
Chapter 6 

A TEMPORAL MODEL OF FREQUENCY DISCRIMINATION 

IN ACOUSTIC HEARING 

The results in this chapter have previously been published: Hanekom, J.J. & Kruger, J.J. 2001, "A model of 

frequency discrimination with optimal processing of auditory nerve spike intervals", Hearing Research, vol 

.151 no. 1-2,pp. 188-204. 

1 INTRODUCTION 

Two mechanisms are hypothesized to be involved in the coding of frequency in the auditory 

system: rate-place coding and phase-lock coding (Dye and Hafter, 1980; Moore and Sek, 

1996; Delgutte, 1997; Moller, 1999). Rate-place coding is a spectral analysis mechanism 

whereby the auditory system may combine firing rate information from nerves originating 

from spatially restricted sections of the cochlea to determine the stimulus frequency. Phase­

lock coding is a temporal mechanism, wherein the auditory system presumably uses the 

synchronization of neural discharges to individual cycles of periodic stimuli as the primary 

cue to determine the frequency of a pure tone. 

Rate-place coding operates over the entire stimulus frequency range, but is usually presumed 

to be dominant for the coding of high frequencies (above about 5000 Hz) (Moore, 1973; Kim 

and Parham, 1991). Phase-lock coding is usually presumed to operate primarily at lower 

frequencies, since phase-locking is progressively lost as stimulus frequency increases above 

about 2500 Hz (Delgutte, 1996). No phase-locking is observed above 5000 Hz (Rose et aI., 

1968; Johnson, 1980). It is possible that both coding mechanisms operate in parallel over a 

large range of frequencies, but it is not known yet to which extent the central auditory system 

uses either mechanism alone or both mechanisms simultaneously to determine the frequency 
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of a pure tone (Dye and Hafter, 1980; Johnson, 1980; Moller, 1999) and there are possibly 

also inter-species differences in the frequency ranges in which the two mechanisms operate 

(Hienz et aI., 1993). 

One motivation for the study of the mechanism used by the central auditory nervous system 

to code frequency is that understanding the mechanism will influence the stimulation 

strategies used in cochlear implant speech processors. It is important to know what 

information transmitted to the electrically stimulated cochlear nerve is perceptually important. 

Two strategies used in current cochlear implant systems reflect two different approaches. In 

the Spectral Peak (SPEAK) strategy (Skinner et aI., 1994; Loizou, 1999), which is based on 

the rate-place mechanism, spectral peaks are extracted and presented to electrodes that are 

arranged tonotopically. In contrast, the Continuous Interleaved Sampling (CIS) strategy 

(Wilson et aI., 1991; Loizou, 1999) uses high pulse-rate stimulation to conserve temporal 

waveform information. 

Several models exist to explain psychoacoustic frequency difference limens (Llf's). These 

models are based on either the extraction of frequency directly from one or more neural spike 

trains (i.e. a temporal approach) (Goldstein and Srulovicz, 1977; Javel and Mott, 1988) or the 

rate-place code (Javel and Mott, 1988), or both mechanisms simultaneously (Siebert, 1970), 

which includes template matching models (Srulovicz and Goldstein 1983; Erell, 1988). All 

these models were based on available neurophysiological data (mostly from cat) and were 

intended to explain psychoacoustic data from neurophysiological data. 

Plausible models should account for the absolute values of the ..df IS and explain the origin 

of the bowl shape of the curve of the Weber fraction (..dflf) plotted as a function of frequency 

(e.g. Moore, 1973; Moore, 1993; Sek and Moore, 1995), without the need to manipulate many 

free parameters to fit the psychoacoustic data. Moreover, Dye and Hafter (1980) have shown 

that for pure tone frequencies in noise at constant signal to noise ratios, Llf grows larger with 

increased signal intensity for frequencies below 2000 Hz, while for higher frequencies Llf 

becomes smaller. 
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A listener's ability to discriminate between two signals is limited by neural noise, i.e. the 

Poissonian nature of the neural spike train (Siebert, 1970; Colburn, 1973; Johnson, 1996). 

Siebert was first to propose the notion that the difference limen in a discrimination task (e.g. 

frequency or intensity discrimination) is equal to the standard deviation in estimating the 

magnitude of the stimulus variable (e.g. frequency or intensity). The implication is that 

estimators may be designed to extract a stimulus variable from its neurally encoded form. The 

difference limen can then be evaluated by applying known bounds on estimation variance or 

by calculating estimation variance. The Cramer-Rao Lower Bound (CRLB) (Kay, 1993) 

provides one such lower bound on the estimation variance of any estimator intended to 

estimate the magnitude of a stimulus variable, but it does not provide clues to the structure 

of the optimal estimator. Many authors (e.g. Siebert, 1970, Goldstein and Srulovicz, 1977, 

Srulovicz and Goldstein, 1983, Wakefield and Nelson, 1985 and Erell, 1988) have used this 

bound to calculate difference limens for various discrimination tasks. Thus, one shortcoming 

of many existing models is that they do not provide a neural mechanism by which the central 

auditory nervous system could implement the psychoacoustic task. 

One conclusion from Siebert's work (1970) was that, using all the temporal information 

available in the set of spike trains of the entire auditory nerve population, the auditory system 

should be able to perform much better on frequency discrimination tasks than what is actually 

observed in psychoacoustic experiments. Goldstein and Srulovicz (1977) proposed a temporal 

model of frequency discrimination wherein frequency is encoded in inter-spike intervals only. 

They demonstrated that with the combination of a small number of fibers, sufficient 

information is available to account for perceptually measured frequency discrimination 

thresholds. Although their model provides acceptable predictions for both absolute magnitude 

of Llf and the shape of the curve of Weber fraction (Llflf) as a function frequency, Goldstein 

and Srulovicz did not consider the effect of intensity of stimulation on frequency 

discriminati on. 

An extension of their 1977 model (Srulovicz and Goldstein, 1983) accounts for a wider range 

of psychoacoustic phenomena. The more complex extended model is a template matching 

model including both temporal and rate-place cues. They concluded that phase-lock coding 
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is a more likely mechanism than rate-place coding for the frequency discrimination task. 

Wakefield and Nelson (1985) extended the temporal model of Goldstein and Srulovicz (1977) 

to include intensity effects. Erell (1988) built on the template matching approach to create a 

rate-place model that could account for frequency discrimination data in noise. 

A recent model by Heinz et al. (200 1) provides an important extension to the work of 

Goldstein and Srulovicz (1977) and Siebert (1970). This model combines computational 

auditory modelling and theoretical calculation of performance limits predicted by signal 

detection theory. A physiologically based computational model that can process an arbitrary 

stimulus is used to produce a time-varying discharge rate. This discharge rate is then used to 

calculate the CRLB or is used in a likelihood ratio test to calculate performance bounds for 

two situations. Frequency discrimination performance is predicted when all information in the 

spike trains are used, and when only rate-place information is used. 

Several noteworthy findings emerged from the Heinz et al. (200 1) study. First, optimal 

processing of rate-place information can predict the absolute values of frequency 

discrimination data, but not the trends. Rate-place predictions are especially poor at high 

frequencies, where the deterioration in human performance is not predicted. Second, 

performance predicted by using all available information (in the spike trains of all fibres) 

shows trends similar to that found in human listeners, although a discrepancy of two orders 

of magnitude exists. Third, the deterioration in human performance at high frequencies is 

predicted accurately when using all available information. As phase-locking is lost above 

5000 Hz, it is usually assumed that rate-place information is responsible for high frequency 

behaviour, but Heinz et al. interpreted these results as suggesting that adequate temporal 

information to account for human frequency discrimination data is available up to at least 

10000 Hz. 

All of these models use statistical optimal processing arguments via the CRLB to arrive at 

closed form expressions for frequency discrimination thresholds. The CRLB gives the 

variance of the minimum variance unbiased estimator and holds for classical estimation 

problems, i.e. where the parameter to be estimated is unknown, but constant (Kay, 1993). 
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When the parameters are allowed to vary according to a known probability density function 

(pdf), Bayesian estimation approaches may provide better estimators as a priori knowledge 

is built into the estimator. The Bayesian estimation approach is used in this chapter. 

Recent neurophysiological data measured by McKinney and Delgutte (1999) provide evidence 

in favour of an inter-spike interval based extraction of pitch or frequency estimation for pure 

tones. Their data show that low-order modes of inter-spike interval histograms (lSI histograms) 

are consistently offset from multiples of the stimulus period. Using this observation, they could 

predict the octave enlargement effect. The octave enlargement effect is the observation that 

listeners judge an octave as slightly larger than a 2: 1 frequency ratio. 

Based on the success of the simple inter-spike interval based model of Goldstein and 

Srulovicz (1977) in predicting the shape and magnitude of frequency discrimination 

thresholds, and motivated by the objective to construct a simple, but optimal frequency 

estimation mechanism that can account for psychoacoustic frequency discrimination 

thresholds, a new model for frequency discrimination is presented in this chapter. The 

objectives with this model are: 

(1) to extend the well-known model of Goldstein and Srulovicz (1977) to account for 

intensity dependence and stimulus duration dependence of the frequency 

discrimination thresholds. The extension is similar to that of Wakefield and Nelson 

(1985), but we approdch the problem from the viewpoint of providing an 

implementation of the frequency estimation mechanism, whereas Wakefield and 

Nelson used the statistical approach described earlier; 

(2) to provide a simple descriptive model of the statistics of phase-locking; 

(3) to construct a central estimation mechanism based on this simple model, by which 

frequency information can be extracted from one or more neural spike trains; 

(4) to demonstrate the role of spatiotemporal integration (Bruce, Irlicht and Clark, 1998) 

or the volley principle (Wever, 1949) in frequency discrimination; 

(5) to demonstrate the role of an internal model in frequency discrimination. 

Of course, the auditory system does not have to extract the frequency of a tone explicitly, i.e. 
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there need not be an explicit representation of the tone somewhere in the central auditory 

nervous system. This paper does not present any hypotheses about the central representation 

of pure tones. 

Also, the auditory system does not necessarily perform its operations in an optimal way. Even 

though the objective in the present paper is to describe a possible structure for an optimal 

frequency estimation mechanism, the emphasis is on the interpretation of the frequency 

discrimination performance of such an estimator and the factors affecting performance, rather 

than on suggesting that such a structure exists in the central auditory nervous system. 

2 METHODS 

2.1 Structure of an optimal processor 

Goldstein and Srulovicz (1977) and Wakefield and Nelson (1985) modelled the spike train 

as a non-homogeneous Poisson process (Johnson, 1996) with the rate parameter being driven 

by a pure tone. The instantaneous spike rate ret) is given by 

ret) = aekG(f,A)cos(2rcjt) , (6.1) 

which is similar to the equations used by Colburn (1973) and Srulovicz and Goldstein (1983). 

f is the stimulus frequency and t is time in this equation. The product factor k G(f,A) is a 

synchrony parameter that depends on the degree of phase-locking to the stimulus. G(f,A) is 

the synchronization index that has been defined by Johnson (1980). The synchronization index 

may take on values between one (all spikes occur on the same phase of the stimulus cycle) and 

zero (when there is no preferred phase for spikes), although the maximum value of G(f,A) is 

0.85 in the current model to fit Johnson's data. Scaling factors a and k are required to fit 

equation 6.1 to measured values of the instantaneous spike rate (Colburn, 1973). The choice 

k = 7.5 is used in the current model, so that the synchrony parameter k G(f,A) has a maximum 

value of 6.4. This is close to the maximum synchrony value of 6.5 in Srulovicz and Goldstein 

(1983) and Wakefield and Nelson (1985). 
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The inter-spike interval distribution of a Poissonian spike train is exponential, and the exact 

form for this pdf is given in Goldstein and Srulovicz (1977) and in Wakefield and Nelson 

(1985). With the pdf known, the CRLB can be used to calculate the variance in estimation 

of the optimal estimator. By modelling the inter-spike intervals differently, constructing an 

optimal estimator for this problem is possible. Phase-locking is the tendency of the spikes to 

cluster around multiples of the stimulus period at a preferred phase. It is assumed that these 

clusters have Gaussian distributions (Javel and Mott, 1988) of which the variance depends on 

the amount of phase-locking. Perfect phase-locking occurs when spikes always occur at the 

same phase and when spikes are also entrained to the stimulus (i.e. spikes occur at each 

stimulus cycle), it is very simple to calculate the stimulus frequency perfectly. Thus the 

distribution of the spikes around the preferred stimulus phase is a source of noise. 

Measurements of inter-spike intervals used to estimate frequency are just noisy measurements 

of the actual period of the stimulus waveform. The problem is similar to the task of estimating 

the value of a dc signal embedded in noise, except that successive samples (each measured 

inter-spike interval is one sample) are correlated pairwise, as will be explained. This problem 

can be solved optimally with a Kalman filter (Kalman, 1960; Kay, 1993; Mendel, 1995). 

Thus, under these circumstances, the structure of the optimal estimator is known. 

2.2 Model of phase-locking 

At high stimulation intensities, for fibres with characteristic frequency (CF) at or close to the 

stimulus frequency, spikes may occur on each stimulus cycle for low frequencies (lower than 

about 1000 Hz), although this is usually not the case and cycles are often missed (Rose et aI., 

1968). Spikes can be very scarce at low intensities or when the stimulus frequency is far from 

the CF of a fibre. Two requirements for creating a realistic model of phase-locking are that 

(1) spikes should cluster around a specific phase of the stimulus cycle, and (2) the model 

should allow for cycles in which no spikes occur. Thus, the expected number of spikes in an 

interval should depend on the stimulus intensity and the closeness of the stimulus frequency 

to the fibre CF. Many complexities of neuronal responses to sound are not explicitly taken 

into account in this model. More than one firing per stimulus cycle is often observed at low 
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frequencies (below about 200 Hz) (Rose et aI., 1968). This results in an additional skewed 

distribution in the lSI histogram, which occurs before the mode at the period of the stimulus. 

The shapes of the modes of the lSI histogram may be non-Gaussian or skewed, especially at 

low frequencies (Rose et aI., 1968). The influence of these idealizations is discussed below. 

Accomodation is not taken into account. 

In the current model, neural spike trains are produced by a spike generator. The number of 

spikes in an interval follows a Poisson distribution, with the average spike rate determined by 

the amount of activation at a specific cochlear place as a result of the stimulus. The average 

spike rate is determined by a model of peripheral auditory filtering (Colburn, 1973; Goldstein 

and Srulovicz, 1983). While the actual number of stimulus cycles receiving spikes is calculated 

according to a Poisson distribution, this does not mean that the spikes are Poisson-distributed. 

Only the number of spikes in an interval is calculated according to a Poisson distribution and 

the spike generator then randomly (with a uniform distribution) places spikes on the correct 

number of stimulus cycles, clustered at a preferred phase. The distribution of spikes is 

Gaussian with standard deviation 

(J = {k _1 arccos (_G-,=,-(f,_,A--,-)_-_1 1_2) 
n 21t/ G(f,A)' (6.2) 

where G(f,A) is the synchronization index, k is the scaling factor as explained before, and f 

is the stimulus frequency. Equation 6.2 was derived from equation 6.1 by equating the value 

of a Gaussian distribution at one standard deviation to ret), solving for t and equating this t 

to an (Appendix 6.A). The factor"[ k is required to rescale an to appropriate values and would 

not have been required if the scale factor k was not used in equation 6.1. Figure 6.1 shows an 

as a function of frequency together with data from lavel and Mott (1988). This standard 

deviation in spike position grows from below 20% of the period of the pure tone stimulus at 

low frequencies to 35% at 5000 Hz. (Typical spike trains for pure tone stimuli of 1000 Hz and 

5000 Hz are shown in figure 6.4). 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 162 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

1.6 en g 
c 0.8 
0 

:;::; 
ro 
'5 0.4 Q) 
"0 

"E 
0.2 ro 

"0 c 
ro 
en 0.1 

100 200 500 1000 2000 5000 8000 

Frequency (Hz) 

Figure 6.1. 

Standard deviation an of spike clusters around the preferred stimulus 

phase (solid line) as calculated from equation 6.2 is shown together with 

data on the standard deviations of peaks of inter-spike interval 

histograms (filled circles) from Javel and Mott (1988). 

The synchronization index G(f,A) is a function of both frequency and intensity. G(f,A) may 

be written as the product of two factors, G(f,A) = Gif) GiA), where A is intensity in dB SL 

andfis frequency in Hz. Gil) is given by 

G (j) = 0.85 
1 ~' 1+ -L 

3500 

(6.3) 

and GiA) is given by 

- 0.6 . (6.4) 

Equation 6.3 and equation 6.4 are curve fits to typical values of synchronization index as a 

function of frequency and intensity respectively. In equation 6.4, K is a sensitivity constant 

which controls the threshold of the model fibre. H is a tuning constant that takes on a 
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Figure 6.2. 

Synchronization index as a function of frequency. The solid curve was 

calculated from equation 6.3. Filled circles are data from Johnson (1980) 

and open circles are data from Javel and Mott (1988). 

maximum value of 1 when the model fibre has CF at the stimulus frequency. It is assumed 

that the auditory system uses fibres tuned to the stimulus for temporal estimates of the 

stimulus frequency, so that H=l in the current model. G(f,A) is shown in figure 6.2 as a 

function of frequency at maximum GiA), along with measurements of the synchronization 

index by two authors. G(f,A) is shown in figure 6.3 as a function of intensity at maximum 

Gil), along with neurophysiological data. 

2.3 Model of the pooling of spike trains 

It is assumed that the auditory system has a way in which to combine spike trains from a 

number of fibres to obtain a single spike train that has one spike per stimulus cycle. This 

assumption is an idealization and was made to obtain a simple Kalman filter model, as is 

explained below. This idea is essentially the same as the volley principle of Wever (1949). 

Javel (1990) speculated that the great redundancy in auditory nerve fibre innervation of the 

inner hair cells may exist to ensure that a spike occurs on every stimulus cycle. Superimposing 
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Figure 6.3. 

The synchronization index G(f,A) is shown as a function of intensity (solid 

curve) at a fixed frequency of 1000 Hz, using equation 6.4 with H=1 and 

K=0.0045. Data from Johnson (1980) is shown for a fibre with CF of 809 

Hz. Filled circles are for a pure tone stimulus at CF, while open circles 

are for a 1162 Hz stimulus. This fibre had a detectable synchronized 

response at -15 dB SPL, and this was used as the threshold value. 

a number of spike trains results in clusters of spikes, with cluster centers spaced 

approximately 1/j apart. If more spike trains are superimposed, estimates of the cluster 

centers become more accurate, resulting in more accurate estimates of the actual stimulus 

period. 

A very simple model of the combining of spike trains across fibres is proposed. The task of 

a pooling or integrating neuron is to recognize clusters of spikes and to generate a spike to 

"mark" each cluster. This may be achieved by an integrating neuron which fires when a 

number of incoming spikes arrive on its dendrites (as postsynaptic potentials) within a certain 

time window. This neuron model is part of the family of integrate-and-fire neuron models 

(e.g. Gabbiani and Koch, 1996). The model incorporates several idealizations as explained 

below. The model assumes that several auditory nerve fibres synapse with the dendrites of a 

single integrating neuron located in the cochlear nucleus (eN). 
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Typical values of postsynaptic potentials, refractory periods and membrane time constants 

were used in the integrate-and-fire neuron model. The membrane time constant T can be 

calculated from the membrane leakage resistance R and the membrane capacitance C as 

T=RC. These parameters vary across a wide range and are dependent on the function, location 

and size of the nerve fibre (Deutsch and Deutsch, 1993). Membrane time constants for onset 

units in the eN may be very short (Rhode and Greenberg, 1992). Values for Rand C from 

Rattay (1999) reduce to a membrane time constant of 1 00 ~s for myelinated auditory nerve 

fibres, while the membrane time constant for a motoneuron in cat may be 2 ms (Aidley, 

1998). A membrane time constant of 0.5 ms was chosen for the neuron model. 

The generation of postsynaptic potentials is a highly non-linear process. Non-linearities 

include that the post-synaptic potential is a function of the amplitude of the presynaptic action 

potential (Aidley, 1998) and that the amplitude of the dendritic potential reaching the soma 

is dependent on the travelling distance from the synapse to the soma and the number of 

dendrite branchings (Deutsch and Deutsch, 1993). The summation of postsynaptic potentials 

is also non-linear (Aidley, 1998). These non-linearities were ignored and the model assumed 

that dendritic potentials reaching the soma have the same amplitude and add linearly. 

Postsynaptic potentials of eN onset units are small with a maximum amplitude of 4 m V 

(Rhode and Greenberg, 1992). A value of 1 m V was used for the dendritic potential at the 

soma as the result of a single spike arriving at a presynaptic terminal. 

The absolute refractory period for cat auditory nerve fibres is no shorter than 0.5 ms, and is 

typically around 0.75 ms (Rose et aI., 1968; Gaumond, Molnar and Kim, 1982). A figure of 

0.5 ms for the refractory period is also consistent with the responses of fibres in the eN 

(Rhode and Greenberg, 1992). This refractory period corresponds to a maximum spike rate 

of 2000 spikes/s, which is higher than the spike rates that auditory nerve fibres are known to 

be able to sustain. Auditory nerve fibres may attain these high firing rates in the first 10 ms 

after a stimulus, after which the rate declines (Rattay, 1990). The model assumes an absolute 

refractory period of 0.5 ms, but does not incorporate a relative refractory period. 

The input to an integrating neuron in the eN is a number of postsinaptic potentials arriving 
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on its dendrites as a result of presynaptic spikes. The response properties of onset units in the 

CN are thought to be the result of convergence of several auditory nerve fibres (Rhode and 

Greenberg, 1992). The current model has 40 fibres converging onto the integrating neuron. 

Although phase-locked auditory nerve fibres do not necessarily fire at the same preferred 

phase, it is assumed here that the dendritic potentials arriving at the soma have approximately 

the same preferred phase (or that mean arrival times from different inputs do not differ too 

much). Synchronization may be achieved by variations in dendritic architecture and 

properties. Passive properties like dendrite branching patterns, dendrite length, and location 

of synapses are thought to support information processing operations (Koch, Poggio and 

Torre, 1982). Voltage-gated channels in dendrites (Cook and Johnston, 1999) may also play 

a role in supporting or counteracting synapse location-dependent properties of dendritic 

potential propagation. The fibre model used has less output spike jitter than input spike jitter, 

even for moderately different mean arrival times. This is consistent with the study of Marsalek 

et al (1997), who found that output jitter is less than input jitter under a wide range of 

conditions. 

Each input spike is represented by a dendritic potential of 1 m V at the soma that decays 

exponentially with the membrane time constant of 0.5 ms. A fixed fibre threshold is assumed 

10 mV above the resting potential (Johnston and Wu, 1995) and when the threshold is 

reached, the fibre generates a spike with probability one. During the absolute refractory period 

of 0.5 ms after the generation of a spike, the membrane potential decays according to its time 

constant of 0.5 ms and input spikes are ignored. 

Simulations with this model at 60 dB SPL showed that the spike train at the output of the 

integrating neuron has a Gaussian distribution around the preferred phase. The maximum 

firing frequency is around 2000 Hz for this model. Across the frequency range up to 2000 Hz, 

the model generates a spike train with exactly one spike per stimulus cycle on most cycles, 

but in some cycles two spikes occur and in others none. The probability of obtaining two or 

more consecutive stimulus cycles without spikes is less than 10% and cycles with more than 

two spikes did not occur in simulations. Simulations show that at 300 Hz, two or more 

consecutive stimulus cycles without spikes or two spikes per cycle occur for less than 2 % of 
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stimulus cycles. The probability of single cycles with no spikes is 20% at 300 Hz, 2% at 600 

Hz and below 1 % at 1000 and 2000 Hz, while no dual spikes occur at 600 Hz or above. 

These results suggest that it should be possible for the central auditory system to obtain spike 

trains which fire regularly on each stimulus cycle across a frequency range limited to a 

maximum of 1000-2000 Hz, with only a small percentage of cycles in which no spikes or dual 

spikes occur. Candidates for the function of pooling spike trains are the onset locker cells in 

the CN, which can fire once per stimulus cycle for frequencies up to 1100 Hz (Langner, 1992; 

Rhode and Greenberg, 1992). 

As will be shown, when the proposed model of spike train pooling was used to generate an 

input spike train for the proposed Kalman filter model, it was found that at low frequencies 

the standard deviation in estimation is much larger than for the condition of exactly one spike 

per stimulus cycle. The reason is simply that the state space model as formulated below only 

allows for the one spike per stimulus cycle condition. However, it is possible to formulate 

more complex Kalman filter models than the model proposed here to contend with missing 

spikes or dual spikes. As will be explained in the discussion, a more complex Kalman filter 

structure with more realistic spike train input will lead to the same conclusions than a simpler 

Kalman filter that has to contend with the idealized situation of exactly one spike per stimulus 

cycle. This idealization was used in the current model. As further motivation for using this 

assumption in subsequent calculations, we remark that a simplifying assumption like this is 

often made to circumvent extraneous issues that may obscure understanding of the primary 

signal processing task that the system being modelled has to perform. 

An additional motivation for not using the pooling model in subsequent calculations is that 

the model is constrained to frequencies below 2000 Hz. As phase-locking is known to operate 

up to 5000 Hz, it was assumed for modelling purposes that it is possible to obtain exactly one 

spike per stimulus cycle up to and beyond 5000 Hz. It must be emphasized that no known 

fibres can fire at this rate. Nonetheless, it is interesting to consider the Kalman filter model 

results at higher frequencies where phase-locking still operates. As elaborated later, the 
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Figure 6.4. 

Panels (a) and (c) show spike trains typical of those used as inputs to the 

Kalman filter for stimuli of 1000 Hz and 5000 Hz respectively. Note that 

different scales are used on the time axes. The time window is 25 cycles of 

the pure tone stimulus for both frequencies. One spike was generated per 

stimulus cycle. Spikes had a Gaussian distribution around a preferred 

phase of the stimulus. The standard deviation in spike position is 18 % of 

the period of the pure tone stimulus at 1000 Hz and 35% at 5000 Hz. 

Pooled spike trains from 15 fibres are shown in (b) and (d). Phase locking 

is evident in the pooled spike train for the 1000 Hz stimulus (b) but is 

difficult to see for the 5000 Hz stimulus (c) because of the large spike 

position jitter around the preferred phase. 

phase-lock code may be transformed directly into a rate-place code without the need for fibres 

firing at high rates. 
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To summarize, spike trains were not combined explicitly for the results presented in 

subsequent sections. It was assumed that one spike per stimulus cycle was available. 

Furthermore, improvement of estimates because of superposition was not taken into account, 

i.e. the spike standard deviation specified in equation 6.2 was used. Typical spike trains are 

shown in figure 6.4. 

2.4 Design of the optimal estimator 

When the simplifying assumption of one spike per stimulus cycle is used, the only difficulty 

in formulating the Kalman filter arises from the fact that the measurement noise is coloured, 

i.e. there is correlation between samples. This is demonstrated below. The state equations 

describing the system and measurement are: 

x(k+ 1) = ax(k) + bw(k) 

z(k+ 1) = x(k+ 1) + v(k+ 1) , 

(6.5) 

(6.6) 

where equation 6.5 is the system equation and equation 6.6 is the measurement equation. 

Here x(k) is the current inter-spike interval, x(k+ 1) is the next, and w(k) is the system noise. 

The system equation models the dynamics of the "signal" x(k). If we expect the inter-spike 

interval to remain constant, we may assume a=1 and b=O. z(k) is the noisy observation of the 

period x(k), with v(k) the measurement noise. 

The current inter-spike interval clearly depends on both the placement of the current spike and 

the previous spike: 

v(k) n(k) - n(k-l) , (6.7) 

where n(k) is the noise in the placement of the spike around the preferred stimulus phase. This 

is consistent with the neurophysiological data of McKinney and Delgutte (1999), which show 

a clear dependence between consecutive inter-spike intervals. The variance of n(k) is Gn
2

• 

Noise is correlated between consecutive samples, i.e. the value of v(k) depends on the value 
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of v(k-l). Correlated noise is dealt with by augmenting the system and measurement 

equations. v(k) is eliminated and the system and measurement equations are rewritten in terms 

of the noise n(k) of which the statistics are assumed to be known. If we let 

x1(k) = -n(k-l) , (6.8) 

the system equation can be rewritten as a set of two equations: 

[
X(k+ 1)] [a 0] [X(k)] [bw(k)] 
x1(k+ 1) = 0 0 x

1
(k) + -n(k) . (6.9) 

The measurement equation becomes 

z(k+ 1) [
X(k+ 1)] 

[1 1] xl(k+l) + n(k+l) . (6.10) 

Clearly, the system and measurement have correlated noise. With the augmented system and 

measurement equations having been obtained, the Kalman filtering equations are defined in 

the usual way to obtain recursive estimates for the period x(k). The Kalman filtering 

equations are well-known (Kay, 1993; Mendel, 1995) and are not repeated here. 

The Kalman filter is characterized by two parameters, the system noise aw
2 and the 

measurement noise a/. The choice of these parameters is based on physiological 

considerations as described below and the model then predicts frequency discrimination 

performance very close to perceptual performance. As will be explained later, other choices 

of these two parameters may lead to frequency discrimination performance far exceeding that 

observed in humans. 

2.5 Choice of Kalman filter parameters 

The measurement noise an 2 is simply the variance of the spike distribution around the 
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preferred phase of a stimulus cycle. The system noise aw
2 models the dynamics of the process 

that generates the stimulus. If the Kalman filter is optimized for a pure tone stimulus (a dc 

value), aw
2 may be set to zero. This, however, makes the Kalman filter slow to react to 

variations in stimulus frequency as the filter does not "expect" changes. Gap detection 

thresholds (Zhang and Salvi, 1990; Eddins and Green, 1995) provide a clue of how to choose 

more realistic values of aw
2

• The usual explanation of gap thresholds is that the gap is filled, 

perhaps by the ringing of a cochlear filter (Shailer and Moore, 1987), but gap thresholds are 

not determined by processing at the auditory periphery alone (Forrest and Formby, 1996). A 

central observer may not be the primary factor limiting gap detection performance, but at 

least, the Kalman filter tracking response should be faster than that shown by the neural 

response as determined by Zhang and Salvi (1990), or otherwise the central observer will 

introduce even longer gap thresholds. 

The variance of the frequency estimate depends on the system noise. A gap can be detected 

only when the frequency estimate (during the gap) changes by a value greater than the 

standard deviation aw' Variance aw
2 may be chosen as zero, but then the response of the filter 

is too slow and the filter response fills gaps longer than the 2 to 3 ms observed in humans 

(Eddins and Green, 1995). A tradeoff exists between frequency discrimination thresholds and 

gap detection thresholds. Larger system noise variance aw
2 will allow shorter gaps to be 

detected, but introduces more estimation variance, which leads to larger estimates for Llf, 

inconsistent with measurements. Simulations indicate values of aw
2 to the order of 10-12 to be 

consistent with both Llj measurements and gap detection thresholds. 

2.6 Simulations 

In simulations, inter-spike intervals were used as the noisy observations z(k) of the periodx(k) 

of the stimulus. These inter-spike intervals were used as input samples to the Kalman filter. 

Estimates were obtained for frequency by observing the spike train from a single fibre under 

the assumption that one spike per stimulus cycle was available. Spikes were placed according 

to a Gaussian distribution with standard deviation an , the standard deviation of the 

measurement noise n(k). 
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Llf was assumed to be equal to the standard deviation in the frequency estimate, following 

Siebert (1970) and several other authors after him. The standard deviation in the frequency 

estimate was obtained by repeating the pure tone stimulus of duration Tmany (typically 200) 

times and calculating the standard deviation of the frequency estimate at a specific time. This 

time was either at the end of the interval T or after 50 observations of z(k), as will be 

explained in the discussion. Values of Llf were obtained as a function of stimulus frequency, 

intensity and duration. 

3 RESULTS 

3.1 Llf/f as a function of frequency 

Figure 6.5 shows the normalized frequency difference limen (Llflf) as a function of frequency 

as predicted by the model. Parameters are indicated in the caption of the figure. Frequency 

discrimination data as measured by Sek and Moore (1995) are plotted on the same axes. The 

shapes of the two curves are very similar, and both reach minima at 500 Hz. The absolute 

values of iJflf as predicted by the model correspond well to measured values across the entire 

frequency range, except at 10000 Hz, where the model predicts frequency discrimination that 

is superior to the psychoacoustic data. 

3.2 Llf as a function of intensity 

Figure 6.6 shows the model predictions for iJf as a function of intensity A. For intensities 

below 30 dB SL, Llf decreases monotonically with increasing intensity. As intensity grows 

above 30 dB SL, the curves level off. For these simulations, it was assumed that the auditory 

system has access to one spike per stimulus cycle at all intensities down to threshold. Model 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 173 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

0.04 

~ 
~ 0.02 c 
Q) 

~ 
Q) 0.01 
(.) 

0.008 c 
~ 
~ 
:.c 0.004 
"C 
Q) 

.!:::! 
m 0.002 E .... 
0 z 

0.001 
100 200 500 1000 2000 5000 8000 

Frequency (Hz) 

Figure 6.5. 

Values of the frequency difference limen L1f expressed as a proportion of 

frequency (L1flf) are plotted as a function of the frequency of a pure tone 

stimulus on logarithmic axes. Open circles are model predictions, while 

closed circles are the perceptual frequency discrimination data of Sek and 

Moore (1995) and closed squares are the data of Moore (1973). 

Parameters of the Kalman filter were a/ =10-12 and A=60 dB SPL. The 

measurement noise variance an 2 was a function of frequency as shown in 

figure 6.1. 

predictions are compared with data from Wier et al. (1977) at two frequencies. The model 

predictions are consistent with the psychoacoustic data in both absolute values and in shapes 

of the curves. The model prediction at 300 Hz was shifted right by 4 dB to fit the data of Wier 

et al. at 200 Hz, and the prediction was shifted to the right by 8 dB for the 1000 Hz stimulus, 

but no other scaling was done on either curve. 

The shape of the L1j intensity curve is sensitive for the slope of the synchronization index as 

a function of intensity (figure 6.3), especially at lower frequencies where fewer observations 

are available for a given stimulus duration T. This is because an decreases monotonically as 

synchronization index increases. To account for high L1j 's at low intensities, it is a 

requirement that the synchronization index approaches zero as intensity approaches threshold. 

This is consistent with the data in Johnson (1980). 
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Figure 6.6. 

The effect of stimulus intensity (dB SL) on the frequency difference limen 

Llfis shown for two frequencies. Open circles and open squares are model 

predictions at 200 Hz and 1000 Hz respectively, while filled circles and 

filled squares are perceptual frequency discrimination thresholds (Wier 

et a!., 1977). The system noise parameter of the Kalman filter was aw
2 =10-

12, while measurement noise parameter 0;,2 was a function of frequency as 

shown figure 6.1. 

3.3 ilflf as a function of duration 

The effect of duration on the relative frequency difference limen eLl/if) is shown in figure 6.7. 

This is compared with psychoacoustic data obtained by Moore (1973). The model does not 

fit the data perfectly, but demonstrates the same trends. At short durations, model predictions 

for frequency discrimination thresholds are inferior to psychoacoustical performance. 

The slopes of the curves are steeper than the psychoacoustic data at short durations, but slope 

decreases with higher frequencies, which is consistent with the data. Both the model and the 

data show that an increase in signal duration results in improved performance, until a limit 

in duration is reached after which performance levels off. The models of Srulovicz and 
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Figure 6.7. 

A temporal model offrequency discrimination in acoustic hearing 
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Frequency difference limen (Llf), expressed as a proportion of frequency 

(Llflf), is plotted as a function of duration T of the pure tone stimulus on 

logarithmic axes. The parameter is frequency. Open symbols are model 

predictions, while filled symbols are perceptual frequency discrimination 

data of Moore (1973). The frequencies used are 250 Hz (. and 0), 500 Hz 

(_ and D), 1000 Hz (+ and 0) and 2000 Hz ( ... and ~). Kalman filter 

parameters are the same as in the previous figures. 

Goldstein (1983) and Wakefield and Nelson (1985) do not predict this effect, but continue to 

improve with longer stimulus duration. These authors had to introduce a cutoff time for the 

maximum duration useful to the central auditory nervous system for estimating the signal 

frequency, but were not able to assign a single value for cutoff time. The results from the 

current model suggest that a fixed number of observations (a fixed number of inter-spike 

intervals, assuming one spike per stimulus cycle), and not a fixed duration, are required to 

achieve an optimal estimate of each frequency. The required number of observations is 

estimated at around 50 from the results presented here. This is why longer durations are 

required to achieve optimal frequency discrimination at lower frequencies. The duration 

required for optimal frequency discrimination decreases monotonically with an increase in 

frequency. 
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3.4 Performance when the one spike per cycle assumption is violated 

The Kalman filter model as formulated assumes that one spike occurs per stimulus cycle. This 

assumption is built into the state space equations. Violations of this assumption, e.g. when 

cycles are skipped, constitute modelling errors rather than additional noise. If the neural 

model of spike train pooling as presented above is used, the possibility exists that this may 

happen. The Kalman filter is very sensitive to modelling errors. When these kinds of errors 

occur the estimator may lock onto an incorrect frequency and the variance in estimation will 

grow. Using the neural spike train pooling model (which allows for missed cycles or more 

than one spike per cycle) over its valid range (up to 2000 Hz), it is found that the shape of the 

iJ.flf curve does not change for frequencies below 1000 Hz, but iJ.flfvalues are generally larger 

by an order of magnitude. As the spike train pooling model generates (with high probability) 

one spike per stimulus interval at frequencies in the range 1000 Hz to 2000 Hz, iJ.flf values 

are comparable to the values obtained under the one spike per interval assumption. 

4 DISCUSSION 

4.1 Nature of the model 

An attractive attribute of the model proposed here is the simplicity. Firstly, Goldstein and 

Srulovicz (1977) used an exponential model (equation 6.1) for the instantaneous spike rate, 

and from this obtained a pdf for the inter-spike intervals from which the CRLB could be 

calculated. Instead of this exponential model the current model simply models the distribution 

of spikes as clusters with Gaussian distributions with standard deviation (In around the 

preferred stimulus phase. Secondly, only first order spike intervals (inter-spike intervals) are 

required to obtain accurate predictions of psychoacoustic data, as has been shown previously 

by Goldstein and Srulovicz (1977) and Wakefield and Nelson (1985). 

Thirdly, a major difference arises with the implementation of the optimal processor; the 

current model provides an explicit mathematical implementation of the optimal processor 
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while previous authors, including Goldstein and Srulovicz (1977 and 1983) and Wakefield 

and Nelson (1985) used the CRLB to calculate .1j without providing an implementation. It 

has to be emphasized that we are not referring to a biological implementation here, but rather 

to the capability of the model to calculate numerical estimates of the stimulus frequency with 

any given spike train as input. This extends previous models which operate on spike train 

statistics only, rather than on the spike trains themselves. Comments on biological 

implementation are given below. 

A primary difference between the approaches in the Heinz et al. (2001) model and the model 

in this chapter is that these authors used statistical estimation theory to calculate performance 

bounds, whereas the models in this chapter and chapter 5 generate non-homogeneous 

Poissonian spike trains as input to an implementation of an optimal estimation mechanism. 

This approach is closer to identifying the actual signal processing that may be performed by 

the auditory system. Furthermore, spike trains need not be observed for long times to gather 

statistical information (e.g. to form lSI histograms), but new estimates are formed in real time 

as new spikes arrive. 

4.2 Significance of the Kalman filter model 

The Kalman filter model for frequency discrimination is a very simple example of what may 

be a more general principle of perception, namely an "analysis-by-synthesis" mechanism for 

perception. The Kalman filter is one of a more general class of estimators which possess an 

internal model of the system that generates the variable to be estimated (i.e. an internal model 

of the signal source). In these estimators, input measurement data are compared to predictions 

generated by the internal model and the prediction error, weighed by a gain, is used to 

improve estimates of the state of the external system, 

i(kl k) = i(klk-l) + K(z(k)-i(klk-l») (6.11) 

In equation 6.11 x(k / k) is the estimated state at the current sample k, given measurements up 

to this sample. z(k) is the measurement at sample k, while x(k / k-J) is the prediction by the 
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internal model of the state at sample k, given data up to the previous sample k-l. The error in 

the prediction z(k)-x(k/k-l) is weighed by a gain K. 

The notions of an internal representation and analysis-by-synthesis have been applied to 

models of thinking and the brain (Maron, 1965), speech perception (Stevens and Halle, 1967; 

Lewis, 1996), rhythm and time perception (Todd, O'Boyle and Lee, 1999) and the integration 

of sensory input and motor control (Wolpert, Ghahramani and Jordan, 1995). As applied to 

speech perception, the analysis-by-synthesis model contends that when a speech sound is 

received, the listener attempts to reproduce it by using an internal model of his own 

production of the sound. This internally generated signal does not activate the musculoskeletal 

system. If the external and internally generated signals match, the perception is accepted as 

correct. 

The Kalman filter is an explicit implementation of an analysis-by-synthesis mechanism which 

provides the ability to produce numerical predictions. The class of estimators to which the 

Kalman filter belongs have a number of characteristics in common. An internal model of an 

external system is present, often in the form of a state space model (such as Eqs. 6.5 and 6.6). 

Calculations are recursive in nature, so that there is no need to store previous values of 

measurements. The gain used to weigh the prediction error follows an exponential-like decay 

profile until it reaches a steady-state value. For linear state space models, the optimal gain 

profile as a function of time is given by the Kalman gain, and the optimal estimator is the 

Kalman filter. Initially, when the first measurement is made, the gain is large, which means 

that the estimator has little confidence in the internal model's estimates and relies primarily 

on the measurements to produce estimates of the unknown variable. While the gain is large, 

the estimator adapts quickly and (if the model is correct) locks onto the variable to be 

estimated. The internal model is trusted increasingly and the measured data are given less 

weight as the gain is reduced. Thus, the estimator "grows in confidence". When the gain has 

reached the steady state value, the noisy measurements still contribute to the estimates, but 

the estimator primarily trusts its internal estimates. This allows the estimator to suppress noise 

in the measurements. 
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The Kalman filter incorporates two sources of noise. System dynamics not explicitly included 

in the state space model are often represented as a system noise parameter, while measurement 

noise characterizes imperfections in the measurement process. The steady state value of the 

Kalman gain is determined by these noise parameters. If the system state to be estimated has 

large variance or fast dynamics, the steady state gain is larger to allow rapid tracking of 

changes. However, larger steady state gain results in larger estimation variance. 

4.3 Comparison between different classes of models of frequency discrimination 

The current model (which provides a numerical implementation) and the statistical models 

of investigators including Siebert (1970), Goldstein and Srulovicz (1977, 1983) and 

Wakefield and Nelson (1985) may be regarded as two different classes of models. A third 

class of models, of which a recent model of McKinney and Delgutte (1999) is an example, 

operates on lSI histograms. The frequency of a pure tone may be extracted from the interval 

between the modes of the lSI histogram. Although this class of models is related to the model 

described in this chapter, they still operate on a statistical representation of spike trains. 

To implement a histogram-based frequency estimation mechanism in neural "hardware" 

would require the central estimator to be able to create and store histograms. Three 

possibilities exist for the central creation of histograms. Either the central estimator will have 

to store the values of a large number of inter-spike intervals over a relatively long period, or 

it will have to pool lSI histograms or spike trains across many fibres. To obtain lSI histograms 

smooth enough to make reasonably reliable frequency judgements will require long spike 

records or the pooling of many lSI histograms across fibres. Pooling lSI histograms still 

requires storage of a large number of inter-spike interval values to form a histogram. 

However, as a stable pitch sensation is formed within only around 6 stimulus cycles for low 

frequencies or 10 ms for high frequencies (Pollack, 1967; McKinney and Delgutte, 1999), it 

is unlikely that the auditory system creates lSI histograms to estimate frequency. It is more 

likely that spike trains are combined directly across fibres to form a histogram-like 

representation. Pooling spike trains across fibres creates a many-cycle period histogram rather 
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than an lSI histogram. Pooling may occur where many fibres converge onto a single 

integrating neuron, for exampl.e at the onset locker cells in the eN. Note that combining spike 

trains across fibres in this way does present the additional requirement that phase-locked 

spikes have the same preferred phase, while the pooling of lSI histograms does not have this 

requirement. 

To summarize, histogram-based frequency estimation mechanisms (Schroeder, 1968; 

McKinney and Delgutte, 1999) can substantiate that neural spike train statistics are sufficient 

to enable the auditory system to estimate frequency. However, histogram-based schemes for 

frequency estimation are only feasible when relatively short periods of spike trains are pooled 

across many fibres, and not when long spike records are required to construct a histogram. 

Histogram-based models are similar to the current model in some respects. Histogram-based 

models may pool histograms across fibres to form an lSI histogram, while the current model 

pools spike trains across fibres. Although this was not necessary in the current model, a many­

cycle period histogram could then be constructed if an adequate number of spike trains were 

pooled. 

Histogram-based models calculate the stimulus frequency from the distance between mode 

peaks. Although mode offsets may occur for lower order modes of an lSI histogram, higher 

order modes may be included in the calculation to estimate the stimulus frequency (McKinney 

and Delgutte, 1999) more accurately. The current model assumed that the pooling of spike 

trains resulted in a new spike train with one spike per stimulus cycle, with spikes randomly 

occurring close to a preferred phase. The Kalman filter model does not estimate the mode 

peak positions, but uses the spike times directly to estimate the stimulus frequency. 

Herein lies an important dissimilarity between the Kalman filter model and the histogram­

based models. The standard deviation in spike position results in estimation variance that is 

used to explain frequency discrimination data in the Kalman filter model. On the other hand, 

the mode widths (or standard deviations) in an lSI histogram-based model have no influence 

on the estimated stimulus frequency, so that these models offer no clear-cut explanation for 
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the variance in estimation of frequency. Mode offsets in lSI histograms vary between different 

fibres with the same characteristic frequency (McKinney and Delgutte, 1999), which may 

explain estimation variance if lSI histograms are pooled across fibres. 

4.4 The influence of lSI histogram mode offsets 

Unlike lSI histograms which may have mode offsets, multi-cycle period histograms formed 

by combining spike trains across fibres cannot exhibit mode offsets. If one spike occurs a little 

before the preferred phase, the next spike interval must be a little longer if phase-locking is 

maintained. Successive inter-spike intervals are correlated (equation 6.7), as also shown by 

joint first order histograms (McKinney and Delgutte, 1999). Mode offsets in lSI histogram­

based models may bias the frequency estimates of these models, but do not playa role in the 

Kalman filter model. At any rate, as frequency discrimination is assumed to be related to the 

variance in estimation only, biases in frequency estimates will not influence frequency 

discrimination in the current model. 

4.5 The influence of peak splitting 

Peak splitting occurs in lSI histograms when two or more spikes occur per stimulus cycle 

(Ruggero and Rich, 1989; McKinney and Delgutte, 1999). Less than 10% of the fibres 

demonstrated peak splitting in the extensive data of McKinney and Delgutte (1999). The 

authors argue that only a small fraction of fibres will exhibit peak splitting at a specific 

stimulus intensity, as the intensity at which peak splitting occurs is a function of stimulus 

frequency as well as fibre CP. Peak splitting does not influence the current model if the 

proposed model of spike train pooling is used. Peak splitting will result in dual spikes in a 

small number of stimulus cycles at the input to an integrating neuron. The temporal and 

spatial integration of spikes that occur at the integrating neuron ensures that dual spikes on 

the input usually do not result in dual spikes on the neuron output. Peak splitting may still 

occur at the output of an integrating neuron, as explained in section 2.3. 
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4.6 Robustness with respect to the number of spikes per stimulus cycle 

The Kalman filter model as formulated is very sensitive to modelling errors. A tenfold 

increase in iJJ/f occurs at frequencies below 1000 Hz because of the way the state space model 

was formulated, i.e. the model does not permit the possibility of either more or less than one 

spike per stimulus cycle. This problem may be overcome by creating more elaborate Kalman 

filter models. One example of a slightly more complex Kalman filter model would be a model 

that assumes that either one spike occurs in every stimulus cycle, or not more than one cycle 

is skipped. Even more elaborate Kalman filters may allow more realistic spike train patterns. 

These more complex estimators will have a relationship between the variance in spike position 

(around the preferred phase) and the estimation variance similar to the original Kalman filter. 

Development of such models is beyond the scope of this chapter, but they will lead to similar 

conclusions as have been reached from the results with the simple Kalman filter model 

presented here. 

4.7 Robustness with respect to spike distribution 

One of the assumptions of the model is that spike clusters around the preferred stimulus phase 

have Gaussian distributions (Javel and Mott, 1988). Although it was a natural idealization that 

simplified the equations, this assumption was not necessary. The Kalman filter is based on 

second order statistics and any distribution with the correct mean and variance will give the 

same results. Thus, the model is not sensitive to non-Gaussian or skewed lSI histogram 

modes. 

4.8 Parameter sensitivity and the origin of the shape of the !lf/f frequency curve 

The iJJ obtained is a tradeoff between three parameters of the model: the number of 

observations, the system noise and the measurement noise. The choice of the system noise 

parameter Ow is least obvious. When the system noise variance ow
2= 0 and the appropriate 

variation is used for the measurement noise on (equation 6.2), the shape of the LlJ/ffrequency 
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curve obtained is similar to the psychoacoustic curve, but flatter at the high and low frequency 

ends. The iJ.flf curve shifts downwards with increasing number N of observations. The same 

absolute values of iJ.flf as found in the psychoacoustic data are achieved with 40 to 50 

observations. It is possible for the model to significantly outperform human observers with 

correct parameter choice. One possibility is to use zero system noise and to increase the 

number of observations N. 

If aw
2 is chosen as a constant but non-zero value, the expected standard deviation of stimulus 

period from observation to observation is a constant over frequency, which implies that the 

ratio of spike standard deviation to stimulus signal period grows, or in other words the signal 

(stimulus period) to noise (standard deviation) ratio decreases with increasing frequency. This 

results in growth in iJ.flf towards higher frequencies. As shown before, to be consistent with 

gap detection data, aw
2=10-12 is a good choice. This results in a high frequency iJ.flf slope 

consistent with psychoacoustic data. For this choice of aw
2 it is also found that the number 

of observations needs to be close to N=50 to achieve the same iJ.flf values as the 

psychoacoustic data. Larger N results in little further decrease in iJ.flf 

For these parameter choices, i.e. N=50 and aw
2=10-12

, the model predictions are consistent 

with psychoacoustic data at frequencies above 500 Hz. To account for psychoacoustic data 

below 500 Hz, stimulus duration T is limited to 100 ms so that the number of observations 

decreases with lower frequencies, which results in a growth in iJ.flf at lower frequencies 

consistent with psychoacoustic data. This choice for T is consistent with known auditory 

integration times. Longest integration time for pure tones has been estimated to be in the 100 

ms to 300 ms range (Green, 1973; Eddins and Green, 1995). Although perceptions of loudness 

or pitch emerge well before 200 ms, computations of loudness and pitch, as required in 

discrimination experiments, continue to improve up to approximately 200 ms (Lewis, 1996). 

The assumption could also have been made that the auditory system uses a constant frequency 

deviation criterion, i.e. the system noise aw
2 should be chosen such that a constant frequency 

deviation rather than a constant period deviation is expected across frequency. This results 

in a growth in aw
2 towards higher frequencies, resulting in even smaller signal to noise ratios 
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at high frequencies, in turn resulting in larger values of iJ.jlf and a steep slope towards high 

frequencies, which is inconsistent with psychoacoustic data. This suggests that the auditory 

system uses estimates of stimulus period rather than frequency to obtain frequency estimates. 

The significance of the choice of a 1 ~s standard deviation (ow= 10-6
) in period is not clear. 

Coincidence detectors in the CN (Delgutte, 1997) can respond to spike timing differences 

which is an order larger than ow. CN cells are probably not able to react to differences in 

period as small as 1 ~s, which means that this is in the neural noise bed. As it is possible that 

the auditory system may be able to regulate the internal noise (Tomlinson and Langner, 1998), 

the auditory system may have chosen to work with a non-zero system noise that is in the noise 

bed, as opposed to choosing o}=O, to avoid divergence in the estimate (Mendel, 1995). 

4.9 Frequency range 

The current model provides accurate predictions of frequency discrimination over the entire 

frequency range up to at least 6000 Hz. However, several studies have shown that no 

observable phase-locking is present above about 5000 Hz (Rose et aI., 1968; Johnson, 1980; 

Palmer and Russell, 1986) and model predictions should be disregarded at frequencies where 

no phase-locking exists. Within the frequency range of 100 Hz to 5000 Hz, the model predicts 

psychoacoustic frequency discrimination thresholds accurately, suggesting the possibility that 

the phase-lock code operates across this entire frequency range. Other investigators (Dye and 

Hafter, 1980; Javel and Mott, 1988; Javel, 1990) have suggested that phase-locking is used 

at frequencies below 1000 Hz while rate-place coding is used for higher frequencies. 

Model predictions for high frequencies can be explained by the standard deviation in spike 

distribution around the preferred phase (the spike jitter). It is interesting that model 

predictions are accurate up to 5000 Hz, even though cells that can sustain entrained firing at 

rates higher than around 1000 Hz have not been found. Many auditory afferent fibres 

converge on onset cells in the CN. Onset locker cells fire once per stimulus cycle for 

frequencies up to 1100 Hz, on a very precise phase of every stimulus cycle (Langner, 1992; 

Rhode and Greenberg, 1992), with better precision than found in the auditory nerve. This is 
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consistent with the notion that a volley principle may be operational in the CN, at least for low 

frequencies. It may be reasonable to assume that a model based on phase-locking and the 

volley principle can hold up to 1000-1500 Hz (Rhode and Greenberg, 1992) only. 

However, why are model predictions still accurate at higher stimulation frequencies? One 

explanation may be that the auditory system may have a mechanism to estimate frequency 

from fibres that fire at integer multiples of the stimulus period rather than on each stimulus 

cycle. Chopper units in the CN can lock onto integer multiples of the stimulus period very 

precisely (Wiegrede and Winter, 2000). The constraints under which the central estimator has 

to perform are still the same, i.e. estimation variance is limited by neural noise and the number 

of available observations. 

A second explanation may be the gradual transformation of temporal information on the 

auditory nerve into a rate-place code at higher levels of the central auditory system. It is 

possible that this transformation takes place at the level of the CN (Rhode and Greenberg, 

1992), although it is not known how such a transformation takes place (Brugge, 1992). A 

large number of auditory afferents carrying a phase-lock code converge on CN cells. These 

fibres should, as a population, provide at least one spike per stimulus cycle on the input to a 

CN neuronal assembly. The possibility exists that the phase-lock code may be transformed 

directly into a rate-place code without the need for fibres firing at rates up to 5000 Hz, but the 

accuracy of such a transformation would still be dependent on auditory afferent spike jitter. 

Such a mechanism could operate over the entire frequency range of phase-locked activity. 

However, evidence is available that suggests that the upper limit for the encoding of frequency 

by phase-locking is below 1000 Hz. Cochlear implant users cannot discriminate changes in 

sinusoidal electrical stimulation frequency above about 300-500 Hz (Shannon, 1983a), while 

modulation detection performance decreases monotonically above 100 Hz for normal-hearing 

listeners (Bacon and Viemeister, 1985) and for cochlear implant users (Shannon and Otto, 

1990). 
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To summarize, the Kalman filter model results are consistent with an optimal central estimator 

that is constrained by limitations in the number of observations at low frequencies (below 500 

Hz) and by spike position jitter at higher frequencies (above 500 Hz). Although the model can 

predict frequency discrimination data over the entire frequency range in which phase-locking 

is observed (up to 5000 Hz), not enough neurophysiological evidence is available to support 

a claim that phase-locking is used for the encoding of frequency across this entire range, and 

evidence exists which suggests that phase-lock coding is used only at low frequencies. 

4.10 Number of fibres required 

Previous models predict considerably better human frequency discrimination performance 

than measured perceptually. Siebert (1970) used the entire array of nerve fibres and the 

occurrence times of all spikes in an optimal processing model to obtain predictions for Lljfar 

surpassing human frequency discrimination ability. Goldstein and Srulovicz (1977) and 

Wakefield and Nelson (1985) used inter-spike intervals only and required only nine nerve 

fibres to account for human frequency discrimination data. If one spike were available for 

each stimulus cycle, the current model would require only a single nerve fibre to account for 

human frequency discrimination data. However, even at high intensities, firings do not occur 

at every stimulus cycle (Rose et aI., 1968). The current model is for the availability of spikes 

on every stimulus cycle and estimation errors grow rapidly when spikes are missed as shown 

previously. 

At high intensities, the combination of spike information from just a few nerve fibres will 

ensure the availability of at least one spike per stimulus cycle. At lower intensities, the 

combination of more nerve fibres is required to account for human frequency discrimination 

data. If too few fibres are pooled, it cannot be ensured that at least one spike is available per 

stimulus cycle. As mentioned previously, more complex Kalman filter models can contend 

with the condition where spikes do not occur on every stimulus cycle. Calculating the least 

number of fibres to be combined to have a combined average of at least one spike per 

stimulus cycle is simple. There is no guarantee that spikes will be available on each stimulus 

cycle when fibres are combined, but the probability of missing cycles decreases as the number 
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of fibres to be combined increases. It is estimated from simulations that the current model 

requires the combination of not more than 100 fibres to ensure at least one spike per stimulus 

cycle at all frequencies and supra-threshold intensities. 

4.11 Behavior of the model in noise 

The Kalman filter model incorporates noise in the system noise and measurement noise 

parameters. The system noise characterizes the variability of the stimulus frequency because 

of signal dynamics. The measurement noise is a result of imprecise measurement of the 

stimulus period because of the Gaussian distribution of spikes around the preferred stimulus 

phase. These noise sources exist even when the stimulus is a pure tone in quiet. Additive 

external noise may be incorporated into the measurement noise parameter, as addition of noise 

tends to desynchronize the neural spikes so that phase-locking becomes less precise (Dye and 

Hafter, 1980). The effect is that for all frequencies, 4t grows and the Llj intensity curves 

flatten. 

This is contrary to the observation by Dye and Hafter (1980) that Llj in humans is frequency 

dependent at constant signal to noise ratios. For pure tone frequencies at 3000 Hz or above, 

Llj grows larger with increased signal intensity, while at 1000 Hz or lower frequencies Llj 

becomes smaller. The crossover point is around 2000 Hz. The current model cannot predict 

these effects. The current model, or any model based on phase-locking, predicts decreasing 

Llj with increasing intensity, as the temporal dispersion of spikes around the preferred 

stimulus phase will become smaller with increased intensity. To predict increasing Llj with 

intensity, the synchronization index should become smaller with increasing intensity. This 

possibility exists. The cat data presented in Johnson (1980) show examples of a fibre tuned 

to intensity, i.e. for which the synchronization index grows with intensity at lower intensities 

and declines again at higher intensities. 

Department of Electrical, Electronic and Computer Engineering, University of Pretoria 188 

 
 
 



Chapter 6 A temporal model offrequency discrimination in acoustic hearing 

4.12 Comments on the use of cat neurophysiological data to predict human 

performance 

Neurophysiological data used in the current model to predict human psychoacoustic data were 

obtained in cat. Several authors have cautioned that cross-species comparisons are subject to 

interpretational difficulties, especially because of a lack of neurophysiological stimulus 

encoding data from humans (Hienz et aI., 1993). Also, humans discriminate smaller frequency 

increments than monkeys (Prosen et aI., 1990) or cats (Javel and Mott, 1988; Hienz et aI., 

1993) and frequency discrimination dependence on intensity differs in these species (Hienz 

et aI., 1993). Previous studies suggested that differences between frequency discrimination 

thresholds in humans and other animals may be a result of different frequency encoding 

mechanisms in different species (Prosen et aI., 1990; Hienz et aI., 1993). From several studies 

it is clear that frequency information is available in both rate-place codes and phase-lock 

codes. The accurate prediction of human frequency discrimination thresholds with the current 

model suggests that encoding of stimuli in neural spike trains may be very similar in cat and 

human, although different animals may still use different decoding strategies to extract 

frequency information at different frequencies, resulting in differences in discrimination 

thresholds. 

4.13 Comments on neural implementation 

The Kalman filter model proposed here is a purely mathematical operation, but is believed 

to have biological significance. Although a possible biological implementation has been 

proposed for a volley principle, no attempt has been made to suggest a potential biological 

implementation for the Kalman filter or to speculate where in the auditory system such a 

mechanism may exist. This is outside the scope of this chapter. It is not the intention with the 

current model to claim that the central auditory nervous system implements a Kalman filtering 

mechanism to extract frequency information, but rather to demonstrate by example how an 

analysis-by-synthesis principle may be used for the estimation of a biological parameter. Two 

primary intentions were (1) to demonstrate that most of the psychoacoustic frequency 

discrimination data may be explained by the statistics of a simple spike generation model, (2) 
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using a recursive optimal processor that operates on spike trains with these statistics. 

A recursi ve mechanism for noise suppression and parameter estimation may be attractive from 

a biological implementation viewpoint. The neural implementation of a Kalman estimator 

requires that the central auditory system has an internal model of the signal source (as 

reflected in the state space model equations and the Kalman filter parameters) and the ability 

to perform recursive calculations. Instead of explicitly storing information from the entire 

duration of a stimulus, the history of a sequence can be stored in the internal states of fibres 

(Lewis, 1996). Computations can then be carried out so that the output of a neural calculation 

is a function of past inputs and the present input. This will limit the amount of data that have 

to be stored in short term memory, which is attractive from a biological implementation 

viewpoint. Although these kinds of computations are of theoretical use, more support from 

neurophysiological and psychophysical work is needed to establish the biological relevance. 

Plausible biological implementations for recursive calculations have been discussed in 

literature, e.g. McLaren (1989), but there is little biological evidence for the existence of these 

mechanisms. Wolpert, Ghahramani, and Jordan (1995) present experimental data that support 

the notion of the existence of an internal model and recursive calculations in sensorimotor 

integration. 
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5 CONCLUSIONS 

(1) It was shown that an analysis-by-synthesis type of mechanism may be used to explain 

frequency discrimination data. The Kalman filter model described here is an explicit 

implementation of an analysis-by-synthesis mechanism which provides the ability to 

produce numerical predictions. 

(2) This recursive implementation of a frequency estimation mechanism can account for 

most of the psychoacoustic data for frequency discrimination in quiet. 

(3) The particular Kalman filter model constructed in this chapter depends on the 

availability of one spike per stimulus cycle, which may be provided by the operation 

of a volley principle. More complex recursive estimators will free the model from the 

one spike per stimulus cycle constraint. 

(4) The temporal information in inter-spike intervals is sufficient to account for human 

frequency discrimination performance up to 5000 Hz. 

(5) The number of observations of spike intervals, rather than the integration time used 

for estimates, is probably fixed. 

(6) Under the assumption of constant system noise across frequency, the number of 

observations accounts for the low frequency part of the iJf/f frequency curve, while 

the measurement noise accounts for the high frequency part of the curve. Thus model 

results are consistent with an ideal observer that is limited by the number of available 

observations at low frequencies (below 500 Hz) and by spike position jitter at higher 

frequencies (above 500 Hz). 
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APPENDIX 6.A 

DERIVATION OF EQUATION 6.2 

The instantaneous spike rate r(t) for a fiber that is phase-locked to a pure tone stimulus is given 

by equation 6.1, which is also interpreted as the envelope of a multi-cycled period histogram. 

This envelope is bell-shaped and close to being Gaussian for arguments of the cosine function 

in the range (-TI, TI). To approximate r(t) by a Gaussian, it is necessary to calculate the standard 

deviation of a Gaussian with the same width than this period histogram envelope. Ignoring 

temporarily the scale factor k in equation 6.1 gives 

r 1 (t) = a e G(f,A)cos(2rtft) • 

Equation 6.A.1 is first normalized to have a maximum value of 1 at t=O, 

a e G(f,A)cos(2rtft) = 1 . 

Solving for a, 

a = e -G(f,A) • 

(6.A.l) 

(6.A.2) 

(6.A.3) 

The normalized period histogram envelope is now equated to a Gaussian which has also been 

normalized to height 1 at the origin. To calculate the width of the Gaussian that fits rit), the 

heights of r it) and the Gaussian are equated at t= a, 

(6.A.4) 

Solving for ain terms of the synchronization index G(f,A), 

a = _1_ arccos(G(f,A) -112) 
n 2rtf G(f,A) 

(6.A.5) 

Equation 6.A.S is a good fit to the standard deviations of peaks of inter-spike interval 

histograms from lavel and Mott (1988). Reintroducing the scale factor k into equation 6.A.1 

to obtain equation 6.1, it is necessary to scale equation 6.A.S as well to fit the data. Scaling 

equation 6.A.5 by ..f k, equation 6.2 is obtained, which provides a good fit to the data from 

lavel and Mott (1988). 
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