENCY DISCRIMINATION 

IN ELECTRIC HEARING 

The results in this chapter have previously been published: Hanekom, 1.1. 2000, "What do cochlear implants 

teach us about the encoding of frequency in the auditory system?", South African Journal of Communication 

Disorders, vol. 47, pp. 49-56. 

1 INTRODUCTION 

A long-standing question about frequency analysis in the auditory system is how frequency 

information is represented: is frequency coded as a temporal code or as a place code (Moller, 

1999) or as both? Pure tones are represented as both rate-place information (rate-place 

coding) and temporal information (phase-lock coding) in the discharge patterns of auditory 

nerve fibres and the central auditory nervous system, but, as discussed in the previous chapter, 

the extent to which the auditory system uses either representation is unknown. 

It is possible that both coding mechanisms operate in parallel over a large range of 

frequencies. So far, neither neurophysiological studies in animals, nor psychoacoustic 

experiments in humans have been able to determine to which extent the central auditory 

system uses either mechanism alone or both mechanisms simultaneously to determine the 

frequency of a pure tone (Moller, 1999; Johnson, 1980). Whilst previously this may have been 

regarded as a purely academic question, the development of cochlear implants has made it 

important to understand how information is coded in the auditory nervous system. This 

knowledge will influence the stimulation strategies used in cochlear implant speech 

processors. 
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Specifically, we need to know what information transmitted to the electrically stimulated 

cochlear nerve is perceptually significant. Two strategies used in current cochlear implant 

systems reflect two different approaches. In the Spectral Peak (SPEAK) strategy (Skinner et 

aI., 1994; Loizou, 1999), which is based on the rate-place mechanism, spectral peaks are 

extracted and presented to electrodes that are arranged tonotopically. In contrast, the 

Continuous Interleaved Sampling (CIS) strategy (Wilson et aI., 1991; Loizou, 1999) uses high 

pulse-rate stimulation to conserve temporal waveform information. 

Moller (1999) reviews the roles of temporal and rate-place coding of frequency. He presents 

convincing arguments in favour of the phase-lock code. His arguments are based on the 

robustness of the code and on the effects of various kinds of pathology on the impairment of 

frequency discrimination and pitch perception. It is well established that frequency tuning in 

the auditory system is a function of sound intensity (Moller, 1999; Johnstone et aI., 1986). The 

location of maximal vibration of the basilar membrane shifts at higher intensities. However, 

the perception of pitch of pure tones is relatively insensitive to changes in intensity over large 

intensity ranges. Some models conjecture that it is not the spectral peaks, but rather the 

complete spectral profile, or the edges of the spectral profile that are used in frequency 

discrimination (Moore and Glasberg, 1986). Moller (1999) argues that these are just as 

sensitive to intensity. Moller also reviews data that suggests that impairment of spectral 

analysis in the cochlea does not affect speech discrimination noticeably, which suggests that 

spectral analysis might not be important for speech perception. 

Cochlear implants provide the opportunity to study the coding of frequency by the rate-place 

code and by the phase-lock code separately. The perception of frequency as encoded in the 

rate-place code alone may be studied by using a fixed stimulation frequency and varying the 

site of stimulation in the cochlea. To explore the role of phase-lock coding alone, stimulation 

at a fixed position in the cochlea may be used while varying the frequency of stimulation 

(Townshend et aI., 1987; Blarney et aI., 1996; Dorman et aI., 1994). 

This chapter further explores the coding of frequency in the phase-lock code, using 
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neurophysiological and psychoacoustic data from auditory electrical stimulation as instrument. 

One motivation for this study stems from the strong arguments by Moller (1999) in favour of 

phase-lock coding, but the way in which frequency information should be encoded in cochlear 

implants is also of interest. 

1.1 Approach 

The model of frequency discrimination in the acoustically stimulated auditory system (chapter 

6; Hanekom and Kruger, 2001) is extended to include the electrically stimulated auditory 

system. This model provides satisfactory predictions of frequency discrimination in the 

normal (acoustically stimulated) auditory system. If, in addition, it is found that the extended 

model can predict psychoacoustic data for the electrically stimulated auditory system, 

strengthening the arguments in favour of a phase-lock code for frequency may be possible. 

The applicability to cochlear implant stimulation strategies will be explained in the discussion. 

The objective of the extension to this model is to include the statistics of spike trains evoked 

by electrical stimulation in order to make predictions about frequency discrimination 

thresholds in cochlear implants. The statistics of spike trains that result from electrical 

stimulation are quite different from acoustically evoked spike trains, as has been discussed in 

chapter 4. It should be noted that this chapter does not present any hypotheses about the 

central representation of pure tones. The emphasis is on the interpretation of the frequency 

discrimination performance of an optimal estimator, presumably located somewhere in the 

central auditory nervous system, given the statistics of acoustically and electrically evoked 

spike trains. 

2 METHOD 

The phase-lock model of chapter 6 is extended to incorporate electrical stimulation. The 

proposed extension is quite simple and detail is provided below. 
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2.1 Estimator structure 

Phase-locking is the tendency of nerve spikes (action potentials) to cluster around mUltiples 

of the stimulus cycle at a preferred phase (a specific time relative to the onset of the stimulus 

cycle). It is assumed that these clusters have Gaussian distributions (Javel and Mott, 1988) of 

which the variance depends on the amount of phase-locking. Perfect phase-locking occurs 

when spikes always occur at the same phase. When spikes are also entrained to the stimulus 

(i.e. spikes occur at each stimulus cycle), calculating the stimulus frequency perfectly is very 

simple. Thus, the distribution of the spikes around the preferred stimulus phase is a source of 

noise. 

It is assumed that the auditory system can combine spike trains from a number of fibres to 

obtain a single spike train that has one spike per stimulus cycle. This idea is essentially the same 

as the volley principle of Wever (1949). Javel (1990) speculated that the great redundancy in 

auditory nerve fibre innervation of the inner hair cells may exist to ensure that a spike occurs 

on every stimulus cycle. Superimposing a number of spike trains results in clusters of spikes, 

with cluster centres spaced approximately 1/j apart. If spike trains from more fibres are 

superimposed, estimates of the cluster centres become more accurate, resulting in more 

accurate estimates of the actual stimulus period. This is on the condition that fibres fire on 

exactly the same preferred phase, which is not necessarily true. Different fibres, tuned to 

slightly different frequencies, will all phase-lock to the stimulus, but each at its own preferred 

phase (Javel, 1990). Neurons have been found in the cochlear nucleus that may be able to 

implement a volley principle by combination of several auditory nerve inputs (Moller, 1999). 

To achieve this, the integration centre has to compensate for differences in the preferred firing 

phase. The auditory system may achieve this by variation in fibre length and variation in the 

strength of synapses (Cook and Johnston, 1999). 

In the implementation of the model described in this chapter, spike trains were not combined 

explicitly. It was assumed that one spike per stimulus cycle was available. Under this condition, 

measurements of inter-spike intervals used to estimate frequency are just noisy measurements 

of the actual period of the stimulus waveform. The problem of obtaining a good estimate of 
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the stimulation frequency from these noisy measurements can be solved with an estimator that 

is often used in engineering applications, the Kalman filter (Kalman, 1960). 

2.2 Number of fibres combined 

At high intensities, the combination of spike information from just a few nerve fibres will ensure 

the availability of one spike per stimulus cycle. At lower intensities, the combination of more 

nerve fibres is required to account for human frequency discrimination data. The probability 

of missing cycles decreases as the number of fibres to be combined increases. It is estimated 

from simulations that the current model requires the combination of around 100-200 fibres to 

ensure one spike per stimulus cycle at all frequencies for acoustical stimulation. 

2.3 Model of phase-locking for acoustic stimulation 

At high stimulation intensities, for fibres with characteristic frequency (CF) at or close to the 

stimulus frequency, spikes may occur on each stimulus cycle for low frequencies (lower than 

about 1000 Hz), although this is usually not so and cycles are often missed (Rose et aI., 1968). 

Spikes can be very scarce at low intensities or when the stimulus frequency is far from the CF 

of a fibre. 

It is assumed in the current model that the central processor integrates spike train information 

from a restricted area in the cochlea where the strongest activity is found. This corresponds to 

the average localized synchronized rate (ALSR) model of Sachs and Miller (1985). Thus, for 

a stimulus well above threshold as used in the current model, it is assumed that the most 

strongly stimulated fibres fire at their maximum rates. 

A further assumption is that spikes cluster around a specific phase of the stimulus cycle 

according to a Gaussian distribution. The distribution of spikes is Gaussian with standard 

deviation given by equation 6.2 (chapter 6). The synchronization index was given by 

equations 6.3 and 6.4. 
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2.4 Model of phase-locking for electrical stimulation 

Some important differences exist between neural synchronization to acoustical and electrical 

stimulation. First, electrically stimulated fibres exhibit phase-locked responses with a much 

higher degree of synchronization (Shepherd and Javel, 1999; Javel, 1990; Van den Honert and 

Stypulkowski, 1987a; Hartmann et aI., 1984). This is demonstrated in period histograms 

where the peak is much narrower for electrical stimulation than for acoustic stimulation (e.g. 

Javel, 1990). Thus phase locking occurs on a very precise phase of the stimulus signal 

(Hartmann et aI., 1984). For high frequencies (4-8 kHz), phase-locking is weaker (Dynes and 

Delgutte, 1992). The fibre still discharges regularly, but many stimulus cycles may be 

skipped, similar to the acoustic case. Phase locking is maintained at high frequencies (10 kHz) 

for electrical stimulation, unlike acoustical stimulation which demonstrates no phase-locking 

above 5 kHz. The synchronization index for electrical stimulation is described by 

0.92 

(7.1) 

which is a curve fit to the synchronization index data in Dynes and Delgutte (1992) as shown 

in figure 7.1. 

Second, the degree of entrainment is much higher for electrical stimulation than for acoustic 

stimulation. Spikes may occur on each stimulus cycle for low frequencies (below 1 kHz) 

(Javel and Shepherd, 2000; Javel, 1990). 

Third, there is no frequency selectivity for electrical stimulation (there is no basilar membrane 

filtering), so that all areas activated by the electrical stimulus generate action potentials, 

regardless of the stimulus frequency or the CF of the stimulated site. In addition, the statistical 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 198 

 
 
 



Chapter 7 

0.8 

x 0.6 
Q) 

"'C 
.5 0.4 
c 
0 

+=i ro 
N 
·2 0.2 e 
.c. 
(.) 
c 
~ en 0.1 

0.05 

Figure 7.1. 

A temporal model offrequency discrimination in electric hearing 

100 

\ 

\. 
d. • , 

\ 
\, 

C \ 
\ 
\ 

\ , , 
'. 

c '. 
\ 
\ 
\ 

C \ 
\ , 
.. 

300 600 1000 3000 600010000 

Frequency (Hz) 

Synchronization index as a function of frequency for electrical and 

acoustic stimulation. The solid curve (electrical stimulation) was 

calculated from equation 7.1. The dotted curve (acoustic stimulation) was 

calculated from equation 6.3. Open squares are data from Johnson (1980) 

and open circles are data from Javel and Mott (1988) for acoustic 

stimulation. Filled circles are data for sinusoidal electrical stimulation 

from Dynes and Delgutte (1992). 

independence among spike trains in different fibres is lost, so that many fibres fire exactly in 

phase (Javel, 1990; O'Leary et aI., 1995). 

Finally, synchronization increases with stimulus intensity (Shepherd and Javel, 1999). Spike 

latencies become smaller for more intense stimuli, and spike latencies are shorter for pulsatile 

stimuli than for sinusoidal stimuli. The probability of firing is a function of the stimulus 

strength, but the slope of this function is very steep (Van den Honert and Stypulkowski, 

1987 a) so that for pulsatile stimulation at just around 6 dB above threshold, neurons fire at 

their maximum (entrained) rate. It is assumed that fibres are stimulated well above threshold, 

so that a value of GiA)=l is used for electrical stimulation in the current model. 
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2.5 Combination of fibres for electrical stimulation 

If spike trains are combined according to a volley principle, then presumably the auditory 

system must compensate for differences in the preferred firing phase of different fibres as 

explained before. The assumption was made in the previous chapter that phase-locked spike 

trains arriving at the central integration centre have the same preferred phase. This may be 

achieved by a mechanism that compensates for differences between fibres, as explained in 

chapter 6. The mean arrival times of spikes on different inputs were the same, and the time 

of spike occurrence was determined by a Gaussian distribution with standard deviation an 

around the preferred phase. If linear summation at the central integration centre is assumed 

and the pdfs of the different input spike occurrence times are the same, the pdf of the output 

spike times is the same as the input pdfs (as was assumed in chapter 6). Nonlinear processing 

of input spike trains by the neural model in chapter 6 results in smaller output standard 

deviation. This is consistent with other neural models (Burkitt and Clark, 1996) and 

physiological data (Rhode and Greenberg, 1992). 

Fibres fire exactly in phase in electrical stimulation, and that should lead to improved 

frequency discrimination ability. However, frequency discrimination is poorer in cochlear 

implantees than in normal-hearing listeners (e.g. Townshend et al., 1987) and mechanisms 

that may bring this about are modelled in this chapter. 

So for electrical stimulation, it is assumed that phase-locked spike trains arriving at the central 

integration centre are de synchronized relative to each other. It is assumed that the central 

integration centre still generates one spike per stimulus cycle, but with larger variance in spike 

position around the preferred phase than for the acoustic case. Thus 

(7.2) 

is used for electrical stimulation, with Gil) as given in equation 7.1. Increased standard 

deviation is reflected by the factor s in this equation. 
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Two cases are considered. First, any mechanism that compensates for differences between 

fibres in acoustic stimulation may in fact disperse spikes around the preferred phase in 

electrical stimulation as measured at a central integration centre. Assuming linear summation, 

the pdfs of the spikes on the different inputs will add. If spikes on different inputs have 

different mean arrival times, the output variance will increase. As spike jitter is small for 

pulsatile electrical stimulation, output variance will be determined primarily by the degree of 

dispersion in mean arrival times. 

Cochlear nerve fibres are myelinated and have diameters of typically 1 Ilm (Rattay, 1990) to 

3 Ilm (Frijns et aI., 1995), so that action potential conduction velocity is estimated to be 

between 6 mls and 18 mls (Deutsch and Deutsch, 1993). The length of the cochlear nerve is 

approximately 5 mm, so that maximum conduction time from the cochlea to the CN should 

be around 0.8 ms for 1 Ilm fibres. If this is assumed to set an upper limit to delays that the 

central integration centre has to compensate for, output spike standard deviation may increase 

by 4 times (s=4 in equation 7.2) relative to the standard deviation of 0.18 ms at 1000 Hz 

predicted by equation 6.2. 

Second, neurogenic disease or injury to nerve fibre causes decreased conduction velocity 

(Kandel, Schwartz and Jessell, 1991). A nonregenerative or weakly regenerative section of 

fibre or demyelination can result in a tenfold increase in neural conduction time (Deutsch and 

Deutsch, 1993). Demyelination occurs in long-term deaf fibres, resulting in prolonged 

refractory periods (Shepherd and Javel, 1997). If some auditory nerve fibres are injured, 

temporal dispersion of neural activity will result, so that spike trains arriving on different 

inputs to the central integration centre will be desynchronized. Ignoring that decreased output 

standard deviation may be achieved by nonlinear processing at the central integration centre, 

output standard deviation may increase tenfold (s=10 in equation 7.2). Interestingly, it is 

known that injuries to the auditory nerve affect speech discrimination ability more than 

cochlear injuries (Moller, 1999). 
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2.6 Implementation of the estimator and simulations 

Details about the derivation of the Kalman filter equations may be found in Hanekom and 

Kruger (2001) or chapter 6. Spike trains were computer-generated using the model. Two 

different approaches were used to obtain the output spike train of a central integration centre. 

This output was the input to the Kalman filter for both approaches. 

In the first approach, as in chapter 6, estimates were obtained for frequency by observing the 

spike train from a single modelled fibre under the assumption that one spike per stimulus 

cycle was available. Spikes were placed according to a Gaussian distribution with standard 

deviation an. For acoustic stimulation, Gif) of equation 6.3 was used in equation 6.2 to 

calculate an, while Gif) as in equation 7.1 was used in equation 7.2 for electrical stimulation. 

The frequency difference limen Llf was then obtained by assuming it to be equal to the 

standard deviation in the frequency estimate, following Siebert (1970) and several other 

authors after him. The standard deviation in the frequency estimate was obtained by repeating 

the pure tone stimulus of duration T many (typically 200) times and calculating the standard 

deviation of the frequency estimate at a specific time. This time was either at the end of the 

interval T or after 50 observations of inter-spike intervals, as will be explained in the 

discussion. Values of Llfwere obtained as a function of stimulus frequency for both acoustic 

and electrical stimulation. 

The second approach was to use the nerve fibre model of chapter 6 as a model for the central 

integration centre. The integration centre was assumed to have 40 inputs, and the output spike 

train was then used directly as input to the Kalman filter. Mean arrival time dispersion on the 

inputs was assumed to be 0.8 ms, which is taken as the maximum de synchronization between 

spikes travelling on different fibres from the cochlea to the eN as explained above. The 

frequency difference limen Llf was then obtained as explained above. 

A number of differences exist between these two approaches. The explicitly modelled central 

integration centre has less temporal jitter on the output spike train than on the input spike 
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trains, especially at higher frequencies where the input spike rates are higher. However, dual 

spikes or no spikes may occur in response to some cycles of the stimulation waveform. 

Furthermore, model nerve fibre cannot generate output spike trains at a rate higher than 2000 

spikes/s due to the refractory period. 

The equations describing the model were coded in Matlab 5.3. Simulations were run on a 

Pentium II personal computer under the Windows 95 operating system. 

3 RESULTS 

3.1 ~f/f as a function of frequency for acoustic stimulation 

Figure 7.2 shows the normalized frequency difference limen (iJf/j) as a function of frequency 

for electrical stimulation as predicted by the model when equation 7.2 is used to predict the 

temporal jitter at the output of a central integration centre. For comparison, iJf(ffor acoustic 

stimulation is also shown. Frequency discrimination data for acoustic stimulation as measured 

by Sek and Moore (1995) are plotted on the same axis. The shapes of the two curves for 

acoustic stimulation are very similar, as discussed in chapter 6, and both reach minima at 

500 Hz. 

The electrical stimulation curves show trends similar to the acoustic stimulation curves at 

higher frequencies, but iJf(f is generally larger. However, in contrast to acoustic stimulation, 

the iJj(f curve for electrical stimulation decreases monotonically toward lower frequencies. 

This trend is explained in the discussion. Two situations of desynchronization are investigated 

as explained above. In the first (filled triangles) the assumption was that compensation for 

differences between fibres in acoustic stimulation is responsible for dispersion of mean arrival 

times in electrical stimulation. A smaller increase in iJj7fthan for cochlear nerve injury (the 

second case; filled circles) is observed. 
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Values of the frequency difference limen Llf expressed as a proportion of 

frequency (Llflf) are plotted as a function of the frequency of a pure tone 

stimulus (acoustic stimulation) or frequency of electrical stimulation on 

logarithmic axes. Filled squares are model predictions (from figure 6.5) 

for acoustic stimulation, while open circles are the perceptual frequency 

discrimination data of Sek and Moore (1995). Filled circles (s=10) and 

filled triangles (s=4) are model predictions for electrical stimulation when 

equation 7.2 is used to calculate the jitter at the output of a central 

integration centre. 

3.2 L1f as a function of frequency for electrical stimulation 

Figure 7.3 shows the frequency difference limen eLl.!) as a function of frequency for electrical 

stimulation as predicted by the model, using both approaches explained previously. 

Simulation predictions are not shown as the Weber fraction Llflf in this figure, as the 

measurement data were available as Llf. Frequency discrimination data as documented in 

Pfingst (1988) and Townshend et al. (1987) are plotted on the same axes. The trends of the 

model prediction and the psychoacoustic data are similar when equation 7.2 is used to obtain 

the output temporal jitter. Slopes are similar at higher frequencies. The absolute values of Llf 

as predicted by the model are smaller than measured values across most of the frequency range. 

At high frequencies, model predictions may be an order smaller than the psychoacoustic data. 
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Values of the frequency difference limen Llf are plotted as a function of 

the frequency of electrical stimulation on logarithmic axes. 

Open circles and open diamonds are perceptual frequency discrimination 

data from two studies (for sinusoidal electrical stimulation) as reported 

in Pfingst (1988). Open squares are data for pulsatile electrical 

stimulation (Townshend et al., 1987). 

Filled symbols are model predictions for electrical stimulation. Two of the 

model-predicted curves were obtained using equation 7.2 to estimate the 

output spike jitter, with s=4 (filled circles) and s=10 (filled squares) 

respectively. The third modelled curve (filled triangles) was obtained by 

using the fibre model of chapter 6 as a model for a central integration 

centre, assuming mean arrival time dispersion of 0.8 ms among the 

inputs. 

To bring the model and data into closer agreement, larger standard deviations may be used for 

spike position jitter to shift the curves upward. Alternatively, higher stimulus intensities shift 

the measured curves downwards (Pfingst, 1988). Unfortunately, it is unknown at which 

stimulus intensities the data were measured. 

In contrast to the predictions obtained with equation 7.2, Llj saturates at higher frequencies 

with the explicitly modelled fibre output used as input to the Kalman filter. The trend and 
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magnitude of LV at lower frequencies are similar to those of the data. Larger L1j is obtained 

at low frequencies than in the curves predicted with equation 7.2. This is due to increased 

Kalman filter estimation variance, because dual or no spikes occur on some cycles. At higher 

frequencies, temporal jitter at the central integration centre output is smaller than predicted 

by equation 7.2 so that the Kalman filter estimates improve. When the mean arrival times on 

different input fibres to the central integration station differ by more than about 0.8 ms, phase

locking is increasingly lost. Many cycles are then skipped and many dual spikes occur, 

resulting in rapidly increasing Kalman filter estimation variance. 

4 DISCUSSION 

4.1 Justification of assumptions 

The current model rests on two important assumptions. First, it was assumed that the auditory 

system has some way to ensure one spike per stimulus interval across the entire frequency 

range. This assumption idealizes known neurophysiological data. More than one spike may 

occur per stimulus cycle in acoustic stimulation (Rose et aI., 1968) and multiple spikes may 

occur in electrical stimulation (Javel and Shepherd, 2000). Both phases of the electrical 

stimulation waveform may evoke spikes (Van den Honert and Stypulkowski, 1987b) and 

multiple spikes per phase may occur at higher frequencies of pulsatile stimulation (Javel and 

Shepherd, 2000). 

Because of the way that the current model was formulated, the Kalman filter expects exactly 

one spike per stimulus cycle. More than one spike per stimulus interval will be regarded as 

a source of noise. If a small percentage of cycles have either more than one spikes per cycle, 

or some cycles are skipped, the dominant inter-spike interval is still the period of the stimulus 

waveform and the central estimator will make the correct estimate (although with larger 

standard deviation in the estimate). With many cycles not conforming to the one spike per 

cycle assumption, the central estimator may make an incorrect estimate of the input frequency. 

A higher likelihood exists that this will happen for electrical stimulation, as spikes may occur 

on both phases of the stimulus waveform. 
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Nonetheless, the model may still explain the observed frequency difference limens, because 

frequency discrimination measurements are differential and do not measure the absolute 

frequency perceived. The close correlation between the predicted and measured acoustic 

frequency discrimination thresholds suggests the possibility that a central representation of 

the pure tone exists that is equivalent to the one spike per stimulus interval assumption. This, 

however, is not what the model intended to prove. Rather, the intention was to show that 

frequency discrimination thresholds for both acoustic and electrical stimulation could be 

explained by spike position jitter in a phase-locked response. 

The second assumption was that, because many fibres fire in phase as a result of electrical 

stimulation, the net result at the central auditory estimator would be a desynchronization of 

spike trains, rather than improved synchronization. It is unknown whether data exist which 

support this hypothesis. Available data seem to refute this notion. The cochlear nucleus (eN) 

exhibits greater response diversity than the auditory nerve (O'Leary et aI., 1995). Some fibres 

display phase-locking to the stimulus, while the responses of other fibres are more complex. 

eN fibres that do phase-lock exhibit very little temporal dispersion of spikes for electrical 

stimulation (Javel and Shepherd, 2000). 

However, as it is not known what the central representation of frequency is, to search for spike 

trains at the eN output that exhibits larger spike position jitter for electrical stimulation than 

for acoustic stimulation may be fallacious. It is known that temporal information on the 

auditory nerve is gradually transformed into a rate-place code at higher levels of the central 

auditory system, possibly at the level of the eN (Rhode and Greenberg, 1992). Many auditory 

afferents carrying a phase-lock code converge on eN cells. These fibres should provide at 

least one spike per stimulus cycle on the input to a eN neuronal assembly. The possibility 

exists that the phase-lock code may then be transformed directly into a rate-place code without 

the need for fibres firing at rates up to 5000 Hz. So, not enough is known to be able to prove 

or disprove the second assumption. 

Neither assumption is unrealistic in terms of biological implementation and the results justify 

the two assumptions to some extent. 
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As a final comment, the possibility that the model predictions only hold for frequencies below 

5000 Hz needs to be pointed out, as no phase-locking is observed at higher (acoustic) 

stimulation frequencies. 

4.2 The origin of the shape of the fl.f/f frequency curve 

The .L1f obtained is primarily a tradeoff between two parameters of the model: the number of 

observations and the spike jitter around the preferred phase of the stimulus cycle. 

As explained in chapter 6, to account for psychoacoustic data below 500 Hz, stimulus duration 

T is limited to 100 ms so that the number of observations decreases with lower frequencies, 

which results in a growth in .L1flf at lower frequencies consistent with psychoacoustic data. 

This choice for T is consistent with known auditory integration times (Eddins and Green, 

1995). At these frequencies, .L1flf is determined primarily by the number of observations 

available. At higher frequencies the number of observations in the 100 ms time interval 

grows. For acoustic stimulation, it was found that the number of observations needs to be 

close to N=50 to achieve the same .L1flf values as the psychoacoustic data. Larger N results 

in little further decrease in .L1flf. To account for the data in figure 7.3, the restriction of a 100 

ms time window was lifted and N=50 observations were allowed throughout the frequency 

range. This required a stimulus duration of 500 ms at 100 Hz. 

At higher frequencies (above 500 Hz), the spike jitter becomes a systematically growing 

percentage of the stimulus period. This plays the primary role in the growth of .L1flf at these 

frequencies. It seems that, as long as at least 50 observations are available, the tradeoff 

between the number of observations and spike jitter is not important in electric hearing. Spike 

jitter (because of desynchronization) may be the primary factor that controls frequency 

discrimination. This suggests that auditory integration times may be longer (at low 

frequencies) in electric hearing than in acoustic hearing, but this notion will require further 

investigation. 

Estimates of .L1f using the explicitly modelled central integration centre are realistic at low 

frequencies, suggesting that desynchronization may play a role in determining frequency 
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discrimination thresholds as hypothesized, and that this desynchronization may be in the 0.8 

ms region as modelled. The saturation of the predicted Llj curve is because of reduced jitter 

at the output of the central integration centre and may indicate shortcomings in the fibre 

model. The integration centre receives more spikes on its inputs at higher frequencies, but it 

is possible that not all of these are useful in the generation of the output spike train, and that 

the model does not allow for this adequately. It is also known that spike position jitter 

increases with higher frequencies in electrical stimulation (Javel and Shepherd, 2000), which 

would result in increased Llj at high frequencies, but the model did not take this into account. 

4.3 What do cochlear implants teach us about the coding of frequency in the 

auditory system? 

Psychoacoustic data from cochlear implants seem to refute the idea that temporal coding 

mechanisms are utilized by the central auditory system to extract frequency information from 

the neural spike train, as the frequency difference limens are much poorer than for normal

hearing listeners, even though there is much more synchronization to the stimulus waveform 

in electrical stimulation. The current model demonstrates (with reasonable assumptions) that 

a central auditory estimator that uses inter-spike intervals to calculate frequency may fare 

worse with electrical stimulation than with acoustic stimulation. This is consistent with 

psychoacoustic data. So at least the current model indicates that we cannot rule out temporal 

mechanisms as a mechanism for frequency coding. 

It is known that cochlear implant signal processing strategies based on preserving the temporal 

pattern (e.g. CIS) are generally more successful than strategies based on vocoders (e.g. 

SPEAK) (Loizou, 1999), which supports the argument in favour of phase-lock coding. 

Also, recent studies have shown that fewer channels in a speech processor can lead to equally 

good or better speech discrimination (Fishman et aI., 1997), but if fewer than 4 to 6 channels 

are used, performance drops. The interpretation is that the actual number of independent 

information channels in an implant is probably not more than 4 to 6. Also, because higher 

stimulation rates can be achieved with fewer activated electrodes (Shannon et aI., 1990), the 
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temporal characteristics of the signal are preserved better. Thus, evidence suggests that good 

spatial resolution is not achieved in cochlear implants, but also that preservation of the 

temporal waveform is important in cochlear implants. 

Conversely, it has been shown in many pitch discrimination or electrode discrimination 

experiments (Nelson et aI., 1995; Pfingst et aI., 1999), where a fixed stimulation frequency 

was used on various electrodes, that cochlear implant users can discriminate between 

electrodes. Furthermore, pitch estimation experiments show that implant users can assign pitch 

to electrodes in a systematic fashion (Dorman et aI., 1994) which follows the tonotopical 

arrangement of the cochlea. Spikes are entrained to the stimulus in electrical stimulation 

(Javel, 1990), so if the phase-lock code was the only mechanism operating in frequency 

discrimination or pitch perception, stimuli on all electrodes would have had the same pitch. 

So electrode discrimination and pitch estimation experiments provide convincing arguments 

in favour of the rate-place code. 

It is concluded that cochlear implants have not yet provided the final answers to the question 

of the coding of frequency in the auditory system. 

4.4 Implications for cochlear implants 

It is far easier to get high temporal resolution in electrical stimulation than it is to get high 

spectral resolution. Current spread from electrodes limit spectral resolution (Kral et aI., 1998). 

New electrode designs may limit current spread (Cords et aI., 2000), but certain physical 

limitations on electrode design remain. For example, maximum safe levels of charge density 

exist (Shannon, 1992). On the other hand, there are no basic technological limitations on 

increasing the stimulation rate. However, neural threshold adaptation may occur for high 

stimulation rates (above 400 pulses per second per channel), which suggests that higher 

stimulation rates may not be beneficial and may even degrade speech recognition performance 

(J avel and Shepherd, 2000). Still, the success of temporal pattern based strategies for cochlear 

implants like CIS is encouraging and warrants further study. 
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5 CONCLUSIONS 

(1) To be able to predict frequency difference limens for acoustic stimulation, an 

important assumption is that one spike per stimulus cycle is available, which may be 

provided by the existence of a volley principle. The volley principle may be 

implemented by the cochlear nucleus, where neurons have been found that can 

improve temporal precision by combination of a number of auditory nerve inputs 

(Moller, 1999). 

(2) An additional assumption is required in order to predict frequency difference limens 

for electrical stimulation of the auditory system. It is assumed that because many 

fibres fire on exactly the same phase of the electrical stimulation waveform, 

desynchronization results at a central auditory nervous system integration centre, 

which in turn leads to degradation in frequency discrimination. 

(3) Psychoacoustic data from cochlear implants show that both mechanisms for the coding 

of frequency information in the auditory system are equally likely. Thus, though 

cochlear implants may provide a tool to solve this problem, they have not yet provided 

the final answer to the question of coding of frequency in the auditory system. 
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CONCLUSION 

This thesis intended to contribute to the understanding of the processing of sound in the central 

auditory nervous system, for both acoustic and electrical stimulation of the auditory system, 

through cochlear implant psychoacoustic research and modelling of the auditory system. A 

central hypothesis was that the same underlying mechanisms are responsible for sound 

perception in electric and acoustic hearing. 

Both temporal (chapters 6 and 7) and spatial (chapters 3, 4 and 5) models were considered for 

acoustic (chapters 3, 5 and 6) and electric (chapters 4 and 7) hearing. In simple terms, the idea 

was to create a more comprehensive and integrated "picture" of what is known about the 

auditory system under both acoustic and electrical stimulation. The picture painted in this thesis 

is far from complete (see figure 3.1) and is really only a starting point in this mammoth task. 

The problem is multidimensional, as was illustrated in figure 1.3. The gaps in the "picture" are 

immediately evident, and even where chapters in this thesis have started to fill these gaps, it is 

not comprehensive by any means. 

1 DISCUSSION OF HYPOTHESES 

Qualitative proof of the hypotheses made in chapter 1 have been demonstrated in chapters 2 

to 7. It is not possible prove each hypothesis conclusively, as is dicussed below. 

1.1 Hypothesis 1 

The primary hypothesis was that the same underlying mechanisms are responsible for sound 

perception in electric and acoustic hearing. It was shown that an acceptable model for acoustic 

hearing can predict psychoacoustic data from electric hearing when the model input is adjusted 
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in an appropriate way. Spike train statistics were different for the models of acoustic and 

electric gap detection. It was assumed that strong phase-locking occurs in electrical 

stimulation, while Poissonian statistics were assumed for acoustic stimulation. Furthermore, 

tuning (as reflected by Hm in equation 3.5) in the acoustic model was replaced by a model for 

current spread (paragraph 2.4.1 of chapter 4). 

A classical signal detection theoretical model for acoustic gap discrimination and gap detection 

was created in chapter and equation 3.37 was obtained as the final expression for the gap 

detection threshold. The same principles used in chapter 3 were then applied in chapter 4 to 

obtain an expression for the gap detection threshold. A general result is given by equation 4.8, 

which may be compared to equation 3.37, but the final result is not in closed form. Paragraph 

2.3 of chapter 4 gives the procedure for calculating the gap threshold for electric hearing. 

Paragraph 3 in chapter 3 and paragraph 3 in chapter 4 show that gap detection data in both 

acoustic and electrical stimulation can be predicted by the same model if appropriate 

adjustments are made to the model input. This provides qualitative proof of hypothesis 1. 

1.2 Hypothesis 2 

It is conceivable that the brain employs prior knowledge to estimate input signals. A secondary 

hypothesis of this thesis was that an internal model (or an analysis-by-synthesis mechanism) 

may be used to implement detection and discrimination tasks in the auditory system. The 

Kalman filter discussed in chapters 6 and 7 is one example of such an internal model, while the 

related Markov model approach in chapter 5 is also a form of an internal model. The Kalman 

filter model is particularly attractive for several reasons. First, it is a simple recursive 

mechanism that does not require storage of information (as opposed to template-matching 

models, e.g. Gerson and Goldstein, 1978) but requires only prior knowledge of the dynamics 

of expected speech or environmental sounds. This may be learnt by learning to create speech 

sounds and by being exposed to speech and environmental sounds. Second, the Kalman filter 
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provides optimal tracking ability, i.e., when a sound has rapid transitions and given that the 

auditory system cannot react instantaneously to changes (see, for example, Zhang et aI., 1990), 

the Kalman filter will lock onto new sounds faster than any other tracking mechanism. 

This thesis has not proven conclusively that the auditory system uses an internal model to 

estimate sounds, but it has been shown by example (chapter 6) that a Kalman filter model that 

uses temporal information in spike trains can predict many of the characteristics of frequency 

discrimination data (figures 6.5 to 6.7). 

Chapter 5 showed that a second kind of internal model, where signal dynamics are modelled 

by a Markov process, can also predict some of the characteristics of frequency discrimination. 

The Markov model assumes prior knowledge of state transition probabilities, where the states 

in this instance was the frequency of the pure tone input to the auditory system. This model 

was based on spatial information and its predictions are shown in figure 5.6. 

1.3 Hypothesis 3 

It was hypothesized that the same underlying mechanisms may be responsible for what is 

usually interpreted as "temporal" or "spatial" mechanisms. This is proved by examples. Gap 

detection thresholds (chapter 2), which have traditionally been explained in terms of temporal 

mechanisms, are explained in terms of spatial mechanisms (chapters 3 and 4; see for example 

figures 3.6 and 4.22) in this thesis. The auditory interpretation of frequency information, for 

which the underlying mechanisms are more controversial (e.g. Moller, 1999), is perhaps 

explained more often in terms of spatial mechanisms. However, here it is shown that frequency 

discrimination data may be explained in terms of either spatial (chapter 5) or temporal 

mechanisms (chapters 6 and 7; see for example figures 5.6 and 6.5 to 6.7). 

1.4 Hypothesis 4 

The hypothesis that electrode interaction can be measured with gap detection was investigated 
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in chapters 2 and 4. It was shown that gap thresholds increase as two electrode pairs that 

generated the marker stimuli were separated (figures 2.2 to 2.4). This was ascribed to 

increasingly disjunct excitation of neural populations as the electrode pairs were separated. 

Although these data should be interpreted with some care (as discussed in the introduction of 

chapter 4), it was shown in a model (chapter 4, paragraph 2.3) that across-channel spatial 

mechanisms may be responsible for gap detection thresholds under these conditions (e.g. figure 

4.22). This does not prove that gap detection thresholds provide a reliable measure for 

electrode interaction, but the similarities between measured electrode discrimination data and 

electrode discrimination predicted from estimated current distributions (paragraph 3.3 in 

chapter 4) provide some support for the notion. 

2 RESEARCH CONTRIBUTION 

Apart from the hypotheses discussed in the previous paragraph that provided the central 

themes of this thesis, many findings were described in the self-contained chapters. Each chapter 

investigated a particular aspect, and the most important findings are summarized in this 

paragraph. These findings constitute a large part of the research contribution of this thesis. 

(1) It was found that gap detection thresholds in electric hearing are a function of the 

physical separation of the electrode pairs used for the two stimuli that bound the gap. 

Gap thresholds increase from a minimum when the two stimuli are presented on the 

same electrode pair to a maximum when the two stimuli are presented on widely 

separated electrode pairs. This change may be due to a change-over from a peripheral, 

within-channel gap detection process for closely spaced electrode pairs to a central 

across-channel process for widely spaced electrode pairs. This suggests that gap 

detection thresholds may be used to measure electrode interaction, a notion that was 

made explicit in paragraph 3.3 of chapter 4. 

(2) The extent of neural activation by each electrode probably varies across subjects and 
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across electrodes. For the three subjects in chapter 2, it seems the better implant users 

exhibit sharper tuning as measured with gap detection, although not enough data was 

available to confirm this (paragraph 4.1, chapter 2). 

(3) Using stimulation modes with larger separation between active and reference electrodes 

has limited effect on spatial selectivity (paragraph 3.3 in chapter 2) 

(4) The Cramer Rao Lower Bound for the Poisson change-point problem, which appears 

not to be documented in literature, was derived in chapter 3 (equation 3.28). The result 

is intuitively satisfying. 

(5) A model for acoustic hearing that can predict the U-shaped curves found in across

channel gap detection (chapter 3, paragraph 3) has been created. The model is based 

on statistical signal detection theory considerations. 

(6) This model shows that spatial mechanisms, as opposed to temporal mechanisms, may 

contribute to gap detection thresholds in the across-channel condition (paragraph 4.2, 

chapter 3). This is important in cochlear electrical stimulation, where spike trains are 

strongly phase-locked to the stimulus. 

(7) The acoustic gap detection model of chapter 3 could predict realistic gap detection 

thresholds in auditory electrical stimulation (figure 4.22) when appropriate input spike 

train statistics (paragraph 2.3, chapter 3) and model parameters (paragraph 2.4, chapter 

3) were used . 

(8) Predictions for the current distribution in the cochlea of a specific implant user can be 

obtained from the gap detection tuning curves (paragraph 3.2, chapter 4). It is not 

known how accurate these predictions are, but they do show trends similar to those 

found in current distribution measurements (figure 4.32) and the predicted length 

constants of 0.5 mm to 3 mm correlate well with measured data quoted in literature. 
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Predictions of electrode discrimination show some similarity with electrode 

discrimination data (paragraph 3.3, chapter 4), although these predictions do not 

correlate well with measured data in two out of three subjects. It was shown that 

electrodes spaced closer than 1.5 mm are not discriminable. 

(9) The sharp tip seen in some gap tuning curves in electric hearing is possibly obtained 

when entrainment is close to 100%, when the primary factor determining gap 

thresholds is probably the temporal dispersion of spike placement in response to a 

stimulus pulse (paragraph 2.3.1, chapter 4). 

(10) The shallow bowl portion of the gap tuning curve in electric hearing is probably 

obtained when entrainment is not close to 100%, when gap thresholds are probably 

determined by standard deviation of the inter-spike interval pdf (paragraph 2.3.2.2, 

chapter 4). 

(11) The primary factor determining gap thresholds in electric hearing is probably the shape 

of the current distribution (paragraph 3.1, chapter 4). Modelling results suggest that 

exponential current decay is not a good model of current distribution in the cochlea 

(figures 4.26 to 4.28). Possibly, for bipolar stimulation, sharper current peaks are 

obtained close to the electrode (figures 4.26 to 4.28; figure 4.32). 

(12) It was shown that an internal model based or analysis-by-synthesis mechanism may 

be used to explain frequency discrimination data in acoustic hearing (paragraph 3, 

chapter 6). The Kalman filter model described here is an explicit implementation of 

an analysis-by-synthesis mechanism which provides the ability to produce numerical 

predictions of frequency discrimination data. 

(13) An additional assumption is required to predict frequency difference limens for electric 

hearing with the temporal model of chapter 6. It has to be assumed that (because many 

fibres fire on the same phase of the electrical stimulation waveform), desynchronization 
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results at a central auditory nervous system integration centre. This will lead to 

degradation in frequency discrimination (paragrap 3, chapter 7). 

(14) Overall, all the models show that human listeners do not make full use of all the 

information relating to frequency or time that is available in the auditory nerve spike 

trains. With certain choices of model parameters, the models can perform much better 

than human listeners (for example, see paragraph 4.8 of chapter 6). 

3 IMPLICATIONS FOR COCHLEAR IMPLANTS 

3.1 Speech processors for cochlear implants 

A trade-off between maximum pulse rate and the number of electrodes exist in cochlear 

implants, and it is still not clear which is more important for improved speech recognition: 

more electrodes, or higher pulse rates? Psychoacoustic data from cochlear implants show that 

temporal and spatial mechanisms for the coding of frequency information in the auditory 

system are both plausible (chapter 7), although a general finding of this thesis is that temporal 

models are not good predictors of some of the psychoacoustic data for electric hearing. 

Specifically, temporal models cannot predict the across-channel gap detection thresholds of 

chapter 2. Although cochlear implants may provide a tool to investigate which mechanisms the 

central auditory nervous system uses to interpret sound, they have not yet provided the final 

answer to the question of coding of frequency information (chapter 7) or time information 

(chapter 4) in the auditory system. 

However, the results of chapters 2 to 4 suggest that it is important to find ways to improve 

spatial resolution of cochlear implants. New electrode designs with improved current focussing 

ability (e.g. Cords et aI., 2000) may provide an indication as to whether less channel interaction 

can be achieved, and whether this will in turn lead to improved speech recognition. 
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3.2 Improved individualized programming of cochlear implants 

It is possible that the number of distinct channels in cochlear implants are small, as shown in 

chapter 2 and as can be deduced from the predicted current distributions in chapter 4. Speech 

processors may be programmed to use a subset of the available electrodes to achieve 

independent channels. Gap detection data (chapter 2) or electrode discrimination data may be 

used to guide decisions on which electrodes to include in a processor. Current distributions 

may be predicted from gap detection data, as shown in chapter 4. If specific electrodes exhibit 

larger current distributions than others, they may be excluded frof!1 a processor. Hanekom and 

Shannon (1996) were able to achieve improved speech recognition scores in cochlear implant 

users by judicious choice of electrodes for a reduced electrode processor. Thus, appropriate 

models that explain how performance in psychoacoustic experiments are related to physical 

parameters, may assist audiologists and researchers in achieving optimal individualized settings 

of cochlear implants. 

4 FUTURE RESEARCH DIRECTIONS 

The gaps in figure 1.3 provide a summary of some research work that needs to be done in 

future studies. 

(1) Spatial models of frequency discrimination in acoustic hearing need to be expanded to 

electric hearing, especially since temporal models do not adequately describe frequency 

discrimination in the electrically-stimulated auditory system. 

(2) The work in this thesis suggests that spatial mechanisms are more likely to explain the 

interpretation of frequency information in cochlear implants than temporal mechanisms. 

Temporal mechanisms cannot predict the gap detection data in chapter 2, and the 

model assumption required in chapter 7 to predict cochlear implant frequency 

discrimination data is disputable. Appropriate models for pitch discrimination (or 

electrode discrimination) and pitch perception in electric hearing need to be developed. 
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Although not discussed in this thesis, it is still not clear how spatial and temporal 

mechanisms co-operate to create the pitch sensation in either acoustic or electric 

hearing, but cochlear implants provide a unique opportunity to isolate these two 

mechanisms. 

(3) Current distributions estimated from gap detection tuning curves have an intuitive 

appeal, but it is necessary to find ways to prove that predicted current distributions are 

fair reflections of the actual current distributions. Current distributions need to be 

estimated from other psychoacoustic data and compared with distributions estimated 

from gap detection data, but especially current distribution data from cochlear implant 

users are required. Voltage distributions that are often measured (see the references in 

paragraph 3.2 of chapter 4) do not adequately reflect current distributions in the 

cochlea. 

(4) Although it seems that temporal models will not be able to predict gap detection data 

in electric hearing for the across-channel condition, this needs to be investigated 

further, especially since it is possible to predict within-channel gap detection data (not 

shown in this thesis) with temporal models. 

(5) Techniques to implement detection and estimation mechanisms when the spike trains 

statistics are known, is required. Especially, the applicability of the internal model or 

analysis-by-synthesis approach needs to be investigated for more complex signals than 

was done in this thesis. 

(6) An appropriate model for acoustic hearing can predict psychoacoustic data from 

electric hearing when the model input is correctly adjusted. This has been shown to be 

true for gap detection and (perhaps less convincingly) for frequency discrimination. 

This principle has to be applied to expand models to include other psychoacoustic 

phenomena (e.g., forward masking). 
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(7) Finally, as discussed in the previous paragraph, an important outflow of the modelling 

results is that it is necessary to focus research efforts on obtaining better spatial 

resolution in cochlear implants. 
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